
DOCTOR OF PHILOSOPHY

PROGRAMME COMPUTER SCIENCES

CYCLE XXXIII

FINAL THESIS

Application-level Security for
Robotic Networks

SSD: INF/01

PROGRAMME COORDINATOR

Prof. Agostino CORTESI

SUPERVISOR

Prof. Agostino CORTESI

GRADUATE STUDENT

Gianluca CAIAZZA

Matriculation Number 840009

iii

Abstract
Cyber-physical systems (CPS) are increasingly deployed as part of the interconnected
robotic cyber-infrastructures which are known as the Industrial Internet of Things (IIoT)
network. Those pervasive devices are capable of automatizing various tasks and provide
novel functionalities in a wide range of applications. However, this growth made the
devices a worthwhile target for attackers and cybercriminals as well. The new frontiers
of large-scale deployments of connected smart devices, in which we observed a tremen-
dous growth in the amount of stored and processed sensitive data, have maturated into
a widespread suspicion concerning the way in which these flow into the infrastructures.
How do we make these devices safe? How can we verify their correct operation? Due
to the intrinsic limitations of those devices, either from the power consumption point of
view and the actual computational power at our disposal, engineering cybersecurity so-
lutions are not trivial. This thesis focuses on discussing and developing security solutions
for those networks by analyzing the application of the security pillars of Confidentiality,
Integrity, Availability, Privacy, Authenticity and Trustworthiness, Non-Repudiation, Ac-
countability, and Auditability. We provide an overview of the robotic scene and intro-
duce the Robot Operating System (ROS), the framework we adopted as a testbed of our
solutions. More in detail, this work discusses (i) novel solutions in the field of authenti-
cation and authorization in access control architectures and policy generation, manage-
ment, and distribution, (ii) vulnerabilities and countermeasures in robotic frameworks,
and (iii) novel approaches of network vulnerabilities excavation and accountability. In
order to provide agnostic research tools and results, we develop static solutions at the
application-level that could exploit prior offline computation power.

The main results of the thesis can be summarized as follows:

1. A state of the art analysis of application-level threats on a general robotic frame-
work and an in-deep review of the attack surface on ROS

2. The formalization of novel approaches to access control architectures distribution,
and the dissertation of an advanced policy management tooling we developed in
the field of authentication and authorization

3. The definition of a novel network vulnerability excavation tool and discussion on
attribute-based encryption to tackle privacy issues

4. Creation of a blockchain-powered software-based black box for a robotic network
to address Accountability and Non-Repudiation

The results discussed in this thesis give a solid base for the definition of the future
security mechanisms for robotic devices that could be easily and securely integrated into
big-scale deployments spreading security solutions by reducing overall the tradeoff be-
tween security and usability.

v

Acknowledgements
Gianluca Caiazza

Venice, February 2021

First and foremost, I would like to express my sincere gratitude to my supervisor Prof.
Agostino Cortesi, for his guidance, his support, and his enthusiasm throughout those
years. My gratitude goes to the reviewers of this thesis, Prof. Carlo Ferrari, Prof. Fabio
Martinelli, and Prof. Corrado Santoro, for their comments and useful suggestions.

I am grateful to the people I had the opportunity to work with throughout this thesis
for their invaluable support in broadening my perspectives and improve my scientific
background. I would particularly like to thank Dr. Pietro Ferrara for the many sugges-
tions and the time spent reading this work.

I am beholden to my friend and coauthor Ruffin White, to whom I will be forever thankful
for the wholehearted dedication and the many sleepless nights spent working together.

Furthermore, I would like to thank all the colleagues at Ca’ Foscari. I would particu-
larly like to single out Martina Olliaro for the amusing moments shared while backing
each other up.

I also want to thank some friends: particularly Francesco Di Sano, for his never-ending
interests, the fruitful discussions and the spur to dive into so many different adven-
tures. Maksym and Francesco, for their friendship and support. Gianmarco, Giacomo
and Marco, for the fantastic time spent together. Last but not least, Alessio Ferraresso,
Alessio Gravinese, Edoardo and Luchino Magnone, for their friendship and the great
memories of the time I spent in Seoul.

Finally, I want to thank my family: my parents Saverio and Concetta, my brother Man-
lio, my uncle Vincenzo, my Grandparents Nunzio and Giuseppina; for motivating me
to reach my objectives and supporting me spiritually not only throughout the writing of
this thesis but also during my whole life.

vii

Contents

Introduction 1
Methodology . 3
Summary of the Contributions . 5
Structure of the Thesis . 6

1 ROS: What, Why and How 7
1.1 Background . 8
1.2 Concepts . 9

1.2.1 Filesystem level . 10
1.2.2 Computation Graph level . 11
1.2.3 Community level . 14

1.3 ROS API . 14
1.3.1 Master API . 16
1.3.2 Parameter API . 16
1.3.3 Node API . 17

1.4 Communications . 19
1.4.1 Establishing a topic connection . 19
1.4.2 Establishing a service connection . 20

1.5 Attacks on ROS . 20
1.5.1 Inject Attack . 22
1.5.2 Service Isolation Attack . 22
1.5.3 Man in the middle attack . 23
1.5.4 Malicious Parameter Update Attack 24
1.5.5 Log and Monitoring Attack . 24

1.6 Countermeasures . 25
1.7 ROS 2 . 25

1.7.1 Structure of the middleware . 27
1.7.2 Data Distribution Service (DDS) . 27
1.7.3 ROS1 vs ROS2 Architecture . 29

1.8 Conclusions . 30

2 Access Control Policies 33
2.1 Background . 34
2.2 Distribution Architectures . 36

2.2.1 User-pull Architecture . 37

viii

2.2.2 Server-pull Architecture . 40
2.3 Access Control Policy . 41
2.4 Procedurally Provision Access Policy . 43

2.4.1 ComArmor . 43
2.4.2 Keymint . 45
2.4.3 Results . 48

2.5 Conclusions . 52

3 Vulnerability Excavation 53
3.1 Background . 54
3.2 Data Distribution Service DDS . 55

3.2.1 Authentication . 57
3.2.2 Access Control . 57

3.3 Threat & Attack Model . 58
3.4 Approach . 60

3.4.1 Network Topology . 61
3.4.2 Heuristic Graph and Lazy Evaluation 61
3.4.3 Reachability Verification . 64

3.5 Implementation . 66
3.6 Results . 67

3.6.1 Source and Target . 67
3.6.2 Source Only . 68
3.6.3 Target Only . 69

3.7 Countermeasures . 69
3.7.1 Attribute Base Encryption . 71
3.7.2 Policy Representation . 72
3.7.3 Policy Conversion . 73

3.8 Conclusions . 76

4 Accountability 79
4.1 Background . 80

4.1.1 Distributed Ledgers Technology . 82
4.1.2 Immutable Logs . 84
4.1.3 Event Data Recorders . 85

4.2 System Architecture . 86
4.2.1 Obligated Roles and Observing Parties 86
4.2.2 Recording, Storage and Access Requirements 87
4.2.3 Defined Primitives and System Properties 88

4.3 Approach . 88
4.3.1 Incremental Integrity Proof . 89
4.3.2 Smart Contract . 90

4.4 Implementation . 92
4.4.1 Checkpoint Integration . 93

ix

4.4.2 Transaction Family for EDR Smart Contracts 94
4.4.3 Performance Profiling and QoS Tuning 95

4.5 Conclusions . 97

Conclusion 99

Bibliography 101

1

Introduction

The number of smart connected devices, known as cyber-physical systems (CPS), has
grown exponentially in the last few years forming the so-called Internet of Things (IoT)
network, a large interconnected cyber-infrastructure of smart robotic devices, sensors,
and actuators. Industry 4.0 represents a shift in the future towards the adoption of those
ubiquitous connected robotic systems in the so-called Industrial IoT (IIoT) network. We
see applications of such devices in various domains as healthcare, energy management,
smart cities, intelligent transport systems (ITS), Cooperative-ITS (C-ITS), agriculture, etc.
Robots have pervaded those domains alongside Machine Learning (ML) and Artificial
Intelligence (AI), defining the so-called ’intelligent’ devices networks [52].
To cope with the requirement for custom device-tailored solutions, a significant number
of different IoT platforms has emerged [65]. We can easily observe how these are more
oriented to the so-called Consumer Internet of Things (CIoT) rather than to Industrial
IoT (IIoT) solutions. However, the high growth rate of consumer solutions in addition
to the steady development of Industrial applications has rapidly overcome the security
measures that were deployed originally for offline isolated one-purpose devices [5].
The security requirements for IoT networks are greatly influenced by the purpose they
serve. In such cases, as discussed by Dieber et al. [33], the information security pillars
of Confidentiality, Integrity, and Availability (CIA) that are generally applied to secure
information systems assume different priorities. Generally, in IoT robotic networks, we
consider a subset of the CIA pillars’ scope: confidentiality corresponds to privacy, au-
thenticity coincides with integrity, while availability is usually addressed via hardware
redundancy.
The transition from private network machine-to-machine (m2m) connectivity to a global
online network, has exposed those devices to threats previously not considered. Moving
from a greenfield private network, in which only known and controlled devices lives,
to a brownfield heterogeneous network (e.g Internet), raises several security concerns.
With the widespread deployment of those devices, cybersecurity becomes pivotal in pre-
venting their exploitation as an attack tool (e.g. Mirai botnet [50]). Unfortunately, cy-
bersecurity has not been highly prioritized during the design and manufacture of IoT
mobile robots. In the early days, robotic systems were simply intended as ‘physically’
enhanced computers without specific constraints or limitations. Since the goal was to
develop the fastest, lightest, and most practical solution for prototyping and deploying
products, overall, often the security component and the associated privacy risks were
overlooked. As discussed by Clark et al. [25], higher priority has been placed on low-
ering overall development costs and reduce time to market to deliver functionality to

2 Introduction

consumers, which resulted in a series of intrinsic technical debts for the entire field that
strongly affects the security of the products.
As discussed by Morante et al. [66], the emerging security problems that the field of
robotics faces now are similar to those presented for computers in the early days of the
Internet. In fact, robotic networks are generally subject to classical cyber-physical attacks
such as Denial of Service (DoS), eavesdropping, tampering, repetition, spoofing, etc. By
looking at OWASP 2018 Top 10 for the Internet of Things1 as well as for Web applications
Top 10, compared in Table 1, we can easily spot the similarities and correlations between
the issues in both charts. As we can see, for example, data privacy management, authen-
tication, lack of monitoring, are all shared issues.

Internet of Things Web Security
Weak, Guessable, or Hardcoded Password Injection (e.g. SQL)
Insecure Network Services Broken Authentication
Insecure Ecosystem Interfaces Sensitive Data Exposure
Lack of Secure Update Mechanism XML External Entities (XXE)
Use of Insecure or Outdated Components Broken Access Control
Insufficient Privacy Protection Security Misconfiguration
Insecure Data Transfer and Storage Cross-Site Scripting (XSS)
Lack of Device Management Insecure Deserialization
Insecure Default Settings Components with Known Vulnerabilities
Lack of Physical Hardening Insufficient Logging & Monitoring

TABLE 1: OWASP Top 10 Internet of Things and Web Service

A sample scenario of those issues can be foreseen from the vulnerabilities discovered
in 2017 when 500.000 pacemakers have been recalled by the US Food and Drug Adminis-
tration (FDA) due to the fears that they could be hacked to run the batteries down or even
alter the patient’s heartbeat via malicious firmware update [43]. Similar threats are com-
mon to other robotic platforms applications such as autonomous cars, drones, assistance
medical robots, etc [4]. This is even more critical considering the large scale introduction
of robotic applications into daily life coupled with the further adoption of wireless re-
mote access mechanisms. Ensuring security and privacy for the robotic platforms is thus
critical, as failures and attacks could have devastating consequences.

Considering the similarities between IoT devices and general Computers, despite being
tempting, we can’t straightforwardly apply the same mechanisms for cybersecurity. In
fact, although robotic and computer networks may seem similar, they are greatly different
[23]. In robotic networks, we need to consider different tradeoffs between safety-critical
corner cases, and security and real-time constraints that are not present in other systems.
We can find a significant number of devices that need to operate in conjunction with each

1https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf

Introduction 3

other. Therefore, it is necessary to have a good understanding of the robotics system to
assess security risks and threats.

Challenges

As discussed by the authors in [52], considering how robotic devices and smart appli-
cations are pervading several fields, even becoming essential, the risk associated with
cyber-attacks should not be underestimated. In terms of costs and disruptiveness, those
represent a huge threat to numerous systems. Therefore, different research areas should
be investigated by targeting the following objectives:

• Confidentiality: several works have focused on targeting confidentiality in IoT es-
pecially for privacy management. In particular, we can identify two major risks
associated with unauthorized access to private information (e.g. log, history, IP,
etc), and insecure communication over an unencrypted channel by sending plain-
text payload outside the device.

• Availability: in IoT devices, especially in a critical application, we can achieve
availability via hardware redundancy. However, in the case of price constraints
or device dimension issues, we can enhance the robustness of the product via mon-
itoring and preventing analysis.

• Authenticity (Trustworthiness): one of the most underestimated threats is repre-
sented by authenticity. The trustworthiness of robotic devices is paramount to their
utilization in safety-critical applications. Through this property, we can guarantee
the integrity of the system which is pivotal to leverage other critical system’s prop-
erties. Attacks in this area usually focus on bypassing authentication mechanisms
thus tampering with the components and compromise the system.

• Accountability (Non-Repudiation): in this research area, we want to keep agents
in the network accountable for their actions. This is critical in applications that re-
quire collaboration between peers in conjunction with critical constraints in regards
to safety and verification.

• Auditability: being able to design solutions that incorporate audit mechanisms
to keep the system running and organized is paramount in a highly distributed
autonomous network. Especially when multi-tier heterogeneous solutions are de-
ployed, this is not trivial to achieve.

Methodology

In order to discuss our approach, we need to introduce a reference architecture for the
IoT analysis. There exist several architecture models in the literature optimized for spe-
cific applications [48, 57]. For example, the authors in [92, 81] introduced a five-layer
architecture based on Service Oriented Architecture (SOA) to integrate IoT in enterprise

4 Introduction

services. Again, when analysing smart systems, Computer-Integrated Manufacturing
(CIM) model is often used [88]. However, for the sake of our analysis, we can reduce all
of them to a basic three-layer architecture, depicted in Figure 1 composed by: Applica-
tion, Network, and Perception layer.

Application

Network

Perception

FIGURE 1: Three-layer IoT architecture model

In detail each layer is composed as follows:

• Perception Layer: this is the lowest level which connects the hardware components
to the device. In this layer, we collect all the environmental values (e.g. tempera-
ture, speed, location, video footage, etc) using end-point nodes that are physically
connected to sensing technology (e.g. GPS, thermometer sensors, cameras, etc). We
can apply some basic cybersecurity solutions such as lightweight encryption for a
basic degree of data confidentiality, and key agreement between the components to
enforce authentication.

• Network Layer: this is the layer that is in charge of managing the connection from
the physical perception layer to the application realm. Through various network
technologies (e.g. 3/4/5G, Wi-Fi, Bluetooth, Zig-Bee, etc) it manages the informa-
tion route and storage offering high-level representation (wrappers) of real-world
peripherals data to middleware (e.g. cloud, robotic framework, etc). We can ap-
ply cybersecurity at this level with the usage of cryptographic key management,
intrusion detection systems (IDS), and routing security (e.g. via demilitarized zone
(DMZ)).

• Application Layer: this layer is in charge of all the application-specific services
to the users. It contains the core logic of the system and the high-level protocols
that compose the ’smart’ side of the device. Here we can apply more complex
information security management solutions that are agnostic with respect to the
hardware.

The goal of this thesis is to define cybersecurity solutions that can be applied to multi-
tier heterogeneous IoT networks. Since each application differs from the other, we want
to design agnostic solutions in order to offer mechanisms that can easily be applied and

Introduction 5

integrated regardless of the underlying devices. This leads us to target the application-
layer. Therefore, our research scrutinized this layer and present an in-deep analysis of
the core security objectives introduced above focusing on the development of those on
the open-source robotic framework Robot Operating System ROS1/ROS2, and on Data
Distribution Service (DDS).

In the thesis, we tackle all the challenges highlighted so far, either by exploiting formal
methods or using techniques that are nevertheless inspired by rigorous and disciplined
principles.

Main contributions

Regarding the research field of mobile IoT networks, we contribute by proposing a range
of frameworks to assist developers and auditors in analyzing, developing, and secure
highly distributed robotic networks. Our particular approach focuses on the application-
layer of the systems by providing agnostic solutions that can be applied to virtually all
IoT networks. Our goal is to develop powerful security solutions to reduce the trade-off
between security and usability.

By analyzing the state of the art and the threats at the application-layer we identify
the major sources of security concerns in those applications. To exemplify the threats, we
used Robot Operating System as a testbed and provide an in-deep review of how it works
and why it is a good representative of the robotic frameworks. Then, we guide through
a pentesting analysis of the framework with the usage of two tools we contribute for the
security verification of ROS’ applications. Our goal, at this stage, is to demonstrate the
false sensation of security given by a firewall or VPN, by showcasing the threats that
characterize the field.

In this context, we discuss the pivotal components of access control in a robotic net-
work. In this topic the contribution is twofold. First, we provide an overview of the
main properties and principles of authentication schemes. Additionally, we analyze the
policy distribution in this kind of network and we contribute two novel approaches for
secure policy attestation between peers by leveraging on the identity and attribute certifi-
cates defined by the x.509 standard. The second contribution is on access control policies.
First, we provide the properties and general understanding of the subject. Next, we intro-
duce our novel framework for automated systematic generation and verification of neces-
sary cryptographic artifacts via a meta-build system layout via workspaces and plugins,
namely ComArmor and Keymint. Finally, we experimentally assess the effectiveness of
the toolchain by testing the framework to a publish-subscribe network commenting on
the results.

We continue along this line of research, by contributing a formal verification tool
developed for automatic excavation of vulnerabilities in distributed IoT networks. To
showcase our work, we use the framework Data Distribution Service (DDS). We present
a threat model and our approach to the reconstruction of the topological heuristic graphs
via lazy evaluation. Then, we discuss reachability verification and the complexity of

6 Introduction

the solution. Finally, we experimentally demonstrate the effectiveness by showcasing
a simple application and discuss countermeasures to those threats. Lastly, we discuss
the usage of Attribute-Based Encryption (ABE), for secure policy distribution on public
communication channels.

About accountability and non-repudiation, we contribute a novel application of an
Event Data Recorder (EDR) based upon cryptographic linked integrity proofs, dissem-
inated via distributed ledgers, namely Black Block Recorder (BBR). The approach com-
bines the use of Digital Signature Algorithms (DSA), keyed-hash Message Authentica-
tion Codes (HMAC), and Smart Contract (SC) via Distributed Ledger Technology (DLT)
to enable tamper-evident logging while considering the limited resources available for
mobile robotic deployments. Finally, we perform an in-depth analysis of the software-
based solution and experimentally assess the performance of the framework on ROS2
and Hyperledger Sawtooth.

Structure of the Thesis

The thesis is structured as follows:

• Chapter 1 introduces Robot Operating System (ROS) and discuss agnostic application-
level attacks to robotic application and countermeasures. Then, we introduce ROS2
and comment on the evolution of the robotic middleware.

• Chapter 2 discusses access control policies and proposes a server-less and a server-
centric policy distribution architecture with the usage of x.509 identity and attribute
certificate, and a novel meta-built framework for procedurally provision access con-
trol policy.

• Chapter 3 discusses vulnerability excavation in distributed network via formal anal-
ysis techniques by exploiting passive sniffed discovery payload in DDS.

• Chapter 4 presents our framework for accountability in distributed robotic network
with the usage of blockchain technology.

7

Chapter 1

ROS: What, Why and How

The aim of this chapter is to introduce the main features of the Robot Operating Sys-
tem (ROS) from the Open Source Robotic Foundation (OSRF), the most popular robotic
framework [87], either in academia and industry upon which we base our discussions.
Since its creation in 2007, ROS has seen a steady increase in global grown. The enormous
exposure of the framework, with over 7600 citations of the original paper [75], the blatant
metrics [87], and the numerous community-driven events, in addition to several sector-
specific consortia such as Ros Industrial (ROS-I), ROS Healthcare (ROS-H), ROS Micro
Embedded Systems (micro-ROS), and ROS Hardware, well describe the pivotal position
that it has in the market.
However, along with the increased adoption and application outside the academic realm,
as evidenced by the multitude of robots available in the market 1, the framework became
a worthwhile target for attackers as well. As with other CPS and IoT software solu-
tions, ROS suffers from a lack of cybersecurity features necessary for real-world products
outside a controlled environment. Due to the immaturity of standards in the field, this
framework gives us a good representation of the products in the robotic scene.

Such as for similar frameworks, the ROS authors’ primary goal was to develop soft-
ware tools that users would need to undertake novel research and development projects.
At time of its creation, a lot of effort was spent into defining levels of abstractions that
would allow much of the software to be reused elsewhere, and ease the research and de-
velopment in academia. However, their solution, influenced by the robotic scene at that
time, was targeting platforms that do not suit the market anymore. A single robot with
workstation-class computational resources at its disposal, no-real time support, excellent
network connectivity (mostly wired), in addition to network flexibility - to ease develop-
ment - is an easy target for an attacker.

The developed paradigm overshot the original target of the PR2 robot2 and been applied
to wheeled robots, industrial arms, legged humanoids, self-driving cars, aerial vehicles,
surface vehicles, and many more.

1https://robots.ros.org/
2https://robots.ieee.org/robots/pr2/

8 Chapter 1. ROS: What, Why and How

Before we dive more into the whys and hows this framework gained its popularity, in this
chapter, the reader will learn firsthand about the basic structures and low-level mech-
anisms of ROS; specific vulnerabilities, along with information about how they can be
exploited, to manipulate ROS applications. Despite being ROS specific, the following at-
tacks are not limited to the presented framework and allow us to lay the foundation for
further discussions in the thesis.

The rest of this chapter is structured as follows:

• Background: in this section we introduce formally what ROS is, how it differs from
other robotic platforms, and how it works.

• Concepts: in this section we discuss in detail how are defined and what purpose
each level has inside the ecosystem.

• ROS API: based on what we learned in the previous section, here we analyze ROS
APIs in greater detail. We present the inside mechanisms behind the abstraction
level and how those translate into the actual implementation.

• Connection: in this section we specify how connections work in ROS. This is neces-
sary to grasp the general rules behind the connection and obtain the tools to better
understand the reasoning behind the attacks.

• Attacks: here we present some attacks to ROS applications and discuss their conse-
quences.

• Countermeasures: in this section we present some solutions to the previously dis-
cussed attacks.

• ROS 2: in this section we discuss the evolution of the framework and introduce
some key concepts behind ROS2, the next iteration of the framework, and Data
Distribution Service (DDS).

• Conclusions: in this section we summarize what we have presented in the chapter,
and introduce some basic concepts about the next chapters.

The work discussed in this chapter has been published in [32].

1.1 Background

ROS is defined as an open-source, meta-operating system for robots like manipulators,
mobile robots, autonomous cars, social robots, humanoids, unmanned aerial vehicles
(UAVs), and others. It provides the services and abstractions of an operating system, in-
cluding standard hardware APIs, low-level device control, implementation of commonly-
used functionality, message-passing between processes, and package management. It
also provides tools and libraries for obtaining, building, writing, running code across
multiple computers.

1.2. Concepts 9

It implements a peer-to-peer network, namely the graph, in which the loosely coupled
processes, known as nodes, can communicate at run-time via publish/subscribe pattern
[34] using the ROS communication infrastructure.

ROS leverages the communication between processes on different styles, including
synchronous RPC-style communication over services, asynchronous streaming of data
over topics, and storage of data on the parameter server.

Those different communication styles, that we will analyze later on, allow the devel-
opers to fit their solutions and code into different containers - similarly to standard code
reusing patterns - that can be shared among projects and ease the definition of the afore-
mentioned logical abstractions. Indeed, we can see ROS as a distributed framework of
processes that enables them to be individually designed and loosely coupled at run-time.
This is possible thanks to the logical combination of three abstract levels, namely: Filesys-
tem, Graph, and Community. This division allows making independent decisions about
development and implementation, leaving to developers the ability to integrate different
kinds of code.

1.2 Concepts

In this section, we dive more into the aforementioned ROS functionalities levels of con-
cepts: the Filesystem level, the Computation Graph level, and the Community level. As
we can see from 1.1, each level provides a different degree of abstraction to the others
from the hosting OS. In the following, we dive into detail in each of those levels individ-
ually.

Host Operating System (OS)

Community Level

Computational Graph Level

Filesystem Level

FIGURE 1.1: ROS functionalities level

10 Chapter 1. ROS: What, Why and How

1.2.1 Filesystem level

ROS develops some abstractions from the underlying operating system (OS). The Filesys-
tem level represents the first tier in which lives the mechanisms to communicate at the
application level with the host OS. As the name suggests, filesystem-level covers ROS
physical resources that we encounter on the host machine. In Figure 1.2, we see how
the filesystem level structures its internal components which define ROS’ entities in the
system.

Package

Filesystem Level

Meta
Package

 package.xml

Repository

Meta
Packages

package.xml

Nodes
Messages
Services
Misc

Packages

FIGURE 1.2: Filesystem level

In detail it defines:

• Packages: Packages are the main unit for organizing software in ROS. A package
may contain ROS runtime processes (nodes), a ROS-dependent library, datasets,
configuration files, or anything else that is usefully organized together.

• Metapackages: specialized Packages which only serve to represent a group of re-
lated other packages.

• Package Manifests: Manifests (package.xml) provide metadata about a package,
including its name, version, description, license information, dependencies, and
other meta information like exported packages.

• Repositories: A collection of packages that share a common VCS system. Packages
which share a VCS share the same version and can be released together. Reposito-
ries can also contain only one package.

• Message types: Message descriptions, define the data structures for messages sent
in ROS.

• Service types: Service descriptions, define the request and response data structures
for services in ROS.

1.2. Concepts 11

By means of this mechanisms, we define the components that we find in the Com-
putation Graph. In particular, this layer gives to developers a structured workspace to
build upon with the toolchain provided by the framework similar to Cmake or setuptools
for python, namely catkin3 and colcon4.

1.2.2 Computation Graph level

On top of the high-level layer provided by the filesystem level, the computation graph
represents the core component of a robot. For the sake of our analysis, this is the most
important component in which we specialize as well. This is, in fact, the peer-to-peer
network of ROS processes in which all the communications/actions happens. The basic
computation graph components of ROS are nodes, master, parameter server, messages,
services, and topics, all of which provide data to the graph in different ways as depicted
in Figure 1.3.

Params

Master

ServiceNode

Node
Topic

Node

msg

msg

msg

FIGURE 1.3: Computational Graph Level

Let’s review in detail each component:

• Nodes: Nodes are the basic processes that perform computation. ROS is designed
to be modular at a fine-grained scale; usually, a robot control system comprises
many nodes. For example, one node controls a camera, one node controls the tem-
perature sensors, and so on.

• Master: The ROS Master provides name registration and lookup to the rest of the
Computation Graph. We can see see the master as a DNS server for nodes. With-
out the Master, nodes would not be able to find each other, exchange messages, or
invoke services.

• Parameter Server: The Parameter Server allows data to be stored by key in a central
location. Even though we need to consider this as a logical independent compo-
nent, currently it is embedded in the Master.

3https://docs.ros.org/en/api/catkin/html/
4https://colcon.readthedocs.io/en/released/index.html

12 Chapter 1. ROS: What, Why and How

• Messages: Nodes communicate with each other by means of messages. A message
is simply a data structure, comprising typed fields.

• Topics: Messages are routed via a transport system with a publish/subscribe mech-
anism. A node sends out a message by publishing it to a given topic. The topic is a
name that is used to identify the content of the message. A node that is interested in
a certain kind of data will subscribe to the appropriate topic. It’s important to notice
that there may be multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics. Additionally,
publishers and subscribers are not aware of each other’s existence.

• Services: The topics publish/subscribe model is a very flexible communication
paradigm, but its many-to-many; for one-to-one transport it’s more appropriate a
request/reply interactions. This kind of communication is done via services, which
are defined by a pair of message structures: one for the request and one for the
reply. A providing node offers a service under a name and a client uses the service
by sending the request message and awaiting the reply.

• Actions: those are the simplest communication mechanisms in ROS, based on client-
server interaction, a client can invoke an action from a server and wait for the results
of the specifically provided computation. Actions are usually deployed for external
agents or resources.

Communications in the graph are managed by the Master, which acts as a nameser-
vice, to topic and service registration as well as node addresses. Therefore, each node has
to communicate with the Master, to receive information about other registered nodes,
and establish connections. The Master is also in charge of callbacks in case of network
activities, which allows nodes to dynamically create connections as new nodes appear.

In order to establish a connection, a node has to query the Master and retrieve the
address of the requested node (if present). Therefore, if a node wants to subscribe to a
topic, it needs to send a request connection to the node that publishes that topic and es-
tablish a connection over an agreed-upon connection protocol either TCP or UDP. The
most common protocol used in a ROS is TCPROS, which uses standard TCP/IP sockets.

However, considering the agnostic architecture of ROS, in order to unambiguously
address a specific node in the graph we need to introduce the concept of names. Names
are used for all the ROS’s components: nodes, topics, services, and parameters all have
names.

In detail, ROS provides a hierarchical naming structure that is used for all resources
in a ROS computation graph. These names are very powerful in ROS and central to how
larger and more complicated systems are composed in ROS.

Each resource is defined within a namespace, which it may share with many other
resources. In general, entities (node) can create other resources (topic, service, etc) within

1.2. Concepts 13

their namespace - working by namespace isolation - and they can access resources within
or above their own namespace. This encapsulation isolates different portions of the sys-
tem from accidentally picking the wrong named resource via their Uniform Resource
Identifier (URI).

Thanks to this abstraction we are indeed facilitating reusing code, since, from a de-
veloper perspective, it is enough to write the nodes that work together as if they are all
in the top-level namespace. When these nodes are integrated into a larger system, they
can be pushed down into a namespace that defines their collection of code.

In order to exemplify those concepts, we depict in Figure 1.4 a remote drone network
in which we identify three different namespaces. To ease readability, nodes’ topic have
been omitted from the picture and are represented by the blue arrows. In ROS we can
distinguish four types of Graph Resource Names: base, relative, global, and private.

Log
Params

Master

feature
~camera remote

high

sensors
drone remote

ILLEGAL ACTION

PERMITTED ACTION

FIGURE 1.4: Remote Drone example network

Let’s see below how they are defined:

• Base: this is addressed with the root URI "/", similarly to a Unix directory tree root
address. In the figure above, in the Base namespace we find the Topic "/Log".

• Relative: inside a namespace (e.g. ’/drone’), we can address a resource relatively as
in Unix systems. Therefore, if we are already in the working namespace, specified
earlier, and we have a subtree ’sensors’ with a resource ’high’ in it that publish the
altitude of the drone, we can address it as ’sensors/high’.

• Global: from whenever namespace we address unambiguously a resource from
the root. Therefore, if we are in namespace ’remote’ and we want to access the

14 Chapter 1. ROS: What, Why and How

altitude sensor from the previous example we can access it at the URI ’/drone/sen-
sors/high’.

• Private: we can also specify private name that are addressed as relative name but
are only visible from the internal namespace via the character ’~’ (i.e. ’~/sensors/-
camera/’).

As anticipated in the example, by default, the resolution is done relative to the node’s
namespace. As we can see, from the ’remote’ namespace we can access open/public
resources as high, but not the private one as camera.

A developer needs to be careful with the usage of the base; these are global names and
should be avoided as much as possible since they limit code portability of the implemen-
tation. As example, our drone network, can reuse the already implemented mechanisms
drone and remote by simply swapping the elements in the /drone/sensors/ namespace to
accomodate a different model of drone.

However, from an attacker’s point of view, nodes in the root are particularly interest-
ing since they offer global access and visibility to the network, therefore offering access
to all the resources of the robot.

1.2.3 Community level

Lastly, in this level we find ROS resources that enable separate communities to exchange
software and knowledge. It represents ROS’s developer community that shares code
structure and knowledge for the definition of more complex community-based systems.

These resources include:

• Distributions: ROS being a meta-operating system uses a versioning system stacks
similar to Linux distributions. It offers straightforward installation mechanisms
to a collection of software which is maintained consistent version across a set of
scheduled release.

• Repositories: as introduced in Section 1.2.1, ROS relies on a federated network of
code repositories, a bug ticketing system, where different institutions can develop
and release their own robot software components.

• Documentation: The ROS Wiki is the main forum for documenting information
about ROS. Additionally, tools as Blog, mailing list, ROS forum (discourse) are
available for discussing the framework.

1.3 ROS API

To develop a robot system in ROS, we use the framework’s meta-operating system API.
As discussed, the communication between ROS entities is managed in the computational
graph, in which we find a common and established set of subsystem APIs that are used

1.3. ROS API 15

to string together ROS nodes into an interconnected computational graph. In particular,
the API can be logically divided into three main categories: the master API, parameter
server API, nodes API where we put particular emphasis on the slave API subset.
In detail, those are implemented via XML-RPC, a stateless HTTP-based remote proce-
dure protocol. The reason why XML-RPC has been chosen, in 2007, instead of other
HTTP/HTTPS protocols is mainly because its lightweight, no stateful connection re-
quirements, and wide availability in a variety of programming languages. Still, this
choice comes with several drawbacks including verbose encoding of application-level
data, which results in greater overhead costs, and more notably the lack of any authenti-
cated encryption or authorized remote execution.
In particular, we addressed these issues for Secure ROS (SROS) [21, 98]. Other research
initiative worked towards similar goals [31]; in particular, introducing identification and
authorization of clients, to enforce basic access control, which can be achieved using
HTTPS security methods but are not supported natively by ROS.

To exemplify how this level works, and guide through the discussion, we leverage a
simple publisher-subscriber network 5 depicted in Figure 1.5. The goal is to deploy two
entities in the graph: a publisher (talker) - which will continually broadcast a message
over a channel "chatter" located in the root namespace - and a subscriber (listener). In the
computational graph, we identify two nodes, namely talker and listener, and introduce
the API calls we discuss in the following.
The rest of this section details the intended use of the three API categories, additionally
foreshadowing the potential vulnerability each called method may exhibit.

APIs:
Master

Parameter
Slave

Master

Params

listener

1. Register Subscriber
2. Set Parameter
3. Register Publisher
4. Update Publisher
5. Request Transport
6. Connect Transport

XMLRPC

ROSTCP

reg
 pub(“/

ch
att

er”
, ta

lke
r)

reg sub (“/chatter”, listener)

update pub (“/chatter”, talker)request transport (“/chatter”)

1

4

3

5

6 topic data (“/chatter”)

talker
set

 para
m(“/

tal
ke

r/l
og

", t
ru

e)

2

FIGURE 1.5: Publisher-Subscriber network

5http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python)

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

16 Chapter 1. ROS: What, Why and How

1.3.1 Master API

The master is the principal component in ROS. The Master API6, exposes several func-
tions to the other agents (aka nodes) via a standardized interface to connect to the mas-
ter (server). In detail, it provides registration API for registering as publishers, as sub-
scribers, and as service providers. Furthermore, it includes the mechanisms that allow
the discovery of agents in the namespaces of the network. All in all, we can picture
the master as a trusted entity in the network that is queried by the nodes via its address
(URI). In fact, as said, each entity in the graph is qualified by a URI that corresponds to
the host:port XML-RPC address of the entity in the server.

In the following we analyze in detail each of those API:

Register/Unregister - Subscriber, Publisher, Service

This group of calls makes use of the caller ID, API URI of the node, and the namespace/data-
type for subsystem registration. It is important to notice that identity derives completely
via the call parameters provided and it is never necessarily proven, neither through the
context of the socket connection or otherwise, enabling trivial spoofing of registration
requests.

Lookup - Node, Service

This group of calls is used to lookup the URIs for nodes given a node ID or service given
service name, enabling the resolution for the URI location of namespaced nodes and
services. Acquiring the URI for a target element in the graph is the starting point for many
remote attacks; open oracle access to arbitrary disclosure of this information simplifies
this process greatly.

Get - Master State/URI, Topic List/Type

For introspection analysis, the complete internal state of the Master can be retrieved,
extracting as result the entire topology of the ROS system, i.e. all current publishers,
subscribers, and services. This is used by debugging and live monitoring tools like rqt’s
node graph visualizer. Deeper topic introspection is also possible and is particularly
useful for fingerprinting the system and ascertaining the necessary header information
to spoof subsystem connection requests.

1.3.2 Parameter API

Like the Master, the Parameter Server API7 is implemented via XML-RPC. It stores basic
data as scalars, lists, and base64-encoded binary. It can also store dictionaries (i.e. structs),
but these have a special meaning; in fact, dictionary-of-dictionary is the structure used

6wiki.ros.org/ROS/Master_API
7wiki.ros.org/ROS/Parameter Server API

http://wiki.ros.org/ROS/Master_API
http://wiki.ros.org/ROS/Parameter%20Server%20API

1.3. ROS API 17

for the representation of the namespace; in detail, each dictionary represents a level in
the naming hierarchy (aka namespace), and the other dictionary represents the internal
structure of that namespace ’branch’.

Let’s consider an example: we want to set the value of a variable foo in the names-
pace /node/bar/. In terms of internal structure in the parameter server the value /node/bar
would be a dictionary {foo:1} and the value /node/would be a dictionary {bar:{foo:1}}.

In the following we analyze in detail each of those API:

Set, Get, Delete

These calls allow the caller to read and write parameter values into the key-value pa-
rameter storage. All anonymous agents are provided read and write permissions to the
parameter database given that no ownership model is enforced, nor are any namespace
restrictions retained. For example, every node registers a logging level parameter that
may be used to silence or censor log activity.

Has, Search, List

Additional calls provide the ability to inquire into the parameter namespace tree, ranging
from checking a target key, recursively searching the namespace hierarchy or a complete
dump of instantiated keys. As said for the master, such calls are commonly employed by
developer or user interface tools such as rqt’s dynamic reconfigure to list node parame-
ters into a front panel display. This is additionally useful for profiling or fingerprinting
the purpose and capabilities of system components.

Subscribe, Unsubscribe

To synchronize local node parameters with those stored globally in the parameter server,
nodes may subscribe to value change events for a given parameter key. These callbacks
are initiated by the parameter server, where a temporary connection to the node’s API
is created upon each event. Given the socket connection is not continuous, unlike topics
or actions, the parameter subsystems as with services are particularly exploitable using
isolation attacks as detailed later.

1.3.3 Node API

The Node, in particular, has three types of APIs that expose it to the other agents:

1. Slave API: this kind of APIs are used by the node to receive callbacks from the
master, and for negotiating connections with other nodes.

2. Transport protocol API: namely TCPROS and UDPROS. These methods are used
by nodes as communications primitives. For example, if a node wants to establish a
topic connection with another, it uses these protocols to negotiate a connection. The

18 Chapter 1. ROS: What, Why and How

difference between the two protocols is, trivially, the underlying mechanisms: TCP
- persistent, stateful TCP/IP socket connections - in TCPROS and UDP in UDPROS.

3. A command-line API: lastly, based on the XML-RPC back-end, each node supports
command-line remapping arguments, which enables names within a node to be
configured at runtime and low-level XML-RPC calls.

As the other entities discussed above, every node has a URI, which corresponds to
the host:port.

In particular, we are interested in the Slave API8 which we analyze in detail:

Update - Publisher, Parameter

These methods serve as callbacks for the Master to notify subscribing nodes of changed
topic publishers registered or to disseminate modified values of parameter keys. As most
nodes merely register for such events, rather than requesting and subsequently parsing
the entire system state from the Master API directly, these callbacks are the dominant
mechanism for discovery and synchronization of data through the graph.

Request - Topic Transport Info

After a subscriber receives a publisher update callback, it will subsequently request the
"topic info" by contacting the new publishers directly to negotiate an established means of
transport, e.g. ROSTCP or ROSUDP. This phase also checks to ensure expected data types
match via comparing message type checksums from the connection header. A separate
socket port is relegated for the actual message transport, thus this handshake may be
bypassed if the URI for transport is known a priori.

Get - Bus State/Info, Master URI, Pid, Subscription, Publications

For remote diagnostic purposes, additional system-level calls provide current statistics
and meta info on active transport connections, configured Master URI, process identifier
of the node on a relative host, as well the node’s internal record of its own subscribed
and published topics. These calls however reveal much in the way of the local graph
topology without necessarily resorting to the Master API.

Shutdown

A particularly powerful call is the shutdown method that can be used to remotely self
terminate the node process. This method is used by the Master when resolving node
namespace conflicts, i.e nodes with duplicate fully qualified names, by conventionally
killing the older node in favor of the newer. However, this method is not restricted to
the Master and can be invoked by any client, e.g. from rosnode kill, permitting the

8wiki.ros.org/ROS/Slave_API

http://wiki.ros.org/ROS/Slave_API

1.4. Communications 19

termination of ROS process without requiring the proper POSIX signal permissions in
the target host.

1.4 Communications

In this section, we dive a little more into detail on how communication is handled in ROS.
In general, when we talk about network communication, TCP is de facto the best choice
since it provides a simple reliable communication stream: TCP packets always arrive in
order, and lost packets are resent until they arrive. However, while these features are
great for reliable wired networks, they become less efficient when the underlying net-
work is a lossy WiFi or GSM connection. In this situation, UDP is more appropriate.

As discussed in the previous section, when we want to establish a connection, we
need to negotiate it using the appropriate transport via XML-RPC. The result of the nego-
tiation is that the two nodes are directly connected, with messages streaming from pub-
lisher to subscriber via ROS’s proprietary implementations of TCPROS and UDPROS.
This means that each transport has its own protocol that defines how the message data is
exchanged. For example, using TCPROS, the negotiation would involve the publisher
giving the subscriber the URI on which to call connect. The subscriber then creates
a TCP/IP socket to the specified address and port. The nodes exchange a Connection
Header that includes information like the MD5 sum of the message type and the name
of the topic, and then the publisher begins sending serialized message data directly over
the socket.

By leveraging on the previously discussed APIs, we can summarise the whole nego-
tiating process as a two-step communication between the nodes and the master.

This process opens to some exploitation that leads to vulnerabilities; for example, if
we already knew the URI of a node, it is possible to directly connect to a node without
querying the Master. Following this overview, in the sub-sections below we will see how
the connections are established for topics and services.

1.4.1 Establishing a topic connection

In the next table, the sequence by which two nodes begin exchanging messages in case of
topic communication is depicted:

20 Chapter 1. ROS: What, Why and How

Operation Protocol
+ Subscriber starts: reads its command-line remapping ar-
guments to resolve which topic name it will use.
+ Publisher starts: reads its command-line remapping argu-
ments to resolve which topic name it will use.

Remapping Arguments

+ Subscriber registers with the Master
+ Publisher registers with the Master.
+ Master informs Subscriber of new Publisher for the
wanted topic.
+ Subscriber contacts Publisher to request a topic connection
and negotiate the transport protocol.

XML-RPC

+ Publisher sends Subscriber the settings for the selected
transport protocol.
+ Subscriber connects to Publisher using the selected trans-
port protocol.

TCPROS/UDPROS

TABLE 1.1: Topic Connection

1.4.2 Establishing a service connection

On the other hand, services can be viewed as a simplified version of topics. The differ-
ence is that whereas topics can have many publishers, there can only be a single service
provider. However, the master accepts as a service provider the most recent node to reg-
ister with the master. An advantage of using services instead of topics is that the service
client doesn’t have to be a ROS node but it can also be an ad-hoc external application (i.e.
a script).

Table 1.2 depicts the operation on services, according to the corresponding protocols.

Operation Protocol
+ Service registers with Master XML-RPC
+ Service client looks up service on the Master
+ Service client creates TCP/IP to the service
+ Service client and service exchange a Connection Header TCPROS/UDPROS
+ Service client sends serialised request message
+ Service replies with serialised response message.

TABLE 1.2: Service Connection

1.5 Attacks on ROS

In this section, we explain some basic ways ROS applications can be manipulated by an
attacker. In particular, knowing the workflow behind the communication mechanisms al-
lows us to reveal some weaknesses that we demonstrate in practice on two novel software

1.5. Attacks on ROS 21

[32], namely ROSPenTo and Roschaos which exploit the APIs discussed above at the
master, node level, and parameter server. The idea behind those two CLIs is to demon-
strate how an unmodified ROS client library can be exploited in case of attacks. The
difference between the two is the attacker approach to the framework. In the first case,
we pose as an external pentester while in the latter, by leveraging on the trusted nature
of the framework - by extending the underlying libraries, e.g. rosgraph - we manipulate
the topology and internal state of the computational graph from the host machine.

With no surprise, the kind of attacks that emerge from our analysis is common to
several IoT/CPS frameworks. In particular, we can find some classical cybersecurity
attacks from the literature such as:

• Eavesdropping (or Interception): the attacker “listens” to the flow of data, access-
ing information and therefore breaking confidentiality. Since in ROS a publisher
sends everything as plaintext we are not able to avoid and block this kind of attack.

• Modification: the attacker intercepts the data and modifies it, breaking integrity
of information. The attacker can put himself in the middle of the communication
between a remote and the robot and change the content of the message

• Forging or Impersonation: the attacker introduces new information and lets the
destination believe that the information is coming from an honest source. It breaks
authentication. Similarly to the previous one, by design, ROS allows the presence
of multiple publishers and subscribers for the same topic. This is tricky because it
allows an attacker to steal the device without any knowledge from the administra-
tors.

• Repetition (reply-attack): re-send a message that has been intercepted in the past.
In this way, an attacker can build a payload that allows him to do everything he
wants. In order to fix this kind of attack, a possible solution is the introduction of
an ’approval’ time window for the messages.

In the following we will discuss:

• Inject Attack: in this Forging attack we want to introduce new information inside
the computational graph thus breaking Authentication.

• Service Isolation: this represent the first step for Modification attack. In this sce-
nario, we want to isolate a resource from the other agents and get privileged access
to it, while also isolate the service from the rest of the network.

• Man in the middle: in this classic attack we want to intercept and forge messages
without being notices by the users that are communicating in the network by eaves-
dropping.

• Parameter Attack: in this attack we want to modify on the fly variables values to
trick the victim with false data via Modification

22 Chapter 1. ROS: What, Why and How

• Log and Monitoring Attack: in this case we want to brake accountability in the
network and disrupt the logging and monitoring systems in the robot via Modifi-
cation

As a side note in addition to our analysis which focused on the computational graph
only, more recently, a red team comprehensive analysis of ROS has been done by Alias
Robotics [91]. In addition to similar attacks as the one described here, the researchers
showed more advanced threats with a fairly simple threat model: they demonstrated
how we could execute code remotely on the host machines; how unprotected robot end-
point could be easily used to pivot in the ROS network; exploitation of known vulner-
abilities on the target robots. All in all, offering a good overview of the problems that
afflict the field also in real-world industrial networks.

1.5.1 Inject Attack

In this base attack, our goal is to inject false data into a running ROS application. This
attack would be useful to trick a decision point into performing unsafe action or fraud
a monitoring system in autonomous devices. In order to do so, we want to mislead a
ROS node into consuming data from a false publisher. In short, we have to isolate the
subscriber from the publisher and force the connection to an unauthorized publisher.
Interestingly, we can perform the attack without consulting the master, therefore without
raising any telltale log in the network traffic. In detail, we leverage the trusted nature
of the framework, and by means of the publisherUpdate call the attacker to isolate the
subscriber and feed the victim with the new URI.

This is possible if we already know the URI of the subscriber and publisher, otherwise,
we need to invoke the getSystemState to get the list of all the topics, call lookupNode to
get the URI of the publisher, as well as the requestTopic call of the XML-RPC Slave API.
Still, doing so would leave some logs in the master history. Therefore, if we want to be
unnoticed we have to get the URI in a different manner via scanner tools (i.e. Wireshark).

1.5.2 Service Isolation Attack

Knowing how we can hijack a topic and inject arbitrary data, in this case, we want to
tackle services. Similarly to what we have done above, an attacker uses the getSystemState
to get a list with all the available services and providers, the lookupService to extract the
URI of the target, and the unregisterService method to trick the master into removing
the service from the graph. As previously said, if we already know the target URI we can
skip directly to the unregistering request.

Once the service has been correctly unregistered, any other client in the network
would not be able to retrieve the service server URI, which means that the service is
not available anymore for regular ROS nodes in the network. Interestingly, no notice is
sent to the service server to confirm the removal, therefore only the attacker will be able
to send TCPROS-Header and a subsequent service request to the URI of the service. Still,

1.5. Attacks on ROS 23

we have to note that this attack can be detected by calling the getSystemState method
since it would be clear that the service is not available anymore from the retrieved list.

1.5.3 Man in the middle attack

In order to perform a man in the middle attack, we leverage the capability we earned
in the injection attack and the service isolation by exploiting in a similar manner the
actionlib9, the library that provides a standardized interface for interfacing with pre-
emptable tasks. In detail, we want to break the action capability. The minimum agents
that we have to consider in this scenario are two entities: an action client agent, and an
action server. As shown in the picture below, in order to trigger or cancel an action, the
client has to send a message respectively to the goal topic and cancel topic.

ROS Topics

result

feedback

status

goal

cancel

Action
Client

Action
Server

FIGURE 1.6: Action Interface from ROS wiki

Therefore, we can see how the service stack is actually implemented as two topics,
namely goal and cancel. In order to attack the server, the malicious agent has to inject its
own information into those topics. However, as an attacker, we are not able to prevent
the server from sending feedback, result, and status messages to the client. Therefore, the
client can still detect the attack.

We can solve the problem by running additional topics by covering: status, result, and
feedback as well. Thus, the attacker can publish the messages the client would expect as
a reply on its own messages sent on the topics goal and cancel. From the communication
point of view, this scenario is just the multiple application of the previously described
attack. The main challenge for the attacker is the context-sensitive knowledge required
to pretend a reasonable behavior of a client and server in order to remain undetected. As
said, this knowledge could be built via network analysis or prior investigation from the
attacker. Apart from that, the attack itself is not visible in the ROS graph, and therefore it
is as hard to detect as the injection attack.

9http://wiki.ros.org/actionlib/DetailedDescription

http://wiki.ros.org/actionlib/DetailedDescription

24 Chapter 1. ROS: What, Why and How

1.5.4 Malicious Parameter Update Attack

In this attack, we want to substitute a specific value in the parameter server with a ma-
licious one. As discussed in 1.3, ROS Parameter API provides the capabilities of storing
and accessing variables. In detail, we have the method getParam which gets the cur-
rent parameter value as result, and subscribeParam that subscribe the agent to a specific
parameter. When an agent subscribes to a variable, it stores the value locally and if the
parameter value changes on the parameter server, the server calls the node’s paramUpdate
method; as a result, the local value in the node is updated.

Trivially, this attack exploits, once again, the trustability of the framework and in-
vokes the node’s paramUpdate method arbitrarily without interfering with the corre-
sponding value on the parameter server.

Still, a more complex attack would involve the composition of some of the previous
ones. In this case, if the attacker wants to gain control of the value of a variable in a
specific node, it would be enough to:

1. Retrieve the URI of the victim, either via the lookupNode method or network scan-
ner tools (i.e. Wireshark)

2. Then, the attacker can send the request of unsubscribeParam to the parameter
server by crafting the request as coming from the victim, exploiting the fact that
no message source verification is enforced in ROS

3. Since the victim is not aware of being unsubscribed, it is still waiting for paramUpdate.
At this point, it would be enough to send the payload with the arbitrary value to
the victim.

The scenario described here can also be applied to multiple nodes subscribing to the
same parameter. In the worst case, every node sees a different value of the same param-
eter at a certain point of time, which can for instance lead to unpredictable behavior in a
distributed ROS application.

1.5.5 Log and Monitoring Attack

Lastly, we discuss an attack in the area of logging and monitoring. In order to maintain
logs, roslog is used to record and disseminate log events during runtime. In detail, we
can configure the logging levels or verbosity of internal log handlers in each node process,
which then writes the events to disk within the log file directory, as well as aggregates
the mover unified topics for remote diagnostics.

As for other attacks, the modus operandi would be similar. We can either unregister
the node from publishing on the default logging topic rosout or modifying on the fly
the configuration to subverted the correct behavior of the system or disrupt an automatic
trigger. Additionally, by being more selective in the sabotage actions further down in the
data pipeline, we can easily create abnormalities such as delayed sensor data or expired
transformations.

1.6. Countermeasures 25

1.6 Countermeasures

To complete the review on ROS’s attacks, in this section, we discuss some countermea-
sures. First, we could use roswtf10. The tool performs a ROS graph analysis and detects
attack patterns as the one described above. However, it was developed to diagnose issues
and not to be used as an intrusion detection or prevention system (IDS/IPS). In partic-
ular, it detects file-system issues and graph problems as unresponsive nodes, missing
connections between nodes, or potential machine-configuration issues with roslaunch.

Second, some approaches in the past have been proposed to secure ROS. Starting from
the work on Secure ROS (SROS) [94] and our work on it [98], an application-layer ap-
proach from Dieber et al. [31] as well as secure versions of the ROS core itself (such as
Breiling et al.[19] or SRI’s Secure ROS 11).

Lastly, to overcome the limitation of ROS, ROS212 has been released and is currently un-
der development. In particular, it is not susceptible to the attacks that affect the first itera-
tion of the framework and integrates several new technologies and third party pluggable
solutions that were not available when ROS1 was created. The underlying DDS commu-
nication technology [71] uses a different technique for discovery and works without a
master (which is one of the main attack points for ROSPenTo and Roschaos). Besides, it
supports security enhancements in the communication channels themselves [70]. Those
security enhancements are made available to ROS2 via the SROS2 project13. An initial
performance evaluation of security in ROS2 has been presented in [49].

1.7 ROS 2

ROS has been developed and is in use since 2007. We already discussed its flaws and
one could think that those problems could be tackled and integrated into the existing
core ROS code by following the examples given by the security propositions we saw in
Section 1.6. However, several long-standing shortcomings and architectural limitations
that cannot be rectified in a backwards-compatible manner affects the implementation of
safety time-critical components in the framework. Although being considered, there is
too much risk associated with changing the current ROS system that is relied upon by so
many products and researchers [54]. To keep those devices working, and be unaffected
by the new developments, ROS has been split into two parallel sets of packages that can
be installed alongside and interoperate (e.g., through message bridges), namely: ROS1
and ROS2.

Through a complete refactoring, ROS2 aims to modernise and improve its core foun-
dation components of distributed processing, anonymous publish/subscribe messaging,

10http://wiki.ros.org/roswtf
11http://secure-ros.csl.sri.com/
12http://www.ros2.org/
13https://github.com/ros2/sros2

http://wiki.ros.org/roswtf
http://secure-ros.csl.sri.com/
http://www.ros2.org/
https://github.com/ros2/sros2

26 Chapter 1. ROS: What, Why and How

RPC with feedback, etc, with support to a broad scope of projects. The final result will
be a new ROS that still embraces the key concepts of ROS1 but will support new kinds of
projects.

From the first iteration of ROS, we observe a huge evolution of IoT/robotics devices.
This translates into new challenges and requests from developers and industry. By crawl-
ing on the developers’ forum or by mining the repositories it is easy to spot the new trend
of developers:

• Teams of multiple robots: although physically possible with the current imple-
mentation of ROS it is still tricky to build multi-robots upon the single-master struc-
ture

• Small embedded platforms: the limits of workstation-class computational resources
on board is simply huge. In the IoT era, the focus needs to be put on bare-metal
microcontrollers and/or microcomputers with limited performance or power con-
straints (i.e. raspberry pi)

• Support for Real-time systems: since ROS1 was not offering any real-time guaran-
tee

• Non-ideal networks: design new solutions to increase the number of network
types in which ROS can be deployed

• Production environments: develop tools to seamlessly transport research proto-
type to real-world application with ease

• Prescribed patterns for building and structuring systems: create new tools for
features such as life cycle management and static configurations for deployment in
the market

In addition to the evolution of the devices, the biggest advantage nowadays is that we
can count also on a bigger number of open-source framework projects. Back in 2007, the
OSRF developers had to develop from scratch the whole systems for discovery, message
definition, serialization, and transport. However, with the introduction of software inter-
faces, it’s possible to build a modular solution that allows the interoperability of external
software for auxiliary functions that are non-robotics-specific. In practice, they demand
to other projects as Zeroconf, Protocol Buffers, ZeroMQ, Redis, WebSockets and in gen-
eral other Data distribution Service (DDS) implementations (e.g. Fast DDS, RTI Connext,
etc), the task of developing auxiliary features.

Furthermore, through these external frameworks, OSRF developers can achieve some
remarkable benefits. First of all, they need to maintain less code that is directly developed
by other ’groups’; also, they can exploit an indirect advantage by horizontally included
software framework that is the possibility of using features that have been introduced in

1.7. ROS 2 27

the external framework and also build ad-hoc solutions for each project independently.
For example, if the resources of a device are limited and the project doesn’t need a certain
feature, it’s possible to get rid of the unnecessary software layer (downgrade to a ’core’
version of ROS) and lightening the solution.

1.7.1 Structure of the middleware

To get a better understanding of how ROS2 works, here we dive more into detail about
the structure of a middleware. We said that the new iteration of the framework maintains
the same concepts of ROS1; this means that the client communication libraries will main-
tain the same publish/subscribe mechanisms used by the custom ROS protocols TCPROS
and UDPROS.

However, to develop such mechanisms, despite the usage of different middleware
solutions (e.g. DDS), we need to introduce an abstraction layer: Middleware API. This
middleware interface defines the API between the ROS client library and any specific
implementation.

In detail, as depicted in Figure 1.7, each implementation of the interface will have
a thin adapter which maps the generic middleware interface to the specific API of the
middleware implementation. However, for the sake of simplicity, apart from the scheme
below, we will consider the adapter and the actual middleware implementation as a sin-
gle component.

User Land

ROS Client Library

Middleware Interface

DDS Adapter 1 DDS Adapter 2 DDS Adapter 3

DDS Impl 1 DDS Impl 2 DDS Impl 3

Agnostic code: new ROS msg

Publish/Receive ROS msg

<< our code stops here >>

ROS msg to DDS convert

msg in DDS specific domain

FIGURE 1.7: ROS 2 middleware interface

As such, the final solution will not expose any middleware implementation specifics
to the developer that will work agnostically from the underlying middleware. In other
terms, all DDS specific APIs and message definitions would be hidden from the user.

1.7.2 Data Distribution Service (DDS)

Thanks to this integration, we can see how DDS actually becomes an implementation
detail of ROS2. In fact, thanks to DDS, ROS2 gets rid of ROS1’s Master and its related
issues, by inherent features as discovery, message definition, message serialization, and

28 Chapter 1. ROS: What, Why and How

publish-subscribe transport.

In detail, the modifications with the integration with DDS are:

• Discovery: the entire discovery features previously provided by the Master are
completely replaced by the DDS-based discovery system.

• Publish-Subscribe Transport: The DDSI-RTPS (DDS-Interoperability Real time Pub-
lish Subscribe) protocol replace ROS’s TCPROS and UDPROS wire protocols for
publish/subscribe.

• Messages: to maintain the current ROS’ semantic contents that have evolved over
years of usage in the robotic community, a message in ROS2 preserves the ROS1 like
message definitions and in-memory representation. The idea behind the integration
with DDS is of converting a message field-by-field into another object type for each
call to publish. Interestingly, experimentation has shown that the cost of this copy
is insignificant when compared to the cost of serialization.

• Services and Actions: DDS currently does not have a ratified or implemented stan-
dard for request-response style RPC which could be used to implement the con-
cept of services in ROS. For now, ROS 2 is implemented on top of DDS’ publish-
subscribe mechanisms.

Despite being middleware agnostic, ROS2 advanced users still can access the under-
lying DDS implementation for extreme use cases or when in need of integrate with other
existing DDS systems; still, this feature could limit the portability of the implemented
solution to a single DDS vendor. To understand why some low-level DDS features can
be still access from ROS2, it’s important to notice that the OMG defined the DDS spec-
ification with several companies that are now the main DDS vendors 14. Despite being
part of a standard protocol, each vendor has specialized on a different level of the pro-
tocols. RTI’s Connext DDS offers the full implementation of DDS-Security specification
[41]; eProsima Fast RTPS provides an implementation with more direct access to the DDS
wire protocol RTPS; TwinOaks’s CoreDX DDS instead offers minimal implementation for
embedded devices, etc.
From our perspective, DDS Security features are perhaps the most interesting addition
to the framework. Thanks to the definition of so-called Service Plugin Interface (SPI)
architecture, DDS can enforce the security features we tried to introduced in SROS but in
a completely decentralized fashion.

In detail, the five SPIs are defined as follows:

• Authentication: the central authentication plugin is pivotal in the architecture, as
it provides different authentication schemes and a Public Key Infrastructure (PKI)
on x.509 certificate.

14http://dds-directory.omg.org/vendor/list.htm

1.7. ROS 2 29

• Access control: this plugin defines and enfoces restristion on resource access in
DDS domain. For each participant (agent) it requires two signed XML files: a Gov-
ernance file which specifies the domain to secure, and a Permissions file containing
the policies of the agent bound to the name of the agent (defined by the Authenti-
cation plugin via x.509 certificate)

• Cryptographic: this plugin is in charge of all the cryptography-related operations
of encryption, decryption, signing, hashing, etc.

• Logging: is in charge of logging the entire DDS domain events.

• Data tagging: provides the capability of add a tag to data sample in the network

At the time of writing, ROS2 supports only the first three SPIs. Since, as mentioned,
not all DDS’ vendors are implemented the entire security stack. Still, the security integra-
tion of Access Control Policies and Security Enclaves as we discuss in the next chapters
in this thesis are critical for IoT networks.

1.7.3 ROS1 vs ROS2 Architecture

Lastly, in this section, we discuss in more detail the differences between ROS1 and ROS2
architectures. ROS2 as a direct evolution of ROS1, evolve the concepts originally de-
signed in ROS1 by leveraging on the abundant off-the-shelf features that third party soft-
ware provides. In Figure 1.8, we compare the architectures of the two frameworks:

Linux Linux, Mac, Windows, RTOS

ROS Client Library ROS Client Library

TCPROS
 UDPROS

Application
Layer

ROS Client
Layer

ROS
Middleware
Layer

OS Layer

Nodelet
API

DDS Intra-process
API

Middleware DDS Adapter

FIGURE 1.8: ROS 1 and ROS 2 Architecture comparison

30 Chapter 1. ROS: What, Why and How

As we can see, the enhancements affect almost the entire core infrastructure by the
mantra of improve without revolutionize the framework:

• OS Layer: ROS originally supports only Linux-based OS. ROS2 overcomes this
limitation and provides more development platforms to users such as Linux, Mac,
Windows, and RTOS. Moreover, those additional operating systems’ support, led
to the second development, such as ROS’ on cloud development (e.g AWS Robo-
Maker15), and numerous new integrated development environments (IDEs)16.

• Middleware Layer: the evolution from the proprietary protocols TCPROS/UD-
PROS to modern and better-performing solutions, is paramount to solve the techni-
cal debt (design/code debt) of the old code base of ROS1. Moreover, the improved
intra-process mechanisms in ROS2 are well optimized for modern applications.

• Client Layer: to maintain continuity in the development process, and ease inter-
operability between ROS1 and ROS2 applications, this level is virtually the same
across the two ROS’ version. Still, it have been rewritten to accommodate the dif-
ferent Middleware Layer.

• Application Layer: this layer better represent the huge differences between the two
iterations. In the one hand, we have the Master that manages all the connections, on
the other, the peer-to-peer network allow to define more secure and agile solutions.

Lastly, in the following table we highlight the differences, and main features, that ROS
gained in this new iteration:

Feature ROS 1 ROS 2
Number of Robot Single Multiple
Target Platform Workstation-class Small embedded platforms
Realtime support No Yes
Connectivity Excellent networks Non-ideal networks
Target Applications Research and academia Industry
Prescribed Dev. Patterns No Yes

1.8 Conclusions

In this chapter, we have presented ROS, discussed the key concepts of the framework,
and how its APIs work in regards to the internal network (computational graph). We
showed how ROS can be manipulated over the XML-RPC API and introduced the other
possible threats that affect the framework. This also justifies why ROS has been consid-
ered as the base of our research, despite early assessment that has shown severe vulner-
abilities and potential for manipulation [59].

15https://aws.amazon.com/it/robomaker/
16http://wiki.ros.org/IDEs

1.8. Conclusions 31

We discussed the clues behind the novel analysis tools ROSPenTo and Roschaos, high-
lighting how those may help in identifying possible threats and introduce some ideas
about possible countermeasures, leaving aside best practices in ROS development that
are out of scope at this stage and, if not respected, are not considered as vulnerabilities
from this analysis but device-specific bugs.

In the last part of the chapter, we dived more into the evolution of the framework in
its second iteration, namely ROS2. Still, despite it being under development and showed
improvements over ROS1, as discussed in [91], from their experience, in the industrial
scene robots that use ROS2 are years from being widely deployed. In fact, despite the an-
nouncement of ROS2 was in 2016 and a stable version has been released in 2017, the list of
robots running it, at the time of writing, is very small and mainly composed of hardware
experimental platform and developer kits [76]. Meanwhile, ROS1 still prevails, giving
reasons for the agnostic works we present in this thesis and the push we want to provide
into applying the core pillars of cybersecurity to the field.

The similarities with other CPS framework and the fact that has been used mainly in
research and closed facilities, like home automation, service, and industrial robots (usu-
ally operating behind firewall or VPN), gave the users a sensation of security, demon-
strated false by the fact that there are quite some vulnerabilities documented in the liter-
ature and are highlighted by the fact that there are already some instances of ROS running
openly accessible via the internet [29].

33

Chapter 2

Access Control Policies

In this chapter, we discuss access control methods we develop focusing on techniques to
enforce Authentication and Authorization properties in a distributed robotic network.
In particular, our goal is to develop solutions that could easily scale on large-scale de-
ployments of connected smart devices, in which we observed a tremendous grown in the
amount of personal data that are stored and processed every day. Considering the sen-
sitive nature of this information there is a widespread suspicion concerning how these
flows into the infrastructures. Especially with the increase of large interconnected net-
works connecting smart cyber-physical devices forming the so-called Internet of Things
(IoT). Such solutions apply in different domains such as smart-grids, intelligent trans-
port systems (ITS), smart homes, smart cities, public health, agriculture, etc. In further
detail, we decided to develop our solutions in the Application-level layer. Indeed, our
focus is on the logical approach of the problem, namely on the data-centric analysis of
the infrastructure.

However, due to the intrinsic limitations of those devices, either from the power con-
sumption point of view and the actual computational power at our disposal, engineering
is not trivial. Traditional authentication schemes that are already in use in other appli-
cations, are infeasible and not applicable here due to the necessary software-components
overhead and their resource consumption.

Additionally, since we want to design solutions that could be applied to a wider scope
of devices it’s safe to assume that we want to keep as real-time performance as possible
while retaining the smallest footprint on the final device.
Therefore, with those premises, a suitable research direction is to develop static solutions
- that could exploit a prior offline computational power - for the definition and distri-
bution of access policies. By means of such techniques, the effort to secure the system is
shifted to a third party, and avoid the consumption or waste of resources for real-time dy-
namic solutions that could burden the network, such as intrusion detection or prevention
systems, and overall, degrade the device’s performance.

Indeed, the direction we followed on the development of SROS [98] was to embed
the access control policy as extensions of the x.509 certificate. The implementation was
straightforward since we were already using the x.509 certificates to enforce confiden-
tiality and authenticity respectively to encrypt the communication channels via TLS/SSL
and to identify the agents in the network.

34 Chapter 2. Access Control Policies

Still, the offered solution was far from being ideal, since piggybacking access policies as
an extension of the identity certificate came with some drawbacks. To understand which
are those limits, how we tackled them in more detail, and the reasoning behind the dif-
ferent choices, in this chapter we give an introduction to the field and discuss novel ap-
proaches that we present in the field.

The rest of this chapter is structured as follows:

• Background: in this section we introduce the reader to access control’s issues and
properties specific to the research field to provide the base concepts for the next
discussions.

• Distribution Architectures: in this section we analyze in more detail authentica-
tion schemes. We present the properties and an overview of the different schemes
available.

• Access Control Policy: in this section we present our novel static and dynamic
solution for certificate and attribute distribution, namely user-pull and server-pull.

• Procedurally Provision Access Policy: in this section we propose ComArmor and
Keymint; our novel toolchain specific for robotic middleware to mitigate the risks
of improper provisioning.

• Conclusions: in this section we summarize what we have presented in the chapter
and discuss some of the open issues in the field.

The work discussed in this chapter has been published in [22] and [97].

2.1 Background

In the following, we introduce which service and specific security issues arise in the
Application-layer.
In detail, it contains the core logic of the system and the high-level protocols in charge of
message passing as Message Queuing Telemetry Transport (MQTT) from the Organiza-
tion for the Advancement of Structured Information Standards (OASIS), Data Distribu-
tion Service (DDS) from the Object Management Group (OMG), Constrained Application
Protocol (CoAP), TCPROS and UDPROS from OSRF, etc.

In particular, we can identify some of the core security issues such as:

• Data Privacy and Identity (Confidentiality): the enforcement of a suitable encryp-
tion level in heterogeneous networks that supports legacy devices is problematic.
Often, forcing the connection to abide by insecure legacy protocols is an easy attack
vector (e.g. Bluetooth protocol attacks [56, 47]). Moreover, in cross-platform net-
works, managing identities and Quality Of Service (QoS), often leaves unintended
backdoor.

2.1. Background 35

• Data Access and Authentication (Integrity): managing access to data in a complex
network of applications, that spans a great number of users can be challenging. In
particular, malicious users could exploit lax permissions policies or perform under-
cover actions by exploiting authentication loopholes issues.

• Availability: those networks often have to maintain availability as a pivotal feature
of the system in real-time components (i.e. 3D stabilizers in a humanoid robot, Anti-
lock Braking System (ABS) in automotive, etc). A huge quantity of data inside this
level often has a big impact on the availability of the service.

The requirements to alleviate those problems are, indeed, authentication and autho-
rization mechanisms. The remaining issue, now, is to identify how those components
should be applied.

Authentication Schemes

As said, applying solutions that are not specifically designed for robotic networks, un-
derestimating the impact that those might have on a system, could be disastrous.
To get a better understanding, and identifying a common set of comparison mechanisms
we need to distinguish some key components of authentication schemes. As discussed by
the authors in [68], to evaluate them, we can identify six criteria that define the taxonomy
of an authentication mechanism:

1. Authentication Factor: this criteria specify the way two entities identify in the net-
work, which can be either Identity-based or Context-based. In the first case, we
provide a hash or a symmetric/asymmetric key (i.e. x509 certificate). In the lat-
ter, we either provide a physical feature such as fingerprint, retina scan, etc; or
behavioral as in keystroke dynamics, gait analysis, etc.

2. Tokens: in this criterion we identify if the user authentication mechanism works on
a previously generated identification token or via credentials (user/pass).

3. Authentication Procedure: this criterion specify how two agents authenticate within
a communication:

• One-way Authentication: one agent identify itself to the other, while the lat-
ter remains unauthenticated

• Two-way Authentication: mutual authentication, both agents authenticate
each other

• Three-way Authentication: a central authority authenticates the two parties
as guarantee

4. Authentication Architecture: this criterion defines if the agents authenticate either
in a Distributed or Centralized fashion. Where the difference is whether or not the
agents need a centralized authority to authenticate the communication

36 Chapter 2. Access Control Policies

5. IoT Layer: this value address which level of the Three-layer architecture we are
analyzing, either: Application, Network, Perception.

6. Hardware based: here we address all the hardware components that could be em-
ployed to the authentication, such as True Random Number Generator (TRNG),
Trusted Platform Module (TPM), or specific component for key-storing or key-
generation.

2.2 Distribution Architectures

In this section, we analyze distribution architecture models by discussing a novel ap-
proach we propose [22]. In detail, we discuss about Identity-based application in which
agents authenticate through x.509 certificates; authentication, depending on which setup
the user deploys in the network, is managed via a one-way procedure and, either in dis-
tributed or centralized architecture.

With the specific goals of keeping the resource usage under control, by leveraging on
the statical approach defined by SROS (that embeds the access control policy as exten-
sions of the x.509 certificate), and by exploiting Park et al. work on x.509 extensions [74,
73], we propose two different architectures for IoT network: User-pull and Server-pull.

By applying our solution of smart attribute certificates we can easily enhance how users
define how agents communicate in the network.

To the best of our knowledge, this is the first research that focuses on the automatic
definition of embedded policy profiles in a trusted network and actively prevents, at the
application level, the disclosure of sensitive information and blocks unauthorized agents
by applying a priori access control model.

To better understand how we develop the proposed solution, it’s important to have a
grasp of the framework that has been selected. Therefore, we need to briefly evaluate the
general concept behind SROS.

SROS is a set of security enhancements for ROS that aims to secure ROS API and
ecosystem using native TLS/SSL support for all IP/socket level communication. Also,
with the usage of x.509 certificates, defined chains of trust employing a certificate au-
thority (namely keyserver), namespace node restrictions, and permitted roles, as well as
user-space tooling to auto-generate node key pairs, audit ROS networks, and construct/-
train access control policies. Furthermore, SROS defines AppArmor profile library tem-
plates, that allow users to harden or quarantine ROS-based processes running at Linux
OS kernel level.

That said, we can summarize that SROS is intended to secure ROS across three main
fronts:

2.2. Distribution Architectures 37

1. Transport Encryption: with the usage of TLS and x.509 Public Key Infrastructure
(PKI) for authenticity and integrity

2. Access Control: restrict node’s scope of access within the ROS graph to only what
is necessary leveraging on definable namespace globbing

3. Process Profiles: restrict the application (file, device, signal, and networking access)
thanks to AppArmor profile component library for ROS

By embedding policies as plaintext in the extension field of the x.509 certificate, we
expose the device to privacy issues related to the easy reconstruction of the topology of
the network via passive sniffing attack.
To alleviate those problems, we propose a family of static and dynamic architecture mod-
els for certificate distribution and attribute verification. The general idea behind the
proposition is to exploit the x.509 PKI infrastructure and deploy specific certificate au-
thorities (CAs) with different authoritative characteristics.

2.2.1 User-pull Architecture

As the name suggests, in this architecture, every new agent that enters the network it
has to query the certification authority, extract its own certificate bundle and archive it
locally. When it needs to authenticate to someone else, it will trivially share the public
certificate with the receiver in the network.
This family of solutions exploits the problem of the authentication leveraging on the in-
tegrity services offered by the certificates by design. In fact, the certificates are issued by
the Certificate Authorities (CAs) which are trusted entities in the system. In detail, in
this category, we find the previously mentioned implementation in which we store the
profiles as extensions of the x.509 certificate. However, to solve the privacy issues high-
lighted, we introduce an additional type of certificate defined in the x.509 standard and
decouple the agent information into: Identity Certificates (ID) and Attributes Certifi-
cates (AC)[35].

On the one hand, identity certificate is the most common certificate that acts as an
identity card and binds a set of attributes (e.g. name, organization, etc) and a public
key; on the other hand, attributes certificate doesn’t contain a public key but may contain
attributes that specify group membership, role, security clearance, or other authorization
information associated with the AC’s holder.

The advantages of using AC for authentication in place of trivially embedding the
policies as extensions are (i) identities often do not have the same lifetime as access poli-
cies. Therefore, if we have to grant or revoke access to a resource we need to revoke the
existing certificate and issue a new one, actually shortening the whole certificate lifetime;
(ii) to avoid threats and reduce the surface attack, the authoritativeness of the certificate
authorities are separated between attribute CA and identity CA. The first can only issue

38 Chapter 2. Access Control Policies

attribute certificates (usually domain-specific), while the latter issues identity proofs with
broader scopes that could potentially spans in cross-domain applications (e.g. passport).

There are several ways in which we can bound the authorization with the identity
certificate. Below we present three different approaches: Monolithic, Autonomic, and
Chained signatures.

Monolithic

Monolithic is the first hands-on approach and the easiest to deploy. By means of a single
certificate authority, we create a certificate that holds the identity and attributes informa-
tion. To do so, we piggyback the attributes in the extension fields of the agent’s x.509
certificate.

The resulting certificate, depicted in Figure 2.1, tightly couples the identity and at-
tribute information in a single signed artifact. Therefore, if we have to make any change
either on the identity or, more likely, to the access policy rules, we must revoke the cer-
tificate and issue a new updated one.

On the plus side, the management of this particular solution simplifies the decisional
and operational chain since we need to trust a single CA and check only one Certifi-
cate Revocation List (CRL). Still, this approach has several drawbacks: (i) multiple CAs
are very difficult to orchestrate. We can’t revoke a certificate if we aren’t the issuer CA
and there is the possibility of issuing multiple certificates with different attributes for the
same agent exposing the device to exploitation (ii) due to the design of the solution we
are not able to maintain different life-time for multiple different attributes; in fact, all the
attributes share the same lifetime of the certificate.

All in all, the monolithic approach is the most favorable solution if we are limited in
terms of resources or if we are looking for a statical solution, even though we sacrifice
flexibility in maintainability and agent privacy.

Subject Name Serial number

Alternative Name Issuer

Not afterNot before

Validity

Public Key

Extensions

CPS 1

...

CPS n

Policy OID A

CPS 1

...

CPS m

Policy OID B

CPS 1

...

CPS k

Policy OID C

Signature
CPS 1

...

CPS z

Policy OID D

Certificate

Authority

FIGURE 2.1: Monolithic certificate

2.2. Distribution Architectures 39

Autonomic

In Autonomic we evolve the solution and support multiple CAs by differentiating be-
tween identity and attribute certificates. This means that the resulting cryptography ar-
tifacts of identity and attribute are going to be loosely coupled.

This solution allows the existence of multiple AC certificates per agent provided that
there is an injective function from the certificates to the agent ID; which implies that we
will never have more than one agent that corresponds to an ID certificate. As such we can
bind each AC with a different subset of information from the identity as subject’s name,
public-key, certificate serial number, etc.

Depicted in Figure 2.2, Attribute certificate B is bonded to both ID certificates repre-
sented by the alternative name property, while certificate A is bonded to certificate X only
by name and issuer properties.

Depending on the chosen set of information that has been selected we can modify the
certificate issuing a new one and still maintain the correlation between the AC and ID as
long as the binder information has not been changed.

As such, if we choose to bind the attribute certificate to the unique value of an agent’s
identity certificate, we can change the other information such as lifetime, serial number,
subject’s name, while the link between the certificates holds.

However, since we moved from a static solution to a dynamic one, we should be ex-
tra careful about the new threats represented by a careless choice of the binding set. In
fact, even though we have an injective function from the certificates to the agent there
aren’t constraints on the information that are stored in the certificates. Thus, if we acci-
dentally choose a common set of information, the same attribute certificate can be used
by unauthorized agents that share the same information with an authorized agent.

Subject Name
X

Serial number
X

Alternative
Name Z Issuer

Validity

AuthoritySignature

Identity Certificate X
Serial number

A Attribute
Value

Issuer E

Validity

SignatureAuthority E

Attribute Certificate A

Public key X

Subject Name
Y

Serial number
Y

Alternative
Name Z Issuer L

Validity

Authority LSignature

Identity Certificate X

Public key Y

Serial number
B Attribute

Value

Issuer E

Validity

SignatureAuthority E

Attribute Certificate B

Association

Association

Alternative
Name Z

Subject
Name X

 &
Issuer

FIGURE 2.2: Autonomic certificate

40 Chapter 2. Access Control Policies

Chained-Signature

Lastly, chained-signature aims to combine the bests from the previous two solutions by
granting the security features of monolithic and the flexibility of the autonomic approach.

Like in the previous case, also in the chained signature approach an agent can have
multiple AC certificates issued by multiple CAs. However, instead of binding the at-
tribute certificate with an arbitrary set of information, we bound on the digital signature
of the corresponding ID certificate as depicted in Figure 2.3. In fact, if the information in
the referenced ID certificate is changed (a new certificate is issued), the digital signature
must change as well. Still, under the assumption that we are using a suitable signature al-
gorithm, when we issue a new ID certificate (with a different signature), the link between
the two certificates is broken, and then the attribute certificate becomes automatically
useless. One of the advantages of chained signatures is that we don’t need to aggre-
gate all the attributes according to the shortest lifetime of the certificate as in monolithic.
Furthermore, we introduce a mechanism that allows to share with other agents only the
necessary information. In fact, with a monolithic certificate, all the policies of the agent
are available in a single certificate, instead in this way we can share only the necessarily
attribute certificate enforcing a new privacy feature and dynamic management of pro-
files.

Subject Name Serial number

Alternative
Name Issuer

Validity

AuthoritySignature

Identity Certificate
Serial number

A Attribute
Value

Issuer E

Validity

SignatureAuthority E

Attribute Certificate A

Public key

Serial number
B Attribute

Value

Issuer E

Validity

SignatureAuthority E

Attribute Certificate B

Association

Association

Public
Key

Public
Key

FIGURE 2.3: Chained certificate

2.2.2 Server-pull Architecture

Contrary to User-pull, in this architecture, we demand the authentication phase to the
attribute authority (AA). The goal is to define a dynamic solution in which apart from the
AA no one needs to know the attribute information maximizing privacy in the network.
However, as in the user-pull model, we still need a method to unambiguously identify an
agent in the graph; we can achieve this straightforwardly with the usage of the already
defined ID certificates.

But instead of issuing attribute certificates and bound them to the ID, we store the
attribute policy roles locally in the attribute authority. This particular solution allows us

2.3. Access Control Policy 41

to implement in the AA whenever access control we want (e.g. MAC, DAC, MLS, MCS,
RBAC), without modifications to the client (agents) APIs. We design a high-level API
that permits the agents to retrieve the authorization response from the AA regardless of
the chosen access control method.

There are several advantages to this model: first of all, thanks to the usage of AA
instead of static certificate we can achieve a dynamic flexible solution that can evolve
and change during run-time without additional setup. Secondly, we can maintain the
secrecy of sensitive information about the policy topology inside the attribute authority
without compromising the network topology in critical applications.

Still, the solution introduces the problem of the Single Point Of Failure (SPOF). Con-
sidering that all the agents need to query the attribute authority to receive a response
about the permissions if it fails the entire system will stop working. In fact, from the
attacker’s point of view, it will be enough to tamper with the AA to compromise the en-
tire system. Besides, we introduce by design an overhead in the handshaking process;
in fact, what was a straightforward local check of the profile in the user-pull model, be-
came a remote request to the external attribute authority. However, we recognize that this
problem could be slightly mitigated by resuming previous sessions via Session Ticket
as introduced in TLS 1.3 [40].

2.3 Access Control Policy

In the previous section we discussed how we can securely share access control policies
in the network. However, access control remains one of the most critical points in to-
day’s Information Technology [7]. Here, we provide a basic understanding of access con-
trol policies and their properties and characteristics. In particular, access control policies
specify which subject (e.g. user, process, application) can access which resource or object
(e.g. files) for performing which actions or operations. Additionally, the access control
model defines the relationships between these entities [36]. There exist many access con-
trol mechanisms which are applied in many different systems, such as operating system,
database management system, network, etc. Bertino et al. [14] gave an in-deep analysis
of all the different kinds of the existing models and their pros and cons.

In particular, this thesis focuses primarily on the eXtensible Access Control Markup
Language (XACML) [83] policy language which is the most used in robotic IoT appli-
cations. XACML is an XML-based language model from OASIS in which a policy is
organized according to the previously introduced four elements: subject, resource, ac-
tion, and environment. Where the subject specifies the entity requesting access with a
particular action on a resource within an environment; the policy specifies if the request
is allowed or denied.

As a high-level concept, we can consider an access control policy as directives stem-
ming from the managing party to managed parties.

42 Chapter 2. Access Control Policies

In particular, these directives can be differentiated based on their type:

• Constraint-based: these are the most common policy type we use, where the ac-
tions to which the managed party is subjected are explicitly listed. The actions are
either allowed, denied, or obligatory.

• Goal-based: in this type of policy we find specific goals that the managed party
must achieve. For example, maintain a minimum temperature or respects a dead-
line.

• Utility-based: those specify which value function needs to be respected to achieve
the best outcome. For example, minimizing resource consumption.

In our scenario, all the policies are constraint-based since it gives a better representa-
tion in Discretionary Access Control (DAC) and Mandatory Access Control (MAC) schemas.

However, to specify an appropriate policy, a crucial part of the work is represented
by proving the correctness or quality of the policy. Assessment of policy quality, as intro-
duced by Bertino et al. [15, 16], can be stated as the problem of verifying that the set of
policies are compliant with the following properties:

• Consistency: this property refers to verifying that the policy sets don’t include
policies that contradict each other. In this case the concept of access policies doubles
as ensuring that the policy sets don’t include a policy allowing and one denying the
same request, as inconsistent policies lead to conflicts at policy enforcement.

• Minimality: this property holds when the sets of policies don’t include redun-
dant policies. As for redundancy increase the administration effort to manage and
amend the whole policy.

• Relevancy: this property requires that the policy sets do not contain rules that do
not apply in the application. In fact, irrelevant policies may lead to loopholes and
security vulnerabilities.

• Completeness: this property refers to verifying that all the actions executed in the
policy sets are within the network resources. Moreover, all the resources have to be
covered by at least an action.

• Correctness: this property holds when all the policies are free of errors and com-
pliant with their intended goal. Ensuring this property requires validation of the
syntax and testing all the possible application’s contexts and scenarios.

Still, the task of properly generate, maintain, and distribute the number of signed
public certificates, ciphered private keys, and access control documents attributed to ev-
ery identity within the distributed network can prove beyond tedious and be error-prone.
In fact, the additional complexity and scalability of IoT networks make the secure orches-
tration of those systems a demanding process. In the next section, we tackle these issues
introducing a novel toolchain to the provision of robotic middleware credentials.

2.4. Procedurally Provision Access Policy 43

2.4 Procedurally Provision Access Policy

To mitigate the risks of improper provisioning, in this section, we contribute a set of
novel tools to provide users with an automated approach for the systematic generation
and verification of necessary cryptographic artifacts in a familiar, yet extendable, meta-
build system layout via workspaces and plugins [97].

We seek to mitigate the risks imposed from improper provisioning of robotic middle-
ware credentials that could otherwise compromise system security. To achieve this, we
provide the provisioning process of all transport artifacts via build automation. Such
compilation is made possible by defining an intermediate representation to express the
higher-level semantics of general permission policies, enabling the compiler to abstract
away lower-level cryptographic operations. This approach also affords administrators
to design policy profiles that are agnostic to the deployed transport, facilitating further
consistency of security permissions across transport type, version, and vendor.

In fact, by leveraging on the network computational graph representation we can
depict the network as an agnostic bipartite graph which allows transferring the afore-
mentioned policy across different robotic network middleware.

Our approach contributes to two original complementary tools to be used to describe
and automate the process for secure and access-controlled communication in data-driven
middleware. The first tool, namely ComArmor, consists of a syntactic language to suc-
cinctly describe policy profiles for subjects including any rules for objects while establish-
ing their respective first and second-order priorities. The second tool, namely Keymint,
builds off the first and consists of a cryptographic toolchain for compiling a global sym-
bolic policy representation resulting in individual transport artifacts as required to de-
ploy each subject.

2.4.1 ComArmor

ComArmor1 is a profile configuration language for defining Mandatory Access Control
(MAC) policies for communication graphs. ComArmor is akin to other MAC systems,
but rather than defining policy profiles for Linux security modules as with AppArmor [9],
ComArmor defines policy profiles for armoring communications, as the project name’s
alliteration suggests.
ComArmor is built on the primitives of XACML. Like XACML provides a formalized
XML-based markup for specifying governance, and accompanied XML Schema Defini-
tion (XSD) for validation. These policies, constructed from hierarchical nesting of compo-
sitional profiles that bind objects to subjects with prescribed permissions via attachment
expressions, are later read by meta-build stages to procedurally generate end-use trans-
port credentials. For example, a ComArmor profile excerpt from the simple talker-lister
network we introduced in Section 1.3 is shown in Figure 2.4. In the policy, we specify two

1github.com/comarmor/comarmor

https://github.com/comarmor/comarmor

44 Chapter 2. Access Control Policies

profiles: ’My Talker Profile’ and ’My Listener Profile’. Both include the basic node’s rules,
which are omitted here for readability, and specify which topic the two peers can respec-
tively publish and subscribe to, namely "chatter". As showed in the example, in detail, a
profile encapsulates an unordered set of rules, child profiles and includes statements. In
particular, imported elements via XInclude2, are either a collection of rules or an entire
profile. The defined XACML profiles are given a name, an attachment, and a scope of
further permissions and/or sub profiles. The name is simply used to label the profile for
the user when debugging, while the attachment is used to define types of subjects the
profile is applicable for. An important note, for attachments of sub profiles, is that any
expression used in the sub profile should only be expected to be quired if-and-only-if the
attachment of the parent profile matches already. I.e. a child profile can only be appli-
cable if the parent profile is applicable as well. The permissions can be arbitrary to the
object they govern, but should specify a type and designate a qualifier. The qualifier can
be either ALLOW or DENY to permit a MAC framework. Conflicting permission appli-
cable to the same subject that govern the same object will alway conservatively resolving
to deny. Given deny supersedes any allow, an applicable allow rule alone is insufficient
as the absence of any precedent deny rule must also be satisfied. In this way, users can
curtail policies with blanketed allow rules over subspaces of an object, but single out el-
ements in those subspaces, thus revoking specific access to unique resources, e.g. such
as a debugger tool publication access to all topics except those for safety critical E-stop
signals.

Borrowing design patterns from the AppArmor community, ComArmor provides an
equivalent profile concept, but as opposed to attaching to a process by its executable’s
path, ComArmor attaches profiles to subjects by their Uniform Resource Identifier (URI),
e.g. a node namespace in ROS. Again, as for classical access control policies, defined
rules are either allowing or denying a specified set of permissions for a given object by
URI attachment, e.g. ROS’ topic. ComArmor also maintans the same deny by default
MAC assumptions of AppArmor.

However, compared to other more general formats, such as the aforementioned XACML,
ComArmor takes an approach that is more straightforward in horizontally transferring
permission policies onto the computation graph, where objects are essentially channels
on a data bus. Additionally, ComArmor is meant to be compactly human-readable while
also remaining easily machine generatable. Note that the parser checks for schema com-
pliance after expansion, thus syntax error for a profile may originate from included el-
ements rather than from the root profiles. However, we would still like to eventually
support a standard XACML translation compiler to piggyback on the additional static
analysis tools available for XACML, affording more formal verification methods, as dis-
cussed by the authors in [46], as well as we will discuss in the next chapter.

2https://www.w3.org/TR/xinclude/

2.4. Procedurally Provision Access Policy 45

<profiles xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="tunables/global.xml" parse="xml"/>
 <profile name="My Talker Profile">
 <attachment>/talker</attachment>
 <xi:include href="tunables/node.xml" parse="xml"/>
 <topic qualifier="ALLOW">
 <attachment>/chatter</attachment>
 <permissions>
 <publish/>
 </permissions>
 </topic>
 </profile>
 <profile name="My Listener Profile">
 <attachment>/listener</attachment>
 <xi:include href="tunables/node.xml" parse="xml"/>
 <topic qualifier="ALLOW">
 <attachment>/chatter</attachment>
 <permissions>
 <subscribe/>
 </permissions>
 </topic>
 </profile>
</profiles>

FIGURE 2.4: A minimal access control policy for the talker listener example
formulated in ComArmor’s profile language.

2.4.2 Keymint

On the other hand, Keymint3 is a framework for generating cryptographic artifacts used
in securing middleware systems like ROS, Data Distribution Service (DDS), etc.

Keymint is akin to other meta-build systems, but rather than compiling source code
and installing executables in workspaces as with other command-line interfaces (CLI)
build sets as colcon 4, Keymint mints keys and notarizes documents in key stores, as the
project name’s alliteration again plays upon. Keymint provides users pluggable tools for
automating the provisioning process for customizing PKI artifacts used with SROS, or
Secure DDS plugins [41].

Keymint’s approach in minting cryptographic artifacts resembles that of other com-
mon meta-build systems, used to compile binary artifacts from source code. Similarly,
users create keymint_packages within a workspace initialized by a keymint_profile; a
package being a structured source manifest describing how and what artifacts are to be
generated for an identity, while the workspace provides a tunable profile to adjust the
global build context for all packages. Also, Keymint shares a staggering development
cycle, where a workspace has to be initialized, built, and installed.
While each stage in the cycle is subject to the behavior of the plugin invoked as deter-
mined by the package’s declared format. An example of the workflow pipeline with

3github.com/keymint/keymint_tools
4https://github.com/colcon/

https://github.com/keymint/keymint_tools

46 Chapter 2. Access Control Policies

Keymint is shown in Figure 2.5 for the robot /RedOne/BB8. In grey we identify the Comar-
mor config for a generic robot BB8, the Rebellion keystore configuration, and the Keymint
package configured to work with ROS2 DDS plugin. Those are the necessary files that
we need to setup before initializing the workspace. As a consequence, the tool creates
the permission and governance specifications (blue in the figure), and instantiates the
two Certificate Authority (green in the figure). Once the infrastructure is in place, we
can automatically generate the cryptography artifacts, identified in the purple area, to be
provisioned to our robot.

While the Keymint library and CLI are intended to be both transport and policy
format-agnostic, and instead simply operate upon source packages in a workspace con-
taining public and private resources, plugins for ComArmor and ROS2/DDS are in-
cluded by default. Future policy acquisition plugins for XACML and MySQL may also be
added for more advanced policy management. The ComArmor profile and ROS2/DDS
build plugins work together with Keymint’s Keymake compiler to gather the applicable
policy from the package’s URI and compile it into an intermediate representation before
installing the generated PKI and fixating the permission and governance files via SMIME.

Essentially, this automates many of the delicate steps in correctly formulating the
policy as to be compliant with the transport-specific format. Given the mantra that secu-
rity and usability must go hand in hand, Keymint provides a conservative default boot-
strapped workspace suitable for basic users, in which the only configuration required on
part of the user is to provide an initial ComArmor profile for the targeted deployment.
This in itself is a task that can be automated via training as demonstrated and further
exemplified in the following section 3.6.
In addition to compliance, the Keymint policy compilation process can also ensure the
transport artifacts result in a faithful interpretation of the original symbolic policy. For
example, ComArmor’s unordered rules sets and deny overrides must be considered ac-
cordingly when translating to Secure DDS default plugin permission structure given that
its Policy Decision Point (PDP) evaluates upon the first found matching rule in an ordered
list. Thus ComArmor deny rules must be arranged in the list as to always be considered
first for a given object. Additionally, only the minimally applicable subset of the global
ComArmor policy is finally embedded into an individual subject’s credentials.

These optimizations are perhaps two of many to consider, with additional ones in-
cluding policy compression via folding of collapsible rules that share compatible criteria,
thus saving payload overhead in secure transport handshaking; perhaps another ordered
prioritization of rules, i.e. quickening average handshakes by placing more frequently re-
quested rules further ahead in the list for faster lookup. Either of these could be beneficial
for real-time communication that must be adapted to support security overhead.

At the time of development, we delayed implementing such further optimization un-
til ROS2’s DDS namespace mapping is declared stable. As of this writing, ROS2 is still in
definition and the applicable rules for access control policies are still a work in progress

2.4. Procedurally Provision Access Policy 47

in conjunction with DDS partners.
Abstracting policy definitions away from such complex entanglements is perhaps yet an-
other reason for relying on using intermediate representations and compilers to perform
the task on behalf of the system administrator.

With ComArmor and Keymint enabling repeatable and reproducible cryptographic
artifacts, revision controlling the source configurations now becomes both rational and
elegant. With this, as with the AppArmor community and Debian packaging, we envi-
sion further adoptions to allow ROS package maintainers to provide default configura-
tions, audited, and maintained by the community and domain experts.
Anticipating further development discussions of static analysis or manifests of the topol-
ogy of a system employing orchestration tools and upstarts, using Keymint makes it
possible to pre-provision all necessary artifacts for deployment. Alternatively, Keymint’s
API could be called dynamically to generate artifacts on the fly, as required when remap-
ping subsystem namespaces using the ROS2 launch orchestration.

Public key infrastructure has remained relatively unchanged for many years, at least
as it is used in industry. With rapid advances in cryptographic research, new and more
powerful cryptographic mechanisms have emerged, such as Ciphertext-Policy Attribute-
Based Key Encapsulation Mechanisms (CP-AB-KEM)[44] or other functional encryption
schemes that could afford roboticists the definitions of more flexible and secure access
control outlines.
With Keymint, we have abstracted the policy from the transport-specific details, so with
the ratification and industrial adoption of new paradigms, it is possible to simply up-
grade the Keymint Keymake compiler to support newer artifact types.

comarmor.d/* (example.xml)
Profile:
 Attachment: /*/BB8

#include <tunables/node>
param /use_sim_time r,
topic /chatter/* p,
deny topic /chatter/foo p,
deny topic /*/e-stop/* p,
service /BB8/get_loggers x,
service /BB8/set_loggers_level x,

keystore.cnf
 Identity CA:
 Issuer:
 Rebellion
 Hash: SHA256
 Type: RSA
 Size: 4096
...

keymint_package.xml
Format:

keymint_ros2_dss
...

permissions.xml
<dds xmlns:xsi=...
 <permissions>
 <grant_name=...
...

governance.xml
<dds xmlns:xsi=...
 <access_rules>
 <domain_rule>
...

Subject Name:
 Permissions CA
Issuer Name:
 Rebellion
...

Subject Name:
 Identity CA
Issuer Name:
 Rebellion
...

Subject Name:
 /RedOne/BB8
Issuer Name:
 Identity CA
...

permissions.p7s
<dds xmlns:xsi=...
 <permissions>
 <grant_name=...
 <subject_name>

permissions.p7s
<dds xmlns:xsi=...
 <access_rules>
 <domain_rule>
 <domains>

FIGURE 2.5: Flow chart visualization of keymint keystore pipeline

48 Chapter 2. Access Control Policies

2.4.3 Results

To evaluate our framework, we demonstrate our toolchain on the classic ROS2 talker-
listener demo in which the agents communicate via publish-subscribe on the topic chat-
ter. The test procedure works on an operational yet insecure robotic application to verify
the integrity of both the policy and the implementation at the transport level. To build
our computational graph model Gs we collect the DDS’ transport discovery data. The
graph is made of a node for each element and oriented edges are created if a connec-
tion between two elements exists. In addition to the topic chatter, many more subsystem
level topics are also utilized to extend ROS2 node functionality, the latter of which will
be shown troubling to properly secure in ROS2 Ardent.

Therefore, starting from the graph Gs we can extract a minimal satisfactory ComArmor
policy Ps which is composed of the existing edges. Then, once again, we use the graph Gs

to extrapolate the fully connected bi-graph Gf c by connecting all the elements with one
other. In detail, Gf c adds all the permissions to all the objects for all the subjects. We then
evaluate graph model Gf c semantically using policy Ps to classify the edges and output
labels L f c for permitted actions.

Next, we generate the transport policies Ptp from Ps by procedurally compiling with
Keymint, in this case manifesting as DDS Security artifacts. Ptp is then tested by attempt-
ing to deploy Gf c using a transport implementation. We then infer the permitted action
labels Ltp for edges in Gf c via logged runtime events from the transport.

Thus, we are ready to assert that the set of allowed edges in both L f c and Ltp each
equate to the set of original edges in Gs. By comparing the differences between the labels
against the original model we can extract the set of false positive (unintended allow) and
false negative (unintended deny).
To better understand the functioning, in Figure 2.6 and 2.7 we can see the results from our
talker-listener case example, where Gtp is the graph equivalent of acquired experimental
labels Ltp.
The annotated graphs depicts transport test results where only the subject talker’s policy
amended for the empty partition. The colored edges green/red correspond to allowed/-
denied actions respectively. Additionally, True positive/negative labels are dashed, while
False positives/negatives are solid.

In detail, Figure 2.6 depicts the intersection between labels from Gtp with graph Gs,
while Figure 2.7 is the relative complement of Gs in Gtp. Given the amendment, talker is
now properly capable of connecting to its own objects, as the case is opposed for listener
shown via solid edges. However, talker is now also capable of accessing objects intended
solely for listener. A nuance exists here in that talker and listener share a common service
name, though no namespace, any participant with misconfigured QOS/policy exchang-
ing with listener could leak messages to talker. Summarizing, any attempted fix that
expands the minimal policy set only serves to open new attack surfaces.

2.4. Procedurally Provision Access Policy 49

Interestingly, our example results show several false positives and negative for the trans-
port label set enabling unintended circumvention of the policy by way of cross-talk be-
tween ROS2 subsystems with namespace omitted. Utilizing our tools, we were able to
identify an anomaly with the ROS2 Ardent rmw_connext_cpp implementation where-
upon runtime start-up, certain core ROS2 node services are first initialized to the empty
string partition. This has resulted in a temporary workaround within SROS2 that simply
amends the empty string partition to the list of allowed partition criteria in the transport
policy to afford node startup. As of writing, this issue has been reported and solved with
changes in DDS namespace mapping in ROS2.

The source material5 for repeating and reproducing our experimental results is available.
This experimental material additionally exemplifies a typical workflow using ComAr-
mor and Keymint.

While auditing experimental results, a set of gratuitous permissions within the SROS2
default template was also brought to our attention through a simple comparative analysis
between our minimum spanning policy generated from runtime discovery data and that
provided by the SROS2 template. This issue stems from a forgotten holdover workaround
in whitelisting DCPS related topics previously necessary for an older DDS security im-
plementation and has also been ticketed upstream.

5PPAC_ROS2 Experiments: github.com/ruffsl/PPAC_ROS2

https://github.com/ruffsl/PPAC_ROS2

50 Chapter 2. Access Control Policies

/talker/get_param
eters

/talker/set_param
eters

/listener/get_param
eters

/talker/list_param
eters

/listener/set_param
eters

/chatter

/listener

ros_subscribe

ros_call
ros_call

/listener/get_param
eter_types ros_call

/listener/describe_param
eters

ros_call

/listener/list_param
eters

ros_call

/param
eter_events

ros_publish

/talker/describe_param
eters

/clock

ros_subscribe

/talker

ros_subscribe

ros_call
ros_call

ros_call
ros_publish

ros_call

/talker/get_param
eter_types

ros_call

ros_publish

ros_subscribe

ros_subscribe

F
IG

U
R

E
2.6:Publish-Subscribe

annotate
graph

exam
ple:intersection

betw
een

labels
from

G
tp

w
ith

graph
G

s

2.4. Procedurally Provision Access Policy 51

/t
al

ke
r/

ge
t_

pa
ra

m
et

er
s

/t
al

ke
r

ro
s_

ex
ec

ut
e

/li
st

en
er

ro
s_

ex
ec

ut
e

/li
st

en
er

/g
et

_p
ar

am
et

er
s

ro
s_

ca
ll

/li
st

en
er

/s
et

_p
ar

am
et

er
s

ro
s_

ca
ll

/c
lo

ck

ro
s_

pu
bl

ish

/li
st

en
er

/g
et

_p
ar

am
et

er
_t

yp
es

ro
s_

ca
ll

/li
st

en
er

/d
es

cr
ib

e_
pa

ra
m

et
er

s

ro
s_

ca
ll

/li
st

en
er

/li
st

_p
ar

am
et

er
s

ro
s_

ca
ll

ro
s_

ca
ll

/t
al

ke
r/

se
t_

pa
ra

m
et

er
s

ro
s_

ca
ll

/t
al

ke
r/

lis
t_

pa
ra

m
et

er
s

ro
s_

ca
ll

/c
ha

tt
er

ro
s_

pu
bl

ish

/t
al

ke
r/

de
sc

rib
e_

pa
ra

m
et

er
s

ro
s_

ca
ll

ro
s_

pu
bl

ish

/t
al

ke
r/

ge
t_

pa
ra

m
et

er
_t

yp
es

ro
s_

ca
ll

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

su
bs

cr
ib

e
ro

s_
ex

ec
ut

e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

/p
ar

am
et

er
_e

ve
nt

s

FI
G

U
R

E
2.

7:
Pu

bl
is

h-
Su

bs
cr

ib
e

an
no

ta
te

gr
ap

h
ex

am
pl

e:
re

la
tiv

e
co

m
pl

em
en

to
fG

s
in

G
tp

52 Chapter 2. Access Control Policies

2.5 Conclusions

In this chapter we discussed the concept of access control, the issues and properties of
this field with a particular emphasis on the concepts of Authentication and Authoriza-
tion. We focused on authentication schemes and we introduce novel static and dynamic
solution for certificate and attribute distribution in IoT robotic networks.

In particular, we proposed ComArmor as a syntactic access control markup language
applicable for robotic systems and computational graphs that leverage channelized hier-
archies for invoking actions on subsystem objects. This policy schema was then demon-
strated as a proof of concept profile plugin in Keymint, our open source cryptographic
meta-build system designed for automating the provisioning of transport specific arti-
facts enabling secure and controlled communications.

Additionally, we provided a degree of model verification for semantic permission
profiles and a systematic test methodology for checking both application satisfiability
and rigour of deployed implementation of a governing policy. The take-away here be-
ing the surmountable inherent value of higher level policies that service intermediate
representations can provide when coupled with a compile framework to afford trans-
port/vendor agnostic access control definitions.

Still, several issues are part of our discussion as mitigates the disclosure of sensitive
information (i.e an agent profile), improves privacy in access to partially unauthorized
resources (e.g. function output custom sanitization); as well as decoupling the crypto-
graphic operations from the authenticity mechanisms through middleware implementa-
tions as oneM2M [72] or other DDS.

Lastly, we’ve covered potential vulnerabilities in SROS2 as encountered over the de-
velopment and experimentation of our frameworks, emphasizing the importance of con-
tinuous security evaluation throughout design development cycle.

All in all, we believe that we have given a solid base for the definition of the future
security mechanisms for robotic devices that could be easily and securely integrated in
big-scale deployments without suffering software limitations.

53

Chapter 3

Vulnerability Excavation

In this chapter, we dive in detail into model verification and privacy issues. In particular,
we continue along the line of weak security design choices and we take care of the source
of concerns in terms of safety and security in product deployment. To address those prob-
lems we can distinguish between two lines of research, either studying the security and
hardening solutions for the devices or focusing on the communication infrastructures.

As this thesis centers on the application-layer data-centric approach, our analysis focuses
on the latter aspect of the issue and, in particular, we discuss Data Distribution Service
(DDS)[2]. We first introduced the highlights of the framework in Section 1.7.2, since it
is one of the most used1 real-time middleware communication mechanism (based on a
publish-subscribe model), it makes an interesting use case for the sake of our analysis.
Moreover, it is employed in several critical industries including Automotive, Transporta-
tion, Healthcare, Energy systems, Aerospace, Defense, etc., being a pivotal component
in large-scale distributed networks. However, such applications require a rigid security
mechanism since any potential vulnerability can lead to millions in economic losses or
damages.

By pursuing the same line of research we discussed in Section 2.4 for provisioning access
policy, we identify an interesting opening in the threat model for IoT network frame-
work. In detail, the security model adopted by DDS SPI infrastructure is meant to pro-
vide: confidentiality of the data samples, data and messages integrity, authentication and
authorization of DDS agents, message-origin and data-origin authentication, and option-
ally non-repudiation. By enforcing those properties, threats such as unauthorized sub-
scriber and publisher creation, tampering and replay messages, and unauthorized access
to data, are blocked. Nevertheless, the proposed threat model doesn’t cover permission
confidentiality 2, actually exposing the system to similar threats like the one we intro-
duced in section 2.2.
To understand those issues, in this chapter, we explain in further detail how DDS and its
Secure Plugins [1] works and how we actually excavate those vulnerability [96].

1https://omgwiki.org/dds/who-is-using-dds-2
2https://issues.omg.org/issues/DDSSEC12-13

https://www.omgwiki.org/dds/who-is-using-dds-2
https://issues.omg.org/issues/DDSSEC12-13

54 Chapter 3. Vulnerability Excavation

Lastly, besides the certificates’ decoupling User-pull architecture discussed in Chapter
2, we focus on possible countermeasures. In particular, we discuss a novel approach to
guarantee the confidentiality of the topology of the network via Attribute-Based Encryp-
tion (ABE). The general idea is that only the receiving entities - that own the inverse rules
of the sender - can decrypt the received policy. Therefore, if the rule allows an entity to
subscribe to a topic, only an entity that can publish that topic can decrypt the entry. Still,
this is not straightforwardly achievable, since we should encrypt each entry in the policy
with a different set of rules.

The rest of this chapter is structured as follows:

• Background: in this section we introduce the reader to the threats we are exposed
to when policies are leaked or transmitted in plain text and to our analysis.

• Data Distribution Service (DDS): in this section we analyze in more detail DDS.
We provide an in-deep presentation of the framework and the Authentication and
Access Control Security Plugins.

• Threats & Attack Model: in this section we discuss our threat and attack model
assumptions.

• Approach: this section details our approach in partially reconstructing data bus
topology and inferring reachability throughout the network at scale.

• Implementation: in this section we document our experimental setup and testing
infrastructure.

• Results: in this section we demonstrate how an attacker may isolate information
flow from a single node by identifying critical targets or verify reachability from a
selected source to a target destination.

• Countermeasures: in this section we discuss some countermeasures to the threats
we discussed in the chapter and present a novel approach to secure policies through
the usage of Attribute Based Encryption (ABE).

• Conclusions: in this section we summarize what we have presented in the chapter
and discuss some closing remarks on the work.

The work discussed in this chapter has been published in [96].

3.1 Background

In this section, we further discuss which are the threats we face when policies are leaked
or transmitted in plain text. Policies define an agent capability to read and write data in a
certain domain in the application. By leaking such information, we can infer the topology

3.2. Data Distribution Service DDS 55

by comparing the capabilities of each agent in the domain and deducing possible connec-
tions without having to decrypt ciphered message data. For example, in case the topic
names may remain sensitive, might include when a topic offers some pivotal clue as to
the amount of confidential resource. In industrial applications, topics might be indexed
sequentially, or ordered in a specific manner (e.g. Vehicle Identification Number (VIN)),
therefore attackers could use a classical statistical theory of estimation, similar to that ap-
plied during WW2 to solve the ’German tank problem’[78] for estimating the number of
surveillance sensors or alarms armed in a network or in a physical subsystem. Addition-
ally, it might be possible to identify a system by fingerprinting the associations between
topics and entities in the system. In case of high level framework relying on DDS, as
ROS2, the usage of standardized naming conventions as including the software package
name or data type in the topic namespaces advertised is a common norm. Moreover, via
these clear text traits one can assist in recognizing un-patched or exploitable versions of
software/firmware.
Unlike traditional network reconnaissance methods like using traceroute, in which an
attacker needs to query the network repeatedly to obtain information about the topol-
ogy[61] that may trigger alarms to network administrators, the methods we present allow
an attacker to construct a richer topology of the underlying data bus merely by passively
sniffing the packets inside the network. As countermeasure, administrators can employ
techniques that obscure the network itself [62] to impede an attacker from reconstructing
the true network topology, or that trigger intrusion detection countermeasures before an
actual attack is executed. However, in a passive attack scenario, it becomes substantially
harder to identify an attacker before any malicious operation is performed.
By analyzing the plugin, we observe how participant’ handshakes are performed by ex-
changing a plain text permission file. Although digitally signed, to preserve integrity and
block an unauthorized node from accessing resources via forged permissions, its trans-
mission plain text voids its confidentiality. Thus the significance or internal function of
networked devices as with automotive ECUs or robotic sensors may remain transparent
to unauthorized users, regardless of whether or not DDS Security is enabled. Therefore,
we investigate how revealing the data flow semantics for each node and its functional
role in the network renders DDS networks more vulnerable when facing malicious ad-
versaries.

3.2 Data Distribution Service DDS

The Data Distribution Service (DDS)[2]3 is a standardized network middleware protocol
and API that aims to provide reliable and scalable services based on a publish-subscribe
model, i.e. a data centric model based on a conceptual Global Data Space. It provides
low-latency data connectivity, extreme reliability, and scalable architecture that mission-
critical Internet of Things (IoT) applications need. It simplifies the development of dis-
tributed systems by letting software developers focus on the specific purpose of their

3https://www.dds-foundation.org/what-is-dds-3/

56 Chapter 3. Vulnerability Excavation

applications rather than the mechanics of passing information between applications and
systems.
From our perspective, a pivotal feature of DDS we underline is its uniquely data-centric
setting; in other terms, it works by sending information between applications and sys-
tems. Data centricity ensures that all messages include the contextual information an
application needs to understand the data it receives. This decoupled nature of publisher-
subscriber compared to an ordinary request-response model renders the protocol more
suitable for real-time systems and IoT applications.
Applications can choose to have publishers and/or subscribers, where the data model
underlying the Global Data Space, also known as DDS Domain, is a set of data objects. In
particular, to the application, the global data space looks like local memory accessed via
an API, similarly to for ROS’ Parameter server (see Section 1.2).

Similarly to ROS’ entities, in DDS a Publisher is an object responsible for data distri-
bution and may publish data of different data types. Similarly, a Subscriber is an object
responsible for receiving published data and making it available for the receiving appli-
cation. These DomainParticipants (or agents) can respectively write or read in a Domain,
which denotes the set of all applications that can communicate with each other. Topic ob-
jects conceptually fit between publications and subscriptions, and uniquely identify the
name, data type and corresponding Quality of Service (QoS) associated with the data on
both the publisher and the subscriber sides. In Figure 3.1 we see an high level repre-
sentation of a simple network in which we have talkers (data writer) and listeners (data
reader) over three different topics in the same DDS Domain.

 DDS Domain

Data
Writer

Data
Writer

Topic
A

Topic
B

Topic
C

Data
Reader

Data
Reader

Data
Reader

Data
Writer

FIGURE 3.1: DDS Domain

3.2. Data Distribution Service DDS 57

3.2.1 Authentication

In this section, we provide the background of the Authentication Plugin of Secure DDS.
In particular, prior to joining the DDS domain, each DomainParticipant must be authen-
ticated. As we can see in Figure 3.2, on start, a DomainParticipant (agent) authenticates
its local identity to others in the network using its own public certificate. In the Figure,
participant A sends its identity to B and vice-versa. This Identity Certificate is signed by
the Identity Certificate Authority (CA)[1]. Each DomainParticipant will then verify the
authentication of a discovered remote peer through a mutual handshake request and re-
ply messages. Among other tokens inside the handshake request, the Identity Certificate
and the Domain Participant Permissions (detailed in the next section) of a remote peer
will also be included (depicted in bold in the figure); this is precisely the information
leakage we exploit in this work.

A B

Data QoS Negotiation

c.id
c.perm
c.pdata
c.dsign_algo
c.kagree_algo
hash_c1
dh1
challenge1
ocsp_status

c.id
c.perm
‘c.pdata

c.dsign_algo
c.kagree_algo

hash_c2
dh2

hash_c1
dh1

challenge1

OK

FIGURE 3.2: Simple representation of the Discovery Protocol mechanism

3.2.2 Access Control

In order to ensure authorization of DDS publishers and subscribers, DDS defines an Ac-
cess Control Plugin. The DomainParticipant must be provisioned access to given do-
mains, publish access to topics for data it produces, and subscribe access to topics for
data it consumes. In addition, there are more configurable permissions that further seg-
ment data access, such as DDS partitions, data tags, and domain tags, that we omit from the

58 Chapter 3. Vulnerability Excavation

discussion at this stage but are accounted for in our analysis approach.

Three configuration documents are associated with the Access Control Service:

1. Permissions CA Certificate

2. Domain Governance signed by Permission CA

3. Domain Participant Permission signed by the Permission CA

The Domain Governance is a XML document specifying the protection policy inside
this domain, including whether or not to enforce encryption, whether to set specific lim-
itations on certain topics, etc. The Domain Participant Permission is a XML document
containing the permissions of a DomainParticipant. Essentially, it is a set of grants that
denotes the rules to either reject or allow the DomainParticipant to write or access cer-
tain topics, inside certain partitions of a domain, with certain data tags associated with
the DomainParticipant. It also includes the domain the DomainParticipant allowed is to
communicate in, and the time period that such permissions may be valid [1].

3.3 Threat & Attack Model

In this section, we analyze the approach we pursuit in both the threat and attacker mod-
els, including assumptions made when applying our approach.

In addition to the information disclosure of permissions via clear text, the complete
Threat model we consider is the following.

1. Network traffic may be sniffed, via live or recorded.

2. Network topology may be originally unknown.

3. Network semantics may be originally unknown.

4. Network topology may be non-static.

5. Certificate Authorities remain un-compromised.

6. Participant issued certificates remain un-compromised.

7. Attackers may selectively disrupt network connectivity by dropping packet traffic,
route poisoning, or physically disrupting a participant device, for some non-free
cost.

Attack Model

As indicated in the list above, the minimum requirements for the execution of the at-
tack is that we necessitate access to network level DDS traffic. For applications such as
distributed IoT systems, a stronger assumption would be that an attacker owns all of

3.3. Threat & Attack Model 59

the victim’s networks simultaneously. However, neither complete nor simultaneous net-
work access is among these minimum requirements for passive or active attacks, given
that our later approach inherently reconciles with partial observability over connectivity
and time. Thus multi-site measurements, such as recording IP traffic over different con-
nections one at a time, is sufficient for reconnaissance purposes.
One may argue that access to DDS network traffic itself is a rather strong assumption for
an attack scenario, given that enterprise networks often operate through VPNs. How-
ever, as DDS is a decentralized protocol supporting a range of Quality of Service (QoS)
and security features, applications necessitating its adoption often demand peer-to-peer
connectivity over lossy channels that are bandwidth and energy limited. Centralized pro-
tocols dependent on reliable transport that add additional crypto overhead and deadline
latency are subsequently ill-suited for these scenarios. Thus for applications using DDS,
the assumption that Secure DDS traffic is observable over the physical network layer is
probable, if not most likely for internal system networks, such as inside autonomous ve-
hicles.

A representative IoT example of a highly distributed, realtime, peer-to-peer network
would be the Cooperative Intelligent Transport Systems (C-ITS)4 under development of
the European Commission, whose goal is to build a smart-city scaled network to ex-
change realtime data among vehicles and other road infrastructural facilities to optimize
traffic management and take full advantage of highly automated vehicles (level 4/5)[42].
We decompose the attack into two phases distinguishing on whether the attacker has the
additional ability to control the network. If the attacker can only observe the network
then it can perform Passive attacks; on the other hand, if it has some degree of influence
on the network, Active realtime attacks become feasible.

• Passive Attack: in this scenario, an attacker can capture permission tokens from
sniffed DDS security handshake traffic which enables it to gradually reconstruct
the underlying computation graph. In addition to mapping the structure of the
computation graph to physical network topology, reconstruction of the data flow
and semantic connectivity is also obtained; e.g. how devices/participants interact
with each other over specific data objects.

• Active Attack: having reconstructed a rich model of system connectivity in pas-
sive attack, thanks to the additional level of control over the network, an attacker
is thus situated to execute far more targeted and specialized attacks. For example,
if a targeted participant is directly inaccessible due to hardware protections, an ac-
tive attacker may still selectively isolate it from certain data objects in the rest of
the DDS domain by dropping network traffic identified as pertaining to a given
topic, e.g IP port/address routes inferred from the secure handshake. In this way,
an attacker may effectively remove the target participant from parts of the DDS do-
main, cutting the information flow from the network, or vice versa, while without

4https://ec.europa.eu/transport/themes/its_en

https://ec.europa.eu/transport/themes/its_en

60 Chapter 3. Vulnerability Excavation

overly disrupting the connectivity to the rest of the physical network, or physically
compromising the host hardware.

Interestingly, we notice that even if an attacker does not have the capability to control
the traffic, as with secure wireless scenarios, an attacker could revert to less covert meth-
ods such as jamming the local spectrum or tampering the physical device. These meth-
ods come at a significantly greater cost for the attacker, and thus the expected Return on
Investment (RoI) must justify the additional risk. Again, relying on the rich model of
system connectivity, an attacker may better prioritize a partial attack surface, e.g. only
damaging infrastructures know to host a targeted resource or data object type for the rest
of the domain.

3.4 Approach

Under the assumptions discussed in the previous section, we know that once an attacker
acquires the handshake packets it can construct the semantic network topology by in-
terpreting the permission files. The sample snippets in Figure 3.3 depict the example
permission files that we will use to illustrate this process. In the figure, we can see the
permissions for the talker-listener example, in which the talker publishes in the domain
food the topics in foo/bar/. Here we find two specific topics pudding and test, and a wildcard
to publish in the whole domain whatever topic it wants. On the other hand, the listener
can use the permission in the domains food and spam and subscribe to topic foo/bar/pud-
ding and foo/baz/test in both domains.

<?xml version="1.0" encoding="UTF-8"?>
<dds>
 <permissions>
 <grant name="/talker">
 <subject_name>CN=/talker</subject_name>
 <validity>
 <not_before>2013-10-26T00:00:00</not_before>
 <not_after>2018-10-26T22:45:30</not_after>
 </validity>
 <allow_rule> <!-- multi and/or <deny_rule> -->
 <domains>
 <id_range> <!-- multi and/or <id> -->
 <min>10</min>
 <max>42</max>
 </id_range>
 </domains>
 <publish> <!-- multi and/or pub/sub -->
 <partitions> <!-- multi and/or <tags> -->
 <partition>food</partition>

 </partitions>
 <topics>
 <topic>foo/bar/pudding</topic>
 <topic>foo/bar/test</topic>
 <topic>foo/bar/*</topic>
 </topics>
 </publish>
 </allow_rule>
 <default>DENY</default> <!-- or >ALLOW< -->
 </grant>
 </permissions>
</dds> (A) Talker Permissions

<?xml version="1.0" encoding="UTF-8"?>
<dds>
 <permissions>
 <grant name="/listener">
 <subject_name>CN=/listener</subject_name>
 <validity>
 <not_before>2014-10-26T00:00:00</not_before>
 <not_after>2019-10-26T22:45:30</not_after>
 </validity>
 <allow_rule> <!-- multi and/or <deny_rule> -->
 <domains>
 <id_range> <!-- multi and/or <id> -->
 <min>20</min>
 <max>50</max>
 </id_range>
 </domains>
 <subscribe> <!-- multi and/or pub/sub -->
 <partitions> <!-- multi and/or <tags> -->
 <partition>food</partition>
 <partition>spam/*</partition>
 </partitions>
 <topics>
 <topic>foo/bar/pudding</topic>
 <topic>foo/baz/test</topic>

 </topics>
 </subscribe>
 </allow_rule>
 <default>DENY</default> <!-- or >ALLOW< -->
 </grant>
 </permissions>
</dds> (B) Listener Permissions

FIGURE 3.3: Highlighted diff between two Secure DDS permission.xml
files depicting degrees of overlapping capabilities.

3.4. Approach 61

After obtaining the network topology, we also explore how an attacker may formulate
queries regarding the network’s connectivity. Example queries include:

1. Given the set of nodes (i.e. DDS participants) A and B in the cyclic graph G, what
minimal set nodes in G, exclusive of A and B, would need to be disrupted to dis-
continue information flow from A to B.

2. Given a source A, what are the nodes that we need to offline in order to isolate all
information flow from set A.

3. Given a destination set B, what set of nodes would need to be compromised to
prevent B from only receiving information from the rest of G.

With this information, an attacker may then selectively partition any node from the
rest of the network with minimal invested effort or detectable network disturbance.

3.4.1 Network Topology

To visualize the network topology, we depict it as a directed graph with vertices repre-
senting nodes in the network, and edges indicating that there exists at least one topic
match between the two connected vertices. By representing the network via a directed
graph we can distinguish publish and subscribe actions, which can be depicted using
directional edges pointing from a publisher to a subscriber. Additionally, to account
for a third ‘relay’ permission type, we decompose all relay actions to a combination of
subscribe and publish capabilities on the topic. This reduction not only decreases the
complexity of inferring information flow but also eases the graph visualization and in-
trospection as depicted in Figure 3.4.

permissions.p7s

 <grant =...
 <subject>

permissions.p7s

 <grant =...
 <subject>

permissions.p7s

 <grant =...
 <subject>

FIGURE 3.4: Starting from the permission file, we visualize the network as
a directed graph

3.4.2 Heuristic Graph and Lazy Evaluation

Still, the direct graph representation suffers some drawbacks. In real world applications,
a network may consist of hundreds or even thousands of nodes. Such tremendous scales
inevitably make any graph construction an intensive task. A naive approach to construct-
ing a network topology requires the consideration of all permission files when computing

62 Chapter 3. Vulnerability Excavation

for the potential intersection in respective permission grants. However, this is impracti-
cal given the exhaustive complexity of O(n(n � 1)/2) it would result using the formal
verification of grant intersections we discussed so far; this is among the most compu-
tationally intensive steps in our attacker pipeline. Instead, our approach reduces query
time latency via admissible heuristics and lazy evaluation. By first generating a heuristic
graph to approximate the information flow, we substantially curtail the number of ex-
pensive inferences on grant intersections. Thus, while the initial model may exaggerate
apparent connectivity, we can remain assured that resulting reachability queries via for-
mal verification remain complete.

Generating a heuristic graph mostly relies on the fast and admissible approximation as
whether to connect or not two vertices. We decompose this approximation process into
three phases:

1. A simple directed graph is created by indexing each grant in the permission files,
adding respective vertices for both nodes as well as topics to the graph without
duplicates, and then connecting nodes and topics according to the direction of in-
formation flow. This results in a directed bipartite graph such that vertex set U
consists of all nodes in the network and vertex set V includes all topics involved in
the network. Figure 3.5 shows the result of this evaluation on the simple network
with a talker and a listener introduced above. In this simple network, vertex set
U consists of nodes talker and listener, whereas vertex set V is comprised of four
topics. This graph can be quickly generated as nodes as well as topics can be it-
eratively appended on the fly, rather than holistically batching the entire graph all
at once and performing intersection checks between any two nodes’ publish and
subscribe topic expressions.

CN=talker

foo/bar/pudding foo/bar/test foo/bar/*

CN=listener

foo/baz/test

FIGURE 3.5: Raw Graph Obtained by Scanning Permission Files

2. The next phase focuses on combining related topics to form connected components
of topics and then collapses the topics into a single vertex. By combining related
topics, we mean drawing bidirectional edges between any two topics that match
at least once using two way ‘fnmatch’: the POSIX string matching function chosen
in the Secure DDS standard. An example of this is in Figure 3.6, where we have

3.4. Approach 63

one such connected component formed by three topics including foo/bar/pudding,
foo/bar/*, and foo/bar/test. The transition from Figure 3.6 to Figure 3.7a illustrates the
process of collapsing the connected components into a single vertex. Although this
process is simple, it may potentially increase the total number of paths between
different nodes in the network. The extra paths we get do not exist in the real
network topology, hence a heuristic graph instead of an exact model.

CN=talker

foo/bar/pudding

foo/bar/test

foo/bar/* CN=listener

foo/baz/test

FIGURE 3.6: Connected Graph Obtained by Connecting Topics

3. During the last phase, we further reduce the bipartite graph to a regular network
topology by eliminating topics vertex set and connect nodes that might have the
capabilities to communicate on some topic. In our simple example, we get Figure
3.7b as a heuristic graph after completing this step, which serves as a foundation
to answer the connectivity query. Given the retrieving of a heuristic graph, naive
queries on reachability using the simple edge traversal would be inaccurate; our
approach resolves this via lazy evaluation. First, using the naive path computed
on the heuristic graph, i.e. using Dijkstra Algorithm or A*, the resulting edge se-
quence or node pairs are iteratively verified for directional connectivity using a
satisfaction constraint solver. We describe the reachability verification process in
detail in Section 3.4.3. By pruning paths and edges sequences at query time, we
avoid unnecessarily checking unfeasible flows derived from topic permission mis-
matches.

64 Chapter 3. Vulnerability Excavation

CN=talker

foo/bar/*, foo/bar/pudding, foo/bar/test

CN=listener

foo/baz/test

(A) Contracted G

CN=talker

CN=listener

(B) Heuristic G

FIGURE 3.7: Contracted Graph is obtained by collapsing related topics into
single node, while the Heuristic Graph then is obtained by collapsing topic

vertices.

3.4.3 Reachability Verification

During the handshake phase, two DDS DomainParticipants will each verify that the other
has the permission to access the resource in question. For the subject node that is adver-
tising its access, we will abstract this into a subject representation; containing the informa-
tion about the name of the subject, the action it is requesting, the topics that it advertises
to publish or subscribe, and other subject criteria regulated by access control. Algorithm
1 below details how each node will validate the provided subject representation with the
subject’s respective permission file, and return a qualifier: ALLOW or DENY of the re-
quest. In detail, it will start with the EVALUATE function that for each grants verifies
with CHECKRULES function each CRITERIA and returns via MATCH function the re-
sulting request response.

Algorithm 1 DDS Security v1.0 Default Access Control Logic

1: procedure EVALUATE(permissions, subject)
2: for grant in permissions do
3: match grant.subject_name.match(subject)
4: valid grant.validity(current_date_time)
5: if match and valid then
6: quali f ier CHECKRULES(rules, subject)
7: if quali f ier is None then
8: return grant.de f ault
9: else

10: return quali f ier

11: return ERROR
12: function CHECKRULES(rules, subject)
13: for rule in rules do
14: domain subject.domain in rule.domainSet

3.4. Approach 65

15: criteria rule.get(subject.action.type)
16: . Action types: publish, subscribe, relay
17: match CHECKCRITERIA(criteria, subject)
18: if domain and match then
19: return rules.quali f ier
20: . Qualifier types: ALLOW, DENY

21: return None
22: function CHECKCRITERIA(criteria, subject)
23: for criterion, i in criteria.criterions do
24: matches[i] any (criterion.match(subject))
25: . Criterion types: topics, partitions, tags

26: return all (matches)

27: function MATCH(publisher, subscriber)
28: isMatched publisher.action = PUBLISH and
29: subscriber.action = SUBSCRIBE and
30: publisher.topic = subscriber.topic and
31: publisher.partition = subscriber.partition and
32: publisher.datatag = subscriber.datatag
33: return isMatched

The access control algorithm checks the grant in the permissions file that matches the
supplied subject and is valid at the time it is evaluated. For this grant, it sequentially
enumerates through all the rules in order, and returns immediately if there is a match
between the rule and the subject. The matching is conditioned upon many criterias in-
cluding topics, partitions and data tags. If no rule is matched, the returned qualifier falls
through to the grant’s default behavior.

To check for permissive exchanges between grants and determine whether data flow
between given nodes is possible, we must formally verify the intersection of the two
permissions files; i.e. either assert or refute the existence of a pair of matching subjects
that satisfy all pairwise constraints. More precisely, given two nodes A and B, and their
corresponding permission files PermA and PermB, find two subject actions ActA and
ActB such that all the following hold:

Evaluate(PermA, ActA) = ALLOW (3.1)

Evaluate(PermB, ActB) = ALLOW (3.2)

Match(ActA, ActB) or Match(ActA, ActB) (3.3)

The constraints above dictate that both subject instances must conform to the respec-
tive permissions, while the QoS attributes of both subjects such as topic, partition, and
data tags must also correspond. The following section details the construction and con-
sumption of such constraints.

66 Chapter 3. Vulnerability Excavation

3.5 Implementation

To validate our approach, we construct an experimental setup with a reproducible test
harness as a pipeline for the entire attacker model5. Docker is used to containerize three
main processes, as well as virtualize a targeted Secure DDS deployment. In detail, as
shown in Figure 3.8 we have a SAT solver, the attacker process, and a simulation envi-
ronment.

DDS SimulationSAT Solver
(Imandra) Attacker Server

DDS
Model

XML
Tokens

Sniff
Capt.

DDS
Perms

FIGURE 3.8: Deployed test setup for demonstration

In detail, we first programmatically synthesize a DDS application with minimal span-
ning permissions, valid PKI and CA trust anchors, where the digitally signed governance
enforces authenticated encryption for all transport, depicted as DDS Perms in the picture.
This experimental configuration is then provided to an isolated DDS simulation control
that launches each participant in separate containers within a controlled software defined
network. The first few seconds of network traffic is consecutively recorded to capture ini-
tial Real Time Publish Subscribe (RTPS) protocol discovery data, and then given to the
attacker.

The attacker process strips all permission tokens for the raw packet capture and con-
structs a graph based database of permission tokens and respective origin/destination IP
address. This database is then shared with the SAT solver to compute client queries.
For formal verification, we utilize Imandra6 a formal verification tool originally pur-
posed for model checking financial market software and exchange protocols [45]. It is
highly adaptable and performs the nonlinear arithmetic and automated induction, that

5https://github.com/ruffsl/dds_security_sniffer
6https://www.imandra.ai

https://github.com/ruffsl/dds_security_sniffer
https://www.imandra.ai

3.6. Results 67

we need to infer the proofs or counterexamples to resolve out SAT formulation of per-
mission intersections. By replicating the access control evaluation logic as defined by
the DDS specification in OCaml, we can quickly prototype and experiment with alter-
nate security plugin designs with minimal modification. When surveying DDS networks
at scale, solving such SAT queries would remain a bottleneck, and thus should be op-
timized by reducing the number of queries required when inferring about the network.
Using Imandra, we simplify the implementation of our approach by replicating the DDS
Security SPI specification as functional programs in OCaml, to faithfully model default
plugin logic. This also allows for generalizing our automated attack pipeline for non-
default plugins; merely update the OCaml model to reflect a new SAT.

Therefore, the model of the access control logic and accompanying token database is
used by the SAT service to solve for incremental reachability inquiries from the inquis-
itive attacker. The attacker uses the proved or refuted subject instances as feedback to
prune the heuristic graph until the overall reachability inquiry is determined.
Armed with the associative model of DDS objects to physical network address, the at-
tacker may finally sabotage the target application by selectively deteriorating DDS con-
nections by commanding the simulation controller to drop specified containers from the
software defined network.

3.6 Results

In this section, we showcase some example scenarios to elucidate our work and demon-
strate the correctness of our implementation on a more complex network; a 2D grid of
consisting of 36 nodes is used to maintain readability.

Our simulated DDS network is simply composed of broadcast nodes that periodically
publish a KeepAlive diagnostic message to all topics they can publish. Each node also
serves as repeater, relaying any subscribed KeepAlive messages to all topics it can pub-
lish after appending its own id to avoid cyclic packets. By sampling the packet lineage
from different points in the distributed application, unit tests for bisecting information
flow can be verified.

In the following we discuss three different scenarios in which we execute different
queries.

3.6.1 Source and Target

If both source node and target node are specified, our model outputs a list of nodes as the
path from source to target. For example, in Figure 3.9, if the source node is (5, 0), and the
target node is (0, 3), then the model outputs a list of nodes containing all the green nodes.

68 Chapter 3. Vulnerability Excavation

FIGURE 3.9: Query source and target result

3.6.2 Source Only

Given only a source node, our model displays a minimal set of nodes that an attacker
needs to take down to prevent the source from passing data to all its subscribers. As
shown in Figure 3.10, the source node is colored in blue, and the possible target nodes
are colored in green. If the input is the blue node, then the model outputs a set including
the three green nodes.

FIGURE 3.10: Query isolate publisher result

3.7. Countermeasures 69

3.6.3 Target Only

Similarly, if only a target node is given, we will obtain a minimal set of nodes an attacker
needs to attack to prevent the target from acquiring any new information from the net-
work. This is illustrated in Figure 3.11, where the target node is colored in green and its
source node is colored in blue.

FIGURE 3.11: Query isolate subscriber result

3.7 Countermeasures

In this section, we offer an analysis of countermeasures for the issues highlighted so far.
The goal is twofold, on the one hand, the confidentiality of the topology of the network,
and on the other optimize clustering of the entities in the domain.
Overall, we want to optimize the network while retaining confidentiality, and - concern-
ing the number of nodes - reduce the usage of the resources by grouping similar agents
in a single entity in the domain. Here we focus more on the first aspect of the problem,
by discussing solutions to enhance confidentiality.

Since the approach presented predominantly makes use of the current Secure DDS de-
fault plugin standard, thus resolving this issue would largely serve to mitigate the feasi-
bility of the attacks demonstrated. The easiest and straightforward answer would be to
revise the integration between the crypto and access control plugins to alternatively post-
pone permission token exchange through a secure channel after the crypto handshake
has concluded. This may subsequently add another round trip delay to the overhead
introduced in securing connections; however, granted the crypto handshake does not in-
clude the action request or response to begin with, it stands to reason that the permission
token could be appended to the payload of the subsequent secured requests or responses.

70 Chapter 3. Vulnerability Excavation

Alternatively, one could seek to obscure the permissions embedded in the token by
using an HMAC with a known key, either embedded in the token or distributing it out
of band. Each topic/partition/data-tag element in the XML permission document could
be replaced with say the base64 encoded digest of the expression string it replaces. Thus,
upon receiving an action request from a remote participant, the local participant merely
applies the same HMAC to the action and searches for the matching digests in the remote
permission list. This has the benefit of obscuring permissions from those sniffing hand-
shake network traffic while making minimal changes to existing vendor libraries. In Fast
RTPS for example, the above obfuscation is implementable in less than 60 additional lines
using OpenSSL. Although this works for basic string matching, support expression ex-
pansion remains an issue given the expressions in the permission list are just as obscured
from the interned recipient.

However, both of these mitigations thus far, either postponing permission exchange
or obfuscating the fields in the permission token have their potential drawbacks. Using
HMAC is particularly vulnerable as message authentication codes only really afford in-
tegrity and not confidentiality, i.e. once an attacker knows what they are looking for, it
can easily ascertain whether the permission it seeks is present in the token. Given that
systems that build upon DDS, like ROS2, commonly use predictably or standardized
topic names, it may be trivial to brute force obscured permissions from a limited corpus
of topic names, or correlate matching digests across tokens to infer connectivity.

In postponing permission exchange, we merely delay the invocation of the Policy
Decision Point, affording a secure channel to remote participants whose privileges we
have not yet attested to. Only a single trusted identity need be compromised to begin
scraping the permission tokens of others in the same secure distributed network. While
DDS discovery information could also be decrypted with the same compromised par-
ticipant identity, the permission tokens that divulge what data a participant can access
versus what they currently advertise can still be advantageous to an attacker as described
previously.

Additionally, we could investigate the application of non-interactive zero-knowledge
proofs to provide a mechanism for remote attestation of privilege in an access-controlled
protocol (without divulging anything more than necessary). However, aside from the
provisioning of proving and verification key materials for PKI identities with periods
of validity, particular challenges in using frameworks such as zk-SNARK [12] (zero-
knowledge succinct non-interactive argument of knowledge) with applications using
DDS networks, is maintaining real-time performance in terms of security overhead and
scalability. In particular, by limiting the upper bound of computation time for verifica-
tion, conserving bandwidth for sending larger proofs over the wire, and limited input
sizes when transforming permission sets into a boolean circuit.

The priorities here are to maintain privacy and support federated network for interop-
erability in highly distributed systems, with multiple CA and domain-specific Attribute
Authorities. Moreover, we want to minimize resources usage by limiting the overhead

3.7. Countermeasures 71

only to policy parsing in discovery. Although valid, the possibility of obfuscating the
traffic with a Synthetic Packet Engine (SPE) - that generates and injects additional pack-
ets to the network whenever needed - to secure from traffic speculations, has been held
back due to the trade-off of introducing additional traffic in IoT networks.

As discussed in [5], the majority of the IoT network platforms in the market such as
AWS from Amazon, ARM Mbed from ARM, Azure IoT from Microsoft, Google Smart
Things, Homekit from Apple, SmartThings from Samsung, Kura from Eclipse, etc, use
x.509 certificates and OAuth/2 to manage Authentication. However, access control (Au-
thorization) is handled differently. In particular AWS and Azure, the closest to DDS, are
policy-based frameworks. All the others, instead, rely on internal ‘oracles’, similar to
ROS’ Master, to store and mediate access to resources/actions, which is useful in a small
and well-defined domain (e.g. home automation) but does not scale well in our scenario.
Interestingly, all those frameworks’ logic works the opposite when compared to DDS.
While DDS distributes to the agents the policy set containing their own permissions,
the other frameworks, provision to the agents the list of the authorized entities that can
query them. Ideally, our goal is to support interoperability, but the solutions offered by
the other frameworks are closed with respect to a specif implementation. We want to
engineer a solution that maintains confidentiality, therefore, we could exploit Attribute-
Based Encryption (ABE) [38].

3.7.1 Attribute Base Encryption

Through ABE, we provide confidentiality in the policies, in such a way that only the re-
ceiving entities that own the inverse rules of the sender can decrypt the received policy
set. For example, if the rule allows an entity to subscribe to a topic, only an entity that
can publish that topic should be able to read the entry.

There are two types of ABE systems [38]:

• Ciphertext-Policy (CP-ABE): where ciphertexts are associated with access policies,
and keys are associated with sets of attributes

• Key-Policy (KP-ABE): where keys are associated with access policies, and cipher-
texts are associated with sets of attributes

Still, the base form of ABE is not flexible enough on the set of attributes to be accept-
able in a heterogeneous network like the one we are targeting. As discussed in [79], the
usage of KP-ABE and XACML lacks flexibility in terms of public attributes that can be
used in the encryption. Instead of relying on those base form, the usage of a mixture of
CP-ABE and KP-ABE with a suitable access tree with threshold gates could be the so-
lution to our problems [39]. This means that we need to transform our policy sets in a
logic circuit in conjunctive or disjunctive normal form for the ABE in functional encryption
scheme (CNF or DNF).

72 Chapter 3. Vulnerability Excavation

In further detail:

• Conjunctive Normal Form: in this form, we need to express the policy as an AND
of ORs and NOT

• Disjunctive Normal Form: in this form, the policy is an OR of ANDs and NOT

Where the NOT operator can only be used as part of a literal, which means that it can
only precede a propositional variable or a predicate symbol.

3.7.2 Policy Representation

To ease the process of conversion to DNF/CNF, we translate the policy into a binary tree.
The definition of this machine-readable intermediary representation, ease the creation of
the normal forms’ formula. In detail, while parsing the policy XML file, we can populate
a binary tree by exploiting the URI structure of the resources. In Figure 3.12, we see an
exemplifying tree generated starting from the provided policy below.
As an additional optimization, to reduce the analysis cost and facilitate parallelization,
we want to decouple the policy into different trees, each rooted in a specific high-level
capability (e.g. Publish, Subscribe, etc). This solution simplifies the complexity of the
trees and reduces the size of the final ciphertext payload. By doing so, overall, we opti-
mize the number of parameters (n) thus ciphertext and private key sizes - which are the
principal agents in the definition of the encryption and decryption complexity - which,
in turn, is directly influenced by the number of parameters and might blow up by n3,42

factor limiting overall the usefulness of ABE in practice [93].

Figure 3.12 depicts the binary tree of the following simple Policy:

Publish
/frob
/foo/qux
/foo/bar/baz
/foo/bar/mung/bat/camera

Publish

foo

frob

baz

mung bat camera

 bar

 qux

FIGURE 3.12: Binary-tree representation of the Policy

3.7. Countermeasures 73

In detail, the depth of the tree is the result of the longest rule in the policy. Interest-
ingly, in this representation, it is trivial to group rules that share a common prefix since
they end up in the same branch. This becomes pivotal to perform an analysis of the
policies in framework and optimization.

3.7.3 Policy Conversion

As the final step, we propose a rules conversion technique from the tree to DNF. The idea
behind the realization is that for each level of the tree we construct, for each node on that
level, three labels (parameters):

• An exact match

• An exact deny

• A matching globbing expression (wildcard character)

Below, we can see the results of this transformation to the previous policy:

A = Publish
A1 = /
A2 = deny /
A3 = /*

B1 = /foo/ P1 = /frob/
B2 = deny /foo/ P2 = deny /frob/
B3 = /foo/* P3 = /frob/*

C1 = /foo/bar/ K1 = /foo/qux/
C2 = deny /foo/bar/ K2 = deny /foo/qux/
C3 = /foo/bar/* K3 = /foo/qux/

D1 = /foo/bar/baz/ E1 = /foo/bar/mung/
D2 = deny /foo/bar/baz/ E2 = deny /foo/bar/mung/
D3 = /foo/bar/baz/* E3 = /foo/bar/mung/*

F1 = /foo/bar/mung/bat/ G1 = /foo/bar/mung/bat/camera/
F2 = deny /foo/bar/mung/bat/ G2 = deny /foo/bar/mung/bat/camera/
F3 = /foo/bar/mung/bat/* G3 = /foo/bar/mung/bat/camera/*

To generate the access rules in DNF mode, we need to traverse the tree and for each
node, we define a perfect match, the current globbing minus the deny rule, and all the
previous globbing minus the deny rule. The only node that does not follow this rule is
root that have no parent node.

74 Chapter 3. Vulnerability Excavation

Then, we express the access attributes for the entire tree with the following formulas
that are used to encrypt the policy for each level:

• /: (A & A1) or (A & A3)

• /frob/: (A & P1) or (A & A3 & notP2)

• /foo/: (A & B1) or (A & A3 & notB2)

• /foo/bar/: (A & C1) or (A & B3 & notC2) or (A & A3 & notC2)

• /foo/qux/: (A & K1) or (A & B3 & notK2) or (A & A3 & notK2)

• /foo/bar/baz/: (A & D1) or (A & C3 & notD2) or (A & B3 & notD2) or (A3 & notD2)

• /foo/bar/mung/: (A & E1) or (A & C3 & notE2) or (A & B3 & notE2) or (A3 & notE2)

• /foo/bar/mung/bat/: (A & F1) or (A & E3 & notF2) or (A & C3 & notF2) or (A & B3
& notF2) or (A & A3 & notF2)

• /foo/bar/mung/bat/camera: (A & G1) or (A & F3 & notG2) or (A & E3 & notG2) or
(A & C3 & notG2) or (A & B3 & notG2) or (A & A3 & notG2)

As result, to reach the policy a receiver needs to decrypt the tree starting from the root
formula, towards the leaf, as we illustrate in the following example.

Example: Policy with wildcard character and deny rule

We want to test which entries a subscriber with the following policy can decrypt:

Policy: Sub /foo/bar/*
Deny Sub /foo/bar/baz

Then we create a decryption key with the following attributes which is provisioned
to the agent:

Key attributes {
A = Publish
A1 = /
B1 = /foo/
C1 = /foo/bar/
C3= /foo/bar/*
D2 = deny /foo/bar/baz

}

Then, the decrypt execution is the following:

1. OK (A & A1): Get node foo and frob

2. FAIL no attribute: Drop frob

3.7. Countermeasures 75

3. OK (A & B1): Get into foo

4. OK (A & C1): Get bar and qux

5. FAIL no attribute: Drop qux

6. FAIL (A & D2) Drop baz

7. OK (A & C3 & notE2): Get mung

8. OK (A & C3 & notF2): Get bat

9. OK (A & C3 & notG2): Get camera and extract the Policy!

The system worked as expected, we are able to extract the policy /foo/bar/mung/bat/-
camera.

Example: Policy with wildcard character and specific topic

In this second example, we want to test the behavior of the solution when the subscriber
possesses a different wildcard rule such as:

Policy: Sub /foo/bar/*/camera

Again, we provision the agent with the decryption key and proceed:

Key attributes {
A = Publish
A1 = /
B1 = /foo/
C1 = /foo/bar/
C3 = /foo/bar/*
L = /foo/bar/*/camera

}

The execution is the following:

1. OK (A & A1): Get node foo and frob

2. FAIL no attribute: Drop frob

3. OK (A & B1): Get into foo

4. OK (A & C1): Get bar and qux

5. FAIL no attribute: Drop qux

6. OK (A & C3 & not D2): !!!ERROR baz extracted!!!

7. OK (A & C3 & notE2): Get mung

76 Chapter 3. Vulnerability Excavation

8. OK (A & C3 & notF2): Get bat

9. OK (A & C3 & notG2): Get camera and extract the Policy!

Unfortunately, as we can see, the policy was able to extract baz. This is the limit of the
current implementation which can’t support wildcard expressions in between rules. We
could solve the problem by adding an extra step to extract the policy or add additional
mechanisms (i.e attribute(s)) but this is not trivial.

We could think of a way to split in prefix and suffix the wildcard string and use them
to compute the decryption but, unfortunately, from the policy perspective, we have zero
knowledge about the kind of string we should look for. Even the possibility of listing all
the possible wildcard policies for the resource is unfeasible because we do not know the
deep of the leaf node we are interested in; e.g. the node camera in /foo/bar/ is nested in
/foo/bar/mung/bat/.

One of the possible solutions is to get rid of the wildcard symbols and ’unroll’ the poli-
cies for the specific network it will be deployed into, similar to the approach we have in
ComArmor and Keymint. As discussed, having minimal policies is a paramount feature
we should achieve when working with networks’ policies.

Unfortunately, we have not identified a perfect solution yet. We still need to investigate
which alternatives are most suitable to identify a lightweight approach as with FAME
[3], via Fully Secure Ciphertext-Policy Hiding CP-ABE [53] or the application of decision
gates (attribute-hiding) inner-product predicate encryption (PE) [55].

3.8 Conclusions

In this chapter we discussed an approach for conducting passive network reconnaissance
on systems relying upon Secure DDS, ascertaining a partial topological model of the un-
derlying data bus, and associative mapping between data objects to network addressable
participants. Using formal verification and model checking, we can then inquire about
directed reachability through the distributed computation graph to efficiently perform
vulnerability excavation offline without ever actively engaging with the targeted system.
We then demonstrate how such acquired system models may then be used by an active
attacker to prioritize targeted participants based on the data objects they represent or the
connectivity they facilitate in the larger picture of the system, either by selectively iso-
lating data flow to or from a given data producer/consumer without directly disturbing
other participants.

Additionally, over the course of development, two notable vulnerabilities in existing
DDS software were discovered while validating our default security plugin models as
compared to the OMG specification verses widely used vendor implementations. Firstly,
the checking of partition permissions from remote participant connections was found to

3.8. Conclusions 77

been omitted from the Policy Decision Point in the access control plugin 7. This departure
in compliance results in unintended declassification of topic data to remote participants
who lack the proper authorization for participating within the same secure DDS partition.

Secondly, improper use of topic expression matching was also found in the same ven-
dor implementation8. By naively swapping arguments for the query and pattern string
in the fnmatch call-sites, two participants can establish a connection using topic names
with embedded expressions that match onto topic expressions lists within the permission
document. This discrepancy from the specification was first observed and subsequently
verified during the aforementioned experiments.

In the last part of the chapter, we discussed some countermeasures, including a novel
discussion on the usage of attribute-based encryption (ABE) in robotic networks. We
argue about the drawbacks of existing solutions and how we could solve the threats
represented by our work.

Although the reconnaissance methods and vulnerability excavation tooling devel-
oped over the course of our approach may inevitably prove to be of use to malicious
actors, they are also immediately beneficial for general system validation and penetra-
tion testing, as when auditing mission-critical systems for flaws in access control design
or implementation. For example, when certifying interface isolation between the multi-
media and drive-by-wire subsystems in an autonomous automotive, manufacturers may
be required to formally prove or refute the set of all satisfiable data channels between
the two that would be admissible by the factory permission policy, and assure that no
satisfiable channels (covert or otherwise) exist outside of the anticipated set.

7https://github.com/eProsima/Fast-RTPS/issues/443
8https://github.com/eProsima/Fast-RTPS/issues/441

https://github.com/eProsima/Fast-RTPS/issues/443
https://github.com/eProsima/Fast-RTPS/issues/441

79

Chapter 4

Accountability

In this chapter, we discuss accountability and non-repudiation focusing on techniques to
monitor and record runtime event data for traceability in design and deployment of IoT
network applications. Documenting the operation of a distributed network of multiple
components while generating a comprehensive secure trace of the operation is essential
for quality control, debugging, systems verification, etc. Indeed, for debugging infor-
mation flow or in cases of unexpected robot behavior, event logging is fundamentally
integral for accountability.

However, when the absolute security of a robotic CPS cannot be guaranteed, the correct-
ness of such event logs is subsequently tenuous. Considering the widespread interest in
exploiting self-driving cars and autonomous drones [60], in addition to the recent history
in automotive exploitation [64], there can be no doubt that the lack of security represents
a real threat [51, 24, 63, 66]. Since digital forensic investigations (DFIs) [77] use digital
logs as evidence in post-event analysis or intrusion detection systems (IDS) in electronic
devices, their integrity needs to be not underestimated.

To guarantee the device has not been tampered, without relying on specific hardware,
a standard technique is to continuously broadcast abridged cryptographic commitments
of the system state to a centralized server. As discussed by Veitas et al. [89], due to its
straightforward server-centric data architecture, this technique is particularly suited for
devices without power constraints such as in the automotive industry. However, de-
spite the drawback associated with storage cost, storing personal data, is a daunting task
that requires an adequate back-end infrastructure and cybersecurity team to be compli-
ant with governmental regulatory agencies and privacy regulations. Still, IoT and mobile
robotic platforms, badly pose with respect to those kinds of solutions. Due to their mo-
bile nature, we can’t assume full-time network availability, in other terms, they are not
guaranteed to be always online, which strongly affects the guarantees we need. Rather
than wasting resources and bandwidth on a continuous ascertain, we should research
other solutions.

Moreover, considering the mass-manufacturing restrictions for mobile robots includ-
ing build-of-materials, serviceability, data rates, and the cost associated with the utiliza-
tion of low volume high-cost tamper-proof storage devices (e.g. Write Once Read Many

80 Chapter 4. Accountability

(WORM) memory), it would be financially unprofitable to commit to specific hardware
solutions.
By following the application-layer approach that characterizes this thesis, we want to
address an interesting application scenario in which we verify the integrity, authenticity,
and completeness of robotic event data while under the threat of malicious/erroneous
insertion, omission, or replacement.

To this end, we explore the application of an Event Data Recorder (EDR) based upon
cryptographic linked integrity proofs, disseminated via distributed ledgers. In this chap-
ter, we present Black Block Recorder (BBR), an approach combining the use of Digital
Signature Algorithms (DSA), keyed-hash Message Authentication Codes (HMAC), and
Smart Contract (SC) via Distributed Ledger Technology (DLT) to enable tamper-evident
logging, while considering the limited resources available for mobile robotic deploy-
ments.
More in detail, our contribution is (i) a framework to make robotic logs immutable by
using distributed ledgers via blockchain; (ii) a smart-contract architecture to enforce au-
thenticity and non-repudiation of log integrity proofs.

The rest of this chapter is structured as follows:

• Background: in this section we introduce the concepts of token-based ledgers, dis-
tributed ledgers technology (DLT), and immutable logs in Event Data Recording
necessary for the next discussions.

• System Architecture: in this section we define which are the design and implemen-
tation properties we account for in the definition of our framework.

• Approach: in this section we present the core components of the framework and
how we exploit HMAC and smart contract for creating immutable logs.

• Implementation: in this section we showcase the implementation and test the per-
formance of the framework on ROS2 and Hyperledger Sawtooth.

• Conclusions: in this section we summarize what we have presented in the chapter
and comment on the usage of EDRs in robotic systems.

The work discussed in this chapter has been published in [95].

4.1 Background

In this section, we introduce the concepts behind the proposed solution we discuss in
the chapter. In particular, we debate the general topic of token-based ledgers, their main
properties, and how we apply distributed ledgers technology (DLT) for immutable logs
in Event Data Recording for autonomous systems via Secure Enclaves.

4.1. Background 81

Before we dive into details on how we can securely store and manage logs, we need to
identify a tool or mechanism that can guarantee the integrity of logs under our threat
hypotheses. To guarantee the security of the logging pipeline, we propose to use a
Hardware-assisted Trusted Execution Environments (HTEE or simply Trusted Execution
Environments (TEE)). Thanks to the HTEE’s off-the-shelf solutions that manufacturers
are including (by design), on their mass-produced CPUs, we can guarantee high-level
security while retaining low-cost.
Often addressed as Secure Enclaves for computation, HTEE provides varying degrees of
Isolation, Attestation, and Sealing. In particular, Isolation defines the confinement and
protection of runtime execution and memory within the Enclave from other processes
sharing the same system. Attestation defines the processes for proving or verifying the
integrity of the Enclave to initialize trust across HTEE modules. Sealing defines the se-
cure storage and loading of persistent secrets in the Enclave.
Considering the integration rates from the OEMs of those solutions, the security benefits
of applying an affordable hardware solution such as Intel’s Software Guard Extensions
(SGX) [26] or ARM’s TrustZone, for robotic application has become an interesting and
active area of study. Staffa et al. [82] identified a security bottlenecks in robotic software
architectures, and present how HTEE can be integrated with specific ROS components to
improve the overall robot security without disrupting the existing infrastructures.

In Figure 4.1, we showcase a logging Enclave application in a high-level view of the
network. By using an Enclave, by definition, we provide a security layer and guarantees
which are true regardless of the state of the other network’s components. Still, despite
Enclave covers Log generation, once logs are moved into the external storage "Log Stor-
age" we lose the secure environment provided by the Enclave and any logs’ integrity
guarantees.

bar
(Node)

Log

foo
(Node)

Log
Storage

Enclave

FIGURE 4.1: High-level representation of a network with an Enclave log-
ging node

To secure logs in the storage phase, we could use temper-prof memory. However,

82 Chapter 4. Accountability

the price associated with such devices is not justified for all kinds of applications. Our
goal is to identify a less costly resilient storage component that could securely store our
logs while remaining inspectable for DFIs. The solution we identified is a token-based
blockchain.

In detail, a token-based blockchain is a peer-to-peer distributed ledger that derives its
security from public-key cryptography. It might function both as a digital ledger and
a mechanism enabling the secure transfer of assets without an intermediary. Anything
from currencies to legal titles votes can be tokenized, stored, and exchanged on a blockchain
network. The first manifestation of blockchain technology emerged in 2008 with the Bit-
coin blockchain [67], a secure, peer to peer substitute to banks and the conventional mon-
etary system. However, in addition to the secure transfer of value, blockchain technology
provides a paramount feature, a permanent forensic record of transactions.

To record a transaction, each participant in the network has a public address within the
Merkle Tree [10], e.g. derived by the hash of its public key, which identifies the user
uniquely among all the other participants. Transactions between users are defined by
providing as input the users’ blockchain addresses, the balance transfer, and the hashes
of the outputs of the last accepted block. Candidate transactions are signed then broad-
casted in the p2p network and collected by validators that aggregate them in blocks. A
candidate block is produced when validators “mine” it - by solving the challenge of the
consensus algorithm - whereupon it will be proposed and added to the chain of previous
transaction blocks. In the case of a fork, it is only adopted by a validator after it is de-
termined to be the longest chain among the network where all transactions remain valid.
The security of the approach is assured by the Byzantine Fault Tolerance (BFT) of the con-
sensus algorithm used, and by relying on the difficulty or inherent cost in subverting the
consensus algorithm as a deterrent against malicious actors (i.e. Proof of Work (PoW)).

There exist several kinds of blockchain solutions, ledger technologies, and event data
recorder methods. To better understand the state of the art and exemplifying our reason-
ing, in the remaining part of this section we dive into each topic individually.

4.1.1 Distributed Ledgers Technology

Before DLTs, horizontally scalable Distributed Databases (DDB) were commonly used
to replicate record states across trusted storage devices. However, when relying upon
CPS infrastructures for data retention, auditing the integrity of classical DDB updates
in face of transiently available or compromised devices can deteriorate into an under-
constrained problem. Reconstructing postmortem consensus of chronological changes
across remaining DDB replications with potentially revoked credentials are classes of is-
sues that can be avoided when disseminating data integrity using DLTs instead.
As an example, Bitcoin [67] provides an alternative to the use of trusted third parties
to process and mediate transactions; i.e. the main focal point being the introduction of

4.1. Background 83

distributed trust even under mutually distrusting validators. The resulting distributed
ledger contains a chronological evidentiary trail of consensus that every participant can
easily audit.

As discussed by BitFury and Garzik white papers [18, 17], blockchain-based ledgers have
gained popularity among banks and other financial institutions with the ongoing devel-
opment of several applications that leverage upon Blockchain’s immutability and con-
sensus to validate transactions. Still, the original idea of resource consumption and the
democratization of miners poorly adapts from public blockchain to finance blockchains
which also suffers from constraints due to latent/limited transaction throughput and
scalability due to energy and opportunity costs consumed by traditional Proof of Work
(PoW) [69] consensus. To overcome these limitations, and enforce enterprise-level se-
curity mechanisms, alternate variants have emerged by defining public and private dis-
tributed ledgers.

On one hand, public ledgers such as Bitcoin have no restrictions on submitting trans-
actions, leading to issues in terms of block’s acceptability mechanisms complexity. On
the other hand, private ledgers limit those actions to a predefined list of entities and
optimize the management of the ledger. To further specialize ledger management and
control, an additional classification has been defined, dividing them as permissioned and
permissionless.
In the first case, the identity of peers that act as validators is restricted and predefined
(e.g. whitelisted public keys). In the latter, ledgers do not predetermine their miners. As
a result of those additional arrangements, we categorize blockchains as in the following:

• Public Permissionless: these blockchains are the ones that comply with the original
Bitcoin blockchain definition.

• Public Permissioned: those ledgers are used to keep control of ‘certified’ validators
and are usually utilized by entities whose operations have to be public.

• Private Permissioned: these ledgers work similarly to enterprise distributed databases,
in which miners are predetermined and information is not accessible to all.

• Private Permissionless: those kinds of ledgers are not used since the application
scenario in which the information needs to be private and publicly mined without
inspection is not likely to happen.

Moreover, other novel approaches to ledgers have emerged in the Hyperledger Project
[30] from Linux Foundation, which seeks to improve the performance of the distributed
ledgers by creating open-source enterprise standard libraries for specific applications.
However, those can be roughly traced back to the classifications we listed above.

84 Chapter 4. Accountability

4.1.2 Immutable Logs

As the name suggests, immutable logs require robust tamper-proof logging capabilities.
Using cryptographic functions we can enforce integrity, authenticity, and non-repudiation
of the logs’ entry. Several proposals to achieve immutable logs already exist in the litera-
ture. The usual general idea is to use a combination of DSAs and Message Authentication
Code (MAC) to unambiguously validate log entries.

It is possible to enforce accountability [20] in a heterogeneous distributed environment
and reduce the number of trusted devices. However, the need for central authorities to
store and verify the logs makes it necessary to build an additional chain of trust and de-
ploy a distributed storage system for logs (e.g. distributed databases) which is not ideal
for our target applications. The use of a distributed versioning implementation such as
IPFS [13] can also be a valid option. Still, the use of Merkle DAG does not incorporate
verification mechanisms such as smart contracts which are vital to apply validation logic
to the system.

Following the discussion in 4.1.1, considering the similarity with Blockchain and its in-
trinsic security features, leveraging on Bitcoin presents an appealing solution [6]. For
example, Snow et al. [80] present how Factom1 distributes immutable logs on Bitcoin
chain using an OP_RETURN transaction to store the entry of their client logs. Similarly,
Cucurull et al. [28] discuss how at Scytl2 they incrementally secure electronic voting ma-
chine results on Bitcoin blockchain. However, cryptocurrencies developers regard this as
among the more dubious emerging trends in the wild and an abuse of the OP_RETURN
to piggy-back arbitrary data for storage on the Bitcoin Blockchain [8]. As discussed by
Matzutt et al. [58] the impact of this abuse to store non-financial content on original cryp-
tocurrency blockchains is unsustainable.

On the other hand, Sutton et al. [84] follow the concept of checkpoints presented by
Cucurull et al. to propose a model using Linked Data to optimize the use of Blockchain
by constructing a hashing tree rather than continuously dumping logging hashes into
the chain. This becomes necessary since the misuse of OP_RETURN has several disad-
vantages either from the protocol point of view discussed above or because of the trans-
action fees incurred. All the transactions that need to be published in cryptocurrency
blockchains need to pay a fee that will be ‘burned’, deducting the limited balance from
the account. Considering the volatile increase of Bitcoin’s exchange rate over the years,
it’s clear that this costly operation is not viable for large scale deployments.

Another barrier to the use of blockchains for storing immutable logs is presented by the
freshness property of the Blockchain [37]. By design, Blockchain preserves the order of
events (i.e. weak freshness), however, the accurate time of events (i.e. strong freshness) is

1https://www.factom.com
2https://www.scytl.com/en

4.1. Background 85

not guaranteed. The work of Szalachowski [85] offers a workaround using a centralized
third party, however, this plays somewhat against our own objectives of distributed trust
and scalability. Mobile robots may roam autonomously beyond the network range of
centralized base stations or any one particular neighbor, so any agreed reference to time
must arise from a distributed consensus.

One notable work preceding much of the others thus far using DLT is that of Crosby
et al. [27] and presents efficient data structures for tamper-evident logging using history-
trees. Although the validation using history-trees is efficient, O(log2n), the runtime time
for adding checkpoints is no longer constant, O(log2n) rather than O(1) for hash-lists.
Thus given the lopsided computing resources between robots and off-line auditing in-
frastructure, our approach opts for hash-lists given the constant overhead in terms of log
length, while introducing indexing to enable the parallelization of auditing.

As a high-level overview of our approach, in Figure 4.2, we depict how we can make
immutable the information of "Log Storage" by streaming the log data out of the arbi-
trary storage, by submitting striding checkpoints to the external blockchain, comprised
of linked integrity proofs that are indexed as checkpoint transactions.

Topic Data

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: t
 Proof: ☑

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: 2
 Proof: ☑

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: 1
 Proof: ...

Checkpoint
 Stamp: 1
 Proof: ☑

✉ Msg t

✉ Msg 2

✉ Msg 1

HMAC

HMAC

HMAC

Nonce

FIGURE 4.2: High level overview of immutable logging.

4.1.3 Event Data Recorders

Lastly, we introduce the concept of Event Data Recorders (EDR). EDR has become preva-
lent within the automotive industry, due in part to regulatory compliance from govern-
mental safety legislation, as well as OEM incentives concerning insurable liability and
risk management. Reminiscent of Black Box Recorders in aviation, EDRs are used to log
internal and external vehicular data during deployment, such as engine health and sta-
tus, steering and brake operation, and accident reporting such as obstacle distances or in-
ertial forces from impact. Among the list of transportation infrastructure primed to fully

86 Chapter 4. Accountability

incorporate EDR deployments, autonomous driving vehicles are perhaps first among
them. Questions now from both industry and regulatory agencies are being brought
forth as per the privacy and security of such EDRs given the pervasive yet critical nature
of the data they retain.

The works by Veitas et al. includes a two-part series about these particular issues; the first
presents Policy Scan [90], a methodology for technology strategy design; i.e. developing
concrete actions and products for guiding technology adoption. Policy Scan was devel-
oped to address specific types of ’ill-defined’ problems in terms of observing, analyzing,
and integrating technology developments with policy requirements, social governance,
and societal expectations. The second paper [89] applies Policy Scan to the domain of
autonomous driving and smart mobility, presenting a proposal for making future au-
tonomous vehicles within collaborative intelligent transportation systems (C-ITS) using
EDR as more socially acceptable and legally compliant.

Building upon the above works and also that from Taurer et al. [86], a bio-inspired ap-
proach to secure data recording for robots, we have designed BBR as an EDR implemen-
tation that conforms to the in-vehicle data recording, storage, and access management
requirements as specified, while also remaining extendable to general autonomous AI
applications using open source robotic middleware and distributed ledger software.

4.2 System Architecture

In this section, we formally define the architecture of the EDR systems in BBR. In detail,
we divide the discussion into three sections where we enumerate our design/implemen-
tation conformity adapted from prior work in the literature from the Veitas and Taurer
[89, 86] we introduced in the last section, and we demonstrate its compliance.

4.2.1 Obligated Roles and Observing Parties

We need to define which roles each entity in the network can play. Our goal is to define
a structure in which each entry is guaranteed in terms of integrity and verifiability.

• Auditors: observing parties called upon to investigate and validate record archives.
e.g. Regulatory Agencies or Governments

• Custodian: obligated subject of log content and tasked with log preservation. e.g.
Robot or autonomous vehicle OEM.

• Owner: mediating party that has a stake in ensuring log integrity/authenticity/-
confidentiality. e.g. End-User or Operator.

• Reporter: an independent party responsible for faithfully recording events. e.g.
Trusted Logger or Recorder Enclave.

4.2. System Architecture 87

Depicted in Figure 4.3, we can see a network perspective of a swarm deployment (e.g.
drone network). In particular, our goal is to guarantee Log’s integrity of each robot in the
swarm via the consensus of its peers.

Swarm (Validator Network)

Robot 1
(Custodian)

Robot 2
(Custodian)

Robot 3
(Custodian)

Base
Station
(Owner)

Enclave
(Recorder)

Enclave
(Recorder)

Enclave
(Recorder)

Audit
Backend
(Server)

Log
Verifier
(Client)

Ledger
Sync

(Node)

Ledger
State

(Mirror)

FIGURE 4.3: High-level representation of roles in BBR

4.2.2 Recording, Storage and Access Requirements

To perform operations in BBR, we define a set of requirements that needs to hold:

[R1] Data provision conditions: requires consent on behalf of the Owner who transi-
tively controls the log assets tracked.

[R2] Fair and undistorted competition: trust should be distributed and shared across
all validators (a.k.a Custodians). In other terms, no single organization may con-
trol/monopolize the state of the ledger more than they are trusted by the rest of the
validator community/quorum.

[R3] Data privacy and data protection: the co-location of logs external to that of the
Custodian must be prevented. To transmit logs off-platform, event records may be
entirely quarantined to the robot’s local encrypted storage, reducing the retention
risks of co-located persistent data.

[R4] Tamper-proof access and liability: integrity and authenticity of logs must derive
from an independent Reporter. We achieved the property via the distributed archive
of checkpoint proofs via ledger, ensuring the integrity and authenticity of the his-
toric clear text data even in case of key exposure (stolen/extracted).

[R5] Data availability economy: health and transparency of logs are contingent upon
giving Auditors appropriate access. This property is facilitated via a shared ledger,
a common resource whose health pivots upon the interoperability between many

88 Chapter 4. Accountability

participants; greater participation from a wider community only bolsters the dis-
tributed trust.

4.2.3 Defined Primitives and System Properties

We define properties for the system and its primitives as well:

[P1] Secure identification of physical data sources: attestation between devices trusted
by the Custodian and Reporter is conducted using standard PKI with chains of trusted
Certificate Authorities, where remote attestation between devices inside the robot
is achieved.

[P2] Metadata enrichment: log event context may be associated to respective Owner,
Custodian and Reporter parties. The context is applied by embedding any meta-
information into the linked integrity proofs, irrevocably intertwining it with the
respective record data. Smart contracts are used to encode structured data that
may reside in the public ledger directly.

[P3] Data exchange and messaging: authenticated encryption is used in establishing se-
cure connectivity between parties using SROS2 via Secure DDS. Thanks to SROS2
we incorporate real-time compliance, peer to peer encrypted transport, auto-discovery,
and quality of service networking.

[P4] Data recording & storage: reporting remains flexible in terms of QoS as well as
reasonable in resource consumption. In particular, we use BBR storage and bridge
plugins for ROSBag2, where the architecture of linked integrity proofs is designed
for lossy network transmission and high bandwidth parallel disk IO.

[P5] Access management: rights, obligations, and authorization of parties must be ex-
plicitly defined and enforceable. In particular, access is managed via smart con-
tracts, where ownership, custodianship, and recorder roles may be established, al-
lowing stakeholders to mediate write access to data record checkpoints. Privacy-
preserving querying is feasible given the non-disclosure of event data content via
checkpoint proofs, however, anonymous identities remain an open challenge for
our approach.

4.3 Approach

By leveraging on the defined system architecture, in this section, we discuss the approach
we developed by presenting the two principal components of BBR: the integrity proof,
and smart contract specification.
This section details the design and the justification for both to accommodate the con-
straints of mobile robots and open source frameworks.

4.3. Approach 89

4.3.1 Incremental Integrity Proof

To preserve the integrity of the logs without compromising system performance or pub-
licly disclosing private log content, as in [28] we leverage the collision and pre-image
resistance of HMAC [11] by chaining the log checkpoints together with key rotations,
accommodating R3.

Borrowing terminology established in [28] we define a log checkpoint (Chki) to be
linked with the previous one by using the prior digest (hi�1) as the key bytes when com-
puting the current HMAC digest (hi) from the log message (LogMsgi):

Chki = (i, hi) hi = HMAC(hi�1, LogMsgi)

where h0 ${0, 1}m
(4.1)

For privacy, a random nonce is included as the genesis digest (h0) to inject initial
entropy into the linked integrity proofs, ensuring that separate records with similar be-
ginning contents do not repeat the same telltale signature of consecutive proofs.

This deviates from previous work that convolutes the log integrity proof with token-
based blockchains and previous financial transaction outputs to achieve immutability.
By keying the HMAC with the previous checkpoint digest instead, we reduce the valida-
tion of logs to the trivial task of checking a simple hash-chain: i.e. sequentially iterating
through LogMsgi in the log file, ensuring the last linked digest corresponds to the final
proof published into the ledger, satisfying R4.

By including the index (i) into checkpoints, partial validation or triage discrepancies in
the face of missing or corrupted log events can be fine-grained. Provided indices are
similarly embedded in log content, validation over large log files is easily parallelizable,
accelerating the total verification process.

Previous works such as [28, 84] make the distinction between two different types of
checkpoint entries: first, being an incremental link in a chained proof; second, being
an anchor point that must always be published to commit to new secret keys while un-
veiling expired ones for later verification of integrity and authenticity. Our approach to
checkpoints makes no such distinction, thus any checkpoint or sequence of checkpoints
may be immediately published. This ensures that the latest checkpoints can always be
submitted on short notice or without necessarily waiting for previous transactions to be
finalized in the global blockchain.

For robotic applications in particular, where mobile computing may be subject to in-
stantaneous brownouts due to self-reliant energy supplies, integrity proofs that require
stateful cryptography [28] could leave a recorder without recourse for resumption, as the
previously finalized transactions would have included a commitment to a future tem-
porary key that must be revealed upon the next checkpoint. Our approach permits the

90 Chapter 4. Accountability

recorder to quickly recover from the last known integrity proof and resume checkpoint-
ing the log wherever it left off (P4).

4.3.2 Smart Contract

Section 4.3.1 formalized the incremental integrity proof to ensure log file immutability;
however, this efficient method of verification does not in and of itself offer the authentic-
ity and non-repudiation properties still required. Smart Contracts (SC) encapsulate the
access control logic for DLT validators to abide by when determining the validity of pro-
posed checkpoint transactions, addressing R1 and facilitating R4.

Instead of relying on colored coins or token metadata in financial blockchains to encode
ownership, a dedicated transaction family is defined to regulate write access to the ledger
state. A common criterion however is that the validity of candidate transactions must be
deterministically computable; i.e. no context external to the current state of the ledger
and transaction payload in question should be used in deliberation. This ensures that the
validity of any block in the chain can be independently verified in the future.

In Figure 4.4, we depict how a robot (provisioned with its certificate) can submit
checkpoint transactions to the blockchain. Upon receiving a submitted batch, the val-
idator will check the corresponding batch’s signature matches the custodian identity de-
clared in each transaction. Each such signature is also checked to validate the public
identity of the recorder. The recorder identity is used when determining the authoriza-
tion in appending new checkpoints for a specified asset to the ledger. If the status of the
asset has already been finalized, any following append actions are rejected. Otherwise
valid checkpoints may be appended to a logged asset’s record.

No

Yes

Finalized

No

Yes

Allow

Deny

No

Yes
Ongoing

Signature

Error

Get
Transaction

Signature

Valid Valid Get
Checkpoint

Error

Checkpoint:
 Stamp: t+1
 Proof: ...

Valid

Signature

Recorder

Check URI
Chain StateStatusCheck

CheckpointValidAppend
Checkpoint

Check
Custodian

Check
Recorder

Check URI
Access

Error ErrorError

Transaction:
 URI: /foo
 Payload: ...

Batch:
 Transactions:
 URI: /foo
 Payload
 URI: /bar
 Payload

Signature

Signature

FIGURE 4.4: Flow chart visualization of validating smart contracts for
checkpoint transactions.

4.3. Approach 91

To ensure the authenticity of a checkpoint committed into the blockchain, transac-
tions are signed via an Elliptic Curve Digital Signature Algorithm (ECDSA), effectively
notarizing the identity of the signer. For our purposes, we also register the identity into
the blockchain by enrolling its public key into an access control policy stored in the dis-
tributed ledger to be used by SCs when verifying candidate checkpoint transactions.
Thus, we limit recorders’ permissions to append checkpoints only for log files priorly-
authorized (P2).

To ensure non-repudiation of transactions, our SC mandates that checkpoint indices re-
main monotonically increasing. The striding of published checkpoint indexes is permit-
ted to enable recorders to down-sample the rate at which integrity proofs are transmitted,
versus rate locally generated, as a Quality of Service (QoS) to conserve energy or wireless
network bandwidth and ensure the sustainable size of the distributed ledger’s state. To
curtail the memory growth of the ledger, each validator must maintain locally to par-
ticipate, a paging ring buffer is adopted to keep rotating the n latest checkpoints for a
given log file. The ring buffer size may also be allocated to comply with data retention
window requirements per R3. However, the genesis digest is always preserved to en-
sure the indefinite immutability of the entire log into its first record. Another means of
non-repudiation such as timestamping could be used to subsume the role of indexing
in providing a monotonic counter underneath transaction signatures. However, any re-
liance on time may be misplaced given the issues of strong freshness discussed in section
4.1.2.

A particular problem presented in previous work includes the open-ended issue of fi-
nality of checkpoint termination, i.e. preventing further checkpoints for a given log from
appending to the ledger after the log file is intentionally concluded. Such actions could be
taken by recorders that are threatened or suspect intrusion, providing a self-destructive
deterrent and reducing the utility of private keys recovered by an adversary.

Previous works using token-based blockchains could conclude a checkpoint record via
output transactions that are addressed to random public identities, for which no private
key is known. This extreme all-or-nothing ownership forfeit is probabilistically final but
doesn’t afford any other status for provenance, such as ‘stalled’, ‘critical’, or methods for
reversal, useful for a conditional resumption of logs after a situation is resolved. SCs in-
stead provide greater granularity in this regard for regulating the life cycle of checkpoint
records.

92 Chapter 4. Accountability

4.4 Implementation

As a proof of concept, we implement Black Block Recorder using existing open-source
robotic middleware and distributed ledger software. ROS2 was chosen, given its sup-
port for secure multicast networking (P1) and modular logging storage (ROSBag23) plu-
gin design, enabling secure and efficient tapping of internal/external robotic networks
(P3). Hyperledger Sawtooth4 was chosen as the ledger framework for its energy-efficient
yet BFT consensus algorithm, multilingual SC processors, permissioned DLT support,
and parallelizable transaction architecture.

As both custodian and reporter parties manifest as physical CPS devices, their identities
are particularly susceptible to attack. Here, both are used to co-sign batched transactions
for validator submission; thus appended forgery checkpoints necessitate the corruption
of both the custodian and reporter.

In Figure 4.5, we depict how a custodian robot pipeline for batching transactions works.
While every robot platform is held suspect, a Secure Enclave (e.g. TTE) is reserved for
the recorder process. As we can see, logged input is securely received within the Enclave
and used to cryptographically derive a linked integrity proof specific for each input asset
being tracked. As the log data may be streamed to external storage, respective checkpoint
transactions are bound to the robot’s public identity for batching and then signed by the
recorder’s private key sealed within the Enclave. Thus only the robot’s private key may
be used to sign and relay batched transactions for validation. This is a necessary precau-
tion since to append a forgery would necessitate the collusion of both the custodian and
its assigned recorder.

Onboard
ECU

Robotic Sensor Network Automotive System

Multicast
Subs

S
w

ar
m

 📡
N

et
w

or
k

R
ob

ot

📶
 #

n

Message: ✉
 Topic: /foo
 Stamp: t +1

ROS2 Bag
DB 💾

ROS2 Bag BBR Sawtooth Bridge

Topics: 📄
Name, Type

Messages:
Time, Data

Checkpoint:
 Stamp: t +1
 Proof: ...

Subject name:
 Recorder
🔑 …

X.509

Subject name:
 Robot
🔑 …

X.509

Batch:
URI: [/foo,/bar]
 Payload: ...

Signature

Message: ✉
 Topic: /foo
 Stamp: n +1

Checkpoint:
 Stamp: n +1
 Proof: ☑

Transaction:
 URI: /foo
 Payload: ...
SignatureTransaction:

 URI: /foo
 Payload: ...

Signature

Custodian
Robot 🔓

Recorder
Enclave 🔒

R
ob

ot

📶
 #

2

Validator
Sawtooth 🔒

Ledgure
State 💾

BBR Plugin

SQLite
Plugin

SROS2 via
Secure DDS

Multicast
Subs

SROS2 via
Secure DDS

SROS2 Transport

ECDSA
 Digest
 Engine

FIGURE 4.5: Flow chart visualization of the immutable logging pipeline

3https://github.com/ros2/rosbag2
4Hyperledger Sawtooth: hyperledger.org/projects/sawtooth

https://www.hyperledger.org/projects/sawtooth

4.4. Implementation 93

4.4.1 Checkpoint Integration

To integrate our linked checkpoint approach into ROSBag2, we extend the existing SQLite
default storage plugin to additionally compute and broadcast the checkpoints. By con-
structing a pipeline for all the topics in the network, we commit to the blockchain the
log of the robot as depicted in Figure 4.6. Commitments to data and its insertion into the
database are achieved via 2D-array hash-chains to render bagfile databases into append-
only data structures. The primary axis checkpoints each topic’s genesis-block (foo and
bar) and meta-info, while the secondary axis checkpoints the insertion of respective mes-
sage data. This coupling affords a holistic integrity proof of the entire database while
preserving topics as a time series atomic.

Msg: /foo
 Stamp: 1
 Data: ✉

HMAC
Topic 1
IDL Info

Checkpnt
 Stamp: 0
 Proof: ☑

HMAC
Checkpnt
 Stamp: 1
 Proof: ☑

Msg: /foo
 Stamp: 2
 Data: ✉

Checkpnt
 Stamp: 2
 Proof: ☑

HMAC

Msg: /bar
 Stamp: 1
 Data: ✉

HMAC
Topic 2
IDL Info

Checkpnt
 Stamp: 0
 Proof: ☑

HMAC
Checkpnt
 Stamp: 1
 Proof: ☑

Msg: /bar
 Stamp: 2
 Data: ✉

Checkpnt
 Stamp: 2
 Proof: ☑

HMAC

Bagfile
Nonce

Topic 1
Nonce HMAC

Checkpnt
 Stamp: 0
 Proof: ☑

Topic 2
Nonce

Topic 1
MetaInfo

HMAC

Bagfile
💾

MetaInfo

HMAC

Topic 2
MetaInfo

M
es

sa
ge

 D
at

a
Se

ria
liz

at
io

n
✉ M

essage D
ata

C
heckpoints ☑

Checkpnt
 Stamp: 1
 Proof: ☑

Namespace,
Publisher,
Discovery...

Topic Bagfile
Checkpoints ☑

Name,
Date,
Device...

FIGURE 4.6: Hash-chain pipeline checkpoints

The following equations in conjunction with the table and color-coded flow diagram
in Figure 4.6, depict the process for checkpointing topic insertions in the following:

bitsbag ${0, 1}m (4.2)

bitsA HMAC(bitsbag, Proto(namebag)) (4.3)

bitsA0 HMAC(bitsA , Proto(typeA, f ormatA)) (4.4)

bitsB HMAC(bitsA0 , Proto(nameA)) (4.5)

bitsB0 HMAC(bitsB , Proto(typeB, f ormatB)) (4.6)

bitsC HMAC(bitsB0 , Proto(nameB)) (4.7)

bitsC0 HMAC(bitsC , Proto(typeC, f ormatC)) (4.8)

The nonce bitsbag for bagfile (in blue) is combined with bagfile metadata (in purple), de-
terministically serialized via protobuf to avoid the ambiguity in hashing a list of items,
to generate the nonce bitsA for the first inserted topic. This is then combined with IDL
information of the topic to generate the genesis digest bitsA0 . The previous topic’s genesis
digest and metadata are then combined to seed the nonce for the next topic bitsB, which
is also reported as the checkpoint (in orange) for the bagfile itself (P2). Thereafter, the

94 Chapter 4. Accountability

cycle repeats for each additional topic.
For messages (in green), the previous digest for the respective topic is combined with the
message and its time of arrival to compute the current digest:

bitsA1 HMAC(bitsA0 , Proto(timeA1 , dataA1)) (4.9)

bitsB1 HMAC(bitsB0 , Proto(timeB1 , dataB1)) (4.10)

bitsA2 HMAC(bitsA1 , Proto(timeA2 , dataA2)) (4.11)

In this way, bagfile and message checkpoints are loosely coupled enough for auditing
data provenance while remaining independent for concurrent computation and atomic
record keeping, even across separate topic streams. It is important to notice in Figure
4.5, how different stages for recording vs signing checkpoints within an Enclave (in blue)
have been defined. This allows for modular integration for swapping database storage
drivers or alternate ledger infrastructures.

4.4.2 Transaction Family for EDR Smart Contracts

To develop BBR’s SCs, we extend from Sawtooth’s reference supply chain Transaction
Family (TF), used for tracing the provenance and other contextual time-series informa-
tion of assets. This is formalized and commented (in green) in Figure 4.7 and 4.8 by
specifying our SC using the Digital Asset Modelling Language (DAML)5, an open source
domain-specific language for expressing contracts, parties, rights, obligations, and au-
thorization directly (P5). The main SC for an EDR agreement is captured in lines 1-14,
where the primary parties involved enter as signatories, while a set of external parties
are provisioned observational access to the SC’s state. Control for creating associative
records is solely delegated to the recorder.

23 template EdrRecord -- Smart Contract for Records in EDR
24 with
25 edr: Edr -- Reference EDR of origin
26 record: Record -- Initial Record state
27 where
28 signatory edr.owner, edr.reporter
29 observer edr.auditors -- custodian can be excluded
30 choice EdrRecord_Append : ContractId EdrRecord
31 with checkpoints: [Checkpoint] -- [] for batching
32 controller edr.reporter -- Only Reporter appends
33 do let -- Update Record with added checkpoints
34 is_valid = checkMonotonic record checkpoints
35 _record = appendCheckpoints record checkpoints
36 assert (is_valid == True) -- Error on invalid
37 create EdrRecord with edr; record = _record
38 choice EdrRecord_Finalize : () -- Archives Contract
39 controller edr.owner, edr.reporter
40 do return () -- Finalized Record is un-appendable
41
42 data Checkpoint = Checkpoint with -- data type struct
43 c_proof: Text -- "<bits_A_1>"
44 c_stamp: Int -- 1

1 template Edr -- Smart Contract for EDRs
2 with
3 auditors: [Party] -- Regulatory Agencies
4 custodian: Party -- Robot/Vendor Identity
5 owner: Party -- User/Operator Identity
6 reporter: Party -- Logger/TEE Identity
7 where
8 signatory custodian, owner, reporter -- obligated
9 observer auditors -- non-obligated parties
10 ensure unique (custodian :: owner :: reporter)
11 controller reporter can -- create many Records
12 nonconsuming Edr_Record : ContractId EdrRecord
13 with record: Record
14 do create EdrRecord with edr = this; record
15
16 data Record = Record with -- data type struct
17 r_name: Text -- "/sensors/exteroceptive/gps"
18 r_type: Text -- "gps"
19 r_format: Text -- "rtps"
20 r_nonce: Text -- "<bits_A>"
21 r_digest: Text -- "<bits_A_0>"
22 r_checkpoints: [Checkpoint] -- monotonic list

FIGURE 4.7: Smart Contract DAML for EDR agreement and data record
structure

5DAML Specification: daml.com

https://daml.com/

4.4. Implementation 95

Lines 23-40 capture the secondary SC specific to a particular record; i.e. log check-
points for a single topic. Again the recorder is given the choice to append or finalize
the record, while under the assertion that submitted checkpoints remain monotonic. The
owner may also choose to finalize the record, whereupon the SC is archived and left
entirely immutable in the DLT.

23 template EdrRecord -- Smart Contract for Records in EDR
24 with
25 edr: Edr -- Reference EDR of origin
26 record: Record -- Initial Record state
27 where
28 signatory edr.owner, edr.reporter
29 observer edr.auditors -- custodian can be excluded
30 choice EdrRecord_Append : ContractId EdrRecord
31 with checkpoints: [Checkpoint] -- [] for batching
32 controller edr.reporter -- Only Reporter appends
33 do let -- Update Record with added checkpoints
34 is_valid = checkMonotonic record checkpoints
35 _record = appendCheckpoints record checkpoints
36 assert (is_valid == True) -- Error on invalid
37 create EdrRecord with edr; record = _record
38 choice EdrRecord_Finalize : () -- Archives Contract
39 controller edr.owner, edr.reporter
40 do return () -- Finalized Record is un-appendable
41
42 data Checkpoint = Checkpoint with -- data type struct
43 c_proof: Text -- "<bits_A_1>"
44 c_stamp: Int -- 1

1 template Edr -- Smart Contract for EDRs
2 with
3 auditors: [Party] -- Regulatory Agencies
4 custodian: Party -- Robot/Vendor Identity
5 owner: Party -- User/Operator Identity
6 reporter: Party -- Logger/TEE Identity
7 where
8 signatory custodian, owner, reporter -- obligated
9 observer auditors -- non-obligated parties
10 ensure unique (custodian :: owner :: reporter)
11 controller reporter can -- create many Records
12 nonconsuming Edr_Record : ContractId EdrRecord
13 with record: Record
14 do create EdrRecord with edr = this; record
15
16 data Record = Record with -- data type struct
17 r_name: Text -- "/sensors/exteroceptive/gps"
18 r_type: Text -- "gps"
19 r_format: Text -- "rtps"
20 r_nonce: Text -- "<bits_A>"
21 r_digest: Text -- "<bits_A_0>"
22 r_checkpoints: [Checkpoint] -- monotonic list

FIGURE 4.8: Smart Contract DAML for EDR Record

Lastly, lines 16-22 and 42-44 specify the structural data a recorder must submit upon
choosing actions for the aforementioned SCs. The complete DAML model, including the
pending SC for establishing the multiple-party agreement, as well as the test scenario
is open sourced and publicly available6. As integration between DAML and Sawtooth is
still in early development, the TF for BBR remains implemented in the Rust programming
language. The DAML model is a faithful representation of the SC logic.

4.4.3 Performance Profiling and QoS Tuning

As a preliminary validation for the tractability of using BBR in robotic systems, we pro-
vide a quantitative benchmark comparison in the overhead introduced by utilizing the
BBR storage plugin (ROSBag2’s default SQLite) and bridging interface by evaluating
drop rate performance and CPU load over a range of common sensor message sizes
and frequencies. The tests have been executed on ROS2 (Crystal) with a 2.6GHz Intel
i7-6700HQ, with RTI Connext RMW on the loopback interface.

Test results in Figure 4.9 show BBR’s current performance falls closely in line with the
default driver plugin whilst single thread workload remains unsaturated. Marginal per-
formance gains during midrange workloads are likely artifacts attributed to fewer CPU
cache misses, due to reduced process idle time given continuous overhead.

6EDR DAML Model: github.com/dledr/edr_daml

96 Chapter 4. Accountability

In regards to the depicted drop-off in throughput, though BBR seeks to checkpoint events
at the write-rate to a database, in practice the signing and transmission of those check-
points over the bridge interface should be rate-limited for purposes stated before. Given
that ECDSA transaction signatures remain the predominant cryptographic bottleneck in
the pipeline, QoS restrictions or moderating workloads for external validators are neces-
sary (R2). Recall that as long as each event is incorporated into the hash-chain, down-
sampling checkpoint publication would not inhibit the tamper-evident properties of the
log segment with unpublished checkpoints, merely the resolution at which alterations
may be pinpointed in the log.

Tested Target Message Size (kB)

Av
er

ag
e

Dr
op

 R
at

e
(%

)

0%

25%

50%

75%

100%

1kB 10kB 100kB

Default Plugin BBR Plugin

Msg. Size vs Drop Rate @ fixed 1kHz Msg. Freq.

Tested Target Frequency (kHz)

Av
er

ag
e

Dr
op

 R
at

e
(%

)

0

25

50

75

100

0.1kHz 0.5kHz 1kHz 5kHz 10kHz

Default Plugin BBR Plugin

Msg. Freq. vs Drop Rate @ fixed 1kB Msg. Size

Tested Target Rate (Hz)

CP
U

Si
ng

le
 C

or
e

Lo
ad

 (%
)

0.01

0.1

1

10

100

1Hz 10Hz 100Hz 1000Hz

Default Plugin BBR Plugin

Msg. Freq. vs CPU Load @ fixed 1kB Msg. Size

FIGURE 4.9: Performance comparison: BBR vs Default Plugin.

In regards to uplink network usage, validator traffic is conditional upon consensus
algorithm, gossip protocol, number of participants, and frequency/size of submitted
transactions specific to DLT implementation/framework used. However, to profile the
network bandwidth usage specific to our BBR bridge, Table 4.1 includes the minimal
payload requirements as calculated using the current serialization schema implemented.

4.5. Conclusions 97

Payload Size (bytes) Requirements

Chki 36 Ledger Disk Storage
Signed Transaction �629 Network Bandwidth

Signed Batch �965 Network Bandwidth

TABLE 4.1: BBR Payload Allocations

This depicts the lower bounds given a signed batch transmission with a list of one
signed transaction containing an array of one checkpoint. While transactions, in general,
may contain arbitrary topic metadata, a checkpoint is simply a tuple of a 256bit hash
and 32bit unsigned integer. As a reference, rosbag recording all 20 unique topics on a
typical TurtleBot37 running ROS1 navigation stack writes to disk at about 1.4MB/s at
1k messages/sec., publishing every checkpoint batched at 1Hz results in approximately
400Kbps in BBR uplink overhead. In practice, a more sensible striding of one checkpoint
per topic per sec reduces this to around 110Kbps instead, with a sustainable <1KB/s of
ledger state growth (P4).

4.5 Conclusions

In this chapter, we discussed the concepts of accountability and non-repudiation, by ad-
dressing at once integrity, authenticity, and completeness of robotic event data while un-
der the threat of attacks and/or malfunctioning.

In particular, we focused on the development of a secure logging framework for robots
using distributed ledgers and linked integrity proofs to ensure the immutability of con-
tinuous event data records.

We discussed how pivotal logging is in terms of autonomous robotic devices via event
data recorders (EDR) and how we could overcome the cost-limits that mobile robotic
platforms are subject to via blockchain and secure Enclaves.

We achieved authenticity and non-repudiation via dissemination of checkpoint proofs
and smart contracts that respect the nature of mutually distrusting parties involved while
enforcing a contractual symbiosis between regulators, robots, and users.

Lastly, we have implemented BBR on ROS2 and tested the performance. We discussed
the resulting overhead incurred in recording logs via our solutions compared to the con-
ventional robotic logging system (rosbag). We conclude that benefits in ensuring event
records remain tamper resistant is pivotal for IoT network which needs an appropriate
QoS for reporting topics of significance.

7https://www.turtlebot.com/

98 Chapter 4. Accountability

All in all, we believe that the practicality and utility of applying BBR in security-sensitive
robotic domains remain advantageous. We expect this application domain for robotic
EDRs for accountability will be one among many exciting frontiers to be explored along
the intersection of cybersecurity of robotic systems and distributed ledgers, as the meth-
ods presented generalize across future DLT architectures.

99

Conclusions

In this thesis we have we tackled application security vulnerabilities for robotic systems,
focusing our attention on ROS1 and its evolution ROS2 providing significant contribu-
tions on three relevant topics related to the cybersecurity of IoT mobile networks in the
area of Confidentiality, Authenticity, and Accountability. In particular, we focused on
the application-layer security of those networks discussing the threats and proposing a
series of tools to aid developers and auditors in secure development and verification of
applications via static and formal tools. Our approach is particularly interesting since it
offers an independent agnostic toolchain by offering usable tools while retaining power-
ful mathematical guarantees of correctness.

From the thesis, the immaturity of IoT networks in this critical layer of applications,
whose complexity spans across IT cybersecurity and OT safety in CPS is highlighted. We
showcased those criticalities working on the open-source framework Robot Operating
System (ROS), its evolution ROS2, and Data Distribution Service (DDS).

One of the main elements of complexity at this level is represented by authentication
and authorization mechanisms to enforce confidentiality and integrity, as well as account-
ability in highly distributed networks. Those represent the core components necessary to
enforce the CIA pillars.

Regarding authentication and authorization, we tackled the issue from two different
points of view. On the one hand, we investigated how policies are distributed in IoT net-
works, contributing two main approaches to the automatic definition of embedded policy
profiles in a trusted network. Actively prevent, at the application level, the disclosure of
sensitive information and blocks unauthorized agents by applying a priori access control
model. In detail, we discussed the privacy and security issues related to improper policy
distribution and introduce two approaches that leverage on x.509 attributes and identity
certificate its security guarantees. On the other hand, our work encompasses the contri-
bution of novel meta-build system to the provision of robotic middleware credentials and
formal verification tools. This allows to properly generate, maintain, and distribute the
number of signed public certificates, ciphered private keys, and access control documents
attributed to every identity within the distributed network. This is pivotal considering
the complexity and scalability of IoT networks that make the secure orchestration of those
systems a demanding process. We showed how an administrator can use our tool to sim-
plify the maintenance and creation of those networks by exploiting the solution on the
scale.

In this context, by exploiting the synthesized best practice on access mechanisms

100 Conclusion

and policies defined, we develop formal analysis techniques to excavate discovery ac-
cess policies payload. We defined a generalized threat model for the IoT network and
demonstrate how we could extract network topologies using formal methods and lazy
graph evaluations to identify vulnerabilities. Then, we discussed counter measurements
to those threats via the application of attribute-based encryption (ABE) in access policy
generation and distribution.

The last contribution provided in this thesis consists of a framework for Event Data
Recorder (EDR) based on distributed ledgers, namely Black Block Recorder (BBR). Us-
ing such a framework, we demonstrated the benefits of ensuring tamper-resistant event
record and how Quality of Service (QoS) can be tuned to guarantee a suitable level of
accountability without relying on tamper-proof hardware. Finally, we plan to further
evolve the work presented in this thesis by targeting multi-tier heterogeneous networks
that span several different technologies. In fact, as robotics and networked infrastruc-
tures become further complex and integrated (e.g. cloud robotics), additional connectiv-
ity bears additional risks, broadening the attack surface, and threatening data privacy.
So far, we mitigated the acquisition of sensitive information from networks by means
of authenticated encryption and access control. However, by means of techniques such
as static Information Flow Control (IFC), and formal analysis, we can complement ac-
cess control policy to prevents any disclosure of data to subjects with insufficient security
levels.

In fact, to overcome the limited onboard capabilities, off-board robotic cloud services
are growing making domains such as domestic service robots more viable and capable.
However, privacy principles can be difficult to retain given the declassification of data
derived from secret or untrusted sources, as often necessary for practical applications.
For example, by consuming stereo images endorsed by camera sensors, one cloud ser-
vice could offer 2D objects recognition, and be transformed into declassified depth data
for localization and planning algorithms. Thus the access control policy that is eventu-
ally deployed and enforced on the robot should subsequently provision the localization
contexts only access data topics of a low-security level, preventing highly sensitive topics
such as raw sensor data from being leaked off-board the robot.

This level of awareness is complex to retain, verify, and apply on distributed multi-
tier applications. Following our meta-build system and formal approach to vulnerability
excavation works, as well as the IFC line of research we plan to further develop white-box
formal analysis tools for assurance and trustability of robotics systems.

101

Bibliography

[1] About the Data Distribution Service Security Specification Version 1.1. formal/18-04-01.
Object Management Group. July 2018.

[2] About the Data Distribution Service Specification Version 1.4. formal/15-04-10. Object
Management Group. Apr. 2015.

[3] Shashank Agrawal and Melissa Chase. “FAME: fast attribute-based message en-
cryption”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. 2017, pp. 665–682.

[4] Khalil M Ahmad Yousef et al. “Analyzing cyber-physical threats on robotic plat-
forms”. In: Sensors 18.5 (2018), p. 1643.

[5] Mahmoud Ammar, Giovanni Russello, and Bruno Crispo. “Internet of Things: A
survey on the security of IoT frameworks”. In: Journal of Information Security and
Applications 38 (2018), pp. 8–27.

[6] Nicolai Anderson. “Blockchain Technology: A Game-Changer in Accounting?” In:
(2016), pp. 1–5. URL: https://www2.deloitte.com/content/dam/Deloitte/de/
Documents/Innovation/Blockchain_A\%20game-changer\%20in\%20accounting.
pdf.

[7] V. Atluri and David F. Ferraiolo. “Role-Based Access Control”. In: Encyclopedia of
Cryptography and Security. 2011.

[8] Massimo Bartoletti and Livio Pompianu. “An analysis of Bitcoin OP_RETURN
metadata”. In: International Conference on Financial Cryptography and Data Security.
Springer. 2017, pp. 218–230.

[9] Mick Bauer. “Paranoid penguin: an introduction to Novell AppArmor”. In: Linux
Journal 2006.148 (2006), p. 13.

[10] Georg Becker. “Merkle signature schemes, merkle trees and their cryptanalysis”.
In: Ruhr-University Bochum, Tech. Rep (2008).

[11] Mihir Bellare. “New Proofs for NMAC and HMAC: Security without Collision Re-
sistance”. In: Journal of Cryptology 28.4 (2015), pp. 844–878. ISSN: 1432-1378. DOI:
10.1007/s00145-014-9185-x. URL: https://doi.org/10.1007/s00145-014-
9185-x.

[12] Eli Ben-Sasson et al. “SNARKs for C: Verifying Program Executions Succinctly and
in Zero Knowledge”. In: Advances in Cryptology – CRYPTO 2013. Ed. by Ran Canetti
and Juan A. Garay. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 90–
108. ISBN: 978-3-642-40084-1.

https://doi.org/10.1007/s00145-014-9185-x
https://doi.org/10.1007/s00145-014-9185-x

102 Bibliography

[13] Juan Benet. “IPFS-content addressed, versioned, P2P file system”. In: arXiv preprint
arXiv:1407.3561 (2014). URL: http://arxiv.org/abs/1407.3561.

[14] Elisa Bertino, Gabriel Ghinita, and Ashish Kamra. Access control for databases: Con-
cepts and systems. Now Publishers Inc, 2011.

[15] Elisa Bertino et al. “Provenance-based analytics services for access control policies”.
In: 2017 IEEE World Congress on Services (SERVICES). IEEE. 2017, pp. 94–101.

[16] Elisa Bertino et al. “The challenge of access control policies quality”. In: Journal of
Data and Information Quality (JDIQ) 10.2 (2018), pp. 1–6.

[17] BitFury Group and Jeff Garzik. “Public versus Private Blockchains. Part 1: Permis-
sioned Blockchains”. In: (2015), pp. 1–23. URL: http://bitfury.com/content/5-
white-papers-research/public-vs-private-pt1-1.pdf.

[18] BitFury Group and Jeff Garzik. “Public versus Private Blockchains. Part 2: Permis-
sionless Blockchains”. In: (2015), pp. 1–23. URL: http://bitfury.com/content/5-
white-papers-research/public-vs-private-pt2-1.pdf.

[19] Benjamin Breiling, Bernhard Dieber, and Peter Schartner. “Secure communication
for the Robot Operating System”. In: Proceedings of the 11th IEEE International Sys-
tems Conference. 2017, pp. 360–365.

[20] D. Butin, M. Chicote, and D. Le Métayer. Log Design for Accountability. 2013. DOI:
10.1109/SPW.2013.26.

[21] Gianluca Caiazza. “Security Enhancements of Robot Operating Systems”. MA the-
sis. Ca’ Foscari University, 2016.

[22] Gianluca Caiazza, Ruffin White, and Agostino Cortesi. “Enhancing Security in ROS”.
In: Advanced Computing and Systems for Security - Volume Eight, Fifth International
Doctoral Symposium on Applied Computation and Security Systems, ACSS 2018, Kolkata,
India, February 9-11, 2018. Ed. by Rituparna Chaki et al. Vol. 883. Advances in Intel-
ligent Systems and Computing. Springer, 2018, pp. 3–15. DOI: 10.1007/978-981-
13-3702-4_1. URL: https://doi.org/10.1007/978-981-13-3702-4_1.

[23] Alvaro A Cárdenas et al. “Challenges for Securing Cyber Physical Systems”. In: ().

[24] Stephen Checkoway et al. “Comprehensive Experimental Analyses of Automotive
Attack Surfaces”. In: System (2011), pp. 6–6. ISSN: 15249050. DOI: 10.1109/TITS.
2014.2342271. URL: http://www.usenix.org/events/security/tech/full{_
}papers/Checkoway.pdf.

[25] George W Clark, Michael V Doran, and Todd R Andel. “Cybersecurity issues in
robotics”. In: 2017 IEEE conference on cognitive and computational aspects of situation
management (CogSIMA). IEEE. 2017, pp. 1–5.

[26] Victor Costan and Srinivas Devadas. “Intel SGX Explained.” In: IACR Cryptology
ePrint Archive 2016 (2016), p. 86.

http://arxiv.org/abs/1407.3561
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt1-1.pdf
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt1-1.pdf
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt2-1.pdf
http://bitfury.com/content/5-white-papers-research/public-vs-private-pt2-1.pdf

Bibliography 103

[27] Scott A. Crosby and Dan S. Wallach. “Efficient Data Structures for Tamper-evident
Logging”. In: Proceedings of the 18th Conference on USENIX Security Symposium. SSYM’09.
Montreal, Canada: USENIX Association, 2009, pp. 317–334. URL: http://dl.acm.
org/citation.cfm?id=1855768.1855788.

[28] Jordi Cucurull and Jordi Puiggalí. “Distributed Immutabilization of Secure Logs”.
In: ed. by Gilles Barthe, Evangelos Markatos, and Pierangela Samarati. Vol. 9871.
Lecture Notes in Computer Science 2. Springer International Publishing, 2016, pp. 122–
137. ISBN: 978-3-319-46597-5. DOI: 10.1007/978-3-319-46598-2_9.

[29] Nicholas DeMarinis et al. “Scanning the Internet for ROS: A View of Security in
Robotics Research”. In: arXiv preprint arXiv:1808.03322 (2018).

[30] Vikram Dhillon, David Metcalf, and Max Hooper. “The Hyperledger Project”. In:
Blockchain Enabled Applications: Understand the Blockchain Ecosystem and How to Make
it Work for You. Berkeley, CA: Apress, 2017, pp. 139–149. ISBN: 978-1-4842-3081-7.
DOI: 10.1007/978-1-4842-3081-7_10. URL: https://doi.org/10.1007/978-1-
4842-3081-7_10.

[31] Bernhard Dieber et al. “Application-level security for ROS-based Applications”.
In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2016). Daejeon, Korea, 2016.

[32] Bernhard Dieber et al. “Penetration Testing ROS”. In: Robot Operating System (ROS):
The Complete Reference (Volume 4). Ed. by Anis Koubaa. Cham: Springer Interna-
tional Publishing, 2020, pp. 183–225. ISBN: 978-3-030-20190-6. DOI: 10.1007/978-
3-030-20190-6_8. URL: https://doi.org/10.1007/978-3-030-20190-6_8.

[33] Bernhard Dieber et al. “Security for the Robot Operating System”. In: Robotics and
Autonomous Systems 98 (2017), pp. 192–203.

[34] Patrick Eugster et al. “The Many Faces of Publish/Subscribe”. In: ACM Comput.
Surv. 35 (June 2003), pp. 114–131. DOI: 10.1145/857076.857078.

[35] Stephen Farrell, Russell Housley, and Sean Turner. An internet attribute certificate
profile for authorization. Tech. rep. RFC 3281, April, 2002.

[36] David F. Ferraiolo et al. “Proposed NIST standard for role-based access control”.
In: ACM Transactions on Information and System Security (TISSEC) 4 (2001), pp. 224
–274.

[37] Arthur Gervais et al. “Tampering with the Delivery of Blocks and Transactions
in Bitcoin”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security - CCS ’15. 2015, pp. 692–705. ISBN: 9781450338325. DOI:
10.1145/2810103.2813655. URL: http://dl.acm.org/citation.cfm?doid=
2810103.2813655.

[38] Vipul Goyal et al. “Attribute-based encryption for fine-grained access control of
encrypted data”. In: Proceedings of the 13th ACM conference on Computer and commu-
nications security. 2006, pp. 89–98.

http://dl.acm.org/citation.cfm?id=1855768.1855788
http://dl.acm.org/citation.cfm?id=1855768.1855788
https://doi.org/10.1007/978-1-4842-3081-7_10
https://doi.org/10.1007/978-1-4842-3081-7_10
https://doi.org/10.1007/978-3-030-20190-6_8
http://dl.acm.org/citation.cfm?doid=2810103.2813655
http://dl.acm.org/citation.cfm?doid=2810103.2813655

104 Bibliography

[39] Vipul Goyal et al. “Bounded ciphertext policy attribute based encryption”. In: In-
ternational Colloquium on Automata, Languages, and Programming. Springer. 2008,
pp. 579–591.

[40] Network Working Group. The Transport Layer Security (TLS) Protocol Version 1.3.
URL: https://tools.ietf.org/html/draft-ietf-tls-tls13-18.

[41] OMG Group. DDS Security version 1.1. URL: https://www.omg.org/spec/DDS-
SECURITY/1.1/PDF.

[42] DG GROW. GEAR 2030 - High Level Group - Final Report. European Commission,
2017.

[43] Alex Hern. Hacking risk leads to recall of 500,000 pacemakers due to patient death fears.
2017. URL: https://www.theguardian.com/technology/2017/aug/31/hacking-
risk-recall-pacemakers-patient-death-fears-fda-firmware-update.

[44] Susan Hohenberger and Brent Waters. “Online/offline attribute-based encryption”.
In: International Workshop on Public Key Cryptography. Springer. 2014, pp. 293–310.

[45] Denis A. Ignatovich and Grant O. Passmore. Creating Safe and Fair Markets. AES-
THETIC INTEGRATION, LTD. Feb. 2015.

[46] Amani Abu Jabal et al. “Methods and tools for policy analysis”. In: ACM Computing
Surveys (CSUR) 51.6 (2019), pp. 1–35.

[47] Markus Jakobsson and Susanne Wetzel. “Security weaknesses in Bluetooth”. In:
Cryptographers’ Track at the RSA Conference. Springer. 2001, pp. 176–191.

[48] Rafiullah Khan et al. “Future internet: the internet of things architecture, possible
applications and key challenges”. In: 2012 10th international conference on frontiers of
information technology. IEEE. 2012, pp. 257–260.

[49] Jongkil Kim et al. “Security and Performance Considerations in ROS 2: A Balancing
Act”. In: arXiv preprint arXiv:1809.09566v1 (2018). arXiv: http://arxiv.org/abs/
1809.09566v1 [cs.CR].

[50] Constantinos Kolias et al. “DDoS in the IoT: Mirai and other botnets”. In: Computer
50.7 (2017), pp. 80–84.

[51] Karl Koscher et al. “Experimental security analysis of a modern automobile”. In:
Proceedings - IEEE Symposium on Security and Privacy. 2010, pp. 447–462. ISBN: 9780769540351.
DOI: 10.1109/SP.2010.34.

[52] G Lacava et al. “Current research issues on cyber security in robotics”. In: (2020).

[53] Junzuo Lai, Robert H Deng, and Yingjiu Li. “Fully secure cipertext-policy hiding
CP-ABE”. In: International conference on information security practice and experience.
Springer. 2011, pp. 24–39.

[54] Francisco Javier Rodrıguez Lera et al. “Cybersecurity in Autonomous Systems:
Evaluating the performance of hardening ROS”. In: Málaga, Spain-June 2016 (2016),
p. 47.

https://tools.ietf.org/html/draft-ietf-tls-tls13-18
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update

Bibliography 105

[55] Allison Lewko et al. “Fully secure functional encryption: Attribute-based encryp-
tion and (hierarchical) inner product encryption”. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. Springer. 2010, pp. 62–
91.

[56] Andrew Y Lindell. “Attacks on the pairing protocol of bluetooth v2. 1”. In: Black
Hat USA, Las Vegas, Nevada (2008).

[57] Ibrahim Mashal et al. “Choices for interaction with things on Internet and under-
lying issues”. In: Ad Hoc Networks 28 (2015), pp. 68–90.

[58] Roman Matzutt et al. “A Quantitative Analysis of the Impact of Arbitrary Blockchain
Content on Bitcoin”. In: Proceedings of the 22nd International Conference on Financial
Cryptography and Data Security (FC). Springer. 2018.

[59] J. McClean et al. “A preliminary cyber-physical security assessment of the Robot
Operating System (ROS)”. In: Proc. SPIE. Vol. 8741. 2013, pp. 874110–874110–8. DOI:
10.1117/12.2016189. URL: http://dx.doi.org/10.1117/12.2016189.

[60] Jarrod McClean et al. “A preliminary cyber-physical security assessment of the
Robot Operating System (ROS)”. In: 8741 (2013), p. 874110. ISSN: 0277786X. DOI:
10.1117/12.2016189. URL: http://proceedings.spiedigitallibrary.org/
proceeding.aspx?doi=10.1117/12.2016189.

[61] Stuart McClure et al. “Hacking exposed: network security secrets and solutions”.
In: (2009).

[62] Roland Meier et al. “NetHide: secure and practical network topology obfuscation”.
In: 27th {USENIX} Security Symposium ({USENIX} Security 18). 2018, pp. 693–709.

[63] Charlie Miller and Chris Valasek. “A Survey of Remote Automotive Attack Sur-
faces”. In: Defcon 22 (2014), pp. 1–90. URL: http://illmatics.com/remoteattacksurfaces.
pdf.

[64] Charlie Miller and Chris Valasek. “Remote Exploitation of an Unaltered Passen-
ger Vehicle”. In: Defcon 23 2015 (2015), pp. 1–91. URL: http://illmatics.com/
RemoteCarHacking.pdf.

[65] Julien Mineraud et al. “A gap analysis of Internet-of-Things platforms”. In: Com-
puter Communications 89 (2016), pp. 5–16.

[66] Santiago Morante, Juan G. Victores, and Carlos Balaguer. “Cryptobotics: Why Robots
Need Cyber Safety”. In: Frontiers in Robotics and AI 2.September (2015), pp. 23–
26. ISSN: 2296-9144. DOI: 10.3389/frobt.2015.00023. URL: http://journal.
frontiersin.org/Article/10.3389/frobt.2015.00023/abstract.

[67] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: (2008). URL:
www.bitcoin.org.

[68] L. Nastase. “Security in the Internet of Things: A Survey on Application Layer Pro-
tocols”. In: 2017 21st International Conference on Control Systems and Computer Science
(CSCS). 2017, pp. 659–666. DOI: 10.1109/CSCS.2017.101.

http://dx.doi.org/10.1117/12.2016189
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189
http://illmatics.com/remote%20attack%20surfaces.pdf
http://illmatics.com/remote%20attack%20surfaces.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://journal.frontiersin.org/Article/10.3389/frobt.2015.00023/abstract
http://journal.frontiersin.org/Article/10.3389/frobt.2015.00023/abstract
www.bitcoin.org

106 Bibliography

[69] Karl J O’Dwyer and David Malone. “Bitcoin Mining and its Energy Footprint”.
In: IET Conference Proceedings (2014), 280–285(5). URL: http://digital-library.
theiet.org/content/conferences/10.1049/cp.2014.0699.

[70] OMG. Data Distribution Service (DDS) Security Specification, Version 1.1. Object Man-
agement Group, 2018. URL: https://www.omg.org/spec/DDS-SECURITY/1.1.

[71] OMG. Data Distribution Service (DDS), Version 1.4. Object Management Group, 2015.
URL: https://www.omg.org/spec/DDS/1.4.

[72] OneM2M. The interoperability enabler for the entire m2m and IoT ecosystem. URL: https:
//www.onem2m.org/images/files/oneM2M-whitepaper-January-2015.pdf.

[73] Joon S Park and Ravi Sandhu. “Binding identities and attributes using digitally
signed certificates”. In: Proceedings 16th Annual Computer Security Applications Con-
ference (ACSAC’00). IEEE. 2000, pp. 120–127.

[74] Joon S Park, Ravi Sandhu, et al. “Smart certificates: Extending x. 509 for secure
attribute services on the web”. In: Citeseer.

[75] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: ICRA
workshop on open source software. Vol. 3. 3.2. Kobe, Japan. 2009, p. 5.

[76] Ricardo Tellez. Robot Runnin ROS2. https://www.theconstructsim.com/a-list-
of-robots-running-on-ros2/. Last accessed 2020-11-09. 2020.

[77] Robert Rowlingson and Qinetiq Ltd. “A Ten Step Process for Forensic Readiness”.
In: International Journal of Digital Evidence Winter 2.3 (2004).

[78] Richard Ruggles and Henry Brodie. “An empirical approach to economic intel-
ligence in World War II”. In: Journal of the American Statistical Association 42.237
(1947), pp. 72–91.

[79] Xiaolin Si, Pengpian Wang, and Liwu Zhang. “KP-ABE based verifiable cloud ac-
cess control scheme”. In: 2013 12th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications. IEEE. 2013, pp. 34–41.

[80] Paul Snow et al. “Factom Business Processes Secured by Immutable Audit Trails
on the Blockchain”. In: Whitepaper, Factom (2014). URL: https : / / github . com /
FactomProject/FactomDocs/raw/master/Factom{_}Whitepaper.pdf.

[81] Patrik Spiess et al. “SOA-based integration of the internet of things in enterprise
services”. In: 2009 IEEE international conference on web services. IEEE. 2009, pp. 968–
975.

[82] Mariacarl Staffa, Giovanni Mazzeo, and Luigi Sgaglione. “Hardening ROS via Hardware-
assisted Trusted Execution Environment”. In: Robot and Human Interactive Commu-
nication (RO-MAN), 2018 IEEE/RSJ International Conference on. IEEE. 2018.

[83] OASIS Standard. eXtensible Access Control Markup Language (XACML) Version 3.0.
URL: https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.html.

http://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0699
http://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0699
https://www.omg.org/spec/DDS-SECURITY/1.1
https://www.omg.org/spec/DDS/1.4
https://www.onem2m.org/images/files/oneM2M-whitepaper-January-2015.pdf
https://www.onem2m.org/images/files/oneM2M-whitepaper-January-2015.pdf
https://www.theconstructsim.com/a-list-of-robots-running-on-ros2/
https://www.theconstructsim.com/a-list-of-robots-running-on-ros2/
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Bibliography 107

[84] Andrew Sutton and Reza Samavi. “Blockchain Enabled Privacy Audit Logs”. In:
International Semantic Web Conference. Springer. 2017, pp. 645–660. DOI: 10.1007/
978-3-319-68288-4.

[85] P. Szalachowski. “(Short Paper) Towards More Reliable Bitcoin Timestamps”. In:
2018 Crypto Valley Conference on Blockchain Technology (CVCBT). 2018, pp. 101–104.
DOI: 10.1109/CVCBT.2018.00018.

[86] S. Taurer, B. Dieber, and P. Schartner. “Secure Data Recording and Bio-Inspired
Functional Integrity for Intelligent Robots”. In: 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2018, pp. 8723–8728. DOI: 10.1109/
IROS.2018.8593994.

[87] Tully Foote, Katherine Scott. Community Metrics Report. http://download.ros.
org/downloads/metrics/metrics-report-2020-07.pdf. Last accessed 2020-10-
20. 2020.

[88] Nilufer Tuptuk and Stephen Hailes. “Security of smart manufacturing systems”.
In: Journal of manufacturing systems 47 (2018), pp. 93–106.

[89] Viktoras Kabir Veitas and Simon Delaere. “In-vehicle data recording, storage and
access management in autonomous vehicles”. In: arXiv preprint arXiv:1806.03243
(2018).

[90] Viktoras Kabir Veitas and Simon Delaere. “Policy Scan and Technology Strategy
Design methodology”. In: arXiv preprint arXiv:1806.03235 (2018).

[91] Víctor Mayoral Vilches et al. White paper: Red Teaming ROS-Industrial. Tech. rep.
Alias Robotics, 2020. URL: https://aliasrobotics.com/files/red_teaming_
rosindustrial.pdf.

[92] Feng Wang et al. “A data processing middleware based on SOA for the internet of
things”. In: Journal of Sensors 2015 (2015).

[93] Brent Waters. “Ciphertext-policy attribute-based encryption: An expressive, effi-
cient, and provably secure realization”. In: International Workshop on Public Key
Cryptography. Springer. 2011, pp. 53–70.

[94] Ruffin White, Henrik Christensen, and Morgan Quigley. “SROS: Securing ROS
over the wire, in the graph, and through the kernel”. In: Proceedings of the IEEE-
RAS International Conference on Humanoid Robots (HUMANOIDS). 2016.

[95] Ruffin White et al. “Black block recorder: Immutable black box logging for robots
via blockchain”. In: IEEE Robotics and Automation Letters 4.4 (2019), pp. 3812–3819.

[96] Ruffin White et al. “Network Reconnaissance and Vulnerability Excavation of Se-
cure DDS Systems”. In: 2019 IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW). IEEE. 2019, pp. 57–66.

[97] Ruffin White et al. “Procedurally provisioned access control for robotic systems”.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2018, pp. 1–9.

http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
https://aliasrobotics.com/files/red_teaming_rosindustrial.pdf
https://aliasrobotics.com/files/red_teaming_rosindustrial.pdf

108 Bibliography

[98] Ruffin White et al. “SROS1: Using and Developing Secure ROS1 Systems”. In: Robot
Operating System (ROS): The Complete Reference (Volume 3). Ed. by Anis Koubaa.
Cham: Springer International Publishing, 2019, pp. 373–405. ISBN: 978-3-319-91590-
6. DOI: 10.1007/978-3-319-91590-6_11. URL: https://doi.org/10.1007/978-3-
319-91590-6_11.

https://doi.org/10.1007/978-3-319-91590-6_11
https://doi.org/10.1007/978-3-319-91590-6_11

	Introduction
	Methodology
	Summary of the Contributions
	Structure of the Thesis

	ROS: What, Why and How
	Background
	Concepts
	Filesystem level
	Computation Graph level
	Community level

	ROS API
	Master API
	Parameter API
	Node API

	Communications
	Establishing a topic connection
	Establishing a service connection

	Attacks on ROS
	Inject Attack
	Service Isolation Attack
	Man in the middle attack
	Malicious Parameter Update Attack
	Log and Monitoring Attack

	Countermeasures
	ROS 2
	Structure of the middleware
	Data Distribution Service (DDS)
	ROS1 vs ROS2 Architecture

	Conclusions

	Access Control Policies
	Background
	Distribution Architectures
	User-pull Architecture
	Server-pull Architecture

	Access Control Policy
	Procedurally Provision Access Policy
	ComArmor
	Keymint
	Results

	Conclusions

	Vulnerability Excavation
	Background
	Data Distribution Service DDS
	Authentication
	Access Control

	Threat & Attack Model
	Approach
	Network Topology
	Heuristic Graph and Lazy Evaluation
	Reachability Verification

	Implementation
	Results
	Source and Target
	Source Only
	Target Only

	Countermeasures
	Attribute Base Encryption
	Policy Representation
	Policy Conversion

	Conclusions

	Accountability
	Background
	Distributed Ledgers Technology
	Immutable Logs
	Event Data Recorders

	System Architecture
	Obligated Roles and Observing Parties
	Recording, Storage and Access Requirements
	Defined Primitives and System Properties

	Approach
	Incremental Integrity Proof
	Smart Contract

	Implementation
	Checkpoint Integration
	Transaction Family for EDR Smart Contracts
	Performance Profiling and QoS Tuning

	Conclusions

	Conclusion
	Bibliography

