
Master’s Degree Programme
in Computer Science - Data Management and
Analytics

Master’s Thesis

ExplainableAI: on explaining forest of
decision trees by using generalized
additive models

Relatore
Chiar.mo prof. Claudio Lucchese

Laureanda
Martina De Zan
Matricola 846036

Anno Accademico
2019/2020

i

Anche questa è per te.
Anche adesso che non ci sei più,

sei sempre il motivo per cui sono arrivata a scrivere questa tesi.
Grazie.

Contents

Abstract v

Introduction vii

1 Explainable AI 1
1.1 Interpretability . 1

1.1.1 Dimensions of iterpretability 2
1.1.2 Desiderata of an interpretable model 2
1.1.3 Already interpretable models 3
1.1.4 Model complexity . 4

1.2 Open the Black Box problem 5
1.2.1 Problem formulation 5
1.2.2 Model explanation . 7
1.2.3 Outcome explanation 7
1.2.4 Model inspection . 8
1.2.5 Transparent box design 9

1.3 Conclusion . 10

2 Forest of decision trees 11
2.1 Decision Trees . 11

2.1.1 How to build a decision tree 12
2.2 Ensemble of trees: Random Forests and Boosting 14

2.2.1 Random forests . 14
2.2.2 Boosting . 15

2.3 Conclusion . 16

3 Generalized additive models (GAM) 17
3.1 Model description . 17

3.1.1 GA2M: GAM with pairwise interactions 18
3.2 From linear regression to piecewise polynomials and splines . . 18
3.3 Solve the knot selection problem: smoothing splines 22

iii

iv CONTENTS

3.4 Conclusion . 22

4 GAM as forest explainer 25
4.1 Introduction . 25

4.1.1 Overview of the procedure 26
4.2 Experimental setup . 28

4.2.1 Datasets . 28
4.2.2 Metric . 30
4.2.3 Methodology . 31

4.3 Forest structure analysis . 32
4.3.1 Information gathering 32
4.3.2 Feature importance and features interaction 34
4.3.3 Features domain . 37

4.4 GAM extraction . 41
4.4.1 Terms identification 41
4.4.2 Dataset composition 42
4.4.3 GAM training . 42

4.5 Case study: concrete dataset 49
4.5.1 Forest Structure Analysis 49
4.5.2 GAM extraction . 50

4.6 Case study: houses dataset 54
4.6.1 Forest Structure Analysis 54
4.6.2 GAM extraction . 56

4.7 Case study: years dataset . 62
4.7.1 Forest Structure Analysis 62
4.7.2 GAM extraction . 64

4.8 Conclusion . 69

Conclusions 71

Abstract

In recent years, decision support systems have become more and more perva-
sive in our society, playing an important role in our everyday life. But these
systems, often called black-box models, are extremely complex and it may be
impossible to understand or explain how they work in a human interpretable
way. This lack of explainability is an issue: ethically because we have to be
sure that our system is fair and reasonable; practically because people tend
to trust more what they understand.
However, substituting black-box model with a more interpretable one in the
process of decision making may be impossible: interpretable model may not
work as good as the original one or training data may be no longer available.
In this thesis we focus on forests of decision trees, which are particular case
of black-box models. In fact, trees are interpretable models, but forest are
composed by thousand of trees that cooperate to take a decision, making the
final model too complex to comprehend its behavior.
In this work we show that Generalized Additive Models (GAMs) can be
used to explain forests of decision trees with a good level of accuracy. In
fact, GAMs are linear combination of single-features or pair-features mod-
els, called shape functions. Since shape functions can be only one- or two-
dimensional functions, they can be easily visualized and interpreted by user.
At the same time, shape functions can be arbitrarily complex, making GAMs
as powerful as other more complex models.

v

Introduction

Nowadays, every aspect of our daily life is potentially affected by decision
support systems. A very simple example are the applications we use on our
smartphone: Facebook uses a machine learning algorithm when it chooses to
show us certain posts or certain advertisements; Spotify uses artificial intel-
ligence to suggest new songs, Google Photos corrects colors of our shots and
groups the photos according their subject. The curious thing is that we take
advantage of these automated systems every day, but we have no idea how
they take their decisions.
The situation becomes more complex when decision support systems takes
decisions that have a much greater impact on our life. Often there are au-
tomatic systems behind the choice of a bank to grant a loan, an insurance
to decide the price of a policy, a company to hire a candidate and so on.
At this point, transparency of the automatic system is no longer a curiosity,
but a necessity: ethically, because we must be sure that the system is fair
and reasonable; practically, because people tend to trust more what they
understand.
Some machine learning models are very simple and already interpretable,
others - usually the most complex, accurate and used - cannot be interpreted
at all. These models are often called black-box models. In the first chapter
of this thesis, we analyze the concept of interpretability and see how we can
tackle the problem of ”opening the black-box” and understand its behaviour.
Well-known technique used to interpret models are Lime [10] and Shap [9].
Both of them are agnostic local model explainers. Agnostic because they can
be applied to any machine learning model since they do not analyse model
internal component: they perturb input data and try to understand how
prediction change. Local because they explain why was this prediction made
and which variables caused the prediction.

In the second chapter of this thesis we see how forests of decision trees work.
Forests are extremely accurate models and are therefore often used as deci-
sion support systems; they also have a very interesting feature: they are an

vii

viii INTRODUCTION

ensemble of decision trees. Decision trees are very simple and interpretable
models. This particular characteristic of forests allows us not to treat them
as black boxes, but allows us to observe their internal structure and get clues
about their behavior. However, each tree cannot be studied independently
of the other trees in the forest, since the decision-making power of the forest
is given by the collaboration between the trees composing it. This makes it
necessary to use another model to explain the logic used by the forest to take
decisions. We choose to use Generalized Additive Models (GAMs).
GAMs are a non-linear extension of linear models: they are the sum of the
results obtained from different models, called shape functions, each represent-
ing the relation between one - or maximum two - features and the response.
Since each shape function is at most two-dimensional, it can be represented
graphically, making the GAMs extremely intuitive and easily interpretable
by humans. However, shape functions can be arbitrarily complex, making
GAMs extremely powerful models.
The aim of this thesis is to find a way to obtain a GAM that acts as global,
model-specific interpreter of a forest of decision trees, exploiting information
that we can gather by observing a forest’s internal structure. In order to
act as interpreter of the forest, GAMs have to satisfy two conditions: first,
GAM’s shape functions plots have to grasp the relation between features;
second, GAMs have to be accurate enough to imitate forest behaviour. In
the fourth chapter, we propose our procedure to obtain a GAM that acts as
interpreter of a forest, we explain how we conduct the tests and we illustrate
different case studies, both a synthetic and real-world data.

Chapter 1

Explainable AI

The past decade has seen a resurgence of artificial intelligence mainly due
to the computing power achieved by modern computers and the immense
amount of data collected every day. Artificial intelligence has brought a sig-
nificant improvement in decision support systems, which have become far
more powerful and accurate. However, their improvement comes at the price
of their interpretability. In fact, models have become so complex that they
behave more and more like black boxes fed with input data and whose out-
put is presented to us without having the slightest idea of the decision path
that produced it. Lack of understanding exposes us to the risk of accepting
predictions as correct, without being able to verify whether they have been
compromised by an error or bias included in the data used to train the model.
Explainable AI was born to investigate remedies to this problem.

In this thesis we analyze an extremely complex model, the forest of deci-
sion trees, and we try to provide an ”interpreter” that is able to explain how
the forest works. First, we give a definition of the explainable AI, the concept
of interpretability and how we can tackle the problem of ”opening a black
box” and understanding its behavior.

1.1 Interpretability

Before discussing the possible explanation and interpretation of black-box
predictors, we need to define what is a black-box model and what we mean
with interpretable, explainable and comprehensible models.
A black-box predictor is a data-mining and machine-learning obscure model,
whose internals are either unknown to the observer or they are known but un-
interpretable by humans [3]. The meaning of interpretability can be defined

1

2 CHAPTER 1. EXPLAINABLE AI

as the ability to explain the meaning of some concepts using understandable
terms to a human [1]. In the end, an explanation is an ”interface” between
humans and decision maker.
The reason why a model should be interpretable is that we use those models
to take critical decisions, like medical decisions or marketing strategies. For
this reason, we need to be able to explain why a certain outcome have been
returned.

1.1.1 Dimensions of iterpretability

Interpretability can be either global or local. We speak about local inter-
pretability when we can understand only reasons of specific decisions; if we
are able to understand the whole logic, then we are in a context of global
interpretability [3].
Another way to measure the interpretability is time. User, actually, has a
limited time available to understand model explanation [3]. The more time
user need to understand model logic, the less the model is interpretable.
The last dimensions considered in [3] to measure interpretability is the na-
ture of user expertise, which considers user background knowledge. Knowing
the user experience in the task is an important aspect of the perception of
interpretability of the model: if a users are expert in the task, they will prefer
a larger and more sophisticated model over a smaller and more opaque one.

1.1.2 Desiderata of an interpretable model

To realize an interpretable model, we need to consider some quality that the
model should have to be considered interpretable and to act as a good model.
In [3] are listed some of such quality:

• Interpretability: model or its predictions should be human understand-
able;

• Accuracy: model should performs as good as a non-interpretable one;

• Fidelity: model should be able to accurately imitate the black-box
predictor it is explaining;

• Fairness: model should protect groups against discrimination (see ex-
ample of recism in data);

• Privacy: model should not reveal sensitive information about people;

1.1. INTERPRETABILITY 3

• Trustability: this metric is based on two measures, which relate on how
much a user can trust a model. The first one is the monotonicity : for
example, an increase of a certain numerical attributes tends to increase
(or decrease) the possibility of a record to belong to a certain class.
The other measure of trustability is the usability : people tend to trust
more models that guide them, using explanation of what is going on
during task;

• Reliability/robustness: model should maintain certain lever of perfor-
mance independently from small variations of parameters or input data;

• Causality : controlled changes in input due to perturbation affects model
behaviour;

• Scalability: models should be able to scale to large input;

• Generality: models should not require special training regimes or re-
striction since models could be used with different data.

1.1.3 Already interpretable models

Actually there are models that are considered already interpretable and un-
derstandable by humans: decision tree, rules and linear models [3].

Decision Tree

A decision tree is basically a graph structured like a tree, whose internal nodes
represent tests on features (ex: x1 ≥ 3) and whose leaf nodes represent class
labels. The path from root to leaves represent the classification rules. For
this reason, a decision tree can be linearized into a set of decision rules in
the if-then form, considering the tests included in internal nodes.

if condition1 ∧ condition2 ∧ codition3, then outcome

Decision Rule

A decision rule is a function that maps an observation to an action. There
are many types of decision rules:

• if-then rule: if combination of condition of input variables is true, then
perform the correspondent action. Combination can formed by con-
junction, negation and distinctions;

4 CHAPTER 1. EXPLAINABLE AI

• m-of-n rule: given a set of n conditions, if m of them are verified, then
rule is true;

• list of rule: given an ordered set of rules, all of them considered true,
then the consequent of the first rule is verified;

• falling rule list : a list of if-then rules, ordered with respect to the
probability of a particular outcome;

• decision set : unordered set of rules: each rule is an independent clas-
sifier.

Decision Rule vs Decision Tree: both have more or less the same logic,
but they differ in three main aspects related to interpretability:

1. textual representation vs. graphical representation. Decision tree pro-
vides immediate information about feature importance: it has a hier-
archical structure, in which test in the nodes closer to root are more
important than tests in nodes closer to leaves;

2. local patterns. To analyze decision rules logic, it is sufficient to consider
the set of rules; if we are using a decision tree, we have to consider every
path from root to leaf nodes, which could be difficult if tree is big;

3. ambiguity. decision tree predict a single label for every input, every
class is represented in a mutually exclusive and exhaustive way. Using
decision rules to predict a label, a certain record can satisfy more than
one rule, resulting in the prediction of more than one possible classes.

Linear models

Linear models are a way to visualize feature importance, they show both
sign (positive or negative impact) and magnitude of the contribution of the
attributes for a given prediction. It has an intrinsic problem when model
does not optimally fit data, it may use spurious feature to optimize the error
that may be hard to interpret for humans.

1.1.4 Model complexity

Model complexity is often tied to model comprehensibility: the more com-
plex is the model, the harder is to explain it. For this reason, complexity is
also connected to interpretability. Notice that we are considering a concept
of complexity that is only related to the model and not to data, which is

1.2. OPEN THE BLACK BOX PROBLEM 5

generally unknown.
But how can we define complexity? In [3] a lot of definitions are provided,
each of them related to a particular model: if we are considering a linear
model, complexity is the number of attributes with non-zero weights; in de-
cision trees is the tree depth; in decision rules can be the length of the rule
or the number of rules in a list.
A more agnostic definition is provided by [4]: ”complexity is identified by
the number of regions, i.e., parts of the model, for which the boundaries are
defined”.

1.2 Open the Black Box problem

The problem of opening the black-box predictor is the problem of looking
into the predictive model and understand the reasons behind a certain out-
come when presenting a particular input. The following description of the
problem is based on [3].
The problem is divided into two categories, based on two main solution ap-
proach: reverse engineering and design of explanation.
In the first case, the idea is that, given the decision record produced by the
black box, we have to reconstruct an explanation for it. The other case
considers building an already interpretable model, which solves the same
problem as the model it is trying to explain.
As we can see in figure 1.1, the black box explanation problem, which cor-
respond to the reverse engineering approach, can be further divided among
Model Explanation when the explanation involves the whole logic of the ob-
scure classifier, Outcome Explanation, when the target is to understand the
reasons for the decisions on a given object, and Model Inspection when the
target is to understand how internally the black box behaves changing the
input. We investigate them in the next section.

1.2.1 Problem formulation

In [3] a formal and general description of the classification problem is pro-
vided, along with the formulation of all the problems we have presented in
the previous introduction.

A predictor (or model, or classifier) is a function b : X (m) → Y , which
maps data instances (tuples) x from a feature space X (m), with m input fea-
tures, to a decision y in a target space Y . An instance x consist in a set of

6 CHAPTER 1. EXPLAINABLE AI

Figure 1.1: Open the black box taxonomy. The black box explanation part of the graph
represents the approach of reverse engineering; while the transparent box design represents
the design of explanation approach.

m attribute-value pairs (ai, vi), where ai is the feature (or attribute) and vi
is a value from the domain of ai. The domain of a feature can be continuous
or categorical. The target space Y , with dimensionality equals to one, con-
tains the different labels and also in this case domain can be continuous or
categorical.
A predictor b is a black-box predictor whose logic is unknown or uninter-
pretable by humans.
On the opposite site, we denote with c an interpretable predictor, with a
known internal logic leading to a decision c(x) that can be explained in a
comprehensible way to a human.
Normally, to evaluate a model, we train it with a portion of dataset called
training set and we evaluate the performance with the remaining portion,
called test set. As a measure of goodness we use the accuracy, which is the
number of matches between the prediction of the model and the true response
in the test set, over the size of the test set itself.
To measure the performance of the interpretable predictor c, we have to
measure how good it is in imitating the black box predictor b. This measure
is called the fidelity and, similarly to the accuracy, counts the number of
matching response between b and c, over the size of the test dataset.

We will now apply this formulation of the problem to all of the categories
illustrated in figure 1.1. First of all, we will see in details the three specifi-
cation of the black box explanation subcategory of the ”open the black box”
problem, which are model explanation, outcome explanation and model in-
spection. In the end, we will see the application of the problem formulation
to the last subcategory, the transparent box design.

1.2. OPEN THE BLACK BOX PROBLEM 7

Figure 1.2: Model Explanation problem example. Starting from test instances in X, forst
query the black box and then extract an interpretable global predictor from X, b(X) in
the form of a decision rule classifier.

1.2.2 Model explanation

The goal of the model explanation problem consist in providing a global ex-
planation of the black box model b through an interpretable and transparent
model c, which should be both able to mimic the black box behavior and
understandable by humans. For this reason, we can say that the model c
approximating the black box model b must be globally interpretable.
To formalize the problem, we assume that the interpretable model c is derived
from model b and a dataset X, which is provided by user and obtained by
sampling the domain X (m). Dataset X may also include actual class values
(to estimate accuracy of c), as we see in figure 1.2.

Definition. Given a black box predictor b and a set of instances X, the
model explanation problem consist in finding an explanation E ∈ E , belonging
to a human interpretable domain E , through an interpretable global predictor
cg = f(b,X) derived from the black box b and the instances X using some
process f(·, ·). An explanation E ∈ E is obtained through cg, if E = εg(cg, X)
for some explanation logic εg(·, ·), which reasons over cg and X.

1.2.3 Outcome explanation

While model explanation aims to find an explanation of the whole black box
model b, outcome explanation problem consists in providing an explanation
e for the outcome of the black box b on a given instance x. It only needs to
explain the reasons for the prediction on a specific input instance.
To formalize the problem, we assume that the whole process is divided into
two stages: first, we build an interpretable local model cl from the black box
model b and the instace x, then an explanation e is derived from cl, as we
see in figure 1.3.

8 CHAPTER 1. EXPLAINABLE AI

Figure 1.3: Outcome Explanation problem example. For a test instance x, the black box
decision b(x) is explained by building an interpretable local predictor cl, e.g., a decision
rule classifier. The local explanation εl(cl, x) is the specific rule used to classify x.

Definition. Given a black box predictor b and an instance x, the outcome
explanation problem consists in finding an explanation e ∈ E , belonging to
a human-interpretable domain E , through an interpretable local predictor
cl = f(b, x) derived from the black box b and the instance x using some
process f(·, ·). An explanation e ∈ E is obtained through cl, if e = εl(cl, x)
for some explanation logic εl(·, ·), which reasons over cl and x.

1.2.4 Model inspection

Model inspection problem aims to provide a visual or textual representation
r for understanding some specific property of the black box model b or of
its predictions. For example, a representation r may be based on sensitive
analysis: we observe how predictions of black box model b change when
varying the input and we can obtain partial dependence plots or variable
effect characteristic curve that indicates how predictions are influenced by
features, see figure 1.4.
Model inspection problem differs from model explanation problem in the fact
that model explanation problem requires the extraction of an interpretable
global predictor, while model inspection problem focuses on the analysis
of specific properties of the black box model b without requiring a global
understanding of it.

Definition. Given a black box model b and a set of instances X, the model
inspection problem consists in providing a visual or textual representation
r = f(b,X) of some property of b using some process f(·, ·).

1.2. OPEN THE BLACK BOX PROBLEM 9

Figure 1.4: Model inspection problem example. Query the black box on test instances X,
and then extract a sensitivity analysis plot.

Figure 1.5: Transparent box design problem example. A decision rule classifier learned
from a training dataset is globally interpretable predictor. Moreover, the rule that applies
on a given test instance is a local explanation of the predictor’s decision.

1.2.5 Transparent box design

While model explanation, outcome explanation and model inspection prob-
lems refer to the reverse engineering approach to the Open the Black Box
problem, the transparent box design adopt the design of explanation ap-
proach. In fact, the transparent box design consists in directly providing a
model that is locally or globally interpretable, for example a decision tree
classifier.

Definition. Given a training set D = (X, Ŷ), the transparent box design
problem consists in learning a locally or globally interpretable predictor c
from D. For a locally interpretable predictor c, there exists a local explanator
logic εl to derive an explanation εl(c, x) of the decision c(x) for an instance
x. For a globally interpretable predictor c, there exists a global explanator
logic εg to derive an explanation εg(c,X)

10 CHAPTER 1. EXPLAINABLE AI

1.3 Conclusion

To summarize, according to the problem definition proposed at the beginning
of this section, when stating that a method is able to ”open the black box”,
we are referring to one of the following statements: (i) it explains the model,
(ii) it explains the outcome, (iii) it can inspect the black box internally, (iv)
it provides a transparent solution.

The aim of this thesis is to obtain a generalized additive model (GAM) that
is able to imitate the behavior of a forest of decision trees.
Although decision trees are an extremely interpretable model, the composi-
tion of hundreds or more of them collaborating to take decisions creates an
extremely complex model that can be seen as a black-box model.
The GAM, on the other hand, is a linear combination of one or two di-
mensional models that can be represented graphically, which makes GAMs
models extremely interpretable for humans.
In the light of what we have seen in this chapter, our thesis is configured as a
model explanation problem [1.2.2]. In fact, a GAM that can imitate a forest
of decision trees is a great global explanation of the forest itself.

Chapter 2

Forest of decision trees

As we see in the previous chapter, decision trees are very simple models that
can already be interpreted by humans.
Forests, on the other hand, are a composition of thousands of decision trees
that cooperate to make a decision. They are extremely complex, yet ex-
tremely powerful models, which makes them very popular as decision sup-
port systems.
In this chapter we see how decision trees are structured and we describe some
popular algorthms for building forests of decision trees.

2.1 Decision Trees

A decision tree is a hierarchical structure consisting of nodes and directed
edges [11]. Tree has three types of nodes:

• root node: this node has no incoming edges and zero or more outgoing
edges;

• internal nodes: these nodes have exactly one incoming edge and two or
more outgoing edges;

• leaf or terminal nodes: these nodes have exactly one incoming edge and
no outgoing edges.

In a decision tree, each leaf node is assigned a value: if the problem we are
trying to solve is a classification problem, leaf node contains a class label;
otherwise, if the problem we are facing is a regression problem, leaf node
contains a numerical value. Non-terminal nodes - which include root and
other internal nodes - contain attribute test conditions to separate records

11

12 CHAPTER 2. FOREST OF DECISION TREES

that have different characteristics.
Once a decision tree has been constructed, classifying a test record is straight-
forward: starting from the root node, we apply the test condition to the
record and follow the branch corrsponding to test outcome; this will lead
us either to another internal node - and another test condition - or to a leaf
node. Class label associated with the leaf node is then assigned to the record.
Regression problem works exactly in the same way.

2.1.1 How to build a decision tree

There are exponentially many decision trees that can be constructed from
a given set of attributes and, for this reason, finding the optimal tree is
computationally infeasible [11]. However, there exist efficient algorithms to
induce a reasonably accurate - even if suboptimal - decision tree in a rea-
sonable amount of time. Usually, these algorithms employ a greedy strategy
that grows a decision tree by making a series of locally optimum decisions
about which attribute to use for partitioning the data. One such algorithm is
Hunt’s algorithm, which is the basis of many existing decision tree induction
algorithms for classification problems.

Hunt’s algorithm

In Hunt’s algorithm, a decision tree is grown in a recursive fashion by parti-
tioning the training records into successively subsets [11]. Let Dt be the set
of training records that are associated with node t and y = {y1, y2, . . . , yc}
be the class labels. Recursively do:

1. If all records in Dt belong to the same class yt, then t is a leaf node
labeled as yt.

2. If Dt contains records that belong to more than one class, select an
attribute test condition to partition records into smaller subsets. A
child node is created for each outcome at the test condition and records
in Dt are distributed to the children based on the outcomes. Algorithm
is then recursively applied to each child node.

Design issues of decision tree induction

Every decision tree learning algorithm - including Hunt’s algorithm - must
address the following two issues [11]:

2.1. DECISION TREES 13

How should the training records be split? Attribute values can have
different types: they can be binary (yes/no), nominal (many different values,
no order), ordinal (many different values, can be ordered) or continuous.
Moreover, we can choose to split the node into two children nodes (binary
split) or we can choose to design the attribute test condition to have more
than two outcome (multiway splits). In the end, we need a way to select the
best split: often measures developed for selecting the best split are based
on the degree of impurity of the child nodes and depends on the type of
problems we are facing, classification or regression. Typically, in order to find
the best split, we enumerate all possible split for every possible predictor and
we calculate the impurity measure of children nodes for every configuration.
The best split is the one with the lowes impurity measure obtained.
Examples of impurity measures adopted in case of classification problems
include:

Entropy(t) = −
c−1∑
i=0

p(i|t)log2p(i|t),

Gini(t) = 1−
c−1∑
i=0

[p(i|t)]2,

Classificationerror(t) = 1−maxi[p(i|t)],

where c is the number of classes and 0log20 = 0 in entropy calculations.
Examples of impurity measures adopted in case of regression problems in-
clude:

least absolute deviations(t) =
n∑

i=1

|ytrue − ypredicted|,

least square errors(t) =
n∑

i=1

(ytrue − ypredicted)2.

How should the splitting procedure stop? A possible strategy is to
continue expanding a node until either all the records belong to the same
class or all the records have identical attribute values. Both conditions are
sufficient to stop any decision tree induction algorithm, but they are not
enough to avoid the overfitting problem. There are two strategies for avoiding
decision tree overfitting problem:

• Pre-pruning (or early stopping rule): algorithm is halted before gener-
ating a fully grown tree. For example, we can choose to stop expanding
a leaf node when the observed gain in impurity measure falls below a
certain threshold. This strategy has a big disadvantage: it is difficult

14 CHAPTER 2. FOREST OF DECISION TREES

to choose the right threshold for early termination. A threshold too
high will result in underfitted model, viceversa tree may suffer from
overfitting anyway.

• Post-pruning: tree is initially grown to its maximum size, then we
proceed with a tree-pruning step by trimming the fully grown tree in
a bottom-up fashion. Trimming can be done by replacing a subtree
with a new leaf node whose class label is determined from the major-
ity class of records affiliated with the subtree, or the most frequently
used branch of the subtree. The tree-pruning step terminates when no
further improvement is observed.

2.2 Ensemble of trees: Random Forests and

Boosting

Random forests and boosting use trees as building blocks to construct more
powerful prediction models [7].

2.2.1 Random forests

Decision trees suffer from high variance: if we split the training data into two
parts at random and fit a decision tree to both halves, the result we get could
be quite different. A general-purpose procedure for reducing the variance of
a statistical learning method is the bootstrap aggregation or bagging and it is
based on the fact that given a set of n independent observation Z1, . . . , Zn,
each with variance σ2, the variance of the mean Zavg of the observation is
given by σ2/n. In other words, averaging a set of observations reduces vari-
ance [7].
Bagging works as follows: first we generate B different bootstrapped training
dataset by repeatedly sample the original training dataset; then, we learn a
decision tree from each one of the B bootstrapped dataset and, in the end, we
average all the prediction of the trees (or we take the most voted prediction
among all the predicted class if we are facing a classification problem).

Random forests provide an improvement over bagged trees trying to decor-
relate the trees [7]. As in bagging, we build a number of decision trees on
bootstrapped training samples. Peculiarity is that decision trees composing
the random forest are built considering only a random sample of attributes
each time a split in a tree is performed. This is done in order to force trees to
consider every attributes when taking their decision. In fact, if we suppose

2.2. ENSEMBLE OF TREES: RANDOM FORESTS AND BOOSTING15

that there is an attribute that can be considered a very strong predictor,
then in the collection of bootstrapped trees, most or all of the trees will use
this strong predictor in the top split. Consequently, all of the bootstrapped
trees will look quite similar to each other and the prediction from the bagged
trees will be highly correlated. However, averaging many highly correlated
quantities does not lead to as large of a reduction in variance as averaging
many uncorrelated quantities [7]. Random forests overcome this problem by
forcing each split to consider only a subset of m random predictors from the
full set of p predictors. Therefore, on average (p−m)/p of the splits will not
even consider the strong predictor, and so other predictors will have more of
a chance and we obtain less correlated predictions.

2.2.2 Boosting

Boosting procedure does not create multiple copies of the original training
set using the bootstrap.
If we are facing a regression problem, algorithm works as follows: it starts
by growing a single decision tree from the original dataset and it calculates
the difference between the true response and the response predicted by the
tree. Such difference is called residual. Then, it fits a second decision tree to
the residuals from the first tree and so on. The prediction of the boosting is
obtained by calculating the sum of each tree in the forest.
If we are facing a classification problem, clearly we cannot compute residuals.
To overcome this problem, once the first tree is grown, we assign a weight
D > 1 to mis-classified samples and we grow the second tree applying weight
D to samples when calculating the impurity measure (Gini/Entropy) and
so on for subsequent trees. In this way, boosting creates successive base
classifiers that place greater emphasis on mis-classified samples. In the end,
like in bagging, results from all boosting base classifiers are aggregated.
We can say that in the boosting procedure trees are grown sequentially [7]:
each tree is grown using information from previously grown trees.
Boosting has three tuning parameters (four in case of classification boosting):

• number of trees: boosting can overfit if the number of trees is too
large. This parameter can be selected using the cross validation;

• shrinkage parameter: this controls the rate at which boosting learns.
This parameter’s typical values are 0.01 or 0.001 and it is multiplied
to the sum of trees prediction. Very small values of this parameter can
require a large number of trees in order to achieve good performance;

16 CHAPTER 2. FOREST OF DECISION TREES

• number of splits in each tree: it controls the complexity of the
boosted ensemble. This parameter is called also interaction depth and
controls the interaction order of the boosted model, since d splits can
involve at most d variables;

• weight: weightD to be assigned to mis-classified example during train-
ing process (only in case of classification boosting).

Random forest vs boosing. key difference between boosting and ran-
dom forest is how decision trees are built: in boosting, because the growth
of a particular tree takes into account the other trees that have already been
grown, smaller trees are typically sufficient.
Another difference lies in how they combine results: random forests combine
results at the end of the process (by averaging or ”majority rules”) while
gradient boosting combines results along the way.
In [7] performance of boosting and random forests are compared: if we care-
fully tune parameters, boosting can result in better performance that random
forest, but random forest are more resistant to noise.

2.3 Conclusion

To summarize, forst we see how decision tree works and how they are orga-
nized. Then, two algorithms to learn forests are described: Random Forests
and Boosting. Random forests is based on bootstrap aggregation: B different
bootstrap training dataset are generated and a decision tree is learned from
each one of them. Each decision tree considers a random subset of features.
Boosting, on the other hand, has a more sequential behaviour. It starts by
growing a single decision tree from the original dataset; then, it fits a second
decision tree on the residuals from the first tree and so on.

In this thesis we choose to use the boosting algorithm to learn the forest
of decision trees. We do not use the random forest because the random
choice of features makes it difficult to replicate the experiment. In any case,
the procedure described in this thesis to obtain a GAM capable of interpret-
ing forest behavior can be applied to both random forests and boosting.
Also, we use binary trees when building the forest.

Chapter 3

Generalized additive models
(GAM)

Forests of decision tree, as we see in chapter 2, are extremely accurate models,
but they are so complex that they are no longer interpretable by users. This
makes it necessary to have another, interpretable model that can explain
forest decision process.
As we see in section 1.1.3, there are models that are already interpretable
by humans: decision trees, decision rules and linear models; however, these
models are extremely simple and totally inadequate in imitating the behavior
of a forest of decision trees.
Generalized Additive Models (GAMs) can be seen as a non-linear extension of
linear models which makes them capable of modeling very complex problems,
but remaining easily interpretable by humans since they can be represented
graphically. In this chapter we explain how they work.

3.1 Model description

Let’s suppose we have a response random variable Y and a set of predictor
random variables X1, X2, . . . , Xp and suppose we collect n observations of
these random variables, denoted by (yi, xi1, xi2, . . . , xip), for each i ∈ (0, n).

The basic model for multiple linear regression is

Y = f(Xp) = β0 + β1X1 + β2X2 + · · ·+ βpXp,

where βi values are the values to be estimated.

17

18 CHAPTER 3. GENERALIZED ADDITIVE MODELS (GAM)

Representing f(Xp) by a liner model is usually a convenient approximation,
since linear model are extremely easy to interpret. However, is extremely un-
likely that the true function f(Xp) is actually linear: it is much more likely
that f(Xp) will be nonlinear and nonadditive in X.
Generalized Additive Models extends linear models by replacing the linear
function

∑p
1 βiXp by an additive function

∑p
1 si(Xp), where si(·) is an un-

specified smooth function that can be estimated by any so-called scatter-
plot smoother, for example a running mean, running median, running least
squares line or a spline [5].
Final formulation of the model is:

Y = g(Xp) = s1(X1) + s2(X2) + · · ·+ sp(Xp) + error,

where g(·) is called the link function and si(·) are called shape functions.

3.1.1 GA2M: GAM with pairwise interactions

Standard GAMs are easy to interpret since users can visualize the relation-
ship between the univariate terms of the GAM and the dependent variable
through a plot fi(xi) vs. xi. However there is unfortunately a significant gap
between the performance of the best standard GAMs and full complexity
models.
In [8], authors suggest adding terms of interacting pairs of features to stan-
dard GAMs. In fact, two-dimensional interactions can still be rendered as
heatmaps of fij(xi, xj) on the two-dimensional xi, xj-plane, and thus a model
that includes only one- and two-dimensional components is still intelligible.

The resulting models, called GA2M-models, for Generalized Additive Models
plus Interactions, consist of univariate terms and a small number of pairwise
interaction terms and has the form:

Y = g(Xp) =

p∑
i=1

si(Xi) +

p∑
i=1

p∑
j=i

sij(Xi, Xj) + error.

3.2 From linear regression to piecewise poly-

nomials and splines

As we said before, it is extremely unlikely that the true function f(X) is
actually linear, we need then a way to move beyond linearity and extend
linear regression to a non-linear relation between feature X and response Y .

3.2. FROM LINEAR REGRESSION TO PIECEWISE POLYNOMIALS AND SPLINES19

Polynomial regression extends the linear model by augmenting the vector
of inputs X with additional variables, which are transformations of X, and
then use linear models in this new space of derived input features.
For example, let’s suppose that X is one-dimensional. A linear model to fit
data will be in the form:

f(X) = β0 + β1X.

If we want to move into a polynomial regression problem, for example a
cubic regression, we add two extra features obtained as transformation of
X: the second degree polynomial transformation X2 and the third degree
polynomial transformation X3. The final model have the form:

f(x) = β0 + β1X + β2X
2 + β3X

3.

As we increase the polynomial degrees of the transformation of X, the curve
obtained contains high oscillations which leads to shapes that are over-
flexible.
However, polynomial regression has some issues: if we increase the poly-
nomial degree of the transformation of X too much, we can run into an
overfitting problem; furthermore polynomial regression is very susceptible to
extreme values: if we add a value of Y extremely high or extremely low, it
will change the shape of the whole polynomial, affecting also the fit of data
that are very far away from the extreme Y value.

In order to overcome disadvantages of polynomial regression, we can use
an improved regression technique which, instead of building one model for
the entire dataset, divides the domain of X into contiguous intervals and
represents f by a separate polynomial in each interval. Such technique is
known as piecewise polynomials [6].
The points of the domain of X determining intervals are called knots and are
represented by the notation ξi, with i = 1, . . . , n where n is the cardinality
of the nodes, ie how many parts the domain of X has been divided into. The
single functions are known as piecewise functions and are indicated by the
notation hi(X). Piecewise functions can be constant functions, or they can
be formulated as polynomial regression problems.
For example, let’s suppose we divide the domain of X into three intervals
with two knots at points ξ1 and ξ2 and suppose to use polynomials that reach
at most grade 3. The model to be solved will be:

yi =

β01 + β11xi + β21x

2
i + β31x

3
i + εi, if xi < ξ1

β02 + β12xi + β22x
2
i + β32x

3
i + εi, if ξ1 < xi ≤ ξ2

β03 + β13xi + β23x
2
i + β33x

3
i + εi, if xi ≥ ξ2

(3.1)

20 CHAPTER 3. GENERALIZED ADDITIVE MODELS (GAM)

Using more knots leads to a more flexible piecewise polynomial, as we use dif-
ferent piecewise functions for every interval of the domain and each piecewise
function depends only on the distribution of data of that particular interval.

Figure 3.1: Left panel shows a piecewise constant function fit to some artificial data.
Broken vertical lineas indicate positions of the two knots ξ1 and ξ2. Blue curve represents
the true function, from which data were generated. Right panel shows piecewise linear
functions to fit the same data.

Fig. 3.1 shows two simple piecewise polynomials: the first is piecewise con-
stant with three piecewise functions and two knots; while the second shows
a piecewise linear fit on the same data.
Still in figure 3.1 we can observe the behavior of the various piecewise func-
tions at the knots: the green lines are not continuous at the extremes of the
intervals. We can avoid this by adding an extra constraint that the polyno-
mials on either side of a knot should be continuous at the knot. In the first
two panels of figure 3.2 we can see the effect of this constraint: polynomials
functions are now continuous, but the smoothness at the knots is still absent.
To solve this problem, we can add another constraint: the first derivative of
both polynomials functions must be the same.
It is important to notice that each constraint that we impose on a piecewise
polynomial effectively frees up one degree of freedom and we reduce the com-
plexity of the resulting piecewise polynomial fit.
Left-bottom panel of fig. 3.2 shows the effects of the last introduced con-
straint; while the bottom-right panel is the same polynomial with a new
constraint: the second derivative of both polynomials functions at the knots
must be the same. The final results is a good approximation of the true
function and, in particular, at this step we obtain a cubic spline.

3.2. FROM LINEAR REGRESSION TO PIECEWISE POLYNOMIALS AND SPLINES21

Figure 3.2: A series of piecewise-cubic polynomials with increasing orders of continuity.

More in general, an order-M spline with knots ξi, i = 1, . . . , K is a piece-
wise polynomial of order M , and has continuous derivatives up to order M−2
[6]. A cubic spline has M = 4 and continuous derivative up to the 2nd order.
There is seldom any good reason to go beyond cubic-splines, unless one is
interested in smooth derivatives.
A final consideration concerns the behavior of the function at the boudaries
of the intervals, where the data are less in number and more subject to vari-
ability. To mitigate this phenomenon, it can be assumed that the model
is linear at these particular regions. In this case we speak about natural
splines.

22 CHAPTER 3. GENERALIZED ADDITIVE MODELS (GAM)

3.3 Solve the knot selection problem: smooth-

ing splines

Now there remains the problem of deciding how many knots to use and where
to place them. An option would be to place a knot in an area of high variabil-
ity, since in those regions polynomial coefficients can change rapidly. Hence,
one option is to place more knots in places where the function might vary
most rapidly, and to place fewer knots where it seems more stable. Obvi-
ously, this requires prior knowledge which is not normally available. For this
reason, knots are usually distributed on a uniform fashion and cross valida-
tion is used to elect the best number of knots.

It is important to notice that there exists a method that avoids the knot
selection problem completely by using a maximal set of knots.
The method, known as smoothing splines, consists in solving the following
problem: among all functions f(x) with two continuous derivatives, find one
that minimizes the penalized residual sum of squares

RSS(f, λ) =
N∑
i=1

{yi − f(xi)}2 + λ

∫
{f ′′(t)}2dt, (3.2)

where λ is a fixed smoothing parameter. First term measures closeness to
data, while second term penalizes curvature in the function, and λ establish
a trade off between the two. Two special cases are:

• λ = 0: f can be any function that interpolates the data;

• λ =∞: the simple least squares line fit, since no second derivative can
be tolerated.

3.4 Conclusion

To summarize, Generalized Additive Models are a non-linear extension of
linear models since they replace the linear function

∑p
1 βiXp by an additive

function
∑p

1 si(Xp), where si(·) is an unspecified smooth function, usually a
spline. Moreover, GAMs can be estended to consider also interacting pair of
features.

In this thesis we use GAMs to build a model that is able to interpret and
imitate the behaviour of a forest. For this reason, we use GAMs that con-
siders also interacting pairs of features (GA2M) to better imitate complex

3.4. CONCLUSION 23

forest behaviour.
We choose to use splines as shape functions and - in particular - we use
smoothing splines to solve the knot selection problem and obtain a function
that fits data as much as possible without overfitting the data.

Chapter 4

GAM as forest explainer

4.1 Introduction

In recent years, decision support systems have become more and more per-
vasive in our everyday life. They are used by companies to analyze sales and
production costs, determining which products will be produced tomorrow
and which, instead, will be removed from the market. Another application
of decision support systems is the analysis of the risk to which a bank or
insurance is exposed, which is also decisive in the process of evaluating a
customer’s request for a service. Other applications of decision support sys-
tems relate to telecommunications, healthcare, environment, advertising and
many others. Every aspect of our private and social life is potentially influ-
enced by these systems and, for this reason, it is crucial that decision support
systems are as accurate and precise as possible in their predictions on which
decisions depend.
However, the decision accuracy is not the only important aspect: interpreta-
tion of the model is also fundamental. Very often decision support systems
are extremely complex models and this complexity makes it difficult to un-
derstand how they work. Interpretability, as we described in the section
1.1.2, allows to check whether the system used to make decisions is fair and
reasonable, without bias or prejudices. Additionally, users tend to place more
trust in tools they are able to understand.
Usually, when we are facing the problem of interpreting an extremely com-
plex model, the process is the following: the model is managed as a black
box, with no assumptions about its internal structure; the model is then fed
with different inputs and the behavior of the output is studied as the input
changes. For example, suppose we have a model that decides whether to
grant a loan to a certain person. We feed the system with person’s data

25

26 CHAPTER 4. GAM AS FOREST EXPLAINER

and observe the result. Then we perturb original data: how does the system
output change assuming the person is a few years older? Or with a less prof-
itable job? Or if he’s wearing yellow socks? With this procedure it is possible
to understand which features are important (i.e. age, job) and which are not
(i.e. the color of the socks) and to what extent important features influence
system decision.
However, the model we choose to interpret is very particular. Forests of
decision trees are extremely complex and accurate models, but they are a
composition of many extremely simple models. In fact, as we illustrated in
section 1.1.3, decision trees are models interpretable by definition, along with
decision rule and linear models. This property of decision trees allows us not
to treat the forest as a black box : we can indeed observe the internal struc-
tures of the trees to get clues about model behavior. Unfortunately, each tree
cannot be studied independently of the other trees in the forest, since the
decision-making power of the forest is given by the collaboration between the
trees composing it. This makes it very complicated to exploit the analysis
of individual trees to get an interpretation of the forest, so we decide to use
another model to explain the logic used by the forest to take decisions. In
particular, we choose to use Generalized Additive Models (GAMs).
As in the previous chapters, GAMs are the sum of the results obtained from
many very simple models, called shape functions, each representing the rela-
tionship between one - or maximum two - features and the response. Each
shape function can be arbitrarily complex, making the final model almost
as powerful as a forest of decision trees. However, since each shape function
is at most two-dimensional, it can be represented graphically, making the
GAMs extremely intuitive and easily interpretable by humans.

4.1.1 Overview of the procedure

The procedure for obtaining a GAM that acts as an interpreter of a forest of
decision trees is divided into two phases:

1. Forest Structure Analysys. In this phase, we analyse internal struc-
ture of the trees composing the forest to get clues about forest be-
haviour, i.e. which features are used most often, which ones are likely
to interact and which feature values have a greater impact in determin-
ing the response;

2. GAM Extraction. In this phase, the GAM is trained on the basis of
the results obtained during previous phase.

4.1. INTRODUCTION 27

Forest structure analysis. The first phase - see [4.3] - is the most impor-
tant phase and has two main objectives:

• identify the most important features in the forest and how they interact
with each other;

• build a dataset from which the GAM can be extracted.

In particular, during the forest structure analysis, all the tests contained
in the internal nodes of the trees in the forest are extracted. Each test is a
pair < feature; threshold >.
By observing where and how often a feature appears within the trees, it is
possible to estimate the importance of that feature; while observing the be-
havior of two features at the same time allows to identify possible interactions
between them. This aspect in detail in section 4.3.2.
On the other hand, by grouping the thresholds that appear for each features,
it is possible to estimate the domain of the features, i.e. which values the
feature can assume. This aspect in detail in section 4.3.3.

GAM extraction. The second phase deals with processing the results
obtained from the forest structure analysis to obtain a GAM that acts as an
interpreter of the forest.
In order to be able to train a GAM, we need three things:

• a dataset;

• which features to consider as terms, ie. which features to consider when
training the shape functions.

The information relating to the most important features and their interac-
tions is used to choose the terms of the GAM, while the information relating
to the domain of the features is used to produce the datasets from which to
extract the GAM.
Since there is no procedure valid for all forests, the second phase exploits dif-
ferent methods to compose datasets starting from the results obtained from
the forest structure analysis. These datasets are then used to train different
GAMs and we choose the model whose behavior is most similar to that of
the forest. The details of this phase are described in section 4.4.3.

28 CHAPTER 4. GAM AS FOREST EXPLAINER

4.2 Experimental setup

In this section we explain the experimental setup that we apply to test and
evaluate our procedure.
First of all, datasets used are described, then we illustrate how we prepare
and conduct the tests and, at the end, the metric used to evaluate models is
explained.

4.2.1 Datasets

To validate the proposed methodology, we chose to use five different datasets.
Two of them are synthetically extracted from a known model - one with
interactions, the other without interactions - in order to have valid references
to evaluate the results of the first phase of the procedure, i.e. the extraction
of the most important features and the estimate of the domain of the features.
Other three datasets are based on real data and are used as case studies to
illustrate the results that can be obtained by applying the procedure.
The five dataset we use are:

• the data no inter dataset, a synthetic dataset without interactions;

• the data inter dataset, a synthetic dataset with an interaction;

• the concrete dataset from the UCI repository, with 8 features and
1030 entries. The aim is to predict the concrete compressive strength,
which is a highly nonlinear function of age and ingredients;

• the houses dataset from Kaggle, with 21614 entries and 18 features.
The aim is to predict the price of the houses by observing their char-
acteristics.

• the YearPredictionMSD dataset from the UCI repository, with 90 fea-
tures and 515345 entries. The aim is to predict the release year of a
song from audio features;

Dataset Entries Features
Synthetic no inter 50.000 6
Synthetic w/ inter 50.000 6

Concrete 1.030 8
Houses 21.614 18
Years 515.345 90

Table 4.1: Sum up of dataset characteristics.

4.2. EXPERIMENTAL SETUP 29

Data no inter dataset. In order to investigate the information contained
in forest internal nodes, we create a synthetic dataset with 50.000 points,
generated by the model:

y = x30 − 12x21 + 3

√
x42 −

x3
4

+ x4 + log(x25 + 1)

Some of the features have a large impact on the final response, like feature
x0 or x2 which grows super-exponentially. Other features, like x3 or x4 or
x5 are less significative. In general, all the features behave as non-complex
functions, with a small number of maximum or minimum points and never
oscillate. In fig. 4.1 we can see the functions of the model generating the
artificial dataset used to investigate on forest internal node thresholds.

Figure 4.1: Functions of the model generating the artificial dataset used for investigate on
forest internal node thresholds.

data inter dataset. In order to test how procedure works when detect-
ing interactions between features, we create another synthetic dataset with
50.000 points, generated by the model:

y = x0sin(
x0
4

) + 7log(x21 + 1) + 25(atan(x2) + sin(
x2
10

))−

−350000(Gauss(x3, x4, µ = 0, σ2 = 500)− 35)− (x25)
1/3,

where Gauss(x3, x4, µ = 0, σ2 = 500) is a gaussian function with zero mean
and variance equal to 500. This dataset contains features that have a more
complex behavior than the dataset described in previous paragraph, but each

30 CHAPTER 4. GAM AS FOREST EXPLAINER

Figure 4.2: Functions of the model generating the second artificial dataset. This models
has an interaction between features x3 and x4.

feature has more or less the same impact on the final response. In fig 4.2 we
can see graphs of the functions generating the model.

Note about houses dataset. Dataset houses response distribution has
a long right tail and this leads to an increase in the value of the global
RMSE. In fact, the prices of most of the houses in the dataset lay between
$75,000 and $1,500,000, while a subset of about 500 cases were priced between
$1,500,000 and $7,500,000. Also due to the approximation made by the
heuristics applied to reconstruct the dataset starting from the forest, some
GAMs were unable to adequately model these particular cases and their
performance was particularly affected. We therefore decided to apply the log
function to house prices.

4.2.2 Metric

Since we are facing only regression problems, we decide to use RMSE as
measure of accuracy of the models we are testing.

RMSE =

√∑n
i=1(yi − ŷi)2

n

where yi is GAM output when feeded with the ith record of test dataset and
ŷi is the true response.

4.2. EXPERIMENTAL SETUP 31

4.2.3 Methodology

Forest. From each dataset we train a forest using the lightgbm1 library.
Each tree in the forests has 32 leaves. We used early stopping as a stopping
criterion, using accuracy as a measure of goodness and stopping training
when no improvement is achieved for 50 consecutive rounds. We also fixed
the number of trees in the forest not to exceed 10,000. In table 4.2 we can
see, for every dataset, how many trees are in the forest and the value of the
RMSE of the forest with respect to the original dataset.

Lightgbm
Dataset n. of trees RMSE

Synthetic no inter 111 11073.95
Synthetic w/ inter 5739 2.17

Concrete 331 3.91
Houses 341 0.16
Years 4612 8.68

Table 4.2: Forests extracted from datasets.

GAM. To train the GAM, we use the library pyGAM2 . In particular, we use
the object LinearGAM, which exploits the linear function as link function. To
model terms of single features, we use splines; while, to model interaction
terms, we use tensor product.
Moreover, library pyGAM implements the smoothing spline procedure, then we
do not need to set the number of knots for each spline. We use the library
default value λ = 0.6 as smoothing parameter.
It is important to note that while using this library we ran into some perfor-
mance issues. In particular, when the dataset is large or with many features
or the model involves the use of many nodes for shape functions, the process
may fail due to excessive memory requirements. This limitation of the li-
brary affected some aspects of the procedure, in particular during the phase
of creating the datasets necessary to train the GAMs [see section 4.3.3].

1https://lightgbm.readthedocs.io/en/latest/
2https://pygam.readthedocs.io/en/latest/

32 CHAPTER 4. GAM AS FOREST EXPLAINER

4.3 Forest structure analysis

The first step in the process of obtaining a GAM that can works as an in-
terpreter for a forest of decision trees is the Forest Structure Analysis. A
forest of decision trees is an extremely powerful and complex model, but it
has the characteristic of being an ensemble of extremely simple and inter-
pretable models: decision trees. The purpose of the Forest Structure Anal-
ysis is therefore to observe how decision trees that make up the forest are
built, observing and cataloging their internal structures. Information gath-
ered during this phase are fundamental to move on with the second phase
of the procedure: the extraction of a GAM working as an interpreter of the
forest of decision tree we are considering.

Forest analysis structure is divided into three steps:

1. Information gathering;

2. Estimate the most important features and identify possible interactions
between features;

3. Estimate the domain of the features and identify subdomains that are
particularly relevant in the decision making process.

Below, the three steps are explained in detail. In particular, for each
step, we describe how the experiment is conducted and show the results
obtained by applying the procedure to the two synthetic dataset described
in the previous section.

4.3.1 Information gathering

The purpose of the first step of the forest structure analysis is to observe in-
ternal structure of decision trees composing the forest to gather information
necessary to estimate the importance of the features, their possible interac-
tions and their domain.
As we saw in previous chapter, in section 2.1, nodes inside a decision tree are
divided into two categories: leaves and internal nodes. Leaves contain the
final information, that is the response, while internal nodes, through their
tests, define the path to reach the leaves. Tests contained in the internal
nodes can be represented as pairs < i, v >, where i represents the index of
the feature being tested and v represents the threshold. If the value of feature
xi exceeds the value v, the decision path continues along the right branch of
the tree, otherwise it follows the left branch.

4.3. FOREST STRUCTURE ANALYSIS 33

We can therefore say that leaves contain information about the response,
while internal nodes contain information about features. Since this step of
the forest structure analysis focuses on gather information about features,
we focus only on internal nodes, excluding leaves.

Operationally, the information gathering step is configured as an explo-
ration of the tree, enumerating all possible decision paths that connect the
root of tree to all its leaves. Along the way, all test pairs < i, v > are collected
and some elaborations are produced:

• feature dictionary: for every feature, all the values v are collected and
sorted;

• same-path features: how many times a pair of features appears along
the same decision path;

• adjacent features: how many times each element of a pair of features
appears one after the other along a decision path.

Example below shows the result obtained when gathering information on a
twelve-leaf tree trained with the lightgbm library. In fig. 4.3 the obtained
tree is shown: the tests, expressed in the form xi ≤ v, are reported in the
internal nodes.
The following three tables show the results obtained. Table 4.3 shows the
features dictionary, that is the list of values v that appear, for each feature,
in the internal nodes of the tree. Table 4.4 shows the same-path features
measure: for each pair of features, the number of decision paths in which
it appears is indicated. Table 4.5 shows the adjacent features measure: for
each pair of features, is indicated the number of times in which the terms of
a pair of features appear one after the other within a decision path.
In next sections we see how this information is used.

Figure 4.3: Example tree with twelve leaves, trained with the lighgbm library.

34 CHAPTER 4. GAM AS FOREST EXPLAINER

Feature dictionary
3 0 31.326 32.54
4 -23.887 -22.744 28.401 30.355
5 -22.423 -20.799 29.467 29.895

Table 4.3: feature-dictionary: list of values v
that appear, for each feature, in the internal
nodes of the tree.

Same-path features
3 4 5

3 0 9 12
4 0 0 9
5 0 0 0

Table 4.4: same-path fea-
tures: the number of deci-
sion paths in which a pair
of features appears.

Adjacent features
3 4 5

3 0 1 4
4 0 0 5
5 0 0 0

Table 4.5: adjacent fea-
tures: number of times in
which terms of a pair of
features appear one after
the other within a decision
path

4.3.2 Feature importance and features interaction

Second step of the forest structure analysis deals with estimating which are
the most important features and the possible interactions between them
within the decision making process of the forest.
At the basis of this step there is the notion described in section 2.1, where
we describe how tests contained in the internal nodes of the trees influence
the response that is produced at the end of decision making process. Below
is a brief description of the concept.

Let’s suppose that a tree contains a test on an attribute x0, for example
x0 ≤ ξ1. Then, decision region is split into two parts and response of tree
considers at most two values:

y =

{
v1, if x0 ≤ ξ1

v2, if x0 > ξ1

This happens recursively for all the tests, for every tree in forest, segmenting
decision region in a regular and precise pattern.

This theoretical approach suggests that the more often a feature appears
as the subject of a tests, the more it is responsible for fragmentation of de-
cision space and, therefore, the more relevant in determining outcome of the
forest.
Therefore, to get an estimate of feature importance, we decided to count how
many times a feature appears as the subject of a test. In particular, using
information obtained from previous step, we can count how many values are
associated with the feature in the features dictionary.
In fig. 4.4 are reported information about the two synthetic dataset, de-
scribed in 4.2.1. Graph on the left is about the first synthetic dataset, in
which first and third terms grow super-exponentially, unlike other terms
which have less impact on final response of the model. In the graph we

4.3. FOREST STRUCTURE ANALYSIS 35

can see that features considered most important are precisely the first and
the third. Graph on the right is about the second synthetic dataset, which
considers an interaction between the fourth and the fifth term. This dataset
does not present terms that are clearly more important than the others and,
in fact, graph does not show the preponderance of some features over others,
unlike the graph relating to the first synthetic dataset.

Figure 4.4: Feature importance calculated for the two synthetic datasets: on the left, the
graph related to the dataset that does not include interactions; on the right the graph
related to the dataset which includes an interaction between x3 (f4) and x4 (f5).

However, often forest outcome is the result of a collaboration of several
features. It is possible to train GAM to grasp also the behavior of a function
of two features at the same time, as indicated in [8] and reported in the
section 3.1.1.
The simplest approach to identify pairs of interacting features is brute forc-
ing : perturb behavior of all possible pairs of features to identify which ones
have a more significant impact on model final outcome. Clearly this approach
is highly time consuming, especially if dataset has a large number of features.
Therefore we propose an heuristic to identify which pairs of features are most
likely to interact. The heuristic is based on what is reported in [2]: ”If two
variables X1 and X2 are used in different trees, but never in the same tree,
then they do not interact: X1 can only affect the prediction through the trees
it occurs in, and since X2 does not occur in these trees, the value of X2 can-
not possibly affect the effect of X1, and vice versa.”.

This is the reason why - during the information gathering step - we count
how many times a pair of features appears within the same decision path
(same-path features) and how many times the terms of a pair of features
appear one following the other (adjacent features). In table 4.6 we can see
the same-path features information obtained from the forest trained using
the synthetic dataset considering interactions and in table 4.7, we have the
adjacent features information.

36 CHAPTER 4. GAM AS FOREST EXPLAINER

We know that dataset we used to train the forest is generated from a model
containing an interaction between features x3 and x4. Looking at the results
shown in tables 4.6 and 4.7, the score obtained by the interaction is high-
lighted in bold. In the table showing the results of the same-path features
measure, we see that the result obtained for the interaction between x3 and
x4 is not the highest, there are other pairs of features - highlighted in red -
that have an higher score, such as (x0, x2), or (x2, x3), or (x2, x4). Instead,
using the adjacent features measure, the interaction between x3 and x4 is
correctly detected: it is the one with the highest score.
In light of the results obtained, we decide to discard the same-path features
measure and use only the adjacent features measure to identify interactions
between features.

0 1 2 3 4 5
0 0 67540 78911 73553 73240 59361
1 0 0 70501 65303 65035 55525
2 0 0 0 80120 78820 58512
3 0 0 0 0 78202 57113
4 0 0 0 0 0 55489
5 0 0 0 0 0 0

Table 4.6: [same-path features] Interaction
scores obtained counting how many times a pair
of features appears in the same decision path, no
matter how far, considering all trees in forest.

0 1 2 3 4 5
0 0 7564 9269 8501 8520 6565
1 0 0 7943 7383 7231 6141
2 0 0 0 9602 9583 6139
3 0 0 0 0 10083 6388
4 0 0 0 0 0 6002
5 0 0 0 0 0 0

Table 4.7: [adjacent features] Interaction scores
obtained counting how often terms in the fea-
ture pair appear in the same decision path one
after the other, considering all trees in forest.

Boosting algorithm particular behaviour. The lightgbm library, which
we used to train the forest, uses the boosting algorithm. As we see in section
2.2.2, boosting builds the trees in a sequential way and each tree is grown
using information from previously grown trees. The first trees of the forest
contain the most important information about the original dataset, while the
last trees - obtained on the basis of the residuals of previous trees - gradually
acquire less importance. For this reason, in the case of boosting algorithms,
we choose to consider only a subset of trees - the most important ones - to
identify the interactions between features. In this way, in addition to opti-
mizing the algorithm, we obtain a score less influenced by the ”noise” of the
last trees. We calculate same-path features and adjacent features measures
by considering only the first 10% of the trees in the forest. Results obtained
are shown in table 4.8. Now, the score of the interaction between x3 and x4 is
much higher than other possible interaction thus we can conclude that - if we
are using the boosting algoritm - if we consider only the subset of the most
important tree, we obtain a more precise result. Consequently, from now on,
when we use the heuristic to identify possible interactions, we assume that it
is always the score obtained from adjacent features information, applied to

4.3. FOREST STRUCTURE ANALYSIS 37

only 10% of the trees in the forest.

0 1 2 3 4 5
0 0 641 1015 964 978 336
1 0 0 687 528 540 293
2 0 0 0 995 936 292
3 0 0 0 0 1639 284
4 0 0 0 0 0 217
5 0 0 0 0 0 0

Table 4.8: [boosting] Interaction scores obtained counting how often terms in the feature pair appear in
the same decision path one after the other (adjacent features) , considering 10% of the trees in forest.

4.3.3 Features domain

Third step of the forest structure analysis deals with estimating features do-
main and studies values present infeatures dictionary to identify parts of the
domain that are particularly relevant during the decision making process.
This step is fundamental for the construction of datasets necessary to train
GAMs.
To build datasets, it is obviously necessary to identify which values differ-
ent features can assume, however this may not be sufficient. In fact, as we
mention in section 4.2.3, the pyGAM library used to train GAMs has some per-
formance problems that make it infeasible to train models when the dataset
is too large, so we cannot create a dataset that combines all the possible
values of all the features to reconstruct the decision space described by the
forest: resulting dataset resulting would be too large.
For this reason, we introduce an analysis of the distribution of values as-
sumed by different features: identifying the most relevant parts of domain in
decision making process allows the creation of smaller datasets, but able to
grasp essence of forest behavior, so that resulting GAM can take full advan-
tage of it.

Starting point for this step is features dictionary, i.e. the collection, for
each feature, of values assumed as thresholds in tests contained in the inter-
nal nodes of trees, ordered from the lowest to the highest.
The idea is to study the distribution of values for each feature to understand
if any clues about the behavior of the forest can emerge from it.
Since models from which we extract the synthetic datasets are known, we are
able to exactly represent the relationship between each feature xi and the re-

38 CHAPTER 4. GAM AS FOREST EXPLAINER

sponse y. For example, if we consider the first artificial dataset described in
4.2.1, we know that the relationship existing between feature x2 and the re-
sponse y is expressed according to the formula f(y|x2) = 3

√
(x2)4. Since this

relationship is a one-dimensional function, we can represent it with a graph
and compare its trend with the plot of values corresponding to feature in the
features dictionary, and with the histogram of threshold values frquency, as
we can see in fig. 4.5.

Figure 4.5: On the left, the plot of the function f(y|x2). Center image shows the sorted
threshold values concerning tests on feature x2, extracted from the forest. On the right,
histogram regarding threshold values frequency.

Graph on the left shows graph of f(y|x2) = 3
√
x42; graph in the middle

shows values contained in features dictionary for feature x2 and graph on
the right shows thresholds values frequency. In particular, regarding middle
graph, in the x-axes we have a progressive number, while on the y-axes we
can find threshold values. The first thing we notice is that values of x2 have
the same domain in the first and in the last picture, meaning that thresh-
old values span through all possible values assumed by the original model.
We therefore have confirmation that distribution of values associated with a
feature in features dictionary contains information about original domain of
the feature in the original dataset.
Moreover, we can see that, in the first image, function firstly decreases, then
for −20 < x2 < 20 function remains stable and, in the final part, func-
tion increases its value. Similarly, the plot in the middle has values for all
increasing/decreasing parts of the function, while there is a jump in corre-
spondence to stationary interval. The histogram confirms that there is an
higher frequency of thresholds where original function shows a non-stationary
behaviour. These evidences suggest that forest is able to identify relation-
ships between individual features and the response and concentrates a greater
number of tests where changes in the feature influence the response the most.

However, due to the computational complexity of GAMs, we need to keep

4.3. FOREST STRUCTURE ANALYSIS 39

datasets size under control, making it necessary to extrapolate from the fea-
ture domain those points where forest focuses its attention during decision
making process. Using these points, we can obtain smaller datasets that
can transmit to GAMs the most important information about forest decision
power, then it will be GAM’s task to approximate the parts of the domain
where information is lacking.
Now let’s see some ways to get samples from the feature domain. Some
sampling methods take into account only the domain extension, others also
consider values frequency of the features. In the next step of the procedure,
when training GAMs, we will be able to evaluate which of the sampling
methods works better.

We denote by N the parameter that defines the number of samples per fea-
tures to be obtained when applying the different sample methods.

Method 0 - all : all thresholds.

Method 1 - equi width : sampling the domain in regular intervals.
We extract N values distributed at regular intervals in the range between
maximum and minimum value assumed by feature. This is a very simple
method that takes into account only estimated domain of features.

Method 2 - k-means: Sampling via clustering using k-means algo-
rithm. We propose this method in order to exploit information given by
the relation between y and the feature we are sampling. In fact, we know
that a lot of threshold values are concentrated where y is more influenced by
the feature. When clustering threshold values using k-means, we obtain k
centroids which are representative of k groups of highly similar thresholds,
with |k| = N . Then we can use centroids as samples to build the dataset.

Method 3 - equi size: Sampling by getting the mean of set of fixed
number of thresholds. The k-means algorithm incorporates the most
similar elements into a cluster, determining sets that contain an arbitrary
number of points. In our case this could be a disadvantage since we have
seen that a large number of thresholds with similar values represent a trait
of high variability in the relationship between the feature and the response.
Representing a cloud of very close points with a single sample could make us
lose information on the fragmentation of the decision space.
For this reason we tried a different approach: we create clusters by dividing

40 CHAPTER 4. GAM AS FOREST EXPLAINER

threshold values into N groups, each containing the same number of ele-
ments, and we calculate their centroid. In this way, a large set of thresholds
with very similar values can produce several samples, while using k-means
we would have obtained only one sample.

In order to see the effects of the three methods, we apply them to the fea-
ture dictionary obtained from a forest trained with the first synthetic dataset
explained in 4.2.1.
In figure 4.6 we can see how the three sampling methods work when applied
to the relation between y and x2. The black points are the samples obtained,
while the red points are the projection of the samples on the function repre-
senting the relation between y and x2.
We can see that the first method (equi width) has many points distributed in
a stationary part of the function, while the more variable part of the function
is described by a few samples.
Second method (k-means) extracts less points from the stationary part of the
function, while distributes more samples where function is non-stationary.
However, comparing the behavior of the second and the third method, we
can see that the third method has a major concentration of samples when
function increases more its value.
At first sight, third method (equi size) seems to be the one performing bet-
ter. In the next section (sect. 4.4) we will see the application of all three
sampling methods on forests trained with four different datasets in order to
understand the real efficiency of the proposed methods on real data.

Figure 4.6: Three sample methods compared: in the first picture we show the behavior of
the first method (equi width), in the second picture we show the behavior of the second
method (k-means) and in the third picture we show the behavior of the third method
(equi size).

4.4. GAM EXTRACTION 41

4.4 GAM extraction

The second and last phase of procedure aims to use information obtained
from forest structure analysis to train the final model: a GAM that works
as an interpreter of a forest of decision trees.
Let’s summarize the information we get from the forest structure analysis:

• a score that allows us to sort the features from the most important to
the least important;

• a score that allows us to identify possible interactions between the
features;

• a sampling of the features domain.

Information regarding the importance of features and the possibility of their
interaction are exploited to identify terms of the GAM that we need to train;
sampling of the domain of the features is used to compose dataset.
Below, we describe how we proceed operationally to identify the terms of the
GAM and to compose the dataset. At the end, we describe how we train the
GAM and show the result obtained using the two synthetic dataset described
in 4.2.1.

4.4.1 Terms identification

Theoretically, a GAM can have as many terms as we want, but practically,
the performance problems of the pyGAM library forces us to choose only a
few, the most important ones.
In particular, we have found that the performance problem occurs when the
library has to manage a GAM with more than 10 or 12 terms, which become
fewer if some terms are actually interactions between features. Of course,
the number of terms the library can handle is also subject to the size of the
dataset. The limit of 10 or 12 terms that we found refers to a dataset with
50,000 entries, which is the size of the dataset we have chosen for this phase
of the procedure.

In order to identify the most important features, we plot the score obtained
by each feature and we select a subset of 6-10 features among those that
have the highest score. For example, if the first 8 features have an index that
decreases more or less constantly, but between the 8th feature and 9th feature
there is a larger gap between the indices, the choice of the most important
features will be limited to the first 8 features, excluding the others.

42 CHAPTER 4. GAM AS FOREST EXPLAINER

In the case of the synthetic datasets that we use during the description of
this phase, the problem of choosing the number of terms does not arise, as
both datasets have 6 features. However, we still apply the feature selection
process as a toy example, to show a practical demonstration.

4.4.2 Dataset composition

To create the dataset, we initially thought of composing all the possible com-
binations of the samples extracted from the forest. In this way we would have
been able to totally recreate the decision space of the forest and represent all
the possible responses of the forest. Clearly, the size of this dataset is huge
and the algorithm to extract the GAM would have failed.
Therefore, we decide to build the dataset by randomly extracting a value for
each feature from the set of sampled thresholds to compose each record, up
to a certain number of records. In this way, we are able to create datasets
that are more manageable in terms of space, but sufficiently exhaustive to
represent the decision space defined by the forest.

parameter n defines dataset size

def createDataset(sampled_features, n):

dataset = []

for feature_values in sampled_features:

randomly extract n values for that feature

idx = np.random.choice(feature_values.shape[0], n, replace=True)

feature = feature_values[idx]

dataset.append(feature)

dataset = np.array(dataset)

dataset = dataset.T.reshape(-1, dataset.shape[0])

return dataset

4.4.3 GAM training

Up to now we address the problems of identifying the most important fea-
tures, identifying the possible interactions between them and building the
datasets to train the GAM.
But still there are some open points:

• check if identified interaction terms bring improvements to the model;

4.4. GAM EXTRACTION 43

Figure 4.7: Feature importance
calculated for the first synthetic
dataset.

In figure 4.7, the score of the first three
features drops steadily, while between
feature f2 and feature f6 there is a
greater jump. Last three features have
more or less the same value. According
to the procedure, the jump between
the third and the fourth feature deter-
mines the division between the most
important and less important features.

In figure 4.8, the first four features
have approximately the same value,
while, starting from the fifth feature,
the value begins to decrease. The pro-
cedure chooses the first four features
as terms and discards the last two, as
they are less important.

Figure 4.8: Feature importance cal-
culated for the second synthetic
dataset.

0 1 2 3 4 5
0 0 641 1015 964 978 336
1 0 0 687 528 540 293
2 0 0 0 995 936 292
3 0 0 0 0 1639 284
4 0 0 0 0 0 217
5 0 0 0 0 0 0

Table 4.9: Interaction scores obtained counting how
often terms in the feature pair appear in the same
decision path one after the other, considering 10% of
the trees in forest.

To identify feature interaction, we
observe the adjacent feature informa-
tion obtained during the forest struc-
ture analysis: possible interactions
are pairs of features that have a much
higher score than the others. To ver-
ify if pair of features really interact,
however, it is necessary to compare
the GAM with the interaction term
with the GAM without the interac-
tion term: only if accuracy of the
first model improves, then the inter-
action is confirmed.

44 CHAPTER 4. GAM AS FOREST EXPLAINER

• identify correct value of N , the number of sample obtained per features,
during the sampling process of the feature values.

To solve these open points we sample the values of the features using
different values of N , the sample size. In particular, for each method, we
sample the features with five different values of N : 20, 40, 60, 80, 100. We
build a different dataset for each method and sample size N . In total, the
built datasets are 16: for each one of the three methods (equi witdh, k-means
and equi size) we extract 5 different datasets, one for each N ; plus a dataset
that uses method all, which considers all the possible values of the features
and does not require a sample size. Then, with every dataset, we trained
some GAMs and we compare them to find out the one with the best RMSE.
At this point, we train another set of GAMs, this time considering possible
features interaction. We select the model performing better and we compare
it with the best model not considering interaction: the best model between
those two is selected as forest interpreter.

Now let’s apply the procedure just described to the second synthetic dataset
described in 4.2.1, the one that models an interaction between features x3
and x4, and let’s see how it works.
First of all, we train the GAMs that do not consider feature interactions.
Figure 4.9 shows the plot of the value of the RMSE regarding GAMs trained
with different dataset. RMSE value is obtained by comparing the predictions
of the GAM with the predictions of the forest. Each of the four line plots
refers to a different sampling method. Looking at the graph, we see that
GAMs trained with dataset obtained by sampling methods equi size and all
perform better than those obtained with sampling methods equi width and
k-means. However, from the graph it is difficult to understand which sam-
pling method produces the best GAM.
GAM obatined with the all method has RMSE = 10.215; while GAM ob-
tained with equi size method and N = 60 has RMSE = 10.182. We can
therefore conclude that, among the models that do not consider interactions
between features, the one trained with the dataset obtained via the sampling
method equi size is the model that imitates better the original forest.
Then, using the same procedure, we train GAMs having a term that con-
siders the interaction between feature x3 and feature x4. Results are shown
in figure 4.10. This time, sampling methods producing the best model are
equi width and k-means. In particular, the best model obtained using the
equi width method is the one with N = 20 as sample size, RSME = 2.288;
while the best model using k-means method is the one with N = 20, and
RMSE = 2.95.

4.4. GAM EXTRACTION 45

Figure 4.9: RMSE plot of GAMs
trained using dataset extracted with
different sampling method and size
(N) from the original forest trained
with dataset synthetic All the
models considers no interactions be-
tween features.

Figure 4.10: RMSE plot of GAMs
trained using dataset extracted with
different sampling method and size
(N) from the original forest trained
with dataset synthetic All the
models considers an interactions be-
tween features x3 and x4.

Now, let’s compare the best two models obtained, one considering an in-
teraction between features x3 and x4, the other considering no interaction at
all. In figure 4.11 we can see that GAM actually considering the interaction
between features x3 and x4 works much better. We already know that those
two features interacts, thus this result is an evidence that the method we use
to identify possible features interactions seems to correctly identify interac-
tions between pair of features.

In figure 4.12 we can see the plot of the five shape functions composing the
best GAM obtained from the forest trained with the data inter synthetic
dataset. In figure 4.13 we can see the plot of the original functions generating
the data inter synthetic dataset. Plot obtained from the GAM are quite
similar to original one.

46 CHAPTER 4. GAM AS FOREST EXPLAINER

Figure 4.11: Comparison between
best GAM considering an internac-
tion between features x3 and x4 and
best GAM not considering interac-
tion to test whether interaction im-
prove model or not.

In the next sections we apply the procedure to the three datasets described
in section 4.2.1 to verify the behavior of the procedure on real data, of which
we do not know the model generating them and that contain noise.

4.4. GAM EXTRACTION 47

Figure 4.12: Shape functions of the best GAM obtained from the forest trained with the
data inter dataset: GAM is trained with a dataset built by sampling 20 values from
thresholds using the equi width method; it considers an interaction between features x3
and x4. Blue lines represent the 95% confidence interval for the estimated function.

48 CHAPTER 4. GAM AS FOREST EXPLAINER

Figure 4.13: Functions of the model generating the artificial dataset data inter.

4.5. CASE STUDY: CONCRETE DATASET 49

4.5 Case study: concrete dataset

Concrete dataset contains information about the concrete compressive strength,
which is an highly nonlinear function of age and ingredients.
Dataset contains 1030 instances and every instance contains 9 quantitative
variables: 8 features and one response. There are no missing values. In table
4.10 we can find attribute description.

Nr. Name Data Type Description
1 Cement numerical Input Variable
2 Blast Furnace Slag numerical Input Variable
3 Fly Ash numerical Input Variable
4 Water numerical Input Variable
5 Superplasticizer numerical Input Variable
6 Coarse Aggregate numerical Input Variable
7 Fine Aggregate numerical Input Variable
8 Age numerical Input Variable
– Concrete compressive strength numerical Output Variable

Table 4.10: Features of concrete dataset.

We use 90% of the dataset as training set and 10% as testing set and
we use the training set to train a forest of decision trees using the lightgbm

library as described in 4.2.3. In the end, we obtain a forest having 331 trees
and RMSE = 3.91.

4.5.1 Forest Structure Analysis

First of all, we collect all the pairs < features, thresholds > from tests
contained in the internal nodes of all the trees in forest, then we compute
the feature dictionary and the two interaction measures: same-path features
and adjacent features.

Feature importance In figure 4.14 we can see the score obtained for each
feature. Features 1 (cement), 4 (water) and 6 (coarse aggregate) have the
highest score: the forest gives a lot of importance to these features during the
decision process. Features 2 (blast furnace slag) and 3 (fly ash), on the other
hand, have a very low score, meaning that they are not frequently tested by
the forest and have less impact on response prediction.

Features interaction In table 4.11 we can see the adjacent features infor-
mation. Interaction between features 1 (cement) and 8 (fine aggregate) has

50 CHAPTER 4. GAM AS FOREST EXPLAINER

the highest score. We test whether features 1 and 8 actually interact or not
when training the GAM.

Figure 4.14: Importance
of features of dataset
concrete.

1 2 3 4 5 6 7 8
1 0 82 15 78 46 31 25 107
2 0 0 15 73 28 26 13 33
3 0 0 0 5 14 4 8 8
4 0 0 0 0 15 26 52 46
5 0 0 0 0 0 15 31 51
6 0 0 0 0 0 0 33 19
7 0 0 0 0 0 0 0 32
8 0 0 0 0 0 0 0 0

Table 4.11: Adjacent feature information obtained from the forest structure analysis re-
garding concrete dataset.

4.5.2 GAM extraction

Using the different sampling methods seen in section 4.3.3, we sample thresh-
olds contained in features dictionary. As sample size N we use different val-
ues: 20, 40, 60, 80, 100. We create different dataset as described in section
4.4.2 and train GAMs as described in section 4.4.3.

Terms identification Dataset has 8 features, thus it is not necessary to
choose which features to use as terms when training the GAM. Regarding the
interaction term, adjacent features information shows that there is a possible
interaction between features 1 and 8.

4.5. CASE STUDY: CONCRETE DATASET 51

No interactions In figure 4.15 we see the RMSE values obtained from
the different GAMs obtained without considering interactions between fea-
tures. Methods equi width, equi size and all have more or less the same
performances, while method k-means outperforms other methods, improving
its results when paramether N grows. The latter observation is interesting
when compared with the result obtained by the all method: in fact, looking
at the results obtained using k-means as sampling method one can think
that the bigger the sample size N , the better the model; however, results ob-
tained using all the thresholds are much worst, demonstrating that sampling
threshold values is important in order to obtain GAMs that better model the
relationship between individual features and the response.

Figure 4.15: RMSE plot of GAMs
trained using dataset extracted with
different sampling method and size
(N) from the original forest trained
with dataset concrete. All the
models considers no interactions be-
tween features.

GAMs with interactions Figure 4.16 shows results of GAMs obtained
with a term considering an interaction between features 1 (cement) and 8
(age). Method k-means is the best sampling methods even when considering
interactions between features.

Choose best GAM We compare the best model obtained when consider-
ing an interaction between features 1 and 8 and the best model considering
no interactions at all. We can see results in figure 4.17: model considering
interaction is a little better than the other. This result confirms that the
concrete compressive strength is a function where cement (feature 1) and
age (feature 8) actually interact.

52 CHAPTER 4. GAM AS FOREST EXPLAINER

Figure 4.16: RMSE plot of GAMs
trained using dataset extracted with
different sampling method and size
(N) from the original forest trained
with dataset concrete. All the
models considers an interactions be-
tween cement (feature 1) and age
(feature 8).

Figure 4.17: Comparison between
best GAM considering an internac-
tion between features 1 and 8 and
best GAM not considering interac-
tion to test whether interaction im-
prove model or not.

Final GAM In figure 4.18 are represented the six shape functions com-
posing the best GAM obtained from the forest trained with the concrete

dataset.
First shape function concerns interaction between cement and age: the re-
lationship shows that the more cement there is and the older the concrete
is, the more the concrete compressive strength is high. Second shape func-
tion shows an inversely proportional relationship between water and concrete
compressive strength, while the relationship between fine aggregate and re-
sponse shows a more complex behavior. Fourth shape function shows that
superplasticizer increases concrete compressive strength, as does the blast
furnace slug of the fifth shape functions. Graph relating to last shape func-
tion, on the other hand, is less precise: we can see that the confidence interval
(in blue) is wider and the trend of the function is quite stationary. This is

4.5. CASE STUDY: CONCRETE DATASET 53

due to the fact that feature 3 is the least important, so we have fewer values
to sample, as the forest did not concentrated many tests on this feature.

Figure 4.18: Shape functions of the best GAM obtained from the forest trained with the
concrete dataset: GAM is trained with a dataset built by sampling 100 values from
thresholds using the k-means method; it considers an interaction between features 1 and
8. Blue lines represent the 95% confidence interval for the estimated function.

54 CHAPTER 4. GAM AS FOREST EXPLAINER

4.6 Case study: houses dataset

Houses dataset contains house sale prices for King County, which includes
Seattle. It includes homes sold between May 2014 and May 2015.
Dataset contains 21.613 instances and every instance has 19 quantitative
variables: 18 features and one response. Missing values have been removed
from original dataset. In table 4.12 we can find attribute description.

Nr. Name Data Type Description
1 date numerical Input Variable
2 bedrooms numerical Input Variable
3 bathrooms numerical Input Variable
4 sqft living numerical Input Variable
5 sqft lot numerical Input Variable
6 floors numerical Input Variable
7 waterfront boolean Input Variable
8 view numerical Input Variable
9 condition numerical Input Variable
10 grade numerical Input Variable
11 sqft above numerical Input Variable
12 sqft basement numerical Input Variable
13 yr built numerical Input Variable
14 yr renovated numerical Input Variable
15 lat numerical Input Variable
16 long numerical Input Variable
17 sqft living15 numerical Input Variable
18 sqft lot15 numerical Input Variable
– price numerical Output Variable

Table 4.12: Features of houses dataset.

As we see in section 4.2.1, houses dataset response has a long right tail:
there are a few houses sold at a very high price. Since the variability of those
prices is very high, forest is not able to catch the underlying behaviour and
its RMSE is affected. We therefore decide to apply the log function to house
prices.

We use 90% of the dataset as training set and 10% as testing set. We use the
training set to train a forest of decision trees using the lightgbm library as
descrived in 4.2.3. We obtain a forest having 341 trees and RMSE = 0.159.

4.6.1 Forest Structure Analysis

First of all, we collect all the pairs < features, thresholds > from tests
contained in the internal nodes of all the trees in forest, then we compute

4.6. CASE STUDY: HOUSES DATASET 55

the feature dictionary and the two interaction measures: same-path features
and adjacent features.

Feature importance In fig. 4.19 we can see the score obtained for each
feature. Features 15 (lat) and 16 (long) have a score much higher than other
features, which means that house geographical position has a large impact on
house prices. Following important features regards house dimensions, build-
ing year and selling date. Less important features are f6 and f7, respectively
the number of floors in the house and a boolean value recording whether it
is possible to see the sea from the house or not.

Figure 4.19: Importance of features of dataset houses.

Features interaction In table 4.13 we can see the adjacent features in-
formation. We can see that the highest score is reached by features f15 and
f16, respectively latitude and longitude. Also features f4 (sqft living) and
f15 (lat) have an high interaction score. We test them all in the next section
when training GAMs.

56 CHAPTER 4. GAM AS FOREST EXPLAINER

f1 f4 f5 f11 f13 f15 f16 f17 f18
f1 0 3 8 6 5 7 5 5 0
f4 0 0 1 1 9 91 27 8 2
f5 0 0 0 2 5 43 19 6 2
f11 0 0 0 0 6 21 12 1 1
f13 0 0 0 0 0 21 7 9 4
f15 0 0 0 0 0 0 134 40 20
f16 0 0 0 0 0 0 0 21 3
f17 0 0 0 0 0 0 0 0 1
f18 0 0 0 0 0 0 0 0 0

Table 4.13: Adjacent feature information obtained from the forest structure analysis re-
garding houses dataset.

4.6.2 GAM extraction

Using the different sampling methods seen in section 4.3.3, we sample thresh-
olds contained in features dictionary. As sample size N we use different val-
ues: 20, 40, 60, 80, 100, 150, 200. We create different dataset as described
in section 4.4.2 and train GAM as described in section 4.4.3.

Terms identification Dataset has 18 features, thus it is necessary to
choose which features to use as terms when training the GAM. We take
a look the first ten features of the histogram in fig. 4.19, i.e. until fea-
ture f11: excluding features f15 and f16, other features importance decreases
constantly, while there is an higher jump between features f11 and f12, re-
spectively the 9th and the 10th features. We therefore decide to use all the
first 9 features in order of importance as terms of the GAMs.
Regarding interaction terms, we test first the interaction between features
f15 and f16 and then we build another set of GAMs containing also the in-
teraction between f4 and f15. In the end, we compare both set of GAMs
with GAMs not considering interaction at all to determine whether features
actually interacts or not.

No interactions In figure 4.20 we see the RMSE values obtained from the
different GAMs obtained without considering interactions between features.
Results obtained with methods k-means and equi size are much better than
those obtained with equi width and all, even if k-means shows an extremely
variable behavior. It is interesting because k-means and equi size are both
sampling methods that take into account also the distribution of threshold
values along feature domain.

4.6. CASE STUDY: HOUSES DATASET 57

Moreover, sampling 80, 100 or 150 values works better than sampling 200
values and this underlines importance of sample size: a sample too big brings
poor generalization and resulting final GAMs suffers from it.
In the end, we elect as best GAM with no interaction terms the one trained
with the dataset obtained using the equi size sampling method and sample
size N = 150.

Figure 4.20: RMSE plot of GAMs
trained using dataset extracted with
different sampling method and size
(N) from the original forest trained
with dataset houses. All the models
considers no interactions between
features.

Interaction between f15 and f16. Figure 4.21 shows results of GAMs
obtained with a term considering an interaction between features f15 (lati-
tude) and f16 (longitude). Model results are similar to those of the GAMs
not considering interactions: best models are obtained when using methods
k-means (N = 80) and equi size (N = 150).
However, in this case, best model is the one obtained using the k-means sam-
pling method and sample size N = 80.

All interactions Figure 4.22 shows results of GAMs obtained with a term
considering an interaction between features f15 (latitude) and f16 (longitude)
and another term considering interaction between feature f15 (latitude) and
f4 (sqft living). Model results are similar to those of the GAMs not consider-
ing interactions: best models are obtained are obtained when using methods
k-means (N = 80) and equi size (N = 150).
Also in this case we elect as best GAM considering both interaction term the
one trained with the dataset obtained using the k-means sampling method
and sample size N = 80.

58 CHAPTER 4. GAM AS FOREST EXPLAINER

Figure 4.21: RMSE plot of GAMs
trained using dataset extracted with
different sampling method and size
(N) from the original forest trained
with dataset houses. All the models
considers no interactions between
features.

Figure 4.22: RMSE plot of GAMs
trained using dataset extracted with
different sampling method and size
(N) from the original forest trained
with dataset houses. All the models
considers no interactions between
features.

Choose best GAM We compare the best model obtained for each one of
the three cases analysed: best GAM considering no interaction at all, best
GAM considering an interaction term between f15 and f16 and best GAM
considering two interaction terms, one between f15 and f15 and one between
f4 and f15. In figure 4.23 we can see the results: introducing an interaction
term between features f15 and f16 brings an important improvement to the
model. However, interaction between f15 and f4 seems not to be relevant.
We therefore decide to choose the GAM considering only the interaction
between f15 and f16, trained with the dataset obtained with the k-means
sampling method, N = 80.

4.6. CASE STUDY: HOUSES DATASET 59

Figure 4.23: Comparison between
best GAM considering no interac-
tion at all, best GAM considering
an interaction term between f15 and
f16 and best GAM considering two
interaction terms, one between f15
and f15 and one between f4 and f15.

Final GAM In figures 4.24 and 4.25 are represented the 8 shape functions
composing the best GAM obtained from the forest trained with the houses

dataset.
First shape function concerns interaction between latitude and longitude: in
a certain geographical area houses prices are higher. Shape functions of f4,
f17, f5 and f11 are trivial: the bigger the house, the more it costs. Shape
function of f13 is about year in which house have been built: obviously, houses
built in more recent times have higher prices, while houses built before 1980
have a lower price, which peaks around 1915. What is surprising is price
behaviour before 1960, in fact it shows an obscillating behaviour as house is
older. This is probably due to the fact that some old houses may have already
been renovated or may have some historical significance. From shape funtion
of f1 seems that houses sold in 2015 has an higher price than houses sold
in 2014. Shape function of f18 is kind of strange: it seems that house price
have to be smaller as the value of f18 grows bigger. However, we can see that
this feature 95% confidence interval (the blue line) is mich wider than other
features. Probably feature 18 has a quite variable behavuoir that GAM was
unable to represent effectively.

60 CHAPTER 4. GAM AS FOREST EXPLAINER

Figure 4.24: Shape functions of the best GAM obtained from the forest trained with the
houses dataset: GAM is trained with a dataset built by sampling thresholds using the
k-means method and 80 as sample size; it considers an interaction terms between features
f15 and f16.

4.6. CASE STUDY: HOUSES DATASET 61

Figure 4.25: Shape functions of the best GAM obtained from the forest trained with
the houses dataset: GAM is trained with a dataset built by sampling 80 values from
thresholds using the k-means method; it considers an interaction term between features
f15 and f16. Blue lines represent the 95% confidence interval for the estimated function.

62 CHAPTER 4. GAM AS FOREST EXPLAINER

4.7 Case study: years dataset

Years dataset is a subset of the Million Song Dataset. The aim it to predict
the release year of a song from audio features. Songs are mostly western,
commercial tracks ranging from 1922 to 2011, with a peak in the year 2000s.
Dataset contains 515.345 instances and every instance has 91 numerical vari-
ables: 90 features and one response. All features are extracted from the
’timbre’ features from The Echo Nest API: first 12 features are timbre aver-
age, last 72 features are timbre covariance. There are no missing values.

We use 412.275 instances as training set and 103.068 instances as testing
set. We use the training set to train a forest of decision trees using the
lightgbm library as described in 4.2.1. We obtain a forest having 4612 trees
and RMSE = 8.68.

4.7.1 Forest Structure Analysis

First of all, we collect all the pairs < features, thresholds > from tests
contained in the internal nodes of all the trees in forest, then we compute
the feature dictionary and the two interaction measures: same-path features
and adjacent features.

Feature importance Since dataset has too many features, in fig. 4.26
we can see score obtained by the fifteen features with the highest score. In
particular, most important features are f3, f6 and f1, all related to the timbre
average.
We can also observe that 9 of the 10 most important features are actually
related to timbre average, while features related to timbre covariance seems
to have a less important impact on the final response.

Feature interactions In table 4.14 we can see the adjacent features infor-
mation. We can see that the highest score is reached by features f1 and f2
and by features f1 and f3. In the next section, we train GAMs considering
both possible interaction to test whether couple of features (f1, f2) and (f1,
f3) actually interact.

4.7. CASE STUDY: YEARS DATASET 63

Figure 4.26: Importance of features of dataset years.

f1 f2 f3 f5 f6 f7 f9 f10 f12 f13 f14 f17 f36 f68 f78
f1 0 237 158 18 29 14 9 10 12 41 43 4 11 7 11
f2 0 0 79 26 33 9 12 20 7 31 16 4 8 4 20
f3 0 0 0 40 29 42 20 15 23 20 32 7 22 18 14
f5 0 0 0 0 30 29 10 8 9 4 8 2 12 8 8
f6 0 0 0 0 0 9 19 23 16 16 8 10 19 11 6
f7 0 0 0 0 0 0 14 19 8 9 8 5 10 4 7
f9 0 0 0 0 0 0 0 13 5 3 4 3 1 5 2
f10 0 0 0 0 0 0 0 0 14 12 1 4 3 8 4
f12 0 0 0 0 0 0 0 0 0 6 3 1 4 2 5
f13 0 0 0 0 0 0 0 0 0 0 6 4 20 2 17
f14 0 0 0 0 0 0 0 0 0 0 0 0 6 5 9
f17 0 0 0 0 0 0 0 0 0 0 0 0 1 2 5
f36 0 0 0 0 0 0 0 0 0 0 0 0 0 9 7
f68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
f78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.14: Adjacent feature information obtained from the forest structure analysis re-
garding years dataset.

64 CHAPTER 4. GAM AS FOREST EXPLAINER

4.7.2 GAM extraction

Using the different sampling methods seen in section 4.3.3, we sample thresh-
olds contained in features dictionary. As sample size N we use different val-
ues: 20, 40, 60, 80, 100, 150, 200. We create different dataset as described
in section 4.4.2 and train GAM as described in section 4.4.3.

Terms identification Dataset has 90 features, thus it is necessary to
choose which features to use as terms when training the GAM. We take a
look at the first ten features of the histogram in fig. 4.26, i.e. until feature f10:
excluding features f3, f6 and f1, other features decrease their importance in a
constant trend. Highest jumps are between features f2 and f5 and between f9
and f10. We thus decide to consider features until feature f9, the 9th feature.
Regarding interaction terms, we test first the interaction between features f1
and f2 and then we build another set of GAMs containing also the interaction
between f1 and f3. In the end, we compare both set of GAMs with GAMs not
considering interaction at all to determine whether features actually interacts
or not.

Figure 4.27: RMSE plot of GAMs
trained using dataset extracted with
different sampling method and size
(N) from the original forest trained
with dataset years. All the mod-
els considers no interaction between
features.

No interactions In figure 4.27 we see the RMSE values obtained by the
different GAMs not considering interactions between features.
Models obtained with method equi width have the worst results no matter
the sample size N we are considering.
Models obtained with method equi size performs better on average.
Models obtained with method k-means have results with an high variance,
but we can see that the higher the sample size N , the better the results.

4.7. CASE STUDY: YEARS DATASET 65

Models obtained with method all reach good results, but models obtained
with k-means or equi size sampling methods behave better.
It is hard to determine which model is the one performing better between
those trained with k-means and equi size, so we take a look at RMSE values.
Model obtained with k-means sampling methods and sample size N = 200
has RMSE = 4.527, while best model obtained with equi size and N = 80
has RMSE = 4.602. We can then conclude that the best model is the one
obtained with k-means sampling method.

Interaction between f1 and f2. Figure 4.28 shows results of GAMs ob-
tained with a term considering an interaction between features f1 and f2.
Model results are similar to those of the GAMs obtained considering no in-
teraction terms: best model is obtained when using method k-means and
sample size N = 200.

Figure 4.28: RMSE plot of best
GAMs obtained with different sam-
pling method extracted from the
original forest trained with dataset
years. Models do consider an inter-
action between features f1 and f2.

All interactions Figure 4.29 shows the behaviour in terms of RMSE of all
the GAMs trained considering two interaction terms: one between f1 and f2,
one between f1 and f3. Models results are similar to those of the models not
considering interactions and models considering a single interaction between
f1 and f2. Model performing better is obtained using k-means as sampling
method, N = 200 as sample size.

Choose best GAM We compare the best model obtained for each one
of the three cases analysed: best GAM considering no interaction at all,
best GAM considering an interaction term between f1 and f2 and best GAM

66 CHAPTER 4. GAM AS FOREST EXPLAINER

Figure 4.29: RMSE plot of GAMs
trained using dataset extracted with
different sampling method and size
(N) from the original forest trained
with dataset years. All the models
considers has two interaction terms:
one between f1 and f2, one between
f1 and f3.

considering two interaction terms, one between f1 and f2 and one between f1
and f3. In figure 4.30 we can see the results: introducing an interaction term
between features f1 and f2 brings some improvement to the model. Moreover,
also interaction between f1 and f3 seems to be relevant.
We therefore decide to choose the GAM considering both interactions, trained
with the dataset obtained with the k-means sampling method and N = 200.

Figure 4.30: Comparison between
best GAM considering no interac-
tion at all, best GAM considering an
interaction term between f1 and f2
and best GAM considering two in-
teraction terms, one between f1 and
f2 and one between f1 and f3.

Final GAM In figure 4.31 are represented the 8 shape functions compos-
ing the best GAM obtained from the forest trained with the years dataset.
Shape function of interaction term between f1 and f2 indicates that the co-
operation between the two features makes the response value increase when
the value of f1 rises and the value of f2 falls. A similar behavior can also be

4.7. CASE STUDY: YEARS DATASET 67

observed in the shape function of the interaction between f1 and f3. Graphs
of features f5 and f4 show an inversely proportional relationship between fea-
tures and response; while shape function of feature f12 shows an increase in
the response value as the feature value increases. Shape functions of fea-
tures f11, f6 and f8 show a wider confidence interval and, in general, a more
stationary behavior than other features.

68 CHAPTER 4. GAM AS FOREST EXPLAINER

Figure 4.31: Shape functions of the best GAM obtained from the forest trained with the
years dataset: GAM is trained with a dataset built by sampling 200 values from thresholds
using the k-means method; it considers two interaction terms, one between features f1 and
f2 and the other between f1 and f3. Blue lines represent the 95% confidence interval for
the estimated function.

4.8. CONCLUSION 69

4.8 Conclusion

In this chapter we have seen the procedure to obtain a GAM that acts as
an interpreter of a forest of decision trees, starting from the forest itself.
Procedure is divided into two phases: forest structure analysis and GAM
extraction. In the first phase, we observe trees internal structure to get
clues about forest behaviour. In particular, we observe how tests on features
are distributed in trees internal nodes in order to identify most important
features and possible features interactions. Second phase processes results
obtained from the forest structure analysis to obtain the GAM.
In the end, we apply the procedure to some case study in order to test how
procedure works on real data. Forest learned on real data are a composi-
tion of hundreds or thousands of decision tree, hard to be interpreted and
extremely powerful. GAMs are a linear combination of very simple models,
each representing the relationship between one - or maximum two - features
and the response. It is clear that GAMs have less decision-making power
than forests. Another degree of approximation is introduced when reducing
the number of features considered to train the model. However, as we can
see in table 4.15, accuracy of GAMs towards forest predictions is excellent.
In the case of the concrete dataset, we use all 8 features and we get a
RMSE = ±3.1 MPa. The houses dataset has 18 features, 9 are used and
we get a RMSE = ±1.3 (log transformation has been applied to original
house prices). The years dataset aims to predict the year of publication of
a song from audio features. The dataset has 90 features, we use 9 of them
and we get a RMSE = ±4.5 years.

Case study n.of features n. GAM terms GAM RMSE
concrete 8 8 3.1
houses 18 9 1.3
years 90 9 4.5

Table 4.15: Case studies results.

We can therefore conclude that GAMs can actually be used as interpreter of
a forest of decision trees since it is an easily interpretable model and powerful
enough to imitate the forest behavior.

Conclusions

Decision support systems are often very accurate models, but so complex that
they are seen as black boxes : models whose internals are either unknown to
the observer or they are known but uninterpretable by humans. In the first
chapter of this thesis we talk about interpretability and explainability of ma-
chine leaning models; then we give a possible definition of the problem of
”opening the black box”: i.e. find a method that is able to understand how a
model works. In particular, when stating that a method is able to open the
black box, we are referring to one of the following statements: (i) it explains
the model, (ii) it explains the outcome, (iii) it can inspect the black box
internally, (iv) it provides a transparent solution.
In the second chapter of the thesis, we analyse a well-known and widely used
prediction model: forests of decision trees. Forests are extremely accurate
and complex models, but they have an interesting feature: they are a ensem-
ble of decision trees. In the chapter dedicated to explainability, we see that
decision trees are models that can be interpreted by definition, due to a very
simple structure. The complexity of the forests of decision trees, therefore,
lies not in the internal structures of the model, but in how decision trees
interact with each other.
Third chapter is dedicated to generalized additive models (GAMs). GAMs
can be seen as a non-linear extension of linear models which makes them ca-
pable of modeling very complex problems, but remaining easily interpretable
by humans since they can be represented graphically.
The aim of this thesis is to find a way to obtain a GAM that acts as global
interpreter of a forest of decision trees, exploiting information that we can
gather by observing forest’s internal structure. Fourth chapter contains the
description of the procedure we propose to obtain forest global interpreter.
Procedure is divided into two phases: forest structure analysis and GAM
extraction. In the first phase, we observe trees internal structure to get
clues about forest behaviour. In particular, we observe how tests on features
are distributed in trees internal nodes in order to identify most important
features and possible features interactions. Second phase processes results

71

72 CONCLUSIONS

obtained from the forest structure analysis to obtain the GAM. At the end
of the chapter, we test the procedure on real-world data.
In order to state that we can actually obtain a GAM that works as global
interpreter for a forest of decision trees, we have to satisfy two conditions:
first, GAM’s shape functions plots have to grasp the relation between fea-
tures; second, GAMs have to be accurate enough to imitate forest behaviour.
As we can see from case study results [figures 4.12, 4.18, 4.24, 4.31], GAMs
are able to identify the interaction between features and response and the
resulting shape functions are easily interpreted. As far as accuracy towards
forest concerns, GAMs are not as accurate as forest and during procedure
we introduce some approximations, however, if we analyse RMSE values of
GAM computed with respect to forest predictions, we can see that GAM
actually are able to imitate forest behaviour.
In the end, we can conclude that GAMs can actually be used as global in-
terpreter of a forest of decision trees, since it is an easily interpretable model
and powerful enough to imitate the forest behavior.

Bibliography

[1] Finale Doshi-Velez and Been Kim. Towards a rigorous science of inter-
pretable machine learning, 2017.

[2] Kshitij Goyal, Sebastijan Dumancic, and Hendrik Blockeel. Feature
interactions in xgboost. July 2020.

[3] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Fosca Giannotti, and Dino Pedreschi. A survey of methods for explaining
black box models. ACM Comput. Surv., 51(5), August 2018. ISSN
0360-0300. doi: 10.1145/3236009. URL https://doi.org/10.1145/

3236009.

[4] Satoshi Hara and Kohei Hayashi. Making tree ensembles interpretable.
June 2016.

[5] Trevor Hastie and Robert Tibshirani. Generalized additive models.
Statist. Sci., 1(3):297–310, 08 1986.

[6] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The ele-
ments of statistical learning: data mining, inference and prediction.
Springer, 2 edition, 2009. URL http://www-stat.stanford.edu/

~tibs/ElemStatLearn/.

[7] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshi-
rani. An Introduction to Statistical Learning: With Applications in R.
Springer Publishing Company, Incorporated, 2014. ISBN 1461471370.

[8] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate
intelligible models with pairwise interactions. page 623–631, 2013. URL
https://doi.org/10.1145/2487575.2487579.

[9] Scott M Lundberg and Su-In Lee. A unified approach to interpreting
model predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

73

https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://doi.org/10.1145/2487575.2487579

74 BIBLIOGRAPHY

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems, volume 30. Curran Associates, Inc.,
2017.

[10] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should
i trust you?”: Explaining the predictions of any classifier, 2016.

[11] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction
to Data Mining. Addison Wesley, us ed edition, May 2005. ISBN
0321321367.

	Abstract
	Introduction
	Explainable AI
	Interpretability
	Dimensions of iterpretability
	Desiderata of an interpretable model
	Already interpretable models
	Model complexity

	Open the Black Box problem
	Problem formulation
	Model explanation
	Outcome explanation
	Model inspection
	Transparent box design

	Conclusion

	Forest of decision trees
	Decision Trees
	How to build a decision tree

	Ensemble of trees: Random Forests and Boosting
	Random forests
	Boosting

	Conclusion

	Generalized additive models (GAM)
	Model description
	GA2M: GAM with pairwise interactions

	From linear regression to piecewise polynomials and splines
	Solve the knot selection problem: smoothing splines
	Conclusion

	GAM as forest explainer
	Introduction
	Overview of the procedure

	Experimental setup
	Datasets
	Metric
	Methodology

	Forest structure analysis
	Information gathering
	Feature importance and features interaction
	Features domain

	GAM extraction
	Terms identification
	Dataset composition
	GAM training

	Case study: concrete dataset
	Forest Structure Analysis
	GAM extraction

	Case study: houses dataset
	Forest Structure Analysis
	GAM extraction

	Case study: years dataset
	Forest Structure Analysis
	GAM extraction

	Conclusion

	Conclusions

