

 Master’s Degree

 in Computer Science

 Final Thesis

 Enhancing a Hybrid Collaborative Filtering
Recommender by Exploiting Approximate

Top-k Binary Patterns

Supervisor
Prof. Salvatore Orlando

Graduand
Andrea Furlan
877704

Academic Year
2019 / 2020

1

Acknowledgments

I would like to acknowledge you Erica, my girlfriend. Not only for having always
been by my side during these academic years but also for having pushed me to
always give my best, always putting up with me despite everything. You has al-
ways been by my side, stimulating my research, soothed my anger, reducing my
worries, reading and correcting every line of this thesis with patience. Thank you
infinitely and eternally, my Love.

I would like to thank my family for helping me endure the dark times of my aca-
demic career. Without you, I wouldn’t be where I am today, you are the foundation
of my life. Thanks mom, dad and Stefano.

I would like to thank my supervisor Professor Salvatore Orlando, not only for hav-
ing been the guide in this thesis, but also for having always remained a human
and sensitive person towards me.

I would like to thank all my friends who gave me a call to hear my reasoning or
for a simple chat.

The last thanks goes to you grandmother, you have always believed in me and
you have always told me ”sei una cima”, you have been my strength in these last
months, thank you.

i

Contents

1 Introduction 1

2 Recommender System 3
2.1 Collaborative-Filtering methods . 5

2.1.1 Memory based . 6
2.1.2 Model based . 8

2.2 Content-Based methods . 9
2.3 Hybrid and other Recommendation Systems 11
2.4 Evaluation and Challenges . 13

2.4.1 Evaluation of a recommender system 13
2.4.2 Challenges in Recommender System 16

3 ClustKnn 18
3.1 Datasets . 20
3.2 Clustering methods . 22
3.3 Evaluation, Improvements and Results 23
3.4 Implementation and Improvements 27

4 Our Approach 32
4.1 PaNDa+ . 32
4.2 Main algorithm . 33
4.3 Comparison and results . 38

5 Conclusion 42

ii

Chapter 1

Introduction

The amount of content available on the web today is enormous. Just think that
in sixty seconds on the web in the 2019, 1 million Facebook log-in happened, or
again 1 million $ have been spent in Amazon or 3,8 million search queries have
been done. If we think how much data has been created only in 1 minute, it’s
impressive [15]. This is far too much content for any person to consume, and it is
called the problem of “information overload”. To help people to decide what items
might be worthwhile to look at or not, people need some tools to help them. One
effective tool for this task is a recommender system. These systems suggest items
that a user might be interested based on his preferences, observed behaviors, and
information about the items themselves.

Figure 1.1: What happens in 60 seconds? [15]

1

Collaborative Filtering (CF)-based recommender systems are indispensable tools
to find items of interest from a great number of available items. Moreover, com-
panies that deploy a CF-based recommender system may be able to increase own
profits by drawing customers’ attention to items that they are likely to buy.
However, the great number of users and items typical in e-commerce systems de-
mand specially designed recommender algorithms that can gracefully cope with
the vast size of the data. Many algorithms have been proposed thus far, where the
principal concern are recommendation quality, but they may be too expensive to
operate in large-scale systems.

In this thesis we studied, analyzed and modified ClustKnn: a Highly Scalable Hy-
brid Model- & Memory-Based CF Algorithm proposed by Karypis et Al [11, 12],
a simple and intuitive algorithm. This algorithm is well suited for large datasets.

The method first compresses data tremendously by building a straightforward but
efficient clustering model then it generates quickly recommendations using a simple
Nearest Neighbor-based approach. However we found different ways to improve
this algorithm and we found some leaks in the publication and in their results.
Anyhow, as Karypis et Al said, they demonstrated the feasibility of ClustKnn
both analytically and empirically, and they also compared it with a number of
other popular CF algorithms that, apart from being highly scalable and intuitive,
it provides very good recommendation accuracy as well.

We improved over ClustKnn by adding a further step to the clustering phase. We
used the PaNDa+ framework [8] which is able to discover high quality patterns
from binary datasets.

2

Chapter 2

Recommender System

Over the past few decades, with the rapid rise of Youtube, Amazon, Netflix and
many other similar web services, the amount of data on the web is become enor-
mous. Just think that, only in 60 seconds, from a research in 2019, users reached
4.19 millions search queries on Google, 694.444 hours on Netflix, 4.5 million videos
on Youtube viewed and so on.

From e-commerces, to online advertising, or again to video sharing or video stream-
ing platforms: the number of possible choices has become enormous. For example,
to make the right choice like a specific movie to watch or a specific item that you
are interested to buy, is very difficult to find out.
To deal with this problem, a sort of information filtering must be used in order
to manipulate the enormous quantity of raw data, reduce the noise, and find out
relevant data: the solution is the so-called Recommendation Systems.

A recommender system is a kind of information filtering system that tries to predict
the ”preference” or ”rating” a user would give to a specific item. Recommender
Systems (RS) are thus software tools and techniques that provide suggestions to
a user.
So, recommendations or suggestions, typically, make it easier for users to access
content they are interested in, and surprise/show them with items they would have
never searched for, most of the times to new offers in the field of e-commerces.

The study of recommender systems is relatively new compared to research into
other classical information system tools and techniques like databases or search
engines.
Recommender systems emerged as an independent research area in the middle of
1990s, and in recent years, the interest in recommender systems has dramatically
increased, as the following facts dimostrate:

1. Recommender systems are very important for Internet sites like Amazon.com,
YouTube, Netflix, Tripadvisor, Spotify, IMDb and many others. Moreover,
many media companies are still developing, deploying, or just improving RSs,
as part of the services they provide. An example is the ”The Netflix Prize”:
Netflix, the famous streaming media service, started in 2007 an open com-

3

petition for the best RS collaborative filtering algorithm, awarding a million
dollar prize to the team that first succeeded in highly improving the perfor-
mance of its recommender system. The competition was cancelled in 2010
due to a lawsuit.

2. There are many conferences and workshops dedicated to this specific field.
In particular, there is a famous conference called ACM. As they said on
their website, ”The ACM Conference on Recommender Systems (RecSys) is
the premier international forum for the presentation of new research results,
systems and techniques in the broad field of recommender systems. RecSys
brings together the major international research groups working on recom-
mender systems, along with many of the world’s leading companies active
in e-commerce and other adjacent domains. It has become the most impor-
tant annual conference for the presentation and discussion of recommender
systems research. [...][1]”.

Furthermore, frequently there are session dedicated to RSs during the more
traditional conferences in the area of data bases, information systems and
adaptive systems.

Among these conferences, we can mention Special Interest Group on Infor-
mation Retrieval (SIGIR), User Modeling Adaptation and Personalization
(UMAP), ACM’s Special Interest Group on Management Of Data (SIG-
MOD), Knowledge Discovery and Data Mining (KDD) and World Wide
Web conference (WWW).

3. In the institutions of higher education around the world, exists undergradu-
ate and graduate courses dedicated entirely to RSs; tutorials on RSs are very
popular at computer science conferences; there are a lot of tutorials online
to learn the first rules to build a RS for building your own RS or real code;
and a lot of books about RSs techniques were published.

Although in past few years lot of approaches to recommender systems have been
developed, the interest in this field is high due to growing of practical applications
in which can deal with personalized recommendation and deal with large amount
of data[18].

A personalized RS technology can be used to either predict whether a particular
user will like a particular product or item (prediction problem) or to identify a
set of N items that will be of interest to a specific user (top-N recommendation
problem).

Further, many other applications use recommendation systems for different pur-
poses like: make more profit in industry, make effective and efficient personalized
result in its own system.

Nowadays companies have large amount of data available, not only user’s prefer-
ences, but the number of log-in and log-out, the time of log-in, number of clicks, etc.
So in order to take advantages of this raw data, they use Intelligent Recommen-
dation System. Many of the company used this type of system like Amazon.com,
ebay.com, movies by movie lens, to make more accurate prediction of user’s mind.

4

There are three categories in which Recommendation Systems can be divided to
create suggestions:

• collaborative approach: a Recommendation Systems with collaborative fil-
tering (CF) approaches build a model of a user’s past behavior (previously
extracted or selected items and/or numerical ratings given to those specific
items) as well as similar decisions made by other users. This model is used
to predict articles or article ratings that the user might be interested in.

• content-based approach: a Recommendation Systems with content-based
(CB) approaches are based on a description of the item and a profile of
the user’s preferences. These methods are best suited to situations where
there is known data on an item called features (name, location, description,
etc.), but not on the user. Content-based recommenders treat recommen-
dation as a user-specific classification problem and learn a classifier for the
user’s likes and dislikes based on an item’s features.

• hybrid approach: this method is a combination of the previous approaches.[13,
9]

2.1 Collaborative-Filtering methods

The first kind of Recommender System is the collaborative filtering (CF). The CF
approach is widely used nowadays and it is based on the main idea that users who
agreed in the past will agree in the future, and then, they will like similar kinds of
items as they liked in the past.
In other words, if a user ”A” has the same rating/taste/opinion as a user ”B” on
an item, then ”A” is more likely to have same ratings/tastes/opinions of ”B” on
the other elements as well, than that of a randomly users.

So, collaborative filtering is the method of making automatic predictions (filtering)
about the interests of a specific user by collecting preferences or information from
many others users (collaborating).

It is important to emphasize that this method is based only on the past interac-
tions recorded between users and items in order to produce new recommendations.
In a more general sense, collaborative filtering is the process of filtering for informa-
tion or patterns using techniques involving collaboration among multiple agents,
viewpoints, data sources, etc. Applications that use collaborative filtering meth-
ods typically involve very large datasets.

Collaborative filtering methods have been applied to many different kinds of data,
and not only in e-commerces and web applications services where the focus is on
user data but also in: sensing and monitoring data, such as in mineral exploration,
environmental sensing over large areas or multiple sensors; financial data, such as
financial service institutions that integrate many financial sources etc.

Collaborative Filtering techniques are divided in two categories: model based and
memory based approaches.

5

2.1.1 Memory based

Memory based collaborative approaches directly work with values of past interac-
tions, these methods do not assume any latent model, and are essentially based
on nearest neighbours search.

These algorithms use users rating data to compute the similarity between users
or items: a typical example of this approach are neighborhood-based CF methods
and it is typically divided into two classes: item-based and user-based top-N rec-
ommendations.

The neighbourhood-based algorithm calculates the similarity between two users or
items, and it produces a prediction for the user by taking the weighted average of
all the ratings. The calculation of similarity between items or users is very impor-
tant in this approach and so it is the choice of the appropriate correlation measure.

There are multiple mathematical measures, that are used to determine how similar
is a vector to a given vector: The similarity metrics mostly used are:

• Pearson similarity, a coefficient given by:

sim(x,y) =
∑n
i=1(xi−x)(yi−y)√∑n
i=1(xi−x)2(yi−y)2

• Vector cosine based similarity, the Cosine angle between the vectors:

sim(x,y) =
∑n
i=1(xiyi)√∑n

i=1(x2i)
√∑n

i=1(y2i)

• Euclidian Distance, the element-wise squared distance between two vectors:

d(x, y) =
√∑n

i (xi − yi)2

So, the principal aspects of User-Based Collaborative Filtering and Item-Based
Collaborative Filtering (also called user-user and item-item) approaches are that,
they use only information from the user-item interaction matrix and they assume
no model to produce new recommendations. One of the biggest flaw of memory-
based CF is that, these types of algorithms are not easily scalable: computing a
new suggestion can be extremely time consuming for big datasets, due to the great
numbers of distances to compute.

We can predict rating of user ”u” for item ”i” by taking weighted the sum of the
ratings of item ”i” from all other users (u’s), where weighting is the similarity
number between each user and user ”u”. Clearly, the similarity metric can be one
of the above:

r̂u,i =
∑

u′εU sim(u, u′)ru′,i

6

whereh u 6= u′ and U is the KNN set.

User-Based Collaborative Filtering

In order to make a new recommendation to a specific user, User-Based Collab-
orative Filtering (UB-CF) method tries to identify users with the most similar
”interactions profile” (nearest neighbours) in order to suggest ”new” items that
are the most popular among these neighbours.
This method is called ”user-user” or ”user-based method” because it represents
users based on their interactions with items and evaluates distances between users.

So, in order to compute a recommendation for a particular user it is necessary to:

• Find the K-nearest neighbors (KNN) to the user ”u”, using a similarity
function ”w” to measure the distance between each pair of users:

Similarity(u,i) = w(u, i), iεK

• Predict the rating that user ”u” will give to all items the k neighbors have
given but ”u” has not. After that, it is necessary to search for the item ”j”
with the best predicted rating.

Once similarities to every users have been computed, it is possible to keep the
k-nearest-neighbours to the specific user and then suggest the most popular items
among them.
Now, if one user ”A” behaves like other users B, and C then for a product ”x”,
A’s rating is given by:

Rxu =
∑n
i=0Ri
n

where Rxu is the rating predicted to ”x” by user ”u”, i = 0 to ”n” are the users
who have a behaviour similar to ”u” and Ri is the average of all ratings of user
”i”. All the ”n” users are not an equal amount similar to the specific user ”u”, so,
we found a weighted sum to provide a rank:

Rxu =
∑n
i=0RiWi∑n
i=0Wi

where the weights are the similarity metrics used.

Item-Based Collaborative Filtering approach

In the case of Item-Based Collaborative Filtering approach (IB-CF), the main idea
to make a new recommendation to a user, is to find items similar to the ones the
user already interacted with.
A user might prefers on the basis of information collected from various other users
having similar tastes or preferences. It takes into consideration the basic fact that
if person X and person Y have a certain reaction for some items, then they might
have the same opinion for other items too.

7

So, two items are considered to be similar if most of the users that have interacted
with both of them did it in a similar way. This method is called ”item-item” or
”item-based method”, because it represents items based on interactions users had
with them and evaluate distances between those items.

Again, as in [17] is explained, once the set of most similar items based on the
similarity measures, the next phase is to inspect the target user ratings and use a
technique to obtain suggestions.

There are two main techniques that are explained[17]:

• Weighted Sum: this method computes the prediction on an item i for a user
u by computing the sum of the ratings given by the user on the items similar
to i. Each rating can be weighted by its corresponding similarity si,j.

Pu,i =
∑
all similar items,N (si,N∗Ru,N)∑

all similar items,N (|si,N)|

where N corresponds to the set of items similar to target item and from those
similar items, are picked those items which the active user has rated the item
”i”. The weighted sum approach is scaled by the sum of the similarity terms,
in order to make sure the prediction is in the predefined range.

• Regression: This method is similar to the weighted sum approach but instead
of using the rates of similar items, it uses an approximation of the ratings
based on regression model.
The basic idea is to use the same formula as the weighted sum technique, but
instead of using the similar item N’s ”raw” ratings values Ru,N ’s, this model
uses their approximated values R′

u,N based on a linear regression model. If
we indicate the respective vectors of the target item i and the similar item
N by Ri and RN the linear regression model can be expressed as:

R
′
N = αRi + β + ε

The parameters of the regression model α and β are determined by going
over both of the rating vectors, while ε is the error of the regression model.

The main difference between User-Based Collaborative Filtering and this method
is that, in this case, we directly pre-compute the similarity between the co-rated
items, avoiding the K-neighborhood search.

2.1.2 Model based

Model based collaborative filtering approaches only depend on user-item interac-
tions information, in order to create a model that can explain and describe these
interactions.
This model is usually developed using different data mining methods and machine
learning algorithms in order to predict, for example, users’ rating of unrated items.
There are three main model-based CF algorithms: Non-parametric approach, Deep
Learning methods, but the most popular are Matrix Factorization based algo-
rithms.

8

• Non-parametric approach: among Non-parametric approaches, usually, are
used simple clustering algorithms like K-Nearest Neighbours to find the K
closest neighbours given a user or an item based on the similarity metrics
used.
The idea is similar as that of memory-based recommendation systems. In
memory-based algorithms are used the similarities between users and/or
items and use them as weights to predict a rating for a user and an item.
The difference is that the similarities in this approach are computed based
on an unsupervised learning model, rather than a simple similarity metric
like Pearson correlation or cosine similarity. In this approach, we also limited
the number of similar users as k, which makes system more scalable.

• Deep Learning methods: these methods are powerful and they were devel-
opment due to some limitations of matrix factorization methods like the
difficulty of using side features, or the famous problem ”cold-start”. How-
ever they are still under development and there isn’t enough material about
this approach.

• Matrix Factorization based algorithms: there is a ton of research material on
collaborative filtering using matrix factorization. This family of algorithms
consists in decomposing the huge, sparse user-item interaction matrix into
a product of two smaller and more dense matrices: a user-factor matrix
that containing users representations, and a second matrix that multiplies
a factor-item matrix that containing items representations. The main idea
behind matrix factorization is that exists a pretty low dimensional space of
features in which we can represent both users and items and such that the
interaction between a user and an item can be obtained by computing the
dot product of corresponding dense vectors in that space. The consequence
of such factorization is that close users in terms of preferences as well as close
items in terms of characteristics, will have close representations in the latent
space.

To sum up, the features become extracted features and as they are learned and
not given, they taken individually have a mathematical meaning but not intuitive
interpretation. However, it is not unusual that the models deriving from these
type of algorithms being close to intuitive decomposition that human could think
about.

2.2 Content-Based methods

The second approach, when designing a recommender system, is Content-based
filtering method: this method is best suited to situations where there is known
data on an item (features), but not on the user.
Content-based filtering methods are based on two things: on a description of the
item and on a profile of the user’s preferences.

Unlike collaborative methods that, as we said, only depend on the user-item in-
teractions, content based approaches use additional information called ”features”
about users and/or items.

9

The principal idea of content-based approaches is to build a model in order to
explain the user-item interactions with the help of the available ”features”.
The model is provided with content that define the representation of users and/or
items, usually, users are represented by features and we try to model for each item
the type of user profile that likes or not this specific item. Here, as for model
based collaborative approaches, a user-item interactions model is assumed. How-
ever, this model is more constrained because representation of users and/or items
are given.

In these methods, the recommendation problem becomes a classification problem
i.e. predict if a user will ”like” or not an item or into a regression problem i.e to
predict the rating given by a user to an item. In both cases, the model will be
based on the user and/or item features at disposal (the ”content” of our “content-
based” method).

The classification or regression problem given from the recommendation problem
can be divided into two categories, based on what are the features are based-on.

If the classification or regression is based on users features, this approach can be
called item-centered : optimizations, modelling and computations can be done ”by
item”. In this case, a model is built and learnt for a single item on users features
trying to find the probabilities of different users to like a specific item.
The model associated with each item is trained on data related to this item and it
leads, in general, to robust models as a lot of users have interacted with the item.
However, the interactions considered to learn the model come from every users
and even if these users have similar features their preferences can be different.
A typical example of an item-centred classification is the ”Item-centred Bayesian
classifier”: for each item a Bayesian classifier is trained that takes user features as
inputs and give as output either ”like” or ”dislike”.

So, to achieve the classification, we need to compute:

Pitem(like|user features)
Pitem(dislike|user features)

that it is the ratio between the probability for a user with his/her features to like a
specific item and its probability to dislike it. The ratio of conditional probabilities
defines the classification rule, that can be expressed following the Bayes formulas:

Pitem(like|user features) = Pitem(user features|like)×Pitem(like)
Pitem(user features)

Pitem(dislike|user features) = Pitem(user features|dislike)×Pitem(dislike)
Pitem(user features)

Pitem(like|user features)
Pitem(dislike|user features) = Pitem(user features|like)×Pitem(like)

Pitem(user features|dislike)×Pitem(dislike) .

where Pitem(dislike) = 1− Pitem(like) are data pre-computed, while:
Pitem(user features|like) and Pitem(user features|dislike) are likelihoods assumed

10

to follow Gaussian distributions. Can be done various hypothesis about the covari-
ance matrices of these two likelihood distributions leading to various well known
models.

It can be notice once more that, here, likelihood parameters have to be estimated
only based on data (interactions) related to the considered item.

Instead, if the classification or regression is based on items features, the method is
called user-centred : modelling, optimizations and computations can be done ”by
user”. A model is trained by user based on items features that tries to find the
probability for each user to like each item.
Then, it is possible to attach a model to each user that is trained on its data: the
model obtained is, more personalized than its item-centred counterpart as it only
takes into account interactions from the considered user.
However, most of the time, a user has interacted with relatively few items and, so,
the model obtained is a far less robust than an item-centred one.

So, if we denote M the user-item interaction matrix, we can create a matrix X
where the row vectors represent users coefficients to be learned and we create
another matrix Y, where row vectors represent items features that are given.
Then, for a given user ”i”, we learn the coefficients in Xi by solving the following
optimization problem:

Xi = argminXi

1
2

∑
(i,j)εE[(Xi) (Yj)

T −Mij] + λ
2(
∑

2(Xik)
2)

where, ”i” is fixed and, so, the first summation is only over (user, item) pairs that
concern user ”i”.
We can observe that if we solve this problem for all the users at the same time,
the optimization problem is exactly the same as the one we solve in ”alternated
matrix factorization” when items are fixed.
This observation marks a link between collaborative filtering and content based
approach: model based collaborative filtering approaches (such as matrix factor-
ization) and content based methods both assume a latent model for user-item
interactions, but model based collaborative approaches have to learn latent repre-
sentations for both users and items, while content-based approaches build a model
using human-defined features for users and/or items.

2.3 Hybrid and other Recommendation Systems

The third and the most approach used nowadays in recommender systems, uses a
hybrid approach, combining collaborative filtering and content-based filtering.

Hybrid approaches can be implemented in several ways: by making content-based
and collaborative-based predictions separately and then combining them, or by
adding content-based capabilities to a collaborative-based approach (and vice-
versa), or by unifying the approaches into one model.

11

Naturally, this method tries to use the advantages of a method to fix the disad-
vantages of the other.

For instance, as explained above, CF methods suffer from new-item problems, i.e.,
they can not recommend items that have no ratings, but this problem does not
affect content-based approaches, since the prediction for new items is based on
their description (features), that are typically easily available.

Several studies have been done that empirically compare the performance of the
hybrid approaches with the pure collaborative and content-based methods, and
demonstrated that the hybrid methods can provide more accurate recommenda-
tions than pure approaches.

There exist also different types of recommendation system in the literature that
are worth mentioning but not to analyze deeply.

• Demographic Recommendation System: this type of RS recommends items
based on the demographic profile of the user. The main idea is that different
suggestions should be predicted for different demographic area. Many web
sites adopt effective personalization solutions based on demographics like
suggestions customized according to the age of the user.

• Knowledge-based recommendation systems: this method recommends items
based on specific domain knowledge, i.e. how certain item features meet users
needs and preferences. Knowledge-based systems tend to work better than
others at the beginning, but if there is not a learning part in their component,
they may be surclassed by other shallow methods that can exploit the logs
of the human/computer interaction like in Collaborative Filtering methods.

• Community-based recommendation systems: this method recommends items
based on the preferences of the users’ friends. Evidence suggests that people
tend to trust more on recommendations from their friends than on recom-
mendations from similar but anonymous users. This observation, combined
with the explosion of social networks has generated a rising interest in Com-
munity Based systems.
This type of RSs models and acquires information about the social relations
of the user and the preferences of the user’s friends and recommendations
are based on ratings that were provided by the user’s friends. In fact these
RSs have followed the rise of social-networks and enable a simple and com-
prehensive acquisition of data related to the social relations of the users.

Although, the most famous methods of Recommender systems are Collaborative
Filtering and Content Based methods, among the hybrid methods, there can be
also the combination of the above mentioned techniques.

12

2.4 Evaluation and Challenges

Recommendation systems have to afford different challenges: from the problem to
find the correct way to evaluate it, or to find the solutions to some of the famous
issues that can happens while developing it, like ”cold start”. In the next sections
we will first show different ways to evaluate a RS, then we will explain some of the
biggest issues that can affect a RS.

2.4.1 Evaluation of a recommender system

Recommender systems have different ways of being evaluated. For example, if it
is Top-N recommendations (i.e. the most probable items the user will interact
with), it is not needed to consider the predictions regarding the rest of the items
when conducting the evaluation. However, you could very well be interested in the
order of priority of those 5 recommendations, so you would have to consider this.
The chosen way of evaluating has an important effect on the way of designing the
system.
Two types of recommender system evaluations are frequently discussed: online
and offline approaches.

With online methods, users feedbacks are measured given the recommendations
made. For example, it can be measured when the user clicks on the recommended
items (frequently happens on ads) and evaluate the direct impact of the system.
This approach of evaluation is the ideal, although its usually hard to implement
because the only way to run the experiments is by interacting with the RS that is
already running.

While, the offline methods are ideal for experimental stages, since users aren’t
directly involved, and unlike online methods, the system does not have to be de-
ployed. The data is split into training and validation sets, which means that part
of the data will be used to construct the system and the other part to evaluate it.

For example, if the recommender system is based on a model that outputs numeric
values such as matching probabilities or ratings predictions, it is possible to eval-
uate the quality of these outputs in a classical way using an error measurement
metric. In this case, the model is trained only on a part of the available interac-
tions (train set) and is tested on the remaining ones (test set).
There are a lot of metrics to evaluate performances of a system:

• Mean Absolute Error (MAE)

Mean absolute error is the average of the difference between the value pre-
dicted by a recommender and the actual value given by the user. First, we
need to compute the error by subtracting predicted rating and actual rating
for each user and then we take the mean of all the errors to calculate MAE:

13

MAE = (1
n)

∑n
i=1 |yi − xi|

MAE tells how much predicted score is far from the actual score. We take
absolute in order to cancel the negative sign, as we are not interested posi-
tive or negative score, we only want to know the difference between real and
predicted values.
Zero MAE means there was no difference between predicted and actual rat-
ing and that the model predicted accurately, therefore, smaller the MAE the
better.

• Mean Squared Error (MSE)

Mean Squared Error is very similar to Mean Absolute Error, but it differs
to MAE because, instead of taking absolute of error to cancel the negative
sign, it squares it:

MSE = (1
n)

∑n
i=1(yi − xi)2

MSE helps to penalize results so, even a small difference will result in a big
difference. In this case MSE, even if is close to zero means that the rec-
ommender system really output good results, because otherwise, the MSE
won’t be so small.

• Root Mean Squared Error (RMSE)

As we already said, MSE helps to negate the negative sign but it scales up
the errors that can not be compared to actual rating values due to different
rating scales. So, RMSE takes the square root of MSE to normalize the scale
issue that MSE has.

RMSE =
√

(1
n)

∑n
i=1(yi − xi)2

RMSE is more sensitive to outliers and can exaggerate results if there are
outliers in the dataset. Furthermore, RMSE reconstructs the error terms
while MAE does not, in fact MAE treats outliers and non-outliers equally
while RMSE does not. Also, RMSE will almost always be greater than MAE.

It should be remember that MAE, MSE and RMSE do not have an upper bound,
so, that value can not compared with the same metrics from others dataset.

Still, if the recommender system is based on a model that predicts numeric val-
ues, there is the possibility to binarize these values with a classical thresholding
approach (values above the threshold are positive and values below are negative)

14

and evaluate the model in classification way.[2]
As the dataset of user-item past interactions can be binary, it is possibile to eval-
uate the accuracy, the precision and the recall of the binarized outputs of the
model on a test set of interactions not used for training[2, 14]. In order to evaluate
a model, it is usually take into account the following measures: True Positives
(TP): number of instances classified as belonging to class A that truly belong to
class A; True Negatives (TN): number of instances classified as not belonging to
class A and that in fact do not belong to class A; False Positives (FP): number of
instances classified as class A but that do not belong to class A; False Negatives
(FN): instances not classified as belonging to class v but that in fact do belong to
class A.
The commonly used measure for model performance is: Accuracy. It is defined as
the ratio between the instances that have been correctly classified and the sum of
instances:

Accuracy = (T P + TN)/(T P + TN + FP + FN). However, accuracy might
be misleading in many cases. If we imagine a 2-class problem in which there are
an strongly imbalanced of data: a lot of samples of class A and few samples of
class B. If a classifier simply predicts everything to be of class A, the computed
accuracy would be of very high but the model performance is questionable because
it will never detect any class B examples.[14] Other common measures of model
performance, particularly in Information Retrieval, are Precision and Recall. Pre-
cision is defined as P = T P/(T P + FP), and it is a measure of how many errors
we make in classifying samples as being of class A. On the other hand, Recall, R
= T P/(T P + FN), measures how good we are in not leaving out samples that
should have been classified as belonging to the class.

It must be emphasized that these two measures are misleading when used in isola-
tion in most cases. We could build a classifier of perfect precision by not classifying
any sample as being of class A.

At same time, we could build a classifier of perfect recall by classifying all samples
as belonging to class A. Indeed, there is a measure, called the F1-measure that
combines both Precision and Recall into a single measure as:

F1 = 2PR
P+R

.

At this stage, it is simple to compute Precision@k, Recall@k, F1-score@k, where k
is a threshold, commonly known as cut-off rank, where the model is only assessed
by considering only its top-most queries. These measures are commonly called
P@k, R@k and F1@k.
Another useful metric is the MAP@k that stands for mean Average Precision.
Firstly, we need to compute the average precision ”AP” at an arbitrary threshold
k of each query of each relevant item where recall increases. This would give a
better measurement of our model in its ability to sorting the results of the query.

AveragePrecision =
∑
r P@K
k

15

At the end, MAP is Average Precision across multiple queries/rankings and it
provides a single-figure measure of quality across recall levels for a set of queries:

MAP@ = 1
N

∑n
1 APi

Finally, if it is considered a recommender system not based on numeric values, that
only returns a list of recommendations, like user-user or item-item that are based
on a knn approach, it can still be define a precision like metric by estimating the
proportion of recommended items that really ”suit” the users under investigation.
To estimate this precision, it is necessary to exclude items that a specific user
has not interacted with and to consider items from the test set for which it has a
feedback.

2.4.2 Challenges in Recommender System

As we already said, RSs have been deeply studied during recent years, however,
they suffers from problems and challenges, and need solutions to work well[14].

• Cold Start problem: the cold start problem is the main issue in the RSs. It
arises mainly when a new user or a new item is added to the system. When
there is a new user, it is very hard to recommend items if the system doesn’t
know his/her interests. A solution is to ask to user some preferences about
items. If a new item is added, the system will not suggest it to others users
because no one rate this specific item before.

• Sparsity Problem: Sparsity Problem is an important issue in recommender
systems. This problem is also called ”Data sparsity”: it means the phe-
nomenon of not observing enough data in a dataset. It happens when a user
has a large matrix with a lot of different items but he/she didn’t rate most
of these items. Exists also two metrics to identify in a better way datasets:
”sparsity” that is the number of zero-valued elements divided by the total
number of elements and the ”density” that is the number of nonzero-valued
elements divided by the total number of elements.

• Scalability: Scalability measures the ability of a system to work effectively
with high performance while the information is growing. Recommender sys-
tem needs to recommend items to the users without no problem while the
number of users increased or the number of items increased too. To achieve
this, it is needed more computations and the RSs get more expensive.

• Gray Sheep: this issue happens when a RS is a collaborative filtering system.
Gray Sheep occurs when the ratings/tastes/opinions of a user do not equate
to any other group. As a results, the RS can not give to this specific user
recommendations.

• Privacy: privacy is one of the important challenges in recommender systems.
Recommender systems in order to suggest items that match users’ interests
need to know some informations. Therefore, users must know or must be
informed by companies which datas the RS uses and how it applied. Just
think that, the privacy problem is one of the biggest problems of the RSs with

16

the example of the lawsuit that canceled the famous ”Netflix Prize”. In 2007,
two researchers from the University of Texas at Austin were able to identify
individual users in the ”Netflix Prize Dataset”, used in the competition.

There are still many challenges that affects RSs like: Over Specialization Problem,
Diversity problem or Novelty problem.
These problems relate to the items the recommendation system suggests. Sug-
gested items to users don’t always have to be the same (Novelty) and should not
be come all from the same cluster (Diversity).
Over Specialization Problem happens when, as the name suggest, items suggested
are too specific because they are based on those already known without discovering
new items.
Another important issue is the Shilling Attacks. This problem happens when a
malicious user into a system and starts giving false rating, low rating or high rat-
ings in order to decrease or increase popularity on a single one or on a group of
items.

17

Chapter 3

ClustKnn

ClustKnn, as the paper published by Karypis et Al, is a scalable collaborating fil-
tering algorithm, and following our description in the second chapter it is a hybrid
approach: it combines a model-based approach with a memory based approach
and, naturally it tries to take advantages of both methods[11, 12].

A memory-based approach such as User-based KNN uses the entire dataset of user
preferences when computing recommendations. These type of algorithms tend to
be simple to implement and development, and require a minimum training time.
However, their performance tend to be slow as the size of the datasets grow, which
makes these algorithms, as stated in the literature, not suitable in large systems. A
first workaround could be to only consider a subset of the preferences in the compu-
tation, but doing this can reduce recommendation quality. A second workaround
could be to perform as much of the computation as possible in an offline setting.
However, this may make it difficult to add new users to the system, which is a
necessity of most online systems, furthermore, the storage requirements for the pre-
computed data could be high. On the other hand, a model-based algorithm, such
as one based on Bayesian networks computes a model of the preferences/ratings
and uses it to compute recommendations. Often, the process of building a model
is time-consuming and consequently it is only done periodically. The advantage is
that the models are compact and can generate recommendations very quickly, but
the disadvantage of model-based algorithms is that if it is added new users, items,
or preferences/ratings can be necessary to recompute the entire model.

The first objective that ClustKnn obtained is that, this is very simple and intu-
itive. It achieved this characteristics utilizing a partitional clustering algorithm
for modelling users.

To compute recommendations from the learned model, they used a nearest-neighbour
algorithm. However, recommendations can be generated quickly since the data is
greatly compressed after the model is built. This, as they said, solved the scala-
bility challenge discussed in the previously chapter.

One interesting property of ClustKnn is its tunable nature. We show later that a

18

tunable parameter, the number of clusters, can be adjusted to trade off accuracy
for time and space requirements.
This makes ClustKnn’s structure adaptable to systems of different sizes and allows
it to be useful throughout the life of a system as it grows.

The algorithm has two phases and it follows these steps:

• Model-building

– Select the number of clusters k considering the effects on the recom-
mendation accuracy.

– Perform Bisecting k-means clustering on the user data. Furthermore,
ClustKnn can use any partitional clustering techniques in this stage[5].

– Build the model with k vector, called ”surrogate users”, derived from
the k centroids: {c1, c2, ..., ck}. Each ci is a vector of size m, where m is

the number of items, so ci = (R̃ci,a1 , R̃ci,a2 , ..., R̃ci,am), where R̃ci,aj is
the element in the centroid vector that corresponds to item aj. Further,

since R̃ci,aj is an average value of the ratings aj of all the users in cluster
ci, it will be 0 if nobody in that cluster rated aj.

We can notice that this first step based on clustering is model-based, and it
can be computed offline on the training set while the next part is computed
online.

• Prediction Generation
In order to compute the rating of a specific pair (user ut, item at), the
algorithm follows these steps:

– a user-based CF method: compute the similarity of the target user ut
with each of the surrogate-user using the Pearson correlation coefficient;
it must be noted that this computation has to be done only with sur-
rogate model users who have rated at otherwise the coefficient will be
uncomputable. Adapting the Pearson correlation coefficient with the
actual names, we have:

wut,ci =
∑
aεI(Rut,a−Rut)(R̃ci,a−Rci)√∑

aεI(Rut,a−Rut)2
∑
aεI(R̃ci,a−Rci)2

where I is the set of items rated by both the target user ut and i-th
surrogate user.

– Find and select up to ”l” surrogate-users most similar to the target user
ut. We tuned this parameter l for each recommendation/prediction.

– Generate predictions using the Adjusted weighted average formula. This
computation takes into account the varying degrees of importance of the
correlations computed.

Computing a weighted average, each number in the data set is multi-
plied by a predetermined weight before the final calculation is made. A
weighted average can be more accurate than a simple average in which
all numbers are assigned an identical weight:

19

R̂ut,at = Rut +
∑l
i=1(R̃ci,at−Rci)wut,ci∑l

i=1 wut,ci

where R̃ut,ai is the predicted rating for the user ut and item ai. As we
can see, each correlation wut,ci is weighted by the difference of the value
at of the surrogate user ci and the average of all his/her values.

3.1 Datasets

Karypis et Al published their results using two different datasets from MovieLens.
MovieLens is itself a web-based recommender system and virtual community that
recommends movies for its users to watch, based on their film preferences using a
collaborative filtering system.
It contains about 11 million ratings for about 8500 movies. MovieLens was created
in 1997 by GroupLens Research, a research lab in the Department of Computer
Science and Engineering at the University of Minnesota, in order to gather re-
search data on personalized recommendations. Furthermore, GroupLens Research,
a human-computer interaction research lab at the University of Minnesota, pro-
vides the rating data sets collected from MovieLens website for research use.
There are different datasets on the website, and they were collected over various pe-
riods of time, depending on the size of the set. The full data set contains 26,000,000
ratings and 750,000 tag applications applied to 45,000 movies by 270,000 users.
Karypis et Al developed and analyzed ClustKnn using two different datasets:

• MovieLens 1M Dataset: this dataset is publicly available, furthermore it
contains 1,000,209 ratings of 3,706 movies made by 6,040 users.

• MlCurrent dataset: this is a custom dataset created by the authors taking
the latest 3 millions ratings and the corresponding users and movies from
the dataset more updated at that time.

As we can notice, MlCurrent dataset is irreproducible because it had been created
following the rule ”the latest 3 million ratings” from the main dataset but in a
specific date and we don’t know it.

In this thesis we only worked using the Dataset MovieLens 1M (Shortly ML1M),
which contains 1.000.209 ratings of 3.706 movies made by 6.040 users.
MovieLens 1M
ML1M have been released in February 2003 and it contains 3 files, ratings.dat,
users.dat and movies.dat. For the purposes and the analysis of this thesis we only
needed ”ratings.dat”.

The file ”ratings.dat” containts all the ratings in the following format:
UserID::MovieID::Rating::Timestamp

where:

• UserID: this ID shows what user has rated a specific movie

• MovieID: this ID shows what movie havs been rated

20

• Rating: this is the value assigned by the UserID to the MovieID. It can be
an integer from 1 to 5.

• Timestamp: the timestamp is represented in seconds since the epoch as
returned by time.

Furthermore in this file each user represented by an UserID has rated at least 20
movies.
This information is very important during the computation and the presentation
to users of his/her Top-N recommendations since ”N recommendations” can not
be greater of the number movies rated.

Furthermore, this dataset has a sparsity of 95.53%. As we already said in the
paragraph ”Challenges in Recommender System”, Sparsity of a dataset is defined
as the percent of empty cells in the (user, movie) matrix.

The File ”users.dat” contains users information and it is in the following format:
UserID::Gender::Age::Occupation::Zip-code

MovieLens ensures that all demographic informations are provided voluntarily by
the users and only users who have provided this informations are included in this
dataset.

The file ”movies.dat” presents movies informations and is in the following format:

MovieID::Title::Genres

where, MovieID matches, naturally, with MovieID presents in ”ratings.dat”, ”Ti-
tle” is the same title provided by the IMDB (Internet Movie Database), and ”Gen-
res” is a pipe-separated value and can be selected from 17 different genres.

Another interesting property where we should focus on are the average rating
through all the rating that is 3.58 and the rating distribution.
We can observe all this data on the table below.

Figure 3.1: Rating distribution of ML1M

21

Property ML1M

Number of users 6040
Number of movies 3.706
Minimum |ui|, ∀ i 20
Total Number of ratings 1.000.209
Sparsity 95.5%

Table 3.1: Dataset ML1M

3.2 Clustering methods

In this section we briefly analyze two different clustering methods that can be used
in the model-building during ClustKnn.
Karypis et Al. suggested, and also used for their studies and results Bisecting
k-means algorithm, an algorithm that is an improvement of the naive K-means
algorithm.
Bisecting k-means algorithm starts by considering all data points as a single cluster,
then it repeats the following steps k−1 times in order to produce exactly k clusters:

1. Find the largest cluster to split;

2. Apply the basic k-means (2-means) clustering, to generate 2 clusters.

3. Repeat step 2 for j times and take the best split. The best split can be
determined following different methods, one way could be of determining
which is the best intra-cluster similarity.

The time-complexity of the basic k-means is reported to be O(n) assuming the
cost of computing the similarity between the data points as a constant. However,
in ClustKnn, this cost is O(m) where m is the number of items a user has rated, so
the k-means time-complexity becomes O(mn). Therefore, as explained by the au-
thors, the complexity of the Bisecting k-means becomes O((k - 1)jmn) ' O(mn),
that correspond to the offline complexity and model-building of ClustKnn.
Furthermore, Karypis et Al decided to use Bisecting k-means because clusters
produced by it tends to be of relatively uniform size considering that, in basic k-
means, the cluster sizes may vary significantly, generating poorer quality clusters.

The second clustering method that we would like to explain is called CLUTO and
it is a package published by George Karypis from University of Minnesota, by
Department of Computer Science[6].
By definition, CLUTO is a software package for clustering low- and high-dimensional
datasets and for analyzing the characteristics of the various clusters. CLUTO of-
fers three different classes of clustering algorithms that operate either directly in
the object’s feature space or in the object’s similarity space. These algorithms are
based on: partitional, agglomerative, and graph-partitioning paradigms.

CLUTO provides seven different criterion functions that can be used to drive
both partitional and agglomerative clustering algorithms. Most of these criterion

22

functions have been shown to produce high quality clustering solutions in high di-
mensional datasets, Furthermore, CLUTO provides some of the more traditional
local criteria: single-link, complete-link, and UPGMA, that can be used in the
context of agglomerative clustering.

CLUTO’s algorithms have been optimized for operating on very large datasets
both in terms of the number of objects as well as the number of dimensions. These
algorithms can quickly cluster datasets with several tens of thousands objects and
several thousands of dimensions. Moreover, since most high-dimensional datasets
are very sparse, like ML1M, CLUTO directly takes into account this sparsity and
requires memory that is roughly linear on the input size. CLUTO’s distribution
consists of two stand-alone programs, vcluster and scluster, one for clustering and
one for analyzing these clusters, as well as, a library via which an application
program can access directly the various clustering and analysis algorithms imple-
mented.

The vcluster and scluster programs are used to cluster a collection of objects into
a predetermined number of k clusters. The vcluster program treats each object
as a vector in a high-dimensional space, and it computes the clustering solution
using one of five different approaches. Four of these approaches are partitional in
nature, whereas the fifth approach is agglomerative.
While, scluster program operates on the similarity space between the objects and
can compute the overall clustering solution using the same set of five different
approaches.

Both the vcluster and scluster programs are invoked by providing two required
parameters on the command line along with a number of optional parameters:

• vcluster [optional parameters] MatrixFile NClusters

• scluster [optional parameters] GraphFile NClusters

Furthermore, there are 18 different optional parameters that can control how vclus-
ter and scluster compute the clustering solution, and this is one of the reasons why
CLUTO is a powerful tool in clustering.

3.3 Evaluation, Improvements and Results

ClustKnn has been evaluated by their authors using different metrics MAE and
NMAE for the rating-prediction quality, while Precision and F1-score for Compar-
ison of top-N recommendation quality[2].

We already introduced MAE, while NMAE is a measure of how good a CF algo-
rithm MAEs are over purely random guessing. The Normalized Mean Absolute
Error (NMAE) is computed by dividing the MAE of a CF algorithm with the

23

expected MAE from random guessing.
Formally:

NMAE = MAE/E[MAE]

Since the ML1M dataset has a rating scale of 1-5 and assuming both ratings and
predictions are generated by a uniform distribution:

E[MAE] = 1
25

∑5
i=1

1
25

∑5
j=1 |i− j| = 1.6.

On the other hand, the comparison of top-N recommendation quality requires
to binarize the output using a simple threshold. The authors consider the target
user’s relevant items known from the dataset as the ones ut rated 4.0 or above. Fur-
thermore, since our experiment framework involves dividing the data into training
and test sets, they focused on the test set to find the relevant items of the target
user ut and to compute the top-N list for that specific user.
Specifically, the top-N list only contains items that are in the target user’s test set.
In a similar way, a list of relevant items are also constructed for the target user
from his/her test set items. So, based on the relevant list of and the top-N list for
the target user, are compute precision-recall-F1 metrics as usual computation.

In the table 3.2 and in the table 3.3 we report the results obtained by Karypis et
Al. in their paper, using Bisecting K-means where K = 200. Authors also com-
pared their results with other famous CF algorithms in order to investigate how
ClustKnn is performing.

They compared ClustKnn with:

• Singular Value Decomposition (SVD) is a matrix factorization technique that
produces three matrices. It uses a matrix structure where each row represents
a user, and each column represents an item. The elements of this matrix are
the ratings that are given to items by users. So, given the rating matrix A:

SV D(A) = U ∗ S ∗ V T .

The matrices U, S, and V can be reduced in order to build a rank-k matrix
X, X = Uk ∗Sk ∗V T

k that is the closest approximation to the matrix A. SVD
requires a complete matrix to operate however, a typical CF rating matrices
is very sparse, for example ML1M has 95.5% empty values. To get around
this limitation of CF datasets, several solutions have been proposed[19].
A solution that has been proposed is using average values in the empty
cells of the rating matrix[16]. An alternative method, is to find a model
that maximizes the log-likelihood of the actual ratings by an Expectation-
maximization (EM) algorithm [19]. The EM procedure is rather simple and

24

is stated below:
Expectation-step: the Missing entries of A are replaced with the values of
current X. This creates an expected complete matrix A’.
Maximization-step: Perform SVD(A’). This creates an updated X. Further-
more, the EM process guarantees to converge. The final X represents a linear
model of the rating data, and the missing entries of the original matrix A
are filled with predicted values.

• User-based KNN: This algorithm belongs to the memory-based class of CF
algorithms, as we already talked about in the previous chapter. Predictions
under this algorithm are computed as a two step process. First, the similari-
ties between the target user ut and all other users who have rated the target
item atare computed[3]. That is:

wui,ut =
∑
aεI(Rut,a−Rui)(Rui,a−Rui)√∑

aεI(Rui,a−Rui)2
∑
aεI(Rui,a−Rui)2

where I is the set of items rated by both of the users. Then the prediction
for the target item at is computed using at most k closest users found from
step one (k-nearest neighbors), and using a weighted average of deviations
from the k users’ means:

R̂ut,at = Rut +
∑k
i=1(Rui,at−Rui)wui,ut∑k

i=1 wui,ut

is possible compute the rating prediction of an item.

• Item-based KNN: this algorithm is an instance of a memory-based approach
too. Predictions are computed by first computing item-item similarities.
There can be used different types of similarities, i.e. the adjusted cosine
measure for estimating the similarity between two items fits well to this
problem:

wa,b =
∑
aiεU

(Rui,a−Rui)(Rui,b−Rui)√∑
aiεU

(Rui,a−Rui)2
∑
aεU (Rui,b−Rui)2

Where, U is the set of users who have rated both ”a” and ”b”. When the
item-item similarities are computed, the rating space of the target user ut is
examined to find all the rated items similar to the target item at. In order
to generate predictions, it is used a weighted average:

R̂ut,at =
∑
all similar items,b(wat ,b∗Rut ,b)∑

all similar items,b(|wat ,b|)

• Probabilistic Latent Semantic Analysis (pLSA) for collaborative filtering is
an elegant generative model proposed by Hofmann et al. [4]. pLSA is a
three-way aspect model adapted from their earlier contribution of two-way
aspect models applied to text analysis.

The main idea of pLSA is the notion of the latent class variable Z. The
number of states of Z is an input to the model, and each state Z can be
interpreted as a different user-type, so Z = z1, z2, ..., zk.

25

Each user belongs to these user-types with a unique probability distribution
P(z—u).

This approach models the probability density function p(r—a, z) with a
Gaussian mixture model and uses an Expectation Maximization (EM) method
to learn mixture coefficients P(z—u) and p(r—a, z). In the end, the learned
model includes P(z—u)s for each user and for each state of Z, and values of
µ and σ for each item and each state of Z.

The prediction generation for an item given a pair (user, item) is simply the
weighted average of the means of at for each state Z.
That is:

R̂ut,at =
∑

z P (z|ut)µat,z
• Personality Diagnosis is a probabilistic an hybrid CF algorithm: it belongs

to model-based and memory-based approaches[10]. This method involves
that each user is assumed to have a personality type that captures their
true, internal preferences for items. However, the true personality type is
not observable, since users rate items by adding a Gaussian noise to their
true preferences on the items.

The probability that: rating of the target user ut on an item at is a value x,
given ut and ui’s personality types are same.

P (Rut,at = x|typeut = typeui) = e−(x−Rui,at)
2/2σ2

So, the probability that two users’ personalities are of the same type is:

P (typeut = typeui|Rut) = 1
n

∏
aεI P (Rut,a = xa|typeut = typeui)

where Rut is the set of ratings of the target user. Finally, the prediction on
the target item at for ut is computed as:

R̂ut,at = argmaxP (Rut,at = x|Rut) = argmax
∑

i P (Rut,at =
x|typeut = typeui)

The metrics computed for prediction qualities of the ratings produced are: MAE
and NMAE.

CF algorithm MAE NMAE

SVD 0.69 0.43
User-based KNN 0.70 0.44
Item-based KNN 0.70 0.44
ClustKnn (k=200) 0.72 0.45
pLSA 0.72 0.45

Table 3.2: Results from the paper published by Karypis et Al.

26

They also presented a comparative comparison of the top-N recommendation qual-
ity of the selected CF algorithms using Precision and F1 metrics.

CF algorithm top-3 top-10
Precision F1 Precision F1

SVD 0.8399 0.379 0.7564 0.6131
User-based KNN 0.833 0.379 0.750 0.610
Item-based KNN 0.819 0.374 0.749 0.610
ClustKnn (k=200) 0.825 0.377 0.743 0.606
pLSA 0.817 0.375 0.739 0.604

Table 3.3: Results from the paper published by Karypis et Al.

Here we noticed an inconsistency about the F1-score metric and what the authors
wrote on the paper.
They wrote ”Note that more than 50% of the users have only 12 or fewer relevant
items in the test sets of Ml1m[...]. Therefore, recall values quickly ramp up and
higher values of N provide less valuable information if we want to compare the
algorithms.[...]”.. Again they also added, as we did, that their empirical investiga-
tion involved a fivefold cross-validation approach. In other terms, they randomly
partition the data into five disjoint folds and apply four folds together to train the
CF algorithm, and use the remaining fold as a test set to evaluate the performance.
Naturally, they repeated this process five times for each dataset so that each fold
is used as a test set once and the results presented are averages over five folds.
The discrepancy we found is the number of relevant items for each user declared.
We analyzed the dataset and we found that only 236 users over 6040 have at most
12 relevant items and so, if we try to split in a ”pseudo-random” the dataset in
order to obtain an equally distribution of this 236 users we could obtain only 189
in the train set and 47 on the test set. Again, the test set should be composed by
1208 users, but if we have only 47 users with at most 12 relevant items, the ”50%
of 1208” can not be reproduced even if we cheat and build the entire test set using
all the 236 users.

This is the main reason that we will not compare F1-scores in my results since
what we explained before, but we will report only result not comparable with the
previous ones.

3.4 Implementation and Improvements

In this project in order to implement ClustKnn we had to introduce a tool and
tunable value.
The first tool we introduced is CLUTO, we used CLUTO, as explained in the
previous section because it already implements bisecting k-means.

CLUTO needs differents parameters and in order to generate clusters we used the
following parameters:

27

./vcluster -clmethod=rbr -crfun=i2 -sim=corr -cstype=large [MatrixFile] NClus-
ters
where:

• ”clmethod” selects the method to be used for clustering the objects. There
are various that can be chosen, rbr means that k-way clustering solution is
computed by performing a sequence of k-1 repeated bisections. During each
step, the cluster is bisected so that the resulting 2-way clustering solution
optimizes a particular clustering criterion function and in the end the overall
solution is globally optimized.

• ”crfun” selects the particular clustering criterion function to be used in find-
ing the clusters. There are seven different clustering criterion functions pro-
vided by CLUTO documentation that can be selected by specifying the ap-
propriate integer value. We decided to use i2 that is the default setting for
the rb, rbr, and direct clustering methods.” Anyhow i2 matches to a specific
optimization function:

i2 = maximize
∑k

i=1

√∑
v,uεSi

sim(v, u)

where k is the total number of clusters, S is the total objects to be clustered,
Si is the set of objects assigned to the ith cluster, v and u represent two
objects, and sim(v, u) is the similarity between two objects.

• ”sim” selects the similarity function to be used for clustering. Among co-
sine similarity, correlation coefficient, using the Euclidean distance and the
extended Jaccard coefficient.

CLUTO’s clustering algorithms implemented by vcluster treat items to be
clustered as vectors in a high-dimensional space and measure similarities
between objects using either the cosine function, the Pearson’s correlation
coefficient, or a similarity derived from the Euclidean distance of these vec-
tors.

By using the cosine and correlation coefficient measures, then two objects
are similar if their corresponding vectors point in the same direction (i.e.,
they have roughly the same set of features and in the same proportion, in our
case, same two users have seen the same movies), regardless of their actual
length. On the other hand, the Euclidean distance does take into account
both direction and magnitude. Among these coefficient functions we decided
to use the correlation coefficient that best suit for our problem.

• ”cstype” selects the method that is used to select the cluster to be bisected
next when -clmethod is equal to ”rb”, ”rbr”, or ”graph”. We decided to
bisect to use ”large” as criterion.

A second operation is to make ”l” a tunable value. As we already said, in the
prediction generation, in particular when computing the rating:

28

R̂ut,at = Rut +
∑l
i=1(R̃ci,at−Rci)wut,ci∑l

i=1 wut,ci

the authors did not specify how many surrogate-users have to be find or taken,
they only wrote ”up to -l-” so we tried to tune it. So, we fixed l as an integer
number from 0 to k, that given the number of cluster similar to the target user
ut we select only l cluster similar. Of course, the similarities must be sorted in
descending order and then filtered using this index of reduction l.

An improvement we did not implement is the method of data normalization. This
method is useful when users have not a coherent ways of ratings movies. There
can be users that may have rated movies with the range 3-5, or that may have
rated all movies with a rating at most 3. We have also used this technique to deal
with the ”Gray Sheep” problem mentioned in the ”Challenges in Recommenden-
der System” section. This problem, as we said before, occurs when the tastes /
opinions do not match any group and as a result is unable to obtain the benefit
of recommendations. In this way, normalizing data, this problem could be in part
solved.

However, when a dataset is normalized, in our case, we changed the range of rat-
ing from 1-5 (integer) to 0-1.0 in floating point, the entire dataset is completely
changed so we can not compare the old results with the new ones.
Noted that, since we could not found the original implementation of ClustKnn we
could not tested it using the ”data normalization” function. Again, this improve-
ment can not be compared with previous results.

In the table below there are the results obtain with our implementation. The
tables show the results that take a five fold cross-validation approach over each
dataset. Furthermore, we will show the results by the tunable values we mentioned,
number of cluster k and number of surrogate-users and each of this combinations
by metrics.

K-Cluster 50 100 150 200 250 300

MAE 0,74256 0,73598 0,73298 0,73092 0,72916 0,72768
MSE 0,91605 0,89638 0,88676 0,88008 0,8744 0,8697
RMSE 0,95705 0,94672 0,94162 0,93807 0,93505 0,93253

Table 3.4: MAE, MSE, RMSE for K= 50, 100, 150, 200, 250, 300

29

Figure 3.2: Prediction performance based of number of clusters

In the table 3.4, and with the help of the plot in figure 3.2, we can notice that
MAE, MSE and RMSE start decreasing more slowly at k=200.
In the table 3.5 we can see the results obtained with number of clusters k = 200
and the number of l maximum compared with Precision@K and F1@K. We used
Precision@3, Precision@5, Precision@7 and Precision@10, and the same for F1.

Clusters 200
Precision F1-Score

Top-3 0,8122 0,0976
Top-5 0,79728 0,14861
Top-7 0,78132 0,19059
Top-10 0,75997 0,24194

Table 3.5: Results obtained for k = 200

Eventually, if we introduced the tunable parameter l: 150, 100, 50, 30, 20. In
the tables 3.6 and 3.7 we can see the results. We remember that, l is an integer
number from 0 to k, that given the number of cluster similar to the target user
ut we select only l cluster similar. Of course, the similarities must be sorted in
descending order and then filtered using this index of reduction l.

l-reduction 150 100 50

Precision F1-Score Precision F1-Score Precision F1-Score

Top-3 0,81231 0,09692 0,81545 0,09742 0,82014 0,09782
Top-5 0,79533 0,14749 0,80003 0,14828 0,80421 0,14878
Top-7 0,77971 0,18924 0,78356 0,19008 0,78945 0,1911
Top-10 0,75767 0,24 0,76257 0,24135 0,76889 0,24284

Table 3.6: Results obtained for k = 200 and l=150, 100, 50.

30

l-reduction 30 20

Precision F1-Score Precision F1-Score

Top-3 0,82219 0,09797 0,82185 0,09817
Top-5 0,80778 0,14919 0,80715 0,14926
Top-7 0,79222 0,19153 0,79127 0,19148
Top-10 0,77137 0,24318 0,77215 0,2437

Table 3.7: Results obtained for k = 200 and l=30, 20.

We can observe in table 3.8 how much the index l improves the results. Further-
more we compute MAP@5 as an additional metric in table 3.9.

l-reduction All 30

Precision F1-Score Precision F1-Score

Top-3 0,80977 0,09674 0,82219 0,09797
Top-5 0,79315 0,14715 0,80778 0,14919
Top-7 0,77689 0,18883 0,79222 0,19153
Top-10 0,75508 0,23947 0,77137 0,24318

Table 3.8: Results obtained for k = 200, comparison between l=200 and l=30.

l-reduction 200 30

mAP@5 0,85914 0,86866

Table 3.9: MAP5 for k = 200, comparison between l=200 and l=30.

31

Chapter 4

Our Approach

In our innovative approach we included Panda+: a unifying framework for greedy
mining approximate top-k binary patterns and their evaluation presented by Or-
lando et Al. that not substitute the phase of clustering but it offers an improvement[8,
7].
In the following sections we will explain in detail how Panda+ works and how we
use it in this project.

4.1 PaNDa+

PaNDa+ means discovering Patterns in N oisy Data. As the name suggests,
this algorithm discovers binary patterns in binary data, in a more specific way, it
given a binary dataset discovers a set of noise-tolerant, overlapped if extracted,
patterns[8, 7]. Data can be expressed in terms of noise N and set of patterns
P 1, P 2, ..., P n.

P 1 ∨ P 2 ∨ ... ∨ P n Y N = D

where:

• D : it is a binary dataset;

• P n: it is the representation of a pattern extracted. An approximate pat-
tern extracted from PaNDa+ is represented by a pair of sets, items and
transactions (P n

T ,P n
I);

• N : it is the noise and it can be expressed it the following way:

N = ∨Pε∏(PT ∗ PI) YD

where
∏

is the set of patterns and D is the dataset.

The problem, given
∏

and D, is find the best set of k patterns
∏

k by minimizing
a cost function:

J(
∏
, D)=||N ||

The problem, just exposed, is NP-complete by reduction to the set base problem
and it can not be approximated in polynomial time. So, this is the reason why
PaNDa+ talks about a greedy algorithm for patterns extractions.
The PaNDa+ algorithm iterates at most k times, following a 2-stage process:

32

1. extract a dense core, i.e. a discover a noise-less pattern that covers the yet
uncovered 1-bits of the dataset D;

2. extend the dense core to form a good approximate pattern, in order to allow
some noises in it;

At each iteration, the pattern that best optimizes the given cost function is added
to the set

∏
of patterns of solution. This is repeated until k patterns have been

found or until it is not possible to improve the cost function.

This method has three main tunable parameters:

• K: k it is the number of patterns that PaNDa+ tries to extract. PaNDa+

does not guarantee that exactly K patterns will be extracted.

• εr: max row noise threshold: this parameters is a variable from that has a
range from [0,1]. It suggests how much noise it is ”allowed” while extending
the rows of a dense core. If εr = 0 means that no noise is allowed, εr = 1
instead means that, there are allowed some false positives on patterns. When
this parameter equals 1, it does not mean that the pattern will be covers the
entire dataset analyzed.

• εc: max column noise threshold: as εr, this parameter is a tunable parameter
by the user from a range 0 to 1. It suggests how much noise it is ”allowed”
while extending the columns of a dense core. If εc = 0 means that no noise
is allowed, while εc = 1 instead means that there are allowed some false
positives on patterns. When this parameter equals 1 does not mean that the
pattern will be covers the entire dataset analyzed.

4.2 Main algorithm

The main idea of my algorithm, as we said, is based on PaNDa+, in particular,
on the notion of pattern. ClustKnn is based on clusters generated by Bisection
K-means or any other algorithms. We tried to add another layer of depth using
patterns extracted by PaNDa+ in order to have groups of users more similar.
We applied PaNDa+ not in the whole dataset but in the clusters generated by
Cluto.

33

(a) Find k cluters using Cluto
(b) Extract N patterns for each cluster using
PaNDa+

Figure 4.1: First two speps of the model building.

Figure 4.2: Final structure: select N patterns and computer a centroid called
”Merge Pattern”

In this way our approach has still an offline part and an online part. This al-
gorithm, as ClustKnn, is developed and structured into two different stages, the
first is the Model building and the second is the Prediction generation. The model
building phase has the main differences between ClustKnn and this algorithm due
to PaNDa+ and to the others tunable parameters.

Model-building:

• Select the number of clusters k considering the effect on the recommendation
accuracy as ClustKnn

• Perform Cluto ”A Clustering Toolkit”[6], on the user data. Furthermore, as
they said and as we have noted there is the possibility to use any partitional
clustering technique in this stage, figure 4.1a.

• Execute PaNDa+ on each cluster generated by Cluto and extract all the
patterns as we can see in figure 4.1b.

34

• Build the model with k vector, called ”surrogate users”, derived from the k
centroids: {c1, c2, ..., ck}. Each ci is a vector of size m, where m is the number

of items, so ci = (R̃ci,a1 , R̃ci,a2 , ..., R̃ci,am), where R̃ci,aj is the element in the

centroid vector that correspond to the item aj. Further, since R̃ci,aj is an
average value of the ratings aj of all users in cluster ci, it will be 0 if nobody
in that cluster has rated aj.

• For each ci centroid there is a list of M patterns extracted. Sorting the
patterns by the length of rows, pick only the greatest N patterns for each
centroid ci.

• Compute for each surrogate user ci a merge pattern Pi derived from the N
patterns and from the users so {P1, P2, ..., Pk}, as in figure 4.2.
Each Pi is a vector of size m, where m is the number of items, so Pi =
(R̃Pi,a1 , R̃Pi,a2 , ..., R̃Pi,am), where R̃Pi,aj is the element in the centroid vector

that correspond to the item aj. Further, since R̃Pi,aj is an average value of
the ratings aj of all users in the merge pattern Pi, it will be 0 if nobody in
that merge pattern has rated aj.

As usual, the above steps are computed offline as a normal model-based method
while the next steps have to be computed online.

Prediction Generation

In order to compute the rating of specific pair user, item (ut, at) the algorithm
follows this steps:

• compute the similarity of the target user ut with each of the surrogate-users
using the Pearson correlation coefficient in order to find K clusters most
similar to the target user;

• for each surrogate-user found, select its associated merge pattern Pi.

• compute the similarity of the target user ut with each of the merge patterns
Pi selected in the previous steps using the Pearson correlation coefficient.
Again at this step using a simple threshold it is possible to it is possible to
discard the the least correlated patterns in order to find up to ”l” patterns
most similar to the target user ut.

• given the Pearson correlation coefficient already computed and using the
Adjusted weighted average formula, build a list where there either the ci or
corresponding merge pattern Pi;

• Generate predictions using the Adjusted weighted average formula as ClustKnn;

Now we want to talk more deeply, for each phase and for each step: its specifics,
its strengths and weaknesses, the main differences and similarities with ClustKnn
and any future improvements.

The biggest innovation in this project compare to ClustKnn is the adding the pat-
terns extracted by PaNDa+. As we already said, PaNDa+ can generate patterns
from a binary datasets D, represented by a pair of sets, items and transactions

35

(P n
T ,P n

I).
We want to remind that ML1M is a dataset composed by 6040 users (rows) and
3.706 movies (columns) and it contains 1.000.209 ratings, where the ratings are a
value from 1 to 5.
Then, once Cluto found clusters with the original dataset following the algorithm
above We had to turn the dataset into a binary dataset D.

So, in order to let PaNDa+ to discover patterns in each cluster, we decided to
binarize the entire dataset using a threshold. As ClustKnn we decided to use ”4”
as threshold. So, all the rates greater or equal to ”4” were transposed to ”1” while
all the rates lower then 4.0 were transposed to ”0”. In this way, using PaNDa+

we could found for each cluster ci, N patterns with a variable sizes.

Once we imported all the patterns we decided to modify the entire structure of the
pattern: a pattern, as we already saw is composed of different rows and columns,
and PaNDa+ works following the similarities not only from rows (users), but also
from columns (movies that users have seen and have rated with 4 or high).
So, once a pattern is imported we decided to expand the size of the columns, in
such way to have the sizes: rows, the original size of the pattern, while columns
the entire size of the dataset.

At the end of the transformations all the patterns are computed and stored in
vectors pci = p1, p2, ..., pn, where ci is the centroid i and pn is the pattern n. Each
pi is a vector of size m, where m is the number of items of the dataset, so pi =
(R̃pi,a1 , R̃pi,a2 , ..., R̃pi,am), where R̃pi,aj Further, since R̃pi,aj is an average value of
the ratings aj of all users in the particular pattern cluster pi, it will be 0 if nobody
in that pattern has rated aj. Finally, as regards the patterns we want to remind
that for each clusters we had to decide how many of them import and which ones.
We decided to import the biggest ones based on their sizes, of course the only
comparable size was the numbers of rows (users) while the columns as said before
is a fixed size.

As regards the numbers of patterns for each cluster, we make it a tunable pa-
rameter as it is strongly linked to the size of the data. Any how, in our case, we
tried different values and we will report the results with 3,5,7 patterns for each
cluster.

At this stage, given N patterns for each cluster, we could build a merge pat-
tern Pi. A merge pattern is the average rates of all users belonging only to the
patterns. It must be noted that when a user is present twice, it is consider only on
time. So Pi = (R̃Pi,a1 , R̃Pi,a2 , ..., R̃Pi,am), where R̃ci,aj is the element in the merge
pattern vector that correspond to the item aj.

In the prediction generation respect to ClustKnn there are two main phases in-
stead of one.
The first phase consists to find the similar clusters to the target user ut. Once
all the similarities are found, for each cluster with a similarity greater or equal to

36

0.1 the corresponding merge pattern is picked. If in this phase, we fix k similar
items as fixed value, we will found at most k merge patterns, because there is the
possibility that a merge pattern is not correlated at all with a specific user.

While, the second phase works in a similar way as ClustKnn. Our approach, given
for each couple cluster ci and Pi the correlations computed at the steps before
build an ad-hoc structure. Using the Adjusted weighted average formula:

R̂ut,at = Rut +
∑l
i=1(R̃ci,at−Rci)wut,ci∑l

i=1 wut,ci

We proved that if:

(R̃ci,at −Rci)wut,ci > (R̃Pi,at −RPi)wut,Pi

means that the cluster ci has more effect in the adjusted weighted average. On
the other hand, if:

(R̃ci,at −Rci)wut,ci < (R̃Pi,at −RPi)wut,Pi

means that the merge pattern has more effect in the adjusted weighetd average.
The reason for this choice is also because we realized that only correlations is not
enough because in this way both the value of the movie R̃Pi,at and the average
either the pattern RPi

or cluster RPi
are taken into account.

To sum up, we choose, using (R̃ci,at−Rci)wut,ci either cluster ci or the corresponding
merge pattern Pi. Once, this structure is build, we used the Adjusted weighted
average as usual.
We want to specify that, the first phase of the prediction generation doesn’t assure
to find a similarity for each cluster. This can happens in two cases: the first is
when the similarity can not be computed: it means that the target user ut does
not have any rated movies in common with that particular cluster, because as
we know, in Pearson correlation coefficient formula both the numerator and the
denominator are strictly related to

∑
aεI where I is the set of items rated by both

the target user ut and i-th surrogate user.
The second case is when the similarity is less than 0.1: we decided a fixed thresh-
old to eliminate the weaker patterns right away and reduce the number of clusters
used in the Adjusted weighted average computation.
The same thing is done with the computation of the similarity of the merge pat-
terns, so the similarities less than 0.1 are cut off from the Adjusted weighted
average computation.

To sum up, compared to ClustKnn, we had to add some tunable parameters in
order to obtain better results.

• k clusters: k is the number of cluster generated by Cluto. This parameter
must be chosen in the model building phase.

• N patterns: N is the number of patterns memorized for each cluster ci. Given
a list of patterns, the largest N patterns are taken considering the numbers

37

of rows. N is strictly related to the number of clusters k because as k grows
the number of users in each clusters decreases, this means that PaNDa+

can extract less patterns. Instead if k decreases, the number of users in each
clusters increases and PaNDa+ can extract more patterns.

• l - index of reduction: l is an integer number from 0 to k, that given the
number of cluster similar to the target user ut we select only l cluster simi-
lar. Of course, the similarities must be sorted in descending order and then
filtered using this index of reduction l. On the other hand, if we select l
clusters, we will select l merge patterns.

We already mentioned the algorithms that Karypis et Al compared with ClustKnn.
Now, we want to compare ClustKnn with our personal approach and with the oth-
ers algorithms. In particolar we want to report the complexity comparison that
Karypis et Al. did in their report and add the complexity of our approach.

4.3 Comparison and results

As ClustKnn, our algorithm has two main phases, the first is computed offline
(model-based) and the other must be computed online (memory-based).

• The model based consists in two different offline phases:

– the first part is the generation of the clusters by Cluto. The k-means
by Cluto is time-complexity the complexity of the Bisecting k-means
becomes O((k − 1)jmn) ∼= O(mn), which is the offline complexity of
the first part.

– the second part is the patterns generations. Panda+ is a scalable al-
gorithm, and its computational complexity is linear in the number of
transactions n and quadratic in the number of items m, so: O(knm2) ∼=
O(nm2).

So the offline phase has a complexity of: O(max(nm, nm2)) ∼= O(nm2)

• The online phase consists in also two differents phases:

– The first phase is find the correlation with the k clusters so O(k) sim-
ilarity are computed. Each calculation takes O(m) time, so this stage
requires O(km) ∼= O(m)

– The second step is find the correlation with the k merge Patterns, so
O(k) similarity are computed. Each calculation takes O(m) time, so
this step requires O(km) ∼= O(m)

Instead, the online phase has a complexity of: O(m) + O(m) ∼= O(2m) ∼=
O(m)

The table 4.1 reports the computational complexity of the different algorithms
compared by Karypis et Al.

38

CF algorithm Offline Online

pLSA O(mn) O(m)
SVD O(n2m+m2n) O(m)
Personality Diagnosis - O(mn)
ClustKnn O(mn) O(m)
User-based KNN - O(mn)
Item-based KNN - O(mn)

Table 4.1: Comparison of time-complexities of the selected CF algorithms

In the table 4.2 we can notice a decreasing of the performance in the model build
phase. In particular the decrease is due to PaNDa+ extraction patterns.
However, due to the great sparsity of the datasets in recommendation systems,
in our implementation, we could reduce the time computation used by Panda+

during the implementation removing the transactions (items) that no ones rated
from the binary dataset Di.

CF algorithm Offline Online

ClustKnn O(mn) O(m)
Our approach O(m2n) O(m)

Table 4.2: Comparison of time-complexities of ClustKnn with my approach

In the table below there are the results obtain with our implementation. The
tables will show the results that take a five fold cross-validation approach over
each dataset. Furthermore, we will show the results by the tunable values we
mentioned, number of cluster k, number of surrogate-users, number of patterns
considered and each of this combinations by metrics.

K-Cluster 50 100 150 200 250 300

Pattern Metric
3 MSE 0,75431 0,74594 0,74098 0,73916 0,74219 0,74002
3 MAE 0,95031 0,92729 0,91337 0,90821 0,9165 0,91082
3 RMSE 0,97475 0,96287 0,95561 0,95293 0,95731 0,95427
5 MSE 0,7534 0,74511 0,7405 0,73884 0,74219 0,73997
5 MAE 0,94774 0,92486 0,91186 0,90711 0,91629 0,91052
5 RMSE 0,97343 0,96161 0,95482 0,95236 0,9572 0,95411
7 MSE 0,7527 0,74477 0,74022 0,7387 0,74214 0,73993
7 MAE 0,94575 0,92384 0,91096 0,90663 0,91608 0,91037
7 RMSE 0,97241 0,96108 0,95436 0,95211 0,95709 0,95403

Table 4.3: MSE, MAE, RMAE with K = 200 and N = 7

39

Figure 4.3: MSE, MAE, RMAE

In the table 4.3, we can see the metrics MSE, MAE, RMAE that we already
mentioned. We tested the algorithm with different values of k clusters, with the
maximum value of l and with different values of N patterns, and with the help of
the plot in figure 4.3 we can assert and note explicitly that k = 200 and N = 7
could give the best results.

In the next tables we will show the final results of precision and F1-scores of our
project. In the table 4.4 we can see the results obtained with number of clusters
k = 200, with all the surrogate users found and merge patterns found and N
= 7 compared with Precision@K and F1@K. We used Precision@3, Precision@5,
Precision@7 and Precision@10, and the same for F1. In this case, when we talk
about ”all” surrogate users and ”all” merge patterns we refer to l=200.

Clusters 200

Precision F1-Score

Top-3 0,81634 0,09805
Top-5 0,80189 0,14988
Top-7 0,78763 0,19275
Top-10 0,76846 0,24594

Table 4.4: Results obtained for k = 200, l=200, N = 7.

Introducing the tunable parameter l: 150, 100, 50, 30, 20 we obtained the results
showed in tables 4.5 and 4.6. We remember that, l is an integer number from 0
to k, that given the number of cluster similar to the target user ut we select only
l cluster similar. Of course, the similarities must be sorted in descending order
and then filtered using this index of reduction l. On the other hand, if we select l
clusters, we will select only l merge patterns.

40

l-reduction 150 100 50

Precision F1-Score Precision F1-Score Precision F1-Score

Top-3 0,81915 0,09843 0,82235 0,09885 0,82638 0,09941
Top-5 0,80358 0,15016 0,80682 0,15066 0,81169 0,15149
Top-7 0,78964 0,19316 0,79295 0,19389 0,79745 0,19476
Top-10 0,77058 0,24652 0,77416 0,24742 0,77869 0,24868

Table 4.5: Results obtained for k = 200, N = 7 and l=150, 100, 50.

l-reduction 30 20

Precision F1-Score Precision F1-Score

Top-3 0,82533 0,09891 0,82445 0,09907
Top-5 0,81242 0,15117 0,81017 0,15097
Top-7 0,79804 0,1943 0,79808 0,19495
Top-10 0,77982 0,24801 0,77997 0,24855

Table 4.6: Results obtained for k = 200, N = 7 and l=30, 20.

We can observe in table 4.7 how much the index l improves the results. Further-
more we compute MAP@5 as an additional metric in table 4.8.

l-reduction All 30

Precision F1-Score Precision F1-Score

Top-3 0,81634 0,09805 0,82533 0,09891
Top-5 0,80189 0,14988 0,81242 0,15117
Top-7 0,78763 0,19275 0,79804 0,1943
Top-10 0,76846 0,24594 0,77982 0,24801

Table 4.7: Results obtained for k = 200, comparison between l=200 and l=30.

l-reduction 200 30

MAP@5 0,86313 0,87088

Table 4.8: MAP@5 for k = 200, comparison between l=200 and l=30.

41

Chapter 5

Conclusion

At the end of this project we can say that even if we can see an increase in compu-
tational complexity at the level of the model building, that is, in the offline phase,
the results have improved.
This shows not only that the project offers real improvements but the dataset gives
all the information and data necessary to provide increasingly accurate predictions
and/or results.
Furthermore, if we analyze our approach more deeply we can notice that a merge
pattern is nothing more than a cluster with fewer users. This means that using
the patterns extracted by PaNDa+ and so a unify pattern is more efficient due to
the high quality patterns extracted.

Finally, we must consider the fact that there is a part of users that have less than
10 relevant items, however they are only 90 out of 6040, and this means that any
precision@N with N greater than 10, 15 or more can not ideally be at 100%.

For example, when adding data to the dataset it is possible to expect three types
of scenarios.
The first case is when the user with the addition of new rates deviates from the
merge pattern it belongs but not from the cluster it belongs. Consequently, it
must be somewhat displaced from the merge pattern. This can be shifted through
the computation of a correlation.

The second case is when the user with the addition of new rates deviates com-
pletely from the cluster to which it belongs. This means that a user is added
to another cluster and this means that it can modify the merge pattern of that
cluster.

The third case is when a new user is added. The ”cold start” problem occurs as
usual, however it is possible to present predictions through the closest clusters and
merge patterns to the user.

In all three cases, however, it is not necessary to reformulate the model, con-

42

sequently Cluto to generate clusters and Panda+ to find patterns must not be
executed at each new addition in a possible dataset.

Table 5.1 and table 5.2 summarize the improvements obtained in this thesis. We

ClustKnn ClustKnn l=30 Our approach l=30

Precision F1-Score Precision F1-Score Precision F1-Score

Top-3 0,80977 0,09674 0,82219 0,09797 0,82533 0,09891
Top-5 0,79315 0,14715 0,80778 0,14919 0,81242 0,15117
Top-7 0,77689 0,18883 0,79222 0,19153 0,79804 0,1943
Top-10 0,75508 0,23947 0,77137 0,24318 0,77982 0,24801

Table 5.1: Comparison of results obtained by ClustKnn

MAP@5

ClustKnn l=200 0,85914
ClustKnn l=30 0,86866
Our approach l=30 0,87088

Table 5.2: Comparison of results obtained by ClustKnn

43

Bibliography

[1] The acm conference series on reccomender system, 2020. URL https://recsys.acm.
org/recsys21/.

[2] Chumki Basu, Haym Hirsh, and William Cohen. Recommendation as classification: Using
social and content-based information in recommendation. page 714–720, 1998.

[3] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An algorith-
mic framework for performing collaborative filtering. In Proceedings of the 22nd An-
nual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’99, page 230–237, New York, NY, USA, 1999. Association for
Computing Machinery. ISBN 1581130961. doi: 10.1145/312624.312682. URL https:
//doi.org/10.1145/312624.312682.

[4] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf.
Syst., 22(1):89–115, January 2004. ISSN 1046-8188. doi: 10.1145/963770.963774. URL
https://doi.org/10.1145/963770.963774.

[5] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput.
Surv., 31(3):264–323, September 1999. ISSN 0360-0300. doi: 10.1145/331499.331504. URL
https://doi.org/10.1145/331499.331504.

[6] G. Karypis. Cluto - a clustering toolkit. 2002.

[7] Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. Mining top-k patterns from
binary datasets in presence of noise. pages 165–176, 04 2010. doi: 10.1137/1.9781611972801.
15.

[8] Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. A unifying framework for mining
approximate top- binary patterns. IEEE Transactions on Knowledge and Data Engineering,
12 2014. doi: 10.1109/TKDE.2013.181.

[9] Marwa Mohamed, Mohamed Khafagy, and Mohamed Ibrahim. Recommender systems chal-
lenges and solutions survey. 2019. doi: 10.1109/ITCE.2019.8646645.

[10] David M. Pennock, Eric J. Horvitz, Steve Lawrence, and C. Lee Giles. Collaborative filtering
by personality diagnosis: A hybrid memory- and model-based approach, 2013.

[11] Al Rashid, Shyong Lam, George Karypis, and John Riedl. Clustknn: a highly scalable
hybrid model- & memory-based cf algorithm. 09 2006.

[12] Al Mamunur Rashid, Shyong K. Lam, Adam LaPitz, George Karypis, and John Riedl. To-
wards a scalable knn cf algorithm: Exploring effective applications of clustering. In Olfa
Nasraoui, Myra Spiliopoulou, Jaideep Srivastava, Bamshad Mobasher, and Brij Masand, ed-
itors, Advances in Web Mining and Web Usage Analysis, pages 147–166, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg. ISBN 978-3-540-77485-3.

[13] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender Systems Handbook, vol-
ume 1-35, pages 1–35. 10 2010. doi: 10.1007/978-0-387-85820-3 1.

[14] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. Recommender Systems
Handbook, pages 257–294. 2011.

44

https://recsys.acm.org/recsys21/
https://recsys.acm.org/recsys21/
https://doi.org/10.1145/312624.312682
https://doi.org/10.1145/312624.312682
https://doi.org/10.1145/963770.963774
https://doi.org/10.1145/331499.331504

[15] Roberto Saracco. A changing world measured in internet time, 2020.
URL https://cmte.ieee.org/futuredirections/2020/07/13/
a-changing-world-measured-in-internet-time/.

[16] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Application of dimen-
sionality reduction in recommender system – a case study. 08 2000.

[17] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. Proceedings of ACM World Wide Web Conference, 1,
08 2001. doi: 10.1145/371920.372071.

[18] Meenakshi Sharma and Sandeep Mann. A survey of recommender systems: Approaches
and limitations. 2013.

[19] Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. 2, 08 2003.

45

https://cmte.ieee.org/futuredirections/2020/07/13/a-changing-world-measured-in-internet-time/
https://cmte.ieee.org/futuredirections/2020/07/13/a-changing-world-measured-in-internet-time/

	Introduction
	Recommender System
	Collaborative-Filtering methods
	Memory based
	Model based

	Content-Based methods
	Hybrid and other Recommendation Systems
	Evaluation and Challenges
	Evaluation of a recommender system
	Challenges in Recommender System

	ClustKnn
	Datasets
	Clustering methods
	Evaluation, Improvements and Results
	Implementation and Improvements

	Our Approach
	PaNDa+
	Main algorithm
	Comparison and results

	Conclusion

