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Introduction 
 

 

Quantitative and qualitative branches of economic studies, ranging from pure 

philosophical or behavioral models and theories to complex econometric 

frameworks, have in common several assumptions on connectedness among 

individuals and institutions. The meaning of connectedness in this sentence is 

wide: market operators’ expectations, individual risk aversion, but even heuristics 

and bank runs phenomena or a financial bubble explosion, are all mechanisms and 

events connected among themselves, and constituted by an interrelated variety of 

impulses and realizations.  

Financial firms balance sheets and counterparty relations, but also public 

institutions, pension funds and healthcare systems, literally every socioeconomic 

and financial system the society has developed, is today more interrelated and co-

dependent than yesterday.  

“A butterfly flapping its wings in Brazil can produce a tornado in Texas.”1, this 

famous sentence of Edward Lorenz, progenitor of chaos theory, highlighted a basic 

but fundamental concept: with the right tools, events that appear as completely 

unrelated can be not only linked but even measured in their reciprocal influences. 

In other words, deterministic or stochastic that is, a system interrelation study is 

the first step to be made to understand its provenience, its status, and its relative 

importance. 

Economic theory and a variety of empirical findings state that financial systems 

are among the most interrelated in the social-economic panorama. Financial 

bubbles formations and explosions, economic cycles turnovers, and stock market 

capitalization shortfalls are all characterized by two main features: the centrality 

of some institutions (public or private they are), and the positive or negative, but 

 
1 Edward Norton Lorenz (1972); Session of the annual meeting of the AAAS (American 

Association for the advancement of Science). 
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always high, correlation among economic actors. The main idea inherited from 

the theory and empirical applications is so that during crisis times, or high market 

volatility periods, connectedness of financial systems rises, and the objective 

chased by the following analysis is to prove and measure this interrelation change.  

Historically speaking is clear that a single institution can not cause global 

economic earthquakes: the Lehman Brothers holding operations were not the 

cause of the subprime crisis, Greek government behaviour did not erase 

creditworthiness of a vast majority of Euro area countries, and the global 

undervaluation of the Coronavirus emergency was not caused by a single country 

poor first reaction to the disease spread. However, correlation among actors and 

the magnitude of both, the leading agent and the event suffered in a crisis, surely 

serves as propellent for shocks propagation and crisis ignitions. These 

considerations make reasonable the assumption that polarization in connectedness 

exists, and determines how impulses are spread in the system, on a directional 

and on a magnitude level.  

One of the key objectives of the thesis is the investigation of this polarization 

phenomenon and the description of it. The scope of the analysis is to evaluate the 

framework of connectedness channels at a granular level, in order to understand 

if there exist drivers for interrelation directionality. Then I studied how 

polarization in connectedness frameworks changes by observing if a polarized 

structure exists and if it changes under stress conditions. At the same time, I 

investigated if it conforms in standard or peculiar ways depending on historical 

economic occurrences.  

The thesis focuses on the European bond market and measures its total-wide 

dynamics, together with granular pairwise relations evolution. This will support 

the main idea that connectedness changes in structure and level, depending on 

financial and economic environment variations and, in particular, an increase in 

connectedness is expected to be measured under crisis periods. Meanwhile, some 

kind of polarization phenomenon is expected to be observed, giving specific 

institutions the role of connectedness drivers. 
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The estimation of connectedness measures will be done by modelling both 

corporate and governments bonds.  

Bonds rather than stocks, credit default swaps, or other assets, have been chosen 

for two main reasons: 

 

i. one of the latest and serious financial crises (the sovereign debt one) had a 

central debt component. Moreover, even if the repercussions were globally 

spread, it was a crisis that started and matured on European “soil”; 

ii. bond yields contain an interest rate risk component, thus measures based 

on them can reflect not only current network structures due to financial 

dynamics but also market operators’ expectations. 

 

In addition to (i) and (ii), another factor partially drove the data choice for the 

analysis. In fact, the empirical literature is richer in applications on stock returns 

and volatilities, or on financial derivatives, rather than on bonds-related data. 

Since the former’s outcomes reflected very interesting results, I was interested in 

a further investigation on the efficiency of bonds networks, in explaining 

connectedness spread and institutions’ frameworks, as an alternative to the mainly 

used stock returns data.  

Regarding the choice of the type of corporations for the empirical analysis, I 

selected major European financial institutions. The role of those types of 

corporations related to the subprime crisis makes the study of connectedness 

measures based on them, very interesting from a risk management and regulatory 

policy perspective. Furthermore, due to counterparty relations and balance sheet 

interdependencies, financial corporations are likely to be more interrelated than 

industrial ones, making the study of connectedness more interesting and 

potentially more fruitful. 

Another important aspect of the European bonds markets regards the link 

between government bonds and economic and monetary policies since the start of 



6 

 

the QE program in 2015. The QE made bonds an interesting possible channel of 

connectedness spread across European countries.  

For these reasons the thesis also investigates connectedness in government bonds 

separating short-term (2-year) from long-term (10-year) bonds. This last 

discrimination has the purpose of chasing dynamics reflected in a different way 

according to the yield tenor. In fact, for example, interest rate risk and inflation 

expectations are linked to long-term treasury yields, while consumption trends 

impacts of economic policies are linked to short-term rates. 

The empirical work in the thesis shows some very interesting results, which 

confirm the potential of bond yields in reflecting connectedness’ dynamics, 

coherently with recent global economic history. Variations in every system’s 

overall connectedness measure have been observed and analysed, proving the rise 

in connectedness supposed at first, concurrently to crisis periods. In fact, the latest 

economic relevant happenings can be read through interrelation measures 

patterns, with high degrees of systems’ connectedness, observed in concomitance 

to economic crises. Solely one system out of the three, the long-term government 

one, showed connectedness resilience in relation to crisis events, reflecting a 

cyclical behaviour stronger than any sort of dependence on financial markets 

shocks. This outcome in addition to reflecting an interesting and unexpected 

independence feature of the relative system, at first labelled its connectedness’ 

measure as useless for risk management applications, since apparently unrelated 

to market shocks manifestations. However, further analysis will show interesting 

applications of these system-derived measures in phenomena evaluation, under a 

joint perspective with other systems’ connectedness estimates. Specifically, the 

relative level of the system overall interrelation measure, compared with the one 

of the short-term government framework, showed great explanatory power for 

market operators’ expectations and for the understanding of the relevance of a 

crisis. 

Historically speaking the long-term government bond system has been always 

observed as the most interrelated. Regrading the short-term and the corporate 
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framework, an interesting result will be presented: an exchange in relative level 

has been observed after the sovereign debt crisis, marking the corporate system 

as constantly more interrelated than the government one (inverse situation with 

respect to times prior to the crisis). 

Polarization in connectedness frameworks has also been observed. This confirms 

the supposed dynamics and reflects a peculiar hierarchy of institutions in 

influencing specific actors in the system. Furthermore, I observed that this 

phenomenon changes dynamically under crisis circumstances, reflecting 

idiosyncratic contributes of few entities in the spread of shocks consequences.  

On a corporate level, a clear role of influencers is detained by UniCredit Bank 

and Deutsche Bank, connectedness is in fact polarized around these institutions, 

heavily influencing the others in the system. The role of these corporations was 

observed as central also for two recent economic crises. UniCredit acted in fact as 

a protagonist in connectedness spread, during the sovereign debt crisis, while 

Deutsche Bank played the same role during market crashes following the 

pandemic explosion. As opposed, among the institutions mainly suffering influence 

from others, we can see the Dutch ABN Amro and Rabobank, and the Danish 

Nordea Bank. 

On a government level, strong evidence supports the role of Portugal and Ireland 

as main influencers, with the strongest connections directed to Spain and Italy. 

In this latter system, an interesting role is played by Belgium, acting as an 

intermediate node: it is heavily influenced by the just mentioned four countries, 

but it also presents important connections towards the residual actors in the 

system. 

Main drivers of connectedness polarization have been so identified in economic 

size and creditworthiness, a dynamic proper of all three systems analysed. 

However, an interesting difference in the functioning of these drivers, between 

government and corporate systems, will be presented. 
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Final considerations were so able to address concrete drivers for shocks 

dissipation, discovering an unexpected marginal role of geographical components 

in connectedness spread.   
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Chapter I. On connectedness measures 
 

 

1.1 The spill-over lookout 
 

The centrality of connectedness is one of the main aspects of modern risk 

measurement and management discipline. It is, for example, a key aspect of 

market risk management. As a first example, one can think about returns 

connectedness or concentration risk. All the sources and channels from which risks 

arise and spill-over can be described and quantified through connectedness 

analysis. Also systemically speaking, system-wide connectedness measures have a 

growing importance in modelling market conjunctural phenomena and responses 

to shock or innovations in macroeconomics fundamentals. Connectedness 

measures can help analysts to understand and predict how and why there will be 

a shortfall in defaults between economic actors (credit risk), as well as point out 

mainlines to understand fundamental macroeconomics risks impact on business 

cycles.  

So far, the description of networks bonds at a qualitative and quantitative level, 

seem to have had a powerful enrichment impact on the overall academic and 

practice risk management world, touching a wide range of different fields. 

The wide known unsuitability of standard correlation-based measures, for non 

just pairwise applications, have led academics to concentrate on developing more 

general frameworks to describe the magnitude and structure of connectedness. 

However, a consistent portion of the literature still overlooks several fundamental 

properties of connectedness and hence possible sources of risk and tools for 

describing the dynamics of it. 
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1.2 Empirical works 
 

A relatively modern thread of studies had started and enriched the academic 

literature providing tools and researches analysing shocks spill-over effects.  

One notable first step in the direction of connections discrimination was done by 

Forbes & Rigobon in 2002 (“No Contagion, Only Interdependence: Measuring 

Stock Market Comovements”), in a research aimed to mark the differences between 

contagion and interdependence in a pre-structural meaning form, the so-called 

correlation breakdown (a statistically significant increase in correlation during 

crashes periods). In order to do so, the authors tried to measure correlation from 

a dynamic point of view (approach re-proposed and analysed by many other 

researchers then), finding out estimation problems related to heteroscedasticity, 

proper of financial markets. Although Forbes et al. proposed a method of 

correcting for cross-market correlation estimators bias, that was far from the more 

recent elaborate attempt to assess, not only changes in co-movements but also 

specific forms of contagion. 

Another notable step ahead in the field should be addressed to Rodriguez’s works 

of 2007 (“Measuring financial contagion: A Copula approach”), this paper studied 

financial contagion using a methodology that went beyond the simple analysis of 

correlation breakdowns and, at the same time, was careful in the characterization 

of nonlinearity and asymptotic dependence, some notorious features translated by 

the common conscience that extremely bad events lead to irrational outcomes. 

Copulas contain information about the joint behaviour of the random variables 

in the tails of the distributions. The research outcome on the study cases 

examined, found out contagion in the sense of Forbes and Rigobon's (2002) 

definition. However, although overall dependence was seen increasing after a main 

shock spreading, patterns of change in tail behaviour differed widely across 

markets, with tail dependence being more prevalent in times of financial turmoil. 

This paper made the case that structural breaks in tail dependence are an actual 

dimension of the contagion phenomenon.  
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In reviewing empirical works of the related literature, attention should be paid 

also to the work of Billio, Getmansky, Lo and Pelizzon of 2012 (“Econometric 

measures of connectedness and systemic risk in the finance and insurance 

sectors”), where a wide range of connectedness estimation approaches was revied 

by empirical applications. Since the final approach on network bonds evaluation 

used in the current thesis project, it is not one of the proposed there, I will limit 

to a presentation of the mentioned work, without entering into quantitative 

details of all the proposed tools. They used several econometric measures of 

connectedness based on Principal Components Analysis (PCA) and Granger-

causality networks, applying them to the monthly returns of hedge funds, banks, 

broker/dealers, and insurance companies. The authors found out that all the 

mentioned sectors were becoming strongly interconnected over the last few years. 

This was likely increasing the level of systemic risk in the finance and insurance 

industries through a complex and time-varying network of relationships. The 

authors found out that PCA provided a broad view of connections among all four 

groups of financial institutions, while Granger-causality efficiently captured the 

complex framework of pairwise relations among individual firms in the finance 

and insurance industries. An important result in term of field applications and 

research path was the conclusive suggestion that the banking and insurance 

sectors may be even more important sources of connectedness than other parts, 

consistently with evidence from recent financial crises (2008 & 2010).   

An even more recent ring of the literature chain, treating a parallel approach 

compared to the one just mentioned, is the work of Hautsch, Schaumburg and 

Schienle of 2014 (“Financial Network Systemic Risk Contributions”). The authors 

used a realized systemic risk Beta as a measure of financial companies’ 

contribution to systemic risk, given network interdependence between firms’ tail 

risk exposures. They defined the Beta as the total time-varying marginal effect of 

a firm’s Value-at-risk (VaR) on the system’s VaR, conditionally on a pre-

identified network of spill-over effects, market and balance sheet information. The 

approach was mainly aimed to monitor companies’ systemic importance, enabling 
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transparent macroprudential supervision. Based on relevant company-specific risk 

drivers, the researchers measured firm’s idiosyncratic tail risk by explicitly 

accounting for its interconnectedness with other institutions. Their empirical 

results showed the interconnectedness of the US financial system marking 

channels of relevant potential risk spill-overs. Specifically, they classified 

companies into major risk producers, transmitters, or recipients within the system, 

driving to a principal feature of connectedness measurement besides dynamics: 

directional weighted effects.  

Others very important and more recent contributions to the literature are the 

works of Diebold et al. (2014)2, Demirer et al. (2016)3, Buse et al. (2019)4. Flying 

over the empirical findings, the quantitative and methodological approaches will 

be explained later in details, since the current thesis project is inspired by their 

methods (i.e. use of connectedness measure based on forecast error variance 

decomposition (FEVD)). 

 

 

1.3 On network topology 
 

Network theory is defined as the study of either symmetric or asymmetric 

relations between discrete objects. In network science and computer science, 

network theory is a part of graph theory: a network can be defined as a graph in 

which nodes and/or edges have attributes. 

The applications of Network theory touch many disciplines including statistics, 

physics, computer science, engineering, biology, climatology, sociology, and of 

course economics and finance. 

 
2 Diebold F.X. & Yilmaz K. (2014); “On the network topology of variance decomposition: 

Measuring the connectedness of financial firms”; Journal of Econometrics.  
3 Demirer M., Diebold F.X., Liu L. & Yilmaz K. (2016); “Estimating global bank network 

connectedness”; Journal of Applied Econometrics. 
4 Buse R. & Schienle M. (2019); “Measuring connectedness of euro area sovereign risk”; 

International Journal of Forecasting. 
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Topologically speaking a network Ɲ can be defined as a collection of N nodes (or 

vertices) connected by L links (or edges). The distance 𝑺𝒊𝒋 between two nodes 𝒊 

and 𝒋 is the smallest number of links that have to be crossed to go from 𝒊 to 𝒋. 

The network Ɲ is defined as connected, if  𝑺𝒊𝒋 ≤   𝑵 − 𝟏 ∀ 𝒊, 𝒋 .   

Once defined, the main aspect of a network that needs to be analyzed is the 

strength of connections and their capillarity. A multitude of questions arise also 

thinking on which prospective connections have to be considered in order to 

evaluate a network, for example, is a pairwise or a system-wide concept of links 

that better measures the strength of a network’s connections? 

In order to better clarify these concepts, is useful to think of Ɲ simply as an 𝑵 x 𝑵 

adjacency matrix A of zeros and ones (𝑨 = [𝑨𝑖𝑗]), where 𝑨𝑖𝑗 = 1 if nodes 𝒊 and 𝒋 

are connected while 𝑨𝑖𝑗 = 0 otherwise. The so defined A  matrix is a symmetric 

matrix because, obviously, if 𝒊 and 𝒋 are connected also 𝒋 and 𝒊 are. 

Since algebraically speaking the network is the matrix A , all the network 

properties are contained in A , and so all connectedness measures have to be based 

on A. Anyway, there is not a universal defined measure of them, and a lot have 

been proposed. The most popular measures, and so far, the most important for 

the purposes of the following econometric analysis, are based on the concept of 

node degree ad diameter. 

 

 

1.3.1 Degree and Diameter 
 

A node’s degree can be defined as its number of links L connecting it to other 

nodes, so for example the degree of the node 𝑖 is: 

 

 
𝛿𝑖 = ∑ 𝑨𝑖𝑗

𝑁

𝑗=1

= ∑ 𝑨𝑗𝑖

𝑁

𝑗=1

 (1.1) 
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The degree distribution is the probability distribution of degrees across the nodes 

and is a discrete univariate distribution, with all parameters describing its shape 

contained into the network characteristics. The one that we are more concerned 

for the carried analysis, are obviously the network behavior aspects that define 

the location parameter of the degree distribution: the mean. So, the mean of the 

degree distribution has been taken as the benchmark measure from the literature 

developed so far in network connectedness analysis for econometrics applications. 

Another important aspect of a network is closely related to the previously 

introduced concept of distance between nodes: the diameter. In fact, the diameter 

of a network is defined as the maximum distance between two nodes, so: 

 

 𝑆𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖𝑗𝑆𝑖𝑗  (1.2) 

 

This is another diffused benchmark measure of overall network connectedness and 

of course, the relation with the degree is that the smaller is Ɲ diameter, the greater 

is the overall connectedness. 

 

 

1.4 Forecast error variance decomposition  
 

In the field of econometrics and other applications of multivariate time series 

analysis, the Forecast Error Variance Decomposition (FEVD) is used to aid in 

the interpretation of a Vector Autoregressive (VAR) model once it has been fitted, 

and it is derived from the Impulse Response Function (IRF). This latter explains 

the response of one variable to an impulse in another variable in a system, that 

involves several further variables as well (a VAR(p) model for instance). It 

manages to do this, tracing out the effect of an exogenous shock or innovation in 

one of the variables on some or all the other variables. This feature allows to trace 

the transmission of a single shock within an otherwise noisy system of equations 
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and, thus, makes them very useful tools in the assessment of economic policies for 

example. 

Variance decomposition indicates the amount of information each variable 

contributes to the other variables in the (auto)-regression (a vector form one for 

the current analysis). It determines so how much of the forecast error variance of 

each of the variables can be explained by exogenous shocks to the other variables. 

Letting the quantitative specification and derivation of FEVD and IRF for 

Appendix A.1-A.2, it follows the exploration of FEVD implementation in network 

analysis. 

 

 

1.4.1 FEVD in network analysis 
 

Given the definition and the econometric meaning of FEVD, it is not surprising 

that some of the main authors in econometric network analysis chose it to develop 

a unified framework for conceptualizing and empirically measuring connectedness, 

from a pairwise through a system-wide level. It is in fact the approach proposed 

by Diebold and Yilmaz (2014), from which this thesis project is inspired under a 

methodological and quantitative point of view. 

This approach is based on assessing shares of forecast error variance in the objects 

of analysis, due to shocks arising elsewhere.  

From now on it will be denoted by 𝒅𝒊𝒋
𝑯 the 𝒊𝒋-th H-step variance decomposition 

element, so the fraction of the variable 𝒊’s H-step forecast error variance due to 

shock in variable 𝒋. For obvious reasons all the so defined FEVD-based 

connectedness measures, rely only on “non-own” variance decomposition fractions, 

basically where 𝒊 ≠ 𝒋 . 

In order to better summarize the various connectedness measures of this 

methodology and their relationships, a good approach is to analyze the 
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representation given by Diebold et al. (2014), with the connectedness table 

provided in Table 15 below: 

 

Table 1 - Connectedness table. 

 

The portion delimited in red is the variance decomposition matrix, denoted by 

𝑫𝑯 = [𝒅𝒊𝒋
𝑯] . The rest of the table simply integrates the information with rows 

and columns sums, and the grand average (for 𝒊 ≠ 𝒋). 

The off-diagonal elements of the 𝑫𝑯 express a measure of pairwise directional 

connectedness that can so be expressed (from 𝒊 to 𝒋), as: 

 

 𝐶𝑖←𝑗
𝐻 = 𝑑𝑖𝑗

𝐻 (1.3) 

 

The first point of attention is on the fact that generally 𝑪𝒊←𝒋
𝑯 ≠ 𝑪𝒋←𝒊

𝑯  , and so that 

there are 𝑵𝟐 − 𝑵 different pairwise directional connectedness measures. 

It now follows the presentation of a variety of measures definitions, that aim to 

describe a network from a granular, to a system-wide level. This, in order to 

understand and evaluate degree, diameter and all the important aspects that make 

network analysis an appealing study approach for a system of variables. 

 
5 Diebold F.X. & Yilmaz K. (2014); “On the network topology of variance decomposition: 

Measuring the connectedness of financial firms”; Journal of Econometrics. 
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Starting from pairwise directional connectedness, it can be defined as net pairwise 

directional connectedness, the following: 

 

 𝐶𝑖𝑗
𝐻 = 𝐶𝑗←𝑖

𝐻 −𝐶𝑖←𝑗
𝐻  (1.4) 

 

Moving now to a wider point of view, total directional connectedness from others 

to 𝒊, is defined as:  

 
𝐶𝑖←∗

𝐻 = ∑ 𝑑𝑖𝑗
𝐻

𝑁

𝑗=1
𝑗≠𝑖

 (1.5) 

 

and on the other hand, total directional connectedness to others, from 𝒋, is: 

 
𝐶∗←𝑖

𝐻 = ∑ 𝑑𝑖𝑗
𝐻

𝑁

𝑖=1
𝑖≠𝑗

 (1.6) 

 

Just as done for pairwise connectedness it follows the definition of net total 

directional connectedness: 

 𝐶𝑖
𝐻 = 𝐶∗←𝑖

𝐻 −𝐶𝑖←∗
𝐻  (1.7) 

 

In the end, a grand total connectedness measure comes from the sum of the off-

diagonal elements of 𝑫𝑯, divided by 𝑵: 

 

 
𝐶𝐻 =

1

𝑁
∑ 𝑑𝑖𝑗

𝐻

𝑁

𝑖,𝑗=1
𝑖≠𝑗

 (1.8) 

 

Leaving again more sophisticated specifications and derivation for Appendix A, 

Diebold et al. (2014) chose to use Generalized Variance Decomposition (GVD) as 
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introduced by Pesaran et al. (1998)6, as opposed to Cholesky-based Variance 

Decomposition. This choice was supported by the useful properties of GVD 

outcomes, which are invariant to ordering in estimation. In fact, the shocks are 

not orthogonalized but are allowed for correlation, while simultaneously 

accounting for the correlation among them observed historically (under normality 

assumptions). On the other hand, Cholesky-based decomposition orthogonalized 

the errors, via Cholesky factorization, and this last technique is dependent on the 

order of the equations in the system. 

It follows the mathematical expression of H-step GFEVD matrix 𝑫𝒈𝑯 = [𝒅𝒊𝒋
𝒈𝑯

] 

elements: 

 
𝑑𝑖𝑗

𝑔𝐻
=

𝜎𝑗𝑗
−1 ∑ (𝑒𝑖

′𝜃ℎƩ𝑒𝑗)2𝐻−1
ℎ=0

∑ (𝑒𝑖
′𝜃ℎƩ𝜃ℎ

′𝑒𝑖)
𝐻−1
ℎ=0

 (1.9) 

 

Where 𝒆𝒋 is a selection vector with the element equal to 1 and zero elsewhere,  𝜽𝒉 

is the coefficient matrix of the h-lagged shock vector, in the infinite moving 

average representation of the non orthogonalized original VAR(p) model, Ʃ is the 

covariance matrix of the shock vector in the same model, and 𝝈𝒋𝒋 is the 𝒋-th 

diagonal element in Ʃ. 

It should be clear so, since the 𝑫𝒈𝑯 variance decomposition matrix is an adjacency 

matrix, that variance decomposition matrices are networks. Moreover, 𝑫𝒈𝑯 

describes a network in a very sophisticated way: the measure introduced in 

Section 1.3.1, concern a matrix (A ) filled simply with 1 and 0, but the 𝑫𝒈𝑯 matrix 

is composed with non-binary values, that weight connections. That is a 

measurement system, that describes connections as strong rather than weak ones 

(in contrast to a simple “present” vs “non present” link status). Another good 

property of this approach is the fact that links are directed, and so that 𝒊 − 𝒋 

edges are not necessarily equal to the 𝒋 − 𝒊 ones. So, in the end, this analysis 

 
6 Pesaran M.H. & Shin Y. (1997); “Generalized impulse response analysis in linear multivariate 

models”; Economics Letters.  
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methodology allows for the definition of “to-degrees” and “from-degrees” and 

identify the total directional connectedness measure 𝑪𝑯 as the mean degree of the 

network 𝑫𝒈𝑯. 

Because shocks are not necessarily orthogonal in the GFEVD environment, sums 

of forecast error variance contributions are not necessarily unity. So, in practice 

row of 𝑫𝒈𝑯 do not necessarily add to one. Hence the following analysis base the 

generalized connectedness indexes not on 𝑫𝒈𝑯, but rather on �̃�𝒈𝑯 = [�̃�𝒊𝒋
𝒈𝑯

], where: 

 

 
�̃�𝑖𝑗

𝑔𝐻
=

𝑑𝑖𝑗
𝑔𝐻

∑ 𝑑𝑖𝑗
𝑔𝐻𝑁

𝐽=1

 (1.10) 

 

By construction so: 

 

 
∑ �̃�𝑖𝑗

𝑔𝐻
𝑁

𝑗=1
= 1 (1.11) 

 

and: 

 
∑ �̃�𝑖𝑗

𝑔𝐻
𝑁

𝑖,𝑗=1
= 𝑁 (1.12) 
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Chapter II. European bonds market 
 

 

2.1 Corporate bonds 
 

Corporate bonds generally tend to have a high investment appeal for investors. 

Financial actors tend to like these due to their shorter maturation timeline and 

higher yields when compared to government bonds. Furthermore, corporate bonds 

are generally considered to be safer investments than individual stocks.  

Recent years experienced growth in European corporate bond emissions, mainly 

because of the low borrowing costs. Those latter were driven by an iterated low 

interest rates policy carried on by the European Central Bank (ECB), that 

enhanced corporate profitability in capital markets, since the fixed spread 

reflecting the idiosyncratic risk of each issuer, added to lower risk-free benchmark 

rates. European bonds are lately increasing in popularity since they have some 

very attractive benefits for investors. Among these peculiarities, there are: lower 

regulatory requirements and enhanced flexibility, investors, in fact, are not subject 

to troublesome paperwork and unnecessary costs. The mentioned lower regulation 

has been a double-edged sword for investors: simplicity and tax incentives can be 

quickly offset by the fact that some of these corporate bonds do not have the 

strict supervision of some others. That builds in an inherent and potentially 

unforeseeable risk. Anyway, the European bond market holds great potential for 

sustained, predictable growth. 

Corporate bonds can be an important source of funding for European companies, 

which can use the proceeds from bond sales to invest in growth and job creation. 

They offer businesses access to alternative, more diverse sources of funding, and 

they also offer new investment opportunities for European savers. For these 

reasons, in relation to a chain of general improvement projects of union capital 

markets, the European Commission, in 2016, launched a review of the functioning 

of EU corporate bond markets. An expert group of market practitioners examined 
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the functioning of European corporate bond markets and formulated a variety of 

recommendations to improve their functioning. In addition, a quantitative study 

on drivers of corporate bond markets’ liquidity was conducted. The outcome of 

these activities clearly contributed to the mentioned growth of corporate bonds 

emissions during recent years. 

Globally speaking the volume of corporate debt reached an all-time high in real 

terms of 13.5 trillion US dollars at the end of 2019, driven by the return of more 

expansionary monetary policies early in the year. At the same time, the overall 

quality of corporate debt has declined, according to a new OECD report7. Below, 

in Figure 18, a graph from the mentioned OECD report presents the global 

corporate bonds issuance path. 

“Structural reforms and monetary policy have promoted the use of corporate 

bonds markets as a viable source of long-term funding for non-financial companies 

since the global financial crisis” said OECD Secretary-General Angel Gurría 

(2020).  

 

 

Figure 1 - Global corporate bond issuance and issuance in advanced economies (2019 USD, billion). 

 

It is also worthy of notice that supported by a low interest rate environment, the 

mechanism of credit ratings has allowed companies to increase their leverage 

ratios and still maintain their ratings. This can be translated into the fact that 

 
7 Çelik S., Demirtaş G. & Isaksson M. (2020); “Corporate Bond Market Trends, Emerging Risks 

and Monetary Policy”, OECD Capital Market Series; Paris. 
8 Source: European Commission. 
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today, the median firm in each investment-grade rating, is more levered than a 

decade ago.  

Banking intermediation has decreased in recent years, on the other hand, activity 

on primary bond markets has increased. A report9 from the European Commission 

Expert Group on Corporate Bonds, confirms the global trend of corporate bond 

for the European market. It points out that the outstanding stock of long-term 

debt securities has increased 3.6 times since 2002, with 70% of the increase 

happening after 2008. The same report explains that for the period 2009-2016, the 

European bond market has compensated the decrease of bank loans to non-

financial corporations (NFCs) in Euro area countries. In fact, according to ECB 

data, the stock of loans extended to corporates decreased by 536 billion euro, 

whereas the stock of long-term debt securities increased by 567 billion euro over 

this period (Figure 210).  

 
9 Analytical report supporting the main report from the Commission Expert Group on Corporate 

Bonds; (November 2017); European Commission.  
10 Source: European Commission. 

Figure 2 - Evolution of outstanding amounts of Long-term Securities vs loans for NFCs. 
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Despite the global cross-sector growth in bonds issuance following 2008, after the 

sovereign debt crisis financial corporations suffered a progressive decrease in 

financing operations sourced by bonds markets (Figure 311). However, the need 

for replacement of maturing TLTRO-II funding will lead, in the near future, to a 

sizeable volume of debt that will need to be absorbed by the market. Financial 

corporation bonds markets shall so surely meet the structural needs of the 

industry. 

 

 

 

 

2.2 Government bonds, QE and chronicles 
 

Current times are characterized by a monetary and a fiscal policy closely 

coordinated. But the complex way the European Union is structured can create 

obstacles to this coordination. Indeed, some investors fear that Germany’s deep 

aversion to monetary financing will prevent the European Central Bank from 

keeping a lid on bond yields.  

Linking the weighted-average bond yield to the inflation target is a powerful way 

for the ECB to justify its bond purchases and its willingness to hold down 

 
11 Financial Stability Review, November 2018 – Euro area financial institutions 

Figure 3 - Aggregate gross bond issuance by euro area banking groups (€ billions). 
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peripheral bond yields. Ever since Mario Draghi promised to do “whatever it takes 

to preserve the euro” the ECB’s willingness to underwrite the sovereignty of all 

euro-area countries has dominated the outlook for Europe’s fixed-income markets. 

Despite signs of progress on a European Recovery Fund, it continues to do so 

today, and the ECB’s commitment is as strong today as it was eight years ago. 

This dual mandate will only face strain when low yields conflict with the inflation 

target itself. At a time when central banks are anchoring yields close to the policy 

rate, thus suppressing the return potential from holding sovereign bonds, the 

ECB’s willingness to stand behind peripheral bond markets, continues to make a 

positive case for European fixed-income markets. 

With global bond yields close to record lows, the best period for government bond 

returns is probably behind the current time, but there are still opportunities for 

active investors, including the relatively high yields still available in the euro-area 

periphery. 

More than twenty years have passed since 1998, the year in which the ECB was 

established, but the most famous and discussed manoeuvre was implemented 

much more recently: in 2015. The purchase of public and private bonds by the 

European Central Bank took place about six years after the US Federal Reserve 

initiated a similar program. The announcement of the European Quantitative 

Easing (QE) is regarded as one of the crucial moments of the "Draghi-era". For 

years, in fact, the Governing Council had proved reluctant to start a program of 

securities purchases which, according to a rooted line of thought, would have been 

extraneous to the mandate of the ECB itself (which is forbidden to monetize the 

debt of States). Between 2014 and 2015, however, a change took place at the 

macroeconomic level that was difficult for the central bank to ignore: Eurozone 

inflation points straight towards the minus sign, having dropped from 0.4% to 

0.2%. A decline could have only been attributed, at least in part, to the austerity 

policies that characterized the Eurozone in the years following the crisis of 2011. 

The justification for Quantitative Easing was thus brought back to the key 

objective of the ECB, that of stability of prices at an inflation level below but 
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close to 2%. Essentially, the program called for the ECB was to buy bonds from 

banks with the intent of raising the prices of these bonds and increasing the 

liquidity of the system. A direct aimed consequence was the decrease of a wide 

range of interest rates, making loans cheaper so that companies and individuals 

could have borrowed more, for less, in terms of borrowing costs. The ultimate 

meaning of this manoeuvre was therefore to push towards a trend of consumption 

and investment increase, supporting economic growth and the creation of jobs so 

that, with “price of prices”, the ECB would have reached an inflation rate closer 

to 2%, in the medium term. The value of securities, in the ECB's portfolio, went 

from 590 billion in 2014 to almost 2,900 billion in 2018: an increase of 374%. 

Government bonds purchased by the ECB fall within this category of assets. from 

March 2015 to September 2018, the QE was extended several times and its volume 

of purchases was finally around 245 billion (spread over various tranches between 

2015 and 2018). In order to understand the importance of QE from a technical 

point of view, it is sufficient to look at Figure 412: the one that represents the 

evolution of the European Central Bank's balance sheet over the years. Starting 

from 2015 a clear change emerges: the size of the ECB balance sheet begins to 

rise at full speed. It was a sign that the bank was pumping ever greater amounts 

 
12 Source ECB. 

Figure 4 - Annual consolidated balance sheet of the Euro system; Purple shade corresponds to securities of 

euro area residents (the granular legend of each category constituting the graph is presented in the Appendix 

B). 
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of liquidity into the economic system. This happened to a much greater extent in 

the post-2015 period than in post-2008, when the crash of Lehman Brothers and 

the financial crisis hit.  

However, the fortune of QE did not come to an end: in September 2019, in the 

last press conference that saw Draghi at the helm of the ECB board, it was 

confirmed that from the first day of November the ECB would have returned to 

buy bonds for 20 billion euros per month. It therefore appeared that Christine 

Lagarde had given the green light and that the future of European monetary 

policy would have continued to be "super accommodative", at least until the 

inflationary target is reached. 

The effects of the recent history of ECB policy and government bonds markets 

have been massive. To have a clearer idea of their magnitude and duration, it is 

sufficient to look at Figure 513 where the evolution of average yields curves on the 

Eurozone is presented. It is clear how a flattening dynamic has been taken place 

constantly since 2010. The cash cost for top-ranked institutions has been on 

average negative for maturities up to 5 years for the last 4 years. Even the not 

 
13 Source ECB. 

2010 2012 2014 2016 2018 2020

Figure 5 – Average Yields Curves on the Euro area, dashed line for all bonds, and normal lines for AAA 

ranked ones.   
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best-ranked entities, can on average borrow at negative cost for very short 

maturities lately. 

 

 

2.3 Assets of interest 
 

Historically there has always been a sort of skepticism in financing through 

financial markets for European corporations, at least for the ones of south Europe. 

This underestimation of markets functionality for financing purposes, as seen in 

the previous Paragraph (2.1), seems to has progressively ended, or at least that 

direction has been taken. The increase in demand together with growth in the 

issuance of European corporate bonds made this market very more liquid during 

the last years. Since liquidity of an asset is an essential feature to make it a useful 

channel of market information (due to the informative content of prices), the 

recent history of European corporate bonds, enhanced modelling application 

possibilities.  

This last concept certainly drove the choice of corporate bond yields for the 

following analysis, however other important features have been considered during 

the sample selection. First of all, the role of financial institutions related to the 

subprime crisis makes the study of financial corporations’ networks very 

interesting from a risk management and regulatory policy perspective. 

Furthermore, due to counterparty relations and proper balance sheets 

interdependencies (funds and asset portfolios composition), financial corporations 

are likely to be more interrelated than NFCs, leaving more space for the studying 

of interrelation on an unconditional and dynamic level. To summarize, all these 

features together with the recent history of the corporate bonds markets in 

Europe, led to the choice of financial corporate bond yields for the construction 

of a network system object of analysis.  
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The central role and bind between government bonds, and economic and 

monetary policies, since 2015, made them an interesting possible channel of 

connectedness spread, and market structure reflection. Furthermore, treasury 

yields on a short-term basis are strongly but indirectly related to consumption, 

since they drive borrowing costs for families and companies (or are at least closer 

to short-term standard benchmarks rates of lending operations). In addition to 

this, as said, the growing role in financial markets of European corporate bonds 

identify them as a quite new papabile information vehicle.  

Since the current analysis aims to study interdependency in a dynamical and 

unconditional way, on the European markets, the choice of only a corporate bonds 

sample was not expected to reflect alone geographical together with idiosyncratic 

dynamics. That is why two main types of bonds, on the issuer side, have been 

chosen as objects of interest: corporate and government bonds.  

A further sub-selection of bonds typologies has been made, not in relation to the 

issuer, but to the maturity. In fact, the final complete dataset analyzed 

comprehend two different samples of government bonds: a short-term one and a 

long-term one. Leaving specification on the selected issuers and maturities for 

Chapter III, some main differences between short and long-term treasury yields 

are here worth to be mentioned since they drove the just exposed dataset structure 

choice: 

 

i. long-term treasury yields have a stronger rate risk component than short-

term ones, and that is interesting to be counted since reflects market 

operators’ expectations; 

ii. closely to (i), long-term rates reflect also inflation expectations, and so 

market sentiment about the future; 

iii. overnight rates are decided by central banks, and the relative closeness of 

short-term rates rather than long-term ones, make the formers to reflect 

more closely economic policy actions, while long-term yields may, as said, 

reflect expectations on those policies. 
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To sum up in what follows I built and analyzed the network structure of all these 

markets, and some interesting results will be shown. Simultaneously not only the 

quality of the estimated measures will be evaluated, but also differences and binds 

across the three samples network structures. 
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Chapter III. Data 
 

 

3.1 Dataset description 
 

As anticipated the current analysis has been carried on three datasets for 

European bonds’ yields. The samples differ by the maturity of the securities 

and/or the nature of the issuers. Specifically, they are structured as follows: 

 

i. 5-year corporate bonds; 

ii. 2-year government bonds; 

iii. 10-year government bonds. 

 

All data has been downloaded by the data provider Bloomberg on a daily 

frequency basis, and then converted on a weekly basis by an ad hoc constructed 

algorithm, choosing just the observations that occurred on Fridays (Bloomberg 

method). All the analyzed securities are denominated in Euro. 

Table 2 presents a summary of the thirteen corporations taken into account for 

the first dataset, with details about their complete denomination, country of 

origin, Bloomberg Ticker, and market capitalization. The firms have been chosen 

in order to express dependencies across Europe in the most homogeneous way. 

According to the dimension and economic structure of each country, the final 

dataset seems to represent well and proportionally all actors. 

Table 3 contains a list of ten countries, whit their respective 2018 GDP, and credit 

rating. The second and the third dataset include yields for government bonds 

issued by these countries for the maturities of 2 and 10 years. 
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Country Ticker Firm Name Market Cap. 

Germany      

  DB Deutsche Bank  17.68 

  CMZB Commerzbank  7.06 

France      

  SOCGEN Societè Generale 14.65 

Italy      

  ISP Intesa Sanpaolo 40.04 

  UCG UniCredit 19.34 

Spain      

  SANTAN Banco Santander 48.34 

  BBVA Banco Bilbao Vizcaya Argentaria 29.48 

Netherlands      

  RABOBK Rabobank - 

  ABNAMRO ABN Amro 8.05 

Austria      

  ERSTBK Erste Group Bank 11.50 

Denmark      

  NDASS Nordea Bank 28.44 

  DANBNK Danske Bank  12.58 

Portugal      

  BCP Banco Comercial Portugues 1.86 

 

Table 2 - Corporate bonds sample dataset (Market Cap. in € Billions). 

 

 

Country GDP Rating 

Austria 455 AA+ 

Belgium 542 AA- 

Finland 276 AA+ 

France 2,778 AA 

Germany 3,948 AAA 

Ireland 382 A+ 

Italy 2,084 BBB- 

Netherlands 913 AAA 

Portugal 240 BBB 

Spain 1,419 A- 

 

Table 3 - Country issuing bonds of the Government datasets (GDP in € Billions, as of 2019, Rating from 

Fitch Ratings). 
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3.2 Modelled time series  
 

The time series constructed for the current analysis range from 13 January 2006 

to 25 September 2020. Bond yields of all three samples are visibly correlated 

sharing common paths through time. Also, non-stationarity in mean seems to be 

a common feature among the time series of the three samples. 

Figures 6 through 8 below, show the time series used in estimation, plotted all 

together for each sample: 

 

 

Figure 6 - Corporate bond yields time series. 

 

 

Figure 7 - Government bonds (2Y) yields time series. 
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Figure 8 - Government bonds (10Y) yields time series. 

 

 

As can be easily noticed, a first difference in the behavior of the three datasets is 

that the corporate bond yields time series show higher variance. This latter 

concept was quite predictable since corporations for their nature are far more 

risky investment than governments-related securities. 

Another notable aspect is in the participation, on a sample level, to oscillation 

due to shocks during crisis periods. More precisely in the corporate bonds sample 

almost all-time series seem to have been heavily impacted during the 2008, 2010-

2012, and 2020 (Covid-19 spread) crises, regardless of their dimension or their 

rating. That it is not true for the government bonds time series, where Portugal, 

Ireland, Italy and Spain seem to have been the principal victims of the shocks 

during the crises. This latter phenomenon can quite easily appoint the instability 

of those countries, at least from market operators’ expectations perspective. 

Regarding this last point, it can also be noticed that the latest three main financial 

crises, had an important impact on the series of the corporate sample, while the 

two governments datasets seem to have responded in a neat manner only in the 

2010-2012 financial crisis.  
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The last fact worth mentioning is the closeness of the government bond yields 

time series, not only under a corporate vs treasury comparison view but also and 

mostly regarding the 2-year government bonds against the 10-year ones. For both 

samples, the closeness of the time series seems to break after 2008, but while the 

2-year sample, after 2014, has strongly returned to the initial behavior, the 10-

year one never recovered that feature. It substantially seems that at least on a 

European level, the uncertainty about the future has grown in magnitude and this 

has been reflected on market prices in volatility, since 2008. 

Leaving specifications on the utilized model for the next chapter, follows the 

presentation of the actual fitted time series for each sample (Figures 9 to 11). 

Those are the First Difference of the original series, recognized as non-stationary 

in mean and integrated of order 1. 

 

 

 

 

Figure 9 - Corporate Bond yields time series First Differences. 
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Figure 10 - Government bonds (2Y) yields time series First Differences. 

 

 

 

 

Figure 11 Government bonds (10Y) yield time series First Differences. 
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Chapter IV. Models 
 

 

4.1 Specification & fitted data 
 

As mentioned in 1.4.1 the current analysis is based on FEVD connectedness 

measures, applied in order to address, with a qualitative and quantitative 

approach, the interdependencies across European actors. 

The first step in order to do so has been the choice of an approximating model 

for the data.  

I fitted a Vector Autoregressive (VAR) model, of the following form: 

 

 
𝑟𝑡 = 𝜙0 + ∑ Φ𝑖𝑟𝑡−𝑖

𝑝

𝑖=1
+ 휀𝑡 

 
(4.1) 

 

where given k as the number of time series for each sample, 𝒓𝒕 is a k-dimensional 

multivariate time series, 𝝓𝟎 is a k-dimensional vector, 𝚽 is a k x k matrix, and 

{𝜺𝒕} is a sequence of serially uncorrelated random vectors with zero mean and 

covariance matrix Ʃ .  

Furthermore, the infinite Moving Average (MA) representation of the VAR model 

is of the form: 

 

 
𝑟𝑡 = ∑ A𝑖

∞

𝑖=0
휀𝑡−𝑖 

 
(4.2) 

 

Where the k x k coefficients matrices 𝐀𝒊 obey the recursion: 

 

 
A𝑖  =  ∑ Φ𝑗A𝑖−𝑗  

𝑝

𝑗=1
 (4.3) 
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Whit 𝐀𝟎 a k x k identity matrix and 𝐀𝒊 = 0 for 𝒊 < 0 . 

After a number of fitting attempts, the best structure has been identified in a 

VAR(1) model (Lag p=1). 

A second main point was to differ the estimation of a connectedness network 

representing interdependencies given the sample dataset, from the observation of 

how this network changed over time. More specifically to allow for time-varying 

connectedness. This last concept is essential and central for the current analysis 

and for the utility of the computed measures, allowing them to be effective 

indicators during business cycles and financial crises. Substantially, allowance for 

time-varying connectedness is allowance for time-varying parameters. The 

approach used to perform such estimation is the widespread use of a rolling 

window, setting margins on the estimation sample. So, in order to track real-time 

connectedness, I set a uniform one-sided estimation window w, sweeping through 

each dataset sample, and using just the most recent w  observations for the 

parameters estimation.  

At the end I selected a one-sided estimation window w  =100 weekly observations 

for each model fitting the data, although a robustness check has been made on 

more values of w (Appendix B.2). 

Another parameter to be settled in modelling the dataset, and worth of 

considerations, is the connectedness horizon H, so the step of the forecast derived 

from the approximating model, and on which to perform the Variance 

Decomposition.  

The considerations on this latter parameter, have to arise from the context, for 

example, in risk management applications one might choose a value of H related 

to risk measures. For instance, with daily data, a H=10 would be coherent with 

considerations for/alongside the 10-day Value-At-Risk (VaR) measure, required 

by the Basel agreement; likely to this, a portfolio management application would 

guide to a choice of H equal to the rebalancing period. For the current analysis 

an, H=2 (with weekly observations so equal to 14 days, so 10 trading days) has 
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been selected. This choice has been made according to the data obtained with a 

wide range of alternatives, but also according to the literature on similar analysis. 

There is anyway no robustness check to be done on this latter parameter, as for 

the just exposed meaning of it. However different results for multiple values of H 

are showed in Appendix B.2, together with a robustness check for the w width. 

To summarize the choices made in term of model class, structure and parameters 

for the final best fitting, where a VAR(1) approximating model, with a rolling 

window w =100 for the dynamic estimation and a horizon for the FEVD H =2. 

 

 

4.2 Estimation 
 

A mixture of standard and non-standard estimation techniques has been used for 

the parameters computation of the current analysis. Specifications on the use in 

relation to each model and sample are let for the next paragraph. 

Best Linear Unbiased Estimators (BLUE) have been obtained via Ordinary Least 

Square estimation (OLS), applied equation-by-equation. The OLS estimator is 

defined as follows: 

 

 
�̂� = ar g min

β
∑ (𝑦𝑡 − ∑ 𝛽𝑖

𝑖

𝑥𝑖𝑡)

2𝑇

𝑡=1

 

 

(4.4) 

 

For sake of notation transparency, the function to be minimized, so the residual 

sum of squares (RSS), will be from now on substituted with the “RSS” notation. 

So equivalently to (4.4) we have: 

  

�̂� = ar g min
β

 𝑅𝑆𝑆 

 

(4.5) 

 



39 

 

 

4.1.1 Elastic Net estimator 
 

In the following applications, as said, connectedness assessment has been based 

on an estimated VAR(p) approximating model. For compelling applications, there 

is the need for the VAR(p) to be estimable in high dimensions, somehow 

recovering degrees of freedom. This can so be done by pure shrinkage (Ridge 

regression) or pure selection (as with traditional criteria like Akaike information 

criterion, or LASSO regression), but blending shrinkage and selection, using the 

so-called Elastic Net methodology, proved particularly appealing. 

Recalling Ridge regression, the shrinkage procedure on parameters magnitude is 

achieved by the addition on the OLS equation, of a constraint on the square of 

the parameters vector. That is: 

 

 �̂� = ar g min
β

 𝑅𝑆𝑆 +  λ ∑ β𝑖
2

𝑖   (4.6) 

 

Where 𝛌 > 0 is a chosen parameter governing the shrinkage: greater the 𝛌, greater 

the penalty for having extra regressors in the model.  

For later explanations purposes, the same equation can be expressed with a 

penalty function minimizing the square of the ℓ2-Norm (‖𝑥‖2)14 of the vector 

parameter 𝜷: 

 

 �̂� = ar g min
β

 𝑅𝑆𝑆 +  λ‖𝛽‖2
2 (4.7) 

 

The Least Absolute Shrinkage and Selection Operator (LASSO) regression 

introduces a slight but important modification of the penalty function of the Ridge 

regressor. In fact, the penalty function of LASSO rather than being a quadratic 

 
14 ‖𝑥‖2 = √∑ 𝑥𝑘

2𝑛
𝑘=1  
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shows a kink at zero. This is achieved by the used of the ℓ1-Norm (‖𝑥‖1)15 in the 

penalty constraint: 

 

 �̂� = ar g min
β

 𝑅𝑆𝑆 +  λ‖𝛽‖1 (4.8) 

 

This modification implies that, unlike the Ridge setup, in LASSO some regression 

coefficients are set exactly at zero, and that, define the procedure of variable 

selection. This is a convenient feature, particularly when many potential 

regressors are considered, and that is the case of the data chosen as objects of 

interest for the presented analysis. 

The difference between Ridge and LASSO regressions can be easily noted by 

looking at Figure 1216, representing a simplified bi-dimensional space, with the 𝜷   

vector composed by just two parameters (𝜷𝟏 𝑎𝑛𝑑 𝜷𝟐). The colored area represents 

the Norm of the vector, and the red ellipses are the contours of the least square 

error function. It is clear how the error function is going to be minimized on a 

corner rather than on an edge of the coloured area related to the ℓ1-Norm, while 

 
15 ‖𝑥‖1 = ∑ |𝑥𝑘|𝑛

𝑘=1  
16 Source: Friedman J., Hastie T. & Tibshirani R. (2008); The Elements of Statistical Learning. 

Figure 12 - Estimation picture for the LASSO (left) and Ridge regression (right). The solid blue areas are 

the constraint regions ‖𝛽‖1 and ‖𝛽‖2
2 respectively, while the red ellipses are the contours of the least squares 

error function.  
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the circular area associated with the ℓ2-Norm, would meet the error function just 

in relation to its relative position. As can be seen in the Figure, the corners of the 

coloured area on the left, correspond to intersections between the shade and the 

axes, and there, one of the two parameters takes the value zero. 

The actual non-standard estimation technique used for current analysis is a 

refinement of both Ridge and LASSO regressions: the Elastic Net (NET) 

estimator. This latter substantially adds both types of constraints into the OLS 

equation: 

 

 �̂� = 𝑎𝑟 g min
β

 𝑅𝑆𝑆 +  𝜆1‖𝛽‖1 +  𝜆2‖𝛽‖2
2  (4.9) 

 

Since in this latter expression 𝝀𝟏 and 𝝀𝟐 reflects not only the size of the penalty 

of extra regressors in the model but also the different kind of the penalty given 

(shrinkage and selection), a different representation of the equation could help 

parameters selection:  

 

 �̂� = 𝑎𝑟 g min
β

 𝑅𝑆𝑆 +  𝜆( α  ‖𝛽‖1  +  (1 − α) ‖𝛽‖2
2 ) (4.10) 

 

Here 0 ≤ 𝛂 ≤ 1 is an additional penalty parameter to control the trade-off 

between the Ridge and LASSO penalty in the Elastic Net setting, while 𝝀 remains 

the only chosen parameter, governing the overall penalty weight. 

 

 

4.1.2 Cross-validation 
 

While the 𝛂 values for the following analysis have been chosen after iterations of 

model estimations, according to the best fit for the data, the 𝝀 level has been 

selected with the use of machine learning techniques. Specifically, cross-validation 

methods have been applied for the selection of the best value of 𝝀, for each model. 
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Cross-validation, or out-of-sample testing, is any of various similar model 

validation techniques for assessing how the results of a statistical analysis will 

generalize to an independent data set. One round of cross-validation involves 

partitioning a sample of data into complementary subsets, performing the analysis 

on one subset (called the training set), and validating the analysis on the other 

subset (called the validation set or testing set). To reduce variability, in most 

methods multiple rounds of cross-validation are performed using different 

partitions, and the validation results are averaged over the rounds to give an 

estimate of the model's predictive performance. 

In summary, cross-validation combines averages measures of fitness in prediction 

to derive a more accurate estimate of model prediction performance. 

For the following analysis, in order to account for time-dependence, cross-

validation has been conducted in a rolling manner. Defining time indices as: 

 

𝑇1 = ⌊
𝑇

3
⌋  and  𝑇2 = ⌊

2𝑇

3
⌋ 

 

The training period 𝑇1 + 1 through 𝑇2 has been used to select 𝝀, 𝑇2 + 1 through 

𝑇 has been used for the evaluation of forecast accuracy in a rolling manner. The 

process can be better visualized in the following Figure 1317. 

 

 

 

Figure 13 – Cross-validation data set slicing structure. 

 

The optimal 𝝀 has been chosen minimizing one-step ahead mean squared forecast 

error (MSFE) over the training period. 

 
17 Bien J., Nicholson W.B. & Matteson D.S. (2017); “VARX-L: Structured Regularization for 

Large Vector Autoregressions with Exogenous Variables”; International Journal of Forecasting. 
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4.3 Details on the applications 
 

As mentioned before the description of the connectedness frameworks has been 

carried on in a general way and in a historical one (time-varying parameters). 

Practically the measures computed for the analysis have been constructed on 

static basis (i.e. all data have been used for estimation), and in a dynamic way 

(utilization of the estimation window w).  

Furthermore, a mixture of the two approaches has been applied nearby the latest 

economic crises, in order to capture the most important movements at a pairwise 

level due to market shortfalls. Substantially for some frames in time, pre and 

during the actual crisis, a net pairwise connectedness table has been computed 

and compared, with singular link granularity, to the distributions of the same 

parameters computed on the latest 50 and 15 weeks. Each link has been then 

selected only if greater than the latest percentiles of the over mentioned 

distributions. Those links have been so categorized into three classes: 

 

i. greater than the 90th percentile; 

ii. greater than the 95th percentile; 

iii. greater than the 99th percentile. 

 

Each link class has been assigned with a weight and then the frames of 

connectedness frameworks have been shown in plots, as pre and during crises, in 

order to catch the dynamics of net pairwise connectedness. 

The choice of the estimations techniques has been driven by the quality of the 

results, and the coherency of the data. Elastic Net regression methods have been 

applied for the parameters estimations of the static models, while a standard OLS 

approach has been chosen for the dynamic estimations of the models. 

More technical details on the R programming techniques, applied in order to make 

the computations, and on the methods and library used for the graphic 

productions, are reported in the Appendix C. 



44 

 

Chapter V. Estimation results  
 

 

5.1 Static modelling 
 

This section presents the results obtained with a static estimation approach. The 

graphical and matrix representation of the FEVD-based connectedness measures 

are preceded by the sparsity plot of the estimated parameters for each model. 

This latter is a graphical matrix representation of the coefficients selection 

procedure made by the use of the Elastic Net techniques. The grid represents the 

coefficients matrix of the VAR(1). A blank (white) square indicates the absence 

of the corresponding coefficient, while a coloured square indicates its presence and 

the magnitude according to the colour scale (i.e. darker the square, greater in 

magnitude is the parameter). 

 

 

5.1.1 Corporate bonds  
 

Figure 14 shows that the estimation techniques reached a good degree of 

parsimony in the parameters’ selection and estimation procedure, maintaining a 

final model able to explicate a quite interesting network structure (as follows). A 

sort of magnitude cluster determines anyway the principal importance of some 

variables for themselves, on an auto-regression level.  

In Table 4 it can be seen the Connectedness Table obtained for the corporate 

bonds sample by the use of the entire available dataset (in terms of times series 

length). The actual situation shows that the diagonal elements (representing the 

own connectedness) tend to be the largest individual elements on the table. 

However, at a pairwise level, there is still high connectedness.  

 



45 

 

UniCredit Bank (UCG) results as the major influencer among the others. It is in 

fact the corporation having the highest score on the total to others connectedness 

section (red), that corresponds to the sum of the all off-diagonal elements in the 

UCG column. This influence is concentrated on some specific actors: ABN Amro 

bank (ABNAMRO), Intesa Sanpaolo (ISP), Nordea Bank (NDASS) and 

Santander (SANTAN). The above mentioned relations are actually the strongest 

connections at a pairwise level. Pairwise links are identifiable in the upper-left 

13x13 submatrix. Regarding UniCredit Bank’s influence towards Intesa Sanpaolo, 

the country effect seems to be the most reasonable source, but also the fact that 

these two banks have lately been the biggest rivals in the nearby markets. The 

connectedness to others, confirms the role of UCG as a major European player, 

influencing even the largest financial institution on the Euro-area market (i.e. 

Santander). Even the influences towards the other northern Europe based 

corporations can be explained knowing the spread presence of UniCredit Bank’s 

operations and branches on the German soil, identifying it as a competitor of 

north Europe based financial firms as well. 

The second main influencer on the table is Banco Comercial Portugues (BCP), 

which concentrates its connectedness towards major financial institutions as 

Intesa Sanpaolo, Santander and Deutsche Bank, despite its size compared to these 

Sparsity Pattern Generated by BigVAR

1

Figure 14 – Sparisity pattern of the Elastic Net VAR estimation, alpha=0.1, Corporate sample. 
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other companies. An explanation of this result can be given by the cross-Europe 

framework character of the bank (high dimension and spread on the Poland and 

Greek market, beyond Portugal and Spain). This, summed to the activity growth 

after the creation of Millennium group, may have led to a linkages’ proliferation 

with major players, despite the small dimension of BCP. A further source of 

connectedness could probably be the history of high instability of its own host 

country (Portugal), pointing out Banco Comercial Portugues as a possible weak 

ring of the European financial framework (worst credit rating of the sample), 

giving signals for general financial shortfalls. Another possible explanation is a 

spread of its own securities among the above mentioned major players investments 

funds (probably for the related high promised yields). 

On the same side of the table, can be seen that Deutsche Bank (DB) is the third 

major connectedness transmitter, not surprisingly given its dimension and the 

global scale of its operations. A possible source of connectedness transmission 

could be also related to the diffusion of scandals linked to derivatives speculation 

activities in the latest years. Such a generalized bucket of connectedness sources 

is actually translated in a quite homogeneous spread of links to other corporations 

  ABNAM RO BBVA BCP CMZB DANBNK DB ERSTBK ISP NDASS RABOBK SANTAN SOCGEN UCG From 

ABNAM RO 34.6 0.2 8.6 4.5 0.1 6.5 1.5 5.4 4.5 3.1 4.0 5.1 21.9 65.4 

BBVA 0.1 41.1 9.7 2.0 7.7 9.0 7.0 3.0 3.5 5.2 4.9 5.7 1.1 58.9 

BCP 2.9 3.3 47.5 5.2 0.4 11.2 1.4 6.9 2.6 1.6 5.7 3.7 7.7 52.5 

CMZB 2.6 1.0 8.1 49.2 0.8 3.8 4.5 6.2 2.8 2.6 5.0 3.4 9.9 50.8 

DANBNK 0.4 7.2 1.3 1.6 60.3 6.6 1.8 2.6 2.7 5.5 1.8 2.8 5.5 39.7 

DB 2.2 2.9 11.7 2.6 2.2 54.5 0.6 6.2 3.7 2.9 3.5 3.7 3.3 45.5 

ERSTBK 2.2 9.6 5.4 11.7 2.4 3.4 45.3 1.9 2.0 3.9 3.0 6.3 3.0 54.7 

ISP 2.4 0.9 8.9 4.5 0.0 6.2 0.4 44.7 2.1 0.6 7.1 3.6 18.6 55.3 

NDASS 4.5 3.3 7.5 5.2 2.4 10.3 1.4 5.2 24.6 11.2 5.2 6.3 12.8 75.4 

RABOBK 3.9 6.1 5.8 5.9 7.0 11.0 3.3 2.1 14.3 22.0 5.2 10.3 3.1 78.0 

SANTAN 2.6 2.9 10.9 5.5 0.2 6.4 1.3 10.8 3.3 2.7 31.5 5.6 16.2 68.5 

SOCGEN 4.1 4.3 8.1 4.9 2.1 8.0 3.5 6.8 5.1 6.6 6.9 31.5 8.0 68.5 

UCG 5.7 0.2 6.0 4.4 0.5 2.3 0.5 11.0 3.2 0.6 6.3 2.3 56.9 43.1 

To 33.4 41.9 92.2 58.1 25.8 84.8 27.3 68.1 49.8 46.5 58.4 58.9 111.1 58.2 

Net -32.0 -17.0 39.6 7.3 -13.9 39.3 -27.4 12.8 -25.6 -31.6 -10.0 -9.6 68.1   

Table 4 - Connectedness table, Corporate bonds sample. 
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(at a magnitude level), in contrast to the more specific influence direction of 

UniCredit Bank (less spread and more concentrated on single network nodes). 

Generally, the total to connectedness part of the table seems to be the more spread 

compared to the total from part, anyway considerations on its magnitudes must 

recall that the columns sum is not constrained to the addition to 100%. 

Looking at the receiving part of the table is worth mentioning that the average 

impact of external companies shocks on idiosyncratic forecast error variance 

contributes is on mean far more than 50%. A firm-by-firm valuation on the 

connectedness received from others can be done in a total directional perspective, 

looking at the blue part of the table, containing the sum of all the off-diagonal 

elements of each row.  

The bottom of the sample is touched by the Danish Danske Bank (DANBNK), 

with less than 40% of connectedness received from others. This dependency is 

quite homogeneously spread from the network actors, as well as its moderate to 

directional influence. Given the situation, Danske Bank can be identified as the 

most independent corporation in the analyzed network. This is not surprising, 

considering that it is the largest financial firm of a north European country, with 

a solid financial history and almost 55% of its total revenues coming from 

Denmark, and the remaining mostly from the rich and stable Sweden and Norway 

countries. Also, the composition of its operations is as much as 65% sourced by 

standard financial services like cash management, personal, business, corporate, 

and institutional banking services18. All these features identify Danske Bank as a 

solid and safe institution, partially explaining its relative independence.   

Two actors rise among all, on the receiving side of the table, although their from 

connectedness is widespread: Nordea Bank (NDASS) and RaboBank (RABOBK). 

These two actors are the most influenced by the others of the network, with a 

forecast error variance explained for more than 75% by other corporations’ shocks. 

The network links degree portions of these two banks are quite interesting to be 

 
18 Source Bloomberg data provider on security description 
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considered together. In fact, the to others connectedness sides are quite similar in 

spread among actors, and total value. Also, the biggest pairwise directional part 

(i.e. the from others connectedness side) is quite similar, having as main source 

of connectedness, the already mentioned major influencers (Deutsche Bank and 

UniCredit Bank), together with each other.  Being one for the other between the 

main sources of received connectedness sets these two corporations as twins in the 

networks, more than a sub-network. This because at a pairwise level, the final net 

connectedness set off itself. A first step in the results explanation process is 

obviously the mention of structural and geographical similarity of these two firms. 

Both are among the biggest in the sample (in market capitalization terms), with 

a very similar level of operations and revenues, and are established in rich 

northern European countries. A more specific argument for the explication of this 

situation can be found in the recent common financial history of these banks. 

Nordea Bank has seen a progressive decline in its net revenues and total loans 

since the middle of 2016, triggering a downsizing process. It is now well-capitalized 

(CET1 ratio of 17.1%) and on a path of recovery, and it suffered Covid-19 crisis 

less than other European actors, but in a crucial moment of its recovery process19. 

Rabobank reacted as well better than other European actors to the Covid-19 

crisis, also if its fundamentals may have been weakened by the crisis, due to its 

low diversification rate. The CET1 ratio of 16.6% is close to the Nordea Bank one 

and also this Oland institution comes from a 4-year decreasing path in net 

profits20. 

The green row in Table 4 shows the total net directional connectedness, obtained 

by the difference between the total directional connectedness from and to others. 

A first look at that row confirms the role of leading influencers for Deutsche Bank, 

UniCredit Bank and Banco Comercial Portugues, while the most influenced firms 

 
19 Phillip Richards, Mar’Yana Vartsaba (04/02/2021); Bloomberg Intelligence Data-driven 

research. 
20 Jeroen Julius (16/10/2020); Bloomberg Intelligence Data-driven research. 
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at a total net level, are again Nordea Bank, RaboBank, but even the Austrian 

Erste Bank (ERSTBK). 

Moving now to a pairwise level of the just mentioned net measures, it can be said 

that the net pairwise interconnections show a firm-by-firm idiosyncratic situation. 

Figure 15 represents the structure of these relations, for a better understanding 

of the network framework on a static estimation level. The direction of the arrows 

shows the net directional connectedness firm-by-firm; also the size of each arrow 

is directly proportional to the connectedness magnitude. Finally, the dimension 

of each node reflects the dimension of each corporation in terms of its market 

capitalization. 

The role of major influencers is confirmed again, and also on a net pairwise level, 

for UniCredit Bank, Banco Comercial Portugues, and Deutsche Bank. 

Among the main net receivers there are still Nordea Bank and RaboBank, 

together with Erste Bank and ABN Amro (ABNAMRO). The fact that all these 

net receivers are frugal21 countries-based firms, state that solid and rich economy-

 
21 The Frugal Four is the nickname of an informal cooperation among like-minded fiscally 

conservative European countries, including Austria, Denmark, the Netherlands and Sweden. It 

partly evolved as a successor of the New Hanseatic League that was set up to make up for the 

loss of the like-minded United Kingdom in the European political arena after Brexit. 
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Figure 15 - Corporate bond Network NET pairwise connectedness. 
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based corporations may do not impact competitors results in nearby countries, 

but they certainly suffer the influence of southern European-based financial firms. 

A last due comment on the connectedness table presented in Table 4, is related 

to the bottom-right pivot, coloured in orange: the total connectedness of the 

network. This shows a level of 58%, a large magnitude indeed, but not actually 

very high in a historical perspective. Further comments on the actual total 

connectedness level will be more appropriate after looking at the later presented 

historical path of that measure (i.e. dynamic modelling). However, as it will be 

shown, a total connectedness value of 58% is not coherent with a pre/during crisis 

level, i.e. it is – historically - usually higher, and the dynamic estimation carried 

on with a rolling window, shows an up to date level greater than 85%. This 

comparison indicates that, on an unconditional level of parameters estimation (as-

of the end of September 2020), interdependencies between financial firms that 

arose during the last crisis, have been for the most absorbed.  

This latter statement obviously does not take into consideration the very big 

movements and volatility on the markets, observed after the declaration of the 

discovery of a Covid-19 disease vaccine, by the Pfizer corporation, in December 

2020 (data not included in our sample). 

 

 

5.1.2 Two-year government bonds 

 

In Figure 16 the sparsity plot of the variable’ s selection procedure for the 

approximating model fitting the 2-year government bond is presented. It can be 

seen that the parameters selection gave back a quite sparse model, with the most 

detained coefficients in the first and last rows of the parameters matrix VAR(1). 
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Figure 16 - Sparisity pattern of the Elastic Net VAR estimation, alpha=0.1, 2Y Government sample. 

 

Table 5 below reports the connectedness table obtained with the use of the entire 

available dataset for the estimation process.  

As for the corporate sample the diagonal elements tend to be the larger on the 

table, with Portugal and Ireland as countries with the greater portion of forecast 

error variance explained just by their own dynamics (i.e. about 70% for both). 

Except for these two outliers, the 2-year government sample is less self-explained 

on a variable-by-variable level, than the corporate one: the average value of 

diagonal elements is 35.59%, against the 41.81% of the first sample. On the from 

Table 5 - Connectedness table, 2Y Government bonds sample. 

  PORTUGAL NETHERLANDS BELGIUM ITALY FRANCE GERM ANY SPAIN FINLAND AUSTRIA IRELAND From  

PORTUGAL 71.16 0.13 0.49 3.55 0.11 0.18 2.27 0.15 0.08 21.87 28.84 

NETHERLANDS 0.04 20.75 10.54 2.11 16.76 16.72 3.25 14.53 14.77 0.52 79.25 

BELGIUM 6.32 5.77 26.26 12.90 9.12 4.15 12.82 4.94 9.76 7.97 73.74 

ITALY 13.77 0.78 7.75 37.31 1.72 0.28 18.29 0.58 2.02 17.50 62.69 

FRANCE 0.29 13.88 13.79 4.10 21.85 12.86 6.02 11.89 15.04 0.28 78.15 

GERM ANY 0.61 17.84 8.06 0.63 16.57 22.38 1.72 16.55 14.19 1.44 77.62 

SPAIN 9.68 1.11 8.02 19.65 2.45 0.56 40.17 0.97 2.75 14.64 59.83 

FINLAND 0.28 15.44 9.57 1.62 15.27 16.49 3.05 24.00 13.54 0.75 76.00 

AUSTRIA 0.09 12.23 14.77 4.95 15.05 11.02 6.75 10.55 23.78 0.81 76.22 

IRELAND 22.03 0.11 1.16 4.52 0.10 0.15 3.43 0.11 0.13 68.27 31.73 

To 53.12 67.29 74.17 54.03 77.13 62.40 57.59 60.28 72.26 65.79 64.41 

Net 24.28 -11.96 0.43 -8.66 -1.02 -15.22 -2.24 -15.72 -3.96 34.06   

Sparsity Pattern Generated by BigVAR

1
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others directional connectedness side of the table, the magnitude of pairwise 

measures confirms a network structure’s feature noted before (corporate sample): 

the fact that northern Europe countries, or the ones with strong structured 

economies, tend to be more influenced in the network than the other governments. 

The mentioned ensemble includes here also France that, even if is not a country 

with a strictly north Europe economy formulation, is a major European player 

(second for GDP in the actual Euro area), with a solid credit rating.  

The structure of rich countries’ received connectedness, is not, as for the corporate 

sample, widely spread among the network’s actors, or mainly sourced by the south 

European countries, but is actually strongly “feed” by northern Europe countries 

themselves. It seems so, that on a short-term government level, frugal and leading 

economies tend to be the major influencers between themselves, and this 

phenomenon brings the dependencies to be settled off, being so for the most 

compensated in a net perspective. Anyway, the diagonal elements of their own 

connectedness are still low, so these economies are actually guided all together 

within the network movements, but the influences tend to do not be directed in 

a particular way. Between this set of countries, the only one partially excluded 

by the dynamic just presented is Belgium. In fact, this country is influenced 

mostly by Italy and Spain having the sum of directional connectedness from these 

countries almost as big as the portion of own connectedness. Belgium is the only 

north European country, together with Ireland, leaving a significant amount of 

directional connectedness to the states of the group described above, not settled 

off in a net perspective. While Belgium has the most spread significative pairwise 

connections, Portugal and Ireland detain the biggest links in magnitude in the 

upper left 10 x 10 submatrix, two of which between each other. 

On a pairwise level, Italy and Spain are the actors with the least spread 

connectedness from others. Specifically, Italy has been influenced mostly by 

Portugal, Spain and Ireland. Italy undergoes so by the influence of countries with 

the smallest and troubled economies among the actors chosen for the government 

sample. For Spain, the situation is the same, with Italy as its own counterparty 
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in a symmetrical way. The prospect obtained from the analysis is so that the 

smallest and more troubled economies in the network behave as triggers for the 

two more similar economies in terms of structure, dimension and financial health, 

among the southern Europe countries. Substantially the connectedness chain 

starts from the riskier governments, as an alert for the immediately less risky but 

unstable ones. 

On the to others connectedness side of the table total directional measures are 

quite homogeneously spread among the networks’ nodes. An exception is 

constituted by Belgium, France and Austria: the leading influencers with a little 

more connectedness directed to the others, than the average one in the network. 

As said before, the interdependencies among these actors are mostly concentrated 

within north Europe economies. A major link worth to be mentioned among the 

ones sourced by these three main influencers, is the one from France to Germany, 

with a magnitude as big as 16.57%.  

On the total net connectedness side of Table 5 it can be seen how the role of net 

influencers is confirmed for Ireland and Portugal, while all the other countries 

remain net receivers. Particularly sensitive to the Belgian influence, are the frugal 

economies. In the end, Belgium and France, remain almost neutral, having all 

their pairwise relations settled off on a system-wide level. 

Figure 17 shows the network structure of effective relations once accounted for 

from and to other influences, on a node-by-node approach: net pairwise 

interconnections. Glossing over the meaning of arrows size and direction already 

explained, the main difference from the previous graph worth of a description is 

that here nodes dimensions have been settled in proportion to the GDP of each 

country (instead of market capitalization, for obvious reasons).  

Looking at the Graph is straight forward to notice that the number of connections 

left on a pairwise level is still big as for the corporate bonds sample, however, the 
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current dataset shows a neater difference between the magnitude of connections. 

Pairwise influences are quite less spread, with a marked difference between a 

couple of strong ones, and the rest of the network’s edges. Substantially magnitude 

and directionality seem to be related to rating22 and economy dimension.    

All countries with a high credit score (more or equal AA-) compared to the others, 

are net connectedness receivers, regardless of the economy size (i.e. GDP amount). 

For what concerns countries with the worst rating among the others in the 

network, GDP size and credit score drive in synergy direction, and size of the 

pairwise net connections. In fact, between the four worst performers on a rating 

level, the two of them with a smaller economy (Portugal and Ireland) are net 

influencers for almost everyone, also detaining the biggest connections on the 

Graph (in magnitude terms). The other two badly ranked countries (Italy and 

Spain), with a low credit score but large economies, are net general influencers as 

well, but also co-protagonist of the biggest pairwise connections in the graph: the 

ones from Portugal and Ireland. The above presented relations comprehend also 

Belgium, with values really close to the sample median of both GDP and rating. 

This country is then configured as a net receiver, with mediumly strong pairwise 

 
22 Country Ratings sourced from Fitch Ratings Incorporated 
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Figure 17 – 2Y Government bond Network NET pairwise connectedness. 
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connections from others, and a couple of connections to others left after netting 

computations. 

So far, geographical components seem to do not be the major drivers for network 

interrelations, leaving the membership of the north Europe zone a marginal factor 

compared to rating and GDP (see Ireland associated with south economies and 

France to frugal ones). 

The last consideration has to be made on the total system-wide connectedness 

(bottom right orange element in Table 5), measuring 64.41%. This value tends to 

be in line with the average total connectedness through time, estimated with the 

rolling window approach. The magnitude is quite large compared to the one 

estimated for the corporate sample, identifying the short-term government 

network as more interconnected.  

 

 

5.1.3 Ten-year government bonds 

 

Figure 18 below shows as before the sparsity plot of the variables selection 

procedure for the approximating model, fitting the 10-year government bond 

yields. Among all the equations in the VAR(1) model, the first, third, seventh 
Sparsity Pattern Generated by BigVAR

1

Figure 18 - Sparisity pattern of the Elastic Net VAR estimation, alpha=0.1, 10Y Government sample. 
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and tenth are the ones with more selected parameters. Those not only have the 

highest number of coefficients, but also the ones with the biggest magnitude. 

Anyway, presence and value of parameters are quite homogenously spread (more 

than in the model estimated on the 2-year sample). 

In Table 6 I reported the connectedness of the measures obtained using the entire 

available dataset of 10-year treasury rates. 

 

  PORTUGAL NETHERLANDS BELGIUM ITALY FRANCE GERM ANY SPAIN FINLAND AUSTRIA IRELAND From  

PORTUGAL 71.48 0.28 1.87 5.46 0.82 0.20 5.74 0.35 0.67 13.13 28.52 

NETHERLANDS 0.38 17.79 11.54 3.16 14.46 15.55 3.37 16.09 14.63 3.03 82.21 

BELGIUM 4.47 8.79 20.41 8.73 11.45 7.17 8.78 9.28 12.25 8.66 79.59 

ITALY 10.55 2.53 9.19 33.94 5.34 1.14 19.59 2.37 4.28 11.06 66.06 

FRANCE 1.61 13.18 13.72 6.08 16.65 11.85 5.59 12.88 14.21 4.22 83.35 

GERM ANY 0.13 17.15 10.40 1.59 14.33 20.17 2.08 17.57 14.52 2.07 79.83 

SPAIN 10.46 2.53 8.81 18.81 4.61 1.40 35.63 2.45 4.58 10.72 64.37 

FINLAND 0.46 15.93 12.08 2.93 13.99 15.78 3.23 17.95 14.43 3.22 82.05 

AUSTRIA 1.29 13.18 14.47 4.80 14.03 11.88 5.46 13.13 17.45 4.30 82.55 

IRELAND 17.28 1.68 6.28 7.72 2.61 0.94 7.77 1.80 2.69 51.24 48.76 

To 46.63 75.25 88.37 59.27 81.64 65.91 61.60 75.92 82.26 60.43 69.73 

Net 18.11 -6.96 8.78 -6.78 -1.70 -13.92 -2.77 -6.13 -0.29 11.67  

 

Table 6 - Connectedness table, 10Y Government bonds sample. 

 

On this last sample, considerations about the diagonal differ from the previous 

system: its elements are no longer the biggest on the table, or at least that is not 

true for every element of this matrix. Although for every row the biggest element 

still being on the diagonal pivot, fractions of own connectedness are as little as 

about 17% somewhere. The values on the diagonal are quite spread in magnitude, 

ranging from 17% to 72%, but the average element is quite small in level (i.e. 

27.94% against the 35% and 41% of the previous samples). Given this outcome, 

the long-term sample can be defined as the more interrelated out of the three 

analyzed. 
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Looking at Table 6 from a perspective of connectedness received from others helps 

to notice that network’ s conformation here is very similar to the one of the short-

term system. In fact, the major connections are between northern European 

countries and major economies such as France and Germany. Quite strong links 

are notable also for Italy and Spain, in both directions. This latter conformation 

of connections, as explained before, tend to balance each link from net perspective, 

canceling directional relations between economies of northern Europe (but leaving 

a gathering of sensibility on system’s changes for these ensembles). Belgium here 

confirms its role of cross-geographical influencer, having a widely spread bucket 

of significant connections to others. It is receiving quite an amount of 

connectedness as well, but primarily from rich and solid countries. 

An analysis of the directional connectedness to others brings at the same 

conclusions, as for the from perspective: close similarity with the short-term bonds 

network. So again, there is a gathering of connections between north Europe-

based economies, furthermore, Portugal and Ireland are the effective leaders in 

pairwise connectedness, with a concrete net effect. These latter two countries 

differ a little from the previous sample, in forecast error variance explained. The 

spread of connectedness to others is wider for both countries. On a links’ 

magnitude level Portugal is less influencing, remaining with almost the same 

diagonal element, while Ireland has less own connectedness and larger directional 

links.  

A node worth mentioning, in terms of total to pairwise connectedness, is Finland, 

which, compared to the short-term network, has a role of influencer more 

important. This, for the most, thanks to the growth in the relevance of 

connectedness transmitted to Belgium. 

Substantially the major differences between the connectedness table of long-term 

and short-term bond yields, are at a total net connectedness level. Although none 

of the actors in the system shows differences in the signs of the total net 

connectedness, the magnitude of these relations differs quite a lot for almost half 

of the network nodes. Finland is a net receiver on the long-term sample as in the 
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previous network, but the value of its total net connections differs by almost 65% 

compared to its short-term value. The main differences for Finland are in the 

already mentioned influence towards Belgium, and in a positive delta in the 

portion of own variance explained by itself. Ireland as well, in the long-term 

network seems to have a different role: its total net connectedness is almost 70% 

smaller than in the short-term sample. This is due mostly to the big negative 

difference in the influence versus Portugal, Italy and Spain (its major-related 

nodes on the short-term network), and by an increase in its own connectedness. 

Major differences between the two samples can be found again for Belgium 

together with Austria. The former in the short term is a total net neutral node, 

the latter instead is neutral in the long-term network. For both countries, major 

deltas can be found in their own connectedness (decreased of about 25% in the 

long-term sample compared to the short term one), and, for Belgium, in a 

substantial increase in the connectedness transmitted to Ireland. However, the 

role of Austria is still marginal in both samples. 

Moving again to a more granular analysis on a pairwise net directional 

connectedness level, Figure 19 below, shows the relations between countries with 

PORTUGAL

NETHERLANDS

BELGIUM

ITALY

FRANCE

GERMANY
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FINLAND

AUSTRIA

IRELAND

Gov.Bonds - 10Y

Figure 19 - 10Y Government bond Network NET pairwise connectedness. 
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the same graphic representative logic of before. Net pairwise relations are quite 

lighter than in the short-term network. The relation noted between credit rating 

and economy dimension, with direction and magnitude of net pairwise linkages 

seems to be valid on the current network as well. This association seems to be 

more elastic in the 10-year yields system. In fact, Portugal, the smallest economy 

and almost the worst ranked country, remains an influencer (the only one in a 

neat way), while Ireland, which is a little bigger in GDP terms and better ranked, 

is still as well a general influencer but without important net pairwise connections. 

On the same side, Italy, bigger than Spain in GDP terms, is here as well quite 

strongly influenced by Portugal and now also by Spain (on the short-term sample 

was the opposite), standing as a general receiver and sender of connectedness at 

the same time (with obviously pairwise differences). Spain, that in the short-term 

network was in the situation of Italy, here is quite strongly influenced by Portugal 

(and slightly by Ireland) but remains a general net influencer among the network 

actors. 

On a non-granular level, a comment on the total connectedness of the system is 

due. This latter dataset shows the greatest level of total connectedness out of the 

three samples: it is almost 70%. In a comparative perspective this connectedness 

measure is in line with the results obtained via dynamic estimation, but in 

magnitude, is slightly less than the average value computed through time.  

 

 

5.1.4 Comparative analysis 

 

Given the large number of bonds and countries included in the samples, there is 

always a high degree of connectedness for the full networks. As will be shown 

below, there is always a high degree of connectedness (i.e. at least 50%), even 

during low volatility periods. For the corporate sample, as the institutions 

included in the current analysis are all operating in the finance industry, both 
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industrywide and macroeconomic shocks, affect each one of their bonds. On the 

other side, for the government sample, mainly macroeconomic shocks, should lead 

network structural changes.  

Since some of the considered firms and their bonds are more vulnerable to external 

and/or industry-wide shocks than others, they are likely to be transmitting these 

shocks to other financial firms, generating as shown a higher degree of 

connectedness at a pairwise net level. Other markets are not subject to common 

shocks as frequently as the finance industry ones, so idiosyncratic disturbances 

are more likely to be transmitted to other firms in those latter markets. For that 

reason, compared to a similar number of bonds from different industries, the 

connectedness of a group of bond yields in the finance industry is likely to be 

higher. 

A noticeable general relation that arose after the analysis of all three samples, is 

that, so far, the greater is the total connectedness of the sample, the smaller is 

the magnitude of single net pairwise relations. This result could be caused by the 

fact that some external factors, generated from entities not included in the 

network, tend to heavily affect all the actors. In fact, despite, for example, the 

poor strength of pairwise net links in the last sample analyzed, gross single 

pairwise measures on the table are quite strong and directed, but simply 

reciprocally settled off in a net perspective. External macroeconomics shocks 

actually generate shortfall impacts on the European countries despite their specific 

economic health, a pretty obvious argument since they are in a monetary union, 

sharing policies and big portions of budget expenses. On the other side, for 

example, corporations are more affected by idiosyncratic dependencies, remaining 

heavily connected on a system-wide level, but with interdependencies structures 

defined more peculiarly, on a firm-by-firm level. This last concept can explain 

how the corporate sample, having the least total connectedness value, is the one 

with more marked net pairwise connections. 

A relation common to all three samples is the fact that instability and or a weak 

structure, label an actor as a net influencer in the network. Recalling for example 
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the role of Portugal and Ireland in the government sample, credit rating 

components, rather than the geographical ones, seem to play as major drivers for 

connectedness channels, letting the shocks in the more unstable and fragile 

countries (i.e. bad credit raking and small economies) to be heavily transmitted 

versus the immediately less fragile states in the networks (e.g. Spain and Italy).  

For the corporate bonds network, this dynamic is a little different. At a net 

pairwise level, institutions with a bad credit score indeed have the role of 

influencers, but there is not the “middle step” in connectedness, which can be seen 

in the government samples. So, if in the last two samples, small and troubled 

economies directly and heavily influence the slightly healthier ones, and then both 

categories influence the rest of the network, in the corporate system major 

pairwise net connections are directly from the “worst” to the “best” node. An 

example of this dynamic is UniCredit Bank being an important net transmitter 

towards AbnAmro Bank, Nordea Bank, and Santander, as well as Deutsche Bank, 

influencing Rabobank, Danske Bank and Nordea Bank again. 

In a market shortfall, small and troubled institutions are of course the first likely 

to finish in the need of a bailout, and the second repercussions are likely to be on 

the safer entities, not that much safer and/or profitable to stay out of the cyclone 

of the crisis. 

Behind this behavior of network links, there are dynamics that reflect fear spread, 

and conjunctural patterns proper of crises. There is so some kind of progressivity 

in the spread of connectedness associated whit the government sample. A domino 

falls on each country at a European level is less likely to happen, or at least is 

going to happen more progressively than for the corporate financial industry. In 

fact, the “best” countries in the government sample (the more solid ones and with 

a good credit score) remain even heavily correlated, but with a weak pairwise net 

component. This reflects codependency of financial markets and European Union 

countries, and a framework outlining a “trigger mechanism” for the shortfall 

effects, like if connectedness has some stages: passing through directly connected 

firms (bad or medium ranked ones), arriving then even to the more isolated (well 
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ranked). The obvious instability of corporations, compared to governs, makes this 

trigger mechanism work in a more “tragical” way for the first sample, letting bad 

ranked institutions, even if with a small/medium size, to directly influence the 

healthier corporations (e.g. Banco Comercial Portugues on Nordea Bank). 

A last comparison between the two government bonds samples will now omit the 

single specific differences outlined in the previous paragraph. Generally, the long-

term network is more interconnected than the short-term one, with significative 

negative deltas on the diagonal elements. As said before there are not noticeable 

swaps of roles between nodes of the two networks, that have so mainly the same 

structure.  

In line with what noticed at the beginning of this paragraph, the greater total 

connectedness of the long-term sample is translated into poorer pairwise net 

relations. Due to the uncertainty about the future, the long-term bonds network 

is so more connected, and this concept could be interpreted in a similar way as 

for the reason why, in common times, treasury yield curves have a positive slope. 

Anyway, probably for the same reasons, idiosyncratic relations are less strong in 

the long-term, than in the short one, leaving the former being less useful as a risk 

management or regulatory policy tool. 

 

 

5.2 Dynamic modelling 
 

This section contains the results obtained using a dynamic estimation approach, 

based on a rolling window. The results will be presented on a total network level, 

together with a firm-by-firm (and country-by-country) representation of each 

measure. Details on models and estimation procedures not already mentioned in 

Chapter 4, are let for the quantitative and instrumental Appendix (A and C), 

while further graphical representations are reported in Appendix B. 
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5.2.1 Corporate bonds  
 

Figure 20 below shows the dynamic estimation of the network’s total 

connectedness through time, for the corporate bond sample. Given the use of a 

rolling window of 100 weekly observations, there is a cut in the data available, so 

the older historical measure of connectedness has been computed only as-of the 

beginning of 2008. 

Given the partial lack of measures, the analysis of the subprime crisis must be 

limited in considerations. The first value of total connectedness computed refers 

to a date when some of the first milestones of the crisis have already occurred. 

First losses by US banks, related alarms (New Century bank reports), and the 

beginning of broad shortfalls across US markets have already been occurred, at 

the beginning of 2008. Anyway, a major event can be read: the Lehman Brothers 

crack. This event had an impact on European connectedness, not in a major way, 

but bringing the total connectedness of the system to rise by 7% in a couple of 

weeks between September and October 2008. Reading the 2007-2009 crisis from a 

more macro perspective, it is worth mentioning that the average level of 
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Figure 20 – Total Connectedness through time via dynamic estimation, w=100, h=2, Corporate Bonds 

sample. 
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connectedness in the corporate bonds network was quite high (i.e. 69%), but with 

a large variance as well (ranging from 65% to 73%). Indeed, the level of 

connectedness observed is on average not very distant from what has been 

computed for later times, and the lack of data for 2006 and 2007, leaves very little 

space for the interpretations on the connectedness variation related to the 

subprime crisis. The current analysis will so skip further considerations until the 

final and comparative section. 

After the stocks market rebound of February 2009, occurred on European and 

global markets, the total connectedness has progressively declined without major 

stops until the beginning of 2011. 

The European sovereign debt crisis, which began in 2010, and is actually not yet 

completely solved, brought the total connectedness of the corporate system to 

variate the most compared to all the periods analyzed, except only for the 

Coronavirus crisis. In October 2009 Greece’s Prime Minister declared that the 

balance sheets sent by the previous Greek governments to the European Union 

had been falsified with the aim of guaranteeing Greece's entry into the Eurozone, 

the deficit / GDP ratio raised from 3.7% to 12.7% giving start to the events chain 

triggering the European sovereign debt crisis. Between this month and the first 

weeks of 2012, the total connectedness ranged from a minimum of 52% to a 

maximum of 73%. The path followed by the measure takes the shape of a “J”, 

with an initial fall of the total connectedness and then a rapid steep increase until 

the maximum point where it fluctuated for some years. Following the measure 

during the milestones of the crisis, can be noted how the declaration of the Greek 

government, did not cause a change in the trend of total connectedness, and 

neither a neat increase nor a decrease of its evolution rate. The total 

connectedness of the network has been still declining touching its all-time bottom, 

until the end of March 2011. Then the system interrelation measure started a 

steep path of growth after the events of April 2011. In this latter period Portugal 

joined Ireland in the request of financial aids from the European Union and the 

International Monetary Fund. Furthermore, in the meantime, Standard & Poor’s 
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changed its outlook about Italy from “stable” to “negative”. Since then, the total 

connectedness of the corporate network has been increasing at a high rate for 

almost three months, going from 52% to 64%, and stabilizing then at the latter 

level until the end of the year. What seems to have been a second triggering event 

then is the “rating cut season” of October 2011. Credit score downgrades of even 

two notches, which have already happened for Ireland and Portugal, hit Spain 

and Italy as well. All major rating agencies took these decisions, beginning also 

to publicly consider downgrades and outlook changes for the best ranked 

European countries (e.g. France warning by Moody’s on its AAA rating outlook 

from “stable” to “negative”). These events started another period of steep growth 

in the total connectedness measure that at the end of January 2012 reached a 

level of 73%.  

Moving to a more granular level, Figure 21 below, shows the evolution of net 

pairwise connectedness through time, before and after decisive moments of the 

sovereign debt crisis. Only links greater in magnitude than the final percentiles of 

the connections computed over the last 50 periods have been selected. The big 

blue arrows represent connections greater than the 99th percentile, the medium 

size black ones are greater than the 95th, and the thin red arrows are the ones 

greater than the 90th percentile. The same representation has been made also 

referring to a window more up to date (dynamically speaking), selecting links over 

the distribution of the ones computed over the last 15 periods (Figure 22). Both 

graphs show the same connectedness directionality and concentration on 

milestone events. In September 2009 before the Greek’ Prime Minister declaration, 

just a few links passed the selection procedure. In May 2011, after the first brutal 

change of path and evolution rate in total connectedness, probably due to 

Portugal and Ireland crisis consolidation, and the first round of important rating 

downgrades, the linkages were more and greater in magnitude. At the begin of 

May 2012, after the Fiscal Compact treaty constitution, the system reached a 

high level of total connectedness, and high pairwise relations proliferated giving  
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Figure 21 – Corporate Network pairwise links greater than the 99th (blue) 95th (black) and 90th (red) percentile 

over the ones computed on the last 50 periods. 

Figure 22 – Corporate Network pairwise links greater than the 99th (blue) 95th (black) and 90th (red) percentile 

over the ones computed on the last 15 periods. 

ABNAMRO

BBVA

BCP

CMZB

DANBNK

DB

ERSTBKISP

NDASS

RABOBK

SANTAN

SOCGEN

UCG

09 / 2009

ABNAMRO

BBVA

BCP

CMZB

DANBNK

DB

ERSTBKISP

NDASS

RABOBK

SANTAN

SOCGEN

UCG

05 / 2011

ABNAMRO

BBVA

BCP

CMZB

DANBNK

DB

ERSTBKISP

NDASS

RABOBK

SANTAN

SOCGEN

UCG

05 / 2012

ABNAMRO

BBVA

BCP

CMZB

DANBNK

DB

ERSTBKISP

NDASS

RABOBK

SANTAN

SOCGEN

UCG

08 / 2012

ABNAMRO

BBVA

BCP

CMZB

DANBNK

DB

ERSTBKISP

NDASS

RABOBK

SANTAN

SOCGEN

UCG

09 / 2009

ABNAMRO

BBVA

BCP

CMZB

DANBNK

DB

ERSTBKISP

NDASS

RABOBK

SANTAN

SOCGEN

UCG

05 / 2011

ABNAMRO

BBVA

BCP

CMZB

DANBNK

DB

ERSTBKISP

NDASS

RABOBK

SANTAN

SOCGEN

UCG

05 / 2012

ABNAMRO

BBVA

BCP

CMZB

DANBNK

DB

ERSTBKISP

NDASS

RABOBK

SANTAN

SOCGEN

UCG

08 / 2012



67 

 

                                                                                                                                  

UniCredit Bank a central role as European influencer among the others. The last 

network graph shows the situation immediately after Mario Draghi (European 

Central Bank governor) “Whatever it takes” famous speech, on ECB intentions of 

defending Euro currency at all costs. There, major linkages across the network 

have been decreased in magnitude, with UniCredit Bank remaining as a major 

leader in connectedness transmitted to other actors. This behavior suggests that 

the financial European framework reacts on a polarized basis under uncertainty 

and crises-related shock dissipations, condensing the majority of connectedness 

spread into few powerful channels (firms). 

Following the escalation of 2011, the total connectedness of the system remained 

then oscillating around 70% for almost 2 years, until the beginning of 2014. After 

reaching a sort of “stability in connectedness”, in 2012, corporate bonds network’s 

total connectedness remained still for quite a long, with a high degree of 

interdependency. Historically speaking, the second semester of 2012, signed the 

start of a sort of cyclical path for total connectedness. The interdependency 

measure in fact, from the half of 2012 and the end of 2019 shows three longer 

periods of high connectedness, with oscillation around mean values as high as 

70%, and two shorter periods of lower connectedness, with oscillation around 

mean values of 63%. 

The spread of Coronavirus around the globe from China hit Europe as the first 

continent in term of disease spread and number of deaths. This brought each 

country to progressively apply national lockdowns in the wake of Italy: the first 

country to directly suffer consequences in terms of intensive care saturation and 

number of deaths associated with the disease. An immediate crisis hit all markets 

in a very short term, concretizing expectations of the biggest real crisis after the 

depression followed by the second World War.  

Coming from two years of quite high total connectedness (oscillation around a 

mean value of 68%), the beginning of 2020 saw the above mentioned measure 

rising from 67% to 82% in a couple of weeks, in line with the broad and spread 
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markets shortfalls on a global scale. This rise hit an all-time record (in reference 

to the period here considered) on absolute level (magnitude), but even at an 

evolution rate level (15% more in three weeks). The system’s total connectedness 

remained around 80% since the beginning of the crisis. The last date on the sample 

analyzed was not comprehensive of the day of declaration about the discovery of 

a vaccine for the Covid-19 disease. The sparsity of clues about the time left for 

the development of a cure, and the proliferation of new disease variants left 

markets in a situation of high uncertainty. So a high level of total connectedness 

in financial firms seems coherent, given the dimension of the actors in the sample 

and the fundamental role of financial institutions in the economy. This last global 

crisis, as opposed to the subprime one and to the sovereign debt one, is a real 

crisis and not a financial one. Despite the source of the crisis, contamination and 

cross-implications are always spread among sectors and operators, but it is evident 

how the network reacted in a different way to the Covid-19 crisis, compared to 

2010. The “response” of the measure has been quicker and steeper in rising without 

intermediate progressive steps. As will be shown, also the polarization of 

connectedness channels has been quicker for this last crisis. 

Beyond considerations on the total grade of interrelation, a net pairwise evolution 

analysis has been carried on and presented in Figure 23. Here the network frames 

have been taken on moments closer to each other: the first week of February and 

the third of March 2020. These two kinds of connections selection procedures did 

not really differ in results. Global shortfalls on a stock markets level have been 

occurred from the second week of February, bringing major stock indexes like 

STOXX 50, STOXX 600 and S&P500 to lose capitalization by more than 30% in 

just two weeks. In the Graph can be noted how connections on a corporate level 

were quite poor in magnitude, while immediately after the crisis started, they 

have been increased. It is clear how Detusche Bank had the role of European 

influencer among the others, with very similar dynamics occurred for UniCredit 

Bank in the sovereign debt crisis. Despite the fact that the first country to be in 
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need of a national lockdown was Italy, the graph shows how the interrelations 

have evolved from a European perspective, with a poor geographical component. 

The German bank was in fact leader in influencing even before the crisis, so likely 

to be the main channel of transmission after the market shortfall as well. 

While detailed graphs on the dynamic evolution of total pairwise connectedness 

(firm-by-firm) are left for Appendix B, differences in these relations can be seen 

in Figures 24-25. There, the evolutions of from and to degree distributions are 

plotted. While by construction the mean value of both lines is the same, and equal 

to the total connectedness measure, big differences can be noted on a distribution 

level. First of all, variation in the to connectedness is much greater than in the 

other one. It can also be noted that while the from connectedness distribution 

tend to be right-skewed, the to measure is strongly left-skewed. Temporal changes 

in the dispersion and skewness of the to and from connectedness also contain 

useful information. For example, it appears that to connectedness gets not only 

more dispersed but also right-skewed with a very long right tail during crises, 

while simultaneously from connectedness lose skewness. That is, during crisis  

Figure 23 - Corporate Network pairwise links greater than the 99th (blue) 95th (black) and 90th (red) percentile 

over the ones computed on the last 50 (beige background) and 15 periods (white background). 
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times relatively more than non-crisis times, there are few firms transmitting very 

much, while on the receiving side all actors tend to be nearer to the mean value. 

This situation can be further translated in a really interconnected network, driven 

by crucial firms at crucial times; those are the distressed firms potentially poised 

to wreak havoc on the system. This is a confirmation of what noticed from the 

net pairwise network frames shown before (Figure 21-23), e.g. UniCredit Bank 

during the sovereign debt crisis, and Deutsche Bank during the Covid-19 one. 

Figure 24 - Rolling Distribution of Total Directional Connectedness from others, together with the min-

max range (blue band), interquartile range (red band) and mean (black line). 

Figure 25 - Rolling Distribution of Total Directional Connectedness to others, together with the min-max 

range (blue band), interquartile range (red band) and mean (black line). 
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Financial crises bring stock markets to have shortfalls in capitalization and, 

historically, economic shocks tend to be more often negative than positive. In fact, 

innovation disruptions occur in a maybe rapid, but more progressively way than 

crises and even effective economics policy take time to show positive results on a 

stock market level. So positive influence on markets like these, even if large in 

magnitude of the effects, cannot be labeled as shocks. Since connectedness 

variation, modify the amount and the rate at which shocks spread, a lookout on 

the relation between the measure presented and the historical behavior of markets 

is due. The analysis carried on so far, suggest that this relation is inverse, i.e. 

when connectedness rise we are facing crisis times and so shortfall in markets 

capitalization. Figure 26, plotting rolling estimations of total connectedness, 

together with historical prices of a main European stock index (STOXX 600), 

confirms this dynamic, that even if is not neat and perfectly correlated, exist. 

Unfortunately, proportions of respective changes are not constant, so even if it 

seems to be an inverse relation, the explanatory power of the connectedness 

measure is limited for modelling purposes. 

Final considerations on the corporate network arise so from the evidence of the 

fact that connectedness between financial institutions rises during crisis periods, 

40

60

80

100

150

200

250

300

350

400

450

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Time

T
o

t.
C

o
n

n
(%

) S
T
O
X
X
6
0
0
(€
)

Legend STOXX600 TOT.Conn

Total Connectedness - STOXX600

Figure 26 – Dynamic Total Connectedness of the Corporate sample together with historical prices of the 

STOXX 600 index (right scale). 



72 

 

and its polarization increase as well. Every actor in the system tend so to absorb 

shocks of a bunch of main influencers transmitting the financial effects of crises 

to everyone in the system. 

 

 

5.2.2 Two-year government bonds 

 

Figure 27 below, shows the dynamic estimation of the network’s total 

connectedness through time, for the short-term rates of the government bonds 

sample. A first look at the historical evolution of this measure, immediately recalls 

the path of the corporate sample. In fact, almost all big changes in connectedness 

have the same direction for both networks. This confirms that bond yields 

networks grow in connectedness during crisis times.  

Despite similarities in the dynamic of the rolling total connectedness of the two 

samples, some differences are worth to be mentioned. The first one can be seen in 

the magnitude of changes, that for short-term treasury yields measures seem to 

be smaller. In fact, even if connectedness changes during crises arise in a non 
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Figure 27 - Total Connectedness through time via dynamic estimation, w=100, h=2, Government Bonds 

sample (2-year rates). 
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smoother way whit respect to the corporate network, their percentage values are 

quite smaller than the ones of the first sample analyzed. 

Another big difference whit respect to the corporate sample is in the value of 

connectedness during and after the subprime crisis. The short-term network comes 

from the already began 2007-2009 crisis, with an all-time high level of 

interrelation: 88%. Even if then the pattern followed the evolution already exposed 

of the corporate network, the first sample analyzed did not have a so high value 

of connectedness during the subprime crisis. Connectedness variation and 

increments steepness should be taken into consideration in order to evaluate the 

proper dynamic of the crisis effects related to the European treasury bonds, and 

the presented time range has not enough data to analyze them. Anyway, the fact 

that the two samples shared a common path and oscillation around the more or 

less same levels, after 2010, points out that the subprime crisis had for sure hit in 

different manners the two samples. To summarize deep considerations on the 

2007-2009 crisis, have again to be limited because of the lack of data, but it is 

anyway clear how the impact of the subprime crisis has been really strong on a 

short-term government level, compared to a corporate one. 

A third main difference in the path of total connectedness so far exposed, with 

the corporate sample interrelation, is in the behavior of the measure during the 

2018-2019 period. The main events of economic relevance happened during those 

years, regard U.S. commercial tariffs. In January 2018, the presidency of Donald 

Trump imposed tariffs on solar panels and washing machines of 30% to 50%, as 

part of his "America First" economic policy. In March 2018 he imposed tariffs on 

steel (25%) and aluminum (10%) from most countries which, according to Morgan 

Stanley, covered an estimated 4.1% of U.S. imports. In June 2018 this was 

extended to the European Union, together with Canada, and Mexico. The tariffs 

angered trading partners, who implemented retaliatory tariffs on U.S. goods, 

giving start to a global scale trade war with United States and China as 

protagonists. In order to understand the magnitude of these happenings, it would 
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be useful to consider an analysis of May 2019, conducted by CNBC23 , that found 

that Trump's tariffs were equivalent to one of the largest tax increases in the U.S. 

in decades.  

Jean-Claude Juncker, the president of the European Commission, condemned U.S. 

steel and aluminum tariffs. The European Union filed the WTO challenge against 

the United States in June, once the tariffs took effect. European Union retaliatory 

tariffs took effect in June 2018, imposing tariffs on 180 types of products, over $3 

billion of U.S. goods. Affected products included steel and aluminum, agricultural 

goods, clothing, washing machines, cosmetics, airplanes and boats. Additional 

tariffs were imposed in October 2019. The European Union’s deepest concerns 

about Global trade trend were for the high tariffs on imports of cars and car’s 

parts where the EU’s exports to the United States were €50 billion, versus €6.4 

billion of steel and aluminum trade24 (in 2018), where there is no global 

overcapacity, and where EU companies had invested heavily in the United States. 

The stress scenario derived from the trade war has been reflected on total 

connectedness in different manners across the networks. In the corporate sample, 

in fact, the 2018-2019 period was characterized by a high level of connectedness, 

coming from a decreasing period started at the end of 2016. The short-term 

government sample instead, started the same path of connectedness decreasing in 

2016, but suffered the trade war only when its effects concretized, so at the begin 

of 2019, with a lagged upturn in connectedness. 

A last notable feature of the rolling total connectedness for short-term treasury 

yields is the steep fall that happened at the end of 2013. The same change 

happened for the corporate sample, but with a six-month lag, and with a relative 

magnitude not so large, compared to the one of this second network. 

 

 
23 Liesman, Steve (May 16, 2019). "Trump's tariffs are equivalent to one of the largest tax 

increases in decades"; CNBC. 
24 Chase P., Mukai Y. & Sparding P. (2018); “Consequences of US trade policy on EU-US trade 

relations and the global trading system”; Paper requested by the European Parliament's 

Committee on International Trade. 
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Figures 28-29 below, show as before, net pairwise connectedness evolution through 

time. As before, the connections selection has been made related to the 

distributions over two periods, a longer one, and a shorter one (last 50 and 15 

computations). Again, the results obtained with the two different windows 

confirm the same dynamic, with differences in magnitude and number of relations, 

due to the sparsity induced by the different buckets for the selection procedure. 

As just said, the total connectedness of the short-term treasury yields sample, was 

higher than the corporate one, after and during the subprime crisis. At the end of 

2009, it has just started its decreasing path “following” the corporate 

connectedness, remaining anyway at a level as high as 84%. This is reflected by 

the first frame of pairwise connections, dense of strong directed relations. Most of 

those were directed toward Ireland, and from both, middle and big size countries 

(in GDP terms), and AAA and AA ranked states. The over mentioned situations 

Figure 28 – Government Bond (2Y) Network pairwise links greater than the 99th (blue) 95th (black) and 90th 

(red) percentile over the ones computed on the last 50 periods. 
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reflects an interesting behavior of connectedness. The period between the begin 

of 2009, and the first month of 2011 was characterized by high but also, rapidly 

decreasing total connectedness. The analysis carried on so far has established that 

connectedness among bond yields tend to increase during crisis periods, polarizing 

as well at a source level, giving troubled institutions the role of influencers towards 

all the other actors. It seems now that on periods of decreasing connectedness and 

recovery of markets capitalization, the polarizing phenomena takes a reverse 

structure, with small and more fragile entities influenced by the ones with opposite 

features. 

After the rating cut season beginning, anyway, the total connectedness started to 

increase again, showing the “standard” dynamic of connections proliferation and 

directionality consolidation from troubled countries to stronger ones. In May 2011 

Ireland and Portugal took the role of main network influencers, with Belgium 

Italy and Spain as main connectedness receivers. One year later while the total 

connectedness of the system was at its relative maximum, of the sovereign debt 

Figure 29 – Government Bond (2Y) pairwise links greater than the 99th (blue) 95th (black) and 90th (red) 

percentile over the ones computed on the last 15 periods. 
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crisis period, directionality has been consolidated and the relation passing the 

selection procedure were dense and big in magnitude. Ireland and Portugal were 

confirmed as leaders in influencing other countries, while the net receivers were 

the biggest economies among the actors of the network i.e. Germany, France, 

Italy, Spain and Netherlands. Among those, Italy, the first big country to be 

questioned by rating agencies in time, during the 2010-2012 crisis, were the one 

detaining the stronger directional net connection: from Ireland. As for the 

corporate sample, the period immediately after Mario Draghi’s speech was 

characterized by a decrease in connectedness and the disappearance of relations 

in the extreme right tail of their distribution. 

The Covid-19 spread and the related markets shortfall already discussed did not 

disrupt in a neat manner the path of total connectedness of the system. The jump 

in connectedness was indeed notable, i.e. from 67% to almost 75% in a couple of 

weeks, but was neither an absolute nor a relative maximum for the period 

analyzed. The level reached was actually the highest since the first months of 

2010, and the steepness of the path followed from before, and after the crisis 

explosion was really high. Anyway, the connectedness of the network came from 

an entire year of high evolution rate due probably to the trade war spread on a 

global scale. The increase in connectedness from its all-time bottom (53%), 

touched at the beginning of 2019, makes considerations on the jump due to the 

Covid-19 a little unreadable: connectedness was already rising at a high rate 

before the crisis. It can be surely said that a big jump occurred, breaking the 

maximum level of connectedness of the last ten years, but compared to the 

reaction of the corporate bond sample, the short-term government one has not 

suffered a framework total recalibration. 

The smoother impact of the Coronavirus crisis is confirmed by looking at the 

dynamic estimation and selection of net pairwise connections (Figure 30). The 

situation before the pandemic explosion was characterized by sparsity of strong 

directional connections. The only ones selected were between frugal economies 

and a stronger one from Italy to Spain. After the crisis explosion stronger 
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connections arose, Portugal became a net influencer towards Spain, and Italy took 

the role of main influencer with the strongest relations to Spain and Portugal. 

The role of Italy during the latest global financial crisis makes sense since it was 

the first country suffering health, social and economic damages from the pandemic 

spread. It is worth also mentioning that at first, the situation in Italy was globally 

seen as idiosyncratic, with governments and public opinion frequently oriented to 

a bad management of controls and weakness of infrastructures as main features 

guilty of letting Italy being an isolated case (in gravity terms). The interrelation 

established between Italy, Spain and Portugal is also in line with the progressive 

contagion mechanism noticed and analyzed in the static modelling Section (5.1.4). 

Anyway, as said before, the proliferation of connections was slightly poorer than 

for the corporate sample, confirming the lighter impact of the Covid-19 crisis on 

a short-term government level. 

Figure 30 - Corporate Network pairwise links greater than the 99th (blue) 95th (black) and 90th (red) percentile 

over the ones computed on the last 50 (beige background) and 15 periods (white background). 
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Leaving again detailed graphs on the dynamic evolution of directional pairwise 

connectedness country-by-country for the Appendix B, Figure 31-32 below show 

the rolling degree distribution of total directional connectedness, from and to 

others. As for the corporate sample, the from others connectedness is right-skewed 

and generally vary much less than the other measure. As opposed to the previous 

sample, there is not seems to be a specific dynamic for this variation, that is 

almost constant overtime after 2010. Before this latter date, the variance was 

Figure 31 - Rolling Distribution of Total Directional Connectedness from others, together with the min-max 

range (blue band), interquartile range (red band) and mean (black line). 

 

Figure 32 - Rolling Distribution of Total Directional Connectedness to others, together with the min-max 

range (blue band), interquartile range (red band) and mean (black line). 
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progressively augmenting from an initial level where tails and interquartile range 

were almost not even distinguishable. That period was the one right after the 

subprime crisis, with an abnormal level of total connectedness. Also, the to 

distribution is closer to its mean value at the beginning of the timeline. This 

behavior makes sense: in times when, total connectedness is as high as 86% or 

more, the interrelation of the system is so dense that even granular pairwise 

connections align in magnitude. Over a certain amount of interrelation, the 

network is just heavily correlated going probably towards multicollinearity and 

pairwise relations do not make much sense anymore. Connectedness to others 

tends to be right-skewed as well during standard times. During crisis periods this 

latter measure, shows a very long right tail, anyway the interquartile range is 

almost ever under the mean value during times with a larger variance of the total 

connectedness measure. The dynamic just presented can be translated into the 

fact that, during crisis times relatively more than non-crisis times, there are few 

firms transmitting very much, while on the receiving side all actors tend to be 
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always varying around the mean value, with a constant presence of independent 

countries with little received connectedness. 

Even if a strong similarity in the total connectedness’s path, dynamically 

computed over the first two samples has been noticed, the correlation between 

the just presented measure and the European markets shortfall is not so evident. 

This is confirmed by looking at Figure 33 plotting the STOXX 600 index’s 

historical price evolution over time together with the total connectedness measure 

exposed in 5.2.1 and 5.2.2.  

 

 

5.2.3 Ten-year government bonds 

 

Figure 34 below, shows the dynamic estimation of network’s total connectedness 

through time, for the long-term rates of the government bonds sample. The 

analysis of the rolling total connectedness confirms the first relative feature noted 

during the static estimation of the model: the 10-year treasury yields constitute 

the most interrelated network between the three samples analyzed. In fact the 
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Figure 34 - Total Connectedness through time via dynamic estimation, w=100, h=2, Government Bonds 

sample (10-year rates). 
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interrelation measure is never been computed with a final value under about 60% 

during the period considered. Actually the total connectedness of long-term rates 

for 10 out of the 12 years analyzed has always been over 70%. The connectedness 

of this last sample has always evolved at a high rate of changing, but maintaining 

a smooth path over time. In fact no major crisis-related changes can be read 

through time, except maybe for the “U” shape taken during the period of Trump 

Administration trade tariffs inclusion, and the followed global trade war. Neither 

the sovereign debt crisis nor the Covid-19 related one, seem to have caused major 

trajectory changes of the total connectedness through time, but as noticed for the 

short-term network, the period during and after the subprime crisis was 

characterized by very high interrelation. Total connectedness was in fact near 

90% for all 2008, and then started a rapidly decreasing path, remaining anyway 

over 80% until June 2010.  

The path followed by long-term rates network’s total connectedness seems to be 

cyclical with two periods of high connectedness and two of relative low 

interrelation. As can be seen from Figure 35 below, rolling total connectedness of 

the short-term and long-term sample, share the same shape. The only difference 

is in the period of the sovereign debt crisis, where the short-term network suffered 

Figure 35 – Rolling Total Connectedness of the long-term Government sample, together with the short term 

one. 
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abrupt changes while the long-term system did not. Despite the same shape, 

magnitude of total connectedness differs quite a lot, with, as just said, overall 

interrelation of the long-term network always above the one of the short-term one 

(except for the just mentioned period following the half of 2011). That is long-

term rates are always more interrelated as a network, reflecting interdependency 

of the Euro area countries, that share monetary policies, and economic policies 

oriented to the long-term evolution of individual economies. This makes sense, 

since one of the main scopes of the European Central Bank, is the convergency of 

economic systems in terms of efficiency, structure, and stability, and the long-

term targets and estimated outcomes of policies are reflected by the rates at which 

each country raise financial resources. 

Further considerations of differences between long-term and short-term treasury 

rates networks are skipped to the comparison Sub-paragraph (5.2.4). 

In addition to the global trade war of 2018 and 2019, major events that seem to 

have shaped the total connectedness path, are the ones derived from the policy 

persecuted by the European Central Bank between 2014 and 2015. Specifically, 

the major solutions that ECB adopted in those years were the Targeted Longer-

Term Refinancing Operations (TLTRO) and the Quantitative Easing (QE) 

program. The massive financing operations derived from these programs, and the 

enormous amount of liquidity injected into the European economic system, seem 

to have signed a turnover point for the total connectedness path by the beginning 

of 2014. The interrelation measure was steeply decreasing since the subprime crisis 

and then started to increase at a high evolution rate after the ECB declared and 

started unified financial stimulus targeted to reach the real economy through 

financial institution intermediation. The timing of rolling total connectedness big 

turnover could so mean that the long-term rates network connectedness reaction 

to a crisis, is strongly lagged and does not depend on markets shocks in terms of 

capitalization shortfalls and panic-related financial drawbacks, meanwhile the just 

mentioned programs drove interdependency between countries, more than the 

first occurrences. In fact, long-term rates seem to do not be impacted in 
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connectedness by temporary shocks, and it is plausible to think that a 

prolongation of a shock or the consolidation of its consequences are assumptions 

due for connectedness structural changes. If this is true, and the horizon of a shock 

is an essential aspect of reaction in connectedness, in relation to the tenor of the 

instrument analyzed, it makes sense that enormous monetary programs like 

TLTRO and QE, with usually markets reaction based on the long-term benefits, 

had more impact than the occurrence of the crisis in the first place. The over 

mentioned programs, together with the Fiscal Compact treaty of 2012, marked 

European monetary policy path, with a very long horizon, leaving more space for 

economies concertation, and this raised interrelation among European economic 

systems (further considerations on this concept are left for the comparison Sub-

paragraph 5.2.4). Even if this theory would be true, it would imply a feature that 

makes the proposed connectedness measure, maybe interesting ad concrete, but 

quite useless during crisis times, as a risk management tool (applied on long-term 

government yields). 

Figure 36 - Government Bond (10Y) pairwise links greater than the 99th (blue) 95th (black) and 90th (red) 

percentile over the ones computed on the last 50 periods. 
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Even if the dynamically estimated total connectedness measure does not seem to 

be strongly related to crises times and major markets shocks, net pairwise relations 

show a dynamic coherent with the sovereign debt crisis occurrences. Figure 36-37 

below report the already presented network relations through time, during crucial 

moments of the 2010-2012 crisis. An analysis based on those pairwise relations 

shows a dynamic not different from the one of the short-term sample. Again 

Ireland and Portugal had the role of major influencers, role increased in centrality 

as the crisis took hold. Further confirmation of the progressivity of connectedness 

directionality change during crises can be derived by the fact that the main 

intermediate influenced actors were Italy and Spain. Here the peak in pairwise 

interrelations was reached early, compared to the first two samples: during the 

rating cut season start, instead than after the Fiscal Compact treaty constitution. 

Changes in net pairwise connectedness related to the Covid-19 crisis have not 

been presented, in fact, as said before, the change in total connectedness at the 

Figure 37 - Government Bond (10Y) pairwise links greater than the 99th (blue) 95th (black) and 90th (red) 

percentile over the ones computed on the last 15 periods. 
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beginning of 2020 was not differing at all from the previous path’s evolution, and 

pairwise relations didn’t show explanatory power as well.  

Leaving as before individual evolutions of pairwise connectedness for Appendix B, 

Figure 38-39 show the rolling degree distribution of total directional 

connectedness, from and to others. In contrast to the other two samples, the 

variation of both measures is here very similar in range. However, the to others 

Figure 38 - Rolling Distribution of Total Directional Connectedness from  others, together with the min-max 

range (blue band), interquartile range (red band) and mean (black line). 

 

Figure 39 - Rolling Distribution of Total Directional Connectedness to others, together with the min-max 

range (blue band), interquartile range (red band) and mean (black line). 
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distribution is really more constant in variation, while the from others measure 

stretched a lot its left tail during periods of relative low connectedness. 

Furthermore, the former measure is almost ever centred around its mean, except 

for abrupt turnover points in total connectedness path, where it is left-skewed. In 

contrast, the from others degree distribution is usually left-skewed, with a very 

long left tail, except that for the sovereign debt crisis’s period, and the following 

years, when it became almost centred, with an even longer left tail. The 

distribution shape of the from others connectedness does not seem to contain 

useful information, since it is described just in function of the connectedness level. 

That is, generally, with a high total connectedness value, the majority of network 

actors receive more than the mean value, with few countries being very 

independent, with extremely low values of received connectedness. Instead in 

periods of relative low connectedness, as it would be rational to think, the measure 

gets lower for many countries and is distributed around its mean, while the 

probably before isolated countries, become even more isolated. To others 

connectedness distribution, instead, have the strange feature of becoming left-

Figure 40 - Government Bond (10Y) pairwise links greater than the 99th (blue) 95th (black) and 90th (red) 

percentile over the ones computed on the last 15 periods. 
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skewed during changes in path, and this could be linked to the fact that a few 

institutions drive the connectedness turnover.  

A further investigation of this phenomenon has been carried on, observing changes 

in net pairwise structure, at turnover point, where the degree distribution heavily 

changes its shape. Figure 40 shows frames of the network net relations with the 

usual selection procedure applied on the connections. It is evident how the 

structure of the system has changed during the path swerve of connectedness, 

with Spain and Portugal taking the lead in influencing. The previously isolated 

Italy and Ireland became their main victims of connectedness spread, while 

Belgium France and Austria exited the high pairwise connection circle. This latter 

consideration could be read in line with the role that those countries had during 

the sovreign crisis, and the centrality of economic policy actuated to save weak 

economies and avoid a general domino effect. There is so much further 

confirmation about the source of connectedness change, but the interrelation 

measures as estimated, for timing and magnitude of response, seem again to have 

little explanatory power for crisis spread related deductions. 

To summarize, even if major economic events and their repercussions can be read 

through the analysis of connectedness estimations, the 10-year government bonds 

sample seems to produce a non-sensitive measure. Historically speaking the shape 

of total connectedness is too smooth and cyclical to reflect idiosyncratically each 

crisis. The disadvantage of this last sample related measure was noted already in 

the static estimation Paragraph (5.1), where even a granular net pairwise analysis 

did not show a delineated framework of any sort of utility for contagion events-

related structure prediction or risk management considerations.  

 

 

5.2.4 Comparative analysis 

 

Figure 41 below shows the rolling estimation of total connectedness for the three 

samples analyzed, all together.  



89 

 

The first notable feature that comes out reading the Graph, is the exchange in 

level that occurred after the beginning of 2012, between the corporate sample and 

the short-term government one. In fact, the first 4 years out of the 12 for which 

the models have been estimated, are characterized by a total connectedness level 

of the government sample, way above the one of the corporate network. This has 

a clear meaning: European financial institutions have become more interrelated 

than national economies, on a short-term basis, after the sovereign crisis. 

Connectedness jumps related to crises have always been bigger for the corporate 

network, compared to the other two samples, but the two-step jump that occurred 

after the 2010-2012 crisis, signed a breakpoint in connectedness level. 

Furthermore, after that event, the corporate interrelation measure shows a 

cyclical behavior, with macro-oscillations around the subprime crisis levels. This 

switch could be due to a structural change in one, or both networks. Given the 

fact that the short-term system was before closely related to the long-term one, 

in path and level, and after 2011 it followed more the corporate network behavior, 

it would be reasonable to think that main changes have occurred in the structure 

of the 2-year government bonds system.  
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The sovereign debt crisis highlighted the possible fragility of the recently created 

Euro currency, and the monetary Union derived from it. A variety of the criticism 

against the Euro, on its first times, and even now, are based on differences in 

economies and debt structures of each European country. Discussions about the 

pro and cons of a single monetary Union in the European territories are behind 

the scope of this thesis, but it is worth mentioning that market operators’ concerns 

and expectations over the first years of the Euro were related to the frequently 

doubted success of a monetary Union. 

Looking at the Graph it is clear that, despite the level of connectedness, variability 

of the overall interrelation measure is always greater for the corporate sample, 

and this difference was neater in the 2008-2011 period. This concept was brought 

on already in the unconditional analysis and is quite obvious since corporations 

are more fragile institutions whit respect to governments. Given this, a quicker 

change in financial firms’ performances and stability forecasts is clearly reflected 

by a more rapid total connectedness response to economic occurrences. The 

structural change regarding the short-term system, could have so partially aligned 

market operators’ expectations on financial firms and governments (on a short-

term basis). This has given the short-term connectedness a structure and 

properties (in terms of response and changes), linkable to more fragile institutions. 

The event of a crisis related to the sovereign debt creditworthiness in the Euro 

area, seem so to have broken the resilience to small shocks and happenings before 

proper of the short-term government network. 

The corporate network remains anyway the most sensible to occurrences, varying 

the most, and as the quickest, during crises events and after economic policies 

consolidations. A further proof of this aspect is the rapidity with which the 

corporate sample reacted after the trade war begin (almost a year before 

governments networks). There are anyway strong evidences to make the 

assumption of a structural change on a short-term government basis. This concept 

was already introduced in Chapter 3 where, describing the yield-to-maturity times 

series used to estimate the models, a difference in the general behavior of the 
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series before and after 2011 was noted. In practice, as said before, there was a sort 

of convergence to a mean value, even with the variance caused by the subprime 

crisis. Anyway, after 2011, yield times series came back converging around a 

common path, but with much more differences between themselves.  

The thesis of a structural change can be supported even for the long-term network. 

It has been pointed out already, for all three samples, that total connectedness 

follows a cyclical path, and the one of the 10-year yields network is the most 

marked and smoother, taking the shape of a sine function. Macro-oscillations of 

connectedness, for the long-term system, have anyway started to drastically 

reduce in width at the end of the considered period. There are however probably 

not enough data, on a time level, to assert in a more descriptive way this 

phenomenon, given the length of cyclical changes in connectedness (that are only 

three in the period analyzed).  

Total connectedness of corporate bonds has almost always been less than the one 

of the long-term government ones. As just said the dynamic of the former reflects 

frequent structural changes of the system, that occur more commonly. Speaking 

of shocks, this mechanism can be read also on a threshold level: it seems so that 

maybe even small and temporary shocks affect with little changes connectedness 

of the corporate network, while just big market structural changes, or major 

shocks, affect long-term government bonds connectedness. Big differences between 

corporate and long-term government networks are as well in the paths, that rarely 

reflect common direction or levels.  

To summarize, no notable common features bind these two samples, and between 

them, the largest explanatory power in term of crisis-related shocks, is definitely 

given by the financial corporation network. 

Even if a change in the response sensibility of total connectedness between long-

term and short-term government networks has occurred, as pointed out before, 

the measures of the two systems share a common path. As said, this excludes the 

sovereign debt period: the only period where the short-term system was more 

interrelated than the long-term one. Actually, the paths of the two measures were 
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similar but very different in jumps: the short-term connectedness previously 

diverging from the long-term one, made a rude increase, re-joining path and level 

(even more as said) of the latter system. 

As known treasury yields curve’s shape reflects expectations about the future in 

term of risk, inflation and so on. During crisis periods yields curve tend to take a 

flatter shape, and sometimes even to invert (becoming decreasing in tenors). 

During the half of 2011, when the total connectedness of the short-term system 

jumped, the average yields curve on the euro area (for the countries in the sample) 

was flat, even inverted for a couple of weeks. This happened mostly for major sell-

off of short-term bonds, that for buy moves on the longer-term securities 

(eventually made for expectations about the imminent probable lowering of 

interest rate by central banks). This scheme can be easily noted by Figure 42, 

representing the average value of both samples (2-year and 10-year government 

bond yields). The distance between the two curves represents the steepness of the 

yield curves in the euro area (on average terms): the greater the distance, the 

steeper the curve.  
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Figure 42 – Average Government treasury yields in the Euro area (for Governments in the sample). 
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It is easy to notice how through time, total connectedness of the short-term 

network got closer or even higher than the one of the long-term system only with 

a flat yield curve. During the sovereign crisis, the 2-year system interrelation 

surely surpassed the 10-year one, but a lookout at the first left part of Figure 40, 

insinuates the doubt that before 2008, the situation was the same. An equal 

deduction can be carried out for the latest total connectedness estimations (2020), 

that show the two measures to moving towards convergence. These three periods 

have in common to be massive global crises of course, and also to have a flat 

treasury yield curve (on average).   

A further investigation of this dynamic highlighted the fact that iteratively, 

during periods with a flat yield curve, total connectedness of the two government 

samples tend to converge in level and path. Moreover, periods with a steeper yield 

curve, “leave” the connectedness measure of the short-term network, varying a lot 

and more independently. That is, during crisis times, or just before them, when 

market operators forecast an imminent change in interest rates or an expansionary 

fiscal policy, the connectedness on a government level tend to converge despite 

the tenor of the instrument analyzed. This latter concept reflects the uncertainty 

about the future that is spread to all government activities, and it is also 

associated with a relative high in connectedness for the short-term network. 

During standard times (in terms of yields curve shape), anyway, the short-term 

government network showed flexibility in response to economic occurrences. A 

feature worth to be mentioned is that level of long-term connectedness seems to 

not be related to the above exposed dynamic but its cyclical turnover points can 

be associated with yield curve flattening events. 

As said before long-term network derived measures alone are not useful and 

reactive tools, but the interpretation of them together with the short-term ones 

could give useful hints for risk management analysis.  

This last theory does not break the one of a structural change in short-term 

connectedness but strengthen it. In fact, could be that the structure of 

connectedness changes over crisis periods, becoming aligned at a government level; 
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it then changes again after crucial moments of crises. So structural changes could 

have been even more than the one hypothesized before during the time considered. 

Substantially the 2-year government network, oscillates in properties and 

structure, bouncing between the features proper of the long-term system and the 

ones of the corporate financial network.  

A final comparison statement regards a phenomenon confirmed by the three 

analysis: the polarization occurred for every network during crisis periods, on a 

net directional connectedness level. This frameworks’ structure was already 

pointed out in the unconditional analysis in Paragraph 5.1, where directional 

connectedness was seen polarizing around the weakest institutions as channels 

towards the other ones. This has been noted in a neater way in the corporate 

sample, while in a progressive way in the two government ones, where very small 

and weak countries influence the bigger but weak as well, and then connectedness 

is spread towards the “top” economies in the system. A polarized structure has 

been so noted also in the dynamical analysis, observing the strongest pairwise 

relations via the selection procedure based on percentiles. In fact, rolling 

estimation highlighted that along the path bringing to a crisis explosion and the 

reaching of its peak, the very same pairwise framework of unconditional 

estimation was iteratively formed. 
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Chapter VI. Final overview 
 

 

In this section, I present a final comparison of all the constructed networks, with 

an overview of the main common features and the principal differences noted on 

both, a static and a dynamic estimation level. The results shown below outline 

interesting dynamics, and widely support the main thesis of the current analysis.  

 

6.1 M ain common networks features 
 

The unconditional estimation carried out in Paragraph 5.1 highlighted some 

common features of the three samples. All three networks are in fact very 

interrelated since the static estimation showed a total connectedness level of more 

than 58% even for the most “independent” system. Furthermore, geographical 

factors seem to be relevant neither for connectedness directionality nor for its 

magnitude.  

A last shared feature of the three systems analysed (from a static estimation 

perspective) is in the directionality source. It is in fact clear how connectedness is 

always spread among all actors: every network is conformed as a net, linking all 

institutions in the system without leaving any node isolated. However, an analysis 

base on an ordinal perspective (in magnitude terms) highlights a common neat 

path of relations. Both financial corporations and governments spread 

connectedness according to their financial structures, with dimensionality (market 

capitalization or GDP level) and financial health (credit ranking) as main drivers. 

The path is clear: troubled nodes in the system direct connectedness to the 

healthier actors. Furthermore, the weaker the institution greater is the 

connectedness directed.  

Rolling estimation highlighted the fact that every network shows a cyclical path 

of total connectedness over time. However, only the corporate and the short-term 

systems share common cycles, except for a below addressed period of 2 years (i.e. 
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2018-2020). Although these cycles are not aligned the total connectedness paths 

have multiple turnover points in common through time.  

Another common feature on a dynamical level is in the polarization mechanism 

iterated over crisis periods. In fact, the already mentioned pairwise structure 

became neater every time a crisis event occurs, with different institutions acting 

as main influencers (depending on each crisis and each relative conditions of these 

actors at the time). It is very clear how this happened for every crisis considered 

and every network constructed. Not only directional connectedness tends to 

aggregate around some specific nodes, but also the magnitude of the polarized 

relations increased in crisis periods, reinforcing the effect of this phenomena on 

the system. 

A final common feature of dynamical estimation outcomes is in the degree 

distribution of total directional connectedness, which is never centred around its 

mean through time. This is translated in network frameworks that are never 

homogeneous but always polarized around some extreme influencers or influenced 

institutions. 

 

 

6.2 M ain networks differences 

 

Despite the outlined common features, the three constructed networks differ in 

some interesting aspects. As already said those systems are all very interrelated, 

regardless the issuer or the maturity of the bonds, in general, government 

networks present a higher degree of total connectedness. As shown above, this is 

not constant over time (dynamic estimation), except for the long-term system 

that is almost always more interconnected than the others.  

Another difference in connection, in an unconditional perspective, is in the 

pairwise relations. Despite the fact that systems with the higher value of overall 

connectedness have greater pairwise relations (for construction the diagonal 

elements are not included in total connectedness computation), those set off each 
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other more frequently in strongly interconnected networks. This translates into a 

sort of magnitude symmetry in the elements of the connectedness matrix. Such a 

phenomenon suggests the existence of an inverse relation between total 

connectedness and pairwise net connections. 

A last notable difference between the three networks is in the pairwise 

directionality mechanism. In fact, as outlined in Sub-paragraph 5.1.4 government 

bonds reflect some kind of progressivity in net relations spread. Corporate firms, 

following the logic of the weak institution that influences the strong one, act in a 

more “drastic” way, having small and troubled institutions directly influencing the 

biggest and best-ranked ones. Meanwhile, government bonds tend to present a 

middle step in connectedness, with a “pyramidal” framework characterized by 

small and troubled countries influencing the medium ones (in GDP and credit 

score terms), and then overall connections that are spread among all actors. 

One main difference in the historical path of total connectedness can be seen in 

the response to crisis events or market shocks of the three overall measures. This 

is clearly different on two fronts: the magnitude and the timing. For sure the 

financial corporations network reacts in a neater manner to crisis events, making 

jumps usually almost double of the size the ones of the short-term system. Also, 

the timing of these jumps always precedes the one of the latter network, with a 

lag related to each event (e.g. less than one month during the sovereign debt 

crisis, while almost a year for the global trade war). However, as already pointed 

out the long-term system does not show marked jumps related to crisis events. 

As just mentioned, a very different behaviour has been noted for total 

connectedness in the three networks during the global trade war period. In fact, 

not only the timing but also the path followed by the overall interrelation 

measure, were different in reaction. The corporate bonds measure suffered in fact 

a significant turnover, jumping instantaneously after the first tariffs introductions, 

meanwhile, government bonds reacted one year later in an alike significant 

manner, but without a neat jump in total connectedness. 
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Conclusions 
 

 

Given the considerations on the static and dynamic behaviour of the three 

systems, exposed in the previous section, it is clear how the corporate and the 

short-term estimated networks are the ones producing the more useful and 

dialoguing connectedness measures. In fact, both the financial corporation and the 

short-term government samples, showed a peculiar granular framework of net 

pairwise relations and a neat path of total connectedness, varying according to 

economic events. An analysis based on connectedness measures derived from these 

two systems can so be useful in order to assess dependencies among institutions 

and operate on a risk management level, constructing ad hoc recommendations 

aimed to preserve the financial stability of related actors. Furthermore, 

monitoring activity on the total connectedness level of these networks could be 

functional to shocks evaluations and the production of related considerations on 

financial drawbacks. 

Regarding the 10-year treasury rates network, none of the analyses showed neat 

dynamics or peculiar pairwise relations. Static estimation on a net pairwise level 

showed a system framework very interrelated as a whole, but almost independent 

from a granular perspective. Even the analysis carried on the historical path of 

total connectedness reflected a behaviour of the system almost independent from 

economic occurrences. For sure the constructed network is very interrelated (the 

most connected) but given the estimated relations among actors and the 

simultaneous reactions of the system to economic events, it seems to be useless to 

conduct accurate evaluations of dynamics between institutions. This could be 

given by the nature of the network itself, but as pointed out, there seems to be 

an inverse relation between total connectedness and the magnitude of net pairwise 

relations. It could be so possible that this last system is so interrelated to converge 

in behaviour. As in fact already exposed, degree distributions of total directional 
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connectedness tend to almost lose their tail over a certain level of total 

connectedness, so it would be plausible to think that in a very interrelated system, 

each actor suffers shocks and economic cycles in a symmetric way, without a 

spread of connectedness in a peculiar manner. This, anyway, does not justify the 

almost independent path of total connectedness through time for the 10-year 

bonds. For this reason, the just exposed concept has not been deepened.  

Despite the lack of useful features of the 10-year system connectedness measures, 

some considerations arose in Sub-paragraph 5.2.4 leave space for applications of 

these tools. There is in fact a relationship between the steepness of treasury yield 

curves (on average terms) and the relative level of long-term and short-term 

networks’ total connectedness. Specifically, as said, periods characterised by a 

flatter yield curve seen the two connectedness measures to converge, or even the 

short-term one to surpass the long-term one (an exceptional event, historically 

speaking). Recalling one of the main reasons for which two kinds of government 

bonds samples were included in the current analysis (i.e. the closer reflection of 

market operators’ expectations by the long-term yields), the above mentioned 

phenomenon could give useful insights. In fact, a flattening of treasury yields 

curve reflects low confidence and bad expectations on markets about the future. 

So, even without directly using the 10-year yields derived connectedness measures 

alone, for concrete analytical purposes, a lookout of the two government-based 

measures together could increase their explanatory power. Following this 

approach, the 2-year connectedness measures should be followed and analysed for 

general analysis and considerations, while the relative level compared to the 10-

year one, could reflect not only network’s structure, and shock dissipation paths, 

but also the effect of these phenomena on an expectations level. That is, during 

crisis periods, evaluations of the short-term network alone could help understand 

the magnitude of a crisis and the dynamic of its repercussions, but long-term total 

connectedness relative level, could constitute a threshold, that, when surpassed, 

indicates long-term repercussion in market operators’ expectations, giving further 

alarms about a crisis or a shock impact magnitude. 
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To sum up, the evidence obtained by the analysis carried out strongly supports 

the thesis of the current project. It is in fact clear how connectedness, on a system-

wide level, changes during crisis times, with a neat increase after events of 

negative economic relevance. However, despite this clear path, there is not a direct 

relation with markets capitalization growth or volatility decrease. For sure high 

volatility periods and crisis events, bringing to market capitalization shortfalls, 

are followed and/or preceded by jumps and increase in connectedness, but the 

inverse relation is not so strong. Specifically, times of economic growth or low 

volatility periods do not match a system-wide connectedness decrease. 

Furthermore, the cyclical component seems to be strong and not directly (or at 

least perfectly) related to economic cycles. This anyway does not weaken the 

power of the derived connectedness measures for risk management purposes.  

At the end, not only a clear dynamic of connectedness has been observed, but 

also an important structural change that followed the sovereign debt crisis has 

been defined. It is evident how this recent crisis has reflected in a different manner 

on corporate and short-term government bonds, with the former suffering an 

enormous connectedness change in a very little time compared to the latter. This 

different reaction must not be evaluated only on a magnitude level, but also, and 

primarily, on a structural one. In fact, the occurrences of the 2010-2012 crisis led 

to a relative swap in interrelation, making the corporate bonds system to become 

more interconnected than the 2-year government one. Surely the debt component 

of the crisis had something to do with this phenomenon, as well as the centrality 

of European countries (despite the global repercussions). 

As already pointed out, since the crisis arose from sovereign debt instruments, it 

is likely that a structural change has occurred for the government system rather 

than for the corporate one, that as already shown, usually suffers quicker and 

bigger changes in connectedness during crises.  

As remarked in the previous section (6.2) there seems to be an inverse relationship 

between total connectedness level and strength of net pairwise relations, so, even 

if the short-term system became relatively less interrelated than the corporate 
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one, its granular links could have been defined with a neater structure. This latter 

is a direct consequence of the crisis. Exceptional country defaults in the modern 

era were already part of market operators’ background in 2010 (e.g. Argentina), 

and the sudden realization of a similar scenario in Europe, amplified by a domino 

effect, probably broke short-term government bonds connectedness structure, 

making it to converge to the corporate one, instead than to the long-term 

framework. Even the resilience of short-term government securities on small 

events seems to have been broken. In fact, the change in level in comparison to 

the corporate network brought also more volatility in the interrelation measure 

of the 2-years government system.  

Despite the thesis of a structural change in the short-term government network 

is easily addressable, it is likely that an important structural commutation 

occurred also for the corporate system. Not only operations of European financial 

institutions heavily depend on the union countries’ economic health, but also 

balance sheets of these kinds of firms are strongly bonded to sovereign debt. In 

fact, historically, major European countries have the greatest portion of their 

debts, owned by domestic banks, citizens, and other union banks and institutions 

(situation exponentially intensified after the QE program). Given this, a clear 

explanation for a structural change in the corporate system could be that the total 

connectedness “portion” sourced by balance sheets codependencies among 

governments and banks in Europe, drastically augmented. 

Independently from these structural changes’ sources and dynamics, such an event 

as a permanent commutation in the total interrelation level between two financial 

systems would surely have to trigger risk management practices and economic 

policies adjustments and considerations. 

Finally, also on the polarization side, strong evidence has been produced. The 

European financial system shows in fact a polarized framework even on an 

unconditional level, with some institutions having the role of main influencers 

with respect to others that suffer connectedness spread from few institutions. 

Among the formers, UniCredit Bank and Deutsche Bank showed a constant 
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central role, while solid institutions as ABN Amro, Rabobank and Nordea Bank 

mainly received connectedness spread from them and in an overall manner. This 

structure has been observed as dynamically changing over time, with institutions 

swapping roles depending on their relative structure according to time periods. 

Furthermore, events of historical importance seen those frameworks’ structures to 

increase in definitions, with more polarization and some actors as strong 

protagonists of financial dynamics and shocks repercussions. Specifically, 

UniCredit played an increasing central role during the times preceding the 

sovereign debt crisis with the strongest connections realized at the crisis peak. 

Deutsche Bank had the same role in the network during the pandemic-related 

economic crisis, but with a little less definition in its connectedness to others.  

A very similar dynamic has been observed in the government networks, where 

Portugal and Ireland, similarly to UniCredit and Deutsche Bank, were constantly 

the main influencers in the system. Italy and Spain are indeed their main victims, 

but this framework suffered a swap during the Coronavirus-related crisis, where 

Italy took the role of main influencer in the early times.  

The main drivers of these phenomena have been clearly addressed and consist in 

economic relevance (market capitalization or GDP production), and 

creditworthiness. Unexpectedly geographical components play a very marginal 

role in connectedness’ structure definition, on a polarized conformation level. 

However, between the corporate and the government networks, there is an 

interesting difference in the functioning of these drivers. In fact, corporate 

institutions follow the rule of the small and fragile firm influencing the big and 

solid one. As opposed the government frameworks are characterized by an 

intermediate step, with the weakest and smallest countries directly influencing 

the intermediate ones (on a GDP and credit rating level). The latter are then 

connected in an overall manner to top institutions.  

Further proof of this aspect is certainly given by the behaviour of Belgium – 

properly the median country in the system, in terms of driver’s values – receiving 

strong connections from all the mentioned countries: Portugal, Ireland, Italy and 
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Spain, and then connected in an overall manner to all other actors, with important 

pairwise relations. 
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Appendix A. Quantitative insights 
 

 

A.1 Generalised Impulse Response Function  
 

Dynamic analysis of vector autoregressive (VAR) models is often carried out using 

the orthogonalized impulse responses. This approach implies that the underlying 

shocks to the VAR model are orthogonalized using the Cholesky decomposition, 

before computing impulse response function (IRF), or forecast error variance 

decompositions (FEVD). This methodology is not, however, invariant to the 

ordering of the equations in the model. An alternative approach that does not has 

the above shortcoming, is the so called the Generalized Impulse Response Analysis 

(GIRF), proposed by Pesaran and Shin in 199725. Those authors proposed a linear 

version of what just described, building on the non-linear multivariate framework, 

proposed by Koop et al. (1996)26. Anyway, since the applications shown in the 

current analysis are on linear models, just the framework of interest will be 

presented. 

The first step to understand the generalized impulse measures is to consider the 

VAR(p) model presented in Paragraph 4.1, for simplicity reported without the 

constant term 𝝓𝟎 :   

 
𝑥𝑡 = ∑ Φ𝑖𝑥𝑡−𝑖

𝑝

𝑖=1
+ 휀𝑡 (A.1.1) 

 

where given 𝒎 as the number of time series for each sample, 𝒙𝒕 is a 𝑚-dimensional 

multivariate time series, 𝚽 is a 𝒎 𝐱 𝒎 matrix, and {𝜺𝒕} is a sequence of serially 

uncorrelated random vectors with zero mean and covariance matrix Ʃ .  

The following standard assumptions have then to be made: 

 
25 Pesaran M.H. & Shin Y. (1997); “Generalized Impulse Response Analysis in Linear Multivariate 

Models”; Economics Letters. 
26 Koop G., Pesaran M.H. & Potter S.M. (1996); “Impulse response analysis in nonlinear 

multivariate models”; Journal of Econometrics. 
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i. 𝐸(휀𝑡) = 0, 𝐸(휀𝑡휀𝑡′) = Ʃ  for all t, where  Ʃ = {𝜎𝑖𝑗 , 𝑖, 𝑗 = 1,2, . . . , 𝑚} is an 

𝑚 x 𝑚 positive definite matrix, 𝐸(휀𝑡휀𝑡′) = 0 for all 𝑡 = 𝑡′.  

ii. All the roots of | ∑ Φ𝑖𝑧
𝑖𝑝

𝑖=1 | = 0 fall outside the unit circle. 

iii. 𝑥𝑡−1, 𝑥𝑡−2, . . . 𝑥𝑡−𝑝 , 𝑡 =1,2,…𝑇, are not perfectly collinear. 

 

Under assumption (i) and (ii), 𝒙𝒕 would be covariance-stationary, and rewritable 

in the infinite Moving Average (MA) representation already exposed: 

  
𝑥𝑡 = ∑ A𝑖

∞

𝑖=0
휀𝑡−𝑖 (A.1.2) 

 

 Where the 𝒎 x 𝒎 coefficients matrices 𝐀𝒊 obey to the recursion: 

 

 A𝑖  =  ∑ Φ𝑗A𝑖−𝑗  
𝑝

𝑗=1
 (A.1.3) 

 

Whit 𝐀𝟎 a 𝒎 x 𝒎 identity matrix and 𝐀𝒊 = 0 for 𝒊 < 0 . 

It can be now defined an impulse response function, as a function measuring the 

time profile of the effect of shocks at a given point in time on the expected future 

values of variables in a dynamical system. The best way to describe an impulse 

response is to view it as the outcome of a conceptual experiment in which the 

time profile of the effect of an 𝒎 x 𝟏 vector of shocks of size 𝜹 = (𝛿1, 𝛿2, . . . 𝛿𝑚)′, 

that hit the economy at time t, is compared with a base-line profile at time t + 

n , given the economy’s history. 

There are three main issues:  

 

i. the types of shocks hitting the economy at time 𝒕;  

ii. the state of the economy at time 𝒕 − 𝟏 before being shocked;   

iii. the types of shocks expected to hit the economy from 𝒕 + 𝟏 to 𝒕 + 𝒏.  
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Denoting the known history of the economy up to time 𝒕 − 𝟏 by the non-

decreasing information set Ω𝒕−𝟏, the generalized impulse response function of 𝒙𝒕 

at horizon 𝒏, advanced in Koop et al. (1996), is defined by: 

 

 GI𝑥(𝑛, 𝛿, Ω𝑡−1) = 𝐸(𝑥𝑡+𝑛|휀𝑡 = 𝛿, Ω𝑡−1) − 𝐸(𝑥𝑡+𝑛|Ω𝑡−1)  (A.1.4) 

 

Using (A.1.4) in (A.1.2) then 𝐆𝐈𝒙(𝒏, 𝜹, Ω𝒕−𝟏) =  𝐀𝒏𝜹, wich is independent respect 

to Ω𝒕−𝟏, but depends on the value of shocks defined by  𝜹. 

The appropriate choice of the shocks vector  𝜹, is central to the properties of the 

impulse response function. The traditional approach, depending to the ordering 

of the variables, is to resolve the problem surrounding the choice of 𝜹 by using 

the Cholesky decomposition of Ʃ: 

 𝑷𝑷′ = Ʃ (A.1.5) 

 

Where 𝐏 is an 𝒎 x 𝒎 lower triangular matrix. 

Then (A.1.2) can now be rewritten as: 

 
𝑥𝑡 = ∑(𝐴𝑖𝑃)(𝑃−1

∞

𝑖=0

휀𝑡−𝑖) = ∑(𝐴𝑖𝑃)𝝃𝑡−𝑖

∞

𝑖=0

 , 𝑡 = 1,2, . . . 𝑇 (A.1.6) 

 

Such that 𝝃𝒕 = 𝑷−𝟏𝜺𝒕 are the orthogonalized errors, i.e. 𝑬(𝝃𝒕𝝃𝒕′) = Ʃ𝝃 = 𝑰𝒎. 

Hence the 𝒎 x 𝟏 vector of orthogonalized IRF of a unit shock to the 𝑗-th equation 

on 𝒙𝒕+𝒏 is given by: 

 

 𝜓𝑗
0(𝑛) = A𝑛𝑃𝑒𝑗  , 𝑛 = 0,1,2, . .. (A.1.7) 

 

Where 𝒆𝒋 is an 𝒎 x 𝟏 selection vector with unity as its 𝑗-th element and zeros 

elsewhere.  
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An alternative approach would be to use (A.1.4) directly, but instead of shocking 

all the elements of 𝜺𝒕 we could choose to shock only one element, say its 𝑗-th 

element, and integrate out the effects of other shocks using an assumed (or the 

historically observed) distribution of the errors. Following this path we would 

have: 

 

 GI𝑥(𝑛, 𝛿𝑗 , Ω𝑡−1) = 𝐸(𝑥𝑡+𝑛|휀𝑗𝑡 = 𝛿𝑗 , Ω𝑡−1) − 𝐸(𝑥𝑡+𝑛|Ω𝑡−1) (A.1.8) 

 

Assuming then, that 𝜺𝒕 has a multivariate normal distribution, it can be proved 

that:  

 

 𝐸(휀𝑡|휀𝑗𝑡 = 𝛿𝑗) = ( 𝜎1𝑗, 𝜎2𝑗 , . . . , 𝜎𝑚𝑗)′𝜎𝑗𝑗
−1𝛿𝑗 =  Ʃ𝑒𝑗𝜎𝑗𝑗

−1𝛿𝑗 (A.1.9) 

 

Hence the 𝒎 x 𝟏 vector of the unscaled generalized impulse response of the 

repercussion of a shock in the 𝑗-th equation at time 𝒕 on 𝒙𝒕+𝒏 is given by: 

 

 
(

A𝑛Ʃ𝑒𝑗

√𝜎𝒋𝒋

) (
𝛿𝑗

√𝜎𝒋𝒋

) , 𝑛 = 0,1,2, . .. (A.1.10) 

 

By finally setting 𝛿𝑗 = √𝜎𝒋𝒋 we obtain the scaled generalized impulse response 

function, reported below: 

 

 𝜓𝑗
𝐺(𝑛) = 𝜎𝑗𝑗

− 1 2⁄  A𝑛Ʃ𝑒𝑗  , 𝑛 = 0,1,2, . .. (A.1.11) 

 

which measures the effect of one standard error shock to the 𝑗-th equation at time 

𝒕 on expected values of 𝒙 at time 𝒕 + 𝒏. 
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A.2 Generalised Forecast Error Variance Decomposition  
 

The GIRF in (A.1.11) can now be used in the derivation of the forecast error 

variance decomposition, defined as the proportion of the 𝐻-step ahead forecast 

error variance of variable 𝒋 which is accounted for by the innovations in variable 

𝒎  in the VAR(p) model. 

Recalling (A.1.6) with orthogonal white noise innovations, and replacing 𝑨𝒊𝑷 with 

𝜭𝒊 for sake of notation simplicity, we have:  

 

 𝑥𝑡 = ∑ 𝛳𝑖𝜉𝑡−𝑖

∞

𝑖=0

 (A.2.1) 

 

Where 𝝃𝒕 = 𝑷−𝟏𝜺𝒕 are the orthogonalized errors, i.e. 𝑬(𝝃𝒕𝝃𝒕′) = Ʃ𝝃 = 𝑰𝒎. Given 

(A.2.1) the error of the optimal 𝐻-step forecast is: 

 

 𝑥𝑡+𝐻  −  𝑥𝑡(𝐻) = ∑ 𝛳𝑖𝜉𝑡+𝐻−𝑖

𝐻−1

𝑖=0

  (A.2.2) 

 

Then denoting the 𝑚𝑛-th element of 𝜭𝒊 by 𝜽𝒎𝒏,𝒊, the 𝐻-step ahead forecast error 

of the 𝑗-th component of  𝒙𝒕 is: 

 𝑥𝑗,𝑡+𝐻  − 𝑥𝑗,𝑡(𝐻) = ∑(𝜃𝑗1,𝑖 , 𝜉1,𝑡+𝐻−𝑖

𝐻−1

𝑖=0

+ ⋯ + 𝜃𝑗𝑀,𝑖 𝜉𝑀,𝑡+𝐻−𝑖) (A.2.3) 

 

That is also: 

 𝑥𝑗,𝑡+𝐻  −  𝑥𝑗,𝑡(𝐻) = ∑ (𝜃𝑗𝑚,0, 𝜉𝑚,𝑡+𝐻

𝑀

𝑚=1

+ ⋯ + 𝜃𝑗𝑚,ℎ−1 𝜉𝑚,𝑡+1) (A.2.4) 

 

Thus, the forecast error of the 𝑗-th component potentially consists of all the 
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innovations 𝝃1𝑡, . . . 𝝃𝑀𝑡. Since the 𝜽𝒎𝒏,𝒊 are orthogonalized and have unit variances, 

the mean square error (MSE) of 𝒙𝒋,𝒕(𝑯) is: 

 

 𝐸(𝑥𝑗,𝑡+𝐻  −  𝑥𝑗,𝑡(𝐻))2 = ∑ (𝜃2
𝑗𝑚,0 

𝑀

𝑚=1

+ ⋯ + 𝜃2
𝑗𝑚,ℎ−1) (A.2.5) 

 

and so: 

 𝜃2
𝑗𝑚,0 + ⋯ + 𝜃2

𝑗𝑚,ℎ−1 = ∑(𝑒𝑗
′𝛳𝑖𝑒𝑚)2 

ℎ−1

𝑖=0

 (A.2.6) 

 

could be interpreted as the contribution of innovations in variable 𝒎 to the 

forecast error variance or MSE of the h-step forecast of variable 𝒋. Here 𝒆𝒎 is the 

m-th column of 𝑰𝒎.  

Finally, is easy to see that dividing (A.2.6) by (A.2.5), we obtain the proportion 

of the H-step forecast error variance of variable 𝒋, accounted for by 𝝃𝑚𝑡 

innovations, and if 𝝃𝑚𝑡 can be associated with variable 𝒎, 𝝃𝑗𝑚,ℎ represents the 

proportion of the H-step forecast error variance accounted for by innovations in 

variable 𝒎.  

After some substitutions and with the use of a selection vector 𝒆𝒋, it can be proved 

that the orthogonalized FEVD of variable 𝒋 respect to variable 𝒎 (𝒅𝒋𝒎
𝑶 𝑯 for sake 

of notation alignment) can be expressed as: 

 

 

 
𝑑𝑗𝑚

𝑂 𝐻 =
∑ (𝑒𝑗

′𝐴ℎ𝑃𝑒𝑚)2𝐻−1
ℎ=0

∑ (𝑒𝑗
′𝐴ℎƩ𝐴ℎ

′𝑒𝑗)𝐻−1
ℎ=0

 (A.2.7) 

 

 

At the end, given the intuition of (A.1.9-10), we can express GFEVD (𝒅𝒋𝒎
𝑮 𝑯), that 

allowed for shock correlation, while simultaneously accounting for it (historically 
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observed values and under normality assumptions), as: 

 

 
𝑑𝑗𝑚

𝑔𝐻
=

𝜎𝑚𝑚
−1 ∑ (𝑒𝑗

′𝐴ℎƩ𝑒𝑚)2𝐻−1
ℎ=0

∑ (𝑒𝑗
′𝐴ℎƩ𝐴ℎ

′𝑒𝑗)𝐻−1
ℎ=0

 (A.2.8) 
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Appendix B. Extra data 
 

 

Below, in Figure 4327, a granular legend of the Figure 4 of Paragraph 2.2 is 

presented. Each element constitue an asset category of the ECB consolidated 

balance sheet. 

It follows the presentation of dynamic estimates of total pairwise connectedness 

for each firm and for each country of the three samples. Net total pairwise 

connectedness, obtained as the difference between connectedness spread to thers, 

and the one received from others, has been marked with a red line on the zero 

value. 

  

 
27 Source: ECB 

Figure 43 - Legend for the ECB consolidated balance sheet graph (Figure 4 – Paragraph 2.2). 
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B.1 Dynamic pairwise connectedness 
 

B.1.1 Corporate bonds 

 
 

Figure 44 – Rolling total directional connectedness from others. 
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Figure 45 – Rolling total directional connectedness to others. 
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Figure 46 – Rolling total net directional connectedness. 
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B.1.2 Two-year government bonds 

 

 
 

Figure 47 – Rolling total directional connectedness from others. 
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Figure 48 – Rolling total directional connectedness to others. 
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Figure 49 – Rolling total net directional connectedness. 
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B.1.3 Ten-year government bonds 

 
 

 
Figure 50 – Rolling total directional connectedness from others. 
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Figure 51 – Rolling total directional connectedness to others. 
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Figure 52 – Rolling total net directional connectedness. 
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B.2 Robustness assessment  
 

Finally, this section concludes with a discussion of the robustness of the 

parameters chosen. I plotted the total connectedness for alternative values of the 

rolling window width w (in addition to w = 100 weeks, I considered sample 

windows of 95, 90, 105 and 110 weeks), and for alternative forecast horizons (in 

addition to H = 2 weeks, I considered 3 and 4 weeks). The results are presented 

in Figure 53-62. 

All connectedness measures are more sensitive and varying when the window 

width is smaller and become smoother as the window width increases. 

Furthermore, rolling window width determine a lag in measures reactions. This is 

due to the dropping of data for the estimation that happens before with small 

windows, and later with large ones. Conversely, a shorter forecast horizon H 

implies much variation and sensitivity of the measures. However, path and levels 

of total connectedness measures are very close to the ones analysed in the thesis.  

To summarize, the dynamic behaviour of the overall interrelation measures is 

robust to the choice of alternative sample window lengths and forecast horizons. 

 
Figure 53 – Corporate Bonds robustness assessment. 
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Figure 54 – 2-Years Government Bonds robustness assessment. 

 

 

 

 
Figure 55 – 10-Years Government Bonds robustness assessment. 
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Figure 56 – Corporate Bonds robustness assessment. 

 

 

 

 
Figure 57 – 2-Years Government Bonds robustness assessment. 
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Figure 58 – 10-Years Government Bonds robustness assessment. 

 

 

 

 
Figure 59 – Corporate Bonds robustness assessment. 
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Figure 60 – 2-Years Government Bonds robustness assessment. 

 

 

 

 
Figure 61 – 10-Years Government Bonds robustness assessment. 
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Appendix C. Code and Tools 
 

 

This section presents the code written in the R programming language in order to 

handle the data and to make statistical computations (including data modelling 

and the production of descriptive statistics). Given the complexity of some 

graphical representations, also parts of the code developed with pure graphical 

purposes will be shown.  

Despite the multitude of scripts (or R-type files) iteratively or subsequently 

executed by the software interpreter for the results production, four main 

categories of the overall code can be identified: 

 

i. dataset construction and data handling; 

ii. ad hoc created functions; 

iii. data modelling and statistical computations; 

iv. graphic representations.  

 

The current Appendix is so structured in order to separately present each 

category-related part of the overall code. 

Before this presentation it is reported a list of open-source standardized functional 

R-libraries, which functionalities have been used to perform from (i) to (iv), in 

addition to the functions created by me for this thesis’s specific applications: 

 

o BigVAR 

o dplyr 

o ExPosition 

o GGally 

o ggplot2 

o network 

o readxl 

o rlist 

o sna 
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o stats 

o tidyr 

o tseries 

o vars 

 

 

C.1 Dataset construction and data handling  
 

The following code has been produced in order to concatenate the times series of 

bond yields, taking the time-related values corresponding to the tenor aimed to 

be analysed. It is an automatization whose function it is only to avoid a manual 

composition of each times series, reducing operational risks and reducing time of 

large dataset evaluations. It does so, by reading all the files in a directory and 

discriminating them by the name (that has to contain the Ticker and the time 

gap-related to yields). It produces it the end a singular file containing the time 

series of bond yields of a single institution through time, a plot of the time series, 

and a prospect on eventually missing values. 

 

output = '.csv' #File name to be printed in output 

temp = list.files(pattern = "*.csv") 

#Creation of the first Dataframe to which concatenate the others 

#via the subsequent FOR LOOP 

data = read.csv(temp[length(temp)]) 

names(data) = c('date', 'YTM') 

data = data[9:nrow(data), 1:2] 

data[, 2] = as.double(data[, 2]) 

names(data) = c('date', temp[length(temp)]) 

rownames(data) <- NULL 

data[, 1] = as.character(as.Date(data[, 1], format = '%m/%d/%Y')) 

 

ref.d = toString(colnames(data)[2])[1] 

ref.d = toString(strsplit(ref.d, '.csv')) 

ref.d = (substr(ref.d, (nchar(ref.d) - 4), nchar(ref.d) - 3)) 

stop = 0 

for (u in 1:nrow(data)) { 

  check.d = substr(as.character(data[u, 1]), 3, 4) 

  if (check.d < ref.d) { 

    stop = u - 1 

    break() 

  } 

} 

data = data[1:stop, ] 

 

#Mentioned FOR LOOP 

for (i in (length(temp) - 1):1) { 

  df = read.csv(temp[i]) 

  df = df[9:nrow(df), 1:2] 

  df[, 2] = as.double(df[, 2]) 

  names(df) = c('date', temp[i]) 

  rownames(df) <- NULL 

  df[, 1] = as.character(as.Date(df[, 1], format = '%m/%d/%Y')) 
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  #Setting reference indexes for concatenating the period of competence 

  ref.d = toString(colnames(df)[2])[1] 

  ref.d = toString(strsplit(ref.d, '.csv')) 

  ref.d = (substr(ref.d, (nchar(ref.d) - 1), nchar(ref.d))) 

  ref.s = toString(colnames(df)[2])[1] 

  ref.s = toString(strsplit(ref.s, '.csv')) 

  ref.s = (substr(ref.s, (nchar(ref.s) - 4), nchar(ref.s) - 3)) 

  stop = 0 

  start = 0 

   

  #Logical driven concatenation 

  for (u in 1:nrow(df)) { 

    check.d = substr(as.character(df[u, 1]), 3, 4) 

    if (check.d == ref.d) { 

      stop = u 

      break() 

    } 

  } 

  for (v in 1:nrow(df)) { 

    check.d = substr(as.character(df[v, 1]), 3, 4) 

    if (check.d < ref.s) { 

      start = v - 1 

      break() 

    } 

  } 

  if (start == 0) { 

    start = nrow(df) 

  } 

  df = df[stop:start, ] #because the order of data is inverse (in time) 

  rownames(df) <- NULL 

  colnames(df) = colnames(data) 

  data = rbind(data, df) 

  rownames(data) <- NULL 

} 

data = apply(data, 2, rev) 

rownames(data) <- NULL 

missing.obs = matrix(0, nrow = 15, ncol = 1) 

miss.obs = matrix(0, nrow = 15, ncol = 1) 

# Creating an index for missing observations of each year 

missing.obs[, 1] = c('06', 

                     '07', 

                     '08', 

                     '09', 

                     '10', 

                     '11', 

                     '12', 

                     '13', 

                     '14', 

                     '15', 

                     '16', 

                     '17', 

                     '18', 

                     '19', 

                     '20') 

 

for (p in 1:nrow(data)) { 

  year = substr(as.character(data[p, 1]), 3, 4) 

  for (t in 1:nrow(missing.obs)) { 

    if (year == missing.obs[t, 1]) { 

      miss.obs[t, 1] = miss.obs[t, 1] + 1 

    } 

  } 

} 

################## CHECK ON MISSING VALUES ############################### 

data = as.data.frame(data[complete.cases(data), ]) 

data[, 1] = as.Date(data[, 1]) 

data[, 1] = as.Date(data[, 1], format = '%Y/%m/%d') 

data[, 2] = as.double(data[, 2]) 

colnames(data) = c('date', 'Y') 

setwd('C:/ ') 

write.csv(data, file = output) 

#Getting back an allert with details about missing observations 

allert = cbind(missing.obs, miss.obs) 

allert[which.min(allert[, 2]) , ] 
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allert 

 

 

 

 

The following code was developed in order to concatenate each time series 

previously created in a unique array for each sample. It also crates an additional 

array containing the first differences of the series, and some extra objects with 

aesthetics useful for graphic purposes (like dates and dimensions). 

 

##################### CORPORATE BONDS ######################### 

#Setting working directory 

setwd('C:/’) 

temp = list.files(pattern = "*.csv") 

temp2 = strsplit(temp, ".csv") 

temp2 = as.character(temp2) 

#Creation of a first array to which concatenate all time series via FOR LOOP 

data = read.csv(temp[1]) 

data = data[, 2:3] 

names(data) = c('date', 'YTM') 

data = data[8:nrow(data), 1:2] 

data[, 2] = as.double(data[, 2]) 

names(data) = c('date', temp[1]) 

#Mentioned FOR LOOP 

for (i in 2:length(temp)) { 

  df = read.csv(temp[i]) 

  df = df[, 2:3] 

  df = df[8:nrow(df), 1:2] 

  df[, 2] = as.double(df[, 2]) 

  names(df) = c('date', temp[i]) 

  data = full_join(data, df, by = 'date') 

} 

data = data[complete.cases(data),] 

dates = as.matrix(data$date) 

rownames(data) = data$date 

data2 = as.data.frame(data) 

data2[, 1] = as.character(data2[, 1]) 

# Taking weekly observations (just the one occurred on Friday days) 

day.rid = matrix(0, nrow = nrow(data), ncol = 1) 

for (s in 1:nrow(data2)) { 

  if (weekdays(as.Date(data2$date[s])) != "venerdì") { 

    day.rid[s] = s 

  } 

} 

day.rid = day.rid[day.rid != 0] 

for (y in 1:length(day.rid)) { 

  if (day.rid[y] != 0) { 

    data2 = data2[-(day.rid[y]),] 

    day.rid = day.rid - 1 

  } 

} 

 

dates = as.matrix(as.character(as.Date(data2$date))) 

data = as.matrix(data2[, 2:ncol(data)]) 

colnames(data) = temp2 

cut = nrow(data) 

 

################# GOVERNMENT BONDS - 2Y ##################### 

datagov = read_excel("2y.xlsx") 

datagov2 = as.data.frame(datagov) 

datagov2[, 1] = as.character(datagov2[, 1]) 

 

day.rid = matrix(0, nrow = nrow(datagov), ncol = 1) 

for (s in 1:nrow(datagov2)) { 

  if (weekdays(as.Date(datagov2$dates[s])) != "venerdì") { 

    day.rid[s] = s 
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  } 

} 

day.rid = day.rid[day.rid != 0] 

for (y in 1:length(day.rid)) { 

  if (day.rid[y] != 0) { 

    datagov2 = datagov2[-(day.rid[y]),] 

    day.rid = day.rid - 1 

  } 

} 

rownames(datagov2) <- NULL 

datesgov = as.matrix(as.character(as.Date(datagov2$dates))) 

 

datagov = as.matrix(datagov2[, 2:ncol(datagov)]) 

 

################## GOVERNMENT BONDS - 10Y ################### 

datagov10 = read_excel("10y.xlsx") 

datagov2.10 = as.data.frame(datagov10) 

datagov2.10[, 1] = as.character(datagov2.10[, 1]) 

 

day.rid2 = matrix(0, nrow = nrow(datagov10), ncol = 1) 

for (s in 1:nrow(datagov2.10)) { 

  if (weekdays(as.Date(datagov2.10$dates[s])) != "venerdì") { 

    day.rid2[s] = s 

  } 

} 

day.rid2 = day.rid2[day.rid2 != 0] 

for (y in 1:length(day.rid2)) { 

  if (day.rid2[y] != 0) { 

    datagov2.10 = datagov2.10[-(day.rid2[y]),] 

    day.rid2 = day.rid2 - 1 

  } 

} 

rownames(datagov2.10) <- NULL 

datesgov2 = as.matrix(as.character(as.Date(datagov2.10$dates))) 

datagov10 = as.matrix(datagov2.10[, 2:ncol(datagov10)]) 

 

############## DATASET ALLIGNMENT IN TIME #################### 

data = data[1:704,] 

datagov = datagov[315:nrow(datagov),] 

datagov10 = datagov10[315:nrow(datagov10),] 

dates = as.matrix(dates[1:704]) 

datesgov = as.matrix(datesgov[315:length(datesgov)]) 

datesgov2 = as.matrix(datesgov2[315:length(datesgov2)]) 

rownames(datagov) <- NULL 

rownames(datagov10) <- NULL 

rownames(data) <- NULL 

############### TAKING FIRST DIFFERENCES ##################### 

data1 = diff(data) 

data2 = diff(datagov) 

data3 = diff(datagov10) 

 

 

 

 

C.2 Ad hoc created functions 
 

The central instrument for connectedness measures computations used was as said 

GFEVD, anyway despite the great diffusion of this technique, a specific function 

for the computation of the Generalised version is not included in standard 

statistical R-libraries. I so developed two functions computing the above 

mentioned measures, and giving back a matrix-form output, with standardized 

results. The need of two functions arose just for the handling differences of two 
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input formats (one from the OLS VAR(p) estimation, and one from Elastic Net 

model). Basically, the second function has jus the additional task to perform the 

inversion of the VAR(p) model with a customized procedure. They are both 

presented below: 

 

OLS estimation input 

GFEVD_vars = function(model, data, step) { 

  MA2 = as.matrix(as.data.frame(Phi(model, nstep = 50))) 

  residuals = residuals(model) 

  epsilon = cov(residuals) 

   

  fevd_gen = matrix(0, nrow = ncol(data), ncol = ncol(data)) 

  sumup = 0 

  sumdw = 0 

   

  for (m in 1:ncol(data)) { 

    ei = matrix(0, nrow = ncol(data), ncol = 1) 

    ei[m, 1] = 1 

    for (n in 1:ncol(data)) { 

      sigma = sqrt(epsilon[n, n]) 

      ej = matrix(0, nrow = ncol(data), ncol = 1) 

      ej[n, 1] = 1 

      for (h in seq(1, (((step - 1) * ncol(data)) + 1), by = ncol(data))) { 

        PHI = MA2[, h:(h + (ncol(data) - 1))] 

        sumup = sumup + ((t(ei) %*% PHI %*% epsilon %*% ej) ^ 2) 

        sumdw = sumdw + (t(ei) %*% PHI %*% epsilon %*% t(PHI) %*% ei) 

      } 

      fevd_gen[m, n] = ((sigma ^ -1) * sumup) / sumdw 

      sumup = 0 

      sumdw = 0 

    } 

  } 

  colnames(fevd_gen) = colnames(data) 

  rownames(fevd_gen) = colnames(data) 

  fevd = fevd_gen 

   

  #Standardization of the results 

  for (q in 1:ncol(fevd)) { 

    for (w in 1:nrow(fevd)) { 

      fevd[w, q] = fevd_gen[w, q] / sum(fevd_gen[w, ]) 

    } 

  } 

  return(fevd) 

} 

 

Elastic Net estimation Input 

GFEVD_BigVars = function(model, data, step) { 

  residuals = model@resids 

  epsilon = cov(residuals) 

  coeff_s = model@betaPred 

   

  #Creation of a "MA_inf CLASS to fill with the matrices of MA representation of the VAR" 

  setClass( 

    "MA_inf", 

    slots = list( 

      mu = "vector", 

      phi0 = "matrix", 

      phi1 = "matrix", 

      phi2 = "matrix", 

      phi3 = "matrix", 

      phi4 = "matrix", 

      phi5 = "matrix", 
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      phi6 = "matrix", 

      phi7 = "matrix", 

      phi8 = "matrix", 

      phi9 = "matrix", 

      phi10 = "matrix", 

      phi11 = "matrix", 

      phi12 = "matrix", 

      phi13 = "matrix", 

      phi14 = "matrix", 

      phi15 = "matrix", 

      phi16 = "matrix", 

      phi17 = "matrix", 

      phi18 = "matrix", 

      phi19 = "matrix", 

      phi20 = "matrix" 

    ) 

  ) 

  MA = new("MA_inf") 

  MA@mu = coeff_s[, 1] 

  MA@phi0 = diag(ncol(data)) 

  a1 = coeff_s[, 2:(ncol(data) + 1)] 

  MA@phi1 = MA@phi0 %*% a1 

  MA@phi2 = (MA@phi1 %*% a1) 

  MA@phi3 = (MA@phi2 %*% a1) 

  MA@phi4 = (MA@phi3 %*% a1) 

  MA@phi5 = (MA@phi4 %*% a1) 

  MA@phi6 = (MA@phi5 %*% a1) 

  MA@phi7 = (MA@phi6 %*% a1) 

  MA@phi8 = (MA@phi7 %*% a1) 

  MA@phi9 = (MA@phi8 %*% a1) 

  MA@phi10 = (MA@phi9 %*% a1) 

  MA@phi11 = (MA@phi10 %*% a1) 

  MA@phi12 = (MA@phi11 %*% a1) 

  MA@phi13 = (MA@phi12 %*% a1) 

  MA@phi14 = (MA@phi13 %*% a1) 

  MA@phi15 = (MA@phi14 %*% a1) 

  MA@phi16 = (MA@phi15 %*% a1) 

  MA@phi17 = (MA@phi16 %*% a1) 

  MA@phi18 = (MA@phi17 %*% a1) 

  MA@phi19 = (MA@phi18 %*% a1) 

  MA@phi20 = (MA@phi19 %*% a1) 

   

  MA2 = cbind( 

    MA@mu, 

    MA@phi0, 

    MA@phi1, 

    MA@phi2, 

    MA@phi3, 

    MA@phi4, 

    MA@phi5, 

    MA@phi6, 

    MA@phi7, 

    MA@phi8, 

    MA@phi9, 

    MA@phi10, 

    MA@phi11, 

    MA@phi12, 

    MA@phi13, 

    MA@phi14, 

    MA@phi15, 

    MA@phi16, 

    MA@phi17, 

    MA@phi18, 

    MA@phi19, 

    MA@phi20 

  ) 

   

  fevd_gen = matrix(0, nrow = ncol(data), ncol = ncol(data)) 

  sumup = 0 

  sumdw = 0 

   

  for (m in 1:ncol(data)) { 

    ei = matrix(0, nrow = ncol(data), ncol = 1) 

    ei[m, 1] = 1 
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    for (n in 1:ncol(data)) { 

      sigma = sqrt(epsilon[n, n]) 

      ej = matrix(0, nrow = ncol(data), ncol = 1) 

      ej[n, 1] = 1 

      for (h in seq(1, (((step - 1) * ncol(data)) + 1), by = ncol(data))) { 

        PHI = MA2[, (h + 1):(h + (ncol(data)))] 

        sumup = sumup + ((t(ei) %*% PHI %*% epsilon %*% ej) ^ 2) 

        sumdw = sumdw + (t(ei) %*% PHI %*% epsilon %*% t(PHI) %*% ei) 

      } 

      fevd_gen[m, n] = ((sigma ^ -1) * sumup) / sumdw 

      sumup = 0 

      sumdw = 0 

    } 

  } 

  colnames(fevd_gen) = colnames(data) 

  rownames(fevd_gen) = colnames(data) 

  fevd = fevd_gen 

  #Standardization of the results 

  for (q in 1:ncol(fevd)) { 

    for (w in 1:nrow(fevd)) { 

      fevd[w, q] = fevd_gen[w, q] / sum(fevd_gen[w,]) 

    } 

  } 

  return(fevd) 

} 

 

 

 

 

C.3 Data modelling and statistical computations 
 

 

In this section is reported the code developed to compute the unconditional model 

via Elastic Net estimation. The final arrays constructed for each model are 

denominated as: 

 

i.   “FEVD” – corporate bonds; 

ii.  “FEVD_2” – 2 years government bonds; 

iii. “FEVD_10” – 10 years government bonds; 

 

and then used for a direct matrix representation, and the network plots of net 

pairwise relations already exposed. The estimation of the models and the cross-

validation on parameters has been executed with the BigVAR R-library, 

inspirated by the work of Nicholson et al. (2017) on VARX-L models. 

 

 

################################################################################ 

                           # STATIC MODELLING # 

################################################################################ 

 

# PARAMETERS SET UP: F.E. HORIZON (H) 
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step = 2 #setting the forecast window 

alpha = 0.1 #alpha parameter for the Elastic Net estimation 

 

### 1 CORPORATE ### 

count_s_corr = 0 

 

mod_s = constructModel( 

  data1, 

  p = 1, 

  "BasicEN", 

  alpha = alpha, 

  gran = c(150, 10), 

  RVAR = FALSE, 

  h = 1, 

  cv = "Rolling", 

  MN = FALSE, 

  verbose = TRUE, 

  IC = TRUE, 

  intercept = FALSE 

) 

 

model_static = cv.BigVAR(mod_s) #performing Cross-validation 

residuals_s = model_static@resids 

plot(model_static) 

SparsityPlot.BigVAR.results(model_static) 

 

#Checking for residuals correlation 

for (k in 1:ncol(residuals_s)) { 

  test = Box.test(residuals_s[, k], lag = 1, type = "Ljung-Box") 

  if (test$p.value < 0.01) { 

    print("AT LEAST ONE ERRORS T.S. IS AUTOCORRELATED") 

    count_s_corr = count_s_corr + 1 

    defect[count_s_corr, 1] = i 

  } 

  else { 

  } 

} 

 

#Computing GFEVD 

fevd_s = GFEVD_BigVars(model_static, data, step) 

 

fevd_comput = fevd_s * 100 #reporting in (%) scale 

diag(fevd_comput) = 0 

FEVD = cbind(rbind(fevd_s, 'TO' = 0, 'NET' = 0), 'FROM' = 0) * 100 

for (i in 1:(ncol(FEVD) - 1)) { 

  for (j in 1:(nrow(FEVD) - 2)) { 

    if (j != i) { 

      FEVD['TO', i] = FEVD['TO', i] + FEVD[j, i] 

      FEVD[j, 'FROM'] = FEVD[j, 'FROM'] + FEVD[j, i] 

    } 

  } 

} 

FEVD['NET', 1:(ncol(FEVD) - 1)] = FEVD['TO', 1:(ncol(FEVD) - 1)] - FEVD[1:(nrow(FEVD) - 

                                                                             2), 'FROM'] 

FEVD['TO', 'FROM'] = sum(fevd_comput) / ncol(data1) 

 

 

### 2 GOV-2Y ### 

count_s_corr = 0 

 

mod_s = constructModel( 

  data2, 

  p = 1, 

  "BasicEN", 

  alpha = alpha, 

  gran = c(150, 10), 

  RVAR = FALSE, 

  h = 1, 

  cv = "Rolling", 

  MN = FALSE, 

  verbose = TRUE, 

  IC = TRUE, 

  intercept = FALSE 

) 
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model_static = cv.BigVAR(mod_s) #performing Cross-validation 

residuals_s = model_static@resids 

plot(model_static) 

SparsityPlot.BigVAR.results(model_static) 

 

#Checking for residuals correlation 

for (k in 1:ncol(residuals_s)) { 

  test = Box.test(residuals_s[, k], lag = 1, type = "Ljung-Box") 

  if (test$p.value < 0.01) { 

    print("AT LEAST ONE ERRORS T.S. IS AUTOCORRELATED") 

    count_s_corr = count_s_corr + 1 

    defect[count_s_corr, 1] = i 

  } 

  else { 

  } 

} 

 

#Computing GFEVD 

fevd_s_gov.2 = GFEVD_BigVars(model_static, datagov, step) 

 

fevd_comput = fevd_s_gov.2 * 100 #reporting in (%) scale 

diag(fevd_comput) = 0 

FEVD_2 = cbind(rbind(fevd_s_gov.2, 'TO' = 0, 'NET' = 0), 'FROM' = 0) * 100 

for (i in 1:(ncol(FEVD_2) - 1)) { 

  for (j in 1:(nrow(FEVD_2) - 2)) { 

    if (j != i) { 

      FEVD_2['TO', i] = FEVD_2['TO', i] + FEVD_2[j, i] 

      FEVD_2[j, 'FROM'] = FEVD_2[j, 'FROM'] + FEVD_2[j, i] 

    } 

  } 

} 

FEVD_2['NET', 1:(ncol(FEVD_2) - 1)] = 

  FEVD_2['TO', 1:(ncol(FEVD_2) - 1)] - FEVD_2[1:(nrow(FEVD_2) - 2), 'FROM'] 

FEVD_2['TO', 'FROM'] = sum(fevd_comput) / ncol(data2) 

 

 

### 3 GOV-10Y ### 

count_s_corr = 0 

 

mod_s = constructModel( 

  data3, 

  p = 1, 

  "BasicEN", 

  alpha = alpha, 

  gran = c(150, 10), 

  RVAR = FALSE, 

  h = 1, 

  cv = "Rolling", 

  MN = FALSE, 

  verbose = TRUE, 

  IC = TRUE, 

  intercept = FALSE 

) 

 

model_static = cv.BigVAR(mod_s) #performing Cross-validation 

residuals_s = model_static@resids 

plot(model_static) 

SparsityPlot.BigVAR.results(model_static) 

 

#Checking for residuals correlation 

for (k in 1:ncol(residuals_s)) { 

  test = Box.test(residuals_s[, k], lag = 1, type = "Ljung-Box") 

  if (test$p.value < 0.01) { 

    print("AT LEAST ONE ERRORS T.S. IS AUTOCORRELATED") 

    count_s_corr = count_s_corr + 1 

    defect[count_s_corr, 1] = i 

  } 

  else { 

  } 

} 

 

#Computing GFEVD 

fevd_s_gov.10 = GFEVD_BigVars(model_static, datagov10, step) 
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fevd_comput = fevd_s_gov.10 * 100 #reporting in (%) scale 

diag(fevd_comput) = 0 

FEVD_10 = cbind(rbind(fevd_s_gov.10, 'TO' = 0, 'NET' = 0), 'FROM' = 0) * 

  100 

for (i in 1:(ncol(FEVD_10) - 1)) { 

  for (j in 1:(nrow(FEVD_10) - 2)) { 

    if (j != i) { 

      FEVD_10['TO', i] = FEVD_10['TO', i] + FEVD_10[j, i] 

      FEVD_10[j, 'FROM'] = FEVD_10[j, 'FROM'] + FEVD_10[j, i] 

    } 

  } 

} 

FEVD_10['NET', 1:(ncol(FEVD_10) - 1)] = FEVD_10['TO', 1:(ncol(FEVD_10) - 

                                                           1)] - 

FEVD_10[1:(nrow(FEVD_10) - 2), 'FROM'] 

FEVD_10['TO', 'FROM'] = sum(fevd_comput) / ncol(data3) 

 

 

 

It follows now the code developed to compute models via rolling estimation. The 

output consists of different arrays for: 

 

i. total system-wide connectedness; 

ii. total connectedness to others for each institution; 

iii. total connectedness from others for each institution; 

iv. total net connectedness for each institution; 

 

the algorithm adds a list for each of these objects, containing the net pairwise 

matrix for each estimation, later used for the dynamically performed selection 

procedure on network’s links.  

 

 
######################################################################################## 

                               # DYNAMIC MODELLING # 

######################################################################################## 

 

### 1 – CORPORATE ### 

# Parameters selection 

window = 100 #rolling estimation window 

step = 2 #FEVD step 

 

total_models = nrow(data1) - window 

defect = matrix(0, nrow = total_models, ncol = 1) 

 

TOTAL_conn = matrix(0, nrow = total_models, ncol = 2) 

 

TO_conn = matrix(0, nrow = total_models, ncol = ncol(data)) 

colnames(TO_conn) = colnames(data) 

 

FROM_conn = matrix(0, nrow = total_models, ncol = ncol(data)) 

colnames(FROM_conn) = colnames(data) 
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NET_conn = matrix(0, nrow = total_models, ncol = ncol(data)) 

colnames(NET_conn) = colnames(data) 

 

count_s_corr = 0 

lista.corp = list(1) 

 

for (i in 1:(total_models)) { 

  pval = 0 

  roll = data1[(0 + i):(window + i),] 

   

  model = VAR(roll, p = 1) 

  residuals = residuals(model) 

  for (k in 1:ncol(residuals)) { 

    test = Box.test(residuals[, k], lag = 1, type = "Ljung-Box") 

    if (test$p.value < 0.01) { 

      print("AT LEAST ONE ERRORS T.S. IS AUTOCORRELATED") 

      count_s_corr = count_s_corr + 1 

      defect[count_s_corr, 1] = i 

      break 

    } 

    else { 

    } 

  } 

   

  # FEVD 

  fevd = GFEVD_vars(model, roll, step) 

  diag(fevd) = 0 

  TOTAL_conn[i, 2] = sum(fevd) / ncol(data) 

   

  for (g in 1:ncol(data)) { 

    FROM_conn[i, g] = sum(fevd[g, ]) * 100 

    TO_conn[i, g] = sum(fevd[, g]) * 100 

    NET_conn[i, g] = TO_conn[i, g] - FROM_conn[i, g] 

  } 

   

  # Computation of net pairwise connectedness matrix "corp" 

  #  and storage of each value in a list 

  corp = fevd 

  for (i in 1:ncol(corp)) { 

    for (j in 1:nrow(corp)) { 

      if (i != j) { 

        if (corp[i, j] > corp[j, i]) { 

          corp[i, j] = corp[i, j] - corp[j, i] 

          corp[j, i] = 0 

        } 

        else { 

          corp[j, i] = corp[j, i] - corp[i, j] 

          corp[i, j] = 0 

        } 

      } 

    } 

  } 

  lista.corp = list.append(lista.corp, corp) 

} 

 

TOTAL_conn[, 1] = dates[(nrow(dates) - nrow(TOTAL_conn) + 1):nrow(dates), ] 

TOTAL_conn = as.data.frame(TOTAL_conn) 

colnames(TOTAL_conn) = list("Time", "Tot.Conn.Corp") 

TOTAL_conn[, 1] = as.Date(TOTAL_conn$Time) 

TOTAL_conn[, 2] = (as.double(TOTAL_conn[, 2])) * 100 

 

 

### 2 - GOVERNMENT 2Y ### 

 

total_models_gov2 = nrow(data2) - window 

 

TOTAL_conn_gov = matrix(0, nrow = total_models_gov2, ncol = 2) 

 

TO_gov2 = matrix(0, nrow = total_models_gov2, ncol = ncol(data2)) 

colnames(TO_gov2) = colnames(data2) 

 

FROM_gov2 = matrix(0, nrow = total_models_gov2, ncol = ncol(data2)) 

colnames(FROM_gov2) = colnames(data2) 
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NET_gov2 = matrix(0, nrow = total_models_gov2, ncol = ncol(data2)) 

colnames(NET_gov2) = colnames(data2) 

 

count_s_corr = 0 

lista.gov2 = list(1) 

 

for (i in 1:(total_models_gov2)) { 

  roll = data2[(0 + i):(window + i),] 

   

  model = VAR(roll, p = 1) 

  residuals = residuals(model) 

  for (k in 1:ncol(residuals)) { 

    test = Box.test(residuals[, k], lag = 1, type = "Ljung-Box") 

    if (test$p.value < 0.01) { 

      print("AT LEAST ONE ERRORS T.S. IS AUTOCORRELATED") 

      count_s_corr = count_s_corr + 1 

      defect[count_s_corr, 1] = i 

      break 

    } 

    else { 

    } 

  } 

   

  # FEVD 

  fevd = FEVD_vars(model, roll, step) 

  gfevd = GFEVD_vars(model, roll, step) 

  fevd=gfevd 

   

  diag(fevd) = 0 

  diag(gfevd) = 0 

  TOTAL_conn_gov[i, 2] = sum(gfevd) / ncol(data2) 

 

   

  for (g in 1:ncol(data2)) { 

    FROM_gov2[i, g] = sum(gfevd[g, ]) * 100 

    TO_gov2[i, g] = sum(gfevd[, g]) * 100 

    NET_gov2[i, g] = TO_gov2[i, g] - FROM_gov2[i, g] 

  } 

   

  # Computation of net pairwise connectedness matrix "corp" 

  #  and storage of each value in a list 

  corp = gfevd 

  for (i in 1:ncol(corp)) { 

    for (j in 1:nrow(corp)) { 

      if (i != j) { 

        if (corp[i, j] > corp[j, i]) { 

          corp[i, j] = corp[i, j] - corp[j, i] 

          corp[j, i] = 0 

        } 

        else { 

          corp[j, i] = corp[j, i] - corp[i, j] 

          corp[i, j] = 0 

        } 

      } 

    } 

  } 

  lista.gov2 = list.append(lista.gov2, corp) 

} 

TOTAL_conn_gov[, 1] = datesgov[(nrow(datesgov) - nrow(TOTAL_conn_gov) + 

                                  1):nrow(datesgov), 1] 

TOTAL_conn_gov = as.data.frame(TOTAL_conn_gov) 

colnames(TOTAL_conn_gov) = list("Time", "Tot.Conn.Gov2y") 

TOTAL_conn_gov[, 1] = as.Date(TOTAL_conn_gov$Time) 

TOTAL_conn_gov[, 2] = as.double(TOTAL_conn_gov[, 2]) * 100 

 

 

### 3 - GOVERNMENT 10Y ### 

 

total_models_gov10 = nrow(data3) - window 

 

TOTAL_conn_gov10 = matrix(0, nrow = total_models_gov10, ncol = 2) 

 

TO_gov10 = matrix(0, nrow = total_models_gov10, ncol = ncol(data3)) 
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colnames(TO_gov10) = colnames(data3) 

 

FROM_gov10 = matrix(0, nrow = total_models_gov10, ncol = ncol(data3)) 

colnames(FROM_gov10) = colnames(data3) 

 

NET_gov10 = matrix(0, nrow = total_models_gov10, ncol = ncol(data3)) 

colnames(NET_gov10) = colnames(data3) 

 

count_s_corr = 0 

lista.gov10 = list(1) 

 

for (i in 1:(total_models_gov10)) { 

  roll = data3[(0 + i):(window + i),] 

   

  model = VAR(roll, p = 1) 

  residuals = residuals(model) 

  for (k in 1:ncol(residuals)) { 

    test = Box.test(residuals[, k], lag = 1, type = "Ljung-Box") 

    if (test$p.value < 0.01) { 

      print("AT LEAST ONE ERRORS T.S. IS AUTOCORRELATED") 

      count_s_corr = count_s_corr + 1 

      defect[count_s_corr, 1] = i 

      break 

    } 

    else { 

    } 

  } 

   

  # FEVD 

  fevd = FEVD_vars(model, roll, step) 

  gfevd = GFEVD_vars(model, roll, step) 

  fevd=gfevd 

   

  diag(fevd) = 0 

  diag(gfevd) = 0 

  TOTAL_conn_gov10[i, 2] = sum(gfevd) / ncol(data3) 

   

  for (g in 1:ncol(data3)) { 

    FROM_gov10[i, g] = sum(gfevd[g, ]) * 100 

    TO_gov10[i, g] = sum(gfevd[, g]) * 100 

    NET_gov10[i, g] = TO_gov10[i, g] - FROM_gov10[i, g] 

  } 

   

  # Computation of net pairwise connectedness matrix "corp" 

  #  and storage of each value in a list 

  corp = gfevd 

  for (i in 1:ncol(corp)) { 

    for (j in 1:nrow(corp)) { 

      if (i != j) { 

        if (corp[i, j] > corp[j, i]) { 

          corp[i, j] = corp[i, j] - corp[j, i] 

          corp[j, i] = 0 

        } 

        else { 

          corp[j, i] = corp[j, i] - corp[i, j] 

          corp[i, j] = 0 

        } 

      } 

    } 

  } 

  lista.gov10 = list.append(lista.gov10, corp) 

} 

TOTAL_conn_gov10[, 1] = datesgov2[(nrow(datesgov2) - nrow(TOTAL_conn_gov10) + 

                                     1):nrow(datesgov2), 1] 

TOTAL_conn_gov10 = as.data.frame(TOTAL_conn_gov10) 

colnames(TOTAL_conn_gov10) = list("Time", "Tot.Conn.Gov10y") 

TOTAL_conn_gov10[, 1] = as.Date(TOTAL_conn_gov10$Time) 

TOTAL_conn_gov10[, 2] = as.double(TOTAL_conn_gov10[, 2]) * 100 

 

 

 

#####  PLOTS of all three total connectedness through time  ##### 

 

tot.c = full_join(TOTAL_conn, TOTAL_conn_gov, TOTAL_conn_gov10, by = "Time") 
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tot.c = full_join(tot.c, TOTAL_conn_gov10, by = "Time") 

tot.c = tot.c[complete.cases(tot.c), ] 

tot.plot = pivot_longer(tot.c, 

                        cols =  

                          c("Tot.Conn.Corp",  

                            "Tot.Conn.Gov2y", 

                            "Tot.Conn.Gov10y")) 

 

ggplot(tot.plot, aes( 

  x = Time, 

  y = value, 

  group = name, 

  color = name 

)) + 

  geom_line(lwd = 1.2) + 

  ggtitle('Total Connectedness') + 

  labs(y = "Tot.Conn.(%)", x = "Time", color = 'Legend') + 

  scale_x_date(date_breaks = '1 year', date_labels = "%Y") + 

  scale_colour_manual(values = c("red","purple","green2")) + 

  theme( 

    legend.title = element_text(size = 8), 

    legend.position = "bottom", 

    title = element_text(size = 10, face = 'bold'), 

    axis.title = element_text(size = 8, face = 'bold'), 

    axis.text = element_text(size = 7, face = 'bold'), 

  ) 

 

 

 

Finally, is reported the selection procedures performed on net pairwise relations, 

in order to understand the dynamic of networks’ connections during crisis periods. 

The following code performs the selection procedure based on percentiles, and the 

graphic representation of networks. Some inputs have to be set, in particular the 

index of the original data matrix, that corresponds to the dates of interest for the 

selection procedure. Those latter settings are commented and mapped at the top 

of the code. 

 

 

###  OBSERVATIONS - DATES MAPPING ### 

## Sovreign Debt crisis 

# 72 - 09/2009 PRE Greek declaration 

# 150 - 05/2011 S&P rating cut italia, and Portugal ask help as Ireland 

# 190 - 05/2012 Fiscal Compact 

# 208 - 08/2012 Whatever it takes DRAGHI 

 

## Covid-19 crisis 

# 573 - before 

# 579 - after  

 

### Parameters and data input ### 

#dates of interest (index) 

container = c(72, 150, 190, 208) 

  

#gap for selection procedure over distributions 

gap = c(50, 15)  

 

colorss = c('beige', 'white') 

 

#upload time varying data 

lista = lista.gov10 



141 

 

 

gov.check = 1 #set equal to 1 if the data are government 

 

g.id = 1 #graph counter 

c.id = 1 #color counter 

 

#Weigths for network graph 

w99 = 1.8 

w95 = 1 

w90 = 0.4 

############ 

 

for (l in gap) { 

  for (obs in container) { 

    nplot = obs #date on wich the netowork have to be plotted 

    plus = nplot - 3#pre-crisis gap END 

    ref = plus - l #gap BEGIN 

     

    quant = c() #will contain all net relations in the GAP 

    for (i in ref:plus) { 

      corp = lista[[i]] 

      quant = append(quant, as.vector(corp[-(which(corp == 0))])) 

    } 

    q_99 = (as.numeric(quantile(quant, probs = 0.99))) 

    q_95 = (as.numeric(quantile(quant, probs = 0.95))) 

    q_90 = (as.numeric(quantile(quant, probs = 0.90))) 

     

    net.pairwise = lista[[plus]] 

    net.pairwise = net.pairwise * 0 

     

    match = lista[[nplot]] 

    for (u in 1:ncol(match)) { 

      for (y in 1:nrow(match)) { 

        if (match[y, u] >= q_99) { 

          net.pairwise[y, u] = w99 

        } 

        else if (match[y, u] >= q_95) { 

          net.pairwise[y, u] = w95 

        } 

        else if (match[y, u] >= q_90) { 

          net.pairwise[y, u] = w90 

        } 

      } 

    } 

     

    

    ### NETWORK DATA REPRESENTATION ### 

     

    #Setting the weighs of the nodes 

    if (gov.check == 0) { 

      anag = read.csv('Network_details.csv') 

       

      #Corporate 

      anag.size = anag 

      rownames(anag.size) = anag[, 1] 

      sizer = c() 

      for (i in c(colnames(net.pairwise))) { 

        sizer = cbind(sizer, anag.size[i, 5]) 

      } 

    } 

    else { 

      anag = read.csv('Network_details_gov.csv') 

      #Government 

      rownames(anag) = anag[, 1] 

      sizer = c() 

      for (i in c(colnames(net.pairwise))) { 

        sizer = cbind(sizer, anag[i, 3]) 

      } 

    } 

     

     

    net = network( 

      t(net.pairwise), 

      directed = TRUE, 
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      ignore.eval = FALSE, 

      names.eval = "weights" 

    ) 

     

    # vertex names 

    network.vertex.names(net) = colnames(net.pairwise) 

    set.edge.attribute(net, 

                       'color', 

                       ifelse( 

                         net %e% "weights" == w99, 

                         "blue", 

                         ifelse(net %e% "weights" == w95, "black", "red2") 

                       )) 

     

     

    dynamicVariableName <- 

      paste0("n", g.id) #dynamic variable for graph concat. 

     

    assign( 

      dynamicVariableName, 

      ggnet2( 

        net, 

        label = TRUE, 

        fontface = 'bold', 

        edge.color = 'color', 

        edge.size = "weights", 

        label.color = 'black', 

        label.size = 3, 

        color = "yellow2", 

        arrow.size = 9, 

        arrow.gap = 0.07, 

        size = as.numeric(sizer), 

        max_size = 15, 

        mode = "circle" 

      ) + 

        guides(size = FALSE) + # remove the legend 

        theme(title = element_text(size = 14, face = 'bold')) + 

        theme(plot.title = element_text(hjust = 0.5)) 

    ) 

     

    g.id = g.id + 1 

  } 

   

  col = colorss[c.id] 

  b = theme(panel.background = element_rect(color = "grey60", fill = col)) 

   

  if (length(container) == 4) { 

    gridExtra::grid.arrange( 

      n1 + ggtitle("09 / 2009") + b, 

      n2 + ggtitle("05 / 2011") + b, 

      n3 + ggtitle("05 / 2012") + b, 

      n4 + ggtitle("08 / 2012") + b 

    ) 

    g.id = 1 

  } 

  else { 

    g.id = 3 

  } 

  c.id = c.id + 1 

} 

 

if (length(container) == 2) { 

  b = theme(panel.background = element_rect(color = "grey60", fill = 'beige')) 

  b1 = theme(panel.background = element_rect(color = "grey60", fill = 'white')) 

  gridExtra::grid.arrange( 

    n1 + ggtitle("02 / 2020 ") + b, 

    n2 + ggtitle("03 / 2020") + b, 

    n3 + ggtitle("02 / 2020 ") + b1, 

    n4 + ggtitle("03 / 2020") + b1 

  ) 

} 

 

 

 



143 

 

C.4 Graphic representations 
 

In this final section is reported an overview of the graphical-related parts of the 

code.  

Below it is presented the R code producing the network static pairwise 

representation for each sample, comprehensive of the computations of net 

relations among the actors. 

 

####################################### 

### NET PAIRWISE MATRIX PREPARATION ### 

####################################### 

#Graphic Parameters setting 

#(weight to emphasize the links diameter) 

w = 3.2 

 

### Setting the weights of the nodes ### 

setwd('C:/Users/Lapo/Desktop/CaFoscari/Thesis') 

anag = read.csv('Network_details.csv') 

anag.gov = read.csv('Network_details_gov.csv') 

#Corporate 

anag.size = anag 

rownames(anag.size) = anag[, 1] 

sizer.corp = c() 

for (i in c(colnames(fevd_s))) { 

  sizer.corp = cbind(sizer.corp, anag.size[i, 5]) 

} 

#Government 

rownames(anag.gov) = anag.gov[, 1] 

sizer.gov = c() 

for (i in c(colnames(fevd_s_gov.10))) { 

  sizer.gov = cbind(sizer.gov, anag.gov[i, 3]) 

} 

 

 

corp = fevd_s 

gov2 = fevd_s_gov.2 

gov10 = fevd_s_gov.10 

 

 

### Computation of NET pairwise Conn Matrix ### 

#Corporate 

for (i in 1:ncol(corp)) { 

  for (j in 1:nrow(corp)) { 

    if (i != j) { 

      if (corp[i, j] > corp[j, i]) { 

        corp[i, j] = corp[i, j] - corp[j, i] 

        corp[j, i] = 0 

      } 

      else { 

        corp[j, i] = corp[j, i] - corp[i, j] 

        corp[i, j] = 0 

      } 

    } 

  } 

} 

#Gov 2y 

for (i in 1:ncol(gov2)) { 

  for (j in 1:nrow(gov2)) { 

    if (i != j) { 

      if (gov2[i, j] > gov2[j, i]) { 

        gov2[i, j] = gov2[i, j] - gov2[j, i] 

        gov2[j, i] = 0 
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      } 

      else { 

        gov2[j, i] = gov2[j, i] - gov2[i, j] 

        gov2[i, j] = 0 

      } 

    } 

  } 

} 

#Gov 10y 

for (i in 1:ncol(gov10)) { 

  for (j in 1:nrow(gov10)) { 

    if (i != j) { 

      if (gov10[i, j] > gov10[j, i]) { 

        gov10[i, j] = gov10[i, j] - gov10[j, i] 

        gov10[j, i] = 0 

      } 

      else { 

        gov10[j, i] = gov10[j, i] - gov10[i, j] 

        gov10[i, j] = 0 

      } 

    } 

  } 

} 

 

############################################## 

######### GGNET2 NETWORK PLOTTING ############ 

############################################## 

 

#weighting  links 

corp = corp * w 

gov2 = gov2 * w 

gov10 = gov10 * w 

 

diag(corp) = 0 

diag(gov2) = 0 

diag(gov10) = 0 

 

net.corp = network( 

  t(corp), 

  directed = TRUE, 

  ignore.eval = FALSE, 

  names.eval = "weig" 

) 

net.gov2 = network( 

  t(gov2), 

  directed = TRUE, 

  ignore.eval = FALSE, 

  names.eval = "weig" 

) 

net.gov10 = network( 

  t(gov10), 

  directed = TRUE, 

  ignore.eval = FALSE, 

  names.eval = "weig" 

) 

# setting nodes names 

network.vertex.names(net.corp) = colnames(corp) 

network.vertex.names(net.gov2) = colnames(gov2) 

network.vertex.names(net.gov10) = colnames(gov10) 

 

ggnet2( 

  net.corp, 

  label = TRUE, 

  fontface = 'bold', 

  edge.size = "weig", 

  label.color = 'black', 

  label.size = 4.5, 

  color = "yellow2", 

  edge.color = 'seagreen3', 

  arrow.size = 12, 

  arrow.gap = 0.05, 

  size = as.numeric(sizer.corp), 

  max_size = 15 

) + 
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  guides(size = FALSE) + #remove the legend 

  ggtitle("Corporate Bonds") + 

  theme(title = element_text(size = 12, face = 'bold')) 

 

ggnet2( 

  net.gov2, 

  label = TRUE, 

  fontface = 'bold', 

  edge.size = "weig", 

  label.color = 'black', 

  label.size = 4.5, 

  color = "darkorange", 

  edge.color = 'red2', 

  arrow.size = 12, 

  arrow.gap = 0.05, 

  size = as.numeric(sizer.gov), 

  max_size = 18 

) + 

  guides(size = FALSE) + #remove the legend 

  ggtitle("Gov.Bonds - 2Y") + 

  theme(title = element_text(size = 12, face = 'bold')) 

 

ggnet2( 

  net.gov10, 

  label = TRUE, 

  fontface = 'bold', 

  edge.size = "weig", 

  label.color = 'black', 

  label.size = 4.5, 

  color = "lightpink1", 

  edge.color = 'slateblue1', 

  arrow.size = 12, 

  arrow.gap = 0.05, 

  size = as.numeric(sizer.gov), 

  max_size = 18 

) + 

  guides(size = FALSE) + #remove the legend 

  ggtitle("Gov.Bonds - 10Y") + 

  theme(title = element_text(size = 12, face = 'bold')) 

 

 

 

Additional parts of the code, producing standard graphics representations or 

computations (like the contents of Appendix B) are here not presented for lack of 

methodological interest and peculiarity.  
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