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Abstract

The management of extensive aquacultures requires easily applicable
modelling solutions for the prediction of various water quality variables,
especially given the fast-changing climatic conditions due to an emerging
climate crisis. Functional data analysis offers an approach for data driven
models, which are able to produce reliable forecasts. Various publications
have outlined this methodology remarking its huge potential and broad
field of possible application. While it is common practice in some fields
of medicine, as of now it finds little reference and scarce examples of
implementation in environmental literature.

This work explores the applicability of Functional Auto-Regressive
models (FAR) for forecasting the hourly evolution of relevant water qual-
ity variables. As a proof-of-concept this methodology was used to forecast
half-hourly water temperature fluctuations in shallow water transition sys-
tems located in the Northern Adriatic, Italy, namely the Lagoon of Venice
and the Marinetta Lagoon in the Po delta. In order to achieve this goal
a two step modelling approach was developed: 1) daily mean values were
forecasted using ARIMAX model, 2) daily oscillations around the means
were predicted using a FARX model. Air temperature and salinity were
added as external predictors. Findings show that modelling results for
one-day forecasts are of high predictive power. Better 2-4 days ahead
prediction could be obtained by improving the trend estimation.

These results indicate that FARX models are a sound and flexible class
of data driven models, which could be used as a tool for the prediction
of highly dynamic water quality variables in shallow coastal lagoons, such
as water temperature. Further work, however, is needed to test FARX on
other relevant variables, i.e. dissolved oxygen and salinity and to extend
the forecast window. Weekly forecast of these variables would, indeed,
be very useful to support the management of culture based fishery and
aquaculture in these ecosystems, as they could provide early warning con-
cerning adverse events, e.g. heat waves and ipoxias.
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1 Introduction

The global population is rapidly increasing, having doubled in the past 50 years
to now approximately 7.7 billion (Roser et al., 2013). This trend is expected to
continue until the end of the century, peaking at 11 billion global citizens (UN
Department for Economic and Social Affairs, 2019). Simultaneously a substan-
tial decrease of farmland quality can be noticed in many regions of the world
(Jie et al., 2002), which is why efficient and sustainable food production is be-
coming increasingly important in order to meet the Sustainable Development
Goals (UN General Assembly, 2015).

Unsurprisingly, the so-called Blue Economy, a term which denominates the eco-
nomic exploitation of the marine environment, is currently experiencing an
increase in popularity amongst scientists and entrepreneurs (Smith-Godfrey,
2016). Large-scale food production in coastal and off-shore areas represents one
of the most promising ways to tackle food security (Hussain et al., 2018; Fred-
heim and Langan, 2009). To this regard, the European Union has launched the
long term strategic initiative Blue Growth, which includes the development of
aquaculture as one of its pillars (European Commission. Directorate-General for
Maritime Affairs and Fisheries, 2012). Due to high pressure by both overfishing
and the effects of climate change wild fish stocks are decreasing in many places
over the world (Hilborn et al., 2020; Capuzzo et al., 2018; Edgar et al., 2018;
Vasilakopoulos et al., 2014; Brander, 2007) Simultaneously aquacultures have
experienced a rapid upsurge in numbers (Tacon, 2020).

For centuries coastal areas and transition ecosystems, such as coastal lagoons,
have been regarded as highly important sources of fish, shellfish and game. In
particular, different forms of cultured based fishery and extensive aquaculture
have been practised since the 15th century in enclosed portions of the Lagoon
of Venice and of other Northern Adriatic lagoons, named ”Valli da pesca” . In
the last decades, shellfish farming and, more specifically, the farming of the al-
lochthonous clam Ruditapes philippinarum has become the most relevant halieu-
tic resource. However, this farming activity is facing some challenges, due to
the increasing climate variability related to climate change (Ghezzo et al., 2018).
Therefore, it is important to both understand the environmental conditions nec-
essary for successful farming, as well as being able to predict the development of
water quality variables, such as water temperature, salinity and dissolved oxy-
gen concentration, which could cause sub-lethal and lethal stress to the farmed
species. As regards the latter, the simultaneous occurrence of heat waves and
hypoxic conditions could cause mass mortalities: predicting these events could
be crucial for shellfish and fish farmers.
This is a challenging task, as the dynamic of these variables is driven by com-
plex physical, chemical and ecological processes, such as tidal exchanges, heat
exchanges with the atmosphere, wind driven mixing and resuspension, sediment
oxygen consumption or oxygen depletion due to algal blooms. As a result,
most quality variables show an underlying daily pattern, which, however, is of-
ten masked by a high level of ”noise”. These patterns can be simulated using
both process based and data driven models: the former, however, are compu-
tationally expensive and require highly skilled personnel to be developed and
operated. Therefore, in a management context, data driven models could be a
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better option for producing real time or near real time site-specific predictions.

The focus of this work will be placed upon the latter aspect, developing an in-
novative data driven model approach, based on functional data analysis, for 1-2
day ahead forecasting of water quality variables in a lagoon, based on processing
of real time data.
This approach could be used for implementing precision shellfish farming within
lagoons such as the Lagoon of Venice by providing early warning concerning
variables which can cause stress and mass mortality. These predictions could
be used for mitigating the consequences of these extreme events, by harvesting
or, if possible moving the stock, to less affected areas.

The advantage of functional auto-regression is that it can use continuous func-
tions as regression objects. Consequentially the modelling resolution can be
adjusted at will. This is especially useful for virtually continuously observed
variables as is common for environmental parameters.

The following chapter 2 will revise existing literature on different approaches for
modelling waterbodies. Chapter 3 lays out the methodology and mathematical
concepts regarding functional auto-regressive (FARX) models. As a proof of
concept, FARX models were applied to forecast water temperature, whose dy-
namics is affected mainly by physical processes, namely, heat exchanges with the
atmosphere and heat transport due to tidal mixing. This was undertaken in two
different lagoons in the Northern Adriatic each for various seasons (see chapter
4). The results are presented in chapter 5, chapter 6 discusses the findings and
chapter 7 provides suggestions for further research and possible applications of
this method.
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2 Water models

This chapter will illustrate the current state of the art of water models focussing
on water temperature models. Section 2.1 will give a short introduction to the
classification of mathematical models. Subsequently, water temperature models
applied to waterbodies such as rivers and estuaries are reviewed (section 2.2).
Section 2.3 gives an account of existing water models for the Northern Adriatic.

2.1 Classification of models

There are several types of models that can be applied to describe a water body
(Benyahya et al., 2007): first of all it has to be distinguished whether a model is
process based or data driven. The former simulates the dynamics of a system by
describing the relationships among state variables using sets of ODE (Ordinary
Differential Equations) or PDE (Partial Differential Equations), taking into ac-
count the external forcings, i.e. the exchange of matter and energy with the
surroundings. These models require a detailed knowledge about a system and a
high amount of data concerning input parameters and external forcings, such as
topography, hydrology, weather forcings and others. Process based biogeochem-
ical and ecological models are routinely applied, for example, in oceanography
(e.g. Lopes et al. (2018) and Dube and Jayaraman (2008)).
Their main disadvantages, which constrain their applicability, are the large com-
putational effort as well as the need of highly skilled personnel to develop and
maintain them.

Data driven models, on the other hand, analyse observed data and identify
reoccurring patterns. They can be further divided into parametric and non-
parametric models depending on whether the amount of parameters is finite
or not. Non-parametric models do not have a previously defined structure or
amount of parameters, but develop based on the training data instead (e.g. arti-
ficial neural networks). This flexible approach is becoming increasingly popular
as computational power advances and facilitates their application. A downside
to this approach is the lack of information about how the model works making
an interpretation difficult.

A final distinction for parametric models can be made into regressive and dy-
namic. Regression models express one variable as a function of one or more
independent variables. The relation between input and output variable can be
linear (linear regression) or of a more general nature (non-linear regression).
Other noteworthy types of parametric models are autoregressive and periodic
autoregressive ones which can be labelled as dynamic models. In contrast to
regressive models they regard a variables autocorrelation and compute the de-
velopment of a variable based on its own past values. Other external variables
can be added. If a periodic component is existent then periodic autoregression
should be used, which splits the data into a long-term (seasonal) component
and short-term impulses (errors).
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2.2 Water temperature models

Given the abundance of water on earth’s surface and its relevance for life, it is
not surprising that there is a great number of publications dealing with various
aspects of it. A large part of that research is dedicated to modelling its dynamic
in different water bodies, such as local streams, subterraneous aquifers or seas.
Since not every model is suitable for every type of application, there is no one
superior model but, rather, a wide variety of models suited for different appli-
cations.

Coastal aquatic systems are often highly interconnected with their surroundings
and involve many relevant processes. Water temperature can be simulated using
an energy budget approach, making use of the laws of thermodynamics to derive
the models equations (Benyahya et al., 2007). Such a model was also applied to
the Lagoon of Venice (Dejak et al., 1992).
A deterministic, finite-element approach was applied by Umgiesser and his col-
leagues (Umgiesser (1997), Umgiesser et al. (2004), Ferrarin and Umgiesser
(2005), Umgiesser et al. (2014), Maicu et al. (2018)). In the latter paper, a
3D finite element model is used for simulating the hydrodynamic transport and
the heat budget, producing as a result a numerically solved computer simula-
tion. Ferrarin and Umgiesser (2005) applied the same approach to a lagoon
in Sardinia from which they conclude that the water temperature in shallow
lagoons can be efficiently modelled by using the air temperature as a proxy for
the radiative forcing.

Chen et al. (1998) showed that this is also a major forcing for other water
bodies such as streams. They implemented detailed information about stream
topography and characteristics of the riparian foliage to construct a model for
simulating the hourly water temperature based on shading and air temperature.
Vaz et al. (2005), on the other hand introduced a 2-dimensional water temper-
ature model based on the hydrodynamic water transport equations using the
water temperature as a tracer for river inflow. However, their results showed a
discrepancy of 3◦C between observed and computed water temperature.

Regressive models for water temperatures also frequently use the correlation
between air and water temperature to deduct one from the other. According to
the literature, linear regression is suitable for predicting the seasonal evolution
of water temperatures. Seasonal autoregressive models are suitable for data
with strong seasonality. Caissie et al. (1998) for example model the water tem-
perature in a small Canadian stream by approximating the seasonal component
with a Fourier series and then use various autoregressive models to describe the
residuals while adding air temperatures as an external predictor.
Mohseni et al. (1998) expand this idea using four parameters to better account
for weekly minima and maxima, making it a non-linear regressive model which
is able to describe the typical levelling off of water temperatures at high and low
temperatures more precisely. They explain this phenomenon with the effects of
freezing and evaporative cooling respectively.

This work is intended to explore the application of functional data analysis
(FDA) to the modelling of the daily temperature pattern in a transition water
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body. Based on the results presented in Ullah and Finch (2013), 84 articles on
FDA were published between 1995 and 2010, More than half of these papers
(54%) concerned applications in biomedicine, biomechanics, medicine, psychol-
ogy and neurology and environmental sciences, in the broader sense, (biology,
ecology, meteorology, environmental studies and agriculture) accounted for only
20%.

This study supports the findings from an own provisional literature research,
that this method is barely mentioned across the corresponding literature. Sev-
eral scientific search engines and data bases (GoogleScholar, Scopus, Springer
and Web of Science) were searched using the keywords ”FARX model”, ”func-
tional autoregression”, ”functional data analysis” and ”functional data appli-
cation” for publications in environmental sciences which use functional data
analysis for modelling.
One of the rare examples is the study of Mestekemper et al. (2010) who use a
functional data approach to forecast the hourly development of the water tem-
perature of the river Wupper in Germany. The method applied by Mestekemper
et al. is to a large extend analogous to the one presented in this work apart
from the varying ecosystem that is to be examined.

2.3 Water models for the Northern Adriatic

Due to its special role as a city which exists in symbiosis with the surrounding
lagoon, Venice has early on evoked a scientific interest in the latter. Consequen-
tially models of the Lagoon of Venice date back as far as the 1970s (Di Silvio
and D’Alpaos (1972), Chignoli and Rabagliati (1973), Sguazzero et al. (1978)).
While these models are still unrefined from a modern point of view, many oth-
ers have developed more sophisticated models over the years which exploit the
great knowledge of the lagoon that has been gained by now.

In 1997 Umgiesser developed a finite element model for the lagoon of Venice
which implicitly accounts for the bottom topography. He also demonstrates
that the overall water circulation is driven southward by the north-eastern Bora
wind system. In 2004 the model is updated by Umgiesser et al. to include tem-
poral evolution of the variables. The new version is apt to represent dispersion
processes which affect salinity and water temperature accurately.
Canu et al. extend the finite element model in 2003 to be able to analyse
the ecosystem’s response to changes in the physical conditions. The previous
model is upgraded by an energy budget model to incorporate water tempera-
ture changes and several ecological models which account for nutrients, organic
matter and dissolved oxygen, all of which are important factors in an estuarine
ecosystem.

In 1998 Bergamasco et al. combine a model for the Adriatic Sea and one for
the Venetian lagoon, arguing that both systems are coupled and mutually influ-
ence each other. In their study they use two hydrodynamic models of different
resolution (lower for the Adriatic basin), which incorporate tides, winds and
other fluxes as forcings. A different study by Ferrarin et al. (2017) shows the
extensive influence of the three major lagoon systems in the northern Adri-
atic (Marano, Venice and the Po-Delta) on circulation and sediment transport
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within the whole basin. These studies are some of the few that couple numerical
models for lagoons and the Adriatic Sea even though some of the lagoons have
a water flushing time (ratio between water exchange and volume) of one day,
hence should be regarded as strongly interacting with the Adriatic (Umgiesser
et al., 2014).

Umgiesser et al. (2014) introduce the SHYFEM model, a 3-dimensional exten-
sion of the finite element model which includes vertical z-layers. It has been
developed by the CNR-ISMAR (National Research Council, Marine Sciences
Institute) in Venice and was successfully applied to several lagoons in Europe
(Ferrarin and Umgiesser (2005), Umgiesser et al. (2014)).
Another recent study (Maicu et al., 2018) uses the earlier mentioned SHYFEM
model to tackle the complex Po-Delta system which is defined by several river
branches and lagoons. Noteworthy is the great interconnectivity between the
different water bodies which demands great knowledge about local conditions
for calibrating a hydrodynamical model.
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3 Methodology

This chapter provides a basic understanding of the applied methodology and
its underlying mathematical concepts. This is not a purely mathematical thesis
but rather focusses on the development and practical application of a functional
model. Therefore no claim is made that the methods below are defined perfectly
unambiguous and described in a way to endure a mathematicians scrutiny.

3.1 Auto-Regressive Moving Average models

An assumption that can be made for many environmental parameters is that
the future values of a variable highly depend on its current value. Therefore it
is only sensible to incorporate past values into the calculation of future values.
This principle is used for so-called autoregressive models such as the widely used
AR(p) model.
An autoregressive process y at the time t of the order p can be described as
follows:

yt = α+

p∑
i=1

φiyt−i + εt (3.1.1)

Here α denotes a constant and φi the modelling parameters for the autore-
gressive model. The error (labelled as εt) is assumed to be a white noise, i.e.
E(εt) = 0, var(εt) = σ2 and εt is an independent random variable. The order
p indicates how many past values are taken into consideration for the model
calculation.
In order to preserve stationarity of the process some constraints apply to the
modelling parameters. For an AR(1) process |φ1| < 1 has to be valid. The
constraints for an AR(2) process are |φ1| < 1, φ1 + φ2 < 1, φ2 − φ1 < 1. The
general formulation for an AR(p) process is more complex and can be found in
the corresponding literature. Since modelling software like R usually regards
these constraints automatically, this should be of little concern (Shumway and
Stoffer, 2000).

If the examined variable does not only depend on its past values but also on
another (independent) variable, this can be expanded to an ARX(p,l) model by
including the current value and the last l lags of an external variable x:

yt = α+

p∑
i=1

φiyt−i +

l∑
k=0

βkxt−k + εt (3.1.2)

The coefficients βk are the modelling parameters for the external input x.

If the forecasting errors also seem to be relevant for a process then an autore-
gressive moving average model (ARMA) can be applied. Additionally to the
already described AR(p) process, it includes a moving average term (MA(q))
which regards the q last forecasting errors:

yt = α +

p∑
i=1

φiyt−i +

q∑
j=1

ηjεt−j + εt (3.1.3)
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If it’s necessary to make a time series stationary, then it can be differentiated
once or more often before modelling. The reversion of this process is here
referred to as integration.
The equation for differentiating yt once (d = 1) is as follows:

y′t = yt − yt−1 (3.1.4)

An ARMA model with a d-times differentiated time series gets the additional
notation I(d), making it an ARIMA(p,d,q) model.
To extend the described ARIMA(p,d,q) model by an external predictor x with
l lags (cf. equation 3.1.2 for an ARX process) the corresponding term has to be
added:

yt = α +

p∑
i=1

φiyt−i +

q∑
j=1

ηjεt−j +

l∑
k=0

βkxt−k + εt (3.1.5)

Like before βk denotes the modelling parameters for the external variable. In
the following all the above mentioned variants will be referred to as ARIMAX
model, since that is the most inclusive term.

3.2 Functional Data Analysis

Like mentioned in section 3.1, autoregression and moving average can be useful
tools to predict environmental variables, but in some cases an ARMAX model is
not suitable for data sets with a high sampling frequency. Such a model regards
all observed values as discrete values that need to be forecasted individually.
Besides causing unnecessary high computation effort it has also proven to be
inefficient in forecasting for example hourly values for multiple days (Mestekem-
per et al., 2010).

Kokoszka and Reimherr (2017) give an updated account of a new concept of
data examination. The field of functional data analysis deals with variables
that can be described by smooth curves and performs a statistical analysis on
a set of such curves.
When applied to a time series, the data set is split into sets of equal time length
(e.g.: days, weeks or years). N denotes the total number of subsets while T
stands for the total amount of discrete observations points in each subset (for
simplicity’s sake we assume evenly spaced out data). Figure 3.1 shows a time
series with high sampling frequency (once per minute over 7 days) sectioned
into seven subsets (N = 7) of one day length each (T = 1440 min).

Every subset Yn = {Yn(t), t = 1, · · · , T} can be approximated by a basis-
expansion:

Yn(t) ≈
M∑

m=1

cnmΨm(t) (3.2.1)

Ψm(t) is a standard set of basis functions like the Fourier basis or splines and
cnm are the M corresponding coefficients (see figure 3.2). This approximation
creates a smooth function which goes through all observation points and replaces
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Figure 3.1: ”The horizontal component of the magnetic field measured in one minute
resolution at Honolulu magnetic observatory from 1/1/2001 00:00 UT to 1/7/2001
24:00 UT.” Adapted from Kokoszka (2012).

the discrete data Yn. It also serves to replace Yn by a smaller M -dimensional
vector of coefficients cnm.

Figure 3.2: Example of the first four basis functions of the Fourier expansion.
Adapted from Biess et al. (2006).

The expansion displayed in equation 3.2.1, commonly uses deterministic basis
functions. Instead, to gain a maximum compression, one can find the optimal
basis functions specially for the given data. This is done via functional principal
component analysis:

Yn − Y N (t) ≈
M∑

m=1

ξnmυm(t) (3.2.2)

The centred function Yn − Y N (t) is approximated by M functions υm, the so
called estimated functional principal components (EFPCs). The coefficients
ξnm are called the score of Yn to the respective basis function υm. The score
quantifies how much the respective basis function contributes to the shape of
Yn. It is obtained as fitting coefficients when matching the set of EFPCs to the
centred function.
The EFPCs are defined to be a set of orthonormal trigonometric functions,
meaning that:
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∫
υm(t)υi(t) dt =

{
0 if m 6= i,
1 if m = i.

(3.2.3)

The first EFPC (υ1) summarizes the main variability around the mean function,
while the following EFPCs summarize the main remaining variability orthogonal
to the previous ones. The m-th EFPC (υm) represents the dominant remaining
variation orthogonal to all the previous EFPCs (υ1, υ2, · · · , υm−1). The total
variability can be written as a sum of variabilities explained by each basis func-
tion. Thus it is possible to quantify how much one EFPC contributes to explain
the overall variability. In practice a threshold of 95% or 99% resemblance is
often chosen to exclude further EFPCs which only describe a fraction of the
variability.
This selection process sometimes results in M being a much smaller value than
when using a standard set of basis expansions (cf. 3.2.1), which again results in
much less variables to handle while loosing no or only little information. It is
important to note that for both approximation methods the observations do not
necessarily need to be evenly spaced out. Figure 3.3 shows a typical application
for functional data analysis: 39 observations of the same process performed by
different probands (3.3a) are approximated by using the first four EFPCs (3.3b).

(a) Hip Angles observed over gait cycle
for 39 children.

(b) First four EFPCs approximating the
hip gait data.

Figure 3.3: Adopted from Cao (2019).

Through this functional approximation the previously T observations of every
subset are now reduced to M parameters which, combined together, describe
the curve approximating the development of the variable within that interval as
one functional object. Thus reduced, the approximated curves for one or more
interval can be used for further analysis such as modelling or predicting future
values.

3.3 Functional Auto-Regressive models

The in section 3.2 introduced functional approach can be exploited to expand an
AR model, making it a Functional Auto-Regressive model (FAR). As mentioned
in Kokoszka and Reimherr (2017) a FAR(1) model for the nth subset can be
written as:
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Yn = Φ(Yn−1) + εn (3.3.1)

This is the functional equivalent to equation 3.1.1 with Yn being the approxi-
mated function (as mentioned in 3.2) which represents the values of the input
and output function. εn is a sequence of iid mean zero elements of L2. The
integral operator Φ transforms a function into another function and resembles
the modelling parameter φi from equation 3.1.1. It is defined as follows:

Φ(Yn(t)) =

∫
Yn(s)ϕ(t, s) ds (3.3.2)

Equation 3.3.1 can thus be rewritten as:

Yn(t) =

∫
Yn−1(s)ϕ(t, s) ds+ εn(t)

For the sake of a more simple notation this representation of a FAR model as-
sumes the mean function to be zero. Otherwise the mean function µ has to be
deducted from the observation. It can be estimated by µ̂ = ȲN = N−1

∑N
n=1 Yn.

In order to account for external forcings that are not contained in Yn the FAR
model can be extended by one or more additional external variables Xn to
become a FARX model. The functional equivalent to equation 3.1.2 is denoted
as follows:

Yn = Φ(Yn−1) +B(Xn) + εn (3.3.3)

The added term Xn is another functional approximation this time representing
the external variable on day n. As before Φ, B is another integral operator.
The full representation of the FARX model can also be written as:

Yn(t) =

∫
Yn−1(s)ϕ(t, s) ds+

∫
Xn(k)β(t, k) dk + εn(t)

The autoregressive operator Φ and its regressive equivalent B are in practice
substituted by the following additive approximation using the principal compo-
nent decomposition described in equation 3.2.2 (Ivanescu et al., 2015):

Φ(Yn−1) =
∫
Yn−1(s)ϕ(t, s) ds

≈
∑R

r=1 ξn−1,r
∫
υr(s)ϕ(s, t)ds

≈
∑R

r=1 ξn−1,rϕ̃r(t)

(3.3.4)

The function ϕ̃r =
∫
υr(s)ϕ(s, t)ds resembles the EFPCs used to estimate Yn−1

and is fitted to the curve by using the coefficient ξn−1,r (cf. 3.2.2). This has to be
done for all EFPCs for every input curve (both lagged curves for autoregression
as well as external predictor curves).

3.4 Combined model approach

Based on the above described theory a methodology was designed to construct
a model for predicting water temperatures in lagoons using the software R.
ARIMAX models use discrete data as model input and aim to develop a model
which will have discrete data as output. Since the data used for this work
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has a high resolution, a large number of prediction steps is required to gain
any relevant knowledge. Assuming a sampling interval of thirty minutes, 48
prediction steps into the future are necessary to predict as little as one day
ahead. A peculiarity of ARIMAX-models is that on the long run they go towards
the mean-value of their underlying data. Therefore the predictions gained from
this method may be very accurate for the first few hours, but quickly afterwards
loose their predictive power.
FARX models, on the other hand, are well suited to display daily temperature
fluctuations, but the models may not be able to capture abrupt changes of the
daily mean temperature.
To avoid the downsides of both modelling approaches mentioned above and
instead make use of their strengths, a combination of them was developed. An
ARIMAX model was used to forecast the daily mean temperature while a FARX
model of the de-meaned time series was used to predict half-hourly fluctuations
around the daily mean temperature. In the following this procedure is described
in two independent steps.

3.4.1 Modelling mean water temperature

As previously described in section 2, ARIMAX models and their partial versions
(most commonly AR, MA or ARMA models) are widely used in many scientific
disciplines to solve a multitude of problems (e.g. for food production (Bratina
and Faganel, 2008), tourism (Akal, 2004) or glaciology (Liu et al., 2015)). In
the following subsection an autoregressive, integrated moving average model
(ARIMAX(p,d,q)) is introduced, which is suitable to model and forecast the
development of the daily mean water temperature while also incorporating the
air temperature and salinity as external predictors.

An arithmetic mean of the respective data sets, computed for each day n, trans-
forms the observed water temperature into a new time series of length n featuring
one mean water temperature wn value per day:

wn = Wn =
1

48

48∑
t=1

Wn(t) (3.4.1)

This is also done for the time series for the air temperature (An) and salinity
(Sn) within the to be examined time frame. For simplicities sake the daily mean
values will be from now on referred to as sn, an and wn (salinity, air and water
temperature).

ARMA models assume stationarity which might be violated for specific time
windows. If that is the case the data has to be once differentiated in order
to account for a changing mean (therefore d = 1). Instead of processing the
absolute values, only the difference between neighbouring entries is considered,
so the change in temperature or salinity between one day and the next is now
regarded. This operation can be written as: w′n = wn−wn−1) with wn being the
original time series (daily mean water temperature) and w′n being the change
of the temperature. As a side effect the time series length is reduced by one.
For further information on stationarity and differentiating see Hyndman and
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Athanasopoulos (2018).

The following equation describes the used ARIMAX model, which is once dif-
ferentiated and includes external variables:

w′n =

p∑
i=1

φiw
′
n−i + β1an + β2sn + εn +

q∑
j=1

ηεn−j (3.4.2)

Here we use a ARIMAX(p,q) model with two external predictors: the current
air temperature (an) and the current salinity (sn) (compare section 3.1). Please
note that it is assumed that the data is not seasonal since the time windows are
too small to display annual fluctuations. Other periodicities such as the tidal
cycle are considered to have a small impact and can be neglected.

The R functions auto.arima and arima from the packages forecast (see Hyn-
dman and Khandakar (2008) and Hyndman et al. (2020)) and stats (R Core
Team, 2020), are used to compute a generic ARIMAX model. auto.arima de-
termines the order (thus amount of parameters) of the best fitting ARIMAX
model, selecting the one with the lowest BIC (see section 3.6: Model selec-
tion) and returning the values for p and q. Stationarity is ensured by using the
Augmented Dickey-Fuller test to check for a unit root. This statistical test de-
termines whether a data set is stationary or further differentiating is necessary
(Said and Dickey, 1984).
The thus determined amount of parameters to be included into the ARIMAX
model, described in equation 3.4.2, are directly passed on to the arima function
which then estimates the parameters based on the given training data sets. The
function uses maximum likelihood for determining the best fitting parameters.
The overall mean is by default subtracted for the estimation and again added
later on to the model output.

Now the modelled water temperature can be compared to the observed values
(or strictly speaking to the mean values computed from the observations). A vi-
sual analysis of the residuals (differences between the observed values and their
respective modelled equivalents) serves to verify the homoschedasticity of the
errors. It is given when the variance of the residuals is constant. Heteroschedas-
ticity on the other hand would indicate the presence of systematic errors (e.g.
unaccounted seasonality) which can be visible in the residuals.
A boxplot of the residuals shows their mean, quantiles and outliers. Should the
mean be significantly different from zero or the amount of outliers be high, the
model should be double-checked as these can also be indicators for systematic
errors. Figure 3.4 shows an exemplary plot of residuals and boxplot.

Should the computed model be free from systematic errors then the goodness of
fit can be determined using the indices described in section 3.5. These measures
can be used to describe their absolute fitting quality (e.g. R2 or RMSE) as well
as compare different model fits (e.g. AIC or BIC, cf. section 3.6).

The above mentioned procedure serves to determine a model and estimate its
parameters in order to best fit the observation within the data set used for train-
ing. The developed model is then used to predict a certain amount of future
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Figure 3.4: Plot of residuals and corresponding boxplot of an ARIMAX fit to water
temperature data derived from the Marinetta lagoon in July 2015 (cf. chapter 4
below). Neither does the plot of residuals show any apparent pattern, nor is the
distribution of the quantiles and mean far from the expected value (0), which would
both indicate a systematic error. Therefore it can be assumed, that the model fit is
suitable.

values which can be compared to the same amount of actual observations in
the future (here ”future” refers to the time after the last observation within the
training data set). For this purpose the test data set is used.

The prediction is compared to the observation, as described above for the model
fit, using a residual analysis and calculating goodness of fit parameters. To quan-
tify the model performance the sum of squared residuals (SSR), the coefficient
of determination (R2), the root mean squared error as well as its normalised
variant ((N)RMSE) are computed. Should the predictions be sufficiently accu-
rate then the model can be passed on to be used in combination with the FARX
models described below.

3.4.2 Modelling daily water temperature fluctuations

The second model that will be used here is a FARX model as introduced in
section 3.3. To avoid the problems described at the beginning of this section,
the modelling input will be the observed data minus the mean values computed
and forecast in section 3.4.1 above. This procedure is carried out for the water
temperature time series and optionally can also be applied to the salinity and
air temperature time series. As already done previously the fitting process for
the model will be carried out solely using the training data set and then verified
with the test data set.

The R package refund (Goldsmith et al., 2020) provides several functions for
creating, handling and analysing functional data, especially for computing re-
gression for functional data. A penalized flexible function regression can be
implemented using the function pffr. As input the model formula for which
the parameters should be estimated is needed. Functional regression terms (in
this case all three regression inputs) need to be provided as function-on-function
regression term with an integral operator (see section 3.3). This can be done us-
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ing the function ffpc which regards the time series of discrete observations over
n days as a set of n observed curves. The curves are then decomposed into their
functional principal components using fpca.sc, which returns the curves as a
sum of such components along with the respective estimates. Corresponding to
equation 3.2.2 this can be approximated by:

Wn(t) ≈
R∑

r=1

ξnrυr(t) (3.4.3)

Here the water temperature Wn is used as an example, the same principle applies
to An and Sn. υr are the basis functions, ξ the corresponding coefficients and
R the amount of principal components. With the integral operator (here Φ)
introduced in equation 3.3.2 this becomes:

Φ(Wn(t)) =

∫
Wn(s) ϕ(t, s) ds =

R∑
r=1

ξnr

∫
υr(s)ϕ(s, t)ds =

R∑
r=1

ξnrϕ̃r(t)

(3.4.4)
The full FARX model which is fitted can be written as:

Wn(t) =

∫
Wn−1(s) ϕ(t, s) ds+

∫
An(s) β(t, s) ds+

∫
Sn−1(s) γ(t, s) ds+ εn(t)

(3.4.5)
This includes the term εn(t), which is a white noise error like specified in sec-
tion 3.1. In practice this equation is approximated by the function pffr as an
additive model (see equation 3.3.4):

Wn(t) ≈
Rw∑
r=1

ξn−1,rϕ̃r(t) +

Ra∑
l=1

ξn−1,lβ̃l(t) +

Rs∑
m=1

ξn−1,mγ̃m(t) + ε̃n(t) (3.4.6)

ε̃n(t) again denotes a white noise error. The estimation method is by default set
to use REML (restricted maximum likelihood) which is a bias-corrected version
of the maximum likelihood estimation (Dodge and Commenges, 2006), assum-
ing that ε̃n(t) is a Gaussian random variable.

After obtaining the best fitting model for the observed training set, the residuals
are computed and analysed as before (check of homoschedasticity and boxplots)
and the goodness of fit of the model calculated.

Since the model uses lagged values from the previous day the predict function
is only able to forecast one day into the future (Hyndman et al., 2020; Hyndman
and Khandakar, 2008).
Also in order to use salinity as predictor, a model for forecasting the same is
needed. For convenience this study simply uses a null-model which assumes
that the salinity pattern of the last observed day persists and is re-used for the
subsequent days. Obviously this assumptions reduces the usefulness of this pre-
dictor compared to a more advanced model.
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Combining the models: The forecasts from both models for the test period
were then joined, assuming and additive structure. While the ARIMAX model
provides the daily mean water temperature, the inner-daily water temperature
fluctuations are given by the FARX prediction. The resulting joined forecast can
be compared to the actual observations within that period, a residual analysis
performed and the goodness of fit determined by computing various parameters
(as described above).

3.5 Indicators for goodness of fit

To be able to compare several models with each other and quantify their mod-
elling performance it is important to use suitable indicators for the goodness
of fit. Some existing methods need to be redefined in order to be applicable
to functional data, while others can be used with little or no modification. In
practice, the continuous functional objects, which are returned by FARX mod-
els, have to be discretised again, before they can be compared to the (discrete)
observations.

Coefficient of determination Commonly denoted asR2, this coefficient is widely
used in regression analysis. It indicates how much of the variation of a variable
can be explained by e.g. a regression model. When applied to compare an ob-
served time series y with T observations to a model ŷ the following formula is
used:

R2 = 1−
∑T

i=1 ε̂
2
i∑T

i=1(yi − ȳ)2
= 1−

∑T
i=1(yi − ŷi)2∑T
i=1(yi − ȳ)2

Here ε̂ denotes the residuals and ȳ the mean of y. A R2 value of 1 indicates a
perfect fitting model in which all residuals are zero, while a value of 0 indicates
the models performance to be equal to simply taking the mean ȳ. Since the fits
to the individual values can theoretically be worse than the mean it is possible
to get negative values for R2.

A downside of R2 is that it always improves when adding more explanatory
variables. To account for that an adjusted version (R2

adj) has been developed,
which includes a penalty term for the number of regressors (ω) a model uses. In
the functional context this means the sum of all principal components, which
estimate the individual curves included for calculating the FARX model (here a
certain amount of EFPCs for the lagged water temperature, the air temperature
and the salinity, respectively).

R2
adj = 1− (1−R2)

T − 1

T − ω − 1
= 1−

∑T
i=1(yi − ŷi)2∑T
i=1(yi − ȳ)2

· T − 1

T − ω − 1

When applied to functional data like described in section 3.2 several minor
changes have to be made:
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ȳ → Ȳ with Ȳ =

∑N
n=1 Ȳn
N

=

∑N
n=1

∑T
t=1 Yn(t)

NT

yi → Yn(t)

ŷi → Ŷn(t)

}
n = {1, · · · , N}, t = {1, · · · , T} (3.5.1)

The mean Ȳ needs to be computed over all observations within all subsets.
This data splitting into subsets has to be likewise regarded for computing the
residuals and the penalty term. The functional equivalent of the equation for
R2

adj therefore is:

R2
adj = 1−

∑N
n=1

∑T
t=1 (Yn(t)− Ŷn(t))2∑N

n=1

∑T
t=1 (Yn(t)− Ȳ )2

· (N · T )− 1

(N · T )− ω − 1
(3.5.2)

A continuous version does not have to be used since the observation is available
as discrete data and the model output can be discretised.

Root Mean Squared Error Abbreviated as RMSE, this indicator is a measure
of accuracy of a model or prediction. Like the R2 value it uses the sum of
squared residuals (SSR =

∑T
t=1(yt − ŷt)2) between the observed (yt) and the

modelled data (ŷt) to compute how well the model fits the observation. The
closer the RMSE is to zero the better the fit. It is defined as:

RMSE =

√∑T
t=1(yt − ŷt)2

T

To make a comparison between different data sets with possibly different value
ranges possible a normalised version of the RMSE, the NRMSE, can be used.
Therefore a division by the mean (ȳ) has to be undertaken:

NRMSE = RMSE · ȳ−1 =

√∑T
t=1(yt − ŷt)2

T
· ȳ−1

When applying this indicator to functional data changes similar to those for
the R2 value have to be applied. Incorporating the substitutions from equation
3.5.1 above the formula can be rewritten as:

NRMSE∗ =

√∑N
n=1

∑T
t=1(Yn(t)− Ŷn(t))2

NT
· Ȳ −1 (3.5.3)

Additional coefficients The previous parameters both used the squared residu-
als for comparison. But for certain applications it might be advisable to employ
different metrics.
The L∞-distance indicates the maximum distance of the model from the obser-
vations:

L∞ = max
t
|yt − ŷt| (3.5.4)
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For the functional approach the maximum distance between the observed and
the modelled function needs to be computed:

L∗∞ = max
n,t

∣∣∣Yn(t)− Ŷn(t)
∣∣∣ (3.5.5)

The maximum is computed within each subset and then the maximum amongst
them.

The L1-distance indicates the total distance between model and observation:

L1 =

∫
| y(t)− ŷ(t) | dt (3.5.6)

Since the functional approach also uses discrete values for observations and in
practice models discrete points, the following approximation can be applied:

L∗1 =

∫ ∣∣∣ Yn(t)− Ŷn(t)
∣∣∣ dt ≈ (N,T )∑

(n,t=1)

∣∣∣Yn(t)− Ŷn(t)
∣∣∣ (3.5.7)

Besides indicators that consider the whole curve it is also informative to solely
regard prominent points such as the minima and maxima. As can be seen for
the application in section 4 the accuracy in predicting the extreme values of each
subset is important to identify notable events. Therefore it is helpful to compute
the difference in maxima: diffmax,n = max

t
|Yn(t)| −max

t
|Ŷn(t)|. Respectively

the same applies for minima.

3.6 Model selection criteria

To determine which of several models is most suitable for describing a data set,
a model selection has to be performed. The models need to be compared in
regard to their performance in describing the data but simultaneously should
not be too complicated in order to avoid overfitting. If too many variables are
being used the model matches too strongly the signature of the training data set
and cannot generalise sufficiently to predict the test set. The simplest model
should be preferred if the performance of two or more models is similar (see
Occam’s razor (Myung and Pitt, 1997)).

An information criterion compares the quality of different models in regard to
the data and thereby allows to choose the best-fitting. The two most com-
monly used ones are the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC). The AIC consists of two terms:

AIC = 2ω + T · ln(SSR/T ) (3.6.1)

The penalty term 2ω (ω being the number of estimated parameters of the model)
gets bigger if the model is more complex, penalising extensive use of parameters.
The second term T · ln(SSR/T ) (T being the total amount of data points used
and SSR being the sum of squared residuals as describe above) becomes smaller
the better the model explains the data (Akaike, 1974).
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The BIC on the other hand has a slightly changed formula, changing the coef-
ficient in front of ω:

BIC = ln(T )ω + T · ln(SSR/T ) (3.6.2)

The penalty term ln(T )ω penalises the model stronger if it was trained on more
data points (Wit et al., 2012). This criterion tends to be preferable when the
amount of data points used to train models differs in magnitude. For both cri-
teria the model with the lowest score should be preferred.

These criteria can be used for discrete as well as functional data models. For the
latter all (discrete) data points should be used for T . The value for ω consists
of the EFPCs used for estimating the function and the modelling parameters of
the FARX model.
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4 Application

The approach outlined in the previous chapter was applied to the modelling
of the daily pattern of water temperature in two Northern Adriatic lagoons,
namely the Lagoon of Venice and the Marinetta lagoon. In this chapter, the
available data set and the implementation of the methodology are described.

4.1 Lagoons in the Northern Adriatic

Both in terms of productivity and population the Veneto region in northeastern
Italy can be regarded as one of the country’s most important parts. With an
area of approximately 550 km2, the Lagoon of Venice is the biggest in Italy. It
is located on the western shore of the Northern Adriatic sea and prominently
home of the city of Venice (Canu et al., 2003). This makes it unique, since
the city is both a cultural as well as an economic hotspot, inhabited by 55,000
people just on the main island and additionally hosting 25 million tourists every
year. This plethora of human activity puts large stress on the local ecosystem.
In addition, heavy storm surges, paired with the continuous subsidence of the
sedimental underground, pose a constant threat for the survival of the city and
its cultural heritage (Carbognin et al., 1995).

The lagoon’s ecosystem is subject to off- and onshore influences, having three
artificially stabilised inlets to the open ocean at Lido, Malamocco and Chioggia.
Since major rivers have been diverted centuries ago, freshwater input comes
mostly from little streams, surface run-off and precipitation. Remarkable is its
shallow average depth of approximately 1 meter with some deep channels rang-
ing up to 30 meters in depth. Tidal changes in the sea level cause frequent
flooding and drying in approximately 15% of the area (Umgiesser et al., 2004).

With more then 600 km length the Po river is Italy’s longest stream. In a wa-
tershed basin covering most of Northern Italy precipitation is directed towards
the Adriatic where it forms the Po Delta. Besides several side arms of the Po
river the delta also contains six lagoons, with various degrees of connectivity to
the Adriatic Sea. Since 2015 the ”Parco regionale veneto del Delta del Po” is a
recognised UNESCO world heritage nature reserve.

4.2 Description of measuring stations and data

The model was developed using publicly available data sets on water quality
and weather conditions within the Veneto region. Since it is in the development
stage and not yet designed to be applied to real-time data, model training and
testing was carried out with historic data (up to 20 years old).

Water data Until 2018 the Venice Water Authority (Salvaguardia di Venezia
del Magistrato alle Acque) maintained the SAMANET, a network of measuring
stations within the Lagoon of Venice (Gunatilaka et al. (2009)). It consisted
of ten different stations distributed in various locations within the lagoon (see
figure 4.1a).
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Whilst not all stations were equipped with measuring devices for every pa-
rameter, the best equipped stations measured pressure (m), water temperature
(◦C), salinity (PSU), dissolved oxygen concentration (%), chlorophyll-a con-
centration (g/l) and turbidity (FTU). Data was gathered every 30 minutes
from January 2008 until December 2018. The number of stations and sampling
frequency changed over the years: at present 5 measuring stations (1, 2, 7, 8
and 9) remain, sampling only once per hour. The Interregional administration
for public works (Provveditorato Interregionale per le Opere Pubbliche per il
Veneto, Trentino Alto Adige e Friuli Venezia Giulia) has assumed operation of
the reduced network.
Data was provided in the framework of the research project ”Venezia 2021”,
which is coordinated by the CoRiLa (Consorzio per il coordinamento delle
Ricerche inerenti al sistema Lagunare di Venezia). The data set covers the
decade 2008-2018 in which the ten sampling stations marked in figure 4.1a were
collecting data every 30 minutes. The here described analysis was carried out
for data between 2008 and 2018.

A similar network of measuring stations is also located within the lagoons of
the Po delta, providing the same kind of data for seven different stations in six
lagoons: Barbamarco, Basson, Canarin, Marinetta, Scardovari (one seawards
and one landwards) and Vallona. The distribution of the measuring stations
can be seen in figure 4.1b. The network is maintained by the Environmental
Agency of Veneto (ARPAV - Agenzia Regionale per la Prevenzione e Protezione
Ambientale del Veneto).

(a) SAMANET in the Lagoon of Venice. (b) ARPAV network in the Po delta.

Figure 4.1: Maps of the networks of measuring stations for water data.

Weather data Besides the network of water measuring stations deployed in the
lagoons of the Po delta, ARPAV also maintains several weather data stations
in the Veneto region (see figure 4.2). From these stations two were picked for
their geographical proximity to the lagoons.The station in Cavallino Treporti
(160) is close to the Lagoon of Venice and at the same time on the seaside and

21



therefore possibly suitable to detect influences determined by offshore weather
conditions. The station in Porto Tolle (101) is close to the Marinetta lagoon in
the Po delta, another important location for mussel farming and therefore also
of interest.

The datasets feature values for the air temperature (◦C) at the respective sta-
tion from 1 January 2000 until 20 July 2020, continuously sampled every 15
minutes. Since the sampling frequencies were different for the two types of data
sets, the weather data was adjusted for better comparability. A centred average
was used, substituting the measured values with the mean of three consecutive
values (centred around a half-hourly time value).

Figure 4.2: Map of the ARPA network of weather stations. The stations 101 and
160 were used for modelling.

4.3 Data quality and preprocessing

The water data features a strong data inconsistency, especially regarding data
discontinuities (most likely due to measuring device failure or maintenance).
Data gaps ranging from one sampling interval up to several weeks are frequent
in all sets and make the data difficult to process since some of the applied R
functions used for this model require the datasets to be without missing values.
In order to sidestep this problem, intervals with large amounts of missing values
were avoided for the model creation, or values approximated.

Since water flow rates within lagoons are usually low, it can be argued that heat
convection is also low. Furthermore, based on the fact that increasing the tem-
perature of a fixed amount of water requires a lot more energy than for air (due
to the high specific heat capacity of water (see Tipler, 1999)), strong and quick
peaks in the air temperature are not expected to show in the water temperature
but will be spread out more evenly. Consequently the water temperature fluctu-
ations for few missing sampling intervals can be reasonably approximated using
linear interpolation. Nevertheless when applied to larger intervals this can cause
strong inaccuracies, especially when modelling the inner-daily fluctuations.

The last step in the data preprocessing is splitting the data sets into two subsets
each. The first set (which should at least account for approximately 80% of the
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data) is used for training the model, that means estimating the parameters and
determining their significance. The second set (test set) is used as reference
data to which the model’s predictions are compared.

4.4 Functional data modelling

The methodology outlined in chapter 3 is described in detail in this section.
Results are presented in the details in the following chapter (chapter 5).

4.4.1 Modelling strategy

This modelling approach aims to forecast one day of water temperature devel-
opment ahead. In order to be able to do so it requires 10 consecutive days of
input data for all three input variables. The external variables, however, need
to be provided one day ahead (cf. table 4.1).

Table 4.1: Required model inputs to obtain a one day forecast of the water tem-
perature (for day 11): 10 consecutive days for salinity, air and water temperature.
External variables need to be provided one day ahead. The values for day 11 can
originate from a model.

Variable Sampling frequency Days for which data is required
Air temperature

48 values/day
2-11

Salinity 2-11
Water temperature 1-10

The observed water temperature time series is modelled in two stages: 1) mod-
elling the daily mean values using an ARIMAX model and 2) modelling the
inner-daily developments by applying a FARX model. Since an additive struc-
ture is assumed, the mean values modelled in stage 1) can be deducted from
the observed time series to obtain a trend-reduced time series displaying the
difference from the daily mean water temperature. This is used for stage 2).

In both modelling stages several different model variants are fitted to the train-
ing data set and their goodness of fit calculated. The best-scoring variant (in
terms of BIC, cf. 3.6) is then used for forecasting.

For both partial models a one day forecast is estimated and subsequently summed
up to for the overall estimation of the detailed water temperature development
for the following day. In every modelling step the intermediate results are ex-
amined for systematic errors by analysing the corresponding plot of residuals
and boxplot.

4.4.2 ARIMAX model for predicting mean

The first modelling step consists of fitting an ARIMAX model to the daily mean
water temperature in order to account for the daily trend. For this purpose the
arithmetic mean was computed for all observations in one day respectively and
the resulting time series used for modelling. The same procedure was applied
for the observed air temperature and salinity.
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Figure 4.3 shows an exemplary plot of the input water temperature data and
the resulting mean water temperature time series.

(a) Observed water temperature time
series

(b) Daily mean water temperature time
series

Figure 4.3: Example of a water temperature time series used as model input. The
grey background indicates where the data set is split into training and test set for
cross-validation. Data was obtained from the Marinetta Lagoon in November 2018.

Six different types of ARIMAX models were applied and their fitting perfor-
mances compared: ARMA, ARMAX(a), ARMAX(a,s), ARIMA, ARIMAX(a)
and ARIMAX(a,s). The ’I’ indicates a differentiation of the input data prior to
modelling and a subsequent integration of the results (cf. chapter 3.1). Here
only zero- and first-order differentiation (d = 0, 1) were regarded. The ’X’ stand
for the use of one or two external predictors, with the ”(a)” indicating the use of
the corresponding air temperature as external predictor while ”(a,s)” indicates
that both air temperature and salinity were added as external predictors.
The model orders (p and q) of each potential model are determined by the func-
tion auto.arima which uses the BIC criterion (see equation 3.6.2) to evaluate
the quality of a model fit. Once the optimal order is known, it is used to fit
the model to the respective training data set (10 consecutive days). The models
are then evaluated based on their fitting performance and simplicity using the
RMSE and BIC values for each model. The former quantifies the absolute good-
ness of fit in scale to the observed unit, the latter enables comparison between
models with different amount of variables. The model with the lowest BIC score
is selected and used for predicting the next day’s mean temperature.
An analysis of the residuals between observation and fitted values serves to check
whether there are patterns visible in the modelling errors which can indicate
systematic errors.
When no such errors are evident the model can be used for forecasting. Figure
4.4 shows an exemplary ARIMAX model (fit and prediction) to the above shown
data set.
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Figure 4.4: ARIMAX fit (orange) and prediction (aquamarine) to the observed mean
water temperature (blue) for 10+1 days. The grey background indicates the test set
for which a prediction took place.

4.4.3 FARX model for predicting daily water temperature pattern

As a second step, a FARX model is applied to predict the inner-daily fluctuations
around the mean temperature. The observed values minus the fitted mean
temperatures is taken as new modelling input.
Analogue to the ARIMAX model before, several different types of FARX mod-
els were tested and evaluated in order to determine which performs the best.
Three model structure were tested, namely FAR, FARX(a) (with air temper-
ature as predictor) and FARX(a,s) (with both air temperature and salinity as
predictors). The data for the two external input variables can be provided in two
variants: 1) unprocessed (”real”) or 2) trend-reduced (”detrended”) by deducting
the respective daily mean values. This option is also tested.
The designated best model is then applied to the detrended training set by us-
ing the function pffr which fits the one day lagged water temperature and the
current air temperature (and optionally also the salinity) as functional elements
to the data. In order to use the time series as functional elements they have
to be approximated as a sum of principal components using ffpc and fpca.sc

(see Chapter 3.4.2). The threshold of variability which should be explained by
the estimated functional principal components is set to 99% (see also Chapter
3.2). Each principal component of each input variable is estimated using the
restricted maximum likelihood and the resulting fitted model returned.

After the model parameters are estimated, the respective models are applied for
forecasting the inner-daily fluctuations for the next day. Again the air tempera-
ture is assumed to be known while for the salinity a null-model is applied which
assumes that the next day is identical to the previous day. This approximation
has to be made since its not realistic to assume a salinity model with such a
high resolution will be available for application under real conditions. Figure 4.5
shows an exemplary FARX model fit and prediction to the above shown input
data.
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Figure 4.5: FARX fit (orange) and prediction (aquamarine) to the demeaned time
series of the observed water temperature (blue). The grey background indicates the
test set for which a prediction took place.

4.4.4 Combined temperature model

So far two models have been implemented: an ARIMAX model suitable for mod-
elling and forecasting the daily mean water temperature and a FARX model
suitable for forecasting the inner-daily temperature fluctuations. Combined,
these two predictions add up to one model which is able to predict the water
temperature with very high resolution (30 min), as was the desired outcome.
Figure 4.6 shows an example of the application of the full model to the above
shown water temperature time series.

Figure 4.6: The observed water temperature (blue) is modelled and predicted by the
combined model (magenta). The grey background indicates the test set for which a
prediction took place.

4.5 Selection of time periods and measurement stations

Naturally summer and winter are of special interest for aquacultural modelling
since their extreme temperatures and weather events can often cause conditions
that directly impair the stock health or anticipated yield (De Silva and Soto,
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2009).
Intense and prolonged heat waves in summer can cause warm water tempera-
tures and high salinity in lagoons, whereas periods of extreme cold or precipita-
tion can shift the water conditions towards the other end of the spectrum with
cold water temperatures and low salinity (the latter is connected to reduced
evaporation coupled with increased local precipitation and river discharge com-
ing from mountainous regions).

The heat wave which occurred in June and July 2015 in Europe (Russo et al.,
2015) serves as an example period in which temperatures were critically high.
It lasted from the end of June almost until the end of July. The period from 10
until 19 July is chosen for training the models. It exhibits constantly high tem-
peratures often exceeding 30◦C (both air and water temperature). At the same
time the data quality is good with very few missing values that can be interpo-
lated without causing significant modelling errors. These modelling periods will
furthermore be referred to as ’V summer’ and ’M summer’.
The storm Adrian, which made landfall in Italy in the end of October 2018,
brought a series of heavy and sustained precipitation events, storm surges and
strong winds, causing severe damage in Northern Italy and neighbouring states
(see for example BBC News (2018)). The period around these events serves as
an example for critical autumn/winter conditions in the examined water bodies.
For reasons not further known the data sets from the Marinetta lagoon are of
exceptionally poor quality during that time with large periods of missing data.
Thus limited in choice the time from 13 until 22 November is used as training
set. These periods are from now on referred to as ’V autumn’ and ’M autumn’.
To also account for spring weather conditions the period from 1 to 10 April
2017 was randomly selected as the third training period. Following the previous
pattern these time frames are called ’V spring’ and ’M spring’.

For the Lagoon of Venice station 7 of the SAMANET network (see figure 4.1a)
is used to provide data on water temperature and salinity. It is the northern-
most measuring station located just northwest of the Burano island. Its relative
isolation from shipping routes, deep channels and urban agglomerations (such
as the city of Venice and the port of Marghera) make it a relatively secluded
area with little marinal influence which is potentially suitable for aquaculture.
Data of the air temperature is taken from the observations made by station 160
of the ARPA network (see figure 4.2) as it is closest to the lagoon and the water
measuring station (with the exception of station 252 in the heart of the city of
Venice).

Within the Marinetta Lagoon only one measuring station for water data is de-
ployed (see figure 4.1b). For air temperature data the station 101 of the ARPA
network (see figure 4.2) is used. Station 112 seems equally suitable (proximity
to coast and water measuring station).

Figures 4.7, 4.8 and 4.9 show the observed data input and the resulting mean
time series for the three periods in the lagoons of Venice and Marinetta respec-
tively.
For the analysis of the individual cases the same R script is used, showing the
high flexibility of this method. In order to change the location and time period,
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only very few settings have to be adjusted.

(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 4.7: Observation (top) and daily mean values (bottom) for the both lagoons
in spring. Red indicates the air temperature, blue the water temperature and green
the salinity.

(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 4.8: Observation (top) and daily mean values (bottom) for both lagoons in
summer. Red indicates the air temperature, blue the water temperature and green
the salinity.
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(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 4.9: Observation (top) and daily mean values (bottom) for both lagoons in
autumn. Red indicates the air temperature, blue the water temperature and green
the salinity.
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5 Results

In chapter 4.5 two lagoons and three time periods of interest were identified. To
each of these six data sets the above described modelling procedure was applied.
The findings are presented in this chapter.

5.1 ARIMAX model

To ensure that the optimal ARIMAX model is applied, six variants were applied
to fit the training set of each data set. The fitting performance was evaluated
based on the respective BIC score. Table 5.1 shows the BIC scores for all po-
tential ARIMAX models. The cells which are highlighted green are the models
which are being used for forecasting. Please note the two exceptions for M spring
and M autumn in which the model with the lowest BIC is not used but a differ-
ent model instead. In these two cases the predictive performance of the models
is so weak, that further modelling based on these results would not be viable.
For the here intended proof of concept this inconvenience is condoned but for
a practical implementation the use of a ARIMAX model with better predictive
power would be advisable.

Table 5.1: BIC scores of the different models for all examined time periods (rounded
to two decimal digits). The green cells indicate the models which were used for
forecasting. The red cells indicate models which score better for fitting but perform
too weak in the prediction to be applied.

V spring V summer V autumn M spring M summer M autumn

ARMA -4.29 -9.74 4.29 -19.68 -8.79 -1.94
ARMAX(a) -8.88 -15.55 -0.03 -22.01 -11.83 -1.86
ARMAX(a,s) -11.60 -14.49 -5.34 -27.26 -29.07 -3.58
ARIMA -2.43 -3.26 4.95 -15.77 -9.56 0.16
ARIMAX(a) -9.45 -8.03 0.73 -15.79 -11.40 -1.98
ARIMAX(a,s) -9.76 -8.14 -1.24 -31.73 -16.71 -12.09

After the optimal ARIMAX model was determined it can be applied to forecast
the mean water temperature for the following days. Figures 5.1, 5.2 and 5.3
below show the model fit to the training data and the forecasts for the next four
days. For the joined model only the first day forecast is of concern, therefore
the sudden drop in the water temperature observed in summer in the Marinetta
lagoon (cf. 5.2b) is irrelevant. It results from a measurement error.
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(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.1: Forecast by the ARIMAX models for the Venice lagoon (left) and
Marinetta lagoon (right) in spring. Blue indicates the water temperature, orange
the fit to the training set and light blue the forecast for the next four days.

(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.2: Forecast by the ARIMAX models for the Venice lagoon (left) and
Marinetta lagoon (right) in summer. Blue indicates the water temperature, orange
the fit to the training set and light blue the forecast for the next four days.

(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.3: Forecast by the ARIMAX models for the Venice lagoon (left) and
Marinetta lagoon (right) in autumn. Blue indicates the water temperature, orange
the fit to the training set and light blue the forecast for the next four days.
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5.2 FARX model

In the second modelling step several different FARX models were fitted to the
respective demeaned water temperature time series. To every set a FAR, a
FARX(a) and a FARX(a,s) model was applied. Additionally the option to de-
trend the input time series of the two external variables (cf. chapter 4.4.3) was
examined. Thus a total of twelve variants was applied to every individual case.
Their fitting performance was evaluated based on the corresponding BIC scores.
Table 5.2 shows the BIC scores for all the possible model combinations. Again
the best scoring models are highlighted in green.

Table 5.2: BIC scores of the different FARX models for all examined time periods
(rounded to two decimal digits). The green cells indicate the models which were
used for forecasting.

V spring V summer V autumn M spring M summer M autumn

FAR -612.43 -820.19 -457.70 -864.31 -1021.18 -643.68
FARX(a) -852.66 -934.31 -863.38 -1162.81 -1120.47 -1274.40

real air
real salinity

FARX(a,s) -818.42 -900.27 -825.04 -1125.85 -1087.94 -1289.37

FAR -612.43 -820.19 -457.70 -864.31 -1021.18 -643.68
FARX(a) -852.66 -934.31 -863.38 -1162.81 -1120.47 -1274.40

real air
detrended
salinity FARX(a,s) -814.80 -899.60 -829.47 -1132.01 -1095.67 -1294.40

FAR -612.43 -820.19 -457.70 -864.31 -1021.18 -643.68
FARX(a) -845.29 -934.08 -864.71 -1163.23 -1120.35 -1275.24

detrended air
real salinity

FARX(a,s) -820.98 -903.13 -838.97 -1127.29 -1099.17 -1301.18

FAR -612.43 -820.19 -457.70 -864.31 -1021.18 -643.68
FARX(a) -658.94 -833.84 -628.36 -1167.12 -1109.98 -1217.91

detrended air
detrended
salinity FARX(a,s) -827.29 -926.88 -815.79 -1143.89 -1101.03 -1301.92

The best scoring FARX model variant was chosen and a visual analysis of the
plot of residuals and the boxplot carried out to ensure that there are no system-
atic errors. Figures 5.4, 5.5 and 5.6 show the respective fitted FARX model to
the detrended data, the corresponding residual analysis as well as the (partial)
correlograms of the residuals. In all cases the residual analysis suggests that the
residuals of the model fits are distributed evenly around zero.
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(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.4: Top: Observation (blue) and FARX fit (orange) of the demeaned data
for both lagoons in spring. Blue indicates the observed data while orange depicts the
estimated model fit. Middle: corresponding residual analysis with plot of residuals
and boxplot to check for systematic errors. Bottom: Autocorrelation function and
partial autocorrelation function of the residuals.
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(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.5: Top: Observation (blue) and FARX fit (orange) of the demeaned data for
both lagoons in summer. Blue indicates the observed data while orange depicts the
estimated model fit. Middle: corresponding residual analysis with plot of residuals
and boxplot to check for systematic errors. Bottom: Autocorrelation function and
partial autocorrelation function of the residuals.

34



(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.6: Top: Observation (blue) and FARX fit (orange) of the demeaned data
for both lagoons autumn. Blue indicates the observed data while orange depicts the
estimated model fit. Middle: corresponding residual analysis with plot of residuals
and boxplot to check for systematic errors. Bottom: Autocorrelation function and
partial autocorrelation function of the residuals.
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Afterwards the FARX models were applied for forecasting one day into the
future. Figure 5.7, 5.8 and 5.9 shows the respective FARX forecasts for the
Lagoon of Venice (left) and the Marinetta Lagoon (right).

(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.7: Forecast by the FARX models for both lagoons in spring. Blue indicates
the water temperature, orange the fit to the training set and light blue the forecast
for the next day.

(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.8: Forecast by the FARX models for both lagoons in summer. Blue indicates
the water temperature, orange the fit to the training set and light blue the forecast
for the next day.
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(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.9: Forecast by the FARX models for both lagoons in autumn. Blue indicates
the water temperature, orange the fit to the training set and light blue the forecast
for the next day.

Figures 5.10, 5.11 and 5.12 show a detailed view of the predicted day (top) and
the corresponding residual analysis with plot of residuals and boxplot (bottom).
Especially noteworthy is the residual pattern of for the Lagoon of Venice in
autumn as shown in figure 5.12a, which displays a non-random linear pattern.
At the beginning of the day the prediction is too low, at the end of the day too
high (by more than 1.5◦C).

(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.10: Top: Observation (blue) and FARX prediction (light blue) of the de-
meaned data in spring. Bottom: corresponding residual analysis with plot of resid-
uals and boxplot to check for systematic errors.
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(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.11: Top: Observation (blue) and FARX prediction (light blue) of the de-
meaned data in summer. Bottom: corresponding residual analysis with plot of resid-
uals and boxplot to check for systematic errors.
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(a) Lagoon of Venice (b) Marinetta Lagoon

Figure 5.12: Top: Observation (blue) and FARX prediction (light blue) of the de-
meaned data in autumn. Bottom: corresponding residual analysis with plot of resid-
uals and boxplot to check for systematic errors.
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5.3 Combined model

After both modelling steps have been carried out successfully, the individual
models can be added up to form the combined model estimation. Figure 5.13
shows the resulting model fit including forecast (magenta) in comparison to the
observed water temperature (blue).

(a) Lagoon of Venice (b) Marinetta lagoon

Figure 5.13: Forecast by the combined models for the Venice lagoon (left) and
Marinetta lagoon (right) in spring (top), summer (middle) and autumn (bottom).
Blue indicates the observed water temperature and magenta the model output as
expressed by the combination of the respective ARIMAX and FARX models.

Table 5.3 shows the respective scores for various goodness of fit indicators of
the combined model in respect to the observation. The calculations only take
the predicted day into account (48 observations). The following indicators are
computed: sum of squared residuals (SSR), coefficient of determination and its
adjusted version which considers the number of variables (R2 and R2

adj), the
root mean squared error and its normalised variant which enables comparison
between different data sets (RMSE and NRMSE), the L1 distance as total dis-
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tance between observation and prediction and lastly the L∞ distance which
indicates the maximum distance between these two curves. Depending on the
envisaged application these parameters are more or less important and could
even be used for model selection instead of the BIC.

Table 5.3: Indicators for the respective goodness of fit between observation and the
one-day forecast by the combined model (rounded to two decimal digits).

V spring V summer V autumn M spring M summer M autumn

SSR 74.22 50.94 34.93 34.60 23.57 25.98
R2 0.76 0.84 0.65 0.86 1.00 0.64
R2

adj 1.19 1.24 1.16 1.25 1.16 1.35

RMSE 1.24 1.03 0.85 0.85 0.70 0.74
NRMSE 0.07 0.03 0.08 0.05 0.03 0.06
L1 51.21 47.65 32.47 35.08 27.91 32.31
L∞ 2.32 1.60 1.69 1.84 1.34 1.17
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6 Discussion

This chapter analyses and comments the results presented in chapter 5, focussing
on their interpretation and methodological aspects.

6.1 ARIMAX

As far as the mean trend forecast is concerned, it can generally be observed that
ARMAX(a,s) models (including both air temperature and salinity as external
predictors) perform the best overall for all six examined situations. Table 5.1
shows, that this is true for the time periods V spring, V autumn and M summer,
in which the inclusion of air temperature and salinity increases the model perfor-
mance noticeably, while the differentiation of the input data prior to modelling
on the other hand does not do so.
Judging by the BIC scores the summer set in the Lagoon of Venice (V summer)
can best be described by an ARMAX(a) model without salinity as external input
(BICARMAX(a) = −15.55), but the score for the respective ARMAX(a,s) model
(BICARMAX(a,s) = −14.49), which takes salinity into account, is just slightly
inferior (notice that the BIC already regards model complexity by incorporating
a penalty term based on the amount of variables).
For the spring and autumn sets in the Marinetta Lagoon (M spring and M autumn)
the ARIMAX(a,s) models (two external predictors and one differentiation step)
exhibit the best BIC score, but when applying them for the next day’s predic-
tion, these models demonstrate weak predictive power, which exposes them as
unsuitable for further use in the next modelling step. Therefore, the next best
models (in both cases ARMAX(a,s)) are adopted instead. Figure 6.1 shows the
mean trend forecast of both models for M autumn. The predictive power of the
ARMAX(a,s) model (left) is significantly higher than that of the ARIMAX(a,s)
model (right), despite its better score. This issue is most likely attributable to
an overfit of the ARIMAX(a,s) model to the training set and indicates need for
further improvement of the trend forecasting methodology.

Figure 6.1: Mean trend forecast for M autumn using an ARMAX(a,s) (left) and an
ARIMAX(a,s) (right) model. Even though the ARIMAX(a,s) model has a better
BIC score, its forecasting power is futile.

The resulting forecasts, as depicted in figure ??, are all able to reflect the preva-
lent dynamic of the mean trend and return adequate values for the next-day
forecast (see forecasting errors in table 6.1). This is remarkable, given the fact
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that these models are trained on a very small data basis (10 consecutive days), a
choice which was taken deliberately, in order to test this methodology’s capacity
to give a precise prediction even when based on little data input. However, keep-
ing the aspired high prediction accuracy in mind, these errors can still be severe
and cause a underperformance of not only the ARIMAX model but also the
joined models. These results could be improved by extending the time window
for the estimation of the ARIMAX model, and/or testing other methodologies
for predicting the local trend.

Table 6.1: Forecasting errors for the next-day forecast of the respective ARIMAX
models (rounded to two decimal digits).

V spring V summer V autumn M spring M summer M autumn

forecasting error
1 day ARIMAX

0.09 0.26 0.04 0.12 0.06 -0.42

6.2 FARX

Unlike the mean trend models, which mostly (all but V summer) include both
air temperature and salinity as external predictors, the optimal FARX mod-
els do not include salinity. Table 5.2 shows that 5 out of the 6 best-scoring
models use only air temperature as an external variable. An exception thereof
is M autumn for which the FARX(a,s) model with both predictors ranks best.
This observation indicates that, while being a helpful predictor for the daily
water temperature, salinity is, in these cases, not relevant for forecasting the
high-frequent inner-daily temperature fluctuations. The importance of salinity
is presumed to vary, depending on the selected time window (i.e. time of the
year).

Furthermore, the choice of either using the originally observed time series (real)
of the external inputs or their trend-reduced (detrended) variant does not seem
to play a significant role for the results, as in most cases, the difference in BIC
scores between detrended and real input is negligible (also see table 5.2). Over-
all, it can be said, that the real observations score slightly better, which could
be due to the inaccuracies originating from the demeaning procedure.

The resulting model fits to the training set are very accurate, display the vari-
able development in detail and neglect only some extreme spikes. The predictive
power, however, is more ambiguous. As can be seen in the figures ?? and ??,
the general dynamics of the observations is resembled well by the next-day pre-
dictions, but in most cases an offset in the mean value can be observed (cf.
V spring, V summer, M spring, M summer and M autumn). While V spring
and M summer display a decreased amplitude in regard to the observation,
V autumn demonstrates a highly increased amplitude, peaking at 1.5◦C higher
than the observation. When comparing the different input periods (e.g. rela-
tively regular V summer with inconsistent V autumn), it is apparent that in-
put data with increased irregularity is negatively correlated with the predictive
power of the resulting FARX model. To overcome this, the extension of the
training set could be appropriate.
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6.3 Model results

The resulting joined model reflects the particular strengths and shortcomings of
its FARX model, as their dynamics are identical, the only difference being the
added mean value. It can be noted that the modelling performance is generally
worse in spring than in summer and autumn. Likewise, the performance in the
Marinetta Lagoon is better than in the Lagoon of Venice (see table 5.3). A
possible reason for this could be the high complexity of the Lagoon of Venice
regarding geomorphology, ecosystem linkage and anthropogenic influences.

A problem which still needs fixing in order to increase convenience and utility
of such models is the yet limited forecasting horizon. As of now, the described
methodology is suitable to reliably predict only one day. Prediction performance
for longer periods deteriorates quickly. This is, in large part, due to the deploy-
ment of an autoregressive process of first order (FAR(1)). When predicting a
second day into the future, only the prediction of the first day is used as input
(and eventually external predictors), so that it can be observed that the pattern
of the first day is somewhat amplified. Most often this fails to describe the
observation adequately.

Overall, this modelling approach shows promising results in all six cases, demon-
strating the great potential of functional data analysis for obtaining reliable
forecast using a relatively small data set for selecting the model structure and
estimating the parameters.
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7 Conclusion

Functional data analysis is a sound data driven modelling approach, which seems
promising for predicting the daily pattern of water quality variables in a highly
dynamic transition water body. The results presented in chapter 5 show that
reliable, 1-day ahead water temperature predictions can be obtained on the ba-
sis of the previous 10 day time series of water temperature, air temperature and
salinity and on the one-day air temperature and salinity forecast. The flexible
scripts coded in R for implementing the FARX model could be easily adapted
to model other relevant water quality variables , such as dissolved oxygen, and
salinity, which could be predicted on the basis of precipitation pattern and river
discharges. Furthermore, the models could be easily implemented for updating
the predictions on a regular basis, i.e. on a weekly basis, provided that the input
data can be downloaded in real time.

On the other hand, in order to be used in managing halieutic resources, the
prediction time horizon should be extended as far as a possible: a weekly pre-
diction would, indeed, be desirable and 2-4 days ahead forecast would already
be very useful. Of course, the reliability would decrease towards the end of this
horizon, as it happens for weather forecast.
As highlighted in chapter 6, this goal can be achieved by improving both compo-
nents of the model, i.e. the trend and the seasonal one, i.e. the daily pattern. As
far as the trend is concerned, daily mean values could be predicted on the basis
of a larger data set, using the same methodology, i.e. ARIMAX, or other local
methodologies for the extrapolation of the trend could be used, e.g. polynomial
fitting. The seasonal component was simulated using functional autoregressive
process of first order (FAR(1)): in order to extend the prediction horizon, more
functional autoregressive terms could be added, thus adopting a FAR(p) process.
A different approach to solve this problem could be enlarging the length of one
functional object, which is now one day, to two or more days. Therefore, one
prediction step ahead would include multiple days: in this case, however, the
amount of input data would increase, as the length of the training set would
have to be extended substantially.

Therefore, this work can be seen as the starting point for the development
of a functional modelling approach to tackle issues, in which the prediction of
environmental variables is relevant. The methodology shows promising potential
for predicting highly dynamic patterns and, therefore, could be used for assessing
risks for organisms and ecosystems associated with the occurrence of high/low
values of uncontrollable variables, driven by physical forcings. The frequency of
such events, i.e. heat waves, hypoxias, is expected to increase due to climate
change.
In our changing world detailed modelling and precise forecasting is becoming
increasingly important to understand the mechanisms which are going to shape
the next decades and how this is going to affect human life, directly and indi-
rectly.
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