Università Ca’ Foscari Venezia
FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI
Corso di Laurea in Scienze Ambientali

TESI DI LAUREA SPECIALISTICA

MONOTORAGGIO AMBIENTALE DEL COMPARTO ARIA PRESSO L’AEROPORTO “MARCO POLO” DI’ TESSERA-VENEZIA

Laureando
Alessandro Longo
Matricola 814443

Relatore
Chiar.mo Prof. Giancarlo Rampazzo

Correlatori
Dott. Gabrio Valotto
Ing. Davide Bassano

Anno Accademico 2011-2012
INDICE

INDICE... 2
INDICE DELLE FIGURE .. 3
INDICE DELLE TABELLE ... 6
INTRODUZIONE ... 7
1. IL SETTORE AERONAUTICO .. 8
 1.1 L’AVIAZIONE .. 8
 1.2 STIMA DELLE EMISSIONI AEROPORTUALI .. 11
 1.3 L’EMISSIONS TRADING SYSTEM (ETS) NEL TRASPORTO AEREO 13
 1.4 NORMATIVA ... 15
2. EXPERIMENTAL ... 17
 2.1 PROGETTO DI MONITORAGGIO ... 17
 2.2 SCELTA DEL SITO DI CAMPIONAMENTO ... 18
 2.3 CABINA DI MONITORAGGIO ... 19
 2.4 DESCRIZIONE DELL’AEREOORTO E DEL CONTESTO TERRITORIALE 19
 2.5 ANALISI DATI RILEVATI DALLA CENTRALINA .. 28
3. ANALISI PARAMETRI METEO .. 31
 3.1 ASPETTI METEOROLOGICI .. 31
 3.2 ANALISI VARIABILI METEO AREA DI STUDIO .. 41
4. ANALISI INQUINANTI MONITORATI .. 47
 4.1 INQUINANTI E CONTAMINATI ATMOSFERICI .. 47
 4.2 PARTICOLATO ATMOSFERICO ... 48
 4.2.1 ANALISI DATI ... 52
 4.2.2 CONFRONTI CONCENTRAZIONI NORMATIVA 61
 4.3 SO\textsubscript{x} – OSSIDI DELLO ZOLFO ... 62
 4.3.1 ANALISI DEI DATI .. 65
 4.3.2 CONFRONTI CONCENTRAZIONI NORMATIVA 77
 4.4 NO\textsubscript{x} – OSSIDI DELL’AZOTO .. 78
 4.4.1 ANALISI DEI DATI .. 82
 4.4.1.a BIOSSIDO DI AZOTO ... 95
 4.4.1.b MONOSSIDO D’AZOTO .. 98
 4.4.2 CONFRONTI CONCENTRAZIONI NORMATIVA 100
4.5. OZONO .. 101
 4.5.1 ANALISI DEI DATI ... 104
 4.5.2 CONFRONTI CONCENTRAZIONI NORMATIVA ... 114
4.6 MONOSSIDO DI CARBONIO .. 116
 4.6.1 ANALISI DEI DATI ... 120
4.7 CORRELAZIONE ... 128
4.8 COEFFICIENTI DI CORRELAZIONE INCROCIATA .. 140
4.9 STUDIO DELLA VARIAZIONE DI CONCENTRAZIONE ATMOSFERICA
 DEGLI INQUINANTI IN FUNZIONE DELL’AUMENTO DEL NUMERO DI
 VOLI.. 144
5. CONCLUSIONI e WORK IN PROGRESS .. 148
BIBLOGRAFIA .. 155
SITOGRAFIA .. 177

INDICE DELLE FIGURE

Figura 1: : fasi ciclo LTO [EEA 2007]..13
Figura 2: Aeroporto Marco Polo e relativo sito di campionamento [G. Valotto, 2011]
... 18
Figura 3: numero passeggeri per anno aeroporto Marco Polo [S.A.V.E., 2012]21
Figura 4 - Andamenti del giorno tipo del numero di voli per l’estate 200922
Figura 5 - Area territoriale di studio e principali sorgenti emissive in esso presenti .27
Figura 6 a,b,c,d,e - Esempi delle principali tipologie di elaborazioni grafiche
 utilizzate nello svolgimento dello studio di tesi .. 28
Figura 7 - Andamento stagionale della temperatura atmosferica media giornaliera..32
Figura 8 - Andamento stagionale della radiazione solare incidente media giornaliera
... 33
Figura 9 - Andamento del giorno tipo della temperatura per l’estate 2009..............34
Figura 10 - Andamenti del giorno tipo della R.S.I. per l’estate 200934
Figura 11 - Andamento stagionale della velocità media giornaliera del vento35
Figura 12 - Andamento del giorno tipo della velocità media giornaliera del vento
 estate 2009.. 36
Figura 13 - Andamento del giorno tipo della velocità media giornaliera del vento
 inverno 2011.. 36
Figura 14 - Distribuzione percentuale di frequenza delle direzioni del vento in funzione della velocità registrate durante le stagioni estate 2009 e inverno 201137
Figura 16 - Grafici distribuzione di frequenza classi di Pasquill per l’estate 2009-10 e l’inverno 2010-11 ..39
Figura 17 - Andamenti stagionali precipitazioni ..40
Figura 18 - Grafici concentrazione media giornaliera PM$_{10}$53
Figura 19 - Distribuzioni di frequenza PM$_{10}$..54
Figura 20 - Andamento del giorno tipo della concentrazione di PM$_{10}$ estate 2009 e inverno 2011 ..55
Figura 21 - Andamento della concentrazione media di PM$_{10}$ in funzione della direzione del vento per l’estate 2009 e l’inverno 2011. ...56
Figura 22 - Concentrazione di PM$_{10}$ in funzione della direzione e velocità del vento per l’estate 2009 e inverno 2010 ..57
Figura 23 - Grafici concentrazione media giornaliera SO$_2$67
Figura 24 - Distribuzioni di frequenza SO$_2$...68
Figura 25 - Andamento del giorno tipo della concentrazione di SO$_2$69
Figura 26 - Andamento della concentrazione media di SO$_2$ in funzione della direzione del vento per l’estate 2009 e l’inverno 2011 ...70
Figura 27 - Concentrazione di SO$_2$ in funzione della direzione e velocità del vento per l’estate 2009 e inverno 2011 ..71
Figura 28 - Grafici di confronto tra l’andamento stagionale del PM$_{10}$ e dell’SO$_2$.....72
Figura 29 - Grafici concentrazione media giornaliera NO$_2$83
Figura 30 - Grafici concentrazione media giornaliera NO85
Figura 31 - Distribuzioni di frequenza NO$_2$..86
Figura 32 - Distribuzioni di frequenza NO ...87
Figura 33 - Andamento del giorno tipo della concentrazione di NO$_2$88
Figura 34 - Andamento del giorno tipo della concentrazione di NO89
Figura 35 - Andamento della concentrazione media di NO$_2$ in funzione della direzione del vento per l’estate 2009 e l’inverno 2011 ..90
Figura 36 - Andamento della concentrazione media di NO in funzione della direzione del vento per l’estate 2009 e l’inverno 2011 ...91
Figura 37 - Concentrazione di NO\textsubscript{2} in funzione della direzione e velocità del vento per l’estate 2009 e inverno 2011..92
Figura 38 - Concentrazione di NO in funzione della direzione e velocità del vento per l’estate 2009 e inverno 2011..93
Figura 39 - Grafici di confronto tra gli andamenti medi giornalieri dell’NO\textsubscript{2} e del PM\textsubscript{10}, per l’estate 2009 e l’inverno 2010...94
Figura 40 - Grafici concentrazione media giornaliera ozono..105
Figura 41 - Distribuzioni di frequenza stagionali ozono..106
Figura 42 - Andamento del giorno tipo della concentrazione di O\textsubscript{3} estate 2009 e inverno 2011..107
Figura 43 - Andamento della concentrazione media di O\textsubscript{3} in funzione della direzione del vento per l’estate 2009 e l’inverno 2011 ...108
Figura 44 - Concentrazione di O\textsubscript{3} in funzione della direzione e velocità del vento per l’estate 2009 e inverno 2011 ..109
Figura 45 - Andamenti concentrazione media giornaliera stazione Tessera.............123
Figura 46 - Andamento del giorno tipo della concentrazione di CO presso la centralina EZI-Tessera..124
Figura 47 - Andamenti del giorno tipo della concentrazione di CO stazioni ARPAV. ..125
Figura 48 - Andamento del giorno tipo della concentrazione di CO stazioni ARPAV ..126
Figura 49 - Andamenti concentrazioni medie stagionali CO.................................127
Figura 50 - Coefficienti di correlazione globale...130
Figura 51 - Andamenti dei coefficienti di correlazione fra le variabili in funzione della direzione del vento...135
Figura 52 - coefficienti di correlazione incrociata tra i principali inquinati e il parametro “velocità del vento”...141
Figura 53 a,b,c, – coefficienti di correlazione incrociata tra O\textsubscript{3}-VV, O\textsubscript{3}-R.S.I. e VV-R.S.I ...142
Figura 54 a,b,c,d,e - coefficienti di correlazione incrociata tra NO, NO\textsubscript{2}, O\textsubscript{3}, PM\textsubscript{10}, SO\textsubscript{2} e n° di voli ..143
Figura 55 a,b,c,d,e - Grafici 3D in funzione del numero di voli, della concentrazione di NO, NO\textsubscript{2}, PM\textsubscript{10}, SO\textsubscript{2} e direzione del vento ..147
INDICE DELLE TABELLE

Tabella 1 - Specifiche tecniche della strumentazione presente all’interno della centralina di monitoraggio [http://www.entezona.it, 2012] ..19

Tabella 2 - Confronto fra le concentrazioni massime di PM$_{10}$ rivelate durante i due anni di monitoraggio e i relativi limiti di legge ..61

Tabella 3 - Confronto fra le concentrazioni massime di SO$_2$ (orarie e giornaliere) rivelate durante il biennio monitorato e i relativi limiti di legge ...77

Tabella 4 - Confronto fra le concentrazioni massime di ossidi di Azoto (orarie, giornaliere e annuali) rivelate e i relativi limiti di legge ...100

Tabella 5 - Confronto fra le concentrazioni massime di O$_3$ rivelate durante il trimestre monitorato e i relativi limiti di legge ..115

Tabella 6 - principali sorgenti di CO (W.H.O., 1999) ..116
INTRODUZIONE

La presente tesi di laurea Magistrale in Scienza Ambientali si inserisce nel vasto campo del monitoraggio dell’inquinamento atmosferico. Il problema della qualità dell’aria è di estrema attualità visto il forte incremento della presenza di sorgenti emissive a livello locale e globale, ed è inoltre motivo di crescente preoccupazione per la popolazione, vista l’accresciuta consapevolezza dei rischi connessi alla qualità dell’aria che respiriamo. Il monitoraggio della qualità dell’aria, è quindi necessario per il bene comune, ed è interesse delle autorità locali, ma responsabilità anche degli enti privati e pubblici, capire e quindi prevenire gli impatti ambientali delle varie strutture.

L’area monitorata è quella di Tessera, una frazione del comune di Venezia su cui insistono diverse sorgenti emissive tra cui l’intenso traffico veicolare, le vaste aree limitrofe urbanizzate, il vicino polo chimico ed energetico e l’aerporto internazionale “Marco Polo”. Nello specifico il sito di campionamento è inserito all’interno del sedime aeroportuale.

Poiché questa ricerca fa parte del progetto “Monitoraggio delle emissioni di origine aeroportuale: aerporto Marco Polo di Tessera (VE)” nato dalla collaborazione tra Università Ca Foscari di Venezia, SAVE S.p.a. che gestisce il suddetto aerporto ed Ente Zona industriale di Porto Marghera, gli obiettivi principali sono:

- **Il monitoraggio della qualità dell’aria nell’area di Tessera, in cui è presente l’aerporto.**
- **Fornire delle informazioni utili alla stima del contributo emissivo aeroportuale.**

Per avere un quadro sufficientemente esaustivo degli andamenti temporali degli inquinanti monitorati sono stati elaborati i dati rivelati durante le otto stagioni consecutive comprese fra giugno 2009 e giugno 2011. Questo ha permesso, oltre a studiare gli andamenti annuali, di inter-confrontare i vari periodi caratterizzati dalle medesime condizioni atmosferiche.

Gli inquinanti e le variabili meteorologiche, monitorate con frequenza oraria, che sono state prese in considerazione sono: SO$_2$, PM$_{10}$, O$_3$, NO, NO$_2$, NO$_x$, CO, direzione e velocità del vento, intensità della radiazione solare incidente, precipitazioni e temperatura.
L’elaborato è costituito da cinque capitoli. Nel primo verrà data un immagine generale del settore aeronautico, della sua evoluzione storica e dei principali impatti ambientali ad esso collegati. Nel secondo verrà presentato nel dettaglio il progetto di monitoraggio sopramenzionato che è tuttora in essere e verrà data un’esauritiva descrizione del territorio in cui insiste l’aeroporto “Marco Polo” e delle principali sorgenti emissive che lo caratterizzano. Nel terzo e nel quarto capitolo saranno presentate e studiate le elaborazioni grafiche e statistiche di ciascun parametro meteorologico e inquinante. Si mostrerà nello specifico l’andamento delle concentrazioni in funzione del tempo, della velocità e direzione del vento utilizzando grafici bi e tridimensionali. Nel quinto e ultimo capitolo della tesi, verrà presentato lo stato attuale gli sviluppi futuri del progetto, e infine saranno discusse le conclusioni e le evidenze emerse nel corso dello svolgimento della tesi.

1. IL SETTORE AERONAUTICO

1.1 L’AVIAZIONE

In questi ultimi anni l’aviazione civile con la sua forte crescita si è affermato, come uno dei settori maggiormente strategici in Europa da un punto di vista economico e sociale, portando quindi a un sempre maggiore interesse da parte d’investitori e decisori politici. In primo luogo il trasporto aereo, ha acquisito con il passare del tempo sempre più importanza, perché si è rivelato un elemento decisivo e fondamentale per la crescita del turismo internazionale, in quanto ha agevolato gli spostamenti di massa, che sono così diventati più facili e sempre meno costosi, e ha anche così alimentato e favorito scambi culturali e con essi i benefici sociali che ne derivano in termini di qualità della vita [Papponetti V., 2001]. In secondo luogo l’industria aeronautica costituisce una fonte indiscussa di benefici a livello di economia globale, poiché comporta un aumento del reddito per tutta l’area d’influenza a livello territoriale [Papponetti V., 2001; Schipper Y. et al., 2001]. Inoltre contribuisce a creare nuovi posti di lavoro, stimola la crescita e lo sviluppo del territorio.

Infatti la presenza di una struttura aeroportuale porta nella maggior parte dei casi a un accresciuto valore nelle aree ad esso limitrofe, anche grazie a investimenti da parte dei decisori pubblici, migliorando così le condizioni economiche del contesto di riferimento; tuttavia bisogna considerare che gli aeroporti sono strutture che nello
svolgimento delle loro normali attività portano necessariamente a degli impatti di tipo ambientale. Quindi se da un lato si hanno effetti positivi a livello economico e sociale, dall’altro ci si trova inevitabilmente concorrenti rispetto a valori fondamentali come quelli della salute pubblica, della protezione ambientale e della gestione delle risorse naturali. Il trasporto aereo, dalla sua nascita fino a questi ultimi anni è cresciuto continuamente; crescita comunque non uniforme, che è variata da stato a stato, con un aumento medio che si è assestato attorno al 5 – 6 % per anno [Martini G. et al., 2010]. L’aumento generale delle attività di trasporto, com’è prevedibile, negli anni è stato accompagnato anche da un aumento di energia necessaria per provvedere a questi servizi. Di conseguenza con il crescere delle attività di trasporto e del consumo di energia, si è anche verificato un aumento dell’impatto associato alle emissioni connesse con questo settore.

Gli impatti ambientali del traffico aereo sono principalmente associati alle problematiche del rumore, fumi, emissioni gassose di monossido di carbonio (CO) e biossido di carbonio (CO₂), idrocarburi incombusti o parzialmente incombusti, Composti Organici Volatili (COV), ossidi di azoto (NOₓ) e di zolfo (SOₓ), metano (CH₄) e particolato atmosferico (PMₓ) [I.P.P.C., 1999; I.C.A.O., 2011]. Le emissioni che vengono prodotte da tutte le attività connesse con il settore del trasporto aereo, nelle brevi o nelle lunghe distanze, e a varie altitudini generano effetti e processi che hanno un potenziale impatto sulla qualità del comparto atmosferico, che possono, per quanto riguarda la scala territoriale presa in considerazione, andare ad incidere a livello LOCALE, REGIONALE o per il sistema GLOBALE:

- Gli impatti a livello locale, sono quelli maggiormente presi in considerazione da regolatori pubblici, dagli aeroporti e dai gestori di compagnie aeree, in quanto sono quelli che vanno a colpire il territorio con effetti negativi, più direttamente e in maniera maggiormente puntuale e rapida. Sono per la maggior parte causati dagli aerei, durante le varie fasi di movimento chiamate complessivamente “Ciclo Landing to Take Off - LTO” [Kesgin U., 2002; I.C.A.O., 2007], e anche da tutte le strutture connesse con l’aeroporto. A livello locale, il settore aeronautico può essere fonte di potenziali rischi per la salute della popolazione che risiede nelle vicinanze dell’area aeroportuale. Infatti, l’inquinamento acustico e atmosferico generati dagli aeromobili in
movimento e dall’aeroporto stesso, possono andare a incidere sulla salute pubblica e sugli ecosistemi che sussistono nel territorio. Tra i principali effetti che si rivelano a scala locale troviamo senza dubbio, gli aumenti delle concentrazioni di inquinanti come SO$_x$, NO$_x$, il particolato atmosferico e il fenomeno denominato smog fotochimico. [N.E.S.C.A.U.M. 2003; I.C.A.O., 2011].

- A livello regionale, i danni causati dal contributo dato dalle emissioni aeroportuali, sono principalmente legati al fenomeno delle piogge acide. Queste sono dovute a composti come Acido Solforico (H$_2$SO$_4$) e Acido Nitrico (HNO$_3$). Tali acidi si formano quando NO$_x$ e SO$_x$ reagiscono con l’umidità dell’aria. Le piogge acide cadono nella maggior parte dei casi a vari chilometri sottovento dal punto in cui vengono emessi i composti NO$_x$ e SO$_x$, il che le rende assai pericolose per la vegetazione e colture che si trovano nelle vicinanze dell’aeroporto. Per lo più si riscontrano danni agli apparati fogliari, abbassamenti dei valori di pH dei sistemi fluviali e lacustri e la mobilitazione dell’alluminio presente nel terreno. [Ciprotti. M. et al., 1999; I.P.P.C., 1999].

Le emissioni degli aerei sono state una problematica fin dall’inizio dell’aviazione commerciale, ma è stato il continuo aumento del traffico aereo, che ha reso gli impatti sull’ambiente e sull’uomo relativi a questo settore, uno degli aspetti più critici dell’aviazione commerciale, portando così negli anni ad un aumento della
consapevolezza e dell’attenzione da parte della popolazione e del mondo scientifico su questi nuovi aspetti. Si deve considerare infatti, che se questo settore dovesse continuare a crescere con i ritmi rilevati in questi ultimi anni, il volume di traffico aereo aumenterà da 5 a 20 volte rispetto a quello del 1990 [I.P.P.C., 1999; Schafer, A. and Victor D.G., 1997]. Stime attuali ci mostrano che il volume di traffico aereo sta aumentando così velocemente che il consumo totale di combustibile e il conseguente impatto delle emissioni dell’aviazione sull’atmosfera continueranno a crescere nonostante i futuri miglioramenti dei motori, delle tecnologie strutturali e delle operazioni di manovra [I.P.P.C., 1999; Greene D. L., 1995; Lee, J.J et al., 2001]. Questo implica che gli attuali e futuri miglioramenti tecnologici e operazionali non potranno coprire il vertiginoso aumento delle emissioni legate a questo settore. Alla luce di questi dati è molto probabile che l’industria dell’aviazione dovrà in futuro affrontare significative e sempre maggiori sfide a livello ambientale [Aylesworth H. Jr, 1997]. Consci di queste problematiche, in questi anni si sta cercando comunque di sviluppare tecnologie e politiche che possano portare ad una diminuzione delle emissioni, e che quindi vadano a rendere meno opprimente la questione ambientale relativa a questo settore [Ross. D., 2009]. Tuttavia queste devono essere studiate e scelte anche in modo che siano fondamentalmente fattibili a livello economico e gestionale, e non vadano ad incidere in maniera drastica sull’economia connessa all’aviazione. Infatti, l’industria del trasporto aereo richiede alti capitali e alti costi operazionali rispetto ad altre modalità di trasporto, e il quale margine di profitto si aggira solo attorno al 5% per le compagnie aere e del circa 20% per gli aeroporti [Button K. e Mc Dougall G., 2006; Martini G. et al., 2010]. Quindi anche la fattibilità e l’incidenza economica sono da considerare come fattori fortemente limitanti, negli sforzi di abbattimento delle emissioni legate al settore aeronautico.

1.2 STIMA DELLE EMISSIONI AEROPORTUALI
Le numerose strutture aeroportuali, presenti in Italia e nel mondo, sono connesse con l’emissione di un gran numero di contaminanti, i quali sono per la maggior parte dovuti ai processi di combustione che vengono attuati per il funzionamento e il mantenimento delle attività aeroportuali [A.R.P.A.V., 2007]. Le emissioni chimiche relative al settore aeronautico constano principalmente d’inquinanti, tra cui possiamo annoverare gli ossidi di azoto (monossido di azoto NO, biossido di azoto NO₂,
protossido di azoto N_2O indicati complessivamente come NO_x, gli ossidi di zolfo (anidride solforosa SO_2 e anidride solforica SO_3) indicati complessivamente come SO_x, il particolato che è composto principalmente da particelle di carbonio con dimensioni dell’ordine del micron, che si generano nella combustione di tutti gli idrocarburi, poi il monossido di carbonio CO e gli idrocarburi incombusti [I.P.P.C., 1999; Bulciolu M., 2009; I.C.A.O., 2007].

Inoltre hanno una sicura valenza ambientale anche l’anidride carbonica, il contributo della quale, relativo all’aviazione è attualmente attorno al 2% sulle emissioni totali antropiche, percentuale che si stima salirà oltre il 3% per il 2050 [I.P.P.C., 1999], e l’acqua emessa allo stato di vapore dai motori durante la combustione.

In generale un’analisi del funzionamento di una struttura aeroportuale, porta all’individuazione di diverse tipologie di sorgenti emissive, che operano con diverse funzioni:

- I Motori degli aerei, i quali emettono principalmente ossidi di azoto (NO_x), ossidi di zolfo (SO_x), monossido di carbonio (CO), Composti Organici Volatili (COV), particolato atmosferico e vapore acqueo e CO_2 [F.A.A., 2005; Lentini D., 2010]. Le emissioni di ossidi di azoto e delle particelle in sospensione sono preponderanti in fase di decollo e di salita, mentre le emissioni di monossido di carbonio e di idrocarburi sono preponderanti al momento dell’avanzamento a terra [A.R.P.A.V., 2007]. Per ottenere una stima nelle vicinanze del suolo delle emissioni derivate da aeromobili, bisogna considerare come indicatore “il ciclo di atterraggio e decollo” LTO. Questo è considerato un buon indicatore dell’attività del singolo aeromobile, in quanto le emissioni che caratterizzano tale ciclo avvengono entro lo strato di rimescolamento atmosferico (1000 m), e sono quindi le sole in grado di influenzare le concentrazioni inquinanti al suolo. Un LTO comincia quando l’aeromobile inizia la sua discesa verso l’aeroporto di arrivo (“approach”) e, passando attraverso le fasi di movimento a terra e attesa successivi all’atterraggio (“taxi in/idle”) e precedenti il decollo (“taxi out/idle”), di decollo (“takeoff”) e di salita (“climb out”), si conclude con il raggiungimento, da parte dello stesso aereo, dell’altitudine di crociera. Le cinque fasi di un LTO sono caratterizzate da regimi di potenza standard per ciascun aeromobile e quindi da specifici fattori di emissione (“emission

- Le emissioni al suolo risultano direttamente dal funzionamento dell’aeroporto, quindi i gruppi elettrogeni, i gruppi ausiliari di potenza, i compressori, gli elevatori, i tappeti per i bagagli, prove motori, i veicoli di servizio, le centrali di produzione energia, le dotazioni per i lavori di manutenzione, magazzini per lo stoccaggio. [A.R.P.A.V., 2007].

- Il traffico stradale indotto per servire e far funzionare la struttura, che comprende i veicoli personali, quelli a noleggio e le numerose navette e bus.

![Figura 1: fasi ciclo LTO [EEA 2007]](image)

1.3 L’EMISSIONS TRADING SYSTEM (ETS) NEL TRASPORTO AEREO

Mano a mano che si è incominciato a comprendere il problema del contributo delle emissioni in atmosfera relative all’industria aeronautica, si è incominciato a investigare nell’ambito scientifico-tecnologico e in quello delle politiche transnazionali, per trovare soluzioni a questa fondamentale problematica. Anche se le emissioni di CO\(_2\) collegate all’aviazione rappresentano il 2-3% della CO\(_2\) prodotta globalmente dall'uomo, si deve considerare che queste sono aumentate a partire dal 1990, e nel 2010 si è stimato che la CO\(_2\) in atmosfera è aumentata con un tasso di crescita annuo del 5,9%, rispetto le misurazioni degli anni precedenti [I..P.C.C., 2007; C.D.I.A.C., 2010; www.greenstyle.it, 2012]. Così, con il tempo, a livello globale è incominciata ad instaurarsi una maggiore presa di coscienza, anche grazie a
questi dati, e si è incominciato a esprimere preoccupazione sull’effetto della
concentrazione dei gas serra, anche legati al settore aeronautico, presenti
nell’atmosfera e del loro contributo al cambiamento climatico.
Com’è stato riconosciuto nel protocollo di Kyoto e dall’European-ETS l’aviazione
contribuisce a questa problematica, e quindi nel fondamentale processo per trovare
una soluzione, si è considerato importante cercare di applicare meccanismi che
portassero al controllo e alla riduzione delle emissioni in tutto il mondo.
A causa del crescente contributo dell’aviazione alle emissioni di CO$_2$ a livello
comunitario, nel dicembre 2006 la comunità europea ha elaborato una proposta di
modifica della direttiva 2003/87/CE, al fine di poter includere il settore del trasporto
aereo nel sistema europeo dell’ETS [Scaturro F. e Siciliano G., 2009].
L’EU ETS è uno schema sulla base del quale alle aziende incluse nei settori con forti
emissioni di CO$_2$, quindi anche il settore aeronautico, viene fornito un numero
limitato di quote di emissione annuale che devono essere rispettate. Se queste
aziende riescono a rimanere sotto questo limite, avranno quote da poter rivendere come
crediti di CO$_2$ (chiamati EUA, European Allowances); se superano la quantità di
quote assegnate, dovranno acquistarne da aziende che sono state maggiormente
virtuose. L’EU-ETS per il settore aeronautico è quindi basato su un sistema di tipo
“cap-and-trade”. Viene fissato un limite massimo (cap) alle emissioni che possono
essere fatte da ciascuna compagnia aerea, alle quali sono assegnate un numero di
quote di emissione ben definito. Ogni quota assegnata (EUA - EUROPEAN UNIT
ALLOWANCE) da il diritto di emettere una tonnellata di CO$_2$ equivalente. Ogni
anno le aziende che partecipano a questo meccanismo devono restituire un numero di
quote che corrisponde alle emissioni che hanno prodotto nell’anno solare precedente.
Dovendo avere un permesso per ogni emissione prodotta, gli operatori avranno la
possibilità di acquistare e vendere i titoli di emissioni secondo le loro necessità
(trade) o andare ad adottare misure di riduzione delle emissioni.
Ad essere tassate saranno le emissioni di gas serra generate dalle compagnie aeree
che atterrano o che partono dagli aeroporti europei, le quali devono necessariamente
acquistare e vendere quote di emissioni per compensare l’inquinamento prodotto
durante le tratte da/per l’Europa; queste quote verranno però rilasciate per l’85% a
titolo gratuito, ragion per cui solo il 15% delle emissioni effettivamente realizzate
saranno da compensare a livello economico, mentre le altre saranno assegnate
gratuitamente nell'ambito meccanismo di scambio emissivo europeo agli operatori aerei che in esso si trovano ad operare [www.reteclima.it, 2012].

Le compagnie aeree dovranno, a partire dal 1° gennaio 2012, acquistare il “diritto di inquinamento”, secondo quanto previsto dal Sistema Europeo di Scambio delle Quote di Emissioni (ETS) e saranno tenute, inoltre, a presentare alla Commissione un piano di azione che elenchi le modalità con le quali prevedono di monitorare le proprie emissioni di CO\textsubscript{2}. L'obiettivo perseguito dalla Direttiva è quello di diminuire le emissioni di CO\textsubscript{2} del settore aeronautico: si prevede una prima riduzione – pari al 3%, delle emissioni misurate nel biennio 2004/2006 – da raggiungersi entro il 2012; il target di lungo periodo (2013–2020) è quello di una riduzione complessiva del 5%.

1.4 NORMATIVA

Il 30 settembre 2010 è entrato in vigore il D.Lgs. 13 agosto 2010, n°155 di attuazione della direttiva 2008/50/CE. Con questo testo vengono recepite le previsioni della Direttiva e abrogati tutti i precedenti atti normativi a partire dal DPCM 28 marzo 1983 fino al recente D.Lgs. 152/2007, raccogliendone tuttavia, in una unica norma, le strategie generali, i parametri da monitorare, le modalità di rilevazione, i livelli di valutazione, i limiti, livelli critici e valori obiettivo di alcuni parametri, i Criteri di Qualità dei dati. Il presente decreto, quindi partendo dalla normativa preesistente, istituisce un quadro normativo unitario in materia di valutazione e gestione della qualità dell’aria, aggiornato in relazione all’evoluzione delle conoscenze in campo scientifico e sanitario e alle esperienze maturate. Uno dei principali obiettivi che s’intende perseguire con l’attuazione del D.Lgs. 155/2010, che vede coinvolti, oltre a Regioni/Provincie autonome e Ministero dell’Ambiente, del Territorio e del Mare, le agenzie regionali per la protezione ambientale, ISPRA ed ENEA, è quello di raggiungere un crescente livello di efficienza, omogeneità e confrontabilità nella valutazione e gestione della qualità dell’aria su tutto il territorio nazionale, che da sempre si compone di realtà locali spesso troppo diversificate e frammentate tra loro [www.isprambiente.gov.it, 2011]. Con questo nuovo atto normativo, vengono abrogate numerose norme, che precedentemente in modo frammentario avevano disciplinato la materia [I.S.P.R.A., 2010].

Il decreto 152/2010 introduce importanti novità nell’ambito del complesso quadro normativo in materia di qualità dell’aria, introducendo nuovi strumenti che si
pongono come obiettivo di contrastare più efficacemente l’inquinamento atmosferico [C.S.I., 2011].

Alla luce di questa nuovo decreto, che è stato messo in attuazione quando il progetto di monitoraggio nato dalla collaborazione fra SAVE, Università Ca’ Foscari e E.Z.I. era già in essere, andiamo a definire che tutti i dati monitorati sia prima che dopo il 2010, verranno nel corso di tutto lo studio di tesi riferiti ai limiti tabellari specificati all’interno del D.lgs 155/2010. Nello specifico in tutti i paragrafi della tesi riferiti agli inquinanti analizzati, si ritroverà una apposita tabella che riporterà i limiti tabellari del decreto, i livelli critici e i valori obiettivo, i quali saranno confrontati con i dati in nostro possesso, al fine di individuare eventuali superamenti o particolari criticità in alcuni periodi dell’anno.
2. EXPERIMENTAL

2.1 PROGETTO DI MONITORAGGIO

L’aeroporto Marco Polo di Venezia (Tessera) è stato aperto nel 1960 per diventare l’aeroporto di riferimento nel Veneto. Grazie ad una continua crescita del trasporto aereo e del territorio Veneziano dal punto di vista economico, nel luglio del 2002 è stato costruito un nuovo Terminal aeroportuale, allo scopo di adeguare lo scalo all’aumentato traffico aereo e favorire i collegamenti con Venezia anche via mare [www.veniceairport.it, 2012]. Nel 2010 il sistema aeroportuale di Venezia è risultato il 3º italiano dopo quello di Roma e Milano a livello strategico e il quinto scalo italiano per numero di passeggeri [www.veniceairport.it, 2012]. Da un punto di vista territoriale, nonostante la sua grande valenza economica e sociale per tutta l’area veneziana, si deve prendere atto che l’aeroporto Marco Polo occupa una posizione di grande influenza rispetto alla laguna di Venezia, e questo richiede da parte di enti territoriali e gestori della struttura che si abbia particolare attenzione, considerato il particolare valore e l’estrema delicatezza dell’ambiente lagunare. Proprio in considerazione della delicatezza dell’area in cui insiste la struttura aeroportuale e della vicinanza a centri abitati, nell’anno 2008 S.A.V.E s.p.a in collaborazione con l’Università Ca’ Foscari (Venezia) e l’Ente Zona Industriale di Porto Marghera, ha deciso di promuovere e portare a termine un progetto che avesse come obbiettivi principali:

- Il monitoraggio della Qualità dell’Aria nell’area di Tessera, in cui è presente l’aeroporto

- Fornire informazioni utili alla stima del contributo emissivo dell’Aeroporto Marco Polo

Questo progetto, intitolato “Monitoraggio delle emissioni di origine aeroportuale: aeroporto Marco Polo di Tessera (VE)” è iniziato alla fine del 2008 e da giugno 2009 sono monitorate in continuo le variabili meteo e le concentrazioni dei principali contaminati atmosferici, grazie ad una centralina mobile di proprietà dell’Ente Zona Industriale. Inoltre da Luglio 2010 a luglio 2011 è stato campionato anche il particolato atmosferico PM$_1$ con due campionatori siti in prossimità delle piste, al fine di individuare dei traccianti relativi all’aeroporto che permettano di stimare il suo contributo relativo in aree limitrofe a quella di emissione.
2.2 SCELTAs DEL SITO DI CAMPIONAMENTO
Il primo step nell’avanzamento del progetto, necessario per portare avanti una campagna di misurazione che fosse effettivamente rappresentativa dell’area monitorata, è stata la scelta del sito di campionamento e quindi il posizionamento degli strumenti di misurazione. La localizzazione di quest’area è stata possibile grazie all’utilizzo del sistema modellistico SCAIMAR (sistema per il controllo ambientale di tipo innovativo Marghera), costituito da un insieme di software, che lavorano assieme; tra questi c’è la catena modellistica SPRAY. Per individuare quest’area sono stati studiati i punti di massima ricaduta nel territorio, cioè le zone in cui si possono misurare le massime concentrazioni ad altezza uomo, dei principali inquinanti gassosi emessi in atmosfera durante il ciclo LTO degli aerei in volo e in arrivo nell’aeroporto Marco Polo di Venezia. Le attività oltre i 1000 m e quelle dovute ad altri mezzi di trasporto non sono state considerate in quanto esulavano dallo studio in esame. Tale simulazione è stata poi sviluppata per quattro giorni tipo rappresentativi delle quattro stagioni, mentre la sorgente contaminante è stata ipotizzata di tipo lineare e il fascio dei tracciati radar è stato sostituito con una traccia media sia nelle fase di decollo che in quella di atterraggio [Pegorari E. et al., 2009]. Le simulazioni relative ai quattro giorni tipo rappresentativi delle quattro stagioni, sono state utilizzate per individuare il sito più idoneo al campionamento, come mostrato in figura 2, in cui successivamente E.Z.I di Porto Marghera ha posizionato la centralina mobile

![Figura 2: Aeroporto Marco Polo e relativo sito di campionamento](G. Valotto, 2011)
2.3 CABINA DI MONITORAGGIO
In tabella 1 vengono riportate le caratteristiche tecniche degli strumenti utilizzati per il monitoraggio che avviene in continuo.

I dati vengono trasmessi con un modem GSM che permette il controllo da remoto del corretto funzionamento di tutta la strumentazione; i dati sono successivamente elaborati e in accordo con il Decreto Legislativo n°155 del 13 agosto 2010 sono mediati su base oraria.

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Principio di misura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anidride solforosa - SO₂</td>
<td>Fluorescenza pulsata UV</td>
</tr>
<tr>
<td>Ozono - O₃</td>
<td>Assorbimento UV</td>
</tr>
<tr>
<td>Ossidi di Azoto - NO, NO₂</td>
<td>Chemiluminescenza</td>
</tr>
<tr>
<td>Idrocarburi – metanici, non metanici</td>
<td>Ionizzazione a fiamma + Gas cromatografo</td>
</tr>
<tr>
<td>Monossido di Carbonio - CO</td>
<td>Assorbimento infrarosso</td>
</tr>
<tr>
<td>Particolato atmosferico - PM₁₀</td>
<td>Assorbimento raggi Beta</td>
</tr>
</tbody>
</table>

Tabella 1 - Specifiche tecniche della strumentazione presente all’interno della centralina di monitoraggio [http://www.entezona.it, 2012]

Per garantire un’elevata accuratezza e precisione del monitoraggio di questi contaminanti rappresentativi dell’emissione aeroportuale l’aria viene prelevata con una sonda riscaldata che impedisce il fenomeno di condensazione e gli strumenti vengono calibrati con frequenza giornaliera utilizzando delle bombole di gas standard a concentrazione certificata per tarature strumentali. All’interno della centralina sono inoltre collocati degli strumenti atti a rivelare le seguenti variabili meteorologiche in quanto la dispersione dei contaminanti ne è fortemente condizionata: precipitazioni, velocità e direzione del vento, temperatura, radiazione solare incidente.

2.4 DESCRIZIONE DELL’AEREOPORTO E DEL CONTESTO TERRITORIALE
Venezia, a livello geografico, è localizzata a nord del mare Adriatico, nella parte più a nord-est della pianura Padana, in un’area che corrisponde a circa 550 Km²; Il comune di Venezia si estende su una superficie totale di 41.317 ettari, dei quali 25.302 sono ricoperti da acque lagunari. Le località di terraferma (Mestre, Marghera,
Favaro Veneto, Zelarino e Chirignago) occupano una superficie di 13.028 ettari, il Centro Storico di Venezia circa 800, le isole principali (Lido, Pellestrina, Murano, Burano, Sant'Erasmo) circa 2.186.

Il contesto Veneziano è caratterizzato da una complessa pluralità di sorgenti emissive (vedi figura 5) a causa della presenza, all'interno del proprio territorio amministrativo, di un polo chimico ed energetico che è stato di rilevanza nazionale fino a pochi anni fa, un aeroporto internazionale e il porto di Venezia che gestisce consistenti flussi di traffico commerciale e turistico. La pressione emissiva di queste importanti sorgenti, le cui ricadute tra l'altro interessano spesso anche i comuni limitrofi, rendono spesso critico lo stato della qualità dell'aria rilevato dalle numerose centraline della rete di monitoraggio presenti nel territorio veneziano. A queste importanti sorgenti se ne aggiungo altre maggiormente localizzate; quali il traffico stradale, i riscaldamenti domestici e molte altre di minor intensità dislocate nel territorio.

L'aeroporto di Venezia-Tessera è un aeroporto internazionale che dista 13 km dal centro di Venezia. In questi anni, infatti, grazie a miglioramenti strutturali, all’apertura di nuovi scali e di voli, si è registrato negli anni un notevole incremento del numeri di voli (figura n° 3). L’Aeroporto principale (ai sensi dell’articolo 2 comma 1 lettera b del D.lgs 19/8/2005 n°194) “Marco Polo” di Venezia è ubicato lungo una propaggine di terra bonificata e quindi sottratta alla laguna Veneta su cui si affaccia. In particolare sorge in una zona della laguna veneta definita “barena”, ossia una zona caratterizzata da fondali bassi dove l’acqua non supera i 50 cm di altezza. Questo è posto a 45° 30’ 19’’ di latitudine e 12° 21’ 07’’ di longitudine ovest, la sua altitudine di riferimento è di circa 2 metri sul livello del mare [www.northeastspotter.eu, 2012; S.A.V.E., 2005]. E dotato di due piste parallele, di cui quella principale è lunga 3300 metri, mentre quella sussidiaria e normalmente utilizzata come taxi-way, è lunga 2700 metri; entrambe sono larghe 45 metri e sono provviste di banchine della larghezza di 7,5 metri [www.ambiente.veniceairport.it, 2012]. Nel periodo preso come riferimento per la tesi, iniziato con l’estate 2009 e terminato con la primavera 2011, per un tempo complessivo di due anni, si è registrato un leggero calo di “passeggeri per anno” (figura 3), ma un aumento del tonnellaggio complessivo per anno dato degli aerei; dato questo che può essere messo in relazione con un aumento delle emissioni in quanto aerei di maggiore
tonnellaggio, portano a maggiori consumi di carburante, e di conseguenza maggiori emissioni in atmosfera.

![Diagramma dei passeggeri per anno aeroporto Marco Polo](image)

Figura 3: numero passeggeri per anno aeroporto Marco Polo [S.A.V.E., 2012]

Nel grafico di figura 4 viene mostrato l’andamento del giorno tipo relativo al numero di voli dell’estate 2009. Questo grafico è stato ottenuto mediando il numero di voli registrati nella stagione estiva distinti in funzione dei sette giorni della settimana e delle rispettive 24 ore. Si nota che i voli nell’aeroporto Marco Polo sono fondamentalmente distribuiti nella fascia oraria compresa tra le 7.00 e le 23.00, con una maggiore concentrazione di questi tra le ore 11.00 e le ore 16.00; fascia in cui si osservano per tutte le stagioni, fino a 20 voli per ora.
Il portare avanti una campagna di monitoraggio e di valutazione della qualità dell’aria, nella nostra area di studio, è di fondamentale importanza, vista la grande valenza ambientale, sociale e storica di questa. Tuttavia il gestire questo processo in modo efficace ed obbiettivo, è estremamente complesso in quanto influenzato da molti fattori, come le molteplici sorgenti che si possono individuare nel territorio analizzato e il variare dei parametri meteorologici nel corso dell’anno. Quindi nell’andare a cercare di comprendere gli impatti sull’atmosfera generati effettivamente dallo scalo aeroportuale di Venezia, bisogna riuscire a discernerli da quelli già dovuti a sorgenti presenti in un contesto fortemente urbanizzato, e capire inoltre l’effettiva influenza su questi dei parametri meteorologici. L’infrastruttura aeroportuale è interamente ubicata nel territorio del comune di Venezia, l’unico centro abitato che confina direttamente con l’infrastruttura Aeroportuale, è il centro di Tessera. Altri centri abitati che potrebbero essere interessati dall’attività aeroportuale, o comunque influenzarlo a loro volta, ma che non confinano direttamente con la struttura sono Favaro Veneto, Campalto, Terzo, Ca’Noghera, rientranti nel territorio e nella giurisdizione del comune di Venezia, e il comune di Quarto d’Altino, con le frazioni di Altino e Portegrandi. L’area circostante l’aeroporto attualmente è adibita principalmente ad uso agricolo, quindi presenta una densità abitativa caratterizzata da un valore basso, e concentrata principalmente presso i nuclei urbani. In prossimità della testata della pista, esiste una modesta attività artigianale destinata al rimessaggio di imbarcazioni da diporto.
mentre in prossimità del piazzale riservato agli aeromobili di aviazione generale, un punto di attracco imbarcazioni, che svolgono servizio sia privato sia pubblico. La presenza dei centri abitati posti nelle vicinanza della struttura aeroportuale, può essere valutata sia sotto l’aspetto fondamentale dei potenziali rischi per la salute pubblica e per l’ambiente derivante dall’attività dell’aeroporto, ma anche dall’influenza che esse stesse possono avere nei risultati delle analisi della qualità dell’aria fatte per il progetto. Infatti i centri abitati sono sorgenti di svariate tipologie di inquinanti. Il riscaldamento domestico, il cui uso si amplifica durante la stagione fredda, e il traffico veicolare cittadino, sono fattori che possono portare all’immissione nel comparto aria di notevoli quantità di SO$_2$, CO, NO$_2$ e PM$_{10}$ [A.R.P.A.V., 2001, Comune di Venezia-ARPAV, 2001-2010]. Inoltre anche la presenza, in vicinanza dell’aeroporto, di estese aree ad uso agricolo, può portare ad influenze sui risultati analitici; infatti emissioni di azoto possono derivare anche dai processi di denitrificazione nel terreno, e inoltre l’applicazione di ingenti quantità di fertilizzanti artificiali, sono spesso causa di emissioni di ammoniaca (NH$_3$), ossidi di azoto (NO$_x$) e di metano (CH$_4$) [I.S.P.R.A., 1999-2010]. L’attività agricola, può essere anche una fonte rilevante di emissione di PM$_{10}$, portando anche ad influenze maggiori del 14% sul totale emissivo, in particolare nei periodi dell’anno in cui si eseguono le lavorazioni del suolo e quando non si ha una copertura vegetale di questo [I.S.P.R.A., 2008]. Inoltre, non bisogna trascurare la Zona di Marghera e Porto Marghera, area in cui si concentrano un elevato numero di impianti produttivi di tipo chimico ed energetico. In quest’area si possono trovare ben sei centrali termoelettriche (Edison centrale di marghera azotati, Enel centrale di Marghera, Enel centrale di Fusina, Enichem centrale termoelettrica SA1/s di Frene, Agip Petroli Gruppo di Cogenerazione, Edison centrale di marghera Levante) [www.politicheambientali.provincia.venezia.it, 2012]. Per queste strutture, un aspetto particolarmente importante da considerare per quanto riguarda le emissioni e gli impatti ambientali, è la tecnologia adottata per la produzione dell’energia elettrica (termoelettrica convenzionale o a ciclo combinato) e la tipologia di combustibile impiegato [www.politicheambientali.provincia.venezia.it, 2012]. Se il combustibile è olio o carbone, le emissioni inquinanti principali comprendono fumi, ossidi di azoto, ossidi di zolfo e CO-CO$_2$ derivanti dal processo di combustione stesso [C.N.R., 2004]. Se per l’alimentazione del processo produttivo viene utilizzato gas naturale, le emissioni inquinanti sono costituite principalmente da ossidi di azoto e di

Tra le altre sorgenti emissive di notevole rilevanza, troviamo il petrochimico di Marghera - Venezia, presente nell’area fin dal 1926. Le raffinerie essendo impianti di grandi estensioni, sono costituite da molteplici strutture; gli impianti dove si originano la maggior parte delle emissioni, costituite da \(\text{CO}_2 \), \(\text{NO}_x \), \(\text{SO}_2 \) e particolato, sono le unità di produzione energia, i forni e le strutture dove avviene il cracking catalitico. Anche le unità di recupero zolfo e le torce rappresentano una rilevante fonte emissiva. Composti organici volatili (COV) si originano dallo stoccaggio, dal caricamento, dalla manipolazione dei prodotti e dalle operazioni di separazioni oli[www.politicheambientali.provincia.venezia.it, 2012]. Altre emissioni comprendono \(\text{H}_2\text{S} \), \(\text{NH}_3 \), HF e metalli. Da non trascurare, nell’analisi delle principali emissioni che insistono sul territorio, è la rete stradale che si trova nei pressi e collega l’Aeroporto Marco Polo di Tessera con i principali centri abitati nel comune. Tra le strade principali troviamo la tangenziale di Mestre, che prosegue nell’A57 che
collega l’area urbana di Mestre con la Riviera del Brenta a ovest e i comuni di Quarto d’Altino e Marcon a est, e si ricollega all’A4 e all’A27 con la diramazione per l’Aeroporto. La tangenziale è sempre stata caratterizzata da un intenso traffico veicolare; dopo l’apertura del passante di Mestre, si è contato mediamente un transitodì 45000 veicoli leggeri e 12000 veicoli pesanti al giorno [www.cocit.org, 2012].

Altra strada, densamente trafficata, nelle vicinanze dell’aeroporto è la strada statale SS14-Triestina, che parte da Mestre e arriva fino a Trieste, e che nel suo percorso porta poi a svincoli che si dirigono verso i principali centri turistici della costa Veneziana (Jesolo, Eraclea, Caorle, Bibbione). Proprio in considerazione di questo fattore, si riscontra un aumento stagionale del traffico veicolare in corrispondenza del periodo estivo, e di conseguenza anche un forte aumento delle emissioni inquinanti. Il trasporto su strada va tenuto fortemente in considerazione per quanto concerne le emissioni legate ad autoveicoli leggeri e mezzi pesanti, perché è uno dei principali fattori che contribuiscono all’inquinamento del comparto aria. Tra le emissioni legate al trasporto su strada troviamo inquinanti come ossidi di azoto, monossido di carbonio, composti organici volatili, gas serra e particolato, emesso dai processi di combustione dei motori e dall’usura delle gomme e del manto stradale [I.S.P.R.A., 1990-2004]. Mentre le emissioni di SOx sono principalmente legate al traffico veicolare di mezzi pesanti [Bulciolu M., 2009].

di Venezia è uno dei più importanti di Italia per il volume di traffico commerciale e uno dei più importanti nel mediterraneo per quanto riguarda il settore crocieristico. L’accesso a questo è garantito attraverso le tre bocche di porto di Lido San Nicolò, Malamocco-Alberoni, Pellestrina-Chioggia. I moli invece sono dislocati su un’ampia porzione di territorio e divisi in base alla funzione. Sulla terraferma abbiamo i vari moli di Porto Marghera, dove si concentra il traffico commerciale, con navi di tipo portacontainer e petroliere, che trasportano materiali e combustibili per l’interporto e la zona industriale. Nel centro storico, alla stazione Marittima, attraccano traghetto e navi da crociera; qui possono approdare navi fino ai 350 m di lunghezza. Nel molo lungo la riva dei Sette Martiri, vengono ormeggiati principalmente grandi Yacht e in qualche occasione navi da crociera.

L’attività complessiva di questo settore nel contesto Veneziano ha una grande importanza, visto le forti ricadute economiche ed occupazionali che va a creare; tuttavia negli ultimi anni ne sono stati poco presi in considerazione e sottovalutati, gli impatti ambientali prodotti, forse anche per l’ampia diffusione e radicamento in tutta l’area di questo settore. Tra le emissioni principali associate a queste attività troviamo gli ossidi di azoto e zolfo e il particolato, contaminati emessi principalmente nell’utilizzo dei combustibili fossili. Bisogna considerare per quanto riguarda il settore commerciale, che oltre alle emissioni delle navi stesse, si hanno anche quelle di tutto il traffico su strada indotto, in particolare camion, necessario per il trasporto di merci nell’interno del territorio. Invece per quanto riguarda il settore crocieristico, il quale è fortemente in aumento negli ultimi anni [W.P.I., 2010], va detto che le navi non emettono contaminati solo nella fase di movimentazione ma anche quando sono ormeggiate, questo per poter mantenere attive le strutture residenziali interne. Si è rilevato che, per le polveri sottili (PM$_{10}$ e PM$_{2.5}$) il contributo diretto delle grandi navi oscilla tra 2% e 8%, sul totale delle emissioni locali, in fase di transito, e tra 14% e 15%, sulle emissioni totali, in fase di stazionamento, [www.port.venice.it/it/aria.html, 2012], a cui si aggiunge il 10% per gli IPA e 15% per anidride solforosa, sulle emissioni totali in fase di stazionamento [www.port.venice.it/it/aria.html, 2012].
Figura 5 - Area territoriale di studio e principali sorgenti emissive in esso presenti
2.5 ANALISI DATI RILEVATI DALLA CENTRALINA

Nello svolgimento della tesi, per studiare i vari inquinanti e i parametri meteorologici verranno utilizzate cinque tipologie di grafici con lo scopo di evidenziarne le peculiarità e favorirne il confronto fra gli stessi. Nello specifico le tipologie, di cui se ne riporta un esempio in figura 6,a,b,c,d,e, sono:

Figura 6 a,b,c,d,e - Esempi delle principali tipologie di elaborazioni grafiche utilizzate nello svolgimento dello studio di tesi.

I comuni andamenti in funzione del tempo (fig.6-a) utili per poter studiare il trend al variare delle stagioni e per evidenziare eventuali anomalie fra i due anni monitorati.
Le note distribuzioni di frequenza delle concentrazioni (fig.6-b) utili per comprendere le cause che hanno determinato la variazione di concentrazione nell’arco dell’anno.
I grafici del giorno tipo (fig.6-c) già descritti nel capitolo 3.4 per caratterizzare la variazione del numero di voli durante il giorno e durante la settimana. Questo tipo di grafico a volte permette di individuare inequivocabilmente la sorgente dominante nell’area monitorata in quanto la geometria del giorno tipo è caratteristica di particolari tipologie di sorgenti.

I grafici polari (fig.6-d) che forniscono delle informazioni utili per l’individuazione della direzione cardinale rispetto il sito di campionamento lungo la quale sono presenti le sorgenti dominanti dell’inquinante monitorato. Il grafico di figura 6-d mostra l’andamento della concentrazione di NO$_2$ mediata in 36 quadranti con ampiezza di 10 gradi, rispettivamente. I valori numerici posti affianco alla scala dei valori della direzione del vento stanno ad indicare in base a quanti dati di campionamento si è ottenuto quel particolare picco del grafico.

I grafici tridimensionali di fig.6-e ottenuti fittando con una funzione spline la direzione (asse X), la velocità del vento (asse Y) e la concentrazione oraria degli inquinanti. In quest’ultimo i marker blu rappresentano i campioni utilizzati per fittare la superficie la cui intensità di colore è proporzionale alla concentrazione. L’analisi di questo tipo di grafico permette di stabilire l’esistenza e la distanza dal sito di campionamento delle sorgenti inquinanti. Nel caso in cui la sorgente sia distante, all’aumentare della velocità del vento cresce anche la concentrazione dell’inquinante solamente lungo la direzione del vento che unisce i due siti. Il plume emesso da tale sorgente può raggiungere il sito di campionamento prima di disperdersi solamente se la velocità del vento è elevata e se la relativa direzione è favorevole. Ovviamente velocità del vento elevate contribuiscono alla dispersione del plume, ma in particolari situazioni il fenomeno di trasporto domina su quello dispersivo per quanto riguarda la rivelazione di concentrazioni elevate a distanze elevate dalla sorgente di emissione. Nel caso in cui tale sorgente sia invece prossima al sito di campionamento le concentrazioni più elevate vengono rivelate quando la direzione del vento è favorevole al suo monitoraggio, inoltre la concentrazione dell’inquinante diminuisce all’aumentare della velocità del vento a causa della diluizione prodotta dalla turbolenza atmosferica. Infine se la sorgente è diffusa (non è un sito puntuale come una fabbrica) la concentrazione dell’inquinante non varia significativamente in funzione della direzione del vento ma diminuisce all’aumentare della velocità come nel caso precedente. Nel capitolo 4° questa tipologia di grafici è inoltre utilizzata per studiare la variazione di concentrazione atmosferica al variare del numero di voli.
Questi grafici sono ottenuti fittando con una funzione spline la direzione del vento (asse X), il numero di voli (asse Y) e la concentrazione oraria dell’inquinante monitorato utilizzando solamente i dati utili al monitoraggio della sorgente aeroportuale (dalle ore 7:00 alle 23:00 per direzione del vento compresa fra 40°-160°). Se l’aeroporto fosse la sorgente dominante, all’aumentare del numero di voli dovrebbe necessariamente aumentare anche la concentrazione atmosferica dell’inquinante studiato.

Nel testo, per ciascun inquinante, verranno presentate solamente le elaborazioni grafiche utili alla discussione, ovvero quelle rappresentative di un particolare fenomeno o quelle che evidenziano particolari anomalie.
3. ANALISI PARAMETRI METEO

3.1 ASPETTI METEOROLOGICI

Per quanto riguarda la concentrazione degli inquinanti in atmosfera, si vede che questa non è solo determinata dal numero e dall’intensità delle sorgenti inquinanti, ma anche dalle condizioni meteorologiche locali (per i fenomeni d’inquinamento a scala locale) e dalle condizioni meteorologiche a grande scala (per i fenomeni d’inquinamento a distanze maggiori dalle sorgenti), le quali sono spesso un parametro chiave per la comprensione della genesi, dell’entità e dello sviluppo nel tempo di un evento inquinante [www.dsta.unipv.it, 2012]. L’intensità del vento, Le condizioni di turbolenza dei bassi strati atmosferici e particolari effetti atmosferici quali brezze sono i principali fattori di trasporto e diffusione degli inquinanti, e hanno quindi grande importanza nella diminuzione della loro concentrazione in atmosfera [www.dsa.unipv.it, 2012]. Il clima di Venezia è quello tipico della Pianura Padana, mitigato per la vicinanza al mare nelle temperature minime invernali (3 °C in media) e nelle massime estive (24 °C in media). Si può considerare un clima di transizione tra il continentale e il mediterraneo, notevolmente mitigato dalla presenza del mare [Comune di Venezia-ARPAV, 2001-2010].

La piovosità raggiunge i suoi picchi in primavera e in autunno e sono frequenti i temporali estivi. In inverno si possono avere nevicate e la notte gela spesso, cosa che coinvolge anche le acque lagunari delle zone più interne. L'elevata umidità può provocare nebbie nei mesi freddi ed afa in quelli caldi. I venti principali sono la Bora (NE) dominante nei mesi invernali e primaverili, lo Scirocco (SE) in estate e, meno frequente il Libeccio (SW) [Comune di Venezia-ARPAV, 2001-2010].

Vengono presentati adesso i grafici maggiormente rappresentativi della situazione meteorologica nell’area di studio relativamente, ai due anni di campionamento presi in considerazione. Queste analisi grafiche sono fondamentali per comprendere l’andamento a livello stagionale e annuale dei parametri meteo. Si cercherà di cogliere differenze tra le varie stagioni e tra il primo e secondo anno di campionamento; inoltre si cercherà di individuare relazioni tra gli stessi parametri meteo e nel successivo capitolo, anche tra i principali inquinanti monitorati.
Figura 7 - Andamento stagionale della temperatura atmosferica media giornaliera
Figura 8 - Andamento stagionale della radiazione solare incidente media giornaliera
Figura 9 - Andamento del giorno tipo della temperatura per l’estate 2009

Figura 10 - Andamenti del giorno tipo della R.S.I. per l’estate 2009
Figura 11 - Andamento stagionale della velocità media giornaliera del vento
Figura 12 - Andamento del giorno tipo della velocità media giornaliera del vento estate 2009

Figura 13 - Andamento del giorno tipo della velocità media giornaliera del vento inverno 2011
Figura 14 - Distribuzione percentuale di frequenza delle direzioni del vento in funzione della velocità registrate durante le stagioni estate 2009 e inverno 2011
Figura 16 - Grafici distribuzione di frequenza classi di Pasquill per l’estate 2009-10 e l’inverno 2010-11
Figura 17 - Andamenti stagionali precipitazioni
3.2 ANALISI VARIABILI METEO AREA DI STUDIO
L’analisi della temperatura per la determinazione delle concentrazioni degli inquinanti è di notevole importanza, questo perché la presenza di grosse escursioni termiche giornaliere vanno a favorire il rimesscolamento dell’atmosfera. Infatti l’instaurarsi di turbolenze, aiutano la dispersione degli inquinanti e in particolare delle polveri fini, con la conseguente diminuzione della loro concentrazione negli strati atmosferici inferiori. [Comune di Venezia-ARPAV, 2001-2010]. I grafici di figura 7 ci mostrano gli andamenti stagionali delle “temperature atmosferiche medie giornaliere” alla quota di 4 m sul livello del mare, relativi alle stagioni dei due anni di campionamento. In ogni grafico viene confrontata una stagione con la corrispettiva dell’anno successivo. Osservando i quattro grafici, e le linee di tendenza di tipo polinomiale (3° grado), risulta evidente l’andamento tipico annuale, con un estate a temperature più calde, un inverno rigido, e l’autunno e la primavera come stagioni di transizione. Dal confronto tra le stesse stagioni di anni diversi, vediamo che gli andamenti generali risultano abbastanza simili, questo lo si può verificare confrontando i dati delle temperature medie stagionali tra di loro (fig.7). I grafici relativi all’andamento del “giorno tipo stagionale” della temperatura (fig.9), ci mostrano un trend con temperature che calano durante la notte, e incominciano a salire dal mattino con il sorgere del sole, raggiungendo il loro picco verso le ore 14.00-15.00.

Un altro parametro di notevole importanza, in quanto riveste un ruolo fondamentale nella formazione e nell’avvio di reazioni chimiche che coinvolgono molti inquinanti, è la radiazione solare incidente (R.S.I.). Questa deriva dell’energia radiante emessa dal sole e ha un influenza diretta sulla temperatura dell’aria, del terreno e sui processi di evotraspirazione. Il prendere in considerazione la variazione della R.S.I. e della T, è importante perché questi rivestono un ruolo fondamentale nella genesi di un fenomeno meteorologico molto diffuso nella nostra area di studio, che ha grande influenza nella diffusione e nella dispersione degli inquinanti atmosferici, l’inversione termica [Zanetti P., 1990]. In condizioni normali, la temperatura dell’aria, diminuisce all’aumentare della quota altimetrica in media di circa 6 gradi ogni 1000 metri [I.C.A.O., 1998]. Ciò si verifica perché i raggi solari riscaldano la superficie terrestre, che a sua volta riscaldano l’aria nelle sue vicinanze. Questa aumentata la sua temperatura, tende a salire. Una volta salita di quota, è di conseguenza sottoposta a una pressione inferiore, si espande e si raffredda generando
un gradiente termico negativo. Durante un'inversione termica si verifica il fenomeno opposto: l'aria salendo risulta più calda; questo può accadere sia in quota per effetto di subsidenza atmosferica (compressione dell'aria dall’alto verso il basso), che al suolo per effetto dell'irraggiamento terrestre notturno (raffreddamento dovuto alla dispersione del calore dalle superfici terrestri). Infatti, durante il giorno i raggi solari spesso non riescono a riscaldare sufficientemente il terreno sia per l'aumentata inclinazione di questi d'inverno, sia per la ridotta durata del giorno. In questo modo l'aria che è a contatto con il terreno perde calore molto rapidamente, arrivando a temperature minori rispetto agli strati che la sovrastano. In genere l'insolazione diurna è in grado di eliminare lo strato di inversione riportando il normale gradiente termico negativo, ma in specifiche condizioni atmosferiche (alta pressione invernale) il fenomeno tende a presentarsi con frequenza e intensità sempre maggiori portando quindi ad un abbassamento del normale livello del Planetary Boundary Layer - P.B.L1 anche per molti giorni. L’inversione termica, fenomeno molto diffuso nella stagione invernale nella Pianura Padana, porta e favorisce la formazione di nebbie fitte e persistenti e smog nello strato d'aria fredda in prossimità al suolo, specie nelle grandi aree urbane.

Dall’osservazione dei grafici di figura 8, abbiamo la conferma della forte relazione tra questo parametro e la T; infatti necessariamente aumentando la R.S.I. aumentano anche i valori della T. Si coglie infatti in modo molto netto, una variazione stagionale che porta ad alti valori nel semestre caldo e a valori decisamente più bassi nel semestre freddo. I due anni presentano un andamento complessivamente simile, come si può notare dall’andamento delle linee di tendenza e dai valori delle concentrazioni medie stagionali, graficati insieme agli andamenti. Tuttavia si colgono alcune differenze a livello giornaliero o settimanale, che possono essere dovute a variazione di parametri come la piovosità o la copertura del cielo. Ad esempio nell’estate 2010, si notano tre valli (in corrispondenza dei giorni 31/7, 6/8, 14/8) che ci indicano una netta diminuzione dei valori della R.S.I. in quei giorni. Andando a fare un confronto con il grafico della “piovosità media giornaliera” (fig.17), relativo alla stessa stagione si coglie un netto aumento dei mm di pioggia caduti in corrispondenza degli stessi giorni.

1 Il P.B.L. (anche Planetary Boundary Layer) si estende entro i primi 2-3 Km dell'atmosfera e descrive quella parte di atmosfera che viene direttamente influenzata dalla presenza della superficie terrestre e risponde ai cambiamenti indotti dalla superficie terrestre in breve tempo (circa un'ora o meno) [Stull 1988]
Osservando il grafico di figura 10, relativo al “giorno tipo stagionale della R.S.I.”, e confrontandolo con quello di figura 9, ci si accorge anche in questo caso della netta relazione tra questo parametro meteo e la T°. Infatti, vediamo che i due andamenti giornalieri sono pressochè sovrapponibili, in quanto i valori della R.S.I. si annullano durante la notte e incominciano a salire durante la mattina, raggiungendo il loro massimo durante le ore 14.00 – 15.00.

Altri parametri meteorologici di notevole importanza sono la velocità del vento e la sua direzione prevalente; il prendere in considerazione, l’analisi di questi due parametri in una campagna di misurazione di inquinanti atmosferici è molto importante, in quanto danno una misura del grado di dispersione degli inquinanti atmosferici (in particolare per il PM$_{10}$) [Comune di Venezia-ARPAV, 2001-2010]. Inoltre ci possono indicare il posizionamento e l’influenza di sorgenti emissive, poste nell’intorno della centralina di rilevamento. Nell’area veneziana i venti principali sono la Bora (NE) dominante nei mesi invernali e primaverili, lo Scirocco (SE) in estate e meno frequentemente il Libeccio (SW); nell’area costiera dove si affaccia l’aeroporto, nel periodo estivo è anche rilevabile il fenomeno della brezza marina, che favorisce anch’essa la dispersione degli inquinanti nell’area veneziana.

Dall’analisi dei grafici del “Giorno tipo stagionale della velocità del vento”, (grafici di figura 12-13), vediamo che nel semestre caldo (estate-primavera), la velocità del vento incomincia a crescere a partire dalla mattina, raggiungendo il suo picco massimo nelle ore centrali della giornata (15.00-16.00). Questo fenomeno è dovuto ad un maggiore irraggiamento solare in corrispondenza di queste ore, il quale porta quindi ad un maggiore livello di rimescolamento dell’atmosfera [Comune di Venezia-ARPAV, 2001-2010]. Questo è molto meno evidente nel semestre freddo (autunno-inverno), in cui si registrano valori di T° e R.S.I. molto più bassi, per il quale la velocità del vento oscilla in modo relativamente contenuto attorno ai valori della media stagionale [Comune di Venezia-ARPAV, 2001-2010].

I grafici di figura 14 o “Rose dei venti”, mostrano la distribuzione percentuale di frequenza delle direzioni del vento in funzione delle relative velocità registrate a livello stagionale per il biennio di campionamento. Per le stagioni del semestre caldo, in entrambi gli anni si riscontrano venti prevalenti da NNE, con forti componenti da N e NE, con velocità prevalenti medio basse, cioè comprese nelle classi 0-0,5 m/s e 2,0-4,0 m/s. Si riscontrano anche venti che soffiano da S-SE, ricadenti principalmente nella classe di velocità compresa tra 2,0-4,0 m/s. Analizzando le Rose
dei Venti dei semestri Freddi, vediamo che sparisce quasi completamente la componente da S-SE, ma rimangono sempre predominati venti con direzione N-NE, e velocità per lo più radenti dentro le classe 0,5-2,0 m/s, con frequenza che si aggira attorno al 18%.

Da quanto visto fino ad ora, se andiamo a confrontare i grafici, relativi al giorno tipo della VV, della R.S.I. e della T°, ci accorgiamo che i loro profili sono quasi sovrapponibili. Il legame tra R.S.I. e T° è intuitivo, invece meno quello tra VV e T°-R.S.I. Infatti la direzione del vento e la sua intensità si sviluppano principalmente, come risultato della differenza di pressione atmosferica tra due aree. In generale queste differenze si verificano a causa dell’assorbimento irregolare della R.S.I. sulla superficie terrestre. Le zone di bassa pressione si hanno quando l’aria maggiormente riscaldata si dilata e si innalza, richiamando così al suo posto aria dalle zone circostanti ad alta pressione. La VV è tanto maggiore quanto meno distano tra di loro i due nuclei ad alta e bassa pressione e da quanto è più alta la differenza di pressione tra di loro. Quindi la VV tende ad essere al suo massimo durante il giorno quando si registrano i valori maggiori di T° e R.S.I.

Infine, per confermare questo legame tra queste tre variabili, andiamo ad analizzare i grafici di figura 15. Questi sono grafici di tipo polare, che mostrano l’andamento delle variabili meteo VV, R.S.I. e T° in funzione della direzione del vento, mediate in 36 quadranti con ampiezza di 10° gradi. Sono presenti due scale di intensità, una per l’R.S.I. e una per la T e la VV. Da questi grafici risulta evidente che le velocità medie del vento più elevate vengono registrate, fra ENE-S, prevalentemente durante le ore più calde della giornata. Bisogna precisare che quanto appena visto non risulta contraddittorio, con quanto riportato per i grafici di figura 14; in quanto questi mostrano i valori medi della VV registrati nei vari quadranti della rosa dei venti, mentre i grafici 15 mostrano la direzione preferenziale del vento su base temporale.

Un altro parametro che viene analizzato in questa sezione della tesi, è quello della “classe di stabilità”. Le classi di stabilità atmosferica si ottengono come risultato di analisi statistiche di alcuni aspetti del microclima dei bassi strati dell’atmosfera, e trovano ampio utilizzo operativo nei calcoli di dispersione degli inquinanti. La Classificazione maggiormente usata per la stabilità atmosferica, è quella di “Pasquill”. Questa è divisa in sei categorie di stabilità denominate A, B, C, D, E, F, dove la categoria A è la più instabile e la categoria F identifica la più stabile (o meno turbolenta). I metodi comunemente utilizzati per classificare la stabilità atmosferica...
sono basati sull’esistenza di relazioni empiriche che legano la turbolenza a parametri meteorologici facilmente acquisibili dalle stazioni al suolo (velocità del vento, temperatura, radiazione solare, copertura nuvolosa, deviazione standard della velocità del vento, ecc.). Per le misure relative a questo progetto, è stato utilizzato un algoritmo di calcolo basato sul valore della deviazione standard della direzione del vento, che però non permette di definire situazioni contraddistinte da calma di vento; nel grafico queste particolari condizioni atmosferiche sono indicate dalla dicitura “****”. Per quanto riguarda la nostra area di studio, i grafici di figura 16 mostrano la distribuzione di frequenza oraria delle classi di stabilità per le estati 2009-2010 e per l’inverno 2010-2011. Si nota immediatamente una netta prevalenza di ore caratterizzate da una classe di stabilità di tipo D (condizioni meteorologiche neutre), in queste condizioni spesso associate a velocità del vento basso-moderate, gli inquinanti emessi dalle sorgenti tendono a rimanere compatì e possono ricadere al suolo anche a distanze molto elevate [A.P.A.T., 2003; Ferrero E., 2009; Comune di Venezia-ARPAV, 2001-2010]. Quest’analisi è confermata dal “Rapporto sullo stato dell’aria del Comune di Venezia”, documento redatto dal comune di Venezia che analizza le condizioni del comparto Atmosferico anno per anno; infatti anche in questo si è vista una netta prevalenza di dati che indicano per la maggior parte dell’anno condizioni di stabilità di classe D-E (stabilità debole).

L’analisi del parametro piovosità, in un determinato territorio, è di fondamentale importanza per la comprensione dei possibili andamenti delle concentrazioni dei vari inquinanti atmosferici. Infatti tramite il processo di deposizione umida, si favorisce il dilavamento dell’atmosfera e quindi la riduzione degli inquinanti presenti in atmosfera [Comune di Venezia-ARPAV, 2001-2010]. La presenza di sostanze inquinanti in atmosfera può contribuire alla formazione di nubi, queste si formano proprio per effetto di fenomeni di condensazione del vapor acqueo attorno a "nuclei di condensazione", presenti nell'atmosfera in maniera naturale. Il vapor acqueo presente nelle nuvole tende e condensare ed a formare delle goccioline, che quando raggiungono dimensioni sufficienti cadono al suolo, "trascinando" con se anche le particelle attorno alle quali si sono formate e di conseguenza anche le sostanze inquinanti. Questo fenomeno noto come “rain out” è probabilmente uno dei più efficiente meccanismi di rimozione degli inquinanti dall'atmosfera. Un altro meccanismo di cui tener conto nei processi di deposizione umida è rappresentato dal dilavamento (wash out), che descrive il fenomeno di cattura degli inquinanti da parte
delle gocce di pioggia durante la caduta di queste ultime, ed il conseguente trascinamento al suolo.

I grafici di figura 17 mostrano gli andamenti della piovosità stagionale. I due anni hanno avuto un totale di precipitazioni pressoché simili; le precipitazioni totali per il 1° anno sono state di 833,2 mm mentre per il secondo anno sono state 872,6 mm. Anche se la piovosità totale è stata simile nei due anni del progetto presi in considerazione nella tesi, si riscontra che a livello delle stesse stagioni, gli andamenti sono stati assai diversi. Le piogge totali delle due estati sono state pressoché le stesse, ma con l’estate 2009 si concentrano circa tutte in due picchi, a inizio e a fine stagione (107,8 e 48,4 mm), mentre nell’estate 2010 la piovosità è maggiormente distribuita nei vari mesi. I grafici relativi alle due stagioni autunnali prese in considerazioni mostrano per il 2009 una piovosità bassa e concentrata in alcuni picchi (51,8 mm); mentre nell’autunno 2010 si riscontra una piovosità totale quasi doppia rispetto alla stagione precedente (341,0 mm rispetto 197,8 mm) e distribuita in modo abbastanza regolare in quasi tutta la stagione. I due inverni mostrano due piovosità totali pressoché identiche (2010= 222,4 mm e 2011=214,4 mm) e distribuite in modo similare per entrambi gli anni, cioè con scarsi livelli di piovosità ad inizio inverno e livelli più elevati a fine stagione con l’approssimarsi della primavera. Anche per quest’ultima gli andamenti sono simili, con picchi di piovosità crescente man mano che la stagione avanza. Anche se il trend generale è lo stesso nelle due stagioni, la piovosità media della primavera 2010 risulta molto più alta di quella dell’anno successivo (87,4 mm - 234,8 mm)
4. ANALISI INQUINANTI MONITORATI

4.1 INQUINANTI E CONTAMINATI ATMOSFERICI

Viene definito come inquinamento atmosferico, “ogni modificazione dell'aria atmosferica dovuta all’introduzione nella stessa di una o più sostanze in quantità e con caratteristiche tali da ledere o costituire un pericolo per la salute umana o per la qualità dell’ambiente oppure tali da ledere i beni materiali o compromettere gli usi legittimi dell’ambiente [D.Lgs. 152/2006, art. 268, 2012]. Gli inquinanti posso essere suddivisi in base alla loro origine in:

a. **Inquinanti primari.** Vengono definiti inquinanti primari gli inquinanti che sono direttamente emessi dalle sorgenti. I principali inquinanti primari sono quelli emessi dai processi di combustione di qualunque natura, ovvero gli idrocarburi incombusti, il monossido di carbonio, gli ossidi di azoto ed il materiale particellare. Nel caso in cui i combustibili contengano zolfo, si ha inoltre anche emissione di anidride solforosa. In seguito all’emissione in atmosfera, gli inquinanti primari sono soggetti a processi di diffusione, trasporto e deposizione.

b. **Inquinanti secondari,** vengono definiti inquinanti secondari quelle specie inquinanti che si formano a seguito di trasformazioni chimico-fisiche degli inquinanti primari, ovvero delle specie chimiche direttamente emesse in atmosfera dalle sorgenti. Questi spesso possono risultare anche più tossici degli inquinanti originari [E.P.I.A.I.R., 2009]. I principali inquinanti secondari sono:
 - \(\text{NO}_2 \) formato da \(\text{NO} \) primario
 - \(\text{O}_3 \) formato per via fotochimica
 - Particolato secondario
 - Questi gas intervengono nei complicati meccanismi di reazione che costituiscono lo “smog fotochimico”. Il particolato secondario può derivare da reazioni chimico e chimico-fisiche che coinvolgono inquinanti gassosi sia primari che secondari. [Liguori F., 2006; Bulciuolu M. 2009]
4.2 PARTICOLATO ATMOSFERICO

Con il termine Particulate Matter (PM) o Polveri Totali Sospese (PTS), si fa riferimento all’insieme di particelle disperse nell’atmosfera, sia solide che liquide, aventi un diametro compreso tra qualche nanometro (nm) a qualche centinaia di micrometri (µm) [W.H.O., 2002; W.H.O., 2005]. E’ formato da una complessa miscela di sostanze, organiche ed inorganiche, allo stato solido e liquido che, a causa delle loro ridotte dimensioni, tendono a rimanere sospese nell’atmosfera, per tempi che variano da ore a qualche settimana. Nel particolato si possono trovare sostanze diverse, come sabbie, polveri, fuliggine, ceneri, sostanze silicee, sostanze vegetali, composti metallici, fibre tessili naturali e artificiali, sali e svariati elementi (carbonio, piombo, ecc..) [Marconi A., 2003].

Le particelle aerodisperse, hanno la caratteristica di mostrare forme estremamente irregolari e diverse, perciò per ovviare a questa problematica vengono descritte studiando il loro comportamento fluidodinamico e confrontandolo con quello di una particella sferica avente densità unitaria. La dimensione di riferimento è quindi il diametro sferico aerodinamico equivalente \(d_{ae}\) [Sangalli D., 2010; C.A.F.E., 2004]. Il riferirsi al \(d_{ae}\) è uno dei tanti modi per misurare la dimensione delle particelle, ma questo è quello standardizzato e globalmente accettato per applicazioni teoriche, tecniche e misurazioni [www.minambiente.it, 2012].

Quindi il PM\(_{10}\), da noi preso in considerazione in questa tesi, è la frazione di particolato sospeso in aria, che passa attraverso un sistema di separazione in grado di selezionare il materiale particolato di 10 µm, con una efficienza di campionamento del 50% [Viola A., 2007].

Oltre alla distinzione basata sul \(d_{ae}\), il particolato può essere suddiviso in base ai processi che gli hanno dato origine, quindi distinguiamo particolato PRIMARIO e particolato SECONDARIO.

Il particolato PRIMARIO è costituito da particelle di varie dimensioni, quindi sia fini che grossolane, che hanno si sono originate da processi di erosione, da processi di evaporazione dello spray marino, dalla disgregazione di particelle di dimensioni maggiori e da tutti i processi di combustione.

Il particolato SECONDARIO, è costituito principalmente dagli aerosol, quindi da particelle fini con diametro inferiore al µm che hanno avuto origine dalla conversione dei gas in particelle solide. Questo si forma infatti grazie a processi di condensazione di sostanze a bassa tensione di vapore, precedentemente formatesi.
attraverso evaporazione ad alte temperature, o grazie a reazioni chimiche tra inquinanti primari allo stato gassoso presenti in atmosfera [Brasseur et al., 1999]. Bisogna anche considerare che la composizione del particolato dipende dall’area di provenienza e quindi dalla tipologia di sorgente di emissione [Facchini M.C. et al., 2003]. Quindi le tipologie di particolato possono essere ulteriormente suddivise in base al genere di sorgente da cui hanno origine; abbiamo così particolato da sorgenti NATURALI e ANTROPICHE.

Sorgenti naturali: comprendono l’attività dei vulcani, i quali durante le eruzioni scagliano nell’atmosfera grandi quantità di gas e materiale particolato di varia granulometria. Altre sorgenti non trascurabili, sono l’erosione e la disgregazione delle rocce, gli incendi boschivi, il risollevamento di polveri, il rilascio di prodotti organici dalla vegetazione (polline e residui vegetali), e spray marino [www.arpalazio.it 2012].

Sorgenti antropiche: queste includono varie attività industriali, tra cui troviamo infatti fonderie, miniere, cementifici e lavorazione di pietre e minerali. Anche le attività primarie (agricole) producono notevoli quantità di particolato. Nelle aree urbane le principali sorgenti sono i riscaldamenti domestici, in particolare durante la stagione fredda, e il traffico veicolare che emette particolato sia direttamente, attraverso i processi di combustione del motore, che indirettamente con l’usura dei freni, dei pneumatici e del manto stradale [www.arpalazio.it 2012]. E stato studiato che giornalmente vengono emessi circa 100 milioni di tonnellate di particolato nel mondo [W.H.O., 2002]; di queste quelle composte di particelle più grossolane si stima che siano dovute principalmente a fenomeni naturali, mentre che quelle più fini derivino principalmente da attività antropiche.

Effetti sul clima e sul microclima.

Ciò che è ancora poco studiato è l’importanza che il particolato atmosferico ha nel determinare il clima della Terra, grazie alle sue proprietà di interagire con la radiazione solare e di favorire la formazione delle nubi (e se queste porteranno a precipitazioni) [Fuzzi S. et al, 2010]. Il particolato presente nei fumi e nelle esalazioni delle combustioni provoca una diminuzione della visibilità atmosferica; allo nel contempo diminuisce anche la luminosità assorbendo o riflettendo la luce solare. Le polveri sospese vanno a favorire la formazione di nebbie e nuvole, e andando a costituire i nuclei di condensazione attorno ai quali si condensano le gocce
d’acqua. Di conseguenza favoriscono il verificarsi dei fenomeni delle nebbie e piogge acide, che comportano effetti di erosione e corrosione dei materiali e dei metalli. Sicuramente un aumento del particolato in atmosfera comporta una diminuzione della temperatura terrestre per un effetto di riflessione e schermatura della luce solare, in ogni caso tale azione è comunque mitigata dal fatto che le particelle riflettono anche le radiazioni infrarosse provenienti dalla terra [Fuzzi S. et al., 2010].

Effetti sugli ecosistemi, su piante e materiali

Il particolato atmosferico, in seguito a deposizione secca o umida, può contribuire ai processi di acidificazione (associata in particolare ad H₂SO₄ e HNO₃) e di eutrofizzazione (associata ai sali nitrati) degli ecosistemi terrestre e acquatico.

L’acidificazione dei suoli può portare al rilascio in questi di elementi tossici come l’alluminio portando così al verificarsi di gravi danni alle piante e alle varie forme di vita acquatica.

Si hanno anche effetti diretti sulla vegetazione, nello specifico in relazione ad un’azione acida e ossidante delle particelle, che portano al danneggiamento dei tessuti vegetali. A questi se ne possono aggiungere altri, ad esempio, le polveri provenienti dai fornì per cemento, che interagendo con la nebbia o la pioggia, possono formare una spessa crosta sulla superficie fogliare che scherma la luce solare interferendo con la fotosintesi ed inibendo lo sviluppo della pianta. Inoltre il danneggiamento delle foglie per abrasione meccanica rende le piante più sensibili agli attacchi da parte degli insetti. In fine si deve anche considerare il danno indiretto arrecato agli animali che usano le piante come alimento, in quanto il particolato su di esse depositato può contenere composti chimici tossici [www.arpalazio.it, 2012].

Per quanto riguarda i beni pubblici, un primo danno indiretto è causato dall’annerimento dei materiali nei quali il particolato si deposita, fenomeno che inoltre può favorire anche la corrosione degli stessi.

I processi corrosivi s’intensificano con l’aumento del livello di umidità in atmosfera, questo perché il particolato funge da nucleo di condensazione per le goccioline di acqua, nelle quali si possono dissolvere anche altri gas che aumentano l’acidità delle deposizioni umide [E.P.A., 2009].
Effetti sulla salute umana

Ad oggi il particolato atmosferico viene collocato tra i principali fattori di rischio ambientale per la salute. Infatti a prescindere dalla relativa tossicità, le particelle che possono produrre gli effetti indesiderati maggiori sull’uomo sono sostanzialmente quelle di dimensioni più ridotte. Nel processo della respirazione le particelle maggiori di 15 micron vengono generalmente rimosse dal naso. Il particolato che si deposita nel tratto superiore dell’apparato respiratorio (cavità nasali, faringe e laringe) può generare vari effetti irritativi come l’infiammazione e la secchezza del naso e della gola; tutti questi fenomeni sono molto più gravi se le particelle hanno assorbito sostanze acide (come il biossido di zolfo, gli ossidi di azoto, ecc.) [www.arpalazio.it, 2012, W.H.O., 2002].

Per la particolare struttura della loro superficie, le particelle di particolato possono anche andare ad adsorbire dall’aria sostanze chimiche cancerogene trascinandole così nei tratti respiratori e prolungandone i tempi di residenza. Le particelle più piccole che penetrano nel sistema respiratorio possono trascorrere anche lunghi periodi di tempo prima che vengano rimosse, e per questo sono da considerarsi tra le più pericolose. Queste polveri aggravano le malattie respiratorie croniche come l’asma, la bronchite e l’enfisema. Il particolato ultrafine, caratterizzato da un diametro inferiore a 0,1 micrometri, può addirittura arrivare ad entrare nel circolo sanguigno. Questo significa che man mano che si procede dal naso o dalla bocca attraverso il tratto tracheo-bronchiale sino agli alveoli, diminuisce il diametro delle particelle che penetrano e si depositano [Jansen K.L et al, 2005; Fierro M.A. 2000; Arden P.C., Douglas W. D., 2006].

Le persone più vulnerabili sono gli anziani, gli asmatici, i bambini e chi svolge un’intensa attività fisica all’aperto, sia di tipo lavorativo che sportivo. Nei luoghi di lavoro più soggetti all’inquinamento da particolato l’inalazione prolungata di queste particelle può provocare reazioni fibrose croniche e necrosi dei tessuti che comportano una broncopolmonite cronica accompagnata spesso da enfisema polmonare [W.H.O., 2004; W.H.O., 2006; Bonetta S. et al, 2007].
4.2.1 ANALISI DATI
L’analisi del PM$_{10}$ risulta fondamentale per la comprensione della qualità dell’aria a livello locale, e di conseguenza per il progetto di monitoraggio e per questo studio di tesi. In questi ultimi anni si è visto un forte aumento di ricerche e studi, volti ad una migliore comprensione delle sue dinamiche e della sua pericolosità per la popolazione e per l'ambiente; considerando anche che le sorgenti d’emissione di PM$_{10}$, nel nostro territorio e nel mondo, sono aumentate enormemente negli ultimi decenni.
Figura 18 - Grafici concentrazione media giornaliera PM$_{10}$
Figura 19 - Distribuzioni di frequenza PM$_{10}$
Figura 21 - Andamento della concentrazione media di PM$_{10}$ in funzione della direzione del vento per l’estate 2009 e l’inverno 2011.
Figura 22 - Concentrazione di PM$_{10}$ in funzione della direzione e velocità del vento per l’estate 2009 e inverno 2010
Dai grafici di figura 18 relativi all’andamento della “concentrazione media giornaliera” del PM$_{10}$, nelle otto stagioni, ci accorgiamo che queste hanno un andamento generale similare per entrambi gli anni di monitoraggio. Le concentrazioni da inizio primavera incominciano a calare, assestandosi su trend abbastanza stabili nella stagione estiva; al contrario nel semestre freddo le concentrazioni di PM$_{10}$ crescono notevolmente, come si può notare dai valori delle concentrate stagionali riportate nei grafici. L’andamento generale che abbiamo appena descritto è dovuto ad una molteplicità di fattori sia meteorologici che antropici [Young K.L., 2002; Johanson C. et al., 2006]. In primis durante il semestre freddo, con il calare della T°, si ha un abbassamento dello strato di rimescolamento (P.B.L.), fenomeno che favorisce un accumulo delle particelle inquinanti in una porzione di atmosfera ridotta. Sempre in questo semestre si hanno con maggiore frequenza, rispetto ad altri periodi dell’anno, inversioni termiche. Durante un inversione l’aria è stratificata e il rimescolamento della massa d’aria è inibito verticalmente o perlomeno limitato orizzontalmente. Questo porta le emissioni a livello locale ad accumularsi sempre di più, senza disperdersi, aggravando la situazione di giorno in giorno. Tra i fattori antropici bisogna considerare che nel semestre freddo, le emissioni di PM$_{10}$ sono molto più intense, infatti si fa un uso maggiore degli impianti di riscaldamento domestici, e degli autoveicoli per gli spostamenti.

Una volta immesso in atmosfera i particolato, va incontro a fenomeni che ne limitano la concentrazione in aria, tra cui i principali sono la deposizione secca e umida [Hemond H.F. et al., 2000]. La deposizione secca è il trasferimento diretto sulla superficie terrestre e procede senza l’intervento delle precipitazioni (gravità). La deposizione umida, al contrario, comprende tutti i processi fisici che comportano il trasferimento alla superficie terrestre tramite pioggia, neve o nebbia. Inoltre la permanenza in atmosfera è fortemente condizionata, oltre che dalle precipitazioni e dalle dimensioni della particella, anche dalla natura dei venti [Brasseur G.P. et al., 1999]. Alla luce di queste informazioni è utile confrontare gli andamenti stagionali del PM$_{10}$ con gli andamenti delle precipitazioni e delle velocità del vento (grafici 17 e 11). Per quanto riguarda la relazione con il parametro meteo della piovosità, vediamo che nei giorni 17/09/09, 3/11/09, 23/12/09, 20/2/10, 21/6/10, 5/5/10, 31/7/10, 25/9/10, 18/3/11, 17/2/11 in cui si sono registrati valori di precipitazioni, particolarmente elevati, rispetto alla media stagionale, corrispondono sempre valli di

L’analisi delle distribuzioni di frequenza (grafici 19), ci portano a confermare le osservazioni fatte per il PM$_{10}$, tramite i grafici dell’andamento della concentrazione media giornaliera (grafici 18). Infatti vediamo che le distribuzioni del semestre caldo (primavera-estate), hanno un netto andamento di tipo pseudo gaussiano con spalla destra più marcata. La maggior parte delle ore sono distribuite per valori di concentrazione compresi tra 10-15 µg/m3 per l’estate e di 22 µg/m3 per la primavera.

Per il semestre freddo, vediamo invece che le distribuzioni di frequenza tendono ad assumere un andamento molto più schiacciato, e la tipologia di distribuzione pseudo gaussiana è molto meno evidente in questo caso. Si registrano, rispetto il semestre freddo, un numero maggiore di ore per valori di concentrazione alti; anche il picco principale si sposta nell’asse delle concentrazioni verso concentrazioni maggiori (18-27 µg/m3 per l’autunno e 34-40 µg/m3 per l’inverno). Questa differenza osservata tra le distribuzioni del semestre caldo e freddo è dovuta all’abbassarsi dello strato di rimescolamento, con il diminuire delle temperature.

Prendiamo poi in considerazione i grafici relativi al giorno tipo stagionale (grafici 20), in quanto sono utili per comprendere come varia la concentrazione del PM$_{10}$ nell’arco delle 24 ore. Vediamo che le concentrazioni incominciano a crescere verso le ore 15.00-16.00 del pomeriggio, aumentando durante tutta la notte, e portandosi così a valori massimi verso le ore 00.00-01.00. Successivamente le concentrazioni tendono a scendere fino alle ore 13.00-14.00, in cui si rilevano i valori minimi.

Essendo il PM$_{10}$ nell’area di Tessera fondamentalmente di origine antropica, il trend di questo inquinante dovrebbe aumentare nelle ore diurne, a maggiore emissione, e diminuire durante la notte. L’andamento quindi che andiamo osservare, nei grafici, deve essere dovuto fondamentalmente al variare del P.B.L. durante l’arco della giornata a causa del diminuire della temperatura nelle 24 ore. Le stesse osservazioni sul trend giornaliero e stagionale del PM$_{10}$, sono state fatte in altri studi svolti in regioni differenti, rispetto a quello da noi presa in considerazione [Gomisˇćek B. et al., 2004; Kalabokos P.D. et al., 2010; Qu W. J. et al., 2010]. L’andamento dei grafici del giorno tipo del semestre freddo (autunno-inverno), rispetto a quello osservato nei grafici del semestre caldo (primavera estate) risulta meno accentuato.
in pratica molto più schiacciato e con la valle meno evidente. Questo è dovuto a causa dell’abbassarsi del *P.B.L.*, con il diminuire delle T nelle stagioni autunnali e invernali, fenomeno che porta come conseguenza una minor possibilità di dispersione degli inquinanti rispetto alle stagioni più calde (estate-primavera). [Pernigotti D. et al., 2007]. Il fatto che il PM$_{10}$ si fondamentalmente di origine antropica, e legato in particolare al traffico veicolare, lo si vede dal fatto che nei giorni del week-end di quasi tutte le stagioni i valori di concentrazione sono nettamente più bassi.

Il passo successivo è l’analisi delle “rose dei venti stagionali” (grafici 21). Osservando i grafici vediamo che le concentrazioni maggiori, si rilevano, con venti che soffiano principalmente dai quadranti 110°-180° (SE-S), 200°-270°(SSW-W) e 300°-30°(WNW-NNE).

Per la componente 300°-30°, l’influenza maggiore sulle concentrazioni registrate, è quella della strada statale Triestina, posta in direzione NW-N rispetto alla centralina di rilevamento. Questa è una strada ad elevato traffico veicolare, con transito anche di mezzi pesanti; camion e auto emettono PM$_{10}$ dai processi di combustione, dall’usura dei pneumatici e del manto stradale e per risospensione di particolato precedentemente depositatosi.

La componente 200°-270° (SSW-W), molto probabilmente è influenzata da una molteplicità di sorgenti; tra queste sicuramente hanno maggiore influenza le aree urbane di Mestre, Campalto e Marghera, con l’intenso traffico veicolare ad esse connesso, e l’utilizzo degli impianti domestici di riscaldamento. Possono avere una certa importanza anche gli impianti d’incenerimento, le centrali termoelettriche dell’area industriale di Marghera, e maggiormente nelle vicinanze lo scalo per i taxi di trasporto passeggeri presente a SW.

La componente 110°-180° (SE-SSE) può derivare dalle emissioni di Venezia, dell’isola di Murano e del suo comparto del vetro e dai comuni posti in quella direzione. Questa direzione potrebbe essere influenzata anche dalla sorgente aeroporto, in quanto proprio a SE inizia la pista di atterraggio degli aerei. Vista la vicinanza al mare, in questo caso anche lo spray marino, sollevato dall’infrangere delle onde e dal vento, potrebbe avere una certa influenza nei risultati ottenuti.

Osservando i grafici 3D di figura 22 ottenuti fittando con una funzione Spline la direzione del vento (DV), la velocità del vento e la concentrazione oraria di PM$_{10}$, ci accorgiamo fondamentalmente che in tutti e due gli anni, le concentrazioni tendono a
diminuire con l’aumentare della velocità del vento. Questo è indice di un inquinamento diffuso nell’area di studio. Questa analisi si ricollega con quanto visto per i grafici del giorno tipo (grafici 18), in cui l’influenza principale all’andamento giornaliero è data dal variare dei parametri meteo nelle 24 ore (P.B.L. influenzato dalla T) e non dal variare delle emissioni di sorgenti puntuali.

4.2.2 CONFRONTI CONCENTRAZIONI NORMATIVA
In tabella 2 sono confrontate le concentrazioni delle medie giornaliere di PM$_{10}$ rilevate durante i due anni di monitoraggio presi in considerazione, con i relativi limiti di legge. Essendo il periodo di campionamento, preso in considerazione per la tesi, compreso in tre anni, nello specifico dal 21 giugno 2009 a 20 giugno 2011, non è possibile prendere in considerazione tre anni civili interi. Quindi si farà riferimento, per il confronto con i limiti di legge, quando si richiede come periodo di integrazione “l’anno civile”, al solo 2010.

<table>
<thead>
<tr>
<th>PM$_{10}$</th>
<th>Periodo di integrazione</th>
<th>Valore limite</th>
<th>Superamenti</th>
<th>Valore massimo rivelato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor limite giornaliero per la protezione della salute umana</td>
<td>24 ore</td>
<td>50 µg m$^{-3}$ da non superare più di 35 volte per un anno civile</td>
<td>49 superamenti nel 2009/2010</td>
<td>103,22 µg m$^{-3}$ nel 2009/2010</td>
</tr>
<tr>
<td>Valor limite annuale per la protezione della salute umana</td>
<td>Anno civile</td>
<td>40 µg m$^{-3}$</td>
<td>30,24 µg m$^{-3}$ nel 2010</td>
<td>134,64 µg m$^{-3}$ nel 2010/2011</td>
</tr>
</tbody>
</table>

Tabella 2 - Confronto fra le concentrazioni massime di PM$_{10}$ rivelate durante i due anni di monitoraggio e i relativi limiti di legge

Osservando la tabella si vede che nei due anni di campionamento presi in considerazione per la tesi si sono registrati svariati superamenti, per lo più concentrati nei mesi del semestre freddo, tra novembre e dicembre per il primo anno (2009/2010) e nei mesi di febbraio-marzo per il secondo anno (2010/2011). Per quando riguarda il “valore limite annuale per la protezione della salute umana” non c’è stato superamento nell’anno 2010.
4.3 SO\textsubscript{x} – OSSIDI DELLO ZOLFO
Gli Ossidi di zolfo (SO\textsubscript{x}) sono composti dello zolfo e di ossigeno. Gli ossidi di zolfo più comuni in atmosfera sono il Biossido di Zolfo (SO\textsubscript{2}) e l’Anidride Solforica (SO\textsubscript{3}), indicati generalmente con il termine SO\textsubscript{x} [www.arpalazio.it, 2012; A.P.A.T., 2004]. L’anidride solforica è un composto corrosivo che reagendo con acqua produce acido solforico, essendo la sua anidride. Il triossido di zolfo gassoso presente nell'atmosfera rappresenta una delle cause primarie delle piogge acide (equazione n°3). L’SO\textsubscript{2} è un gas incolore, non infiammabile e non esplosivo, dall’odore soffocante, estremamente solubile in acqua ed è circa due volte più denso dell’aria. A temperature inferiori a -10° è presente allo stato liquido. Reagisce con l'O\textsubscript{2} formando SO\textsubscript{3} e per successiva umidificazione H\textsubscript{2}SO\textsubscript{4}. Il Biossido di Zolfo è la forma, tra gli ossidi dello zolfo, prevalente nella bassa atmosfera [Hasenberg L., 2008; www.arpalazio.it, 2012; Budovaril S., 1996] ed è attualmente considerato uno dei maggiori inquinanti primari atmosferici. Tende a dissolversi rapidamente nell’acqua presente nell’atmosfera, ed è convertito in aerosol acido, il quale viene rimosso principalmente tramite deposizione umida [W.B.G., 1998; Fantinato A., 2008]. Le sorgenti naturali di SO\textsubscript{2}, includono Vulcani, il degrado della materia organica; questi anche se eventi rari o comunque localizzati possono essere delle sorgenti rilevanti [W.B.G., 1998; Alberta environement, 2003]. A livello globale, le emissioni antropogeniche, danno un contributo significativo alle emissioni complessive di SO\textsubscript{2} in atmosfera [I.A.R.C., 1992]. La maggior parte di queste derivano dalle reazioni di ossidazione che si hanno nella combustione di materiali in cui sia presente zolfo, ad esempio gasolio, nafta, carbone e legna; questi sono stati utilizzati in misura consistente sino a qualche anno fa per la produzione di calore, attualmente invece il combustibile maggiormente utilizzato per il riscaldamento domestico è il metano [W.B.G., 1998; Alberta Environement, 2003; www.arpalazio.it, 2012]. Altre sorgenti comprendono i processi di raffinazione del petrolio e i processi di fusione dei minerali ricchi in zolfo e le emissioni di centrali di produzione di energia elettrica. Sorgenti meno importanti, includono svariati processi di produzione di sostanze chimiche, la lavorazione dei metalli, e le emissioni che derivano dal traffico veicolare [A.T.S.D.R., 1998].
Effetti sulla salute e sull’ambiente

Per quanto riguarda gli effetti sanitari indotti dall’SO$_2$, la via di esposizione principale è costituita dall’inalazione. Visto il suo alto grado di solubilità in acqua il biossido di zolfo viene assorbito velocemente dalle mucose del naso, della faringe e delle prime vie respiratorie; solo una minima frazione riesce a raggiungere direttamente i polmoni [Longo V. 2011]. Dalle vie respiratorie l’SO$_2$ passa poi nel circolo sanguigno. L’escrezione avviene soprattutto per via urinaria dopo biotrasformazione a solfato nel fegato [Ferrari L. and Salisbury J., 1999; U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, 1998]. La sua alta reattività lo rende un composto estremamente irritante. È stato riscontrato un effetto sinergico con le polveri sospese per la capacità che queste hanno di veicolare gli inquinanti nelle zone più profonde dell’apparato respiratorio.

L’esposizione all’SO$_2$ induce l’inturgidimento delle mucose sulle pareti delle vie respiratorie, con conseguente aumento della resistenza al passaggio dell’aria ed aumento della secrezione di muco.

Le emissioni di Ossidi di Zolfo possono causare effetti negativi anche sulla vegetazione, includendo quindi anche foreste e zone agricole. L’azione principale che si riscontra ai danni dell’ambiente, consiste nell’acidificazione delle precipitazioni, con la successiva compromissione dell’equilibrio degli ecosistemi colpiti. Il biossido di zolfo a basse concentrazioni può provocare un rallentamento nella crescita delle piante, mentre ad alte concentrazione la morte, per alterazione della fisiologia cellulare [www.arpalazio.it, 2012]. Nelle foglie il biossido di zolfo
viene trasformato in acido solforoso e solfiti, da questi per ossidazione si generano i solfati (la forma in cui lo zolfo viene metabolizzato nelle piante). Quando il livello di anidride solforosa nell’aria diviene troppo elevato, si ha di conseguenza un accumulo dei solfiti non metabolizzati dalla pianta; appena si ha una concentrazione troppo elevata, questi causano la distruzione della clorofilla, e di conseguenza il collasso delle cellule e la necrosi dei tessuti [www.arpalazio, 2012; Munari E.D et al., 2004; www.minambiente.it, 2012]. Le foglie in questi casi presentano fra i margini e le nervature delle aree irregolari di colore bianco, giallo o marrone, che presentano necrosi [Fantinato A. 2007; www.arpalazio.it, 2012]. Questi effetti aumentano quando vi è la presenza di un’umidità elevata, alte temperature, alta intensa luminosità ed anche nel caso in cui le piante siano indebolite dall’età avanzata. L’effetto di un’esposizione prolungata nel tempo a concentrazioni di anidride solforosa incapaci di causare sintomi evidenti (acuti) è più difficile da rilevare; esposizioni basse e per lunghi periodi portano ad una serie di alterazioni fisiologiche fra le quali la riduzione della crescita e della riproduzione e la senescenza anticipata. L’effetto sulle piante è particolarmente accentuato quando l’anidride solforosa si trova in presenza di ozono. Le precipitazioni atmosferiche possono limitare l’accumulo dei composti dello zolfo nell’aria, minimizzando di conseguenza gli eventuali effetti sanitari, anche se di conseguenza danno un incremento di danni al suolo per piogge acide.

Meccanismi di formazione
Il tempo di permanenza medio in atmosfera dell’S\(\text{O}_2\) è di circa 10 giorni [I.A.R.C., 1992]. Qui viene convertito principalmente in acido solforico o sali solfato, come il “solfato d’ammonio” (\(\text{NH}_4\)\(_2\)\(\text{SO}_4\)) e “l’ammonio idrogeno solforato” \(\text{NH}_4\text{HSO}_4\) con formazione di aerosol e di conseguenza particolato fine. In atmosfera il biossido di zolfo può essere trasformato in triossido di zolfo (\(\text{SO}_3\)) per via fotochimica o catalitica [Bufalini M., 1971; Radojevic M., 1992]. Le reazioni di ossidazione coinvolgono generalmente reazioni in fase omogenea (liquida e gassosa) e reazioni in fase eterogenea (su particelle solide) ed è rimosso dall’atmosfera tramite le precipitazioni e deposizione secca sulle superfici, principalmente come acido solforico. Diversi fattori come temperatura, umidità, intensità della radiazione solare, trasporto atmosferico e presenza di particelle, possono influenzare le reazioni chimiche del biossido di zolfo, e di conseguenza il suo destino finale. La formazione
degli SO₃ può essere rappresentata principalmente dalle seguenti reazioni di equilibrio (equazioni n°1-2):

\[
\begin{align*}
S + O_2 & \leftrightarrow SO_2 \quad \text{eq.1} \\
2SO_2 + O_2 & \leftrightarrow 2SO_3 \quad \text{eq.2}
\end{align*}
\]

La quantità di SO₃ che si viene a produrre è generalmente modesta rispetto a quella di SO₂, visto che la seconda delle due reazioni ha una cinetica più lenta della precedente. Oltre a ciò, l'SO₃ gassosa può essere presente in aria solo se la concentrazione di vapor d’acqua è bassa. In caso contrario, accade infatti che l'SO₃, combinandosi col vapor d’acqua, porta alla formazione di goccioline di acido solforico, secondo la seguente reazione [www.arpalazio.it, 2012]:

\[
SO_3 + H_2O \rightarrow H_2SO_4 \quad \text{eq.3}
\]

Anche per questo motivo è più probabile rilevare in atmosfera, ricca di vapore acqueo, H₂SO₄ che SO₃. Bisogna tenere in considerazione, che le concentrazioni di acido solforico in atmosfera, non sono determinate solo dalla produzione primaria di SO₃; infatti, una volta nell’atmosfera, l’SO₂ è parzialmente convertita in SO₃ e quindi in H₂SO₄ da processi fotolitici e catalitici [www.arpalazio.it, 2012]. Di notte, in condizioni di maggiore umidità, l’SO₂ viene assorbito dalle goccioline di acqua alcalina presenti in atmosfera e reagisce con esse, con successiva genesi di solfati, tra cui il solfato di ammonio e il solfato di calcio.

4.3.1 ANALISI DEI DATI

Il biossido di zolfo è ritenuto uno dei principali inquinanti atmosferici, vista la sua pericolosità per la salute dell’uomo e la vegetazione, e anche perché uno dei primi composti a manifestare a livello storico effetti sull’uomo e sull’ambiente; ultimamente la sua significatività si è sensibilmente ridotta grazie agli interventi di metanizzazione che hanno interessato sia impianti di riscaldamento domestico che processi di combustione industriale. In questa sezione della tesi verranno analizzati gli elaborati grafici relativi all’andamento stagionale e giornaliero del biossido di zolfo nella nostra area di studio, cercando di fare emergere le sue relazioni con gli altri inquinanti monitorati e in particolare le sue relazioni con i parametri meteo monitorati nei due anni.
Figura 23 - Grafici concentrazione media giornaliera SO\textsubscript{2}
Figura 24 - Distribuzioni di frequenza SO₂
Figura 25 - Andamento del giorno tipo della concentrazione di SO$_2$.
Figura 26 - Andamento della concentrazione media di SO$_2$ in funzione della direzione del vento per l’estate 2009 e l’inverno 2011
Figura 27 - Concentrazione di SO₂ in funzione della direzione e velocità del vento per l’estate 2009 e inverno 2011
Figura 28 - Grafici di confronto tra l’andamento stagionale del PM$_{10}$ e dell’SO$_2$
Dai grafici di figura 23, relativi agli andamenti stagionali dell’S\(\text{O}_2\), e dai valori medi stagionali (riportati in grafico) vediamo che il biossido di zolfo, in entrambi gli anni di studio, mostra concentrazioni massime nella stagione fredda e minime nella stagione estiva. Questo trend rilevato per la nostra area, si è riscontrato anche in altri studi, in particolare in quelli di G.S Reynor et al. 1974; Day, Malm, and Kreidenweis, 1997; Baumgardner, Isil, Bowser, and Fitzgerald 1999.

Confrontando ogni stagione con la corrispettiva dell’anno successivo, non si riscontrano evidenti differenze nell’andamento generale, e anche i valori della concentrazione media stagionale sono relativamente simili per tutte le stagioni tranne che per i due autunni.

Nella stagione Invernale si vanno a registrare concentrazioni più elevate di SO\(_2\), sia per l’aumento generale delle emissioni legate al traffico veicolare e ai riscaldamenti domestici, sia per l’abbassarsi nella stagione fredda dello strato di rimescolamento atmosferico.

Considerando l’elevata solubilità in acqua del biossido di zolfo, è utile andare a valutare qualitativamente, tramite il confronto tra i grafici di figura 23 e quelli relativi alle precipitazioni medie stagionali (figura 17), l’influenza sulle concentrazioni dell’S\(\text{O}_2\) della deposizione umida. Vediamo che in corrispondenza dei giorni in cui si registrano alti valori di precipitazioni, 30/07/10, 17/09/09, 11/10/09, 3/11/09, 25/09/2010, 23/12/09, 20/02/2010, 18/02/11, 17/03/11, 5/05/10, 21/06/10, si ritrovano valli particolarmente evidenti per la concentrazione di SO\(_2\) [Candice K. et al., 2006; Pio C. A. and Feliciano M. S., 1996].

Un ulteriore probabile relazione la si coglie dal confronto dei grafici relativi all’andamento della concentrazione media giornaliera dell’S\(\text{O}_2\) (fig.23) e quelli del PM\(_{10}\) (fig.18). La presenza di particolato in atmosfera non è dovuta solo a sorgenti di emissione primaria, ma anche a processi di genesi secondaria, che si sviluppano in atmosfera per la presenza di gas e inquinanti precursori. Le reazioni chimico-fisiche che determinano l’origine del particolato secondario vanno a coinvolgere specie condensabili come l’acido nitrico e l’acido solforico, presenti in atmosfera in fase gassosa, che tendono poi a reagire con composti basicì come l’NH\(_3\), producendo Sali come il nitrato e il solfato d’ammonio. L’acido solforico in atmosfera si origina dall’ossidazione dell’S\(\text{O}_2\) in SO\(_3\), che reagendo con il vapore acqueo porta alla formazione di acido solforico. Quindi come si evidenzia dai grafici di confronto di figura 28, si vede che quasi ad ogni picco e valle di SO\(_2\) corrispondono piccoli e valli di PM\(_{10}\). E’ probabile che queste
corrispondenze siano dovute all’influenza del biossido di zolfo nella formazione di particolato secondario, si deve tuttavia considerare che queste potrebbero essere dovute anche al fatto che questi due inquinanti sono emessi dalle stesse sorgenti emissive (traffico, riscaldamenti), quindi è normale che quando uno aumenti, cresca anche l’altro. Può esserci anche l’influenza in quanto appena esposto, dell’insistere nell’area delle stesse condizioni meteo per i due inquinanti.

Osservando le distribuzioni di frequenza (fig.24), andiamo a verificare quanto definito dallo studio degli andamenti stagionali dell’inquinante. Le distribuzioni di frequenza relative al semestre caldo, hanno un andamento di tipo pseudo gaussiano con nette spalle destre e con i picchi principali per tutte e quattro le stagioni, centrati nell’intorno del valore di concentrazione 1,50 µg/m³. Si rilevano un numero elevato di ore comprese nella fascia 0,15 - 4,2 µg/m³. Nel semestre freddo le distribuzioni di frequenza assumono un aspetto maggiormente schiacciato; presentano infatti un numero maggiore di ore per valori di concentrazione maggiori di 4,2 µg/m³. Questo è dovuto, come abbiamo visto in precedenza, ad un aumento delle emissioni in queste stagioni, e a una minore possibilità di dispersione degli inquinanti per l’abbassarsi del P.B.L. Si nota che in tutte le stagioni, i picchi principali restano comunque nell’intorno del valore di concentrazione 1,50 µg/m³, diminuendo solamente le ore rilevate in questa fascia di concentrazioni e aumentando per valori di concentrazioni maggiori. Non si riscontra quindi la traslazione verso concentrazioni maggiori di tutta la distribuzione, che si è osservata per il PM₁₀ (vedi figura 19). Il permanere anche nel semestre freddo del maggior numero di concentrazioni rilevate, nelle stesse classi del semestre caldo, e l’avere valori di concentrazione media stagionale che variano di poco nel corso delle stagioni, ci indicano la presenza di un inquinamento prossimo a quello di background. Le minime variazioni stagionali possono essere dovute all’aumento delle emissioni e soprattutto al variare dello strato di rimescolamento atmosferico.

Dall’analisi dei grafici di figura 25, relativi al “giorno tipo” stagionale del biossido di zolfo, vediamo che nel semestre caldo durante la notte si registrano i valori minimi e fino a circa le ore 7.00 le concentrazioni rimangono basse; da quell’ora in poi incominciano a crescere mostrando un primo picco in tarda mattinata (10.00 – 13.00). Si riscontra poi un calo delle concentrazioni fino circa alle ore 15.00 – 16.00, e successivamente un secondo picco attorno alle ore 18.00 – 20.00. Questo andamento che riscontriamo nel semestre caldo per l’SΟ₂, è tipico ed è stato

Questo andamento è dovuto fondamentalmente al traffico veicolare e alle emissioni domestiche; infatti le concentrazioni tendono ad accumularsi nel corso della mattinata con l’inizio delle attività antropiche portando al primo picco attorno alle ore 12.00 -13.00. Il secondo picco serale è dovuto all’utilizzo delle auto, questa volta per il rientro alle abitazioni, e dall’utilizzo degli impianti di riscaldamento durante la sera. Il calo di concentrazioni (la valle tra i due picchi) che si osserva attorno alle ore 16.00 è dovuta all’aumento delle temperature e quindi all’alzarsi dello strato di rimescolamento e di conseguenza a una maggiore possibilità di dispersione degli inquinanti [Annegarn H.J et al., 1996; Stehr J.W. et al., 2000; Chen G. et al., 2001].

Sicuramente bisogna anche considerare che a metà giornata c’è una diminuzione delle emissioni legate al traffico veicolare e ai riscaldamenti. Nel semestre freddo vediamo che l’andamento giornaliero dell’S\(\text{O}_2\), presenta qualche differenza rispetto al semestre caldo. Infatti si trova un solo picco, il quale è spostato di qualche ora in avanti (13.00 – 15.00) nella giornata rispetto al primo picco del semestre caldo. Questo trend può essere dovuto all’iniziare in ora più tarda della attività antropiche nella stagione fredda, portando così ad una accumulo dell’S\(\text{O}_2\) in un momento più avanzato della giornata, e sia hai valori più bassi di \(P.B.L\). nella stagione fredda. Vediamo inoltre, che la domenica, per tutte le otto stagioni tranne le due estati, si rilevano concentrazioni minori rispetto a quelle degli altri giorni; questo perché, molto probabilmente si ha un minore livello emissivo in questo particolare giorno, dovuto ad un minore uso dell’auto per motivi lavorativi. In estate invece si ha un andamento similare rispetto agli altri sei giorni della settimana; questo può essere dovuto all’intenso traffico estivo verso le zone balneari che si ha nella vicina strada statale Triestina.

Dalle rose del vento stagionali, grafici di figura 26, si può osservare un aumento delle concentrazioni di biossido di zolfo con vento che proviene dalla direzione compresa tra 190° e 250° (SW – SSW), e con la presenza di alcuni picchi compresi tra 130° e 180° (SE-S), più evidenti nel semestre freddo.

Osservando il posizionamento delle principali sorgenti emissive presenti nell’area interessata dallo studio (fig 5), vediamo che potrebbero essere numerose quelle che sono poste controvento rispetto alle direzioni rilevate. Infatti posizionate in direzione sud e sud-ovest rispetto all’aeroporto di Tessera troviamo l’area Industriale
di Marghera e i centri urbani di Venezia, Marghera e in parte Mestre, aree connotate da importanti emissioni dell’inquinante preso in considerazione. Tuttavia vediamo da questi grafici, che elevate concentrazioni di SO$_2$ permangono anche nel semestre freddo, anche se dalle rose dei venti che danno “le distribuzioni di frequenza della direzione e della velocità del vento” per le otto stagioni (fig.14), ci accorgiamo che in questo semestre la componente del vento che spira da S-SW tende a scomparire, o comunque a diventare molto meno importante, e a diminuire le sue velocità. Questo ci porta a pensare che ci deve essere una sorgente emissiva di biossido di zolfo molto vicina alla centralina di rilevamento, così che possa essere rilevata anche senza venti forti o anche in assenza di vento. Inoltre queste sorgenti, potenzialmente non sono legate a parametri stagionali, in quanto la stessa componente direzionale si riscontra tutto l’anno e le concentrazioni non variano in modo così evidente nel corso dell’anno.

Tra le attività che potrebbero andare ad inserirsi, nel quadro appena presentato, si potrebbe prendere in considerazione, per la componente a SW il servizio di Taxi via barca, che porta i passeggeri fino all’aeroporto, entrando all’approdo attraverso un canale posto esattamente in direzione SW e posto molto vicino alla centralina di rilevamento, invece per la componente individuata a SE, lo stesso aeroporto Marco Polo.

Andando ad analizzare grafici 3D, per l’S0$_2$ (fig.27) vediamo relativamente al semestre caldo, che con velocità del vento che aumenta in direzione 160°-190° (SSE-SSW), le concentrazioni tendono a diminuire o a rimanere costanti. Questo grazie anche quanto visto dai grafici dell’andamento stagionale (fig.23) e del giorno tipo (fig.25) ci indica che nella nostra area di studio, si rilevano concentrazioni prossime al background, con i maggiori contributi emissivi di sorgenti poste nelle vicinanze della centralina.

Anche nel semestre freddo, vediamo che aumentando la velocità dei venti che soffiano da 30° -50°, si registra la tendenza delle concentrazioni a rimanere stabili o a diminuire leggermente. Nei grafici 3D relativi agli inverni, nella fascia appena indicata, le concentrazioni di SO$_2$ rimangono relativamente più stabili rispetto l’autunno, come si nota dalle linee di isoconcentrazione verticali. Anche in questo caso, quanto appena visto sta ad indicare che le concentrazioni medie di SO$_2$ nell’area monitorata sono prossime ai livelli di background, infatti sono ampiamente
inferiori ai limiti imposti dal D.Lgs n°155/2010, e che i contributi maggiori sono forniti da sorgenti prossime al sito di campionamento.

4.3.2 CONFRONTI CONCENTRAZIONI NORMATIVA

In tabella 3 sono confrontate le concentrazioni massime di SO\(_2\) (orarie e giornaliere) rivelate durante il biennio di monitoraggio con i relativi limiti di legge.

<table>
<thead>
<tr>
<th>SO(_2)</th>
<th>Periodo di integrazione</th>
<th>Valore limite</th>
<th>Superamenti</th>
<th>Valore massimo rivelato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor limite orario per la protezione della salute umana</td>
<td>1 ora</td>
<td>350 µg m(^3) da non superare più di 24 volte per un anno civile</td>
<td>Nessuno</td>
<td>102,27 µg m(^3) in marzo 2010</td>
</tr>
<tr>
<td>Soglia di allarme</td>
<td>3 ore consecutive</td>
<td>500 µg m(^3) in un sito rappresentativo della qualità di un’area di almeno 100 km(^2) oppure in una intera zona o un agglomerato, nel caso siano meno estesi</td>
<td>Nessuno</td>
<td></td>
</tr>
<tr>
<td>Valore limite di 24 ore per la protezione della salute umana</td>
<td>24 ore</td>
<td>125 µg m(^3) da non superare più di 3 volte per anno civile</td>
<td>Nessuno</td>
<td>9,84 µg m(^3) in ottobre 2009</td>
</tr>
<tr>
<td>Valore limite per la protezione degli ecosistemi</td>
<td>Anno civile e inverno (1 ottobre - 31 marzo)</td>
<td>20 µg m(^3)</td>
<td>Nessuno</td>
<td>Media annuale = 1,84 µg m(^3) nel 2010 (Media Inverno 2010 = 2,34 µg m(^3)</td>
</tr>
</tbody>
</table>

Tabella 3 - Confronto fra le concentrazioni massime di SO\(_2\) (orarie e giornaliere) rivelate durante il biennio monitorato e i relativi limiti di legge
Osservando i dati della tabella 3 è evidente che le concentrazioni di biossido di zolfo rilevate nell’area monitorata, per i due anni presi in considerazione nello studio di tesi, sono abbondantemente inferiori ai limiti di legge

4.4 NO\textsubscript{x} – OSSIDI DELL’AZOTO
Con la terminologia "ossidi di azoto", dal punto di vista chimico s’intende la serie di composti fra azoto e ossigeno nei vari stati di ossidazione (N\textsubscript{2}O, NO, N\textsubscript{2}O\textsubscript{3}, NO\textsubscript{2}, N\textsubscript{2}O\textsubscript{4}, N\textsubscript{2}O\textsubscript{5}), mentre, in campo legislativo spesso si fa riferimento solamente all’monossido di azoto (NO) ed il biossido di azoto (NO\textsubscript{2}). A livello di questa tesi i due inquinanti verranno indicati come NO\textsubscript{x}, ossia la somma di monossido e biossido di azoto pesata per i loro rispettivi pesi atomici (NO\textsubscript{x} = NO\textsubscript{2} + 1,533*NO); questa operazione serve per rendere confrontabile l’incidenza dell’NO rispetto quella dell’NO\textsubscript{2} nella somma totale degli NO\textsubscript{x}, avendo questi due pesi atomici differenti. Il biossido di azoto è la forma che si riscontra maggiormente in atmosfera, è un gas di odore pungente e soffocante che si ottiene a partire dal monossido di azoto per ulteriore reazione con l’ossigeno. E’ un forte ossidante, molto reattivo e quindi altamente corrosivo. Il colore giallognolo delle foschie che si vedono spesso sopra le città ad elevato traffico è dovuto per l’appunto all’NO\textsubscript{2} [www.arpalazio.it, 2012].
L’NO è un gas incolore, insapore ed inodore e la sua tossicità è decisamente inferiore a quella dell’NO\textsubscript{2}. Questi hanno origine principalmente da vari processi antropici. Le principali sorgenti antropiche di NO\textsubscript{x} sono il traffico degli autoveicoli (che rappresenta quasi il 50% della produzione globale), gli impianti termoelettrici, gli altri impianti di grosse dimensioni in cui sono presenti processi di combustione (incenerimento dei rifiuti, ecc.), alcuni impianti industriali che producono acido nitrico e che lavorano composti azotati ed il riscaldamento domestico [Ragazzi M., Paternoster L., Rada E.C., Venturi M., Maistro M., 2010].
La principale fonte naturale di NO\textsubscript{x} è costituita dall’azione batterica, in particolare dai processi di decomposizione organiche anaerobiche che riducono i nitrati a nitriti. Questi ultimi, in ambiente acido, formano acido nitroso che, essendo instabile, libera ossidi di azoto. Si hanno inoltre sorgenti minori nelle emissioni vulcaniche e negli incendi forestali [www.arpalazio.it, 2012]. Queste sorgenti naturali producono un quantitativo di NO\textsubscript{x} di un ordine di grandezza superiore a quello derivante dalle sorgenti antropiche, tuttavia tali sorgenti vista la loro episodicità e la loro
distribuzione su vaste aree, hanno un influenza sullo stato della qualità dell’aria decisamente limitata.

Gli ossidi di azoto, una volta emessi in atmosfera, hanno un tempo medio di persistenza di circa 4-5 giorni. Contribuiscono alla formazione dello smog fotochimico ed avendo una permanenza così lunga in atmosfera, gli NO\(_x\) possono venire trasportati anche lontano rispetto alle fonti di emissione e qui, per effetto della radiazione solare, possono dar luogo alla formazione degli ossidanti fotochimici. L’NO è quasi insolubile in acqua e non è reattivo in soluzione tanto che ben poco di esso si ossida nell’acqua delle nuvole. Anche la deposizione secca è quasi nulla. L’NO\(_2\) è poco solubile in acqua ed è poco reattivo in soluzione alle concentrazioni atmosferiche.

Effetti sulla salute e sull'ambiente

Per quanto riguarda gli effetti sulla salute dell'uomo, sia il monossido di azoto che il biossido di azoto risultano potenzialmente pericolosi. In particolare il monossido di azoto (NO), interferisce con la normale ossigenazione dei tessuti da parte del sangue ma, nonostante ciò, non sono mai stati riscontrati casi di decessi per avvelenamento da NO. L’NO\(_2\) è invece circa 4 volte più tossico dell’NO. Per quest’ultimo, alle normali concentrazioni riscontrabili nell’ambiente, non sono stati mai riportati fenomeni di irritazione o altri effetti sanitari [Gilli G. et al., 1998].

biossido di azoto ha un impatto sulla vegetazione più modesto rispetto al biossido di zolfo. Lunghi periodi di esposizione causano la senescenza e la caduta delle foglie più giovani. Il meccanismo principale di aggressione all’ambiente è costituito dall'acidificazione del suolo; causando quindi un impoverimento del terreno per la perdita di ioni calcio, magnesio, sodio e potassio e conducendo alla liberazione di ioni metallici tossici per le piante. Gli ossidi di azoto e i loro derivati danneggiano anche edifici e monumenti, provocando un invecchiamento molto veloce delle strutture. Gli ossidi di azoto, emessi dai motori degli aerei nell’atmosfera durante la fase di cruise (volo ad alta quota), hanno una grande valenza a livello radiativo, poiché hanno la capacità di modificare la concentrazione dell’ozono nella troposfera superiore e nella stratosfera inferiore, e quindi influenzare la forza radiativa del sistema climatico. Nella stratosfera gli NO\textsubscript{x} distruggono l’ozono attraverso un definito ciclo catalitico e portano anche alla formazione di vari composti chimici attraverso l’interazione con altre famiglie chimiche (idrogeno, bromo, cloro), andando così ad aumentare il fenomeno del buco nell’ozono. Invece la presenza di NO\textsubscript{x} nella troposfera porta alla formazione di ozono; l’ozono stesso è un importante gas serra, la quale forza radiativa è più forte nella vicinanza della tropopausa. [www.arpalazio.it, 2012]

Meccanismi di formazione

Sia l’NO che l’NO\textsubscript{2} si originano per reazione dell’azoto contenuto nell’aria con l’ossigeno atmosferico. L’azoto N\textsubscript{2} e l’ossigeno O\textsubscript{2} reagiscono tra loro ad alta temperatura, nelle combustioni ad oltre 1200°C, formando monossido di azoto che, a sua volta, ossidandosi forma biossido di azoto secondo le equazioni seguenti (eq. n° 4 e 5):

\[
\begin{align*}
N_2 + O_2 & \leftrightarrow 2NO \quad \text{eq.n°4} \\
2NO + O_2 & \leftrightarrow 2NO_2 \quad \text{eq.n°5}
\end{align*}
\]

Alle normali temperature ambientali dell’aria, l’azoto e l’ossigeno reagiscono pochissimo tra loro, e pertanto le precedenti reazioni non avvengono. Invece durante le reazioni di combustione, in cui vengono superati i 1100°C, si verifica una rapida produzione di NO mediante la prima reazione (eq.n°4), mentre normalmente non si forma più dello 0,5% di NO\textsubscript{2} mediante la seconda reazione (eq.n°5). La quantità prodotta di NO durante una combustione dipende da vari fattori, tra cui la
temperatura della combustione, la permanenza a tale temperatura dei gas e la quantità di ossigeno libero contenuto nella fiamma. [www.arpalazio.it, 2012 Isaksen S.A. et al., 2001]. Invece la formazione di NO\textsubscript{2}, aumenta con il diminuire della temperatura. La quantità prodotta di NO\textsubscript{2} dipende dalla concentrazione di O\textsubscript{2} e da quella di NO. Il biossido di azoto, oltre che dalla seconda reazione, si forma anche dalle reazioni fotochimiche secondarie che avvengono in atmosfera [www.arpa.emr.it, 2012]. Dalla successiva reazione (eq.n°6) vediamo che le molecole di NO\textsubscript{2} presenti (di origine primaria o secondaria) nelle ore diurne e soleggiate assorbono energia dalla radiazione ultravioletta (fotoni hv di lunghezza d’onda inferiore a 430 nm). L’energia assorbita scinde la molecola di NO\textsubscript{2} producendo una molecola di NO e atomi di ossigeno altamente reattivi.

\[
\text{NO}_2 + hv \rightarrow \text{NO} + \text{O} \quad \text{eq. n°6}
\]

Successivamente (eq.n°7) gli atomi di ossigeno che sono altamente reattivi, reagiscono con le molecole di O\textsubscript{2} presenti in aria per generare ozono di tipo secondario (O\textsubscript{3}):

\[
\text{O}_2 + \text{O} \rightarrow \text{O}_3 \quad \text{eq.n°7}
\]

Nella eq.n° 8, l’O\textsubscript{3} reagisce con l’NO emesso per formare nuovamente NO\textsubscript{2} e O\textsubscript{2}

\[
\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \quad \text{eq.n°8}
\]

Queste reazioni vanno a costituire un ciclo; bisogna considerare che se in aria avvenissero solo queste reazioni appena considerate, l’NO\textsubscript{2} si convertirebbe in NO per dare nuovamente NO\textsubscript{2} senza che si possano osservare modifiche nella concentrazione delle due specie, mantenendo così costanti i rapporti tra NO\textsubscript{2} e NO in aria. Ma la presenza di idrocarburi (C.O.V.) in aria interferisce nel ciclo, permettendo così che l’NO si converta a una velocità maggiore in NO\textsubscript{2} di quanto l’NO\textsubscript{2} venga dissociato in NO e ossigeno atomico, con conseguente accumulo di NO\textsubscript{2} e O\textsubscript{3}. Ulteriori reazioni non ancora completamente studiate e ben chiare sono quelle che portano in alcuni giorni alla scomparsa completa sia di NO che di NO\textsubscript{2}. Si pensa che si abbia la loro trasformazione in presenza di umidità atmosferica in acido nitrico e di conseguenza in nitrati che ricadono poi al suolo con le piogge o sotto forma di
Il biossido di azoto è considerato tra gli inquinanti atmosferici più pericolosi, vista la sua alta reattività e il gran numero di sorgenti che si ritrovano nei territori antropizzati. In questa sezione andremo ad analizzare gli andamenti di questo inquinante, e del monossido di azoto, ad esso collegato; si cercherà di comprendere le tendenze e le relazioni con i parametri meteorologici e le relazioni con il contesto territoriale in studio.
Figura 29 - Grafici concentrazione media giornaliera NO$_2$
Figura 30 - Grafici concentrazione media giornaliera NO
Figura 31 - Distribuzioni di frequenza NO₂
Figura 32 - Distribuzioni di frequenza NO
Figura 33 - Andamento del giorno tipo della concentrazione di NO$_2$
Figura 34 - Andamento del giorno tipo della concentrazione di NO
Figura 35 - Andamento della concentrazione media di NO$_2$ in funzione della direzione del vento per l'estate 2009 e l'inverno 2011
Figura 36 - Andamento della concentrazione media di NO in funzione della direzione del vento per l'estate 2009 e l'inverno 2011
Figura 37 - Concentrazione di NO$_2$ in funzione della direzione e velocità del vento per l'estate 2009 e inverno 2011
Figura 38 - Concentrazione di NO in funzione della direzione e velocità del vento per l’estate 2009 e inverno 2011
Figura 39 - Grafici di confronto tra gli andamenti medi giornalieri dell’NO$_2$ e del PM$_{10}$ per l’estate 2009 e l’inverno 2010
4.4.1.a BIOSSIDO DI AZOTO

Analizzando i grafici di fig.29, relativi all’andamento stagionale della concentrazione di NO$_2$, vediamo che le concentrazioni tendono a crescere verso la fine della stagione estiva, mantenendosi su valori elevati per tutto l’inverno e l’autunno, e ricominciando a calare nel corso della primavera. Questo andamento annuale è dovuto ad un aumento delle emissioni nel semestre freddo. Infatti in inverno e in autunno si ha un maggiore uso degli autoveicoli e degli impianti di riscaldamento, principali sorgenti emissive di NO$_2$. Sicuramente nell’aumento delle emissioni registrate, conta anche l’influenza dell’abbassamento dello strato di rimescolamento atmosferico, durante il semestre freddo.

L’andamento stagionale dell’NO$_2$ è molto meno marcato rispetto agli andamenti di altri inquinanti analizzati precedentemente, come l’SO$_2$ e il PM$_{10}$, come si può notare dai valori delle concentrazioni medie stagionali che risultano molto simili nel corso dei due anni. Questo è dovuto alla maggiore stabilità atmosferica di questo inquinante, e dal fatto che è meno influenzato da parametri atmosferici come le piogge. Andando a confrontare tra loro le coppie delle stagioni dei due anni, vediamo che tutte, a parte le due estati, presentano valori di concentrazione media stagionale similari. Questa differenza nelle due stagioni estive, deve essere dovuta, non cogliendosi relazioni con particolari situazioni meteo, ad un aumento delle emissioni nel secondo anno.

Per poter confermare quanto visto dai grafici degli andamenti stagionali, andiamo a studiare le distribuzioni di frequenza relative all’NO$_2$ (figura 31). Vediamo che le due stagioni estive sono caratterizzate da distribuzioni di tipo pseudo gaussiano con una spalla verso valori elevati di concentrazione; si nota inoltre che la distribuzione del 2010 è traslata verso valori di concentrazione più elevati rispetto a quella del 2009; infatti il picco principale è centrato in 6,8 µg/m3, mentre nella distribuzione del 2009 è centrato in 38 µg/m3. Questo ci conferma i valori trovati di concentrazione media stagionali nettamente differenti per le due stagioni.

L’aumento delle concentrazioni rilevate nel semestre freddo, è confermato dallo spostarsi nell’asse delle concentrazioni verso valori crescenti delle distribuzioni autunnali e invernali, e quindi dall’aumento delle ore in cui si registrano concentrazioni elevate di NO$_2$. Dal confronto delle concentrazioni medie stagionali tra autunno e inverno, si nota che si ottengono valori maggiori in autunno rispetto la stagione invernale. Tuttavia lo studio delle distribuzioni di frequenza di queste due
stagioni ci permette di specificare meglio la situazione emissiva. Infatti andando ad osservare le distribuzioni di frequenza vediamo che nei due autunno ci sono un numero maggiore di ore in cui si rilevano valori di concentrazione compresi nella fascia 60 – 90 µg/m³, mentre in inverno si ha un numero maggiore di ore per valori di concentrazione maggiorni di 90 µg/m³. Quindi sebbene i due autunno presentino un valore di concentrazione media stagionale maggiore, per l’alto numero di ore in cui si registrano concentrazioni comprese tra 60 – 90 µg/m³, i due inverni raggiungono valori di NO₂ quasi doppi rispetto la stagione precedente.

I grafici di figura 33 ci mostrano l’andamento del “giorno tipo” per l’NO₂. Vediamo che il biossido di azoto, tende a crescere ed accumularsi a partire dalle ore 2.00 - 3.00, così per tutta la mattinata e raggiungendo il suo massimo verso le ore 7.00 – 8.00. All’inizio della giornata, infatti l’aumento del traffico provoca un graduale aumento della concentrazione di NO nell’aria. Successivamente, attraverso reazioni complesse a cui partecipano vari radicali liberi (C.O.V.) e Ozono, e con l’innesto fondamentale della radiazione solare incidente, l’NO si trasforma parzialmente in NO₂ nell’arco di alcune ore. Nelle ore pomeridiane la concentrazione tende a calare, a causa della maggiore radiazione solare incidente che favorisce i processi foto dissociativi dell’NO₂ e a causa dell’alzarsi dello strato di rimescolamento atmosferico che favorisce la dispersione degli inquinanti. Ricomincia a salire poi dopo le ore 18.00 – 19.00 per il rientro serale dei lavoratori presso le abitazioni, andando ad accumularsi, al contrario del biossido di zolfo, per molte ore della notte.

Questo andamento, ci suggerisce quindi che la variazione dei valori della concentrazione di NO₂ è legata ad attività di tipo antropico, come il traffico veicolare, che porta a picchi di emissione nelle prime ore della mattina e sera, a causa della partenza e del rientro dai posti di lavoro.

Un ulteriore conferma la vediamo, osservando gli andamenti relativi al giorno del sabato e della domenica, ci si accorge infatti che le concentrazioni di NO₂ in questi due giorni, sono più basse rispetto ai restanti giorni della settimana. Questo è indice di un forte legame delle concentrazioni, con attività antropiche, infatti durante il riposo settimanale il traffico stradale diminuisce in maniera netta, portando a registrare valori di concentrazione più bassi. Questo andamento nei giorni del weekend è stato riportato anche in altri studi, in particolare in quelli di Meena G.S. and Jadhav D.B., 2007.
Dall’analisi dei grafici polari di figura 35 vediamo che le concentrazioni maggiori si rilevano con vento che soffia nella fascia 270° - 20° (WNW – N), in questa direzione si può segnalare come possibile sorgente, la via Triestina e le altre strade dell’area, come la tangenziale di Mestre. Dai grafici si può rilevare un’altra componente con direzione compresa tra 190°-240° (SW- SSW), lungo queste direzioni le sorgenti più probabili, sono il vicino scalo per i taxi, posto nelle vicinanze della centralina, oppure a maggior distanza tutto il comparto produttivo presente a Marghera, con le sue centrali di produzione di elettricità e gli inceneritori. Possono essere prese in considerazione anche le zone urbane di Venezia, Marghera, Campalto, che possono influire notevolmente sulle emissioni di NO\textsubscript{2} e NO a causa degli impianti di riscaldamento e del traffico veicolare/navale.

Si rileva anche una terza possibile sorgente posta in direzione 60°-140° (NE-SE), questa rispetto le altre due è meno evidente, tranne nella stagione invernale nella quale si accentua maggiormente rispetto alle altre stagioni. Le possibili sorgenti emissive poste in questa direzione potrebbero essere, il comparto del vetro dell’isola di Murano o la città di Venezia. E molto probabile tuttavia che l’influenza maggiore sia dovuta ad una sorgente vicina, l’aeroporto, con la pista di atterraggio-decollo degli aeromobili posta proprio in questa direzione rispetto alla centralina.

L’analisi dei grafici 3D di figura 37, ci suggerisce che nell’area monitorata per quanto riguarda l’inquinante NO\textsubscript{2} c’è fondamentalmente un inquinamento di tipo diffuso. Infatti osservando i grafici vediamo che le concentrazioni tendono a diminuire con l’aumentare della velocità del vento in tutte e otto stagioni prese in considerazione. Questo può essere determinato dalle molte sorgenti emissive che sono poste nelle vicinanze della centralina e in varie direzioni rispetto ad essa. Infatti a NW-NE c’è il percorso della strada statale triestina, a SW l’approdo dei Taxi e SE la pista di atterraggio e decollo degli aeromobili, tutte sorgenti rilevanti di NO\textsubscript{2}.
4.4.1.b MONOSSIDO D’AZOTO

I grafici di figura 30 relativi all’andamento stagionale dell’NO, mostrano che come per l’NO₂, anche l’NO presenta i valori di concentrazione più bassi nel semestre caldo e valori più alti nel semestre freddo, come evidenziato delle concentrazioni medie stagionali riportate nei grafici. Dalle linee di tendenza, è evidente un andamento crescente in autunno, lo stabilizzarsi delle concentrazioni in inverno e il diminuire di queste in primavera ed estate. Questo andamento è legato, al variare nel corso dell’anno dell’intensità del traffico veicolare, delle emissioni degli impianti di riscaldamento, delle centrali termoelettriche e dell’abbassarsi dello strato di rimescolamento atmosferico. Dall’analisi dei grafici, emerge una situazione particolare relativamente alle due estati 2009 e 2010. Infatti confrontando gli andamenti stagionali dell’NO e dell’NO₂, nelle restanti stagioni, vediamo che quando c’è un aumento delle concentrazioni di NO, corrisponde un aumento di NO₂; questo probabilmente perché l’NO₂ viene a formarsi nei processi di combustione insieme all’NO, e quindi necessariamente aumentando uno aumenterà anche l’altro. Invece vediamo che gli andamenti estivi di questi due inquinanti seguono un trend completamente opposto, si vede infatti che un aumento dei valori di NO porta ad una diminuzione dei valori di NO₂. Inoltre nel 2009 si hanno valori di NO quasi sempre più alti rispetto a quelli del 2010, mentre per l’NO₂ si riscontra la situazione contraria. Si potrebbe ipotizzare che valori elevati di R.S.I. nel 2009 abbiano, tramite processi fotoassociativi, portato a una maggiore produzione di NO (reazione n°6); osservando i grafici di figura 8 vediamo tuttavia che le due estati presentano valori di R.S.I. relativamente simili.

Osservando questi andamenti discordanti e il fatto che la stagione estiva 2009 presenti vari periodi di dati mancanti, è molto probabile che in questa stagione ci sia stato un malfunzionamento della centralina di rilevamento. Invece l’andamento del 2010, in cui le concentrazioni rimangono basse e incominciano ad aumentare a fine stagione con l’aumentare delle temperature, dovrebbe essere corretto.

I grafici di figura 32 relativi alle distribuzioni di frequenza dell’NO, confermano gli andamenti rilevati dallo studio delle concentrazioni medie giornaliere. Infatti vediamo che nel semestre caldo la maggior parte delle ore si distribuiscono nella fascia di concentrazione compresa tra 0 – 30 µg/m³, mentre nelle distribuzioni del semestre freddo nella fascia 12 – 102 µg/m³. Si riscontra anche in questi grafici, l’andamento anomalo rilevato per le due estati. Infatti le distribuzioni di queste due
stagioni assumono due andamenti completamente diversi e difficilmente interpretabili. L’estate 2009 presenta una distribuzione polimodale, con molti picchi compresi nella fascia 6 -72 µg/m³; l’estate 2010 ha due picchi principali ben definiti, e la maggior parte delle ore che ricadono nell’intervallo di concentrazione 12 – 40 µg/m³.

Anche per l’NO, andiamo a studiare l’andamento del giorno tipo (grafici di figura 34). Vediamo che le concentrazioni tendono a crescere dalle ore 4.00, raggiungendo il loro massimo verso le 6.00 – 7.00 nel semestre caldo e verso le 8.00 – 9.00 nel semestre freddo. Nelle ore pomeridiane le concentrazioni calano e ricominciano a crescere nelle prime ore serali (19.00 – 20.00 nel semestre freddo, 20.00 -21.00 nel semestre caldo). Questo slittamento tra i due semestri è dovuto al diverso orario in cui sorge il sole e di conseguenza al diverso inizio delle attività umane. Confrontando i grafici del giorno tipo dell’NO, con quelli dell’NO₂ (grafici di figura 33) vediamo che le concentrazioni tendono ad accumularsi qualche ora in anticipo rispetto a quelle dell’NO₂. Questo perché gli NO in atmosfera portano attraverso un ciclo fotochimico alla formazione di NO₂. Dai grafici relativi al semestre freddo vediamo, che questi tendono ad assumere un aspetto molto più schiacciato a causa dell’aumento delle emissioni e dell’abbassarsi dello strato di rimescolamento atmosferico in questo semestre. Dall’analisi dei grafici appena illustrati, possiamo affermare che le concentrazioni di NO rilevate sono sicuramente dovute ad attività antropiche, e in gran parte da traffico veicolare. Infatti i due picchi registrati corrispondono alle partenze e ai rientri dal luogo di lavoro.

Dai grafici Polari di figura 36, vediamo che si registrano le concentrazioni maggiori di NO con venti che soffiano circa dalle stesse direzioni individuate per l’NO₂. Essendo l’NO₂ derivato dall’ossidazione dell’NO nei processi di combustione, è ovvio che si rilevino le maggiori concentrazioni con venti che soffiano dalle stesse direzioni, essendo inoltre le sorgenti emissive le medesime.

Anche l’analisi dei grafici 3D di figura 38, ci portano alle stesse conclusioni raggiunte per l’NO₂. Infatti anche in questo caso le concentrazioni tendono a diminuire con l’aumentare della velocità del vento. Questo è indice di un inquinamento di tipo diffusso nell’area di studio.

Dai grafici 3D relativi alla variazione della concentrazione in funzione dell’aumento della velocità del vento, vediamo che l’aria monitorata è caratterizzata da un
inquinamento diffuso, perché con l’aumento della velocità del vento le concentrazioni di NO e NO₂ tendono a diminuire, per tutte le direzioni del vento.

4.4.2.CONFRONTI CONCENTRAZIONI NORMATIVA

In tabella 4 sono confrontate le concentrazioni di NO₂ e NOₓ, la seconda data dalla somma di NO₂ più NO (orarie e giornaliere), rivelate durante il biennio di monitoraggio con i relativi limiti di legge.

<table>
<thead>
<tr>
<th>Periodo di integrazione</th>
<th>Valore limite</th>
<th>Superamenti</th>
<th>Valore massimo rivelato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor limite orario per la protezione della salute umana</td>
<td>1 ora</td>
<td>200 µg m⁻³ NO₂ da non superare più di 18 volte per un anno civile</td>
<td>Nessuno</td>
</tr>
<tr>
<td>Soglia di allarme</td>
<td>3 ore consecutive</td>
<td>400 µg m⁻³ NO₂ in un sito rappresentativo della qualità di un’area di almeno 100 km² oppure in una intera zona o un agglomerato, nel caso siano meno estesi</td>
<td>Nessuno</td>
</tr>
<tr>
<td>Valore limite annuale per la protezione della salute umana</td>
<td>Anno civile</td>
<td>40 µg m⁻³ NO₂</td>
<td>Media anno 2010 = 66,15 µg m⁻³</td>
</tr>
<tr>
<td>Valore limite annuale per la protezione della vegetazione</td>
<td>Anno civile</td>
<td>30 µg m⁻³ NOₓ</td>
<td>Media anno 2010 = 109,39 µg m⁻³</td>
</tr>
</tbody>
</table>

Tabella 4 - Confronto fra le concentrazioni massime di ossidi di Azoto (orarie, giornaliere e annuali) rivelate e i relativi limiti di legge

Osservando della tabella 4 è evidente che le concentrazioni orarie di biossido di azoto rivelate nell’area monitorata sono significativamente inferiori ai limiti imposti dalla legge mentre i valori relativi al “Valor limite annuale per la protezione della salute umana” e di “Valore limite annuale per la protezione della vegetazione” di NOₓ sono superiori ai rispettivi limiti annuali.
4.5. OZONO

L’ozono (O_3) è una molecola allotropica dell’elemento chimico ossigeno. È un gas tossico di colore azzurro dal tipico odore pungente; essendo costituito da molecole instabili, formate da tre atomi di ossigeno, queste molecole tendono a scindersi facilmente, liberando ossigeno molecolare (O_2) e un atomo di ossigeno altamente reattivo. Per queste sue caratteristiche l’Ozono, è un energetico ossidante, capace di reagire sia con materiali organici che inorganici [www.arpalazio.it, 2012; Royal society, 2008]. È naturalmente presente in una fascia al di sopra della troposfera, fra i 15 e i 50 km di altitudine, corrispondente con la stratosfera (denominata anche ozonosfera). In questa fascia la concentrazione dell’ozono tende nel tempo a rimanere costante, grazie all’instaurarsi di un equilibrio chimico tra le reazioni di formazione e quelle di fotolisi che avvengono per l’assorbimento della radiazione solare [Sherwood R.F., 2006]. Invece l’ozono presente nella troposfera, è un inquinante di tipo secondario, che si foriglia da una complessa serie di reazioni, che coinvolgono l’azione della radiazione solare sugli NO_x e sugli idrocarburi presenti in atmosfera [Thompson A. M., 1996; E.P.A., 2003]. La presenza dell’ozono nella stratosfera, è di fondamentale importanza, in quanto protegge la troposfera e la vita presente in essa, dalle dannose radiazioni ultraviolette emesse dal sole. Nella Stratosfera l’ozono è generato grazie all’azione della radiazione solare (lunghezza d’onda minore di 240 nm) sulle molecole di ossigeno, che porta alla dissociazione di questa in due atomi di ossigeno; gli atomi di ossigeno liberati da questa reazione, sono altamente reattivi e si combinano rapidamente con una molecola di O_2 per dare ozono. A loro volta le molecole di ozono assorbono la radiazione ultravioletta di lunghezza d’onda compresa tra i 240 e i 340 nm, con liberazione di una molecola e un atomo di ossigeno. In definitiva, questi sono processi in equilibrio dinamico, e fa si che la concentrazione di ozono nella stratosfera rimanga pressoché costante [www.arpalazio.it, 2012].

La sequenza di reazioni sotto riportata, costituisce invece il ciclo foto-stazionario dell’ozono, che si verifica naturalmente nella troposfera in zone scarsamente inquinate senza determinare episodi di inquinamento fotochimico

\[
\begin{align*}
\text{NO}_2 + \text{hv} & \rightarrow \text{NO} + \text{O}^\cdot & \text{eq.6} \\
\text{O}_2 + \text{O}^\cdot & \rightarrow \text{O}_3 & \text{eq.7} \\
\text{O}_3 + \text{NO} & \rightarrow \text{O}_2 + \text{NO}_2 & \text{eq.8}
\end{align*}
\]
Se l’equilibrio dinamico delle tre reazioni non viene perturbato da fattori esterni, le concentrazioni di O$_3$, NO$_2$ e NO entrano in poco tempo in uno stato stazionario e non subiscono notevoli variazioni. Al contrario, in atmosfere inquinate da idrocarburi, la formazione di biossido di azoto, di tipo secondario, segue anche vie alternative a quelle dell’eq.8, che non implicano la rimozione dell’ozono, e così si tende ad avere un accumulo di quest’ultimo [Salvadori, E. 2008].

Nell’ultimo secolo la concentrazione di fondo dell’ozono nella troposfera è quasi raddoppiata, e nelle aree maggiormente industrializzate è aumentata con un tasso dell’1-2% per anno negli ultimi dieci anni [Collins W.J et al., 2000; Ashmore M.R., 2005]. Si vede infatti, che nella bassa troposfera l’aumento di O$_3$ è direttamente collegato alle emissioni di ossidi di azoto, in particolare attraverso l’ossidazione di precursori come il biossido di azoto, e ai composti organici volatili [Stein A.F. et al., 2005].

Per spiegare questo fenomeno è necessario considerare la dinamica degli ossidi di azoto. Si vede dalla reazione n°8 che il monossido di azoto va a reagire con l’Ozono, in una reazione di ossidazione, che porta alla formazione di biossido di azoto e ossigeno molecolare, con conseguente rimozione di ozono. Tuttavia in atmosfere inquinate da idrocarburi, la via di formazione del biossido di azoto di tipo secondario spesso procede anche per altre vie, oltre a quella mostrata della reazione n°8.

\[
\begin{align*}
\text{RH} + \text{OH}^\cdot & \rightarrow \text{R}^\cdot + \text{H}_2\text{O} & \text{eq. n°9} \\
\text{R}^\cdot + \text{O}_2 & \rightarrow \text{RO}_2^\cdot & \text{eq. n°10} \\
\text{RO}_2^\cdot + \text{NO} & \rightarrow \text{RO}^\cdot + \text{NO}_2 & \text{eq. n°11}
\end{align*}
\]

Il biossido di azoto è formato anche dall’ossidazione del monossido di azoto ad opera dei radicali perossido (RO$_2^\cdot$), reazioni n°9-10-11. Questi radicali si formano dalla degradazione fotochimica degli idrocarburi volatili (RH) per opera dei radicali ossidrili (OH), e per la sua successiva reazione con l’ossigeno atmosferico (reazioni n°9 e n°10). Quando si è in questa situazione si ha la conversione di NO in NO$_2$, senza il consumo di O$_3$ [Jenkin M.E. e Clemitshaw K.C., 2000]. Si deve anche considerare che l’O$_3$ non è solo il risultato a livello qualitativo dei processi appena descritti, ma funge anche da catalizzatore. Infatti l’O$_3$, con radiazione solare, subisce dissociazione ad opera della radiazione solare (lunghessa d’onda 280-300 nm).
portando alla formazione di atomi di ossigeno eccitati che reagendo con il vapore d’acqua atmosferico, danno ulteriore radicale ossidrile [Salvadori E., 2008].

\[
\begin{align*}
O_3 + h\nu &\rightarrow O_2 + O^\cdot \quad \text{eq. n°12} \\
O + O_2 &\rightarrow O_3 \quad \text{eq. n°7} \\
O^\cdot + H_2O &\rightarrow OH^\cdot + OH^\cdot \quad \text{eq. n°13}
\end{align*}
\]

Tutte le reazioni analizzate ci permettono di comprendere, che in un atmosfera inquinata da ossidi di azoto e idrocarburi volatili, si tende ad avere accumulo di ozono, per il verificarsi di processi ossidativi dei precursori con il fondamentale innesco della radiazione solare incidente e temperature sufficientemente alte. Quindi è naturale che il problema delle alte concentrazioni di ozono si presenti prevalentemente nei mesi estivi, nelle soleggiate e durante le ore più calde della giornata. Inoltre l’ozono può subire anche trasporto a lungo raggio dopo la sua formazione; questo comporta che vengono rilevate concentrazioni elevate anche a grandi distanze determinando il rischio di esposizioni significative in gruppi di popolazione relativamente distanti dalle principali fonti di inquinanti, e la possibilità di effetti sulla componente vegetale delle aree agricole e boschive che circondano le città. [www.regione.vda.it, 2012].

Effetti sulla salute e sulla vegetazione

I principali effetti dell’O₃ si evidenziano a carico delle vie respiratorie, in cui si riscontra l’induzione di una risposta infiammatoria ed alterazioni della permeabilità sia degli epiteli di rivestimento sia degli endoteli vascolari [Lippman M., 1989]. Queste alterazioni portano ad una riduzione della funzionalità polmonare, fino alla possibilità di edemi polmonari.

I danni causati alla vegetazione, ed in particolare alle foreste, dovuti all’azione dell’Ozono sono rilevanti, infatti questo inquinante insieme alla SO₂, è uno degli elementi che incide maggiormente degli elementi boschivi. La parte della pianta che viene colpita prima è l’apparto fogliare, e i danni che insorgono possono poi diffondersi a tutta la pianta. Il gas penetra attraverso gli stomi, e questo processo è favorito se si è in presenza di vapor acqueo che ne aumenta l’apertura, si riscontrano inoltre segni di invecchiamento prematuro, riduzione dell’attività di fotosintesi,
riduzione dell’immagazzinamento dei carboidrati, del vigore e della capacità riproduttiva e necrosi. [E, Gottardini E. e al., 2012; Nali C. e Ferretti M., 2007].

4.5.1 ANALISI DEI DATI
L’ozono ha un ruolo centrale nella chimica atmosferica. È in gran parte responsabile del riscaldamento stratosferico tramite l’assorbimento delle dannose radiazioni UV; determina largamente la capacità ossidante della troposfera, ed è un importante gas serra. La scoperta del buco nell’ozono sull’Antartide ha richiamato l’attenzione anche sul bilancio globale dello strato di ozono. In questa sezione verranno presentati i principali grafici relativamente all’inquinante Ozono nell’area di Tessera, e posti in relazione con i molti fattori che determinano il complicato andamento stagionale e giornaliero di questo inquinante.
Figura 40 - Grafici concentrazione media giornaliera ozono
Figura 41 - Distribuzioni di frequenza stagionali ozono
Figura 43 - Andamento della concentrazione media di O$_3$ in funzione della direzione del vento per l’estate 2009 e l’inverno 2011
Figura 44 - Concentrazione di O₃ in funzione della direzione e velocità del vento per l’estate 2009 e inverno 2011
Osservando i grafici di figura 40 relativi alla “concentrazione media giornaliera” dell’ozono, riusciamo a cogliere un chiaro andamento stagionale. Le concentrazioni più basse si registrano nella stagione invernale, in cui è evidente un andamento crescente di queste in funzione del crescere delle temperature di fine stagione. Questa tendenza prosegue in primavera, mentre in estate le concentrazioni mostrano un andamento “rumoroso” attorno a valore medio, mostrando i valori di concentrazione più elevati dell’anno e incominciando a diminuire solo sul finire della stagione. Nella stagione autunnale, si osserva invece una netta diminuzione delle concentrazioni man mano che la stagione avanza. Quest’andamento che è tipico dell’ozono [Liji M. D. and Prabha R. N., 2011, Logan A.J, 1985], è dovuto al forte legame che c’è tra la genesi di questo inquinante, che è di tipo secondario, e il parametro meteorologico della R.S.I. e la presenza di precursori. Infatti come mostrato dalla reazione n°6, la presenza di elevata R.S.I. costituisce l’innesto fondamentale per il ciclo di reazioni che porta all’accumulo nella troposfera dell’O\(_3\). Questa relazione si può evidenziare ponendo a confronto i grafici di figura 8, relativi all’andamento giornaliero della R.S.I., e i grafici di figura 40. Si nota subito che dove i valori della R.S.I. crescono, aumentano anche le concentrazioni dell’ozono, e dove la prima tende a calare anche le concentrazioni di ozono diminuiscono. Questo forte legame tra l’R.S.I. e l’Ozono verrà ulteriormente indagato ulteriormente nel successivo capitolo, con l’analisi dei coefficienti di correlazione.

Dai grafici di figura 40, l’autunno 2010, l’inverno 2011 e la primavera 2011, presentano valori di concentrazione media stagionale (riportati nei grafici) quasi doppi rispetto alle stesse stagioni dell’anno precedente. Tuttavia dall’analisi e dai confronti dei parametri meteo principali che influiscono sulle concentrazioni di ozono (R.S.I., temperatura, precipitazioni, e intensità del vento) e dalle concentrazioni medie giornaliere dei precursori NO\(_2\) e NO (grafici di figura 29 e 30), non si riesce ad individuare un parametro che in modo maggiore rispetto agli altri, influisca sull’andamento rilevato nelle tre stagioni. Oltre l’R.S.I. nella comprensione dell’andamento dell’ozono nel corso delle stagioni, è di fondamentale importanza andare a effettuare un confronto con le concentrazioni degli ossi di azoto. Per quanto riguarda l’NO\(_2\), la sua relazione con l’ozono è dovuta alle reazioni di foto dissociazione (eq. n°6) in cui in presenza di R.S.I., si va a originare l’atomo di ossigeno altamente reattivo, il quale si andrà a combinare con l’ossigeno atmosferico, per formare ozono (eq. n°7-8). Osservando e ponendo a confronto i grafici di figura
40 e 29, relativi alle concentrazioni medie giornaliere di ozono e biossido di azoto, si vede che in estate e in primavera i picchi corrispondono, il giorno stesso o nei giorni immediatamente successivi a picchi di concentrazione di ozono. In inverno e in autunno questa relazione risulta molto meno evidente, molto probabilmente per il diminuire dei valori di R.S.I. che innescano le reazioni di dissociazione dell’NO₂ e per l’abbassarsi dello strato di rimescolamento atmosferico.

Invece si coglie in maniera molto più netta una relazione tra le concentrazioni di O₃ e quelle di NO, ponendo a confronto i grafici di figura 40 e quelli di figura 30, relativi all’andamento della concentrazione media giornaliera dell’NO. Vediamo che quando le concentrazioni di Ozono sono più alte quelle di NO sono più basse. Questo perché l’NO in presenza di O₃ tende a ossidare producendo NO₂ e O₂, questo rende impossibile la coesistenza di grandi concentrazioni di questi gas. Le concentrazioni di O₃ tendono a ridursi in vicinanza di sorgenti di NO, come strade ad alta intensità di traffico e aree urbane, mentre risultano molto spesso più elevate proprio nelle aree meno popolate come quelle rurali, vista l’alto tempo di residenza in atmosfera dell’ozono (1 mese).

Dallo studio delle distribuzioni di frequenza (grafici di figura 41), vediamo che nel semestre caldo queste assumono un aspetto molto più appiattito rispetto alle distribuzioni del semestre freddo, distribuendo le concentrazioni rilevate su un range molto ampio (5-120 µg/m³). Sempre in questo semestre si vede che le concentrazioni comprese tra 60 -120 µg/m³ hanno un numero di conteggi molto più elevati rispetto al semestre freddo, che ne mostra un numero maggiore per concentrazioni comprese tra 5-60 µg/m³. Questo lo si può ricollegare a quanto visto per gli andamenti stagionali (grafici di fig. 40), in cui si è riscontrato un andamento crescente delle concentrazioni di ozono nelle stagioni con valori più elevati di R.S.I. (estate-primavera).

Nei grafici stagionali dell’autunno 2010, della primavera 2011 e dell’inverno 2011 si sono osservati valori di concentrazione media stagionale quasi doppi rispetto alle stesse stagioni dell’anno precedente, questo lo si ritrova anche nelle corrispettive distribuzioni. Infatti queste distribuzioni risultano traslate nell’asse delle concentrazioni verso valori più elevati rispetto a quelle dell’anno precedente, mostrando quindi un numero di conteggi maggiore per valori di concentrazioni maggiore.
I grafici di figura 42 ci mostrano l’andamento del giorno tipo dell’inquinante ozono. Vediamo che le concentrazioni di O\textsubscript{3} incominciano a crescere a partire dalle ore 7.00, questo perché con il sorgere del sole incomincia a crescere anche l’R.S.I., parametro fondamentale per l’innesco delle reazioni che portano alla genesi di questo inquinante. Le concentrazioni di ozono raggiungono il loro massimo attorno alle 15.00-16.00, quando la R.S.I. è massima (grafico di figura 10). Dopo questo picco le concentrazioni registrate incominciano man mano a calare, mantenendosi su valori bassi durante tutta la notte a causa dell’assenza di radiazione solare incidente. Utile è il confronto con gli andamenti del giorno tipo dei precursori, NO (grafici di figura 34) e NO\textsubscript{2} (grafici di figura 33). Vediamo che dove l’ozono raggiunge il suo valore massimo, questi due presentano i valori minimi. Questo abbassamento dei valori è dovuto sicuramente all’alzarsi in queste ore dello strato di rimescolamento atmosferico che favorisce la dispersione degli inquinanti, al diminuire delle emissioni da parte del traffico veicolare nelle ore pomeridiane, ma anche ai processi foto dissociativi che portano alla formazione dell’ozono in presenza di elevata R.S.I. Infatti vediamo dall’eq.6 e 7 che la fotolisi dell’NO\textsubscript{2} porta ad un aumento dei valori di concentrazione dell’ozono. La sera a causa della diminuzione della R.S.I. e dell’aumento dei precursori per il secondo picco emissivo dovuto al rientro nelle abitazioni, tramite l’eq.8, si ha la distruzione dell’ozono ad opera dell’NO con formazione di NO\textsubscript{2}.

Si osserva, quindi che la concentrazione atmosferica di Ozono cresce con l’aumentare della radiazione solare incidente e della temperatura atmosferica in presenza di elevate quantità di ossi dell’azoto o per la presenza di composti organici volatili (COV). Infatti, come è stato mostrato nella parte introduttiva di questo inquinante, i radicali idroperoxili e perossili, formati dall’ossidazione degli idrocarburi, reagendo con l’NO, favoriscono l’accumulo di ozono, poiché producono NO\textsubscript{2} che per fotolisi darà ozono e impediscono la distruzione dello stesso tramite la reazione n°6. Poiché da altri studi relativi alla nostra area di studio [Valotto G., 2012] si vede che le concentrazioni dei COV sono basse e che i loro andamenti giornalieri non presentano un andamento che giustifichi la formazione di ozono dalla loro influenza, nell’ambito del nostro studio si può ipotizzare che la variazione della concentrazione di ozono sia dovuta per la maggior parte alla variazione dei parametri atmosferici (R.S.I. e T°). Per quanto riguarda i week-end non si registrano concentrazioni minori in questi gironi, al contrario di quanto si è visto per altri
inquinanti; questo molto probabilmente è dovuto alla forte influenza della R.S.I., che in quanto parametro meteorologico è ovviamente slegato da ritmi antropici.

Procedendo con l’analisi dell’inquinate ozono, andando a studiare le rose dei venti stagionali (grafici di figura 43). Vediamo che in tutti e due gli anni relativi allo studio di tesi, le concentrazioni massime rilevate, si hanno con venti che soffiano dalle direzioni comprese tra i 100° e 250° (ESE-WSW) nel semestre caldo e tra i 50° e 200° (NE-SW) nel semestre freddo. Le potenziali sorgenti di precursori dell’Ozono, poste in queste direzioni rispetto alla centralina, sono i taxi di trasporto passeggeri, il cui scalo è posto in direzione SW e anche lo stesso aeroporto Marco Polo, le cui piste di atterraggio-decollo sono esattamente in direzione SE-E rispetto alla centralina. Nelle vicinanze non si riscontrano altre potenziali sorgenti. Le aree urbane di Mestre, Carpento, Marghera e la strada Triestina poste ad Ovest non sembrano, dall’analisi delle rose dei venti essere sorgenti rilevanti per l’Ozono secondario.

I grafici 3D di figura 44 sono ottenuti fittando con una funzione spline la direzione, la VV e la concentrazione di ozono. Vediamo da questi grafici che le concentrazioni dell’ozono aumentano in funzione dell’aumento della velocità del vento, sia nel semestre caldo e sia nel semestre freddo. Quando in questa tipologia di grafici si osserva questa variazione della concentrazione con l’aumentare della velocità del vento, ci viene data l’indicazione di potenziali sorgenti distanti rispetto alla centralina di rilevamento. Questo perché in condizioni atmosferiche stabili, come spesso si rilevano nella nostra area di studio (grafici di figura 16) il processo di trasporto degli inquinanti domina su quello dispersivo.

Tuttavia la causa per cui con l’aumentare della velocità del vento la concentrazione di ozono aumenta lungo tutte le direzioni è dovuto al fatto che la velocità del vento, come è stato anche descritto nel capitolo relativo ai parametri meteo e mostrato nei grafici di fig. 12-13-42, mediamente è maggiore proprio durante le ore più calde della giornata, ore in cui anche l’ozono presenta i valori massimi, essendo T e R.S.I. parametri fondamentali per la sua formazione. Bisogna considerare inoltre che sempre nell’orario in cui i valori di RSI e O₃ sono massimi, i venti soffiano prevalentemente da ENE –SSW (grafico di figura 15), portandoci erroneamente ad individuare, tramite le rose dei venti di fig.43, come sorgenti emissive principali l’aeroporto nelle vicinanze o le aree urbane di Venezia e Jesolo. Quindi la causa per cui con l’aumentare della velocità del vento le concentrazioni di ozono aumentano lungo tutte le direzioni è dovuta al fatto che la velocità del vento mediamente è
maggiore proprio durante le ore più calde come evidenziato dai grafici di fig. 12-13 e 9, portando erroneamente quindi a far credere che le sorgenti di precursori siano poste a una certa distanza. Quindi l’area nei pressi dell’Aeroporto Marco Polo è soggetta ad un inquinamento di tipo diffuso da O₃.

4.5.2 CONFRONTI CONCENTRAZIONI NORMATIVA

In tabella 5 sono confrontate le concentrazioni orarie massime di O₃ rivelate durante il biennio di monitoraggio con i relativi limiti di legge.

<table>
<thead>
<tr>
<th>O₃</th>
<th>Periodo di integrazione</th>
<th>Valore soglia</th>
<th>Superamenti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valore obiettivo (a) per la protezione della salute umana</td>
<td>Media su 8 ore massima giornaliera²</td>
<td>120 µg m⁻³ da non superare per più di 25 giorni per anno civile come media su 3 anni</td>
<td>Nessun superamento nell’anno civile 2010</td>
</tr>
<tr>
<td>Valore obiettivo per la protezione della vegetazione</td>
<td>AOT₄₀⁴ calcolato sulla base dei valori di 1 ora da maggio a luglio</td>
<td>18000 µg m⁻³ h come media su 5 anni</td>
<td>Dati insufficienti Nel 2010 5818,6 µg m⁻³ h</td>
</tr>
<tr>
<td>Obiettivo a lungo termine (b) per la protezione della salute umana</td>
<td>Media su 8 ore massima giornaliera nell’arco di un anno civile</td>
<td>120 µg m⁻³</td>
<td>Nessun superamento nell’anno civile 2010</td>
</tr>
<tr>
<td>Obiettivo a lungo termine per la protezione della vegetazione</td>
<td>AOT₄₀, calcolato sulla base dei valori di 1 ora da maggio a luglio</td>
<td>6000 µg m⁻³</td>
<td>Dati insufficienti Nel 2010 5818,6 µg m⁻³ h</td>
</tr>
<tr>
<td>Soglia di informazione (c)</td>
<td>Media di 1 ora</td>
<td>180 µg m⁻³</td>
<td>Nessuno. Valore massimo</td>
</tr>
</tbody>
</table>

² La massima concentrazione media su 8 ore rilevata in un giorno è determinata esaminando le medie consecutive su 8 ore, calcolate in base a dati orari e aggiornate ogni ora. Ogni media su 8 ore in tal modo calcolata è assegnata al giorno nel quale la stessa termina; conseguentemente, la prima fascia di calcolo per ogni singolo giorno è quella compresa tra le ore 17.00 del giorno precedente e le ore 01.00 del giorno stesso; l’ultima fascia di calcolo per ogni giorno è quella compresa tra le ore 01.00 e le ore 24.00 del giorno stesso.

⁴ Per AOT₄₀ (espresso in µg m⁻³) si intende la somma delle differenze tra le concentrazioni orarie superiori a 80 µg m⁻³ (= 40 parti per miliardo) e 80 µg m⁻³ rilevate in un dato periodo di tempo, utilizzando solo i valori orari rilevati ogni giorno tra le 8:00 e le 20:00, ora dell’Europa centrale (CET).
Soglia di allarme (d) Media di 1 ora\(^4\) 240 µg m\(^{-3}\) rivelato: 108 µgm-3 Il 3/7/2010

(a) Valore obiettivo: livello fissato al fine di evitare a lungo termine effetti nocivi sulla salute umana e sull'ambiente nel suo complesso. La verifica del conseguimento dei valori obiettivo per le concentrazioni di ozono nell’aria è effettuata, per la prima volta nel 2013 sulla base della media dei superamenti dei tre anni precedenti per i valori concernenti la protezione della salute umana e per la prima volta nel 2015 sulla base della media dei superamenti dei cinque anni precedenti per i valori concernenti la protezione della vegetazione. Se non è possibile determinare le medie su tre o cinque anni in base ad una serie intera o consecutiva di dati annui, la valutazione della conformità ai valori obiettivo si può riferire, come minimo, ai dati relativi a:
- Un anno per il valore-obiettivo ai fini della protezione della salute umana.
- Tre anni per il valore-obiettivo ai fini della protezione della vegetazione.

(b) Obiettivo a lungo termine: livello da raggiungere nel lungo periodo mediante misure proporzionate, al fine di assicurare un’efficace protezione della salute umana e dell’ambiente.

(c) Soglia di informazione: livello oltre il quale sussiste un rischio per la salute umana in caso di esposizione di breve durata per alcuni gruppi particolarmente sensibili della popolazione nel suo complesso ed il cui raggiungimento impone di assicurare informazioni adeguate e tempestive.

(d) Soglia di allarme: livello oltre il quale sussiste un rischio per la salute umana in caso di esposizione di breve durata nel suo complesso ed il cui raggiungimento impone di adottare provvedimenti immediati.

Tabella 5 - Confronto fra le concentrazioni massime di O\(_3\) rivelate durante il trimestre monitorato e i relativi limiti di legge

Osservando i dati della tabella 5 è evidente che durante il biennio di studio e nell’anno civile preso in esame (2010) non sono stati registrati superamenti dei limiti imposti dalla legge.

\(^4\) Ai fini dell’applicazione dell’articolo 10, comma 1, il superamento della soglia deve essere misurato o previsto per tre ore consecutive.
4.6 MONOSSIDO DI CARBONIO

Tabella 6 - principali sorgenti di CO (W.H.O., 1999)

La sua presenza nella troposfera, ed in particolare nelle aree urbane, deriva dal fatto che la sua formazione avviene principalmente nel processo di combustione incompleta (in difetto di O₂) di combustibili fossili, cosa che ha luogo frequentemente nei motori degli autoveicoli caratterizzati da regime di marcia irregolare e a bassi regimi come quelli che si hanno nelle aree urbane ad alta intensità di traffico veicolare. Tra i motori degli autoveicoli, quelli a ciclo diesel emettono quantità minori rispetto a quelli a benzina, a motivo di una combustione più completa del carburante. La combustione del gasolio avviene in eccesso di aria, e quindi di O₂ [E.P.A., 1970; E.P.A., 2010].
Combustione incompleta di composti organici: In ogni processo di combustione che va a coinvolgere un combustibile contenente carbonio ha luogo la reazione generica seguente che, dovrebbe dar luogo solo a CO₂ e H₂O:

\[
C_nH_m + \left(\frac{s + \frac{1}{4}r}{} \right)O_2 \rightarrow sCO_2 + \frac{r}{2}H_2O
\]

Di fatto, le reazioni che riguardano l’ossidazione del C coinvolte nella combustione di carbonio sono quindi essenzialmente:

\[2C + O_2 \rightarrow 2CO \quad \text{eq.n°14}\]

\[2CO + O_2 \rightarrow 2CO_2 \quad \text{eq.n°15}\]

La prima reazione è molto più veloce della seconda (circa 10 volte) e fa sì che si abbia CO o come prodotto intermedio (nel caso in cui ci sia O₂ a sufficienza perché abbia luogo anche la seconda reazione) o come prodotto finale (nel caso di insufficiente presenza di O₂). Se si è in presenza di eccesso d’aria e quindi di O₂, la produzione di CO è bassa, mentre, se O₂ scarseggia, si ha una combustione incompleta con conseguente diminuzione della produzione di CO₂ a favore della produzione di CO. Ciò è quanto avviene frequentemente nei motori degli autoveicoli tenuti a basso regime nei centri abitati [www.arpalazio.it, 2012; www.indoor.apat..it, 2012].

I livelli di fondo della CO in atmosfera sono cambiati significativamente nelle ultime decadi. Infatti le concentrazioni globali sono diminuite in modo apprezzabile, grazie alla riduzione delle emissioni degli autoveicoli, come conseguenza dei miglioramenti tecnologici ad esse associati. Lo sviluppo delle marmitte catalitiche per gli autoveicoli, iniziato negli anni 70, è risultato in una diminuzione delle emissioni di CO, nonostante il largo aumento del numero di autoveicoli e dei km percorsi [George C., 2001]. Le località urbane con un alto uso di automobili e un
alto numero di sorgenti di emissioni stazionarie, come raffinerie e centrali elettriche, tipicamente hanno livelli di CO atmosferico maggiori, comparati con le aree rurali o con scarsa attività antropica. Nelle aree urbane, per quanto riguarda la CO, si riscontra in genere un percorso giornaliero, con le concentrazioni maggiori che si registrano durante le ore con il maggiore traffico veicolare, e i più bassi livelli, nelle ore di fermo del traffico [W.H.O., 1999; E.P.A., 2000]. Il principale percorso di degradazione della CO in ambiente si verifica attraverso la sua reazione con i radicali idrossili prodotti foto sinteticamente (85%); in aggiunta suolo e acqua (10%) possono agire come elementi di riduzione per il CO, essendo presenti in essi varie forme di microrganismi capaci di utilizzare la CO come sorgente di energia [Tolli J.D., et al. 2006; W.H.O., 1999].

Gli ossidi di carbonio sono composti generalmente piuttosto stabili alle condizioni ambientali. Le reazioni con l’ossigeno molecolare (O₂) o con il vapore acqueo, sono reazioni molto lente alle normali condizioni di pressione e temperatura.

Nella troposfera il radicale idrossile viene prodotto dalla fotolisi dell’ozono, seguita dalla reazione dell’atomo di ossigeno eccitato con il vapore acqueo, per formare due radicali idrossili [Brasseur G.P. et al., 1999; E.P.A., 2010], come evidenziato dalle equazioni n° 12-7-13 e 14. Il radicale ossidrile reagendo con il monossido di carbonio porta alla formazione di una molecola di CO₂ e un atomo di idrogeno, il quale rapidamente reagisce con O₂ per formare il radicale perossile (HO₂) (E.P.A., 2000; Levy H., 1971).

\[
\text{CO} + \text{OH} \rightarrow \text{CO}_2 + \text{H} \quad \text{eq.n°16}
\]

\[
\text{H} + \text{O}_2 \rightarrow \text{HO}_2 \quad \text{eq.n°17}
\]

La costante di velocità per la reazione in fase gassosa del CO con il radicale idrossile a pressione atmosferica, è stata misurata essere di 1,5 * 10⁻¹³ cm³ molecole⁻¹ sec⁻¹ [E.P.A., 1991]. Basandosi sulle stime delle emissioni globali e sulla costante di velocità del processo di rimozione principale, la durata media in atmosfera del CO, è calcolato essere circa 22-67 giorni. Tempi di vita medi più corti sono stati trovati ai tropici, mentre più lunghi alle alte latitudini a causa delle diverse concentrazioni atmosferiche del radicale OH.
Effetti sulla salute
4.6.1 ANALISI DEI DATI
Osservando i grafici di figura 45, relativi all’andamento della concentrazione media giornaliera del CO, vediamo che per il primo anno di monitoraggio (giugno 2009-giugno 2010) preso in considerazione nella tesi, le concentrazioni tendono a rimanere stabili nel range 0,20-0,40 mg/m3, salvo che nella primavera dello stesso anno in cui queste hanno un andamento crescente con il tempo. Anche nel 2010 si rileva un andamento molto particolare, infatti l’estate presenta un trend stabile durante tutta la stagione, mentre nelle tre restanti stagioni si hanno dei picchi nei primi quindici giorni e poi le concentrazioni si riportano sui valori rilevati durante l’estate. Dal confronto con altri studi su questo inquinante [W.H.O., 1999; Derwent R.G. et al., 1998; Jhy J.L. et al, 1994; Shindell D.T. et al., 2006; Henne S. et al, 2007], si vede che l’andamento osservato a Tessera nei due anni, è completamente differente da quello tipico riportato in questi studi. Infatti viene osservato che il CO tenderebbe a crescere durante la stagione fredda e a diminuire nella stagione calda. Questo trend annuale è dovuto all’aumento delle emissioni, legate principalmente al traffico veicolare e all’uso dei riscaldamenti domestici, e per l’abbassarsi dello strato di rimescolamento atmosferico con il diminuire delle temperature.

Andando ad osservare i grafici di figura 46, relativi al “giorno tipo” stagionale vediamo che, l’inquinante mostra un trend molto particolare. Nelle due estati, nei due autunni e nelle due primavere prese in considerazione dalla tesi, vediamo che le concentrazioni incominciano a crescere attorno alle ore 5.00 del mattino, raggiungendo il valore massimo attorno alle ore 13.00; ricominciano poi a calare, raggiungendo di nuovo verso le ore 21.00 i valori minimi. Per i due inverni si osserva un andamento rumoroso, con vari picchi di concentrazione durante tutto l’arco della giornata.

Essendo una delle sorgenti principali di CO il traffico veicolare, il trend riscontrato dai grafici sopra esposti, non sembra seguire un andamento che sia relazionabile con i movimenti tipici giornalieri degli autoveicoli, come si riscontra invece per alti inquinanti come gli NOx. Infatti da letteratura [Jhy J.L. et al, 1994; Mohan G. K., 2006; Jaffe L.S., 1968; W.H.O., 1999] la variazione della CO dovrebbe seguire un trend che dipende principalmente dalle attività umane. La concentrazione ambientale della CO è generalmente correlata in modo positivo con il traffico veicolare e il suo volume; i più alti livelli di correlazione si hanno dove il traffico è più elevato. Si osservano nella maggior parte degli studi due picchi, corrispondenti all’aumento del
traffico nel mattino, tra le ore 7.00 – 9.00, quando le persone si dirigono verso il posto di lavoro, e nel tardo pomeriggio per il rientro. Molto spesso il picco della mattina porta a concentrazioni di CO più elevate rispetto a quelle del picco serale, poiché l’altezza dello strato di rimescolamento è più basso nelle ore mattutine, e perciò inibisce il rimescolamento verticale che aiuta a disperdere la CO. Nel tardo pomeriggio e nelle prime ore della sera, si ha una aumento della turbolenza atmosferica, che risulta dall’attività solare del giorno, la quale alza lo strato di mescolamento portando a concentrazioni di CO più basse rispetto a quelle misurate nella mattina [E.P.A., 2000-2010]. Questo trend giornaliero, essendo direttamente correlato con il volume di traffico, mostra una variazione nei giorni del fine settimana, cioè tendenzialmente in questi giorni le concentrazioni rilevate sono più basse [W.H.O., 1999]. Quindi l’andamento che si è registrato, relativo ai due anni presi in considerazione, si discosta in modo netto dall’andamento tipico giornaliero della CO. Al fine di poter ulteriormente indagare questo andamento particolare, abbiamo studiato i dati, forniti dall’ARPAV, relativi ad altre centraline nella zona di studio, così da poter confrontare i loro andamenti giornalieri e stagionali, con l’andamento rilevato dalla centralina dell’Ente Zona. Le centraline prese in considerazione sono quella di San Donà (background situata in zona urbana), Mirav-Via Oberdan (background situata in zona urbana), Chioggia (background situata in zona urbana), Spinea-Viale San Remo (background situata in zona urbana), Mestre-Parco Bissuola (background situata in zona urbana), Marghera-Via Fratelli bandiera (traffico in zona urbana), Marghera-Via Beccaria (background situata in zona urbana), Malcontenta-Via Lago di Garda (stazione industriale situata in zona urbana), Mestre-Via Tagliamento (stazione traffico situata in zona urbana), Favaro Veneto-Via Monte Cervino (background situata in zona urbana). Dal confronto, tra i grafici di fig.45 relativi all’andamento giornaliero del CO presso la stazione dell’EZI e quelli di fig.46-47, relativi ai dati ARPAV, si coglie una netta differenza. Infatti quelli relativi ai dati ARPAV, si discostano nettamente dall’andamento ritrovato a Tessera, ma seguono il tipico andamento giornaliero riportato negli studi relativi alla CO [J.-J. LIU et al.,1994; Mohan G. K., 2006; Jaffe L.S., 1968; W.H.O., 1999]. Inoltre nei grafici di fig. 49, vengono messe a confronto invece le concentrazioni medie stagionali, relative ai dati della centralina E.Z.I e quelle relative ai dati ARPAV. Dalle elaborazioni grafiche ottenute dai dati ARPAV si riesce ad
individuare il tipico andamento stagionale della CO, con concentrazioni che aumentano nella stagione fredda e diminuiscono in quella calda, mentre da quelle relative ai dati della centralina EZI si vede un andamento irregolare che non segue dinamiche correlabili ad attività di tipo antropico o a parametri meteo.
Molto probabilmente ci deve essere stato un errore nella calibrazione dello strumento analitico o nella scelta della concentrazione standard della bombola di calibrazione.
Figura 45 - Andamenti concentrazione media giornaliera stazione Tessera
Figura 46 - Andamento del giorno tipo della concentrazione di CO presso la centralina EZI-Tessera.
Figura 47 - Andamenti del giorno tipo della concentrazione di CO stazioni ARPAV.
Figura 48 - Andamento del giorno tipo della concentrazione di CO stazioni ARPAV
Figura 49 - Andamenti concentrazioni medie stagionali CO.
4.7 CORRELAZIONE
In questa sezione andremo ad analizzare ulteriormente e cercheremo di trovare conferme alle relazioni che sono state individuate nei capitoli precedenti della tesi tra i vari inquinanti monitorati e i parametri meteorologici che ne influenzano la concentrazione e la distribuzione in atmosfera.
Utile per questa finalità è lo studio del “coefficiente di correlazione”. La correlazione è un indice che informa sul grado di interdipendenza di due variabili. In questo studio verrà preso in considerazione il coefficiente di correlazione di Pearson (Bravais-Pearson). Date due variabili statistiche \(X \) e \(Y \), l’indice di correlazione di Pearson è definito come la loro covarianza divisa per il prodotto delle deviazioni standard delle due variabili:

\[
\rho_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}.
\]

Dove

\(\sigma_{xy} \), è la covarianza tra \(X \) e \(Y \)
\(\sigma_x, \sigma_y \), sono le due deviazioni standard

Se:

\(\rho_{xy} > 0 \), le variabili \(x \) e \(y \) si dicono diretamente correlate, oppure correlate positivamente;
\(\rho_{xy} = 0 \), le variabili \(x \) e \(y \) si dicono incorrelate;
\(\rho_{xy} < 0 \), le variabili \(x \) e \(y \) si dicono inversamente correlate, oppure correlate negativamente.

Per la correlazione diretta si distingue inoltre:

\(0 < \rho_{xy} < 0,3 \): correlazione debole;
\(0,3 < \rho_{xy} < 0,7 \): correlazione moderata;
\(\rho_{xy} > 0,7 \): correlazione forte
Una correlazione positiva significa che al crescere di una variabile, l'altra tende ugualmente a crescere, viceversa una correlazione negativa significa che al crescere di una variabile, l'altra tende a decrescere. È importante ricordare che un valore assoluto basso o nullo di correlazione non deve essere interpretato come assenza di una qualsiasi forma di relazione tra le due variabili; potrebbe essere assente invece solo una relazione di tipo lineare o esistere relazioni di tipo non lineare, espresse da curve di ordine superiore.

Quando siamo in presenza di un’unica sorgente che disperde in un mezzo una miscela di composti caratterizzata da precisi e costanti rapporti stechiometrici, a meno dell’insorgere di reazioni chimiche o di differenti cinetiche di trasporto, il rapporto fra le concentrazioni rimane costante nello spazio e nel tempo. Nel caso invece in cui più sorgenti non localizzate nello stesso sito, emettano miscele di inquinanti caratterizzate da differenti rapporti stechiometrici, nello stesso mezzo dispersivo il rapporto fra le varie concentrazioni dei composti emessi non è costante nello spazio e nel tempo. Quindi nel primo caso avremo tra i composti considerati un alto grado di correlazione, nel secondo caso invece un basso grado di correlazione.

Sulla base di quanto detto sopra e osservando i grafici di figura 50, che mostrano il coefficiente di correlazione globale (considerando tutte le direzioni del vento contemporaneamente), è evidente che nell’area monitorata sono presenti diverse sorgenti di inquinanti, perché le relative concentrazioni presentano un basso (<0.5) coefficiente di correlazione globale ad eccezione delle ovvie coppie di ossidi di azoto. L’elevato grado di correlazione ($\rho_{\text{NO$_2$, NO}} = 0.5; \rho_{\text{O$_3$, NO}} = 0.7$) tra questi due inquinanti, è dovuto al forte legame chimico che li unisce, infatti l’NO$_2$ è un inquinante secondario che si forma insieme all’NO nei processi di combustione.
Come mostrano i grafici polari di figura 51, il coefficiente di correlazione fra le variabili è stato anche stimato per 16 quadranti di ampiezza 22.5 gradi al fine di caratterizzarne le relative variazioni in funzione della direzione del vento. Questo accorgimento è stato fondamentale, in quanto l’aeroporto e di conseguenza la centralina di rilevamento, sono posizionati in un contesto territoriale ad alta densità di sorgenti emissive per gli inquinanti studiati, come si vede dalla figura n°5. In questi grafici vengo presi in considerazione i principali inquinanti studiati nella tesi e ne viene studiato il coefficiente di correlazione con gli altri inquinati e con i principali parametri meteorologici, i quali vengono indicati in leggenda di ogni grafico. Per ogni inquinante viene riportato un grafico per la stagione estiva e uno per la stagione invernale.

Figura 50 - Coefficienti di correlazione globale

5 Sono riportate solamente le correlazioni fra le variabili che presentano almeno un grado di correlazione (in funzione della direzione del vento) >0.5 e/o <-0.5
Osservando i grafici di figura 51, per il primo inquinante preso in considerazione l’SO$_2$, vediamo che nella stagione calda, è positivamente correlato con il “$n°$ di voli” in direzione ENE (67,5°), direzione in cui troviamo la pista dell’aeroporto. Quindi si può ipotizzare che ad un aumento del numero di voli corrisponda un aumento delle concentrazioni di SO$_2$ con venti che spirano proprio da ENE. Anche dalle rose dei
venti stagionali relative a questo inquinante (fig.25), per le stagioni estate 2010, autunno 2010-2011 e inverno 2011, si coglie un aumento delle concentrazioni con venti da E-NE, direzione in cui è ritroviamo le piste dell’aeroporto rispetto alla centralina. E’ positivamente correlata anche con la “VV”, con venti che provengono da WSW (247,5°). Questo ci indica che in questa direzione si deve essere una sorgente distante di questo inquinante. Quanto appena visto è interessante perché ci dice che l’influenza alla variazione delle concentrazioni di SO\textsubscript{2} rilevate con venti da SW non è data solo dalla sorgente vicina dello scalo dei Taxi, come era stato riportato nelle rose dei venti di fig. 25, ma anche da una sorgente più lontana. Osservando la fig 5, le sorgenti che potrebbero andare a corrispondere, sono le aree urbane di Campalto e Mestre, in quanto poste a SW, relativamente distanti rispetto alla centralina e con il loro traffico veicolare e le emissioni degli impianti di riscaldamento, potrebbero essere delle sorgenti rilevanti per l’S\textsubscript{O}{2}. Inoltre l’S\textsubscript{O}{2} è positivamente correlata con l’NO\textsubscript{2} con venti provenienti da NNW-N (337,5°-0°) e SW (180°-292,5°). In queste direzioni si trovan la strada Triestina, lo scalo taxi e le aree urbane di Mestre-Campalto, tutte sorgenti conclamate sia di SO\textsubscript{2} che NO\textsubscript{2}. Troviamo necessariamente una correlazione positiva, in quanto un aumento dei livelli emissivi di uno dei due inquinati porta necessariamente anche ad un aumento dell’altro. Dalle rose dei venti stagionali di questi due inquinanti (fig.25 e 35), troviamo che in corrispondenza delle direzione appena individuate, si hanno aumenti delle concentrazioni sia dell’S\textsubscript{O}{2} che dell’NO\textsubscript{2}. Infine è positivamente correlata con l’O\textsubscript{3} con venti che provengono da WNW (292,5°). Questa correlazione potrebbe essere dovuta al fatto che in questa direzione troviamo la strada Triestina, che con il suo intenso traffico veicolare è una sorgente di SO\textsubscript{2} e precursori dell’O\textsubscript{3}. Nella stagione fredda l’S\textsubscript{O}{2} è positivamente correlato con l’NO\textsubscript{2} con vento da SE (135°), direzione in cui inizia la pista dell’aeroporto.

Passando al PM\textsubscript{10}, nella stagione calda, questo inquinante è positivamente correlato con l’O\textsubscript{3} e con l’NO\textsubscript{2}, con venti provenienti da WSW-WNW (247,5°-292,5°). Come è stato messo in evidenza nelle rose dei venti di fig.21 e 43, in queste direzioni troviamo la strada Triestina e lo scalo dei taxi, entrambe sorgenti di PM\textsubscript{10} e di precursori di O\textsubscript{3} (NO-NO\textsubscript{2}). Infatti nell’utilizzo di combustibili fossili (traffico sia di auto che di navi), le principali emissioni consistono in PM\textsubscript{10} e ossidi di azoto, quindi è normale che in presenza di strade ad alta intensità di traffico, questi due inquinanti aumentino insieme. Il PM\textsubscript{10} è invece negativamente correlato con la VV per venti
provenienti da WNW (292,5°) e con l’R.S.I per venti provenienti da E-SW (90°-225°). Il primo dato ci indica che aumentando la velocità del vento da questa direzione le concentrazioni di PM$_{10}$ registrate tendono a diminuire, indice questo di una sorgente emissiva vicina alla centralina. L’unica sorgente posta nelle vicinanze e in direzione WNW, è la strada Triestina. Questa relazione ci viene confermata dalle rose dei venti stagionali relative al PM$_{10}$ (fig.21), che mostrano le concentrazioni per venti provenienti dalla direzione appena individuata. Il secondo dato ci indica che per venti provenienti da E-SW quando la concentrazione di PM$_{10}$ diminuisce, i valori di l’R.S.I. tendono ad aumentare. Questo può essere dovuto all’alzarsi dello strato di rimescolamento atmosferico durante le ore più calde della giornata, fenomeno che porta ad una maggiore possibilità di dispersione degli inquinanti, e in particolare del PM$_{10}$, le cui concentrazioni rilevate sono fortemente influenzate dalle condizioni meteo, come le inversioni termiche. Inoltre dai grafici di fig.9,10,12 si osserva che durante le ore con valori di R.S.I. maggiori, si hanno anche le maggiori intensità del vento, altro parametro atmosferico che influenza fortemente le concentrazioni di PM$_{10}$ in atmosfera.

Nella stagione fredda il PM$_{10}$ risulta positivamente correlato con l’NO$_2$ con venti provenienti da SE-S (135°-180°). Molto probabilmente nella stagione fredda si ha un aumento della correlazione di questi due inquinanti, poiché tende a diminuire l’intensità dei venti provenienti da S-SE, come si vede dai grafici di figura 14, e quindi le emissioni di sorgenti vicine come l’aeroporto (SE) non vanno incontro ad un forte processo dispersivo come nella stagione calda. E’ positivamente correlato inoltre con l’NO, con venti da S-SSW (180°-202,5°) e NNW (315°). In questa direzione le principali sorgenti individuate sono lo scalo taxi e la strada Triestina, sorgenti rilevanti di questi due inquinanti. Dalle rose dei venti stagionali di fig.21 e 36, vediamo che in queste due direzioni entrambi gli inquinanti mostrano valori elevati di concentrazione.

Nella stagione fredda il PM$_{10}$ è negativamente correlato con l’O$_3$ per venti con direzione SE (135°) e WSW (247,5°). In questa direzione sono state individuate come sorgenti emissioni l’aeroporto e lo scalo dei taxi, che emettono entrambe, nell’utilizzo di combustibili fossili, oltre a PM$_{10}$ anche NO. La correlazione negativa è dovuta al fatto che il monossido di azoto tende a reagire con l’ozono presente in atmosfera, dando biossido di zolfo e ossigeno, come visto dalla reazione n°8; quindi in presenza di elevate concentrazioni di NO si tende ad avere una diminuzione dei
valori atmosferici di Ozono. E’ negativamente correlato, inoltre con la VV per venti con direzione WSW (247,5°). Questo ci indica la presenza di una sorgente vicina in questa direzione, elemento che va a confermare quindi l’influenza dello scalo dei taxi nelle emissioni di PM$_{10}$, come visto dai grafici di fig.21.

Per quanto concerne l’NO, vediamo che nella stagione calda è positivamente correlato con l’NO$_2$ per quasi tutte le direzioni del vento. Questa relazione così forte è dovuta al fatto che l’NO$_2$ è un inquinante secondario che si forma in atmosfera dal’NO e da radicali liberi e per il fatto che vengono emessi insieme dai processi di combustione, come mostrato dalle reazioni n° 4-5, quindi inevitabilmente si ritrova in tutte le direzioni questo forte legame tra questi due inquinanti. Invece è negativamente correlato con la temperatura e con l’O$_3$, anche in questo caso per quasi tutte le direzioni del vento. Questo perché come è stato evidenziato dai grafici stagionali dell’NO (fig.30) le concentrazioni di questo inquinante diminuiscono nella stagione calda e aumentano in quella fredda, inoltre dai grafici di figura 34, vediamo che nelle ore della giornata (15.00-16.00) con i valori di T maggiori, le concentrazioni di NO toccano i valori minimi. Per quanto riguarda l’O$_3$, la correlazione negativa è dovuta alla reazione n°8, che porta ozono e monossido di azoto a reagire, dando biossido di azoto, e abbassando i valori dell’ozono in atmosfera. Vediamo infatti dai grafici di fig.30 e 40, relativi all’andamento giornaliero dell’NO e dell’O$_3$, che quando nell’arco della giornata i valori di questo inquinante sono maggiori quelli dell’NO sono minimi. Questo fenomeno è particolarmente intenso di notte, quando l’R.S.I., che porta alla formazione dell’O$_3$ si azzerra. Anche nella stagione fredda riscontriamo una correlazione positiva del PM$_{10}$ con l’NO$_2$, e una correlazione negativa con l’O$_3$ e la T.

Dai grafici di fig.51, si vede che l’NO$_2$ è negativamente correlato nella stagione calda con l’R.S.I. e l’O$_3$ con vento che soffia da WNW-NW (292°-315°). Questi valori di correlazione negativi sono dovuti al fatto che, come si vede nelle reazioni n°6 -7- 8, in presenza di alte temperature ed elevata R.S.I. l’NO$_2$ viene dissociato in NO e in un atomo di ossigeno altamente reattivo, il quale reagirà con l’ossigeno molecolare, portando alla formazione di O$_3$. Quindi alti valori di R.S.I. portano ad una diminuzione dei valori di NO$_2$ e un aumento di quelli di O$_3$. L’NO$_2$ è negativamente correlato inoltre con la VV sempre in direzione WNW-NW (292°-315°); questo ci indica che in questa direzione ci deve essere una sorgente posta nelle vicinanze. Osservando anche le rose dei venti di fig.35, vediamo che le concentrazioni di NO$_2$
aumentano per venti compresi tra 290°-360°, quindi molto probabilmente la sorgente posta nelle vicinanze è la strada statale triestina, che con il suo intenso traffico è una sorgente di NO$_2$.

Anche nel semestre freddo l’NO$_2$ è negativamente correlato con l’R.S.I., per venti provenienti da WNW (292,5°) e con l’O$_3$ per tutte le direzioni del vento. È negativamente correlato con la VV, per venti che soffiano da 90°-202° (E-SSW). In questa direzione le potenziali sorgenti poste nelle vicinanze della centralina di rilevamento potrebbero essere l’aeroporto a Est e lo scalo Taxi a SW. Quanto appena visto lo si ritrova nelle rose dei venti di fig.35, in quanto le concentrazioni maggiori di NO$_2$ nella stagione invernale si hanno in corrispondenza di venti che provengono da E-SSW.

Infine per l’ozono, vediamo che è positivamente correlato con la T nella fascia SE-NNW (135°-337°) e con la R.S.I. con venti da NW (315°). Questo perché in queste direzioni si ritrovano le principali sorgenti emissive di precursori dell’Ozono, la strada Triestina, lo scalo dei taxi e l’aeroporto. Aumentando la temperatura aumenta anche l’R.S.I. che innesca le reazioni che portano, in presenza di precursori, alla formazione dell’Ozono. In direzione NW troviamo la strada Triestina, sorgente di precursori dell’ozono, quindi con venti che provengono da questa direzione e con un aumento della R.S.I. che innesca il ciclo fotochimico, si avrà di conseguenza anche un aumento dei valori di O$_3$.

Nella stagione fredda troviamo sempre una correlazione positiva con l’R.S.I. e la T con venti da WNW-NNW (292°-337°). In questa direzione aumentando la T e la RSI si innescano le reazioni di formazione dell’O$_3$, grazie ai precursori emessi dal traffico veicolare della strada Triestina.

Inoltre emerge in modo maggiormente evidente una correlazione positiva con la VV da E-ESE (90°-112,5°) e SSW-WSW (202,5°-247,5°) e con la T anche nella fascia ESE-SSE(135°-157°). Questo generalmente indica la presenza in queste direzioni di una sorgente di precursori di O$_3$ distanti rispetto alla centralina di rilevamento. Tuttavia nel capitolo relativo allo studio dell’Ozono, abbiamo visto che le concentrazioni di questo inquinante e la VV, sono entrambe fortemente legate nella loro crescita giornaliera all’intensità della T e dell’R.S.I. Quindi l’aumento delle concentrazioni di Ozono e l’aumento delle intensità del vento, nelle ore della giornata (15.00-16.00) più calde, sono due fenomeni tra loro non collegati ma dovuti appunto all’aumentare delle temperature. Questo fenomeno si ha in particolare, come
si vede dalla fig.14, per venti che spirano come direzione dominante da 100°- 210°. Quindi in questa direzione non troviamo una sorgente distante, ma come è già stato messo in evidenza nel capitolo relativo all’Ozono, essendo l’R.S.I. il parametro fondamentale che determina le variazioni delle concentrazioni di questo inquinante e della velocità del vento, nella nostra area di studio siamo in presenza di un inquinamento di tipo diffuso.

4.8 COEFFICIENTI DI CORRELAZIONE INCROCIATA

Al fine di poter meglio indagare alcune situazioni emerse nello svolgimento della tesi, si è deciso di calcolare il coefficiente di “correlazione incrociata” tra gli inquinanti e i parametri meteo presi in considerazione. In teoria dei segnali la correlazione incrociata (correlazione mutua o cross-correlazione) rappresenta il grado di similitudine di due segnali come funzione di uno spostamento o traslazione a livello temporale applicata ad uno di essi.

La correlazione incrociata “r” al tempo “d”, dove mx e my corrispondono alle medie delle serie x e y, è data da:

\[
 r(d) = \frac{\sum \left[(x(t) - m_x) \times (y(t-d) - m_y) \right]}{\sqrt{\sum (x(t) - m_x)^2 \sum (y(t-d) - m_y)^2}}
\]

L’utilizzo di questo strumento statistico può essere utile per meglio comprendere come evolve la correlazione tra gli inquinanti e i parametri meteo in funzione del tempo, e farci intuire se nel caso di alcune delle reazioni chimiche che avvengono nel comparto atmosferico, la correlazione tende ad aumentare o a diminuire con il decorrere della reazione.

I segmenti orizzontali che si hanno nei grafici elaborati, sono posti a più o meno 1,96 diviso la radice quadrata della lunghezza della serie di dati. Le barre che escono da quei limiti corrispondono a correlazioni che sono significativamente diverse da zero con un p-value minore a 0.05. In altri termini, le barre che riescono a superare in positivo o in negativo i segmenti sono statisticamente significative.
Figura 52 - Coefficienti di correlazione incrociata tra i principali inquinanti e il parametro "velocità del vento"

Dai grafici di fig.52.x,a,b,c,d vediamo che tra NO$_2$, NO, SO$_2$, PM$_{10}$ e la velocità del vento c’è una netta correlazione negativa. Infatti, questo parametro meteo è fondamentale relativamente ai processi di dispersione degli inquinanti in atmosfera; aumentando la velocità del vento infatti diminuiscono le concentrazioni rilevate degli inquinanti. Nello specifico andando avanti lungo la serie temporale, vediamo che il valore di correlazione tende a diminuire, questo perché le concentrazioni mano a mano che il processo dispersivo avanza necessariamente diminuiscono. Per l’SO$_2$ notiamo che il processo dispersivo raggiunge il suo picco (massima correlazione negativa) circa 9-10 ore dopo rispetto gli altri inquinanti presi in considerazione, molto probabilmente perché (visto anche il coefficiente di correlazione negativa più basso rispetto agli altri inquinanti) questo inquinante è meno soggetto alla dispersione da parte del vento.
Figura 53 a,b,c, – coefficienti di correlazione incrociata tra O₃-VV, O₃-R.S.I. e VV-R.S.I.

Il grafico 53,a ci mostra la correlazione incrociata tra l’O₃ e la velocità del vento. Rispetto ai grafici di fig.52,a,b,c,d, in questo caso ritroviamo un coefficiente di correlazione positivo tra la VV e l’O₃. Da una prima osservazione questo ci porta a dire che aumentando la velocità del vento aumentano anche le concentrazioni di O₃. Questo è vero anche tra i due eventi non c’è un legame di causalità. Infatti come è stato visto nel capitolo 4°, l’ozono e la velocità del vento assumono i valori massimi nelle 24h quando i valori di R.S.I. sono massimi (ore 15.00-16-00). Questo perché l’R.S.I. è l’innesco fondamentale per le reazioni foto dissociative che portano alla formazione dell’Ozono, e per la velocità del vento perché alte T° e R.S.I. favoriscono il formarsi di gradienti di pressione che portano alla genesi dei venti. Osservando i grafici 53.b e 53.c si osserva che O₃ e VV sono legate con la R.S.I. da un ciclo

Figura 54, a, b, c, d, e - coefficienti di correlazione incrociata tra NO, NO$_2$, O$_3$, PM$_{10}$, SO$_2$ e n° di voli
Per tutti e cinque i grafici di fig.54 a,b,c,d,e osserviamo un andamento ciclico nell’arco di 24h. Nelle ore in cui l’aeroporto è attivo (07.00-23.00) si osservano correlazioni positive, mentre durante le ore notturne in cui non si hanno voli in partenza si vede una correlazione negativa. Questo è si indice di una influenza della struttura aeroportuale nelle concentrazioni degli inquinanti, in quanto gli aeromobili usando combustibili fossili sono sorgenti degli inquinanti studiati. Tuttavia questa influenza è minima visto i valori estremamente bassi di correlazione che si ritrovano nei grafici.

4.9 STUDIO DELLA VARIAZIONE DI CONCENTRAZIONE ATMOSFERICA DEGLI INQUINANTI IN FUNZIONE DELL’AUMENTO DEL NUMERO DI VOLI
Al fine di poter fornire delle ulteriori informazioni utili alla stima emissiva dell’aeroporto Marco Polo sono stati elaborati dei grafici 3D che mostrano la variazione della concentrazione dei principali inquinanti in funzione della direzione del vento e del numero di voli. Per la loro costruzione sono stati elaborate le concentrazioni rivelate durante le ore 7.00 e 23.00 (orario in cui si hanno gli arrivi e le partenze degli aerei) e con direzione del vento compresa fra 40° - 160° (fascia in cui, rispetto alla centralina di rilevamento, è posta la struttura aeroportuale). Come per i grafici presentati nel capitolo 4° l’asse delle ascisse mostra la direzione del vento e l’intensità di colore è proporzionale alla concentrazione dell’inquinante monitorato. Diversamente dai predecessori, in questi ultimi l’asse delle ordinate mostra il numero di voli. Quindi, se si osserva un aumento delle concentrazioni in funzione dell’aumento del numero di voli lungo particolari direzioni del vento, è probabile che l’aeroporto sia una sorgente importante nell’area monitorata. Di seguito, in figura 52, sono riportate le elaborazioni grafiche sopramenzionate per tutti gli inquinanti monitorati.
Osservando i grafici di figura 52 a,b,c,d,e è evidente che:

- Per il PM$_{10}$ (Fig.53-a) le concentrazioni nella fascia compresa tra 40° e 100° addirittura diminuiscono in funzione dell’aumento dei voli, mentre nelle restanti direzioni rimangono stabili. Quindi per questo inquinante non si rileva un effettiva influenza della struttura aeroportuale.

- Per l’S0$_2$ (Fig.53-b), invece le concentrazioni aumentano per tutte le direzioni del vento prese in considerazione, mettendo in evidenza una probabile influenza dell’attività degli aeromobili.

- Anche per l’NO e l’NO$_2$ (Fig.53-c-d) Si rileva un influenza della struttura aeroportuale in quanto le concentrazioni aumentano nella fascia compresa tra 60° e 80° in funzione dell’aumento del numero di voli, mentre nelle restanti direzioni del vento queste rimangono stabili.

- Infine per l’O$_3$ (Fig.53-e) non si rileva alcuna influenza dell’aeroporto, in quanto le concentrazioni di questo inquinante rimangono stabili per tutte le direzioni del vento prese in considerazione.
5. CONCLUSIONI e WORK IN PROGRESS

In questa tesi sono stati elaborati parte dei dati relativi al progetto di monitoraggio intitolato “Monitoraggio delle emissioni di origine aeroportuale”, nato nel 2008 dalla collaborazione fra SAVE spa che gestisce l’aeroporto Marco Polo di Tessera (VE), l’Università Ca’Foscari e l’Ente Zona Industriale di Porto Marghera. Dei cinque attuali anni di progetto, si è preso in considerazione il periodo che va da giugno 2009 a giugno 2011 e, mediante varie tipologie di elaborazioni grafiche sono state studiate le concentrazioni orarie di SO$_2$, PM$_{10}$, NO, NO$_2$, NO$_x$, O$_3$, CO in funzione dei principali parametri meteo (precipitazioni, temperatura, velocità del vento, direzione del vento, R.S.I.) al fine di monitorare la qualità dell’area nei pressi dell’aeroporto e fornire delle informazioni utili alla stima del contributo emissivo di questa particolare sorgente.

Dal presente studio è emerso che:

- Le concentrazioni più alte di PM$_{10}$, nell’area di studio e per i due anni presi in considerazione, si registrano principalmente nel semestre freddo. Questo principalmente a causa delle attività antropiche che insistono nell’area (traffico, riscaldamenti domestici) e per l’abbassarsi dello strato di rimescolamento atmosferico (P.B.L.) con il diminuire delle temperature. Anche il variare del trend del giorno tipo è compatibile con il mutare delle condizioni meteo climatiche nell’arco della giornata. Infatti le concentrazioni minime di PM$_{10}$ si registrano verso le ore 13.00-14.00, ore in cui le T° sono più alte ed è maggiore la capacità dispersiva dell’atmosfera. Da quest’ora in poi le concentrazioni tendono ad accumularsi per l’abbassarsi del P.B.L. Questo trend ci indica che sebbene le emissioni di PM$_{10}$ siano fondamentalmente antropiche, il profilo giornaliero è per la maggior parte influenzato dal variare delle condizioni meteo. Si è visto che le concentrazioni maggiori di PM$_{10}$ sono state rilevate quando i venti soffiano da ESE-S, SSW-W e WNW-N. In queste direzioni le principali sorgenti emissive che sono state individuate sono la strada statale Triestina, le aree urbane di Mestre - Marghera e più nelle vicinanze lo scalo taxi via mare ed infine la struttura aeroportuale. Per quanto riguarda quest’ultima componente (l’Aeroporto Marco Polo è una sorgente clamorata di PM$_{10}$ in quanto al suo interno vi operano mezzi alimentati con derivati del petrolio), si può
affermare che la sua influenza è minima, questo perché dallo studio della variazione della concentrazione in funzione dell’aumento del n° di voli nella fascia compresa tra 40° e 160° (in cui troviamo l’aeroporto) non si è rilevato un aumento dei valori di concentrazioni di PM$_{10}$. Infine si può dire che l’area di studio è caratterizzata da un inquinamento diffuso di PM$_{10}$, in quanto con l’aumento della velocità del vento le concentrazioni rilevate tendono a diminuire per tutte e direzioni del vento e anche perché il profilo giornaliero delle concentrazioni varia principalmente nell’arco delle 24h in funzione del abbassarsi e dell’alzarsi del strato di rimescolamento atmosferico.

• I valori più elevati di biossido di zolfo nel corso delle stagioni si registrano nel semestre freddo, questo sia per l’abbassarsi dello strato di rimescolamento atmosferico (P.B.L.) con il diminuire delle T° sia per l’aumento generale delle emissioni antropiche. Dallo studio del profilo giornaliero delle concentrazioni si vede che questo segue un trend che è principalmente legato ad attività umane. Infatti le concentrazioni incominciano ad accumularsi a partire dalle ore 7.00 del mattino, ora in cui iniziano la maggior parte delle attività antropiche, mostrando un primo picco in tarda mattinata e un secondo picco nelle ore serali per il rientro dai posti di lavoro. Nel semestre freddo invece si ritrova un solo picco, all’incirca verso le ore 15.00, molto probabilmente a causa dei valori più bassi di P.B.L. dovuti alla diminuzione delle temperature. Un ulteriore conferma della forte influenza delle attività antropiche, e in particolare del traffico veicolare nelle concentrazioni rilevate, la si ritrova osservando il trend delle concentrazioni nei giorni del week-end. Vediamo infatti che si hanno valori di SO$_2$ notevolmente più bassi rispetto ai restanti giorni della settimana, questo perché non è presente l’intenso traffico veicolare delle partenze per raggiungere e rientrare dai posti di lavoro. Invece si osserva che nei giorni tipo dei week-end delle stagioni estive, si ha un andamento similare rispetto agli altri giorni della settimana; questo può essere dovuto all’intenso traffico veicolare verso le zone balneari che si ha nella vicina strada Triestina nel periodo estivo e in particolare nei giorni del fine settimana. Le concentrazioni orarie più elevate sono state rilevate quando i venti soffiano principalmente da SW-SSW e SE-S. La prima componente ci indica come potenziali sorgenti lo scalo taxi via mare e più distante le aree
urbane di Marghera-Mestre. La seconda componente è molto probabilmente legata alle attività degli aeromobili. L’aeroporto Marco Polo infatti è una potenziale sorgente di SO$_2$, in quanto al suo interno vi operano mezzi a combustione che utilizzano come combustibile derivati del petrolio. La sua influenza è ulteriormente confermata dai grafici 3D relativi alla variazione del n° di voli in funzione della concentrazione. Vediamo infatti che i valori rilevati di SO$_2$ nella fascia 40°-160° tendono ad aumentare con l’incremento del numero di voli, elemento che ci indica una potenziale influenza di questo sulle concentrazioni rilevate. Nella nostra area di studio vediamo che all’aumento della velocità del vento le concentrazioni di biossido di zolfo tendono a rimanere costanti o a diminuire leggermente. Questo ci indica che le concentrazioni medie di SO$_2$ nell’area monitorata sono prossime ai livelli di background, e le componenti che emergono a livello stagionale da grafici delle rose dei venti, sono così evidenti proprio per i livelli di concentrazioni generali così bassi. Dal confronto dei dati in nostro possesso con il D.lgs 155/2010 è evidente che le concentrazioni di SO$_2$ nell’area di studio, per i due anni presi in considerazione, sono abbondantemente inferiori ai limiti di legge.

- Dallo studio dei dati relativi all’NO$_2$ e all’NO, vediamo che anche per questi due inquinanti le concentrazioni tendono a crescere verso la fine della stagione estiva, mantenendosi su valori elevati per tutto l’autunno e l’inverno, e ricominciando a diminuire nella stagione primaverile. Questo trend delle concentrazioni nell’arco delle stagioni è dovuto ad un aumento delle emissioni antropiche e all’abbassamento del P.B.L. che limita la capacità dispersiva atmosferica. Nei profili giornalieri dell’NO$_2$ e dell’NO, sono riconoscibili i due picchi di concentrazione dati dallo svolgersi delle attività antropiche, e in particolare dal traffico veicolare, nell’arco della giornata. Per l’NO$_2$ il primo picco si rileva verso le 7.00-8.00 del mattino. Nelle ore pomeridiane le concentrazioni tendono a calare a causa dei processi foto dissociativi che coinvolgono l’NO$_2$, e per l’alzarsi dello strato di rimescolamento atmosferico che favorisce il disperdersi degli inquinanti. Il secondo picco si ritrova invece verso le ore 18.00-19.00, in corrispondenza del rientro serale dai posti di lavoro. I picchi di concentrazione nei profili
giornalieri dell’NO, invece tendono a presentarsi qualche ora in anticipo rispetto a quelli dell’NO₂. Questo perché nei processi di combustione viene emesso prima l’NO, che mediante processi ossidativi portano alla formazione dell’NO₂. Ulteriore conferma dell’influenza delle attività umane la si ha osservando gli andamenti relativi ai giorni del sabato e della domenica; infatti in questi due giorni le concentrazioni sono più basse rispetto ai restanti giorni della settimana per il diminuire di molte delle attività antropiche tra cui il traffico veicolare. Le concentrazioni orarie maggiori per entrambi questi inquinanti sono state registrate quando il vento ha direzione compresa tra WNW-N, SW-SSW e in maniera meno evidente tra NE-SE. Queste componenti possono essere associate alla strada Triestina (WNW-N), allo scalo taxi via mare e più distante all’area industriale di Marghera (SW-SSW), mentre l’ultima può essere associata alla struttura aeroportuale (NE-SE). Anche dallo studio della variazione delle concentrazioni in funzione dell’aumento del numero di voli, si riscontra una l’influenza della struttura aeroportuale. Infatti le concentrazioni monitorate per l’NO₂ e l’NO tendono ad aumentare in funzione dell’incremento del numero di voli per direzioni del vento comprese tra 60° e 90°. Questo ci conferma una potenziale influenza dell’aeroporto nelle concentrazioni rilevate dalla centralina. Avendo osservato che le concentrazioni di questi due inquinanti tendono a diminuire per tutte le direzioni in funzione dell’aumento della velocità del vento, possiamo dire che l’area monitorata è caratterizzata da un inquinamento diffuso di NO e NO₂. Dal confronto dei dati con i limiti relativi al 155/2010, è evidente che le concentrazioni orarie di NO₂ sono nettamente inferiori ai limiti di legge, mentre i valori relativi al “limite annuale per la protezione della salute umana” e il “limite annuale per la protezione della vegetazione” degli NOx sono superiori ai rispettivi limiti annuali (2010).

- Anche per l’ozono si è riusciti a cogliere un chiaro andamento stagionale. Le concentrazioni più basse si sono registrate nella stagione autunnale - invernale, mentre quelle più alte nella stagione primaverile – estiva. E’ evidente, dal confronto degli andamenti della R.S.I. e della T°, una relazione tra le concentrazioni di questo inquinante e il variare di questi parametri meteo, quando questi crescono anche i valori di ozono crescono. L’ozono è
infatti un inquinante secondario che si forma, come è stato spiegato nel capitolo 4°, da un complesso ciclo di reazioni atmosferiche che coinvolgono gli ossidi di azoto in presenza di elevati valori di R.S.I. Anche il trend del giorno tipo è compatibile con quello della radiazione solare incidente, infatti le concentrazioni raggiungono il loro massimo attorno alle 15.00-16.00, quando l’ R.S.I. è massima. Dopo questo picco le concentrazioni registrate incominciano man mano a calare, mantenendosi su valori bassi durante tutta la notte a causa dell’assenza di radiazione solare incidente. La serie di reazioni che portano alla formazione di ozono nell’arco delle 24h, costituiscono un ciclo foto stazionario, questo significa che le concentrazioni globali di NO, NO\textsubscript{2} e O\textsubscript{3} tendono a rimanere pressoché stabili se non perturbate da fattori esterni. Tuttavia se si ritrovano in atmosfera elevate concentrazioni di composti organi volatili (C.O.V.), la formazione di ozono può seguire anche vie alternative, che portano alla formazione e all’accumulo nel tempo di questo inquinante. Poiché le concentrazioni atmosferiche di questi ultimi, nella nostra area di studio non sono così elevate e non presentano un andamento giornaliero che giustifichi la formazione e l’accumulo di O\textsubscript{3} da C.O.V., possiamo dire che la variazione della concentrazione di ozono è prodotta quasi esclusivamente dalla fluttuazione giornaliera delle condizioni atmosferiche. In tutti e due gli anni relativi allo studio di tesi, le concentrazioni massime rilevate per l’Ozono, si hanno con venti che soffiano dalle direzioni comprese tra i 100° e 250° (ESE-WSW) nel semestre caldo e tra i 50° e 200° (NE-SW) nel semestre freddo. Le potenziali sorgenti di precursorsi dell’Ozono, poste in queste direzioni rispetto alla centralina, sono i taxi di trasporto passeggeri via mare, il cui scalo è posto in direzione SW e anche lo stesso aeroporto Marco Polo, le cui piste di atterraggio-decollo sono esattamente in direzione SE-E rispetto alla centralina. Tuttavia Dai Grafici 3D relativi alla variazione delle concentrazioni dell’inquinante in funzione dell’aumento del numero di voli, non si coglie una chiara influenza della struttura aeroportuale per nessuna direzione del vento, in quanto le concentrazioni di ozono rimangono stabili con il variare del numero di voli. Inoltre i Grafici 3D che mostrano la variazione della concentrazione in funzione della velocità del vento, ci danno l’indicazione per la nostra area di studio di un inquinamento dovuto a sorgenti distanti dalla centralina di
rilevamento. In realtà nella nostra area di studio siamo in presenza di un inquinamento diffuso di ozono. Vediamo infatti dai profili giornalieri che i valori massimi di Ozono e velocità del vento si hanno quando sono massimi i valori della R.S.I. Poiché la direzione prevalente dei venti, quando le temperature e la R.S.I. sono elevate è tra gli 80° e i 170°, questo porta ad individuare in modo erroneo nelle rose dei venti stagionali potenziali sorgenti rilevanti in questa direzione, e nei grafici 3D a dirsi che queste sono poste distanti rispetto alla centralina di rilevamento. In realtà essendoci nella nostra area di studio un inquinamento diffuso di precursori, anche per l’ozono abbiamo un inquinamento diffuso, e il fattore principale che ne determina il variare delle concentrazioni è il variare dell’R.S.I. nell’arco della giornata e delle stagioni. Dal confronto dei dati relativi all’ozono con il D.lgs 155/2010 nel biennio di studio e nell’anno civile 2010, non è stato registrato nessun superamento.

- Per quanto riguarda il monossido di carbonio, dall’analisi degli andamenti stagionali e giornalieri, si è osservato un trend della concentrazione che si discosta nettamente dagli andamenti riportati in letteratura per questo inquinante. Per poter meglio discernerne questa situazione anomala si è svolto un confronto di approfondimento tra i nostri dati e i dati relativi a centraline ARPAV poste nella vicinanza dell’aeroporto. Si è visto quindi che nello stesso periodo da noi studiato la CO, relativamente ai dati ARPAV, mostra invece profili stagionali e giornalieri simili a quelli riportati in letteratura. Quindi molto probabilmente gli andamenti stagionali e giornalieri anomali ritrovati per questo inquinante, devono essere dovuti ad un’errata calibrazione dello strumento analitico o alla scelta di bombole di calibrazione dalla concentrazione troppo elevata rispetto ai valori medi di CO presenti in atmosfera nella nostra area di studio.

WORK IN PROGRESS

Il progetto intitolato “Monitoraggio delle emissioni di origine aeroportuale: aeroporto Marco Polo di Tessera (Ve)” è tuttora in corso. Oltre alle rivelazioni delle concentrazioni orarie dei vari inquinanti oggetto di questa tesi, è stata effettuata una campagna per il monitoraggio del PM$_1$ al fine di individuare dei traccianti
dell’aeroporto che, nella migliore delle ipotesi, permettano di stimare il suo contributo relativo in aree limitrofe a quella di emissione. È stato scelto di monitorare il PM$_1$ sebbene la sua concentrazione non sia normata in quanto da approfonditi studi scientifici è emerso che le combustioni prodotte da motori termici (automobili e aerei) producono particelle caratterizzate da granulometria molto fine.

Poiché l’aeroporto è una sorgente antropica atipica in quanto le emissioni dei velivoli avvengono a varie altitudini fino anche a quote maggiori di 1000 m, sarebbe stato utile avere informazioni relative alla concentrazione degli inquinanti a diverse quote per poter fornire delle ulteriori informazioni relative alla dispersione degli inquinanti e utili alla stima del contributo emissivo aeroportuale.

Negli sviluppi futuri del progetto, sarà sicuramente utile anche andare ad utilizzare le serie storica di dati in nostro possesso al fine di poter elaborare modelli predditivi e previsionali, così che si possano ottenere indicazioni sulla potenziale evoluzione di un certo inquinante al presentarsi di similari condizioni al contesto.
BIBLOGRAFIA

[Rossini P. et al., 2010] - Paolo Rossini, Gabriele Matteucci, Stefano Guerzoni. Atmospheric fall-out of metals around the Murano glass-making district (Venice,

<http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_eng.pdf>. [Ultimo accesso 24/7/2012].

<http://www.wpi.edu/Pubs/Eproject/Available/Eproject010410223645/unrestricted/Final_Report_B09_Ships.pdf>.[Ultimo accesso 24/7/2012].

SITOGRAFIA

- www.greenstyle.it [Ultimo accesso 24/7/2012].
- www.reteclima.it, [Ultimo accesso 24/7/2012].
- www.isprambiente.gov.it [Ultimo accesso 24/7/2012].
- http://www.veniceairport.it [Ultimo accesso 24/7/2012].
- www.ambiente.veniceairport.it, [Ultimo accesso 24/7/2012].
- www.northeastspotter.eu, [Ultimo accesso 24/7/2012].
- www.enplus.it, [Ultimo accesso 24/7/2012].
- www.politicheambientali.provincia.venezia.it [Ultimo accesso 24/7/2012].
- www.exo.provincia.venezia.it/ecm/faces/public/politicheambientali/home/ambiente/aria/indagineepidemiologica [Ultimo accesso 24/7/2012].
- www.cocit.org, [Ultimo accesso 24/7/2012].
- www.port.venice.it/it/aria.html [Ultimo accesso 24/7/2012].
- www.minambiente.it [Ultimo accesso 24/7/2012].
- www.regione.vda.it, 2011 [Ultimo accesso 24/7/2012].
- www.indoor.apat..it [Ultimo accesso 24/7/2012].