
Forest Explanation
Through Pattern Discovery

Ca’ Foscari University of Venice
Department of Environmental Sciences, Informatics and Statistics

Computer Science Master’s Thesis
Academic Year 2019-2020

Graduand Alberto Veneri
Supervisor Prof. Lucchese Claudio

I

Abstract

In Machine Learning, some of the most accurate models are practically black-boxes,
challenging to be interpreted and analyzed. Consequently, different strategies have
been adopted to overcome these limitations, giving birth to a research area called
Explainable Artificial Intelligence.
In this area, models considered black boxes are Deep Neural Networks, Support
Vector Machines, and ensemble methods. In particular, ensemble methods based
on trees are considered black-box models due to the multitude of trees being con-
sidered, even though they are singularly considered explainable.
Relevant techniques to explain ensemble of decision (regression) trees are now
mostly based on methods that examine the features and outcome relationships,
or create an explanation via tree prototyping, or locally approximate the model
through explainable ones. Even though these approaches can give the end-user
many meaningful insights into a model and its output, they do not produce a
global model explanation by design and do not specify the type of interaction
between features.
In this thesis, we move towards a new way of approaching the model explanation
problem over an ensemble of regression trees by discovering frequent patterns inside
the forest. A frequent patterns analysis produced from synthetic datasets created
by basic algebraic functions has been performed to answer some initial questions:
are there some frequent patterns related to a type of algebraic operation between
features? If yes, what happens when the model tries to learn a function composed
of basic operations? Multiple sub-problems have been addressed to answer the
aforementioned issues and a framework has been proposed to solve them.
In our formulation, the relations discovered between the features are used to im-
prove the accuracy of a tree ensemble adding to the training dataset new features
that represent the association found. A quantitative evaluation has been made
over real-world datasets comparing the accuracy of tree ensembles before and af-
ter applying the framework. The results show that the proposed technique can
be a feasible solution to both improve and explain the model learned from a tree
ensemble.

Keywords Explainable Machine Learning, Tree Ensemble, Pattern Discovery,
Frequent Subtree Mining

II

Contents

Introduction 1

1 Machine Learning Background 4

1.1 Information Theory Aside . 4

1.2 Supervised Learning Problem . 5

1.3 Classification and Regression Trees 6

1.3.1 Overview and notation . 7

1.3.2 Learning Algorithms . 7

1.4 Ensemble Methods . 8

1.4.1 Boosting . 9

1.4.2 Bagging . 9

1.5 Popular Ensemble Methods . 10

1.5.1 Gradient Boosting Machines 10

1.5.2 Random Forests . 12

1.6 Conclusion and summary . 12

2 Explainable Artificial Intelligence 14

2.1 Definitions . 15

2.2 XAI a Multidisciplinary Field . 15

2.2.1 Social Science . 17

2.2.2 Human-Computer Interaction 18

2.2.3 Machine Learning . 18

2.3 Motivations and skepticism . 18

2.3.1 Main motivations . 19

2.3.2 Skepticisms . 20

2.4 Type of explanations . 20

2.4.1 Categorization by explanation goal 21

2.4.2 Explanation Techniques for Ensemble Methods 22

2.5 Evaluation methods . 22

2.6 Conclusion and summary . 23

3 State of the art 24

3.1 Illustrative Dataset and Model . 24

3.2 Tree prototyping . 24

3.3 Feature interaction analysis . 28

3.4 Visual inspection . 30

3.5 Conclusion and summary . 33

III

4 Forest Explanation Through Pattern Discovery 35
4.1 Research questions . 35
4.2 Frequent subtree mining . 37

4.2.1 Types of subtrees . 37
4.2.2 Tree string encodings . 39
4.2.3 The subtree mining problem 40
4.2.4 Subtree mining algorithms 40

4.3 From frequent subtree mining to feature interaction classification . . 42
4.4 Research question 3: Find the relationships between features through

pattern discovery . 44
4.5 Research question 2: Forest explanation through frequent subtrees . 49

4.5.1 Synthetic datasets definitions 51
4.5.2 Proposed procedure . 52

4.6 Research question 4: Improve the accuracy through pattern discovery 55
4.7 Conclusion and summary . 60

5 Evaluation with real-world datasets 62
5.1 Datasets . 62
5.2 Evaluation methodology . 63
5.3 Results . 65
5.4 Conclusion and summary . 68

6 Conclusions 70
6.1 Conclusions . 70
6.2 Future works . 71

IV

Notations

R Set of real numbers

P (·) Probability Mass Function (PMF)

p(·) Probability Density Function (PDF)

H(·) Entropy of a r.v.

X Random variable (r.v.), either discrete or continuos

N Normal distribution

U Uniform distribution

X Input space

Y Output space

x Sample in a multidimensional space

xn N-th feature of a sample in a multidimensional space

y Label of a sample x that belongs to Y

ŷ Estimate of a label

1 Indicator function

T Tree data structure

T ′ Generic subtree of T

V

Introduction

Explainable Artificial Intelligence Over the last few years, Machine Learning
(ML) has gained a lot of popularity in the computer science community to tackle
problems that would be very difficult to be solved with handcrafted prediction
models. Even though a lot of work has still to be done and there are a lot of open
questions, ML is becoming more and more popular in many fields that affect our
lives, such as health care, insurance policy, and autonomous driving among others.

Due to its impact on our society, we are more and more interested in the un-
derstanding of the models generated by ML algorithms that in some cases are
considered black-boxes. In fact, nowadays there is a need not only to perform
well with some specific metric but also to understand what is going on under the
hood to address some specific aspects, such as fairness and robustness against
adversarial attacks. That is why, in the scientific literature and inside the com-
mercial world, two terms in the ML field are becoming more and more popular,
namely interpretability and explainability. Even though they are sometimes used
as synonyms, they usually refer to two distinct characteristics of a model. The
former is normally used to refer to an intrinsically interpretable model, where the
latter is employed to indicate all the techniques that are used to make a black-box
interpretable.

Explain tree ensembles In particular, in this thesis, we focus on the explain-
ability of tree ensembles. Some techniques are already been developed to address
some specific problems, such as the explanation of model outcomes, the analysis of
the dependence between the features, or their importance in the model. However,
after a thorough read of the scientific literature, it seems that a robust explanation
of the model as a whole is missing. Specifically, we are interested to find a method
that creates an arbitrarily complex function to describe the function learned by
the ensemble. To tackle this problem, we argue if frequent patterns found in an
ensemble could give us some insights between the type of feature interaction and
if we can combine this information to explain the whole model.

By frequent patterns, we mean the frequent tree-based patterns that are present
inside a forest, and the procedure of finding them is indicated as frequent subtree
mining. Mining frequent subgraphs in an ensemble of graphs (we recall that trees
are directed and acyclic graphs) is an NP-complete problem. However, during the
years a variety of algorithms have been developed to mine frequent subtrees in
ensembles of trees (also called dataset of trees) in an efficient way despite the com-
putational explosion of the problem in large ensembles, or in ensembles composed
of very deep trees.

Thus, in this thesis, we take advantage of two frequent subtree mining algorithms
invented through the years, namely SLEUTH[57] and CMTreeMiner[55], to dis-
cover frequent patterns inside regression forests in order to find relations between

1

features and eventually explain the whole model using this information.

Besides, we investigate if the discovered relation between features can be used to
improve the accuracy of the model, adding to the training set new features that
represent such relations. In this way we try to address two goals: explain the
model and, at the same time, improve its accuracy.

Proposed approach We structure our analysis with four research questions,
which can be summarized as follows:

� Can we represent a forest with a simple closed-form expression?

� Can we create the closed-form expression (mentioned in the previous point)
using the information retrieved from the frequent subtrees present in a forest?

� Can we discover the type of relationship between two features in a forest
through frequent subtree mining?

� Can we improve the accuracy of a tree ensemble using the information re-
trieved from frequent pattern discovery?

To investigate possible solutions for our research questions, we create multiple
datasets describing basic algebraic functions between paris of features, namely
summation, product and division, and we analyze the frequent patterns present in
the tree ensemble learned over these datasets.

From the preliminary analysis that we made in this thesis over synthetic datasets,
we can say that the functions learned by a tree ensemble are strongly linked with
the frequent subtrees present in the model. This means that, if a tree ensemble
is modeling a simple algebraic function, we can classify it through its frequent
subtrees.

We have then investigated the possibility to use the information of the presence
(or absence) of frequent subtrees in a particular function to find the same relation
between features in more complex function. In this way, we wanted to understand
if the patterns that are generated are in some way composed by simpler patterns.
In this case we found that there are some indications suggesting that we could be
able to classify the relation between features given frequent subtrees mined from
an ensemble, even though further investigation are needed to identify if a real
correlation exists.

Furthermore, assuming that the relations between features found in complex func-
tion are generally correct, we analyzed if it possible to improve the accuracy of the
ensemble adding a feature to the dataset representing the new relation discovered
and then re-train the model. In this case we found that in most of the case we are
able to improve the accuracy of a model trained dover specific synthetic datasets.

Finally, we evaluate the approach proposed over four real world dataset, finding
that in most of the case we are able to improve the accuracy of a model adding new
features that represent the relations discovered through frequent subtree mining.

2

Outline of the thesis Specifically, the thesis is organized into six main chap-
ters, starting from describing the background necessary to understand the pro-
posed framework and ending with the conclusion and future works. In chapter 1,
we present some basic concepts related to ML, focusing on describing the model
of interest of this thesis, i.e. tree ensembles. Then, in chapter 2 we bring our
attention to the Explainable Artificial Intelligence field, which is at the core of our
investigation, describing the motivation behind it and the terminology used. In
chapter 3, we present the state-of-the-art explanations techniques used with tree
ensembles.
After the first introductory part, in chapter 4 we present an analysis of frequent
subtrees in tree ensembles that are used to explain the function learned by the
model. In addition, we propose a framework to mine frequent subtrees from a tree
ensemble and classify the relationships between the features. Then, in chapter 5 we
illustrate an evaluation of the proposed framework over four real-world datasets,
and we show that our framework can improve the accuracy of the models and we
also present a case study to show that the relations found can be also meaningful.
Finally, in chapter 6 we discuss the results obtained, describing the new findings,
discussing limitations and drawbacks, and present possible future investigation
over this topic.

3

Chapter 1

Machine Learning Background

The purpose of this chapter is to recall some essential techniques, definitions, and
algorithms that are well known in the ML field and are strictly linked to the topics
in this thesis. Starting from some basic concepts from information theory, we
introduce the terminology used to describe a supervised machine learning problem,
and we end up with an introduction to ensemble methods.

1.1 Information Theory Aside

This section briefly summarizes some significant results taken from the information
theory field, which are at the core of the techniques discussed in the following
sections. We are mainly interested to recall the definitions of information, entropy,
and mutual information.
Given a discrete random variable (r.v.) X associated to an alphabetAX = {a1, ..., aI}
that represents all the possible outcomes, having probabilities PX = {p1, ..., pI},
such that P (x = ai) = pi, in information theory, the definition of information of an
outcome ai is strictly related with its probability P (x = ai), as defined below[36].

Definition 1 (Information of an outcome). The information of an outcome x is
equal to the inverse of the logarithm of its probability.

h(x) := log2

(
1

p(x)

)
Therefore, if P (x) ≈ 0 the associated information will be high, and, on the other
hand, if P (x) = 1 means that I(x) = 0. It is also relevant to notice that the
logarithm base represents the unit of the information, which in general is equal to
2 (a bit).
Strictly related to the notion of information, there is the notion of entropy.

Definition 2 (Entropy of a random variabile). The entropy of a discrete r.v. X is
defined as the weighted average of the information of all possible outcomes of the
variable:

H(X) :=
∑
x∈AX

p(x)h(x) = −
∑
x∈AX

p(x) log2 p(x)

In the case when p(x) = 0, the convention is that p(x)h(x) = 0 log 0 = 0, justified
by the fact that limx→0 x log x = 0.
Another fundamental quantity in information theory is the relative entropy or
Kullback-Leibler divergence DKL(P‖Q).

4

Definition 3 (Kullback-Leibler divergence). The Kullback-Leibler divergence be-
tween two probability distribution P (x) and Q(x) defined over the same alphabet
AX.

DKL(P‖Q) :=
∑
x∈AX

P (x) log
P (x)

Q(x)

Directly derived from the relative entropy, it is defined the mutual information
I(X ;Y), between two discrete r.v. X and Y.

Definition 4 (Mutual Information or Information Gain). The mutual information
between two discrete r.v. X and Y, is defined as the Kullback-Leibler divergence
between the joint probability distribution P(X,Y) and the product of the probability
distributions PX ⊗ PY.

I(X; Y) := DKL

(
P(X,Y)‖PX ⊗ PY

)
=
∑
y∈Y

∑
x∈X

p(X,Y)(x, y) log

(
p(X,Y)(x, y)

pX(x)pY (y)

)
The mutual information has some interesting properties linked with the entropy
defined as above. In fact it is easy to show that:

I(X; Y) = H(X)−H(X|Y) (1.1)

= H(X)−H(Y|X) (1.2)

The above equation means that the mutual information actually computes the
amount of information we gain when we know one of the two random variables.
Consequently, I(X; Y) = 0 if and only if X and Y are independent.
Even though all the above results are defined on discrete random variables, it is
easy to generalize all the results to the continuous case.

1.2 Supervised Learning Problem

The supervised learning problem can be described informally as the problem of
finding the unknown relationship between a set of features that describe an object
and its label starting from some observations. A typical example is a handwritten
digit classification problem: given some samples of grayscale images with resolution
128 × 128, represented in a space X = [0, 1]128×128, and their associated labels,
represented in a space Y = {0, 1, ..., 9}, the objective of a supervised machine
learning problem is to find a function f that better maps X into Y .
More formally, in a supervised machine learning problem we characterize two
spaces: the feature space X (also called the input space) and a label space Y
(also called the output space).

Classification and regression In the feature space X each dimension repre-
sents a particular feature, each of which can be either discrete or continuous.
Moreover, these represent the features that describe a certain point (or sample) in
the feature space. Similarly, the output space Y can be either discrete or contin-
uous. Y is discrete if our supervised learning problem is a classification problem,
e.g. if we have a feature space that represents some animals’ characteristics such
as weight, length, and the presence of mustache or not, and we want to know if

5

a point in X is a cat or not. Specifically, this is a binary classification problem,
and the output space it can be represented as Yb = {1, 0} where 1 means that the
animal is a cat, 0 the opposite.
On the other hand, the problem is called a regression problem when Y is a con-
tinuous space. For example, a problem in this category could be to predict the
selling price of an house given its position, its size, the number of house in the
neighborhood and so on.

The learning problem Given X and Y , we want to find a function f that
represents the unknown relationship between these two spaces. Since we do not
know f(x) in advance, we just estimate a f̂(x) that is a good approximation of
f(x). In particular, in the supervised learning setting, f̂(x) is built on the basis of a
training set DN , f̂(x) = g(x,DN). DN is formed by N samples DN = {(xi, yi)}Ni=1

with xi ∈ X and yi ∈ Y . When a sample is described with more than a single
feature, as in the following subsections, the notation x ∈ X is used.
In addition, given a true label y ∈ Y and a label ŷ ∈ Y predicted by the estimated
function f̂(x), we define a loss function l : Y × Y → R as a measure of accuracy
of our estimates. Popular choice of loss function are the 0/1 loss function for
classification problem, l0/1(ŷ, y) = 1{ŷ 6= y}, where 1 is the indicator function,
and the squared error loss function for the regression l2(ŷ, y) = (ŷ − y)2.
In this thesis we mainly considered regression problems and we use the squared
error loss as standard loss function.

The learning phases It is common to divide the learning phase into two parts,
namely training, and testing. During the training phase the function f̂(x) is
learned from a training set Dtr, with Dtr ⊂ D, following the learning procedure of
choice. At the end of this phase, to verify the quality of the approximation, the
remaining part of the dataset Dte, or test set, defined such that Dte ∪ Dt = ∅, is
used to verify the accuracy of f̂(x). Thus, during the test phase, for each sample
x ∈ Dv the predicted label ŷ and the value of the loss function for that prediction
l2(ŷ, y) are computed. Finally, a weighted sum of the loss for each prediction is
calculated to represent the accuracy of the model created.
This division between training and test set is useful to catch the generalization
error of the model, i.e. it is a measure to verify how accurate are the predictions
of the estimated function with new and unknown samples. If a model performs
well only on the training set and not on the test set, it means that it generalizes
poorly and this problem is called overfitting.
Before the testing phase, it is usually also needed to tune some parameters that
cannot be learned during the learning phase, which are called hyperparameters
and are used to control the learning phase. The tuning of the hyperparameters is
usually called validation phase and it is normally done in another partition of the
data different from the training and test set called validation set, indicated in this
thesis with Dv.

1.3 Classification and Regression Trees

Classification and regression trees are standard ML models adopted to tackle a
supervised learning problem that are either reasonably simply to implement and
intelligible. In these models, at the end of the training phase a decision tree is

6

RainSunny
Overcast

Outlook

High Normal

Humidity

Strong Weak

WindYes

No Yes No Yes

Figure 1.1: Classical “play tennis” decision tree.

formed and it is used to predict a label (in case of classifications trees) or a value
(in case of regression trees) for a new sample. In the following subsection, an
overview and the terminology belonging to classification and regression trees and
some well-known learning algorithms are presented.

1.3.1 Overview and notation

The decision tree created after the learning phase is based on a tree data structure.
A tree data structure is an acyclic, connected, and directed graphG = (V,E) where
V is the set of vertices V = {vi}Ni=1, and E is the set of edges E = {ei}Mi=1. Further-
more in every tree, we can define for each edge ei two functions: parent(ei) ∈ V
and children(ei) ∈ V , representing the parent-child relationship between nodes.
In a tree, every child node is a child of a single parent but a parent node can have
multiple children. Furthermore, a node is called leaf if it has no children, or inner
node otherwise.
In a decision tree, each non-leaf node is associated with a predicate, also called a
split, that it is used to separated the data according to the result of the test. For
example, in Figure 1.1, there is a representation of a possible decision tree learned
to predict if a person would like to play tennis give information about the weather
outlook, the air humidity, and wind. In this case the leaves of the decision tree
are represented with ellipses and the inner nodes with rectangles. To predict if a
player is going to play tennis with under a certain setting, it is jus necessary to
follow the corresponding arrows at each split and reach a final leaf. For example
if their is a sunny day with a normal level of humidity, this classifier predicts that
a tennis player would like to play tennis.

1.3.2 Learning Algorithms

During the years, a lot of different techniques have been proposed to improve the
accuracy of regression and decision trees learned from data. Even tough various

7

techniques are available to select the splitting criteria and to prune the trees, the
main structure of the learning algorithm can be generalized in the following three
steps:

1. Take as input a dataset D and create the root of the tree

2. For each feature, find a split of the dataset D that minimize a specific im-
purity measure. Then, chose a split with the minimum impurity associated
overall and create two datasets D1 and D2, they will be the children of the
root of the tree.

3. If the stopping criteria have not been reached, repeat from step 2 for each
child node in turn.

In the description above, the impurity measure plays a key role in the determina-
tion of the final tree. In particular, the major algorithms for decision and regression
tree learning mainly differ for the type of impurity measure (also called splitting
criterion) they use.
As also depicted from the article written by Loh[33], among the most popular
learning algorithms to build classification trees there are ID3[40], C4.5[41], and
CART[8]. All the algorithms have the same structure that follows the one described
at the beginning of the section: the dataset is recursively partitioned following
specific criteria, until particular stopping criteria have been reached. The main
difference between the three algorithms is the choice of the specific criterion used
for the split, in particular the information gain is adopted in ID3, the gain ratio
(a variant of the information gain) in C4.5, and the Gini index in CART. In
these three methods for classification, the prediction of a new sample x is decided
following the decision path accordingly to the values of the features of x until
reaching a leaf. Then, the class prediction of x is assigned based on the most
frequent class in the portion of the dataset associated with that leaf.
Regarding the algorithms designed for learning regression trees, we highlight CART
for regression trees, and M5[42]. The CART algorithm used for a regression prob-
lem is similarly defined as the one for the classification problem. The differences
from the implementation for the classification problem are two: the computation
of the impurity of each node and the way of making a prediction from a leaf. The
impurity is normally computed as a sum of squared deviations from the mean, thus
the impurity i(vi), where vi is the current node and to vi is associated the subset
Di of the dataset, is calculated as i(v) =

∑
x∈Di

(x − x̄)2, with x̄ = 1
Ni

∑
x∈Di

x
and Ni the cardinality of the set Di. CART is a piecewise-constant model because
the value predicted from a leaf is constant and it corresponds to the average of
the labels in that split. M5 is instead a learning algorithm developed by Quinlan
that creates a piecewise-constant linear model generating, first of all, a constant
tree and then fits a linear regression model to the data in each leaf.

1.4 Ensemble Methods

With ensemble methods we normally refer to a set of techniques used to construct
a set of N weak learners and then combine them to form a prediction model. A
simple diagram with the general framework is shown in Figure 1.2.
This learning method is sometimes also called committee-based learning, or learning
multiple classifier [59].

8

x

Learner 3Learner 2Learner 1 ... Learner n

Combination

y

Figure 1.2: Ensemble methods, general framework. From a feature vector x we
train N classifiers and then their models are combined to get the output y

Two approaches for ensemble learning are presented in this section: boosting and
bagging.

1.4.1 Boosting

With the term boosting procedure we refer to an ensemble learning method that
boosts the accuracy of a weak learner, that by definition it has an accuracy that
is only slightly better than a random guess, into a strong learner.

The equivalence between the weak learnability model and the strong learnability
model was proved in 1990 by Schapire [47], and it has been the first of a series of
results for the wide-spreading of the boosting approach. The first boosting algo-
rithm (AdaBoost) has been introduced by Freund and Schapire in 1997[18] with
the aim of transforming a weak classifier obtained with a Probably Approximate
Correct (PAC) learning algorithm into a strong classifier with arbitrarily high ac-
curacy. AdaBoost can be seen as one of the most influential boosting algorithm
developed, and it has been the precursor of all the other boosting procedures.

The general boosting procedure is sequential and divided in Tboost rounds, where
at each round a new weak learner f̂t is introduced aiming to correct the mistakes
committed by the ones generated in the previous round. In order to allow the
new learner to correct the mistakes of the previous, a new distribution Dt of the
data is generated. To achieve this improvement, in Dt the “weight” of the samples
misclassified are increased. At the end of these Tboost rounds, the output is provided
with a combination of each weak learners’ outputs.
In Algorithm 1, a pseudocode for the the general boosting procedure is presented
[59].

1.4.2 Bagging

The algorithm, originally introduced by Breiman in 1996[6], runs in Tbagg turns,
and at each turn a random sample with replacement of size m is created from
the initial training set D. With every sample, a new learner is trained, and, at
prediction time, all the learners’ vote is aggregated. If, for example, the outcome
y is numerical, the aggregation could simply be an average of each vote.

9

Algorithm 1 General Boosting Procedure

1: procedure Boosting(D,T, L)
2: . Dataset D, learning algorithm L and T rounds
3: D1 ← D
4: for t = 1, ..., T do
5: f̂t ← L(Dt)
6: εt ← evaluate error(ht(x), f(x))
7: Dt+1 ← create new dist(Dt, εt)
8: end for
9: return combine learners(h1(x), ..., ht(x))

10: end procedure

The whole procedure, since it is based on random sampling with replacement of the
initial dataset, also called bootstrapping in statistics, has been called “bootstrap
aggregating”, or simply with its acronym: bagging.

A general framework for a bagging procedure is presented in Algorithm 2.

Algorithm 2 General Bagging Procedure

1: procedure Bagging(D,T, L)
2: . Dataset D, learning algorithm L and T rounds
3: for t = 1, ..., T do
4: Draw a sample Ds from D
5: f̂t ← L(Ds)
6: end for
7: return combine learners(h1(x), ..., ht(x))
8: end procedure

1.5 Popular Ensemble Methods

Among all the methods developed since the introduction of the boosting and bag-
ging frameworks, a few of them are quite popular and achieve excellent results in
many competitions[46], specifically they are AdaBoost, Bagging, Random Forest,
and Gradient Boosting Machines. In this category of well known and used meth-
ods, we focus only on two of them, namely Gradient Boosting Machines (GBM),
and Random Forests (RF). In this section, we briefly revise the main character-
istics of these two methods, with an emphasis on the learning algorithm and the
type of layout of the forests generated.

1.5.1 Gradient Boosting Machines

Gradient Boosting Machines were introduced by Friedman in 1999[19], and are
models derived from boosting learning algorithms that try to transform the boost-
ing learning problem into an optimization one. As informally showed in subsec-
tion 1.4.1, the final function produced by a boosting procedure can be seen as a
combination of functions of weak learners. Taking a generic loss function l(y, ŷ),

10

where ŷ = f̂(x), the boosting procedure produces a function

f̂(x) =
T∑
t=1

βmh(x; at) (1.3)

where, in this case, {βt}T1 are the weights of each learner and {at}T1 are the param-
eters of each base learners. Thus, the combination of the base learners h(x; at) at
the end of the algorithm, in this case, is simply a weighted sum.
The boosting algorithm can be seen as a stage-wise learning, where at each step
t a new prediction function is formed, specifically f̂t(x) = f̂t−1(x) + βth(x; at), at
each stage we can formalize an optimization problem of the type

(βt, at) = arg min
β,a

T∑
t=1

l(y, f̂t−1(xi) + βh(x, at)) (1.4)

That is solved in two stages, where the first one solve a least squares optimization
problem to find at and the second one is a simple one parameter optimization
problem used to find the weight βt. Formally the former optimization problem is
the following one

at = arg min
a,ρ

N∑
i=1

[ỹit − ρh(xi; a)] (1.5)

where ỹim is the so-called pseudo-residual

ỹit =

[
∂l(yi, f̂t−1(xi))

∂f̂t−1(xi)

]
(1.6)

and ρ is the learning rate.
Thus, after this step we have found all the parameters at for the weak learner
h(x, at), therefore we are able to formalize also the second optimization problem
to find its weight.

βt = arg min
β

N∑
i=1

l(yi, f̂t−1(x) + βh(xi, at)) (1.7)

The procedure described above is general and suitable for every type of weak
learners and loss functions, in Algorithm 3 we present instead the GBM algorithm
in the case where the base learner is a regression tree, namely Gradient Boosting
for Regression Trees (GBRT) as originally proposed by Friedman[20]. In GBRT,
since each weak learners is a regression tree, at each step t and in the first stage,
L regions {Rlm}L1 are defined corresponding to the L leaves of the decision tree
created during the learning procedure based on the dataset produced each time
on the pseudo-residuals {ỹit,xi}Ni=1. In the second stage, assuming that the final
model is a constant piecewise model, as described in subsection 1.4.1 for the CART
algorithm, to minimize Equation 1.7, we just have to find a value γlt for each region
that added to the previous estimated function f̂t−1(x) minimize the equation.
Therefore, the new problem becomes

γlt = arg min
γ

∑
xi∈Rlt

l(yi, f̂t−1(xi) + γ) (1.8)

The description of the algorithm aforementioned follow the explanation proposed
by the same Friedman in a variant of his initially proposed algorithm[20].

11

Algorithm 3 Gradient Boosting Regression Trees

1: procedure GBRT(D,T) . Dataset D, T rounds
2: f̂0(x)← arg minγ

∑N
i=1 l(yi, γ)

3: for t = 1, ..., T do

4: ỹit ← −
[
∂l(yi,f̂t−1(xi))

∂f̂t−1(xi)

]
5: Learn the tree {Rlt}L1
6: γlt ← arg minγ

∑
xi∈Rlt

l(yi, f̂t−1(xi) + γ)

7: f̂t(x)← f̂t−1(x) + v · γlm1(x ∈ Rlm)
8: end for
9: return f̂T

10: end procedure

1.5.2 Random Forests

An improved version of bagging are the Random Forests (RF). The main idea
of Random Forests’ technique has been introduced independently at about the
same time by Ho[51] and Amit and Geman[3], and then popularized by Brieman
in 2001[7]. In his influential paper, Brieman proves that a random selection of
the features during the training phase of a weak learner can improve the general-
ization and the accuracy of bagging. Since that the number of feature selection
dramatically effect the accuracy of each classifier, it has also been suggested to
do a internal estimates of the generalization error using the so-called out-of-bag
estimates, i.e. evaluate the weak model against the samples not included during
the bootstrap procedure, to find the most accurate randomization. The algorithm
is basically the one described in Algorithm 2, but instead of using the given imple-
mentation of a learning algorithm L, it uses a modified version of L where at each
split a random sampled subset of the features is used. For example, one of the
implementations proposed by Breiman called Forest-RI uses CART as algorithm
L, and at each split, it uses a subsample of blog2M + 1c features, where M is the
initial number of features.

1.6 Conclusion and summary

Conclusion In this chapter, we have briefly reviewed some basic results from
information theory and machine learning that are necessary to follow the investi-
gation over a possible new method that we propose to explain a tree ensemble. In
particular, in the initial part, we have described in detail the computation and the
interpretation of the information gain because it has been used to investigate the
discriminative power of the features in some parts of our proposed method. We
have also described in-depth the algorithmic details of GBM and RF because, in
addition to being very popular in the machine learning community, they are also
the two types of tree ensemble that we have studied. This introductory part must
be seen as a preamble and a brief recap for the following analysis where the main
goal is to try to explain the two type of tree ensembles presented in this chapter,
that are in general considered as black-boxes.

Summary The summary of the chapter divided by sections is the following:

12

� In section 1.1 we have illustrated four main definitions described in the in-
formation theory, namely the information of an outcome (Definition 1), the
entropy of a random variable (Definition 2), the Kullback-Leibler divergence
(Definition 3), and the mutual information (Definition 4).

� In section 1.2 we have presented one of the most known problem in the
machine learning field, the supervised learning problem, where an algorithm
is implemented to discover the function that maps the input space X to the
label space Y . We have reviewed the difference between a classification and
regression problem and the different phases of the learning process.

� In section 1.3 we have presented the definitions of classification and regression
trees and we summarized the main characteristics of four learning algorithms,
namely ID3, C4.5, CART, and M5.

� In section 1.4 we have described the structure of and the general idea behind
an ensemble method. We have also illustrated two main frameworks for its
implementation: boosting and bagging.

� In section 1.5 we have presented two actual implementations for bagging and
boosting, namely Gradient Boosting Machine (GBM) and Random Forest
(RF).

13

Chapter 2

Explainable Artificial Intelligence

Artificial Intelligence (AI) and Machine Learning (ML) are becoming prominent
in all the sectors of our economy, and in our everyday life[45]. Even though a
lot of research on these fields has been carried out during the second half of the
20th century, only during the last two decades there has been a widespread use
of AI-powered technologies outside the research labs. One of the reasons for this
success can be found in the increasing accuracy of the more recent models that was
made possible thanks to the explosion of computational power, the development of
general-purpose programming on graphics processing units, and the availability of
an enormous amount of data. However, one of the main downsides of the last and
more used machine learning technologies, such as Deep Neural Network (DNN)
and ensemble methods, is that they are very complex models to be understood
by humans. They are not so interpretable because they adopt a huge number of
parameters. Due to these characteristics, they are considered black-box models.

Hence, with the increment of their usage, it is rising the request from all the
different stakeholders for more “transparent” and trustworthy AI algorithms and
technologies. This is not only an emerging trend, but is also determined by law in
some jurisdictions. For example, in all the European countries since the approval
of the General Data Protection Regulation (GDPR), written by the European
Union Parliament and Council in 2016, every citizen could avail their “Right of
explanation”. This means that users can ask for an explanation of an algorithmic
decision that significantly affects them[22]. Examples of fields where this right
can be applied are autonomous driving, medical diagnosis, and insurance risk
assessment among others.

For all the above reasons, a new interdisciplinary field has emerged during le last
few years (see Figure 2.1) getting a lot of attention: Explainable Artificial Intelli-
gence (XAI). It is still an emerging field and there are a lot of open questions[1],
thus in this chapter we try to summarize all the main points of XAI. We start
with a brief introduction to the field focusing on the rationales behind XAI and
the terminology used. Finally, we present the main types of techniques that have
been proposed during the years to explain ensemble methods and how to measure
the quality of the explanation developed.

14

Year

D
oc

um
en

ts

Documents by year

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

0

500

1000

1500

2000

2500

3000

3500

Copyright © 2021 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

Figure 2.1: Chart showing the explosion of interest in the XAI field during the
years through an analysis of the results from Scopus over the peer-reviewed paper
published. The query used was explainable AND artificial AND intelligence, over
all the possible fields, and within the years 2000-2020.

2.1 Definitions

Across the literature, various definitions of common terms, such as explainable
and interpretable, have been used with the respect to the XAI field. Depending on
the field of application, also the term Explainable Artificial Intelligence has been
used interchangeably with other terms, that, at first glance, seem synonymous,
e.g. Interpretable Artificial Intelligence. To avoid any confusion between the
terminology used, we present in Table 2.1 all the relevant definitions used across
the literature, merging information provided by the major surveys available in
the field [23][1][5]. In particular, we characterize the difference between black-box
models and transparent models, and among Interpretable AI, Explainable AI, and
Responsible AI.

2.2 XAI a Multidisciplinary Field

Explainable Artificial Intelligence is a topic of interest for four main communities as
suggested from the preprint of Mohseni et al.[37]: social science, Human-Computer
Interaction (HCI), visual analytics, and machine learning. In this thesis we com-
bine together HCI with visual analytics, therefore creating three main areas, as
pictorially presented in Figure 2.2. Each community has adopted different design
goals and have been essential to the development of XAI. In this section we review,
for each field, the typical designs guidelines used with the aim to understand how
the design and evaluations are typically done with respect to different communi-
ties, highlighting also the necessity for each new type of technology developed in
the XAI field to address different problems faced by different fields.

15

Term Description

Black-Box Models

A machine learning model that is difficult, if not
impossible, to interpret. In particular, in the case of
regression and classification problems, where the function
learned is highly non linear and/or with a multitude of
features and parameters. Examples are Deep Neural
Network, Tree Ensembles and Support Vector Machines
with specific kernels (such as RBF or polynomial with
high degree kernels).

Transparent Models

Generically used with the opposite meaning of black-box
models, it indicates a model that is interpretable by
design. Barriedo Arrieta et al.[5] indicates three
characteristics for a model to be transparent:
simulability, decomposability, and algorithmic
transparency. The first refers to the ability of the model
to be simulated by a human, the second that the model
can be easily decomposed into smaller pieces, and the
latter indicates the ability of the user to reproduce the
process followed by the model, starting from the data
and ending with the output.

Interpretable
Artificial Intelligence

Even though it is usually used as synonymous for
Explainable Artificial Intelligence, the majority of the
times it is used to refer to systems (or models in case of
machine learning) that are intrinsically interpretable,
such as Linear Regression, Logistic regression, and GAM
among others.

Explainable Artificial
Intelligence

Probably the most common term used in the literature
and also preferred from some companiesa. In combination
with Explainable Machine Learning is used to refer to all
the methods and techniques that enable the final user to
get explanations from a black-box model. Thus, it
usually includes all the techniques used as a proxy to
explain methods that are not intrinsically interpretable.
Summing up, a post-hoc analysis of a black-box model.

Responsible
Artificial Intelligence

Responsible AI is a branch of AI that takes into account
social values as fairness, moral values, and ethical
consideration. The key principles of interest in this field
can be summarized with the acronym F.A.T., Fairness,
Accountability, and Transparency, which emphasizes the
focus over the social aspects on socio-technical systems.
Given the main principles of the field, responsible AI
results in a very interdisciplinary field, bringing together
various professionals, computer and social scientists
among others, to investigate technical systems that make
a big impact to the society.

Table 2.1: Table to summarize the taxonomy used in this paper related to Ex-
plainable Artificial Intelligence and other related fields.

aFor example see the white paper “AI Explanations Whitepaper” available at
https://cloud.google.com/explainable-ai from Google LLC (visited on February 16th 2021)

16

https://cloud.google.com/explainable-ai

Social Science

1. What is an explanation for an intelligent system?
2. What makes people trust an intelligent system?

Human-Computer Interaction

1. How to display the model explanation to the user?
2. How a user can interact with an intelligent

system?

Machine Learning

1. How to define transparent yet accurate models?
2. Can a black-box model be explained and made

more interpretable?

XAI
INTERDISCIPLINARITY

Figure 2.2: General schema of the communities involved in the development of
XAI, namely Social Science, Human-Computer Interaction, and Machine Learning
communities. The key research questions are highlighted under each field.

2.2.1 Social Science

What is an explanation? XAI is deeply related to social science since the
path of artificial intelligence is now and could be even more in the following years,
strictly related to the development of human society, with a lot of new challenges
that have to be faced and possibly radical changes our everyday lives. Sometimes
forgotten by the more algorithmic-centered research, humans decision and inter-
vention have a big impact on a large part of AI models and are an essential part
of their function. Thus, the main questions posed by social science connected with
the XAI world are related to the fundaments of human reasoning, such as what is
an explanation, or how an intelligent system can explain its work to a human be-
ing, or what is the purpose of explanation in the causal reasoning. An example of
this kind of work is the series written by Hoffman et al.[26][27][31] where the leit-
motif of their work is the search over the motivations behind the causal reasoning
in the human begins, and, in particular, what can be seen as causal reasoning in
intelligent systems. Thoughts about this kind of problem are essential to answer a
very simple but fundamental question: what do we expect as an explanation from
an intelligent system? That is clearly related to: which kind of explanation do we
expect from an XAI system to a person in flesh and bones?

How to gain trust Another key question that social science is tackling is the
trust in AI, which is different from the one that people normally have with other
technologies that are normally used. The missing of trust in new technology can
have multiple impacts on its development, and it is inevitably linked with the
speed of automation of certain social task[49]. A way to gain more trust is generally
obtained with a more transparent AI system, starting from the assumption that the
more transparent a system is, the more accurate and fair must be. This assumption
is not always satisfied, because in a certain domain a more transparent design can
bring less accuracy and possibly breaches for offenders to be exploited and gain
advantage from it[53].

17

2.2.2 Human-Computer Interaction

Present an explanation Related to the HCI field, new visual analytics tools are
now being proposed to help researchers fully understand specific machine learning
models, an interesting example of this is the thread published on Distill by Cam-
marata et al. [9] in which a “zoom-in” over the Inception v1 neural net is proposed,
i.e. a deep inspection of each layer of that particular deep artificial neural network
used to get insights of what the neurons and the circuits they form have learned.
Other than this example, new visual techniques can help not only developers and
engineers but also final users and decision makers to gain insights and understand
what the system has learned.

Interaction with AI The advance of XAI systems is also tightly associated
with the development of a new way of interaction with them. Different studies
have been done on the impact of human interaction during the learning process
of a system, showing that we might want to rethink the learning algorithm and
to empower the user to dramatically change it[2]. To do that, new interfaces have
to be created and overall control of the system has to be achieved to gain the
possibility to solve possible behavior mismatch. Therefore, explainable systems
must be developed to permit full control, concerning black-boxes where there are
very few possibilities of management.

2.2.3 Machine Learning

Transparent and accurate models The machine learning community has ba-
sically approached the need for more intelligible models in two ways. The first
one has been to developing numerous techniques trying to create intelligible yet
accurate models. Numerous advancements have been made over traditional tech-
niques such as logistic regression, Generalized Additive Models (GAM), and mixed
models among others.

Explanations for black-boxes The second approach focused on the develop-
ment of post-hoc explanations for black-box models. A new approach to this kind
of technique is the scope of this thesis. Thus, in the following sections, all the
techniques and related works presented belong to this specific part of the research
community. However, even though the landscape of this thesis is limited to a par-
ticular view, it is worth mentioning that XAI is intrinsically a multidisciplinary
subject and there is the need for a holistic evaluation considering all its facets.

2.3 Motivations and skepticism

In this thesis we focus on approaches to explain black-boxes, in particular tree
ensembles. Trying to make black-box ML models more transparent can be seen
as a meaningless operation, since one can think that the major task of a model
is optimizing some performance measures, such as accuracy, without caring too
much about what is the function learned and how it works under the hood. On
the contrary, nowadays it seems indisputably urgent to investigate over black-box
models to explain their decision to answer to, at least, four main questions:

1. Can we justify a decision of a black-box model?

18

2. Can we gain more control from a black-box model?

3. Can we effectively improve the accuracy of a black-box model with an accu-
rate debugging?

4. Can we discover new knowledge from a black-box model?

It is also true, on the other hand, that we might want to prefer an interpretable
model instead of using a post-hoc explanation when it is part of a high-stakes
decision-making system. Motivation and skepticism about this approach are pre-
sented below.

2.3.1 Main motivations

Four main motivations have been provided by Adadi and Berrad, in a survey over
the latest development in XAI[1], they are specifically: explain to justify, explain
to control, explain to improve, and explain to discover. In the paragraphs below,
they are presented and associated with some real scenarios that can be useful to
contextualize the arguments that support the need to explain black-box machine
learning models.

Explain to justify The need for explanation to justify a certain decision is es-
sential to ensure that a certain decision or a certain outcome from an AI framework
has been made as if it was made by a rational human decision, i.e. we need the
assurance that a particular decision has been made with a sensible and intelligi-
ble process that is supported by the data. An explanation to justify a particular
output from a model can possibly be used also in some legal scenario where the
“right of explanation” applies and to justify a possible unwanted output, e.g. an
avoidable accident in a self-driving car or an unfair negation of a loan for a certain
type of person.

Explain to control Explain a certain AI model is also an attempt to get better
control over the whole system. Being able to explain the details of a certain
model can help us to prevent possible failures, speed up the resolution of possible
implementation bugs, and possibly avoid adversarial attacks.

Explain to improve Besides the possibility to get better control of a model, its
explainability can help the researchers to improve quickly its performance. This is
due to the fact that all the improvements can be focused on some particular aspects
of the model without doing a blind search and trying to improve it without knowing
the impact of the modifications.

Explain to discover A model explanation could be very useful to discover new
rules. If the modern machine learning techniques can be used without domain
expertise, it means that in some way the model builds a set of rules that describe
the problem; therefore we can retrieve these rules and possibly broader the human
knowledge.

19

OPEN THE
BLACK BOX
PROBLEM

BLACK BOX
EXPLANATION

INTERPRETABLE
MODEL

MODEL
EXPLANATION

OUTCOME
EXPLANATION

MODEL
INSPECTION

Figure 2.3: A possible XAI taxonomy proposed by Guidotti et al.[23] Highlighted
in green the part of interest of this thesis: the black box explanation problem.

2.3.2 Skepticisms

In the previous paragraphs, we have described the major motivations to adopt
techniques to make black-boxes interpretable via XAI techniques, however, even
though they are all plausible and sensible, we might argue if all this is really nec-
essary. As Rudin has presented in one of her papers [44], we might want to use
an interpretable model first (if possible) and then use a black-box model (only if
needed) with an explanation. This assertion is especially true thinking about the
typical tradeoff depicted between learning performance and effectiveness of expla-
nation, in fact, we cannot really generalize this concept to all the problems and
all the datasets. Various techniques for knowledge discovery and data mining can
lead to incredible performance for machine learning algorithms without bothering
complicated models. Therefore, when it is possible and we can get good perfor-
mance measurements with an interpretable model, it is better to use it without
trying a black-box model and then trying to explain its behavior. This is true ex-
cept for the fact that one day the block-box model can became easily interpretable
with a consistent, accurate, and well-tested explanation. When this happens, we
can say that the explanation can become part of the model and the model can be
“promoted” to the class of interpretable model. Other than the fact that we might
want to prefer an Interpretable Model to a black-box explained, there are other
open problems that we might want to consider before applying these techniques:
at the moment of writing, the most applied post-hoc explanations techniques are
not so reliable, as showed by Slack et al.[50] with examples of adversarial attacks
on explanations provided by LIME and SHAP (presented in the following chap-
ter). These limitations, are, among others, to be taken into consideration when a
new technique is created.

2.4 Type of explanations

Following the taxonomy proposed by Guidotti et al.[23], and illustrated in Fig-
ure 2.3, the type of explanation that can be used are divided into three big groups
based on their explanation goal: model explanation, outcome explanation, and
model inspection. To achieve these explanation goals various techniques have
been adopted through the years for a variety of black box problem, and for tree

20

ensembles they include: tree prototyping, feature importance analysis and visual
analysis. In this section a description of the categorization listed above is pre-
sented.

2.4.1 Categorization by explanation goal

Giving an explanation of something is not always obvious and is also not so clear
what we mean by explanation (as also described in subsection 2.2.1). That said,
explanation techniques can be divided into three categories formally described by
their goal as follows.

Model explanation Inside the model explanation group, there are all the tech-
niques that create an explanation starting from the model to be explained and
the dataset used. This explanation is usually achieved through an interpretable
model trying to depict the behavior of the original black-box model. The formal
definition is the following.

Definition 5 (Model explanation problem). Given a model to be explained b and
a dataset D, the model explanation problem consists in finding an explanation
e ∈ E, where E is a human interpretable domain, that explains b, and e is usually
retrieved by global predictor cg created in function of the model to be explained b
and the dataset D, cg = f(b,D).

When a interpretable global predictor cg has been found, the explanation e can be
retrieved through an explanation logic εg from cg and X, e = εg(cg, D)).

Outcome explanation Starting from a model we might not want to explain
the whole logic behind it, but we might want to describe only the process that has
followed to come up with a particular outcome, this is called outcome explanation
problem.

Definition 6 (Outcome explanation problem). Given a model to be explained b
and a new sample x, the output explanation problem consists in finding an ex-
planation e ∈ E, where E is a human interpretable domain, that explains b the
outcome of b over the sample x.

This process can pass through an interpretable local predictor cl in an analogous
way as a global predictor cg can be used in the model explanation problem.

Model inspection The last form of explanation that can be described is the
model inspection problem, where the explanation is provided with a visual or tex-
tual representation in order to understand some specific properties of the black
box model or of its prediction.

Definition 7 (Model inspection problem). Given a model to be explained b and
a set of instances X, the model inspection problem consists in finding a visual or
textual representation r = f(b,X) of some property of b.

The main difference between the model inspection problem and the model expla-
nation problem is that the latter provide an explanation of the system as a whole,
while the former is specific to some properties of the model to be explained.

21

2.4.2 Explanation Techniques for Ensemble Methods

In order to answer to answer to the black box explanation problem multiple types
of techniques have been studied. In particular, with respect to the explanation
for tree ensemble methods, we can identify 3 major categories: tree prototyping,
feature interaction analysis, and visual analysis.

Tree prototyping Tree prototyping is usually used to answer the model expla-
nation problem. In this case, the global predictor cg is a decision tree, that is able
to mimic the behavior of the tree ensemble. When the tree cg is constructed, it is
fairly easy to extract an explanation through an explanation logic since a decision
tree is fairly interpretable under a certain size. This technique can be seen as a
form of summarization of the ensemble to a single tree, or a small set of trees. The
advantages of this method are that there are a lot of good metrics and heuristics
to create this explanation, but the main problem is that most of the time the
accuracy of the prototype created is well below the one of the ensemble, and some-
times leaving uncovered some possibly relevant less frequent cases. In addition,
it is worth mentioning that more than one prototype can be used to explain the
initial model.

Feature Interaction Analysis Probably the most popular method used to ex-
plain a tree ensemble, it has been used to answer the outcome explanation problem.
This type of technique is based on the study of the interaction between the fea-
tures and their contribution to the output of a model given a specific sample. The
interpretable local predictor cl is usually a simple description of the contribution of
each feature to the output. The advantage of this technique is that it can be very
useful to analyze misclassifications and possible bugs associated with a prediction
on a particular sample in a very effective way. One of the major drawbacks of this
technique is that is designed to explain only a small portion of the model (it is in
fact sometimes also called local explanation), thus to get a better understanding
of the black-box model it is usually accompanied with a global model explanation.

Visual Inspection Inside the visual inspection techniques there are all the
methods used to answer the model inspection problem. Two methods are common
inside this category, namely the Partial Dependence Plot(PDO) and plot to visu-
alize sensitivity analysis. Visual inspections methods can be very useful to explain
single predictions, but they are generally not so accurate to explain the behavior
of the entire model due to possible visual clutter when the number of features or
samples is very large, or due to their over-simplified visualization, when one or two
features are considered over hundreds.

2.5 Evaluation methods

Different approaches have been used to evaluate the explanation techniques de-
veloped, however at the moment there are no common benchmarks available to
measure the goodness of these methods[25]. In fact, the evaluations usually used
for the explanation are based on user studies that measure their effectiveness, but
these metrics are often project-dependent. To give an idea of a possible framework
to evaluate different XAI systems, we can mention the one used for the DARPA’s

22

XAI program[24] to evaluate different projects. In this program two main evalu-
ation categories were used: ML model performance and explanation effectiveness.
The former was a set of measurements related to the accuracy/performance of the
explainable system created versus the not-explainable baseline. The latter was
instead a collection of measurements based on user case studies, such as the im-
provement of the user performing the task for which the system was designed and
the users’ subjective ratings for the quality of explanation.

2.6 Conclusion and summary

Conclusion In this chapter, we have presented an overview of the XAI world,
which is a very emerging field and aims to emphasize the focus on explainability
and interpretability of an intelligent system. This open-up a lot of related research
questions from different disciplinary areas, among which we can highlight the social
science, the HCI, and the ML area. In this thesis, we focus on the machine learning
facade of XAI and we try to explore a possible way to solve the model explanation
for tree ensembles through a well-known technique borrowed from the data mining
field, which is frequent subtree mining. This type of approach share almost no link
with the already present solution in the literature to the best of our knowledge and
should be considered primarily as an investigation for possible future research.

Summary The summary of the chapter divided by sections is the following:

� In section 2.1 we have reviewed the definition of common terminology in the
XAI field.

� In section 2.2 we have presented the research focus of the main communities
involved in the development of the XAI field, namely the social science, the
HCI, and the ML area.

� In section 2.3 we have illustrated the motivations to make AI more explain-
able, and the need for techniques and framework to achieve it. On the other
hand, we have discussed also the main limitations of this type of approach
and what has to be taken into account when an explanation is used.

� In section 2.4 we have illustrated a possible categorization of the explanation
techniques for their purpose in three categories: model explanation, outcome
explanation, and model inspection. We have also presented a categorization
for the main types of explanation for tree ensembles, namely tree prototyping,
feature interaction analysis, and visual inspection.

� In section 2.5 we have discussed the lack of a common benchmark for the
techniques developed to explain a black-box. However, we have briefly pre-
sented a benchmark to exemplify the concept.

23

Chapter 3

State of the art

In this thesis, since we are interested in tree ensembles, we review the main ex-
planation methods already proposed for this type of ML model. Summarizing the
works presented in the literature, we can identify three principal categories of ex-
planations: tree prototyping, feature interaction analysis, and visual inspection.
For each category, a small subset of works has been chosen as representative based
on their peculiarities, i.e. if they provide a strongly different approach from other
methods, on their impact on the research community, and the availability of a
open-source implementation. When an open-source implementation was available,
for illustrative purposes, it has been tested over an ensemble of decision tree cre-
ated with the Light Gradient Boosting Machine (LGBM) package for Python[29].
The dataset used to conduct the tests was the Bike Sharing Dataset downloadable
from the University of California Irvine (UCI) Machine Learning Repository and
made available from Fanee-t and Gama[17].
In this chapter, we first review the main characteristics of the dataset used to
conduct the tests specifying its properties. Then, for each category of explanation,
we list the selected methods and highlight the advantages and disadvantages of
each.

3.1 Illustrative Dataset and Model

The Bike Sharing Dataset is available with two granularities, daily or hourly, in
this case it has been chosen the daily granularity. That means that the dataset
contains for each day between the years 2011 and 2012 the daily count of rental
bikes in the Capital (a company based in Washington D.C.) bike-share system,
associated with weather and seasonal information. For each sample in the dataset
12 features have been used as presented in Table 3.1.
The goal in this problem is to predict the number of rental bikes cnt, and for an
illustrative purpose a simple LGBM Regressor model has been fitted, on intent
without changing any default parameters provided by the library and without any
preprocessing of the initial dataset to find possible flaws or bias in the model.

3.2 Tree prototyping

Tree prototyping can be seen as a very natural way to explain an ensemble of trees
and its development date back to the late ’90s. It consists of creating one or more
trees that summarize the entire ensemble. This is a sensible explanation method

24

Feature Name Description

instant
The sample progressive index. It is equal to 1 for the first day and
731 for the last record.

season
An index that corresponds to a particular season (1: winter, 2:
spring, 3: summer, 4: fall).

yr The year when the sample has been recorded.

mnth The month when the sample has been recorded.

holiday A boolean feature to indicate if the day was a holiday or not.

weekday The day of the week.

workingday
A boolean feature to indicate if day was neither weekend nor hol-
iday.

weathersit
An index between 1 to 4 indicating the weather condition. 1 cor-
responds to prefect weather to cycling, 4 to heavy rain, ice pallets,
etc.

temp
The normalized temperature in celsius. The values tnorm of this
feature has been computed as tnorm = t−tmin

tmax−tmin
, where t is the

raw value of the feature, tmin = −8, and tmax = 39.

hum The normalized humidity value, from 0 to 0.9725.

windspeed The normalized wind speed, from 0.022392 to 0.507463.

cnt
The count of the total rental bikes. This is the label used for the
regression problem.

Table 3.1: Features of the Bike Sharing Dataset used to show the solution proposed
by each explanation method analyzed.

because a single tree with an adequate depth and number of leaves is simple to
be interpreted. Tree prototyping due to its affinity with tree ensemble methods
is one of the most discussed approaches to explain this type of black-box, and in
this section, we review five methods that can be considered representative for this
explanation approach. It is worth noticing that even though a lot of works are
present in the literature related to this particular topic, very few implementations
are publicly available and its usage seems now limited. A summary of the tree
prototyping techniques presented is proposed at the end of the section in Table 3.3.

Tree metrics and clustering One of the first attempts to find an explanation
for tree ensembles via tree prototyping focused on finding metrics of similarity
between trees inside the ensembles[12]. In this case the solution is based on the
fact that multiple trees inside the ensemble are similar, therefore multiple metrics
could be defined between trees to compute their similarity. The final goal of the
similarity computation between trees is to cluster them and to find a representative
tree for each cluster explaining the tree ensemble with a series of tree prototypes.
In particular, the authors proposed three metrics based called fit metric, partition
metric, and tree metric. The former is a metric over the predicted values of the
training set, the second is a measure of the distance between trees that is based on
the difference in the partition of the training set in the two trees considered, and
the latter account for the topology of the trees. For example, as fit metric they
propose d(T1, T2) = 1

N

∑n
i=1(ŷi,1 − ŷi,2)2 for regression trees, where T1 and T2 are

the two trees considered, ŷi,1 and ŷi,2 are the predictions for the i-th element of
the first and second tree respectively. Finally, when the clusters are created with

25

a standard hierarchical clustering technique, the tree with the highest likelihood
among the cluster is chosen as representative.

This method worth to be mentioned because it can be easy to be implemented
and it shows that doing clustering over the trees that compose the ensemble can
provide insights about the black-box. However, it is not so clear how to choose the
number of clusters, and how to combine the information retrieved by the various
representative trees to explain the whole model.

Tree prototyping from class distribution In 2007 Van Assche and Blockeel[52]
presented a method to learn a single decision tree exploiting the class distribution
estimate provided by the different trees that belong to the ensemble. Specifically,
in their work they highlight that the exact function learned by a tree ensemble
can be expressed as a single tree using up to 2d leaves, where d is the number of
different tests in the ensemble, making it too large and not so interpretable in most
of the cases. Thus, they create a new tree using the information gain based on
an estimation of the class distribution over the ensemble as the splitting criterion.
The class distribution is estimated both via the information retrieved by leaves
and with the training dataset. This procedure permits to add to the prototype
only the splits that are “most informative” for the ensemble. To further reduce
the size of the tree produced, prepruning and a “preserving labeling“ stopping
criterion are employed. The first refers to a pruning technique during the learning
phase based on a class probability threshold to be maintained in every node. The
second means that no further splits are made when all the samples associated with
a node are classified within the same class by the ensemble.

The evaluation showed that the accuracy of this method was most of the time
lower than the ensemble used but slightly better than other methods. However,
the evaluation over the stability of this tree prototyping method showed that the
tree created was not so stable compared to the ensemble from which it derived,
where the stability is “the probability that models generated by the same learner
on different training sets will give the same prediction to a randomly selected
instance”. The lack of stability is common with the majority of the other tree
prototyping methods.

Combining Multiple Models Differently from the methods described above
is Combining Multiple Models (CMM)[15], that instead of directly investigate
the ensemble, uses the information retrieved from its predictions to recover the
implicit decision regions of the model. The rationale behind this technique is to
augment the dataset used to train the decision tree prototype by adding a large
number of examples generated and classified according to the black-box. It can
be seen as a meta-learning, where the new interpretable learner is created from
a dataset integrated with the prediction from the tree ensemble. Even though
the general framework can be easily implemented and understood, an important
consideration has to be made, as also emphasized by the authors. During the
meta-learning phase, the additional samples introduced in the new dataset have
to follow the sample distribution of the initial training set. This is due to the
fact that many ML algorithms are sensitive to the sample distribution and using
a poor sampling algorithm can greatly impact the accuracy and the relation with
the representation of the “true” decision region, i.e. the distance from the true
f(x) that resides behind the data and the approximate function learned f̂(x).

26

Partition Aware Local Model Khrisnan and Wu[32] proposed an agnostic
technique to summarize every black-box model with a two-part surrogate model,
namely Partition Aware Local Model (PALM). In their work, they create a meta-
model that represents partitions of the training data and, in each partition, they
mimic the behavior of the black-box with an arbitrary complex model. This ap-
proach is not really a tree prototyping method, but it creates a decision tree as
a surrogate model to subdivide the initial dataset into k partitions that “best
explain” the prediction of the black-box over the training dataset. These parti-
tions are made solving an optimization problem to find k parametrized probability
distributions, with an algorithm very similar to K-Means, where instead of recom-
puting the cluster center at each iteration, a gradient ascent approach is employed.
After having found the k partitions, the training set is projected into a subspace of
features Xe that are considered “explainable” and associated with one of the k par-
tition created, forming a new dataset De. At this point, a decision tree is trained
to classify the samples in the new dataset to one of each k partitions. Finally, for
each k partitions, arbitrary complex models are created to mimic the black-box
predictor. Thus, this method provides an agnostic explanation that tries to be ei-
ther simpler with respect to the original model, using a partition of the data, and
also accurate like the black-box, using arbitrary complex models in each partition.
However, it seems not so obvious how to choose the parametric distribution to find
the k partitions and how to find the best k to explain the model without losing
too much accuracy.

Table 3.2: Explanations via tree prototyping

Name Ref. Year Short description

Tree
Metrics

Chipman et al.[12] 1998

They authors define various metrics on
trees, and describe how to cluster them with
the aim of finding archetypes that best ex-
plain the whole model.

CCM Domingos[15] 1998

CCM creates a new interpretable model,
such as a decision tree, with a dataset aug-
mented by the prediction of the initial en-
semble method used.

-
Van Assche and
Blockeel[52]

2007

The authors provide a new method to sum-
marize the ensemble with a single deci-
sion tree where each split is based on the
class distribution retrieved from the ensem-
ble and from the training set.

PALM
Krishnan and
Wu[32]

2017

PALM creates a tree to partition the initial
dataset and then it learns a simpler model
inside each partition. Everything is created
to mimic the prediction of the black-box
method over the initial dataset.

Table 3.3: Methods for tree prototyping that can be used to explain tree ensemble
methods, listed in chronological order.

27

Figure 3.1: A lime explanation for a sample of the illustrative dataset. The num-
bers under the columns negative and positive indicates the weights of the feature
in the linear model cl created by LIME. In this case, the explanation says that the
year has a strong negative impact on the predicted value. On the other hand, an
over the average temperature, a normal level of humidity, and the summer season
have a positive impact on the prediction.

3.3 Feature interaction analysis

Another useful approach to explain a tree ensemble is the use of feature interaction
analysis. In this thesis, we use the term feature interaction analysis to indicate all
the methods that study the impact of the features on a black-box model. There are
different methods described in the literature that follow from different well-known
approaches, such as sensitivity analysis, and game theory among others. In this
section, we review some of the relevant techniques for this type of explanation that
are normally used to answer the outcome explanation problem. A summary of the
features interaction explanation techniques presented is proposed at the end of the
section in Table 3.4.

Global Sensitivity Analysis One of the first example of feature interaction
analysis is Global Sensitivity Analysis (GSA)[13]. In this work, the authors suggest
that sensitivity analysis can be used to explain the feature interaction of a black-
box. With this intent, they generalize other previous studies made on one and two
dimensional (1D - 2D) sensitivity analysis and present an algorithm to analyze
the response of a black-box under the variation of 1 up to M feature, where M is
the number of features used from the black-box. In the MD sensitivity analysis
a search matrix of input is created selecting L values for each feature in order to
test the prediction of the black-box on a large part of the sample space. After
having computed all the predictions in the search space, various metrics can be
used to quantify the sensitivity of the black-box from variations of the M features
selected, such as range, gradient, and variance[30]. Given its specifications, the
method can be used on every black-box model and not only on tree ensemble and
can give good insights also easy to visualize and to be interpreted. However, the
main problem is that the scan over M dimension results infeasible when M is really
large, or the number of input values L increase. This can be mitigated selecting
a reasonable number of features and input values, however no effective strategies
have been proposed to pursuit this goal.

Local Interpretable Model-agnostic Explanations With a focus on the
outcome explanation problem, Ribeiro et al.[43] present an agnostic method to
explain the prediction of any black-box, they call it Local Interpretable Model-
agnostic Explanations (LIME). LIME samples points from the neighborhood of

28

Figure 3.2: SHAP local explanation for the same sample as in Figure 3.1. In this
case, the contribution of the season feature is stronger than the one representing
the humidity level. However, except for this little discrepancy, the two explanations
are very similar.

the point under investigation and locally approximates the results with an inter-
pretable model, such as a decision rule or a linear model. In LIME, the problem
of finding an explanation e(b, x) of a black-box b and a sample x is defined as an
optimization problem:

e(b, x) = argmin
cl∈C

L (b, cl, πx) + Ω(cl) (3.1)

where cl is the local predictor (as defined in Definition 6) derived from a class of
function C, L (b, cl, πx) is a measure of unfaithfulness of cl in the neighborhood
πx of x, and Ω(cl) is the complexity of the model. It is worth noticing that
the neighborhood πx could also include points that do not belong to the original
dataset. The authors, in their implementation, used the class of linear model as
C, and the square loss in πx as a measure of faithfulness. An example of this type
of explanation with a linear model is presented in Figure 3.1 over the illustrative
model.
In addition, it is also presented a method to choose k instances to solve an op-
timization problem to find the maximum coverage of the input space, trying to
solve the model explanation problem through k outcome explanation.
This local explanation method can generally approximate well the prediction of a
black box in a neighborhood of the sample considered. However, it is not always
easy to define the right neighborhood of the sample and choose the right class of
function C in advance.

TreeExplainer Finally, Lundberg et al. [35] present TreeExplainer, a method
to compute optimal local explanation based on the on the classic game-theoretic
Shapley Values [48] to represent the feature importance in every prediction of a
model. In this cooperative game theory, each member of a coalition should receive
a fair payoff given proportional to their marginal contribution. The bridge between
theory and practice is easily created: each feature is a member of the coalition and
its contribution is the feature’s importance on a specific prediction. In particular,
the computation of the Shapley values proposed in this explanation method is
based on a feature additive attribution method, i.e. a linear model. Thus, to
emphasize that the Shapley values have been computed in an additive way, they
have been called SHapley Additive exPlanation (SHAP) values[34]. Specifically,
for each prediction, the explanation model cl is a linear model defined as[38]:

f(x) = cl (x
′) = φ0 +

M∑
j=1

φjx
′
j

29

Figure 3.3: SHAP global explanation for the temperature feature. In this type
of global explanation, the plot is created by stacking every feature importance
contribution calculated for each sample in the training set. As in Figure 3.2, the
blue color means a negative impact with respect to the average value, whereas red
means a positive impact. In this case, it easy to see that the lower the temperature,
the lower is the predicted number of bikes rented.

where φ0 = EX(f̂(x)) is the average prediction, x′ ∈ {0, 1}M is the coalition
vector, where a 1 means that the feature is present in the coalition and a 0 that
is absent, and φj are the Shapley values. Based on this idea the author present
a model agnostic approximation for their computation called KernelSHAP and a
fast polynomial computation for tree ensembles called TreeExplainer. In figure
Figure 3.2 is presented a prediction explanation for the illustrative model.
In addition, various techniques for the model explanation problem have been pro-
posed. One of these is a global representation of the impact of a single feature
on the entire dataset created by stacking the predictions for each training sample.
An example is presented in Figure 3.3.
Summing up, SHAP has a solid theoretical foundation on game theory and can
be computed quickly on tree ensembles. However, computing the Shapley values
is generally slow and when the TreeShap technique is used it can produce unintu-
itive feature attributions[38]. SHAP has been also recently showed not so robust
against adversarial attacks performed to hide the bias present in the model to be
explained[50].

3.4 Visual inspection

A widespread approach used to explain black-box model and thus also a tree en-
semble is the use of visualization techniques. In this section we briefly present
three major techniques of explanation via visual inspection used with three en-
sembles, namely: Partial Dependence Plot, Individual Conditional Expectation,
and Accumulated Local Effect. A summary of the visual inspection techniques
presented is proposed at the end of the section in Table 3.5.

Partial Dependece Plot Friedman, in 1999, in the same paper where it de-
scribes the gradient boosting framework[19] it also propose the Partial Dependence
Plot (PDP) as one way to interpret the relation between the outcome of a Gra-
dient Boosting Machine and a subset of features of the training dataset. Even
tough the method was initially described for a gradient boosting machine it is

30

Name Ref. Year Short description

GSA
Cortez and
Embrechts [13]

2011
GSA is an agnostic method that applies
sensitivity analysis to the features used
from the black-box.

LIME Ribeiro et al. [43] 2016

LIME tackles the outcome explanation
problem with an agnostic method that
approximate a prediction with an inter-
pretable model in the neighborhood of
the sample.

TreeExplainer Lundberg [35] 2020

TreeExplainer is a game theoretic ap-
proach (based on Shapley values) to
measure the feature importance of a cer-
tain prediction. Global model interpre-
tation have also been proposed starting
from a collection of local explanations.

Table 3.4: Methods for feature interaction analysis that can be used over tree
ensembles, listed in chronological order.

Figure 3.4: Partial Dependence Plots, created with scikit-learn[39], over three
numerical variables in the illustrative model, namely temperature, humidity and
wind speed.

applicable to every tree ensemble method. This is based on the fact that the input
variable x can be divided in two subsets: the target subset xT and its compli-
ment xC s.t. xT ∪ xC = x, thus the estimated function f̂(x) can be expressed as
f̂(x) = f̂(xT ,xC). Given that, we can analyze the relation between the output
and the set of target features xT , as the marginal expected value of the func-
tion f̂(xT ,xC) knowing the probability of xC . Therefore, the partial dependence
function is defined as:

f̄T (xT) = ExC

[
f̂(xT ,xC)

]
=

∫
f̂(xT ,xC)dP (xC)

Naturally, we cannot compute f̄t(xT), but it is instead estimated by computing the
average prediction in the training data, therefore the practical definition become:

f̄T (xT) =
1

N

N∑
i=1

f̂
(
xT ,x

(i)
C

)
31

Figure 3.5: Individual Conditional Expectation over the same three numerical
variables in Figure 3.4, with 100 sample.

Figure 3.6: Accumulated Local Effect for the feature temp, hum, and windspeed,
as done for the other visual inspection methods. In this case on the vertical axis
we have the difference from the average prediction.

The main advantage of this method is that is simple to implement and can give
a good overview over one or two features. However, it is practically impossible to
plot a PDP with more than two features in the target subset xT and this method
can give a misleading overview if two or more features are correlated with each
other. Examples of PDP plots created from the illustrative model are shown in
Figure 3.4.

Individual Conditional Expectation To enhance the PDP plot and avoid to
lose too much information averaging the marginal effect of one or more features,
in [21] the authors suggest an improved PDP where instead of plotting the average
curve, N curves are plotted, one for each entry in the dataset. This give to the user
the ability to inspect individually each sample and can give more insights about the
global modal behavior. However, this can easily led to clutter the visualization if
all samples are used. To solve this problem, generally a subsample of the training
dataset is used, with a negative impact on the fidelity of the explanation. An
example of ICE plot is presented in Figure 3.5.

Accumulated Local Effect Finally, Apley and Zhu recently presented the Ac-
cumulated Local Effect method (ALE)[4], trying to solve the problem of PDP
when two or more features are correlated. In fact, when in a PDP plot the aver-
age marginal effect is computed, the correlation between features in the dataset is
not taken into account and unlikely samples are possibly generated. For example,
considering the illustrative dataset, we have features that are possibly strongly
correlated, such as the temperature temp and the season season. The problem in

32

a PDP plot is that during the computation of the PDP functions over the temp
feature, samples with low temperature during summer and high temperature dur-
ing winter are created. ALE plots try to solve this problem by calculating the
difference in predictions in a specific region of the feature’s target space. In this
way, the average effect of a feature is computed on the conditional distribution of
a feature without mixing the effects of correlated features. When the estimated
ALE function f̄ALE,j(x) is computed, it represents the impact of a feature j on
the prediction of the sample x. Since in the estimation process the effect is cen-
tered, when f̄ALE,j(x) = 0 means that the feature j has no effect on the predicted
value of x, when f̄ALE,j(x) > 0 means that the feature has a positive impact on
the prediction, and when f̄ALE,j(x) < 0 it means that the feature has a negative
impact on the prediction of the label of x. Examples of ALE plots are presented
in Figure 3.6.
The main advantage of ALE plots is that they are unbiased by design, and they
can greatly deal with correlated features that are the biggest problem with PDP
plots. However, their accuracy and their computation time is influenced by the
number of intervals selected, and there is no guidelines to choose the right number
of division of the feature space.

Name Ref. Year Short description

PDP Friedman [19] 1999
PDP is a method to show the marginal ef-
fect of one or more features on the predic-
tions of the training set.

ICE
Goldstein et al.
[21]

2014
ICE is a refinement of the PDP plots, in-
cluding not only the average marginal effect
but also the effect on each sample.

ALE Apley and Zhu [4] 2020

ALE is an improved version of the PDP
plots that tries to solve the problem related
to correlated features that is present in PDP
plots and consequently in ICE.

Table 3.5: Methods for visual inspection that can be used over tree ensembles,
listed in chronological order.

3.5 Conclusion and summary

Conclusion In this chapter, we have review a set of related works to explain a
tree ensemble that has been considered relevant for their research impact, or they
originality. Following the classification made in section 2.4, we have subdivided
the methods in three categories: tree prototyping, feature analysis interaction and
visual inspection. We have presented in total 12 methods also with an illustrative
example when an open-source implementation was easily available. The method
that we propose in our thesis can easily belong to the “feature interaction analysis”
category, where the analysis of the relation/interaction between features has been
made exploiting the frequent subtree mining techniques. One of the main differ-
ence of this approach with respect to the other three that have been described,
namely GSA, LIME and TreeExplainer, is that it is not designed to solve primar-
ily the output explanation problem, but it has been created to tackle the model

33

explanation problem.

Summary The summary of the chapter divided by sections is the following:

� In section 3.1 we have presented the illustrative dataset that has been used
to make an example of each explanation method where a public and easily
accessible, open-source implementation was available. The aforementioned
dataset is the Capitol bike-sharing dataset.

� In section 3.2 four techniques have been described that explain a tree en-
semble via tree prototyping. In the tree prototypingcategory, we include all
the methods that use a single tree to approximate the model learned by a
tree ensemble. We have presented two methods that are potentially model
agnostic, i.e. they work with all the black-box and two methods that are
specific for tree ensemble. The former are CCM and PALM, the latter are
Tree metrics and the framework proposed by Van Assche and Blockee (see
Table 3.3).

� In section 3.3 we have illustrated three methods, namely GSA, LIME and
TreeExplainer, that are used to analyze the feature interaction in a tree
ensemble. All the methods taken into account are model agnostic by design,
and one has been optimized for the explanation of a tree ensemble, which
is TreeExplainer. It is worth noticing that LIME and TreeExplainer can be
considered as de facto standard for tree ensembles explanation.

� In section 3.4 we have presented three methods that are commonly used to
analyze a tree ensemble and are based on a visual inspection of the plots
describing the impact of the features on the model. In particular, we have
discussed the partial dependence plot and its enhanced version, ICE. We
also considered a recently published method called Accumulated Local Effect
(ALE) that tries to solve some well-known problems of partial dependence
plots.

34

Chapter 4

Forest Explanation Through
Pattern Discovery

This chapter presents the core of this thesis: an analysis of the potential applica-
tion of pattern discovery techniques in the field of XAI. In particular, we analyze
the potential application of finding frequent subtrees in forests, we discuss how
they can represent a particular relationship between features, and we illustrate a
possible way to find a specific relationship in a more complex ensemble. We be-
gin the presentation of our project listing the research questions that have led us
to undertake the frequent pattern discovery approach to explain a tree ensemble.
Then, we briefly recap some methods available in the literature to find frequent
subtrees in a forest that we have adopted in our analysis. Moreover, we present
an exploratory data analysis of frequent subtrees retrieved in tree ensembles that
try to model simple functions, and that suggests that there is a strong relation
between frequent subtrees and the function behind the data. At the end of the
chapter, a possible framework to generalize the concept and find more complex
relationships is presented.

4.1 Research questions

The initial research question that has motivated our research is derived from the
fact that all the methods that try to explain an ensemble of trees are rarely focused
on the whole model by design, they are instead generally focused on its outcomes
or on the dataset from where they are learned. Thus, in this thesis, we focus on
the model explanation problem. In particular, we highlight that when we want
to discover new knowledge, we (as humans) are used to deal with small closed-
form expressions that are made up by combining different elementary functions.
Specifically, a lot of different research discoveries made in the past has brought
to us closed-form expression made up with a reasonable number of variable to
explain a large number of different phenomena. For example, we can think about
the various closed-form expression in natural science that has been formulated
directly from, or confirmed by, raw data. To explain a machine learning model
we would like to do the same, thus transforming the knowledge acquired by an
ensemble method into an interpretable closed-form expression.

Research Question 1 (Forest explanation as a simple closed-form expression).
Can the model explanation problem, as formulated in Definition 6, be solved with

35

an explanation e that is a closed-form expression fe(x) belonging to a set of ar-
bitrary complex closed-form expression E? If f̂(x) is the function learned by the
model we want that fe(x) ≈ f̂(x).

In order to answer RQ 1 a thorough search of the relevant literature yielded no
related article. Therefore, to answer this new research question, the problem has
been decomposed in multiple sub-questions that they could be interesting also
per se. We hypothesize that particular subtrees in an ensemble could explain a
particular type of relation between features, and we want to discover if it is possible
to combine the information retrieved by the mining of frequent subtrees to create
an arbitrarily complex function.

Research Question 2 (Forest explanation through frequent subtrees). Can we
construct fe(x) as proposed in RQ 1 by using the knowledge of the frequent sub-
trees present in a tree ensemble?

To solve RQ 2 we highlight that normally a closed-form expression is a composition
of functions, therefore, first of all, we want to discover if the model has learned a
particular type of relationship between two features and eventually combine all the
relations found to create the final fe(x). For example, if the function learned by a
tree ensemble is approximately equal to a sum of the first and the second feature
of a sample, i.e. f̂(x) ' x1 + x2, can we find one or multiple tree-based patterns
in the model that reflect this relationship? And then, if the function learned by
the tree ensemble is f̂comp(x) ' (x1 + x2) · x3 and we know which are the frequent

subtree when f̂(x) ' x1 + x2, can we exploit this information to find the relation
between x1 and x2 in f̂comp(x)? An affirmative answer to this question could imply

that if a tree ensemble has learned a composed function f̂comp(x), we could find
each of its sub-components through frequent subtree mining, and then combine
them to retrieve the function of interest: f̂comp(x). Therefore, reconsidering the

example above, we want to know if there is a link with f̂(x) and the presence of
particular subtrees involving x1 and x2 in the tree ensemble.

Research Question 3 (Find the relationships between features through pattern
discovery). Can we find which type of function a tree ensemble has learned between
a pair of features mining its frequent subtrees?

In addition, we want to investigate if this approach can give us the opportunity to
improve the accuracy of a tree ensemble adding to its dataset a new feature that
represents this interaction. This can be seen as an automatic process for features
engineering where we both explain the relation between features and improve the
performance of the model under investigation.

Research Question 4 (Improve the accuracy through pattern discovery). Can
we improve the accuracy of an ensemble over a dataset adding to the dataset a
new feature that represents the feature interaction discovered through its frequent
tree-based pattern?

To answer the principal research questions of this thesis, different mining algo-
rithms have been used that are explained in the next section.

36

1

2

43

5 6

7

T1

1

2

43

5 6

7

1

2

34

56

7

T2 T3

Figure 4.1: Figure with a visual representation of three trees, that can be consid-
ered three visualizations of the same unordered tree or three different ordered
trees.

4.2 Frequent subtree mining

With the term frequent subtree mining we refer to the procedure of retrieving
frequent substructures from a dataset of labeled trees, where labeled means that
at each node v of a tree in the dataset, is associated with a label l. We highlight
that in this context every node v is associated with only one label l, but each l
can be associated with multiple nodes.

Frequent subtree mining is a well-known field in data mining strictly related to
the frequent subgraph mining problem, and that extends techniques from the as-
sociation rule mining and the frequent pattern mining areas[11].

The link between tree ensembles and frequent subtree mining can be made noticing
that a tree ensemble can be seen as a dataset of trees after a proper transformation
(described in the following section).

In this section we review the mining algorithm used in this thesis trying to answer
RQ 3 and RQ 2, starting from the definitions of the different types of subtrees
studied.

4.2.1 Types of subtrees

Generally speaking, a subtree is a substructure present in a tree and can be defined
in a variety of ways depending on the context of use. In particular, two common
types of tree substructure are used, namely induced subtrees, and embedded sub-
trees. To describe them we add some notation to the one used in section 1.3,
defining the ancestor and the descendant relationship between two nodes v1 and
v2, the difference between ordered and unordered trees, and the preorder function.
It is also worth to notice that we are generalizing the definition of a tree data
structure, presented in section 1.3, because in the frequent subtree mining context
a tree is an acyclic, connected, labeled, and directed graph G = (V,E).

Ancestor and descendant With the notation v1 = ancestor(v2) we indicate
the fact that there exists a path from the node v1 to the node v2 in a tree T . In
that case, we say that v1 is an ancestor of v2 and v2 is a descendant of v1. For
example in the tree T1 in Figure 4.1, the node v1 labeled with a one, is an ancestor
of the node v3 labeled with a three, thus, in this case, v1 = ancestor(v3) and v3 is
a descendant for v1.

37

1

2

43

5 6

7

(a) Initial tree T

1

52

To'

(b) Induced ordered subtree T ′o of T

1

43 7

To''

(c) Embedded ordered subtree T ′′o of T

1

25

Tu'

(d) Embedded unordered subtree T ′′u of T

1

37 4

Tu''

(e) Embedded unordered subtree T ′′u of T

Figure 4.2: Examples of subtrees from a given tree. The initial tree T is illustrated
in Figure 4.2a. In Figure 4.2b there is a tree T ′o that is an induced ordered subtree
for T and in Figure 4.2c there is a tree T ′′o that is an embedded subtree for T . In
Figure 4.2d and in Figure 4.2e are represented another two examples of induced
and embedded trees but for the unordered case.

Ordered and unordered trees With respect to the distinction between or-
dered and unordered trees, we say that a tree is ordered when it is defined an
order between the children of a node v. Therefore, if v belongs to an ordered tree,
and has N children, there exist a sequence v1, ..., vN that represents the order of
its children, where vi ≤ vi+1, with 0 ≤ i ≤ N − 1. For example, in Figure 4.1
are illustrated three trees: T1, T2, and T3. If we consider them as unordered trees,
they are in fact the same tree, because the ordered between the children of each
node does not count. However, we can consider them as three different ordered
trees, where the order between the children of the same node can be defined with
respect to the disposition from left to right in the visual layout.

Preorder function In addition, we define preorder(v) as the function that re-
turns an index that represents the order of visit of a node v which belongs to a
tree T during a pre-order Depth First Search (DFS). For example, if r is the node
that represents the root of a tree, preorder(r) = 1, and if l is the last right leaf of
a tree preorder(l) = |V |. For example, in the tree T1 in Figure 4.1, each node v is
labeled with a number representing its pre-order DFS, preorder(v).

38

Induced and embedded subtree Given the new notations defined above,
we can present the induced subtrees and embedded subtrees defining them as
follows[28]:

Definition 8 (Induced subtree). Given a tree T with a set of vertex V and a set
of edges E, and a tree T ′ with a set of vertex V ′ and a set of edges E ′, T ′ is an
induced subtree of T if and only if:

1. V ′ ⊆ V and E ′ ⊆ E

2. The labeling of V ′ and E ′ in T is preserved in T ′

3. The order among siblings, i.e. the children of the same node, when it exits
in T , is preserved in T ′

Definition 9 (Embedded subtree). Given a tree T with a set of vertex V and a
set of edges E, and a tree T ′ with a set of vertex V ′ and a set of edges E ′, T ′ is
an embedded subtree of T if and only if:

1. V ′ ⊆ V

2. The labeling of V ′ and E ′ in T is preserved in T ′

3. For every e ∈ E ′, where v1 = parent(e) and v2 = children(e), v1 is an
ancestor of v2 in T .

4. If there exists an order between siblings, then for each v1, v2 ∈ V and
preorder(v1) < preorder(v2) in T ′ if and only if preorder(v1) < preorder(v2)
in T

Given the two definitions, it easy to see that if a subtree T ′ is an induced subtree
of T it is also an embedded subtree of T , but the opposite is not always true.
Therefore, the definition of the embedded subtree relationship is a generalization
of the induced subtree one. An example of the two different types of subtrees,
including also the ordered and unordered scenario, is presented in Figure 4.2.

4.2.2 Tree string encodings

To simplify the process of comparison between trees, various subtree mining al-
gorithms use a canonical string encoding to represent them. The one used in
this thesis is the same used by Zaki for TreeMiner[58] and SLEUTH[57] and its
described as follows:

Definition 10 (String enconding of a Tree). Given a tree T , its string encoding
T is a sequence of labels generating according to its unique pre-order DFS. In
particular, starting from T equal to the empty string, i.e. |T | = 0, we append each
vertex labels of T encountered during the pre-order DFS, and we add a backtrack
symbol $, that does not belong to the set of labels, each time we backtrack from
a child node to its parent.

For example, the tree T in figure Figure 4.2a has a corresponding T equal to
1 2 3 $ 4 $ $ 5 $ 6 7 $ $. In our implementation we use the label -1 to represent
the backtrack symbol $.

39

1

2

21

1 1

2

1

2

22

1 1

1

2 2 1

T1 T2 T3

(a) A tree dataset composed by three trees, T1, T2, and T3.

1

22

1

11 1

T' T''

(b) Two possible embedded subtrees T ′ and T ′′

Figure 4.3: Example of subtree mining for a dataset D composed of three trees,T1,
T2, and T3 represented in (a). The two embedded subtrees considered are T ′

and T ′′, graphically presented in (b). The node colors in the dataset are chosen
accordingly to a possible match with the two subtrees. It is worth to notice that
T ′ has multiple occurrences in T1 and T2 but to have dT1(T

′) = 1 ordT2(T
′) = 1

there must be just an occurrence (or more) of T ′.

4.2.3 The subtree mining problem

Before presenting the algorithms used to investigate frequent subtrees in a tree
ensemble, we introduce the general subtree mining problem. Given a tree T and a
subtree T ′, we define δT (T ′) as the number of occurrences of T ′ in T . It is worth
to notice that we define the frequent subtree problem using a general subtree T ′,
it could be either an induced subtree, or an embedded subtree, or another type of
subtree.
Then, we define dT (T ′) = 1{δT (T ′) > 0}, which indicates the presence or absence
of T ′ in T .
Furthermore, let a dataset of trees D, composed by N trees, indicated with Ti,
with 1 ≤ i ≤ N , we define the support of a subtree T ′ over a dataset D of trees as
σD(T ′) =

∑N
i=1 dTi(T

′), therefore 0 ≤ σD(T ′) ≤ N .
Given the definitions above, a subtree T ′ is called frequent in a tree dataset D, if
its support is greater of a minim support threshold minsup, σD(T ′) ≥ minsup.
For example, in Figure 4.3 the two embedded subtrees considered, T ′ and T ′′, have
respectively σD(T ′) = 3 and σD(T ′′) = 1. Assuming minsup = 2, only T ′ would
be a frequent embedded subtree for the dataset D.

4.2.4 Subtree mining algorithms

In this section we review the main characteristics of the algorithms that have been
adopted to mining frequent subtrees from a tree ensemble, namely SLEUTH and
CMTreeMiner[56].

40

SLEUTH SLEUTH, anagram of Listing “Hidden” or Embedded Unordered
SubTrees, is a frequent subtree mining algorithm for unordered and embedded
subtrees in a dataset of trees proposed by Zaki in 2005[57] as an extension of
TreeMiner[58]. The algorithms it is based on a special vertical representation of
the dataset called scope-list. In the scope-list representation, each label l, from
the set of all the labels present in the dataset of trees, is associated with a list
of pair (t, s) in which t is a tree ID where l occurs and s is its scope, i.e. the
right-most label of the leaf of the tree having as root l. If a label l is present more
than once in a tree Tk, multiple pairs of the type (k, s) are added to its scope list.
Using this vertical representation of the dataset, the algorithm starts the frequent
subtree mining generating all the possible frequent subtrees from a small subset
of frequent labels, following the fact that a subtree of k nodes is frequent only if
its prefix of k− 1 nodes is frequent. The candidate generation is then made using
a procedure called scope-list join, for fast computing new candidates that are also
frequent. The scope-list join has been proved to correctly generate all possible
embedded or induced, unordered and frequent subtrees.

In some case, in this paper we have also used TreeMiner, that deals only with
embedded and induced, ordered subtrees, and it is based on the same tech-
nique as SLEUTH, exploiting a scope-list representation to efficiently generate all
possible candidates of frequent subtrees.

CMTreeMiner Given the fact that the number of frequent subtrees grows ex-
ponentially with the size of the trees, Chi et al. proposed an algorithm to mining
only closed and maximal subtrees, CMTreeMiner[55], to reduce the number of
trees mined but maintaining most of the relevant information of all the no maxi-
mal neither closed subtrees. Specifically, a tree T ′ is maximal if does not exists any
proper supertree of T ′ that is frequent, and a tree T ′ is closed if, given its support
δT (T ′), does not exists any proper subtrees of T ′ that has the same δT (T ′). It is
easy to show that the number of maximal subtrees is less than the number of closed
subtrees, and the number of closed subtrees is less than the number of frequent
trees. Formally,MD ⊆ CD ⊆ FD, whereMD is the set of maximal subtrees, CD is
the set of closed subtrees retrieved, FD is the number of frequent trees, and D is
the dataset of interest.

The algorithm uses an enumeration Directed and Acyclic Graph (DAG) to com-
pute all the possible maximal and closed subtrees. The enumeration DAG is a
graph subdivided into k levels, where, in each level, there are nodes that repre-
sent subtrees of the same size. For example, at level 1 the nodes represent all the
subtrees composed only by one node, and at level k the nodes represent subtrees
composed of k nodes. An edge is present from a node at level k to level k+1 if the
node at level k is a subtree of the one at level k + 1. The mining of the frequent
subtrees is made by growing the enumeration DAG (a procedure called CM-Grow)
from level one until no further levels can contain frequent subtrees. CMTreeMiner
can mine induced subtrees from ordered and unordered trees.

41

x1

x2

x2 x2

x2

x1

x1

x1

x2

x2

x2

x1

x1

x1

x2

x2

x2

x1

x2x2

x2

x1 x2 label

x1
(1) x2

(1) f(x1
(1) + x2

(1)+ N(1)

...

x1
(N) x2

(N) f(x1
(N) + x2

(N)+ N(N)

x1

x1

x2

x1

x1

x1

x1

x1 x2

x1

x1

x1

x1

x1

x1

x2
x1

x1

...

x1 x2 label

x1
(1) x2

(1) f(x1
(1) / x2

(1)+ N(1)

...

x1
(N) x2

(N) f(x1
(N) / x2

(N)+ N(N)

T1' ... T2' label

1 ... 1 sum

...

0 ... 0 div

x1

A B C D E

...

Figure 4.4: A graphic summary of the framework proposed in this section. Each
phase is indicated with a circle labeled with a letter from A to E. In phase A
there is the generation of all the synthetic datasets representing a specific feature
relation. In phase B an ensemble is trained over each dataset. In phase C we
transform the ensemble in a tree dataset using the labeling function. In phase D
we mine all the frequent subtrees from each tree datasets. Finally, in phase E,
we create a dataset that we can use to classify the type of interaction from a new
ensemble.

4.3 From frequent subtree mining to feature in-

teraction classification

First of all, we present our proposed framework to identify specific interaction
between features in a tree ensemble mining frequent subtrees. In this process we
can specify 5 different phases, defined as follow:

A The generation of multiple synthetic datasets from a known set of functions
under investigation.

B The creation of multiple ensembles, fitted over the dataset created in the
previous phase, simulating the models to be explained.

C The transformation from ensembles to tree datasets, where is possible to
mine frequent subtrees.

D The mining process of all frequent subtrees from the tree datasets.

E The creation of a classifier of features interaction, i.e. a classifier used to
detect the type of interaction between features from a new unseen ensemble.

The 5 phases introduced above are graphically presented in Figure 4.4 and are
describe in detail in following paragraphs.

Generation of synthetic datasets Since we are initially interested only on
the interaction between a pair of features we can simplify the problem on a very
specific case.

42

RainSunny
Overcast

Outlook

High Normal

Humidity

Strong Weak

WindYes

No Yes No Yes

(a) An example of the initial decision tree
T .

O

H WL

L L L L

(b) A transformation of the decision tree,
created through the labeling function,
suitable to mine all its frequent subtrees.

Figure 4.5: Example of transformation from the decision tree presented in sec-
tion 1.3, that is proposed again in Figure 4.5a, to a labeled tree where each label
of a node is related to the splitting feature of the original decision tree Figure 4.5b.
In this case the label set L is equal to {O,H,W,L}, and Lfeat = {O,H,W} and
ll = L.

Let the real function behind the data used to create an ensemble depending only
from two features, f(x) = f(x1,x2). In this case, the dataset DN that define the
learning problem can be seen as a random sample of X , to which we associate
a label that correspond to the function f(x1,x2). Thus, the dataset is equal to
DN = {

(
x(i), f(x(i)) +N (i)

)
}Ni=1, where N (i) is the noise added to the labeling

function. In the real world, a source of noise can be for example a low accuracy of
a measuring device, or a human error, among others.

Given DN , we create a tree ensemble with a learning function L(DN) that give
us an approximation of f(x), L(DN) = f̂(x). We highlight that in all the tree
ensemble methods described in this thesis (see section 1.4) f̂(x) is computed by
combining a set of K trees, creating a set E = {Ti}Ki=1.

From a decision tree to a labeled tree The set of all the decision trees
that compose the ensemble E can be easily seen as a dataset of labeled trees, as
long as we label all the inner nodes of each decision tree Ti with a label lj ∈ L
where j corresponds to the feature used in each split, creating a set of labels
Lfeat = {lj}Mj=1, where M is the number of feature used in the decision tree. If we
create this correspondence between inner node and labels lj, the only nodes that
remain uncovered are the leaves, that we can label with ll /∈ Lfeat. We denote
this procedure as labeling(E), that produces a dataset of trees from an ensemble
E , labeling(E) = DE . An example of the labeling procedure for a single tree T is
presented in Figure 4.5.

Mining all the frequent subtrees After the creation of DE from the initial
ensemble of trees E it is possible to apply a mining algorithm to mine all the
frequent subtrees in DE . After this operation, we can create a set of subtrees
TDE = {T ′1, T ′2, ..., T ′k} that represents the set of all frequent subtrees mined from
DE , and where for each T ′i we know its support σDE (T

′
i) is greater than a specified

43

minsup because it has been mined as frequent.
Since the transformation from an ensemble E to a dataset of tree DE is easily
created, sometimes we use only E to refer to DE to not burden the notation and
when the connection can be clearly made.
Therefore, given a set composed by dataset of trees E = {DEj}Nj=1 that has been
created from N “transformed“ ensembles (transformed according to the labeling
function) we can associate to each ensemble Ej a set TEj that represents all the
frequent subtrees in the specific Ej.

Feature interaction analysis as a classification problem We then finally
create a new learning problem where the feature space X is defined as the union
of all the sets of frequent trees TEj , i.e. X =

⋃N
j=1 TDEj

, and the label space Y
the set of all the labels that represent an interaction between two features, such as
sum for the summation between two features, prod for the product between two
features, etc.
Thus, the cardinality of the labels |Y| is equal to the number of function under
investigation. For example, if we are considering only the summation (sum) and
the division (div) between two features, Y = {sum, div} and |Y| = 2. This is
also consistent with the fact that in RQ 1 we expressed our intention to have
control over the dimension of E, the set containing arbitrary complex closed-form
expressions, because we can choose how many function include in our analysis.
Furthermore, each sample Ej, i.e. each ensemble, in this classification problem is
represented in the n-dimensional feature space X , where n is the number of distinct
frequent subtrees used to represent each Ej. In other words, each dimension i,
1 ≤ i ≤ n is associated with a tree Ti, and each vector x(j) ∈ X represents the
ensemble Ej.
To represent each ensemble Ej we initially propose a simple strategy: each vector

x(j) used to represent Ej, contains a 1 for the feature x
(j)
i if the subtree Ti is

frequent for Ej and a 0 when it is not frequent. Therefore, X is formed by binary
features, that represents the presence or absence of a particular frequent subtree in
an ensemble. If we want to take into consideration also the frequency of a subtree,
and not only its presence or absence, we can replace the ones in the features space
with the actual support of each subtree in Ej.
An example of this classification problem is presented in the next section where
we investigate if this is a sensible way to classify simple feature interactions inside
a tree ensemble.

4.4 Research question 3: Find the relationships

between features through pattern discovery

In this section, we illustrate the problem proposed in the section 4.3 and we pro-
pose a solution for RQ 3 with an exploratory analysis over a synthetic dataset of
ensembles.
We first define how we have created these ensembles to explore our research ques-
tion, and then, we present a basic exploratory data analysis made mining only the
maximal ordered frequent subtrees with CMTreeMiner.
The analysis has followed the 5 phases described in section 4.3, having as a goal
the definition of the relation, or not, between the frequent subtrees mined from an

44

ensemble and its correspondent function learned.

Synthetic datasets definition To explore the feasibility of this approach, we
have created 6000 datasets of the type DN = {

(
x(i), f(x(i)) +N (i)

)
}Ni=1 where

the function f(x) it has been chosen between three basic algebraic operations:
summation, product and division, i.e. we have fsum(x) = x1 + x2 +N , fprod(x) =
x1 · x2 +N , fdiv(x) = x1/x2 +N . In particular, for each function we have drawn
10000 samples, thus N = 10000, from two different distributions to assess if the
feature distribution can impact the similarity between the same type of function
f(x) used. The two distribution selected are a uniform distribution between -100
and 100 — U(−100, 100) — and a normal distribution with mean 0 and standard
deviation equal to 100, N (0, 100). The noise N has been drawn from a normal
distribution N (0, 5) to add a small perturbation on the label that is normal to
have in a real case scenario. Therefore, in total, we have generated 6000 datasets,
2000 for each type of function.

Ensemble learning and preprocessing Over the datasets described in the
previous paragraph, 6000 tree ensembles have been learned via LGBM using
GBDT. Specifically, all the tree ensemble has been learned without hyperparame-
ters tuning and using all the default settings provided by the library. Thus, all the
forest investigated are composed of 100 trees, with a number of leaves equal to 31,
and without any limitations for the max depth of the trees. After the creation of
all the ensembles, they have been transformed in tree datasets using the labeling
function described in section 4.3.

Mining maximal subtrees The last step for the final dataset creation is the
mining of all the maximal subtrees from all the ensembles with a minsup = 75%,
i.e. a subtree is frequent if it is present in the 75% of the trees composing the
ensemble.
After having mined all the frequent subtrees we can create tuples (Ej,TDEj

), where

Ej is the j-th ensemble and TDEj
is the set of frequent subtree retrieved from the

specific ensemble. As described in section 4.3, we then create a set of all the
distinct subtrees retrieved that will represent the feature space for the classification
problem, where each ensemble is associated to a label that represents the type of
its features interaction.
In this case X = [0, 1]246, since we have retrieved 246 different subtrees from all
the ensembles under investigation. In average each ensemble has been associated
with almost 10 different frequent subtrees, with a maximum of 19 and a minimum
of 4. On the other hand, Y = {sum, prod, div} where sum has been associated
with all the ensembles that have be trained over a dataset created from fsum(x),
prod with fprod(x), and div with fdiv(x).
A table to describe the new classification problem is presented in Table 4.1 to
further illustrate how the new problem appears.

Exploratory analysis We start the investigation over the dataset created with
a Principal Component Analysis (PCA)[54] to reduce the feature space from 246
features to 2 or 3 principal components that represent a combination of the initial
features and they try to explain as much of the variance of the initial space. The
purpose of this space transformation is to visualize all the samples created and see

45

Feature Description

1 1 -1 2 -1
First String encoding of a possible subtree where 1 represents x1

and 2 represents x2. It is set to 1 (or true) if it is present in the
ensemble, 0 (or false) otherwise.

..
.

..
.

1 2 2 -1 1 -1 -1
Last String encoding of a possible subtree. In total there are 246
possible frequent subtrees.

label

A label indicating the type of relationship between the features, in
this case we have considered only three basic relationships: sum
for the summation of the features, prod for the product of the two
features, and div if we are dealing with the division between the
two.

Table 4.1: Table summarizing the features used in the last phase of the analysis:
the classification of the type of interaction. The dataset is composed by 6000
samples (i.e. 6000 tree ensembles), represented with 246 features that describe the
presence or absence of a particular frequent subtrees in the forest. Each sample is
associated with a label belonging to the set Y = {sum, prod, div}, that describes
the type of underline interaction present in the forest. There are 2000 sample
labeled with sum, 2000 samples labeled with prod, and 2000 samples labeled with
div.

if there are some structures that can suggest a correlation between the frequent
subtrees mined and the functions learned. Even though with a 2D PCA we are
able to explain only the 30% ca. of the initial variance, and almost the 36% ca.
with a 3D PCA, from Figure 4.6 it is easy to see that the samples can be easily
subdivided into three big clusters that correspond to the three different functions
under analysis, confirming our initial hypothesis. To confirm the easy subdivision
of the three groups, we have created a simple decision tree classifier adopting as a
splitting criterion the information gain and with a maximum depth equal to two,
i.e. a very shallow tree as shown in Figure 4.7. For this learning problem, we have
subdivided the dataset into two: 70% of the dataset has been used as the training
set and 30% as the test set.

From the decision tree in Figure 4.7 we can see that there are three main sub-
trees that are discriminative according to the decision tree, namely: 2 1 -1 1 ,
2 1 1 2 -1 -1 -1 , and 1 2 2 2 -1 -1 -1 . In fact, as we can see from the three sub-
trees atlases in Figure 4.9, a substructure of the type 2 1 -1 1 is the most frequent
in the sum class, and it is not present in the other atlas, meaning that there are
at least other five subtrees that are more frequent than 2 1 -1 1, and this gives
us a signal that we are dealing with a sum relationship between the features. The
same rational can be applied to 2 1 1 2 -1 -1 -1 that is the most frequent for the
div class. Also 1 2 2 2 -1 -1 -1 is a very frequent pattern on average for div, even
though not in the atlas to reduce the space of the figure.

In addition a confusion matrix created from the evaluation of the test set is avail-
able at Table 4.2, showing an high accuracy to discriminate between almost all
the classes. We only highlight a lower accuracy to predict the div class, however
it can be easily improved increasing the depth to of the decision tree. In fact, only
bringing the decision tree depth to three can give a 92% of accuracy in predicting

46

(a) 2D PCA scatter plot (b) 3D PCA scatter plot

Figure 4.6: Results of the PCA over the dataset that represent all the ensembles
via their frequent subtree patterns. In Figure 4.6a is presented a plot with the
first 2 components and in Figure 4.6b a 3D plot with the first three components.
In blue are represented the ensembles learned from a sum function, in orange the
ones learned from a product function, and in green the ones learned from a division
function.

Figure 4.7: The classifier learned to distinguish between the three classes sum, prod
and div. In each node there are five information available: the splitting criterion,
the value of the entropy, the number of samples, the subdivision of the samples
in each class, and the predicted class (i.e. the class that is more present in the
splitting associated with the node).

47

div prod sum

T
ru

e
la

b
el div 0.81 0.11 0.08

prod 0.056 0.93 0.019

sum 0.035 0.021 0.94

Predicted label

Table 4.2: The confusion matrix of the prediction made by the classifier created
and presented in Figure 4.7. The values have been normalized by rows, and the
true positive rates for each category have been highlighted in different colors.

also the div class; here we present the results only for a decision tree with depth
equal to two because it is more explainable having only three pattern involved
instead of seven.
To conclude the exploratory analysis, we have investigated the information gain
(or mutual information) from each pattern to analyze how much discriminative
they are for the problem[10]. Thus we present in Figure 4.8 a bar chart displaying
the first 20 subtrees with the highest values of information gain on the horizontal
axis (sorted by the value of information gain) and the portion of the sample where
they are present in the vertical axis, grouped by their label of membership. We
recall, as described in section 1.1, that the information gain I(X; Y) between two
r.v. X and Y is defined as:

I(X; Y) =
∑
y∈Y

∑
x∈X

p(X,Y)(x, y) log

(
p(X, Y)(x, y)

pX(x)pY (y)

)
in this case X is the r.v. representing the feature space and Y represents the label
space, p(X,Y)(x, y) has been estimated using the contingency table between X and
Y, and pX(x) and pY (y) have been estimated computing the marginal distribution
of the features and the labels.
It is worth noticing that among the first 20 subtrees with the highest values of
information gain that are a lot of isomorphic subtrees, such as 2 1 -1 1 -1 and
1 2 -1 2 -1 , or 1 1 1 2 -1 -1 -1 and 2 2 2 1 -1 -1 -1 . On the other hand, it is also
not true for all the subtrees, for example for the pattern with the third-highest in-
formation gain, namely 2 1 1 2 -1 -1 -1 , its isomorphism with the label inverted,
i.e. 1 2 2 1 -1 -1 -1 , it is not present among the first 20 highest informative pat-
terns. Thus, we continued the analysis considering all the patterns and without
combining the isomorphisms of the same pattern in a single feature. Another
point to highlight is that we have decided to mine all the frequent maximal or-
dered subtrees, and thus we have considered different the pattern 1 1 -1 2 -1
from 1 2 -1 1 -1 even though they represent the same unordered tree. This de-
cision has been made facing a much higher computation time to mine all the
frequent maximal unordered subtrees with respect to the ordered ones. Given
this computational limitation, we have considered to post-process all the subtrees
identified and store them with a canonical representation, in order to merge all
the subtrees differing only for the sibling’s nodes order. However, this canonical

48

Figure 4.8: Grouped bar chart to visualize the information gain over the initial
dataset. In each group three bar the three labels: sum, prod, and div. The height
of each bar corresponds to the share of samples of that class in which that subtree is
considered frequent. The patterns in the horizontal axis are sorted by information
gain.

representation of the subtrees had not a significant impact on the classification
performance, thus we decided to skip this additional step and leave it for possible
further investigations.

4.5 Research question 2: Forest explanation through

frequent subtrees

In the previous section, we have tried to answer to RQ 3, analyzing the frequent
subtrees created from ensemble trained over dataset drawn from functions of two
variables. In this section, instead, we investigate a possible solution for RQ 2. In
particular, given the relation found between a function learned by an ensemble
and its frequent maximal subtrees, we investigate if a function learned by a tree
ensemble f̂(x) that tries to approximate a composition of function in the form
f(x) = g(h(x)) have some frequent subtrees of h(x). If this is the case, we could
construct the explanation function fe(x) by combining the information from each
pair of features in an iterative way, retraining the ensemble over an augmented
dataset where we add a new feature that represents h(x), and iterate until all
features have been considered. To analyze the proposed approach we follow 3
main steps:

1 We repeat steps 1, 2, and 3 of the previous section, adding a new dataset
drawn from a random function, that represents the absence of relationships
between the features.

2 We create a test set of ensembles trained over datasets that are drawn from
compositions of the functions studied in the previous section.

49

(a) Most frequent maximal subtrees for the
sum relationship

(b) Most frequent maximal subtrees for the
prod relationship

(c) Most frequent maximal for the div rela-
tionship

Figure 4.9: Three atlases for the corresponding three relationships taken into
account. In each atlas, the root of the subtree is indicated with a number 1 ≤ k ≤
5. In particular k = 1 represents the most frequent tree, k = 2 the second most
frequent, and so on.

50

3 We propose a framework to classify the relationship between two features in
the test ensembles mining all the frequent embedded subtrees.

4.5.1 Synthetic datasets definitions

Synthetic datasets from random function To add an additional check to the
discrimination power of the frequent subtrees mined from tree ensembles that have
been trained over dataset formed by fsum, fprod, and fdiv, we add 2000 samples of
frnd = N (0, 1000), and we labeled the tree ensembles trained over these dataset
with rnd. We add frnd to our set of datasets to exclude that random patterns, i.e.
patterns that do not depend on the relations between the features, could impact
the accuracy of the classifier created to label each feature relation. To do that, we
do the same procedure described in the previous section to create the decision tree
to classify the three relations under analysis, but instead of using a dataset where
only the presence or absence of a subtree is stored, we store also the value of its
support σD(T ′), where D is the tree dataset derived from the tree ensemble. We
highlight that since we are mining all the subtrees with minsup = 75, the feature
xi that represent a subtree i, can be or equal to 0, or greater than the minsup,
i.e. xi = 0 ∨ xi ≥ minsup. A 10-fold cross validation of a tree ensemble classifier
C trained over the dataset created by the 8000 tree ensembles with the four labels
(sum, prod, div, and rnd) showed an average accuracy of almost 99%.

Synthetic test datasets formed by three features To check if frequent
subtrees are linked with the relation behind every pair of features, we create 9 new
synthetic datasets, that are drawn from composed functions defined as follows:

fsum,sum(x) = x1 + x2 + x3 +N
fsum,prod(x) = (x1 + x2) · x3 +N

fsum,div(x) =
(x1 + x2)

x3

+N

fprod,sum(x) = x1 · x2 + x3 +N
fprod,prod(x) = x1 · x2 · x3 +N

fprod,div(x) =
x1 · x2

x3

+N

fdiv,sum(x) =
x1

x2

+ x3 +N

fdiv,prod(x) =
x1

x2

x3 +N

fdiv,div(x) =
x1

x2

1

x3

+N

Thus, we create 100 datasets for each new function defined, i.e. 900 datasets
in total, a for each dataset we train a tree ensemble via LGBM with the same
hyperparameters used for the functions of only two features, creating in total 900
new ensembles. To not add unnecessary complexity to the procedure, we drawn
all the samples x from a uniform distribution U(−100, 100). These new ensembles
have been created to test if we can classify the type of relation between x1 and x2

given the frequent subtrees retrieved from each ensemble.

51

4.5.2 Proposed procedure

To classify the relation between x1 and x2, labeled respectively l1 and l2 in the
string representation, we propose a new procedure summarized in Algorithm 4.
It is divided into three main parts: the mining of all the frequent subtrees, the
filtering of only relevant subtrees for the classification problem, and their trans-
formation into the feature space of a given classifier. The actual implementations
of all these steps are described in the following paragraphs.

Algorithm 4 Miner Explainer Procedure

1: procedure MinerExplainer(E,M,C, (l1, l2))
2: . Ensemble E, frequent subtree miner M , a relation classifier C, and the

couple of feature of interest (l1, l2).
3: FS ←M(E) . Mine all the frequent subtrees of E with M
4: FS(l1,l2) ← filter(FS) . Filter only the relevant pattern
5: x← transform(FS(l1,l2)) . represent FS(l1,l2) in the space X of C
6: return C(x) . Classify x
7: end procedure

Mining algorithm First of all, we retrieve all the frequent subtrees with a
function M(E) where E is the ensemble under investigation, represented using
the labeling function. In our implementation, we retrieve not only the maximal
induced subtrees with CMTreeMiner as done in the previous analysis, but we mine
all the frequent embedded subtrees with SLEUTH. We moved from mining only
the maximal subtrees to mining all the frequent embedded subtrees because the
number of maximal subtrees with minsup = 75% in the ensembles described above
is nearly 0. That means that, for example, given a forest trained over a dataset
generated from fsum,sum, if we mine all the maximal induced frequent subtrees
with minsup = 75% we can find only subtrees containing no more than one or two
nodes.
In this case, using a smaller minsup to augment the number of maximal sub-
trees mined was also taken into account, however, it was not an optimal solution,
because, with the algorithm used, we could mine only induced subtrees. The
problem of mining only induced subtrees is that, in an ensemble with multiple
features involved, the frequent subtrees mined include, for the majority, not only
two labels, but all the labels used by the forest.
Therefore, we “relaxed” the type of mining and we mine all the frequent subtrees,
and not only the maximal ones, to try to retrieve more trees that could be informa-
tive. Besides, we moved from mining only induced subtrees to embedded subtrees
because we notice that using the latter we were missing a lot of possible discrim-
inative subtrees that were embedded in the tree dataset and that were similar to
the patterns found over the analysis described in the previous section.

Filtering non relevant subtrees Then, we highlight that the frequent subtrees
mined from an ensemble trained over a dataset containing three features can in-
clude patterns formed by all three different features, or features different from the
pair under investigation (l1, l2). Thus, a filter procedure needs to be implemented
to select only the meaningful subtrees. In our implementation, we have discarded

52

1

2 1

12 1 1

(a) A subtree T ′.

1

2 1

12

1

2 1

12 1 11

1

2 1

1 1 1

(b) A set of tree T that are subtree of T ′.

Figure 4.10: Figure that visually represent the heuristic used to compute the
number of frequent subtrees in a tree dataset. Assuming that we want to know if
a subtree T ′, as the one presented in Figure 4.10a, is frequent in a tree dataset,
we firstly find the set T of all the other frequent subtrees, as the ones presented in
Figure 4.10b, that are in turn subtrees of T ′ radicated on the same root and have
more than bn · kc nodes, where n is the number of nodes of T ′ and 0 < k < 1 is a
predefined constant. In our implementation k = 0.75, thus all the subtrees in T,
for this example, must have at least 6 nodes. Then we compute the frequency of
T ′ as the maximum frequency of the trees in T.

all the subtrees that contain a different label from the two under investigation: l1
and l2. Which means that let T ′ a frequent subtree, T ′ its associated string repre-
sentation and L the set of different label present in T ′, we consider only patterns
where L ⊆ {l1, l2, $}, i.e. where the only labels in its string representation are the
two under investigation or the backtrack symbol. In addition, we also discarded all
the subtrees composed by at most two nodes, i.e. 1, 2, 1 2, etc. because they re-
sult frequent in almost all the ensembles and thus they arguably can be considered
informative. In addition, they negatively interfere with the heuristic presented in
the next chapter.

Representation as a point in the feature space After having filtered out the
no relevant frequent subtrees, we have to transform the frequent subtrees found in
a vector x that can be classified from the classifier C, i.e. we want that x ∈ X .
First of all, it is necessary to solve a label mapping problem, that is we need to
map the label under investigation l1, and l2, with the label used by our classifier,
that in our implementation are 1 and 2. To do that, we notice that are only two
possible mappings: if we map l1 into 1, we need to map consequently l2 into 2,
and, on the other hand, if we map l1 into 2, we must map l2 into 1. Since we do
not know what is the best mapping in advance, in our procedure we try both and
we take the one that achieves the highest probability in the classification process.
Thus we iterate the following process twice, one for each mapping.
After having decided the initial mapping of the features, we need to find the actual
value for each feature of the x for our classification problem. One simple method
to that, it could be to assign to the feature xT ′ of x, associated with the subtree T ′,
a value equal to the support σD(T ′) retrieved from the M(E) step. However, the
results with this simple procedure were not satisfactory and we tried a different
approach based on the assumption that if we have found a subtree with k ·n nodes,
with 0 < k < 1, it might be only the first part of a bigger subtree of n nodes. Thus,
we propose the following heuristic: let xT ′ being the feature associated with the
frequent subtree T ′ for x, we retrieve all the subtrees T ′′ in the set of all frequent
subtrees for the relationship under investigation with the following characteristics:

� T ′′ must be an induced ordered subtree of T ′, having the same root as T ′.

53

Label predicted
Generating function sum prod div rnd
x1 + x2 + x3 +N 100 0 0 0
(x1 + x2) · x3 +N 59 9 32 0
(x1 + x2)/x3 +N 1 54 45 0
x1 · x2 + x3 +N 0 0 100 0
x1 · x2 · x3 +N 0 61 39 0
x1 · x2/x3 +N 0 14 86 0
x1/x2 + x3 +N 0 22 78 0
x1/x2 · x3 +N 0 76 24 0
x1/x2/x3 +N 0 65 35 0

Table 4.3: Table containing the prediction of the classifier created, each row rep-
resented the function from which the data has been generated, and each column
represent the predicted label. The true positive are highlighted according to the
three different function under investigation sum, prod , and div .

sum prod div
precision 1.00 0.25 0.31
recall 0.53 0.25 0.45
accuracy 0.41

Table 4.4: Table with the value of precision, and recall, for the three classes under
investigation: sum, prod , and div . The overall accuracy is presented in the last
row.

� If n is the number of nodes in T ′, T ′′ must have more than bk · nc nodes,
where 0 < k < 1. In our implementation k = 3

4
.

We call the set of the subtrees that respect the proprieties above T. We then
compute the value of each feature for x in X as the maximum support in the set
T, xT ′ = max({σD(T ′′) : T ′′ ∈ T}), where max return the maximum value in
a set. For example, given the visual representation of a possible tree T ′ and an
associated set of subtrees T presented in Figure 4.10, if the supports of the three
subtrees in T are respectively 75, 77, and 91, the value for the feature xT ′ is 91,
xT ′ = 91.

Evaluation To evaluate the aforementioned strategy, we have classified the re-
lation between the features x1 and x2 over the ensemble learned from the datasets
defined in subsection 4.5.1. The results for each function taken into account are
presented in Table 4.3, and in Table 4.4 are presented the associated values of
precision and recall for the three main classes sum, prod, and div, and the value
of the overall accuracy.

Let TP the true positive predictions, FP the false positive predictions, TN the
true negative predictions, and FN the false negative predictions, we recall the the

54

three definitions of precision, recall, and accuracy:

precision =
TP

TP + FP

recall =
TP

TP + FN

accuracy =
TP + TN

TP + TN + FP + FN

Given the obtained results, we cannot say that the individuation of the type of
relation in the test ensembles between x1 and x2 is an easy classification problem
as the one presented in section 4.4. We notice from the results obtained that
the procedure described has a bias with the prod class and a lot of samples are
classified as div, that is why the recall is low (under 50%) for both sum and
product. However, it is good to notice that with the procedure described there
are no relation classified as random (rnd) which means that we are able to find if
between two features there is something more than a random relation. In addition,
we can see that with this classifier we have the maximum precision when the class
sum is predicted, which means that when we predict an additive relation between
two features, in the setting proposed, we are almost sure that the prediction is
correct. Finally, we highlight that, even though the outcomes are not completely
satisfactory, given the results from precision, recall, and accuracy of the classifier
we can say that some frequent subtrees can indeed be an indication of a particular
type of relation between the features, and we can do better than a weak learner.
However, there is still work to do to discover the best way to reuse the frequent
subtrees created from simple functions to find the relations between features when
the complexity increases.

4.6 Research question 4: Improve the accuracy

through pattern discovery

In order to answer RQ 4, we assume two scenarios: in the first one we estimate a
empirical upper-bound, in which we are able to identify correctly for each ensemble
the relation between x1 and x2; in the second one we use the classification given
from the procedure presented in the previous section.
In the first scenario, we assume that for fsum,sum(x) we are able to classify as sum
the relation between x1 and x2, in fprod,sum(x) we are able to classify as prod the
relation between x1 and x2, and so on for each function described in the previous
section. After that, we add a new feature to represent this relation in the training
dataset. For example, in the case of a training dataset Dt, drawn from fsum,sum(x),
we create a new dataset D′t adding a new feature x4 = x1 + x2 to Dt. We then
train two forest, one over Dt and the other one over D′t, and we compare the two
accuracies to empirically check if there are any improvements.
In the second scenario, we follow the same steps but using the classification of the
relation between x1 and x2 given from the procedure presented in the previous
chapter.
In this section, we first describe in detail the settings of this performance analysis
and we then present and comment the results obtained for the empirical upper-

55

Generating function x4

x1 + x2 + x3 +N x1 + x2

(x1 + x2) · x3 +N x1 + x2

(x1 + x2)/x3 +N x1 + x2

x1 · x2 + x3 +N x1 · x2

x1 · x2 · x3 +N x1 · x2

x1 · x2/x3 +N x1 · x2

x1/x2 + x3 +N x1/x2

x1/x2 · x3 +N x1/x2

x1/x2/x3 +N x1/x2

Table 4.5: Table summarizing the new values of the fourth feature x4 computed
for each dataset.

bound and for the results obtained with the classification procedure presented in
the previous section.

Setup To estimate the impact of the addition of the new features to the train-
ing datasets under investigation, we used the same set of datasets drawn from
the composed functions described in the previous section. For each ensemble we
evaluate the Mean Squared Error (MSE) over a test dataset composed by 1000
samples and labeled according the same function used in the training set. We
recall that the MSE of an ensemble E over a test dataset Dv = {(x(i), y(i))}Ni=1 is
defined as MSE = 1

N

∑N
i=1(y

(i) − ŷ(i)), where ŷ(i) is the prediction given from the
ensemble E for x(i). Since we have 100 dataset drawn from each type of function,
we have trained 100 tree ensembles for each function, which means 100 ensembles
for fsum,sum(x), 100 ensemble for fsum,prod(x), etc. and then we have computed
the MSE before adding the new feature and the MSE after the addition of the
new feature representing the relation found. In Table 4.5 is presented a table that
summarize which are the hypothetical new features for each type of generating
function.

Results — empirical upper-bound In order to get an overview of the re-
sults obtained we have computed the average MSEold = 1

K

∑K
i=1MSE

(i)
fun where

MSE
(i)
fun is the MSE of the i-th ensemble trained over a dataset drawn from the

function fun with respect to the test set; in our setting K = 100. On the other
hand MSEnew have the same definition, but it has instead been computed on the
ensembles trained over the augmented dataset.
The results of the MSE computation before and after the feature engineering pro-
cess, where a new feature is added to each training dataset to represents a relation
between x1 and x2 are presented in Table 4.6. From the variation obtained, we can
say that in the majority of the case, adding a new feature to the training dataset
according to the procedure described above can greatly improve the performance
of the tree ensemble. In fact, we notice an improvement of the performance for 9
types of function, over the 12 under investigation. We also notice we had a sig-
nificant degradation of the performance only on ensembles trained over datasets
drawn by functions that contain two particular types of operations, namely the
multiplication, and the division, i.e. fprod,div and fdiv,prod. The strange results ob-
tained for fprod,div and fdiv,prod are probably due to the fact that the ensemble is

56

Generating function MSEold MSEnew ∆MSE %
x1 + x2 + x3 +N 1.73 · 101 6.43 · 100 63.01
(x1 + x2) ∗ x3 +N 1.16 · 105 6.08 · 104 47.68
(x1 + x2)/x3 +N 3.54 · 107 3.55 · 107 -0.14
x1 ∗ x2 + x3 +N 2.81 · 104 9.70 · 103 65.51
x1 ∗ x2 ∗ x3 +N 1.19 · 109 5.49 · 108 53.87
x1 ∗ x2/x3 +N 9.67 · 107 1.63 · 108 -68.83
x1/x2 + x3 +N 1.36 · 105 1.26 · 105 7.69
x1/x2 ∗ x3 +N 6.09 · 107 7.18 · 107 -17.86
x1/x2/x3 +N 1.16 · 104 1.01 · 104 12.60

Table 4.6: Average MSE of ensembles before adding a new feature in the
training dataset that represent the relation between x1 and x2 (MSEold), and
after (MSEnew). The last column ∆MSE% represents the variation between
the two quantities as ∆MSE% = (MSEold − MSEnew)/MSEold · 100, where
−100 ≤ ∆MSE% ≤ 100, and a value near 0 means no variation, a positive value
means an improvement of the accuracy and a negative value means a worsening
of the accuracy.

struggling to learn a combination of the two functions, this is also consistent with
the fact that these two groups have a value of MSEold very high, lower only than
the one of fprod,prod.

In the end, we can say that, if we are able to identify the hidden relation between
two features, adding a new feature to the training set that represents this rela-
tionship can improve the performance of the ensemble. Besides, we highlight that
this feature engineering process can be used iteratively, generating at the n-ith
iteration a new feature that is possibly adequate complex to explain the entire
ensemble.

Generating function MSEold Rc% MSEnew,c ∆MSE,c%
x1 + x2 + x3 +N 1.75 · 101 100 6.49 · 100 62.94
(x1 + x2) ∗ x3 +N 1.26 · 105 59 8.45 · 104 33.19
(x1 + x2)/x3 +N 2.29 · 106 1 6.80 · 102 99.97
x1 ∗ x2 + x3 +N 2.82 · 104 0 NA NA
x1 ∗ x2 ∗ x3 +N 1.29 · 109 61 5.92 · 108 54.14
x1 ∗ x2/x3 +N 9.54 · 107 14 6.13 · 107 35.76
x1/x2 + x3 +N 7.34 · 104 78 9.31 · 103 87.31
x1/x2 ∗ x3 +N 3.00 · 107 24 1.72 · 107 42.70
x1/x2/x3 +N 1.34 · 104 35 7.45 · 101 99.44

Table 4.7: Average accuracy improvement when the relation between x1 and x2 was
correctly identified. Rc% is the ratio of relationship correctly classified, MSEnew,c
represents the new MSE when the Miner Explainer Procedure was able to cor-
rectly identify the relationship between the features. The values in the column
∆MSE,c% have been computed as ∆MSE,c% = (MSEold−MSEnew,c)/MSEold · 100
and they represent the accuracy variation in the new classifier with respect to the
baseline, as in Table 4.6.

57

Generating function MSEold Rm% MSEnew,m ∆MSE,m %
x1 + x2 + x3 +N 1.75e+ 01 0 NA NA
(x1 + x2) ∗ x3 +N 1.26 · 105 41 1.32 · 105 -4.39
(x1 + x2)/x3 +N 2.29 · 106 99 1.45 · 106 36.52
x1 ∗ x2 + x3 +N 2.82 · 104 100 1.00 · 104 64.41
x1 ∗ x2 ∗ x3 +N 1.29 · 109 39 8.25 · 108 36.09
x1 ∗ x2/x3 +N 9.54 · 107 86 8.70 · 107 8.85
x1/x2 + x3 +N 7.34 · 104 22 1.57 · 105 -114.70
x1/x2 ∗ x3 +N 3.00 · 107 76 3.24 · 107 -8.12
x1/x2/x3 +N 1.34 · 104 65 8.79 · 103 34.40

Table 4.8: Average accuracy improvement when the relation between x1 and x2 was
misclassified. Rm% is the ratio of relationship misclassified, MSEnew,m represents
the new MSE when the Miner Explainer Procedure was not able to correctly
identify the relationship between the features. ∆MSE,m% have been computed in
the same way as ∆MSE,c% in Table 4.7, but using MSEnew,m and not MSEnew,c
as new accuracy value.

Generating function MSEold MSEnew,o ∆MSE,o

x1 + x2 + x3 +N 1.75 · 101 6.49 · 100 62.94
(x1 + x2) ∗ x3 +N 1.26 · 105 1.04 · 105 17.78
(x1 + x2)/x3 +N 2.29 · 106 1.44 · 106 37.15
x1 ∗ x2 + x3 +N 2.82 · 104 1.00 · 104 64.41
x1 ∗ x2 ∗ x3 +N 1.29 · 109 6.83 · 108 47.10
x1 ∗ x2/x3 +N 9.54 · 107 8.34 · 107 12.62
x1/x2 + x3 +N 7.34 · 104 4.19 · 104 42.87
x1/x2 ∗ x3 +N 3.00 · 107 2.88 · 107 4.07
x1/x2/x3 +N 1.34 · 104 5.74 · 103 57.16

Table 4.9: Average accuracy improvement, using the Miner Explainer Pro-
cedure. The value in the column ∆MSE,o% have been computed as
∆MSE,o% = (MSEold −MSEnew,o)/MSEold · 100 and they represent the accuracy
variation in the new classifier with respect to the baseline, as in Table 4.6.

Results — Miner Explainer Procedure After having presented the results
for the hypothetical scenario, where for all the features the right relationship clas-
sification was given, we describe the results when the Miner Explainer Procedure
was used. To describe in detail the results obtained, we present them in three
different tables: Table 4.7, Table 4.8, and Table 4.9. The three tables are used
to represent respectively the difference of the accuracy when the procedure gave
the correct classification, when the procedure gave a misclassification, and finally
without distinguishing between correct and wrong classification. As we can see
from Table 4.7, when the procedure has been able to correctly classify the interac-
tion between x1 and x2, the resulting ∆MSE,c has been always positive, indicating
that the accuracy always improved at least of the 33.19% having as a baseline the
accuracy without any feature engineering action employed MSEold. On the other
hand, considering the results when the predicted class was not correctly identi-
fied, we surprisingly see that for most of the generating function considered, the
accuracy is improved in 5 cases over the 8 for which the ∆MSE,c can be computed.
This can be due to de fact that most of the errors involved the div and prod

58

x1

x3

x2 x2

x3

x1

x1

x1

x3

x2

x2

x1

x1 x3

x2

A

1. (prod, (x1,x2), p1)
2. (div, (x1,x3), p2)
3. (sum, (x2,x3), p3)

B

x1 ... x1 prod x2 x2 sum x3 label

x1
(1) ... x1

(1)
 * x2

(1) x1
(1)

 + x2
(1) l1

...

x1
(N) ... x1

(N)
 * x2

(N) x1
(N)

 + x2
(N) lN

C

Dtr

L(Dtr)

D

Figure 4.11: An illustrative example of the iterative procedure, summarized in
four phases, from A to E, where the initial tree ensemble has been produced with
the learning algorithm L. In A we have the ensemble to be explained, that in this
example has only three features. Then, in phase B, we assume to have extracted all
the possible relations between the features via Algorithm 4, that are represented as
triples, where the first element is the type of relation found, the second is a couple
containing the feature involved, and the third is the probability of that relation
given by the classifier. In C, we visually present the operation of augmenting the
training dataset Dtr with the new relations found, sorted by their probability, and
considering only the ones that improve the accuracy of the classifier. Finally, in D
we create a new ensemble with the learning algorithm L, and then we repeat the
whole procedure from A.

classes, and adding a new feature that represent a division instead of a multiplica-
tion can improve the performance in spite of the classification error. Finally, from
Table 4.9 we can say that the accuracy is improved on average on every dataset
under investigation.

Iterating the procedure To conclude the analysis on the performance im-
provement, we have reiterated the process to find other relations after adding the
fourth feature x4 to the dataset. We recall that the feature x4 has been added
to the dataset to represent the relationship between x1 and x2, thus, for example,
for the generating function fsum,prod(x), if we correctly classify the relationship
between the two features under investigation we would have added x4 = x1 + x2

to our dataset. In particular, after the addition of x4, we have investigated the
relationship between the features x4 and x3 to confirm our hypothesis about the
composition of the patterns. Following our hypothesis, if we consider for example
fsum,prod(x) ' (x1 + x2) · x3, after adding x4 = x1 + x2 we would have expected to
find a prod relationship between x4 and x3, and this would have lead us to create
a fifth feature x5 = x4 ·x3, that would have represented the entire function learned
by the ensemble.

However, this was not the case, and after the addition of x4 in all the datasets from
each generating function, the relation between x4 and x3 has always been classified
as random by the classifier created. This unexpected result is due to the fact there
were very few frequent subtrees containing both x4 and x3, and even with a smaller
minsup a lot of frequent subtrees only made of x3 and few with x4 were present.

59

However, the results presented in chapter 5 with real-world dataset showed that
reiterating the procedure can improve the performance of the classifier, although
the poor results obtained with the synthetic datasets. In Figure 4.11 there is a
visual representation of the general iterative procedure proposed, where at each
iteration a new ensemble is created over an augmented dataset with features that
represent the relations discovered through the frequent pattern mining. The entire
procedure is explained in detail in chapter 5.

4.7 Conclusion and summary

Conclusion In this chapter, we have investigated a possible path to explain a
tree ensemble via pattern discovery, and in particular via frequent subtree mining.
We have formulated our investigation as 4 main research questions, that describe
our main goal, i.e. find a closed formed expression that accurately approximates
the function learned by the ensemble, and other sub-goals that can be also interest-
ing per se. We have tried to search an answer for RQ 2, RQ 3, RQ 4 using synthetic
datasets. With our experiments we have shown that there are strong indications
that we have an affirmative answer for RQ 3 and RQ 4, meaning that frequent
patterns found in the ensemble are strongly related to the function learned, and
using this information can greatly improve the performance of the ensemble. How-
ever, there are is no strong evidence suggesting that the frequent subtrees found
for simple functions can be used to find the interaction between features in more
complex functions. Finding the presence or absence of this relation could be the
last step to approach a solution to our initial research question (RQ 1) and thus
find an approximation of the function learned by the ensemble via a closed-form
expression.

Summary The summary of the chapter divided by sections is the following:

� In section 4.1 we have presented the main research questions of this thesis,
that describe what we wanted to investigate in this thesis. Summing up, we
would like to find a possible answer to the model explanation problem for
tree ensembles through pattern discovery.

� In section 4.2 there are described the main characteristics of the frequent
subtree mining problem, and we have presented the two main algorithms
that have been used in the development of this thesis, namely SLEUTH and
CMTreeMiner.

� In section 4.3 we have presented the main framework that we have developed
to analyze the interaction between features and, if used iteratively, try to
solve the model explanation problem.

� In section 4.4 we have presented an analysis over synthetic datasets formed
by two features to discover if specific frequent subtrees are in some way
correlated with the type of feature’s relationship.

� In section 4.5 we have analyzed in synthetic datasets composed of three
features if it is possible to find a specific type of relationship exploiting the
information from the analysis of the frequent subtrees between two features.

60

� In section 4.6 we have analyzed the performance improvement for an en-
semble trained over an augmented dataset, where a new feature is added to
represent a relation between features through frequent subtree mining.

61

Chapter 5

Evaluation with real-world
datasets

In this chapter, we present an evaluation of the method proposed in chapter 4 with
three real-world datasets provided by the University of California Irvine (UCI) ma-
chine learning repository [16]. Since there are no standard or well-known bench-
marks to evaluate the efficacy of an explanation method of this type, we also
propose our quantitative evaluation methodology based on the improvement of
the accuracy of an ensemble. Finally we discuss the results found and what is
missing from this approach that can be useful to be implemented in the future.

5.1 Datasets

To perform this evaluation over real-world dataset we have chosen three datasets
from the UCI data repository following some simple criteria:

1 The default task for the dataset must be a regression problem.

2 The majority of the features in the dataset must be numerical.

3 The dataset must have a small number of features, i.e. if M is the number
of features of D, M ≤ 20.

The first criterion is based on the fact that in this work we have focused only
on regression forest, and so we leave the investigation over classification forest as
future work. The second criterion is also based on what we have analyzed in this
thesis, and thus we preferred to focus only on numerical features, even though the
whole investigation can be extended to categorical features. The last criterion has
been chosen to limit the number of features used by the tree ensemble since we
have seen from the analysis in the synthetic datasets that the greater the number
of features involved, the lower the number of frequent subtrees when the ensemble
is formed by a fixed number of trees. This behavior suggest to use an adaptive
minsup to modulate, according to the forest under consideration, the subtrees
considered. To deal with this problem also in datasets with a small number of
features, in our evaluation we chose to select three different minsup, and analyze
the results obtained. Eventually, the following datasets have been chosen: the
Bike Sharing Dataset, the Airfoil Self-Noise Data Set, and the Wine Quality Data
Set. The full description of each dataset is presented in the following paragraphs.

62

Bike Sharing Dataset The Bike Sharing Dataset has been already presented
in section 3.1, and in this part of the analysis, only a small part of its features
have been used to avoid dealing with categorical features, or features containing
dates. In this way we have transformed the problem on finding the number of
bikes rented per day using only three features, namely the temperature (tmp), the
humidity (hum), and the wind speed (windspeed). Since the feature space in this
dataset has been over-simplified, it has to be seen only as a working example, with
real-world data and within a very low dimensional space.

Airfoil Self-Noise Data Set The Airfoil Self-Noise Data Set is a dataset do-
nated in the 2014 to the UCI Machine Learning Repository that was used from the
National Aeronautics and Space Administration (NASA) to predict the noise of a
specific airfoil (NACA 0012) at different wind tunnel speeds and angles of attack.
The features used are described in Table 5.1.

Feature Name Description

freq Frequency of the sound wave, in Hertz.

angle Angle the wind attack to the airfoil, in degree.

chord Chord length: specific measure of the airfoil, in meter.

vel
Velocity of the wind speed under consideration, in meter per sec-
ond.

ssdt Suction sid displacement thickness, in meters.

spl
Scaled Sound Pressure Level (SPL), in decibels. Used as target for
the regression problem.

Table 5.1: Features of the Airfoil Self-Noise Data Set.

Wine Quality dataset The last dataset used is the well-known wine quality
dataset[14], which is used to predict the quality of the Portuguese ”Vinho Verde”
wine — with a score between 0 and 10 — given some physicochemical properties.
The dataset is divided into two sub-datasets, one containing only red wines and
the other wine containing only white wines. In each sub-datasets, there are 11
features that can be used to predict the score associated with each wine and are
listed in Table 5.2.

5.2 Evaluation methodology

To evaluate the application of the techniques presented in the previous chapter in
real-world scenarios, we propose to check the improvement of specific evaluation
metrics after having augmented the dataset with new features discovered through
frequent subtree mining. In particular, we propose an iterative approach, where
at each iteration we apply Algorithm 4 for each possible pair of features, and if a
relation is found, we augment the dataset and we learn again a new tree ensemble
if it improves its MSE.

In this section, we first review the metrics involved, and then we describe in detail
the procedure employed.

63

Feature Name Description

f acidity Fixed acidity, measured in gtartaric acid)/dm3

v acidity Volatile acidity, measured in g(acetic acid)/dm3

c acid Citric acid, measured in g/dm3

r sugar Residual sugar, measured in g/dm3

chlorides Chlorides, measured in g(sodium chloride)/dm3

f s dioxide Free sulfur dioxide, measured in mg/dm3

t s dioxide Total sulfur dioxide, measured in mg/dm3

density g/cm3

ph Measured pH of the wine.

sulphates
Sulphates found in the wine, measured in g(potassium
sulphate)/dm33.

alcohol Alcohol level of the wine, measured in vol.%.

quality
Quality of the wine, target of the regression problem. It is a score
from 0 to 10.

Table 5.2: Features of the Wine Quality dataset.

The metrics The two metrics used to evaluate the techniques under investiga-
tion are the MSE, and the R2. With the MSE, that has been defined previously,
we compute the average squared error loss on a given test set. Instead, with R2 (R
squared) we indicate the coefficient of determination, and it represents the amount
of variance of y explained by the ML model. Let D be the test dataset where we
want to compute the R2 being composed of N samples, and ȳ the average label
value in the dataset, i.e. ȳ = 1

N

∑N
i=1 yi, the estimation of the R2 score is defined

as follows:

R2(D) = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

From the equation above, it easy to see that the maximum score that we can
obtain is 1, in fact, when we get a R2(D) = 1 it means that no error has been
made over the test set.

The procedure First of all, we divide the dataset into three parts, training set
Dtr, validation set Dv, and test set Dte. In our case, we have divided the dataset
into two parts: 70% for the training phase and the validation phase, and 30 %
for the test phase. The former has been further divided in 80-20% to create the
training and the validation sets. Summing up, the 56% has been used as training
set, the 14 % as validation set, and the 30 % as test set. Then, we compute our
baseline, that is the MSE and the R2 obtained by an ensemble E, learned with
the learning algorithm L over Dtr, trying to predict the labels in Dte.
After having computed the baseline, we apply the procedure Algorithm 4 to all
the possible pairs (l1, l2), where l1, l2 ∈ F and F is the set of all the features under
investigation. Then we create a list R, containing a triple composed by three
elements: the relation type rel found thanks to Algorithm 4, the pair of features
involved (l1, l2), and the probability P (rel) that the Algorithm 4 procedure has
associated with rel.
Given the list R, we sort it by the probability of each relation rel found. Sub-
sequently, we iterate over each element of R, and we augment the datasets with
the new relation found adding the corresponding feature, similar to what we have

64

done in section 4.6, creating a new dataset D′tr. The procedure in Algorithm 5, is
called augment(Dtr, rel, (l1, l2)).
At each iteration, we learn a new ensemble E ′ over D′tr with the learning algorithm
L, and if the MSE improves over the validation set, we substitute E with E ′, and
the training and validation set accordingly. We repeat this procedure until there
is an improvement of the performance on the validation set. The full procedure is
presented as pseudocode in Algorithm 5 using also a sub-procedure, presented in
Algorithm 6 for readability purposes.

Algorithm 5 Test performance improvement via MinerExplainer

1: procedure MinerExplainerTest(Dtr, Dv, L,M,C))
2: . Training dataset Dtr, Validation dataset Dv, Tree ensemble learning al-

gorithm L, subtree miner algorithm M , and the relationship classifier C
3: E ← L(Dtr)
4: do
5: pold ← evaluate(E,Dv) . Get performance measure
6: p← pold
7: R←MinerExplainerAll(Dtr, E,M,C)
8: sort(R) . Sort R by P (rel)
9: for each (rel, (l1, l2), P (rel)) ∈ R do

10: D′tr, D
′
v ← augment(Dtr, rel, (l1, l2)), augment(Dv, rel, (l1, l2))

11: E ′ ← L(D′tr)
12: p′ ← evaluate(E ′, D′v)
13: if p′ is better than p then
14: Dtr, Dv, E ← D′tr, D

′
v, E

′

15: p← p′

16: end if
17: end for
18: while p is better than pold
19: return E
20: end procedure

Finally, after having applied the Algorithm 5, we compare the resulting MSE and
R2 of the new ensemble created with respect to the baseline.

It is worth noticing that the procedure described above has a underling as-
sumption: when the accuracy of the regression model improves, it means that the
feature added really represents an hidden relationships between features that the
ensemble has tried to model. If this be eventually proved correct, we can say that
with this procedure we both explain and improve the model.

5.3 Results

We applied the evaluation methodology proposed in the previous section to the
three datasets (four considering the subdivision of the wine dataset) for ensemble
learned via GBDT or via RF. For each ensemble learning algorithm, we have used
the default parameters proposed by the LGBM package, except for: the learn-
ing rate in LGBM that has been set through a ten-fold cross validation over the
training and validation set between the possible choices {0.1, 0.01, 0.001}; and the

65

Algorithm 6 Sub procedure for MinerExplainerTest

1: procedure MinerExplainerAll(Dtr, E,M,C)
2: . Training dataset Dtr, tree ensemble E, subtree miner algorithm M , and

the relationship classifier C
3: S ← Comb(Dtr, 2) . Get all the possible couple of features
4: L← list() . Empty list
5: for each (l1, l2) ∈ S do
6: rel←MinerExplainer(E,M,C, (l1, l2))
7: if rel 6= rnd then
8: t← (rel, (l1, l2), P (rel))
9: L.append(t)

10: end if
11: end for
12: return L
13: end procedure

three parameters for RF that must be set manually, namely the bagging frequency
that has been set to 2, the bagging fraction that has been set to 100% and the
feature fraction that has been set to 70%. In addition, for each dataset we tried
three different minsup for the miner M used in Algorithm 5: 75%, 50%, and 30%.
We have applied this strategy because the number of frequent subtrees varies a
lot from dataset to dataset, and, for example, in the wine quality dataset us-
ing GBDT, there were practically no frequent subtrees with minsup = 75 and
minsup = 50. However, this can be seen as a not-so-sensible strategy, because the
classifier C used in Algorithm 5 has been trained over frequent subtree mined only
minsup = 75. Even though we acknowledge this possible inconsistency in the pro-
cedure, we also highlight that creating a dataset with subtrees having minsup < 75
with an adequate number of samples to train a new classifier C, was practically
infeasible with the computational resource available. Notwithstanding this possi-
ble bias in the feature relation classification, we tried this possible setting to see
if the procedure can still give an improvement in performance.

In this section we first discuss the results obtained with GBDT, then the ones
obtained with RF, and finally we present in depth the results of a specific dataset
with a fixed minsup as a case study.

Gradient Boosting Decison Tree The results obtained from the evaluation
over the three datasets for ensembles learned via GBDT are summarized in Ta-
ble 5.3. As we can see from the table with the test procedure proposed we always
get an improvement in the performance of each regressor, except for the one trained
over the red wine quality dataset. This can be seen as a good achievement also
without the interpretation of the new feature added to each dataset, and we high-
light that we got a 34% improvement in accuracy with respect to the initial MSE
in the airfoil self-noise dataset, proving that a feature engineering process, as the
one proposed, can greatly improve the performance of a tree ensemble. From the
results obtained we can also see that the lower the minsup used, the greater the
number of relations are discovered. Lowering the minsup can be a possible so-
lution to find more frequent subtrees but can possibly result in finding spurious

66

Dataset MSE R2 minsup% K MSEminer R2
miner

Bike sharing 1.88× 106 0.53
75 1 1.85× 106 0.53
50 1 1.82× 106 0.54
30 1 1.85× 106 0.53

Airfoil Self-Noise 4.29× 100 0.91
75 3 3.53× 100 0.93
50 3 3.34× 100 0.93
30 21 2.81× 100 0.94

Wine quality - red 3.5× 10−1 0.44
75 0 3.5× 10−1 0.44
50 0 3.5× 10−1 0.44
30 7 3.6× 10−1 0.43

Wine quality - white 4.3× 10−1 0.43
75 0 0.43× 100 0.43
50 0 4.3× 10−1 043
30 2 4.1× 10−1 0.45

Table 5.3: Table containing the results of the evaluation proposed using GBDT as
learning algorithm. The columns MSE and R2 are referred to the results obtained
with the initial, unmodified tree ensemble, and MSEminer and R2

miner represents
the results obtained with the modified ensemble according to Algorithm 5. Finally,
the minsup column contains the values of minsup (in percentage) used to mine
the subtrees from the various ensembles, and K represents the number of features
added to each datasets. Best results for each dataset are highlighted in green.

relations that give no improvement to the forest performance, as for the red wine
quality dataset with minsup = 30.

Random Forest To perform the analysis also with ensembles learned by RF,
we create a new relation classifier C, employing the same procedure described in
chapter 4, but using the RF learning algorithm instead of GBDT. The results
obtained are summarized in Table 5.4. From the outcomes showed in the table, it
is worth to highlight we have an improvement of the performance in each dataset,
but the number of features added is significantly higher with respect to the gradient
boosting case. This can be explained by the fact that in RF the majority of the
trees do not differ to much as for GBDT, because each tree in the ensemble do not
account for the errors made by other trees, and thus they are not so dependent
from each other.
We also notice that the highest improvement in performance is obtained, as for the
GBDT analysis, over the airfoil self-noise dataset, with an improvement of almost
61% with respect to the baseline.

Case study To give an example of the feature added to the dataset, we analyze
the results during the procedure for the white wine quality dataset where minsup
was set to 30 and the learning algorithm GBDT were used. At the first itera-
tion, three tuples were created with the sub-procedure presented in Algorithm 6
(we simplify the identification of the features using their name as presented in
Table 5.2):

t1 =(div, (f s dioxide, t s dioxide), 0.99)

t2 =(sum, (f s dioxide, alcohol), 0.78)

t3 =(sum, (t s dioxide, alcohol), 0.78)

67

Dataset MSE R2 minsup% K MSEminer R2
miner

Bike sharing 1.89× 106 0.52
75 4 1.85× 106 0.53
50 7 1.86× 106 0.53
30 0 1.89× 106 0.52

Airfoil Self-Noise 1.74× 101 0.63
75 12 8.86× 100 0.82
50 27 8.48× 100 0.82
30 55 7.04× 100 0.85

Wine quality - red 4.04× 10−1 0.36
75 8 4.01× 10−1 0.37
50 9 3.96× 10−1 0.37
30 17 4.00× 10−1 0.37

Wine quality - white 4.86× 10−1 0.36
75 7 4.78× 10−1 0.36
50 17 4.81× 10−1 0.36
30 13 4.79× 10−1 0.37

Table 5.4: Table containing the results of the evaluation proposed using RF as
learning algorithm. The columns and rows have the same meaning as in Table 5.3.

Then, they have been added in order, i.e. first t1, then t2, and finally t3, to the
dataset, and each time the MSE has been computed with respect to the validation
dataset Dv. Only t1 and t3 result in increasing the accuracy over Dv and, thus
they are the two features added to at the end of the first iteration. At the second
iteration, only one tuple was created by Algorithm 6, that is exactly t2, that was
not added to the dataset because no improvement was found over the validation
set also in the second iteration. Therefore, at the end of the procedure only two
features where added: x11 = f s dioxide

t s dioxide
and x12 = t s dioxide + alcohol. This

can be seen as a first step versus a possible answer to the RQ 1, in fact we can
say that if the classifier C has correctly identify the relation between the feature
involved the closed-form expression is function also of the new two feature added:
fe(x) = fe(x11,x12, ...). We also highlight that the three relations discovered can
also possibly have a meaningful interpretation. For example, t1 represents a ratio
between the mg/dm3 of free sulfur dioxide and the total sulfur dioxide, that are
indeed related. In addition, at the second iteration, when the features x11 and
x12 have been already added, we do not find again the relation represented by t3
and t1 because they were already added to the dataset. This means that when
a relation between tow features is added to the dataset, the learning algorithm
can exploit it, and so the number of frequent pattern that involve the two specific
features decrease.

5.4 Conclusion and summary

Conclusion In this chapter, we proposed an evaluation strategy for the forest
explanation techniques through a quantitative evaluation of the accuracy improve-
ment. We evaluate multiple tree ensemble models learned via GBDT and RF over
three real-world datasets. The result obtained suggest that, in the majority of
the cases, we can significantly improve the accuracy of a tree ensemble using the
information retrieved from its frequent tree-based pattern. In addition, through a
case study, we showed also that the relations found could have a meaningful inter-
pretation, and can be used as a first step to solve the model explanation problem.

68

Finally, it is worth noticing that we have not compared the results obtained with
any other methods of the current state of the art because there is no such technique
that does a similar explanation as we propose. As we have presented in chapter 3,
other popular methods, such as SHAP or LIME, do not take into account the type
of relationship between the features, and they are not focused on improving the
performance of the model; they are instead focused on justify the outcome of a
model. We consider that shifting the goal of the explanation method from explain
to justify to explain to improve (see section 2.3) to be a step towards moving the
evaluation to a more quantitative approach, rather than qualitative, that can be
valid for all the methods. Having a metric that can be compared among other ex-
planation techniques, such as the accuracy of the model, can be seen as a common
benchmark to further investigations of this type.

Summary The summary of the chapter divided by sections is the following:

� In section 5.1 we have presented the three datasets under consideration,
namely the bike sharing dataset, the airfoil self-noise dataset, and the wine
quality dataset.

� In section 5.2 we have illustrated the evaluation strategy proposed to check
the improvement of accuracy in a tree ensemble through pattern discovery.
The underling assumption is that if the accuracy improved, the relation found
via the tree-base patterns are also the relation learned by the ensemble.

� In section 5.3 we have discussed the results obtained over the three datasets
and with the two learning methods of choice. In addition, a case study is
presented to better illustrate the method proposed.

69

Chapter 6

Conclusions

In this conclusive chapter we summarize the results obtained, we highlight the
main limitation and drawbacks of the proposed approach, and we describe the
possible future works that can be done to improve the framework and to tackle its
limitations.

6.1 Conclusions

In this thesis, we have begun the evaluation of a new technique to explain a
tree ensemble through frequent pattern discovery. The results obtained both on
synthetic datasets and in real-world datasets suggest that there is a correlation
between frequent subtrees and the function learned by the model that can be ex-
ploited. Specifically, we have proposed a framework to express the problem of
finding the pairwise relation learned by a tree ensemble between features as a clas-
sification problem. In this setting, every relation between features is represented
by the frequent subtrees retrieved from the forest under investigation. To get a
good classification accuracy, the subtrees mined have to be selected, filtered, and
manipulated to properly represent a specific relation. Besides, we propose to iter-
ate this process adding at each iteration a new feature representing the interaction
discovered, to improve the accuracy of the ensemble and create more complex fea-
tures that can eventually represent the entire function learned. To evaluate the
feasibility of this approach we have divided our investigation into three parts: we
have analyzed the frequent subtree in tree ensemble learned by dataset generated
by simple algebraic functions composed only by two features, we have investigated
the possibility to extend the approach to function composed by three features, and
we have measured the impact of this approach on the accuracy of the model in
synthetic datasets.

After the evaluation over synthetic datasets, it is still not clear if it is correct
to assume that the frequent patterns found in an ensemble that mimics simple
functions can be used to classify the interaction between features in more complex
ensembles. As suggested from the results obtained over the synthetic datasets,
that are some indications of a possible affirmative answer to our hypothesis but
they are not completely satisfactory. What is clear, is that the feature engineering
process used can improve the accuracy of the model also in real-world datasets as
we have shown in chapter 5.

However, there is still work to do to understand if the relations found are not spuri-
ous and how the improvement of the accuracy is related to the feature engineering

70

process.
In addition, there are also limitations in the performance with the mining algorithm
used, which can be probably overcome with further and better implementations.
For example, it would be helpful to implement a parallel version of a frequent
subtree mining algorithm for both ordered and unordered trees, since the candidate
generation in the mining algorithms used is suitable to be parallelized.

6.2 Future works

Since what has been presented is a totally novel approach, there are plenty of
possible ways that can be undertaken to improve it and extend its applicability.
Specifically, in this work, we have only considered forests that solve regression prob-
lems with continuous features, but it would be interesting to extend the approach
proposed also to tree ensemble for classification and with categorical features.
Furthermore, it could be sensible to try different approaches to classify the relation
between features from the one proposed in this thesis. For example, to speed up
the process and to avoid finding spurious relations, we might want to identify the
relationship starting from the known patterns and count the matches in the forest,
i.e. find isomorphism of patterns, that we know are associated with a particular
relation and classify the features involved accordingly.
Finally, it would also be possible to extend the analysis of frequent patterns to
other ML models based on graphs, such as Deep Neural Network, mining frequent
subgraphs to identify specific feature interactions.

71

Acknowledgement

This thesis would not have been accomplished without the support of a lot of
people, both inside and outside the University, during the entire period of my
studies.

First of all, I would like to thank my supervisor, Professor Claudio Lucchese for
having introduced me to the interesting research topic discussed in this thesis, and
for his invaluable help to formulate the research questions and the methodology
proposed to solve them.
I would like also to thank Professor Alessandra Raffaetà, that gave me precious
help during my study abroad at the Eindhoven University of Technology, which
has been a fundamental part of my experience during my master’s degree.

Naturally, I thank my whole family for the incredible support and to have always
believed in me. Nothing of what I have done during these years would have been
possible without them.

I would also thank all my friends, that are essential in my life and from whom
I have been apart for a long time during this crazy year. I hope that the ongoing
pandemic will end soon and we will return to hang out together as usual.

Last but not least, I send a lovely thank you to Elisa, that has been extremely
patient with me during these years especially during my absence for my studies
abroad, and she has been able to see the man that I am, and the man that I would
like to be.

This thesis is entirely dedicated to my grandmother that a few days ago has left
us. She will always be in our minds and hearts, especially on this occasion, given
her pride in her grandsons’ academic achievements. Ti mando un ultimo abbraccio
nonna.

72

Bibliography

[1] Amina Adadi and Mohammed Berrada. Peeking Inside the Black-Box: A Survey on Ex-
plainable Artificial Intelligence (XAI). IEEE Access, 6:52138–52160, 2018. ISSN 2169-3536.
doi: 10.1109/ACCESS.2018.2870052.

[2] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. Power to the
People: The Role of Humans in Interactive Machine Learning. AI Magazine, 35(4):105–120,
December 2014. ISSN 2371-9621. doi: 10.1609/aimag.v35i4.2513. Number: 4.

[3] Yali Amit and Donald Geman. Randomized Inquiries About Shape: An Application to
Handwritten Digit Recognition. Technical report, CHICAGO UNIV IL DEPT OF STATIS-
TICS, November 1994. Section: Technical Reports.

[4] Daniel W. Apley and Jingyu Zhu. Visualizing the effects of predictor variables in black box
supervised learning models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 82(4):1059–1086, September 2020. ISSN 1369-7412, 1467-9868. doi: 10.1111/
rssb.12377.

[5] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del Ser, Adrien Bennetot, Si-
ham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard
Benjamins, Raja Chatila, and Francisco Herrera. Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI. Information
Fusion, 58:82–115, June 2020. ISSN 15662535. doi: 10.1016/j.inffus.2019.12.012.

[6] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August 1996. ISSN
0885-6125, 1573-0565. doi: 10.1007/BF00058655.

[7] Leo Breiman. Random Forests. Machine Learning, 45(1):5–32, October 2001. ISSN 1573-
0565. doi: 10.1023/A:1010933404324.

[8] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and
regression trees. CRC press, 1984.

[9] Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov, and Ludwig
Schubert. Thread: Circuits. Distill, 5(3):e24, March 2020. ISSN 2476-0757. doi: 10.23915/
distill.00024.

[10] Hong Cheng, Xifeng Yan, Jiawei Han, and Chih-Wei Hsu. Discriminative Frequent Pattern
Analysis for Effective Classification. In 2007 IEEE 23rd International Conference on Data
Engineering, pages 716–725, Istanbul, April 2007. IEEE. ISBN 978-1-4244-0802-3. doi:
10.1109/ICDE.2007.367917.

[11] Yun Chi, Richard R. Muntz, Siegfried Nijssen, and Joost N. Kok. Frequent Subtree Mining
- An Overview. Ios press, 2005.

[12] H A Chipman, E I George, and R E McCulloch. Making sense of a forest of trees. Computing
Science and Statistics, page 10, 1998.

[13] Paulo Cortez and Mark J. Embrechts. Opening black box Data Mining models using Sensi-
tivity Analysis. In 2011 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM), pages 341–348, Paris, France, April 2011. IEEE. ISBN 978-1-4244-9926-7. doi:
10.1109/CIDM.2011.5949423.

73

[14] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling
wine preferences by data mining from physicochemical properties. Decision Support Systems,
47(4):547–553, November 2009. ISSN 01679236. doi: 10.1016/j.dss.2009.05.016. URL
https://linkinghub.elsevier.com/retrieve/pii/S0167923609001377.

[15] Pedro Domingos. Knowledge Discovery Via Multiple Models. Intelligent Data Analysis, 2
(1-4):16, 1998.

[16] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://
archive.ics.uci.edu/ml.

[17] Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and back-
ground knowledge. Progress in Artificial Intelligence, 2(2):113–127, June 2014. ISSN 2192-
6360. doi: 10.1007/s13748-013-0040-3.

[18] Yoav Freund and Robert E Schapire. A Decision-Theoretic Generalization of On-Line Learn-
ing and an Application to Boosting. Journal of Computer and System Sciences, 55(1):
119–139, August 1997. ISSN 00220000. doi: 10.1006/jcss.1997.1504.

[19] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5):1189–1232, October 2001. ISSN 0090-5364, 2168-8966. doi:
10.1214/aos/1013203451. Publisher: Institute of Mathematical Statistics.

[20] Jerome H. Friedman. Stochastic gradient boosting. Computational Statistics & Data Anal-
ysis, 38(4):367–378, February 2002. ISSN 01679473. doi: 10.1016/S0167-9473(01)00065-2.

[21] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. Peeking Inside the Black
Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation.
arXiv:1309.6392 [stat], March 2014. arXiv: 1309.6392.

[22] Bryce Goodman and Seth Flaxman. European union regulations on algorithmic decision-
making and a “right to explanation”. AI Magazine, 38(3):50–57, October 2017. ISSN
2371-9621, 0738-4602. doi: 10.1609/aimag.v38i3.2741.

[23] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and
Dino Pedreschi. A Survey of Methods for Explaining Black Box Models. ACM Computing
Surveys, 51(5):1–42, August 2018. ISSN 03600300. doi: 10.1145/3236009.

[24] David Gunning and David Aha. DARPA’s Explainable Artificial Intelligence (XAI) Pro-
gram. AI Magazine, 40(2):44–58, June 2019. doi: 10.1609/aimag.v40i2.2850.

[25] David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and Guang-
Zhong Yang. XAI-Explainable artificial intelligence. Science Robotics, 4(37):eaay7120, De-
cember 2019. ISSN 2470-9476. doi: 10.1126/scirobotics.aay7120.

[26] Robert R. Hoffman and Gary Klein. Explaining Explanation, Part 1: Theoretical Foun-
dations. IEEE Intelligent Systems, 32(3):68–73, May 2017. ISSN 1541-1672. doi:
10.1109/MIS.2017.54.

[27] Robert R. Hoffman, Shane T. Mueller, and Gary Klein. Explaining Explanation, Part 2:
Empirical Foundations. IEEE Intelligent Systems, 32(4):78–86, 2017. ISSN 1541-1672. doi:
10.1109/MIS.2017.3121544.

[28] Aı́da Jiménez, Fernando Berzal, and Juan-Carlos Cubero. Frequent tree pattern min-
ing: A survey. Intelligent Data Analysis, 14(6):603–622, November 2010. ISSN 15714128,
1088467X. doi: 10.3233/IDA-2010-0443.

[29] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Advances in
Neural Information Processing Systems, 30, 2017.

[30] R. H. Kewley, M. J. Embrechts, and C. Breneman. Data strip mining for the virtual design
of pharmaceuticals with neural networks. Trans. Neur. Netw., 11(3):668–679, May 2000.
ISSN 1045-9227. doi: 10.1109/72.846738.

74

https://linkinghub.elsevier.com/retrieve/pii/S0167923609001377
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[31] Gary Klein. Explaining Explanation, Part 3: The Causal Landscape. IEEE Intelligent
Systems, 33(2):83–88, March 2018. ISSN 1541-1672. doi: 10.1109/MIS.2018.022441353.

[32] Sanjay Krishnan and Eugene Wu. PALM: Machine Learning Explanations For Iterative
Debugging. In Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics,
pages 1–6, Chicago IL USA, May 2017. ACM. ISBN 978-1-4503-5029-7. doi: 10.1145/
3077257.3077271.

[33] Wei-Yin Loh. Classification and regression trees. WIREs Data Mining and Knowledge
Discovery, 1(1):14–23, January 2011. ISSN 1942-4787, 1942-4795. doi: 10.1002/widm.8.

[34] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
In Proceedings of the 31st International Conference on Neural Information Processing Sys-
tems, NIPS’17, pages 4768–4777, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

[35] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala
Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explana-
tions to global understanding with explainable AI for trees. Nature Machine Intelligence,
2(1):56–67, January 2020. ISSN 2522-5839. doi: 10.1038/s42256-019-0138-9. Number: 1
Publisher: Nature Publishing Group.

[36] David J C MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 2005.

[37] Sina Mohseni, Niloofar Zarei, and Eric D. Ragan. A Multidisciplinary Survey and Frame-
work for Design and Evaluation of Explainable AI Systems. arXiv:1811.11839 [cs], August
2020. arXiv: 1811.11839.

[38] Christoph Molnar. Interpretable Machine Learning. 2019. https://christophm.
github.io/interpretable-ml-book/.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830, 2011.

[40] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, March 1986.
ISSN 0885-6125, 1573-0565. doi: 10.1007/BF00116251.

[41] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[42] John R Quinlan et al. Learning with continuous classes. In 5th Australian joint conference
on artificial intelligence, volume 92, pages 343–348. World Scientific, 1992.

[43] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1135–1144, San
Francisco California USA, August 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/
2939672.2939778.

[44] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, May 2019.
ISSN 2522-5839. doi: 10.1038/s42256-019-0048-x.

[45] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach - 4th edition.
Pearson, 2020.

[46] Omer Sagi and Lior Rokach. Ensemble learning: A survey. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 8(4), July 2018. ISSN 1942-4787, 1942-4795. doi:
10.1002/widm.1249.

75

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

[47] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227,
June 1990. ISSN 1573-0565. doi: 10.1007/BF00116037.

[48] Lloyd S. Shapley and Alvin E. Roth, editors. The Shapley value: essays in honor of Lloyd
S. Shapley. Cambridge University Press, Cambridge [Cambridgeshire] ; New York, 1988.
ISBN 978-0-521-36177-4.

[49] Keng Siau and Weiyu Wang. Building Trust in Artificial Intelligence, Machine Learning,
and Robotics. Cutter Business Technology Journal, page 8, 2018.

[50] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling
LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods. In Proceedings
of the AAAI/ACM Conference on AI, Ethics, and Society, pages 180–186, New York NY
USA, February 2020. ACM. ISBN 978-1-4503-7110-0. doi: 10.1145/3375627.3375830.

[51] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(8):832–844, August 1998. ISSN
01628828. doi: 10.1109/34.709601.

[52] Anneleen Van Assche and Hendrik Blockeel. Seeing the Forest Through the Trees: Learn-
ing a Comprehensible Model from an Ensemble. In Joost N. Kok, Jacek Koronacki,
Raomon Lopez de Mantaras, Stan Matwin, Dunja Mladenič, and Andrzej Skowron, ed-
itors, Machine Learning: ECML 2007, volume 4701, pages 418–429. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-74957-8 978-3-540-74958-5. doi:
10.1007/978-3-540-74958-5 39. Series Title: Lecture Notes in Computer Science.

[53] Adrian Weller. Transparency: Motivations and Challenges. In Wojciech Samek, Grégoire
Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Müller, editors, Explainable
AI: Interpreting, Explaining and Visualizing Deep Learning, pages 23–40. Springer Interna-
tional Publishing, Cham, 2019. ISBN 978-3-030-28954-6. doi: 10.1007/978-3-030-28954-6 2.

[54] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics
and intelligent laboratory systems, 2(1-3):37–52, 1987.

[55] Yun Chi, Yi Xia, Yirong Yang, and R.R. Muntz. Mining closed and maximal frequent
subtrees from databases of labeled rooted trees. IEEE Transactions on Knowledge and Data
Engineering, 17(2):190–202, February 2005. ISSN 1041-4347. doi: 10.1109/TKDE.2005.30.

[56] Yun Chi, Yi Xia, Yirong Yang, and R.R. Muntz. Mining closed and maximal frequent
subtrees from databases of labeled rooted trees. IEEE Transactions on Knowledge and Data
Engineering, 17(2):190–202, February 2005. ISSN 1041-4347. doi: 10.1109/TKDE.2005.30.

[57] Mohammed J Zaki. Efficiently Mining Frequent Embedded Unordered Trees. Fundamenta
Informaticae, page 20, 2005.

[58] Mohammed J. Zaki. TreeMiner: An Efficient Algorithm for Mining Embedded Ordered
Frequent Trees. In Advanced Methods for Knowledge Discovery from Complex Data, pages
123–151. Springer London, London, 2005. ISBN 978-1-85233-989-0 978-1-84628-284-3. doi:
10.1007/1-84628-284-5 5.

[59] Zhi-Hua Zhou. Ensemble Methods: Foundations and Algorithms. CRC Press, June 2012.
ISBN 978-1-4398-3003-1.

76

	Introduction
	Machine Learning Background
	Information Theory Aside
	Supervised Learning Problem
	Classification and Regression Trees
	Overview and notation
	Learning Algorithms

	Ensemble Methods
	Boosting
	Bagging

	Popular Ensemble Methods
	Gradient Boosting Machines
	Random Forests

	Conclusion and summary

	Explainable Artificial Intelligence
	Definitions
	XAI a Multidisciplinary Field
	Social Science
	Human-Computer Interaction
	Machine Learning

	Motivations and skepticism
	Main motivations
	Skepticisms

	Type of explanations
	Categorization by explanation goal
	Explanation Techniques for Ensemble Methods

	Evaluation methods
	Conclusion and summary

	State of the art
	Illustrative Dataset and Model
	Tree prototyping
	Feature interaction analysis
	Visual inspection
	Conclusion and summary

	Forest Explanation Through Pattern Discovery
	Research questions
	Frequent subtree mining
	Types of subtrees
	Tree string encodings
	The subtree mining problem
	Subtree mining algorithms

	From frequent subtree mining to feature interaction classification
	Research question 3: Find the relationships between features through pattern discovery
	Research question 2: Forest explanation through frequent subtrees
	Synthetic datasets definitions
	Proposed procedure

	Research question 4: Improve the accuracy through pattern discovery
	Conclusion and summary

	Evaluation with real-world datasets
	Datasets
	Evaluation methodology
	Results
	Conclusion and summary

	Conclusions
	Conclusions
	Future works

