
Ca’ Foscari University of Venice

and

Masaryk University

Doctor of Philosophy Programme

in Computer Science

Cycle XXXIII

Final Thesis

String Analysis
for

Software Verification
SSD: INF/01

Programme Coordinator

Prof. Agostino Cortesi

Supervisor (Ca’ Foscari University)

Prof. Agostino Cortesi

Supervisor (Masaryk University)

Prof. Vashek Matyas

Graduate Student

Martina Olliaro

Matriculation Number 834397

UC̆O 477767

To the human revolution

Abstract

This thesis aims to investigate string manipulation with security implications in different
programming languages and to improve the state-of-the-art by applying the Abstract Inter-
pretation theory to string analysis. Erroneous string manipulation is a challenging problem
in software verification. In fact, it is one of the major causes of program vulnerabilities
that can be exploited by malicious users, leading to severe consequences for the affected
systems. By string analysis, we mean statically computing the set of string values that are
possibly assigned to a variable. As for other analysis issues, this is undecidable. Thus a
certain degree of approximation is necessary to find evidence of bugs and vulnerabilities
in string manipulating code. We take advantage of the Abstract Interpretation theory, id

est, a powerful mathematical theory that enables us to define and prove the soundness of
approximations. The five main contributions of this thesis are:

Abstracting shape and content of strings. We introduce a new sophisticated string ab-
stract domain for the C language. The domain (called M-String) is parametrized on an
index (bound) domain and a character domain. Picking different constituent domains, i.e.,
both shape information on the array structure and value information on the contained
characters, allows M-String to be tailored for specific verification tasks (e.g., detection of
buffer overflows), balancing precision against complexity. We describe the concrete and the
abstract semantics of basic string operations and prove their soundness formally. In addi-
tion to a selection of string functions from the standard C library, we provide semantics for
character access and update, enabling automatic lifting of arbitrary string-manipulating
code into the domain. Furthermore, we provide an executable implementation of abstract
operations. Using a tool that automatically lifts existing programs into the M-String do-
main along with an explicit-state model checker, we evaluate the accuracy of the proposed
domain experimentally on real-case test programs.

Combining string domains. We combine abstract domains resulting from the reduced
product between string shape abstraction and string content abstraction, in order to better
detect inconsistent states leading to program errors without a major impact on efficiency.
In particular, the combinations involve some string abstract domains introduced in the
literature with the segmentation domain that we instantiate for string analysis.

Completeness of string domains. In Abstract Interpretation, completeness ensures that
the analysis does not lose information with respect to the property of interest. We provide
a systematic and constructive approach for generating the completion of string domains
for dynamic languages, and we apply it to the refinement of existing string abstractions.
Indeed, for dynamic languages, lack of completeness is a key security issue, as poorly
managed string manipulation code may easily lead to significant security flaws. We also
provide an effective procedure to measure the precision improvement obtained when lifting
the analysis to complete domains.

Relational abstract domains for string analysis. Almost all the existing string abstract
domains track information of single variables in a program (e.g., if a string contains a
specific character) without inspecting their relationship with other values, causing loss
of relevant knowledge. Thus, we introduce a generic framework that allows formalizing
relational string abstract domains based on ordering relationships. We instantiate this
framework to several domains built upon different well-known string orders (e.g., substring
relationships). We implemented the domain based on substring ordering, and we provide
an experimental evaluation of its effectiveness on some case studies.

String manipulation in watermarking scenarios. We manipulate string values in the con-
text of relational database watermarking. We propose a semantic-driven watermarking
approach of relational textual databases, which marks multi-word textual attributes, ex-
ploiting the synonym substitution technique for text watermarking together with notions
in semantic similarity analysis, and dealing with the semantic perturbations provoked by
the watermark embedding. We show the effectiveness of our approach through an exper-
imental evaluation, highlighting the resulting capacity, robustness, and imperceptibility
watermarking requirements. We also prove the resilience of our approach with respect to
the random synonym substitution attack.

Acknowledgements
Doctoral studies represent a crucial point in my personal and educational growth. Among

all the people who walked with me during this journey, four are of particular importance.

To my Mother. Since the moment she gave me life, she never abandoned me, fully accom-

plishing her duties. She is kindness and resilience made person. Her support pushed me

towards places and thoughts which I would not have had the courage to explore. I owe her

everything.

To my Sisters. Diletta and Carola are the light of my days. They relieve my bad moods

and take care of me, making me always feel safe and protect. I am never alone with them.

To my Mentor. Tino believed in me. There is nothing more precious than finding someone

who guides you and teaches you. I am incredibly grateful for the time he dedicated to me.

Thanks to all my beloved, in particular to my colleagues and friends Gianluca, Vincenzo,

and Maikel, and to my best friend Elena.

Martina Olliaro

Treviso, 10/02/2021

CONTENTS

1 Introduction 1

1.1 Motivation . 1

1.2 Methodology . 3

1.2.1 Static Analysis . 4

1.2.2 Abstract Interpretation . 4

1.3 Contribution . 6

1.4 Thesis Structure . 7

2 Preliminaries 9

2.1 Sets and Sequences . 9

2.2 Order Relations . 10

2.3 Functions . 12

2.4 Fixpoints . 12

2.5 Traces . 13

2.6 Abstract Interpretation . 14

2.6.1 Galois Connection . 14

2.6.2 Soundness and Completeness . 16

2.6.3 Fixpoints Approximation . 18

2.6.4 Product Operators . 18

3 String Analysis for C 21

3.1 Introduction . 21

3.2 FunArray . 23

3.2.1 Array Concrete Representation . 23

3.2.2 Array Abstract Domain Functor . 25

3.3 Syntax . 26

3.4 Concrete Domain and Semantics . 27

3.4.1 Character Array Concrete Representation 28

3.4.2 Concrete Domain . 29

3.4.3 Concrete Semantics . 29

3.5 M-String . 35

3.5.1 Character Array Abstract Domain Functor 35

3.5.2 Abstract Semantics . 41

3.5.3 Soundness . 45

3.6 Program Abstraction . 48

3.6.1 Compilation-Based Approach . 49

3.6.2 Syntactic Abstraction . 49

3.6.3 Aggregate Domains . 51

3.6.4 Semantic Abstraction . 53

3.6.5 Abstract Operations . 53

3.7 Instantiating M-String . 54

3.7.1 Symbolic Scalar Values . 55

3.7.2 Concrete Characters, Symbolic Bounds 55

3.7.3 Symbolic Characters, Symbolic Bounds 57

3.7.4 Implementation . 57

3.8 Experimental Evaluation . 58

3.9 Discussion . 62

4 Combining String Domains 65

4.1 Introduction . 65

4.2 Syntax . 68

4.3 Concrete Domain and Semantics . 69

4.3.1 Concrete Domain . 69

4.3.2 Concrete Semantics . 69

4.4 String Abstract Domains . 71

4.4.1 String Length . 71

4.4.2 Character Inclusion . 72

4.4.3 Prefix and Suffix . 73

4.5 Segmentation Abstract Domain . 74

4.5.1 String Concrete Representation . 74

4.5.2 Abstract Domain . 75

4.5.3 Abstract Semantics . 81

4.5.4 Soundness . 83

4.6 Refined String Abstract Domains . 84

4.6.1 Meaning of Refinement . 85

4.6.2 Combining Segmentation and String Length Domains 85

4.6.3 Combining Segmentation and Character Inclusion Domains 89

4.6.4 Combining Segmentation and Prefix Domains 94

4.7 Discussion . 98

5 Completeness of String Domains 101

5.1 Introduction . 101

5.2 Making Abstract Interpretation Complete 102

5.2.1 Complete Shell vs Complete Core . 103

5.2.2 Domain Completion Procedure . 105

5.2.3 Motivating Example . 106

5.3 Core Language . 108

5.3.1 Syntax . 108

5.3.2 Concrete Semantics . 109

5.4 Making JavaScript String Abstract Domains Complete 109

5.4.1 Completing TAJS String Abstract Domain 110

5.4.2 Completing SAFE String Abstract Domain 113

5.5 Benefits of Adopting Complete String Abstractions 117

5.5.1 Precision . 117

5.5.2 Qualitative Evaluation of Complete Shells 118

5.5.3 False Positives Reduction . 119

5.6 Relative Precision . 120

5.6.1 Abstract Domains Precision: an Overview 120

5.6.2 Measuring Precision Gained by Complete Shells 121

5.6.3 Experimental Evaluation . 124

5.7 Discussion . 125

6 Relational String Abstract Domains 127

6.1 Introduction . 127

6.2 Core Language . 129

6.2.1 Syntax . 129

6.2.2 Concrete Semantics . 130

6.3 A Suite of String Relational Abstract Domains 132

6.3.1 General Relational Framework . 132

6.3.2 String Length Relational Abstract Domain 134

6.3.3 Character Inclusion Relational Abstract Domain 135

6.3.4 Substring Relational Abstract Domain 136

6.3.5 Extension to String Expressions . 137

6.4 Experimental Evaluation . 140

6.4.1 Test Cases . 140

6.4.2 Evaluating a Real World Sample . 142

6.5 Discussion . 143

7 String Manipulation in Watermarking Scenarios 145

7.1 Introduction . 146

7.2 Motivating Examples . 149

7.3 Preliminaries . 151

7.3.1 Semantic Similarity Theory . 151

7.3.2 Text Watermarking . 151

7.4 Semantic-based Watermarking Approach . 153

7.4.1 Architecture of the Proposal . 153

7.4.2 Watermarking Procedure . 157

7.4.3 Analysis of the Watermark Capacity 159

7.4.4 Considerations for the Adversary Model 161

7.5 Experimental Results . 163

7.5.1 Improvement of the Watermark Capacity 165

7.5.2 Detectability Analysis . 166

7.5.3 Watermark Imperceptibility . 169

7.5.4 Technique’s Robustness . 170

7.5.5 Scalability and Complexity . 171

7.6 Discussion . 173

8 Conclusion and Future Work 175

A Unification Algorithm 177

B String Abstract Domains 179

B.1 String Length . 179

B.2 Character Inclusion . 183

B.3 Prefix . 186

C Relational String Abstract Domains 189

C.1 Abstract Semantics of Len . 189

C.2 Abstract Semantics of Char . 190

C.3 Abstract Semantics of Sub . 191

C.4 Abstract Semantics of Sub? . 193

C.5 Len? Relational Abstract Domain . 195

C.6 Char? Relational Abstract Domain . 197

Bibliography 199

LIST OF FIGURES

2.1 Hasse Diagram . 11

3.1 Interpretation-based vs Compilation-based 50

3.2 Syntactic Abstraction . 50

3.3 M-String with Symbolic Bounds . 56

5.1 Coalesced Sum Abstract Domain . 107

5.2 µDyn Syntax . 108

5.3 µDyn Semantics . 109

5.4 SAFE and TAJS Domains for µDyn . 110

5.5 TAJS Complete Shell . 112

5.6 SAFE Concatenation Abstract Semantics 114

5.7 SAFE Absolute Complete Shell . 116

5.8 µDyn Program Example . 122

6.1 secname Sample . 128

6.2 Imp Syntax . 130

6.3 Control Flow Graph Generation . 130

6.4 Len Lattice Operations . 135

6.5 Char Lattice Operations . 136

6.6 Sub Lattice Operations . 137

6.7 A⇤ Lattice Operations . 138

6.8 Sub? Lattice Operations . 139

6.9 notcon and rep Programs . 140

7.1 Embedding Process Architecture . 154

7.2 Synonyms Sets . 156

7.3 Evaluating Watermark Capacity . 161

7.4 WM Source Samples . 163

7.5 Analysis Correlation . 172

LIST OF TABLES

3.1 C Syntax . 27

3.2 M-String Measurements . 59

3.3 Benchmark Abstraction . 59

3.4 PDCLib Verification Results . 60

3.5 Veriabs Overflow Benchmarks Results . 61

3.6 Measurements for Automatically Generated Parsers Analysis 62

3.6 Measurements for Automatically Generated Parsers Analysis: cont 62

4.1 Introductory Example . 68

4.2 Shortcuts of String Constants . 71

4.3 Program Analysis with SL . 72

4.4 Program Analysis with CI . 73

4.5 Program Analysis with PR . 74

5.1 Completing SAFE Domain . 115

5.2 TAJS Domain vs TAJS Complete Shell Domain 124

6.1 Analyses Results of notcon . 141

6.2 Analyses Results of rep . 141

6.3 Analyses Results of secname . 143

7.1 AHK Approach Notation . 147

7.2 Motivating Example . 149

7.3 Structure of the Dataset “Amazon Fine Food Reviews” 164

7.4 Binary Capacity Values . 166

7.5 Weight-based Capacity Values . 166

7.6 WSD Precision During WM Detection . 167

7.7 Dected WM Quality . 168

7.8 WM Detectability . 168

7.9 Fixed Word Rate Values . 169

7.10 Similarities for WM UTM . 170

7.11 Detected WMs After Pseudo-random Tuple Deletion Attacks 171

7.12 Detected WMs After Pseudo-Random Update Attacks 171

7.13 WM Embedding Required Time . 172

B.1 SL Abstract Semantics . 181

B.2 CI Abstract Semantics . 185

B.3 PR Abstract Semantics . 187

1

Chapter 1

INTRODUCTION

The goal of this thesis is to improve the state-of-the-art of string analysis in software veri-
fication. We take into account different scenarios of string manipulation, and by applying
the Abstract Interpretation theory, we introduce new abstract domains for string analysis.
We discuss their ability to enhance the precision when combining them with other existing
strings domains. As an additional contribution, we apply a semantic approach to string
manipulation in the context of watermarking for relational databases.

1.1 Motivation

Programming with strings is often prone to errors. Indeed the different ways strings are
treated by the programming languages and the lack of support for string manipulation
often lead to run-time errors. Depending on the language we are using, strings can be
handled as arrays of characters, primitive data types, or objects. Due to their different
implementation, strings suffer from manipulation errors causing vulnerabilities that result
in irreversible damages [30].

For instance, in the C programming language, strings are not a built-in type. As a
matter of fact, they are represented as null terminating arrays of characters. Due to how
arrays are managed in C, it is common for those that manipulate strings to suffer from
errors such as: unbounded string copies, off-by-one errors, null-termination errors, and
string truncation [154]. Some of those errors lead to buffer overflows that can cause the
program to behave unpredictably, crash or be subject to malicious code injection.

Injection attacks also target programs written in a memory safe language. In the Java

programming language, strings are objects corresponding to the instances of the String
class, and even though the Java language is memory safe, programmers can make logical
programming errors leading to unexpected consequences. The same happens in software
written in the JavaScript language, where strings are a primitive data type and language
features like, e.g., dynamic typing, implicit type conversion, and reflection, compromise

2 Chapter 1. Introduction

code readability, data consistency and make the code prone to bugs or to vulnerability
exploitations [12, 145].

Nevertheless, strings play a crucial role in programming. In particular, in web-based
software, strings are used any time the web application needs to communicate with end-
users and to store information, as well as in generating dynamic code.

For the reasons above string analysis techniques, i.e., a static analysis approach that,
given a particular point of a program, aims to determine the literals in that point held by
a string variable, are recognised to be an effective approach to detect string manipulation
errors and prevent catastrophic events. The relevance of string analysis may be better
understood by the following two security scenarios.

Buffer Overflow Vulnerability

According to the IEEE and TIOBE rankings, C is currently one of the top ten programming
languages in use [31, 168], and many software systems of critical importance are written
in the C programming language.

A well-known security issue that affects C code is the buffer overflow vulnerability.
A buffer overflow consists of access to a buffer outside its assigned bounds. It occurs
because the C programming language does not provide any built-in protection to over-
reading or over-writing data in any parts of the memory. For example, there is no automatic
check if the insertion of data into an array (the built-in buffer type) is confined within its
boundaries. Static methods that automatic detect buffer overflows in C programs have been
widely studied in the literature (with an emphasis also on strings) [62, 63, 129, 161, 173,
175, 181]. Those methods exploit different inference techniques based, among others, on
constraint-based techniques, tainted data-flow analysis, string pattern matching analysis
or annotation analysis [156].

Injection

Web applications are often affected by problems related to how strings are (improperly)
manipulated [30, 91, 95, 164], leading to severe consequences, e.g., deleting content from
a database or executing malicious scripts in the end user’s browser. According to the
OWASP Top Ten [141], two of the most common vulnerabilities in web applications that
arise from string manipulation errors are: Cross Site Scripting (XSS) and SQL injection
(SQLi). Both vulnerabilities are classified as injection attacks, i.e., when untrusted inputs
are supplied to a program, and are caused by inadequate string input validation and
sanitization, specifically:

• “A SQL Injection attack consists of insertion (or injection) of a SQL query via the
input data from the client to the application” [163].

1.2. Methodology 3

• “A Cross Site Scripting attack consists of injection of malicious scripts into otherwise
benign and trusted websites” [182].

In the last decade, the number of web applications is increasing. Consequently, the
amount of new XSS and SQLi vulnerabilities is advancing despite both the suggestions
provided by secure coding practices and the available techniques of input validation and
sanitization.

To this end, precise static analysis techniques can prevent string manipulation errors
that lead to security attacks in web-based software. In the literature, several frameworks
that use static analysis to counter injection attacks have been designed [71, 94, 100, 109,
124, 174, 177]. Furthermore, different string analysis techniques have been developed to
tackle the problems mentioned above [114, 133, 167, 170, 176, 178, 186, 188]. For instance,
Minimade [133] proposed to use a context free grammar to approximate strings to validate
and guarantee the security of web pages dynamically generated by a server side program.
This technique has been extended by Wasserman and Su to find SQLi [176] and XSS
vulnerabilities [177]. In [188], Yu et al. applied string analysis, by means of automaton
abstraction, to check the correctness of sanitization operations and later to automatically
repair faulty string manipulation code [184]. Detection and verification of sanitizers have
been carried out also by Tateishi et al. [167], where constraints over program variables
and string operations are represented with monadic second-order logic. Finally, string
analysis by means of Abstract Interpretation has been used by Tripp et al. [170] to detect
JavaScript security vulnerabilities in the client side of web applications. Other survey
contributions in this field can be found in [90, 95, 116, 157].

1.2 Methodology

As mentioned above, string analysis is a static analysis technique that, given a particular
program point where a string variable occurs, aims to determine the literals possibly as-
signed to that variable. In general, this is an undecidable problem, i.e., no algorithm can
solve it for all programs and inputs. However, approximations can be used to prove anyway
the presence or the absence of software bugs and vulnerabilities in the string manipulating
code.

In the recent literature, different approximation techniques for string analysis have
been developed, such as [30]: automata-based [15, 34, 187, 188], abstraction-based [8,
9, 10, 11, 49], constraint-based [1, 123, 150, 152, 172], and grammar-based [133, 177].
For instance, in [15], Arceri and Mastroeni defined a new automaton-based semantics for
string analysis to handle dynamic languages string features such as dynamic typing and
implicit type conversion. Amadini et al., in [8], approximate strings as a dashed string,
namely a sequence of concatenated blocks that specify the number of times the character
they contain must appear and the number of times the latter may appear. Samirni et al.

4 Chapter 1. Introduction

[150] repaired HTML generation errors in PHP programs by solving a system of string
constraints.

We choose to adopt the Abstract Interpretation theory [51, 56] to approach the string
analysis problem as it provides a rigorous mathematical framework within which we can
design sound approximations varying the degrees of abstractions.

1.2.1 Static Analysis

Static analysis aims to automatic reasoning about the behaviour of computer programs
without executing them [136]. Firstly used in compiler optimization (e.g., to produce effi-
cient code), it is now widely applied in software verification. In particular, the verification
process is about providing guarantees that a computer program complies with its require-
ment (e.g., correctness) [101] and, as a matter of fact, static program analysis has been
shown useful to find bugs [19, 27]. That is extremely important when code bugs may be
exploited to perform security attacks.

It is important to note that from Rice’s theorem [148], we know that all non trivial
properties about the behaviour of programs, written in a Turing complete programming
language, are undecidable. To overcome this problem, static analysis provides sound ap-
proximations. By sound approximation, we mean both the approximation of concrete
values handled by a program by means of abstract values and an approximation of oper-
ations by corresponding operations on abstract values that preserves the semantics with
respect to the observed property kept by the abstraction.

In the context of software verification, a sound verification analysis must detect all the
errors, possibly producing also false positive due to the approximation.

Different static analysis techniques have been developed since the 1970s, such as: data
flow analysis [113], control flow analysis [7], type and effect analysis [138], Abstract In-
terpretation [51], model checking [22] and symbolic execution [117]. As the years go by,
for some of those techniques there have been defined several approaches. For example,
the data flow analysis can be equational-based or constraint-based [139] and the model
checking technique can be abstract-based [35] or symbolic-based [36].

1.2.2 Abstract Interpretation

Abstract Interpretation [51, 56] has been proposed by P. Cousot and R. Cousot in the
1970s as a general theory of sound abstraction of the uncomputable concrete semantics of
computer programs, which is able to cover all the aforementioned static analysis techniques.
Now it is widely integrated in software verification tools and used to rigorous mathematical
proofs of approximations correctness. Static analysis by Abstract Interpretation is sound
by construction, but in general, it is not complete, as some loss of information may occur
during the abstract computation. Concrete values managed by a program are represented
by elements belonging to algebraic structures called abstract domains. Abstract domains

1.2. Methodology 5

are designed taking into account the properties to infer, e.g., numerical or lexical, relational
or non-relational, and they can be both language-specific or general purpose. Moreover,
Abstract Interpretations allows the combination of abstract domains, through suitable
operators, i.e., refinement and product operators, to enhance the accuracy of the abstract
computation.

Numerical Abstract Domains

A numerical abstract domain is an abstract domain that approximates sets of numerical
values [126]. Different numerical abstract domains have been designed, such as: the Sign
and the Parity abstract domains [50, 51] that respectively approximate integers by their
sign or by their “be even or odd”, the Interval abstract domain [51] that takes into account
the minimum and the maximum value that an integer variable can be assigned to. The
domains just mentioned do not track relationships between variables. Conversely, the
following ones are relational: the Pentagon abstract domain [126] used to prove the safety
of array accesses in byte-code and intermediate languages, the Octagon abstract domain
[135] which allows to prove program invariants and the Trapezoid Step Function abstract
domain [43] which approximates continuous functions. Recently, Bautista et al. [25] defined
the Numeric Path Relations abstract domain, which denotes relations over structured data
containing scalar values. Moreover, combinations of numerical abstract domains have
been extensively used to improve the precision of the analysis and implemented in various
tools [59, 64].

String Abstract Domains

A string abstract domain approximates sets of string values. In the recent literature, dif-
ferent abstract domains for string analysis have been defined [11, 10, 34, 49, 57, 115, 127,
185] and different tools have been designed for their usage and combination [105, 112, 122,
162]. For instance, a basic, well-known domain is the String Set domain, which simply
keeps track of a set of strings and it is a specific instance of the general (bounded) set
domain. There exist general-purpose abstract domains that approximate shape and/or
content information of strings, such as the Character Inclusion and the Prefix domains
[49] that track the characters possibly and certainly contained in a string and its prefix,
respectively. The String Length abstract domain approximates the minimum and max-
imum length of a string, similar to the interval domain for numerical values. Another
general-purpose string domain is the String Hash domain proposed in [127], based on a
distributive hash function. Some string abstract domains focus on specific programming
languages such as JavaScript [16, 105] and C [108, 134], others target specific proper-
ties and rely on different approaches like automata [188], regular expressions [142], and
grammatical summaries [115].

6 Chapter 1. Introduction

1.3 Contribution

The main goal of this thesis is to investigate existing string abstractions, understand the
nature of string problems, design novel string abstract domains tailored for software secu-
rity and verification, and refine the existing ones. Our contribution can be summarized as
follows:

• We introduce M-String, a sophisticated C-specific string abstract domain. It fully
approximates both the content and the shape of strings by representing them as
abstractions of consecutive, non-overlapping, possibly empty segments. A segment
represents a sequence of characters that share the same property and is surrounded
by the segment bounds that abstracts concrete array indexes. By using M-String we
may detect buffer overflows, among other verification tasks.

• We instantiate the Segmentation domain [57] for string analysis. We combine it with
some existing general-purpose string abstract domains, to improve the accuracy of
the analysis, also highlighting inconsistent states which may lead to program errors.

• We show how to compute the completion of string abstract domains to obtain an
optimal abstract analysis, i.e., both sound and complete. In particular, we compute
the complete version of two JavaScript-specific string abstract domains, i.e., TAJS
[105] and SAFE [122], with respect to some operations of interest. Moreover, we
quantify the precision gained using a complete domain with respect to its uncomplete
version.

• We design a framework that allows the definition of relational string abstract domains
based on string orders. We make the analysis able to capture relations between single
string variables and then between string expressions and string variables. Moreover,
we instantiate our framework over three well-known string orders, i.e., the length
inequality, char inclusion, and substring relation.

• As the last contribution, not strictly related to the previous ones, we introduce a
new watermarking technique for relational textual databases based on synonyms
substitution, which allows the preservation of the semantic consistency between the
original database and the watermarked one. Our technique achieves a high level of
capacity and robustness against the synonyms substitution attack, among others,
while not damaging its imperceptibility requirement.

Note that most of the results we achieved are equipped with an experimental evaluation.

1.4. Thesis Structure 7

1.4 Thesis Structure

Chapter 2 introduces the technical notation used in the following chapters.
Chapter 3 introduces the definition of the M-String abstract domain for the analysis of C

programs handling strings. M-String detects the presence of common strings management
errors that may lead to undefined behaviour, e.g., buffer overflows. The contribution of
this chapter has been published in [47, 48, 121].

Chapter 4 presents the Segmentation string abstract domain, an instantiation of the
FunArray domain functor by Cousot et al. [57], for the analysis of arrays content, to string
analysis. We discuss the limitations of basic existing string domains, and we combine them
with the Segmentation to improve the accuracy of the analysis result. Combinations are
carried out by exploiting the notions of reduced product [56] and Granger methodology
[87]. Moreover, we study inconsistencies between abstract states as they may lead to
program errors. The contribution of this chapter is submitted for publication.

Chapter 5 defines a way to proceed to compute the completion of string abstract do-
mains [80] and applies the completion procedure to two incomplete JavaScript string
abstract domains to enhance their precision. Namely, we complete TAJS [105] and SAFE
[122] abstract domains with respect to two operations of interest. Moreover, we provide
a measure of the analysis precision increment gained using those complete domains with
respect to the original ones. The contribution of this chapter has been published in [18].

Chapter 6 defines a general framework to design relational string abstract domains
based on orders between string elements. The framework we present is first defined as
tracking relations between single string variables and then enhanced to capture relations
between string variables and string expressions. We instantiate it to a suit of string order
relations of interest, i.e., length inequality, character inclusion, and substring relation. In
particular, we evaluate the latter substring relational abstract domain comparing it with
state-of-the-art general purpose string abstract domains. The contribution of this chapter
is submitted for publication.

Chapter 7 presents a new watermarking technique to protect ownership of textual re-
lational databases, which takes care of semantic consistency between the original database
and the watermarked one. We design it carefully balancing robustness and imperceptibil-
ity of the watermark, and with the aim of increasing both its capacity and resilience to
attacks, e.g., synonyms substitution attack. Moreover, we formalize a new approach to
measure watermark capacity, and we prove the effectiveness of our technique through an
experimental evaluation. The contribution of this chapter has been published in [85, 84].

Chapter 8 concludes and presents perspectives for future work. Appendix B recalls
formal details of existing string abstract domains.

9

Chapter 2

PRELIMINARIES

In this chapter, we introduce the mathematical background and the theoretical results
that will be used throughout the thesis. In particular, we recall some basic notions on set
and order theory, functions, definitions on fixpoints and traces, and the basics of Abstract
Interpretation, i.e., the framework we use to conduct string analysis.

Chapter Structure

Section 2.1 presents some notation on sets and sequences. Section 2.2 and Section 2.3
recall some definitions on order theory and functions, respectively. Section 2.4 and Section
2.5 provide notions on fixpoints and traces, respectively. Section 2.6 introduces results on
Abstract Interpretation.

2.1 Sets and Sequences

Sets

A set is a, possibly finite, collection of distinct elements. Let A and B be sets. The set
membership is denoted by x 2 A, i.e., it says that x is an element of A. Let � be a formula.
The set of all elements of A which satisfy the formula � is {x 2 A | �(x)}. The inclusion
relation is denoted by A ✓ B, meaning that all the elements of A are also elements of B
or, in other words, that A is a subset of B. The powerset of A, i.e., P(A), is the set of all
subsets of A. The difference between two sets is denoted by A \ B representing the set of
all elements in A but not in B, i.e., {x 2 A | x /2 B}. The intersection between two sets is
denoted by A \ B and it represents the set of elements that belong to both A and B, i.e.,
{x | x 2 A^ x 2 B}. The union between two sets is written A[B and it denotes the set of
elements that belong to either A and B, i.e., {x | x 2 A _ x 2 B}. The Cartesian product
between A and B is A ⇥ B, i.e., {(x, y) | x 2 A ^ y 2 B}. We denote by An the n-ary
Cartesian product of a set A, with n � 2 and by | A | the cardinality of A. The emptyset
is denoted by ;. We denote by 9n the existential quantifier with cardinality n, which is
read as “there exist exactly n objects”.

10 Chapter 2. Preliminaries

As usual in mathematics, N, Z, Q and R denote the set of all natural, integer, rational,
and real numbers, respectively.

Sequences

Let c 2 ⌃ be a finite set of characters, i.e., an alphabet. We denote by ⌃⇤ the set of all
possible finite sequences of characters. Let � 2 ⌃⇤, we denote by | � | the length of �, by
char(�) the set of characters that occurs in the string �. The empty string is denoted by
". A string � may be also denoted by �1 . . .�n in order to refer to its characters. � + �'
denotes the string concatenation, and �[x/i] is � where the character occurring in position
i has been substituted with the character x. Given a string �, we denote by char(�) the
set of of the characters occurring in �.

2.2 Order Relations

A binary relation vL over a set L is a subset of L⇥ L, i.e., vL ✓ L⇥ L. A binary relation
vL over a set L is a pre-order if and only if it is reflexive, i.e., 8x 2 L : x vL x, and
transitive, i.e., 8x1, x2, x3 2 L : x1 vL x2 ^ x2 vL x3) x1 vL x3. A binary relation
vL over a set L is a partial order if and only if it is a pre-order, and anti-symmetric, i.e.,
8x1, x2 2 L : x1 vL x2 ^ x2 vL x1) x1 = x2. A binary relation vL over a set L is a total
order if and only if it is a partial order, and 8x1, x2 2 L : x1 vL x2 _ x2 vL x1.

A set L equipped with an order relation is denoted by (L,vL). A partially ordered set
is also called poset. Given a poset (L,vL), the infimum ?L, when it exists, is the element
in L smaller than any other element of L with respect to vL. The supremum >L, when it
exists, is the element in L greater than any other element of L with respect to vL. When
both ?L and >L exist then (L,vL) is said to be bounded. Given a poset (L,vL) and a
X ✓ L, an upper bound of X is an element y 2 L such that x vL y, 8x 2 X. An upper
bound y for X is the least upper bound (lub) of X if and only if for every other upper
bound y' of X it holds that y vL y'. The least upper bound, when it exists, it is unique.
Dually, a lower bound of X is an element y 2 L such that y vL x, 8x 2 X. A lower
bound y of X is the greatest lower bound (glb) of X if and only if for every other lower
bound y' of X it holds that y' vL y. Given a poset hL,vLi and X ✓ L, we denote by
maxvL(X) = {x 2 X | 8y 2 X. x vL y) x = y} the set of the maximal elements of X in L
with respect to vL.

A subset X of a poset (L,vL) is a chain if it is totally ordered with respect to vL, i.e.,
8x1, x2 2 X : x1 vL x2_x2 vL x1. X is an ascending chain if it is ordered and each element
is greater or equal to the previous one with respect to vL. X is an descending chain if it
is ordered and each element is smaller or equal to the previous one with respect to vL.
A poset (L,vL) satisfies the ascending chain condition (ACC) if every ascending chain
x1 vL x2 vL . . . of elements in L is eventually stationary, i.e., 9n 2 N : 8m > n : xm = xn.

2.2. Order Relations 11

Figure 2.1: The Hasse diagram of the powerset of a 3-element set
ordered by inclusion, i.e., (P({x, y, w}),✓).

Similarly, (L,vL) satisfies the descending chain condition (DCC) if there is no infinite
descending chain. Every finite poset satisfies the ACC and DCC.

Note that a poset can be graphically represented by the so-called Hasse diagram (cf.
Figure 2.1). Given a poset (L,vL), its corresponding Hasse diagram has a node for each
element of L and an edge links two elements x1, x2 2 L if x1 vL x2 ^ @y 2 L : x1 vL

y ^ y vL x2.
A poset (L,vL) is a directed set if 8X ✓ L such that X 6= ; and X is finite, then X

has a least upper bound in L. Dually, a poset (L,vL) is a co-directed set if 8X ✓ L such
that X 6= ; and X is finite, then X has a greatest lower bound in L. A poset (L,vL) is a
complete partial order (cpo) on directed sets if it has an infimum and for each directed set
D ✓ L, D has a least upper bound in L.

Lattices

A poset (L,vL) is a join semi lattice if for each x1, x2 2 L there exists a least upper bound
x1 tL x2 and it belongs to L. A poset (L,vL) is a meet semi lattice if for each x1, x2 2 L
there exists a greatest lower bound x1uL x2 and it belongs to L. A poset (L,vL) is a lattice
if it has an infimum, a supremum and, for each x1, x2 2 L, both the greatest lower bound
x1 uL x2 and the least upper bound x1 tL x2 exist and belong to L. A lattice is denoted by
(L,vL,?L,>L,uL,tL). A complete lattice is a lattice where each subset of L has both a
least upper bound and a greatest lower bound, i.e., 8X ✓ L :

d
L X,

F
L X 2 L. Any finite

lattice is complete. A complete lattice is always a cpo.
Let L be a complete lattice. X ✓ L is a Moore family of L is X = M(X) = {

d
L S | S ✓

X}, where
d

L ; = >L 2 M(X). We denote by M(X) the Moore closure of X ✓ L, that is
the smallest subset of L which contains X and it is a Moore family of L.

12 Chapter 2. Preliminaries

2.3 Functions

A function is a mathematical object that relates two sets by associating each element of
the first set (domain) to an element of the second set (codomain). Let f be a function
with domain A and codomain B. We denote by f : A ! B a function from elements of A
to elements of B. Given f : A ! B and g : B ! C we denote with g � f : A ! C their
composition, i.e., g � f = �x.g(f(x)). When f is a function of arity n, i.e., f : An ! B,
with p 2 An and i 2 [0, n), fip = �x.f(p[x/i]) : A ! B is the same function where all the
parameters but the i-th are fixed by p.

Given two posets (A,vA,uA,tA) and (B,vB,uB,tB), a function f : A ! B is:

• monotone

if 8x1, x2 2 A : x1 vA x2) f(x1) vB f(x2)

• continuous

if 8X ✓ A : X is a chain ^ f(
F

A X) =
F

B{f(x) | x 2 X}

• join preserving

if 8x1, x2 2 A : f(x1 tA x2) = f(x1) tB f(x2)

• complete join preserving

if 8X ✓ A :
F

A X exists ^ f(
F

A X) =
F

B f(X)

• meet preserving

if 8x1, x2 2 A : f(x1 uA x2) = f(x1) uB f(x2)

• complete meet preserving

if 8X ✓ A :
d

A X exists ^ f(
d

A X) =
d

B f(X)

The notion of function can be generalized by the one of partial function which allows
a function to map some elements of its domain to an element of its codomain. Formally, a
partial function f : A ! B is a function f : X ! B for some X ✓ A.

An upper closure operator on a poset (A,vA) is an operator ⇢ : A ! A which is
monotone, idempotent (i.e., 8x 2 A : ⇢(⇢(x)) = ⇢(x)), and extensive (i.e., 8x 2 A : x vA

⇢(x)). The set of all closure operators on a poset A is denoted by uco(A) and it is a
complete lattice.

2.4 Fixpoints

Given a poset (L,vL) and an operator f : L ! L, a fixpoint of f is an element x 2 L such
that f(x) = x. The set of all fixpoints of f is Fix(f) = {x 2 L | f(x) = x}. Moreover, a

2.5. Traces 13

pre-fixpoint of f is an element x 2 L such that x vL f(x) and a post-fixpoint of f is an
element x 2 L such that f(x) vL x. It follows that the sets of all pre- and post-fixpoints
of f are preFix(f) = {x 2 L | x vL f(x)} and postFix(f) = {x 2 L | f(x) vL x}. A fixpoint
x 2 Fix(f) is a least fixpoint of f if 8y 2 Fix : x vL y. A fixpoint x 2 Fix(f) is a greatest
fixpoint of f if 8y 2 Fix : y vL x. When the least and greatest fixpoints of f exist they
are unique and they are denoted by lfpvL

x (f) and gfpvL
x (f), respectively. Precisely, lfpvL

x (f)
denotes the least fixpoint of f greater than x with respect to the order vL, and gfpvL

x (f)
denoter the greatest fixpoint of f smaller than x with respect to the order vL.

The following theorems guarantee the existence of the least and greatest fixpoints of a
monotonic operator defined over a complete lattice.

Theorem 2.1 (Tarski’s Theorem [74]). Let (L,vL,?L,>L,uL,tL) be a complete lattice
and let f : L ! L be a monotonic operator on this lattice. The set of fixpoints is a
non-empty complete lattice, and:

lfpvL
? (f) = uL{x 2 L | f(x) vL x}

gfpvL
? (f) = tL{x 2 L | x vL f(x)}

⇤

Theorem 2.2 (Constructive version of Tarski’s Theorem [55]). Let (L,vL,?L,>L,uL,tL)
be a complete lattice and let f : L ! L be a monotonic operator on this lattice. Define the
following sequence:

f0 = ?L

f� = f(f�–1) for every successor ordinal �

f� =
F

L
↵<�

f↵ for every limit ordinal �

Then the ascending chain {f i | 0  i  �}, where � is an ordinal, is ultimately stationary
for some ⇢ 2 N that is f⇢ = lfpvL

? (f).
⇤

2.5 Traces

Given a set X, a trace ⌧ : N ! X is a partial function such that:

8i 2 N : i 62 dom(⌧)) 8j > i : j 62 dom(⌧)

where dom(⌧) denotes the domain of a trace ⌧. It follows that the domain of all non-empty
traces is a segment of N. The empty trace is denoted by "⌧, i.e., the trace ⌧ such that
dom(⌧) = ;. Let X be a generic set of elements, we denote by X+ the set of all finite

14 Chapter 2. Preliminaries

traces composed by elements in X. Let lentr : X+ ! N be the function that, given a
trace, returns its length, then: lentr(⌧) = i + 1 such that i 2 dom(⌧) ^ i + 1 62 dom(⌧).
Note that if ⌧ = "⌧ then lentr(⌧) = 0. A trace can be represented as a sequence of states,
i.e., s0 ! s1 ! . . . , that corresponds to the trace {(0, s0), (1, s1), ...}. We denote by X+

T!
the set of traces in X+ ending with a final state with respect to the transition T!, i.e.,
X+

T! = {s0 ! · · · ! si | s0 ! · · · ! si 2 X+ ^ @sj 2 X such that si
T! sj}. Given a

set of initial elements X0, a set of states S, and a transition relations T! ✓ S ⇥ S, the
partial trace semantics [56] builds up all the traces that can be obtained by starting from
traces containing only a single element from X0 and then iteratively applying the transition
relation until a fixpoint is reached.

Definition 2.1 (Partial trace semantics [56]). Let S be a set of states, X0 ✓ S be a set of
initial elements, and T! ✓ S⇥ S be a transition relation. Let f : P(S) ! (S+ ! S+) be the
function defined as:

F(X0) = �T.{s0 | s0 2 X0} [

{s0 ! · · · ! si–1 ! si | s0 ! · · · ! si–1 2 T ^ si–1

T! si}

The partial trace semantics is defined as:

PT[[X0]] = lfpv; F(X0)

4

2.6 Abstract Interpretation

Abstract Interpretation [51, 56] is a theoretical framework for sound reasoning about pro-
gram semantic properties of interest. Precisely it formalizes the (concrete) semantics of
a program as a fixpoint of all its execution traces, and it allows to define and prove the
soundness of (possible computable) semantics at different degrees of abstraction.

2.6.1 Galois Connection

Formally, the concrete and abstract semantics are defined on a concrete D and abstract
D sets, respectively. The concrete and the abstract domains are modelled as posets, i.e.,
(D,vD) and (D,vD), respectively. The concrete and the abstract domains are related
by a pair of monotone functions: the concretization �D : D ! D and the abstraction
↵D : D! D functions.

Definition 2.2 (Galois Connection [51]). Let (D,vD) and (D,vD) be two partial orders.
Two functions ↵D : D! D and �D : D! D form a Galois Connection if and only if

8d 2 D : 9d 2 D : ↵D(d) vD d) d vD �D(d)

2.6. Abstract Interpretation 15

We denote this fact by writing

(D,vD) ––––––––! ––––––––
↵D

�D (D,vD)

4

Theorem 2.3 ([51]). Let (D,vD) and (D,vD) be two partial orders and let ↵D : D! D
and �D : D! D be two maps such that:

• ↵D and �D are monotone

• ↵D � �D is reductive, i.e., 8d 2 D : ↵D � �D(d) vD d

• ↵D � �D is extensive, i.e., 8d 2 D : d vD �D � ↵D(d)

Then, it holds that (D,vD) ––––––––! ––––––––
↵D

�D (D,vD)
⇤

A Galois Connection can be induced by an abstraction function that is a complete lub
(tD) preserving map or by a concretization function that is a complete glb (uD) preserving
map, as proved by Proposition 7 of [52].

Theorem 2.4 (Galois Connection induced by lub preserving maps). Let ↵D : D! D be
a complete join preserving maps between posets (D,vD) and (D,vD). Define:

�D = �d.
F

D{d | ↵D(d) vD d}

If �D is well define, then:

(D,vD) ––––––––! ––––––––
↵D

�D (D,vD)

⇤

Theorem 2.5 (Galois Connection induced by glb preserving maps). Let �D : D! D be
a complete join preserving maps between posets (D,vD) and (D,vD). Define:

↵D = �d.
d

D{d | y vD �D(d)}

If ↵D is well define, then:

(D,vD) ––––––––! ––––––––
↵D

�D (D,vD)

⇤

Galois Connections are compositional, i.e., the composition of two Galois Connections
is still a Galois Connection.

Theorem 2.6 (Composition of Galois Connections). Suppose that:

• (D,vD) ––––––––! ––––––––
↵D

�D (D,vD) and

16 Chapter 2. Preliminaries

• (D,vD) ––––––––! ––––––––
↵D'

�D' (D',vD')

Then,

(D,vD) ––––––––––––––! ––––––––––––––
↵D�↵D'

�D��D' (D',vD')

⇤

Note that, as it is possible to define Galois Connections also in terms of upper closure
operators, the framework of Abstract Interpretation can be equivalently formalized either
as Galois Connections or closure operators on a given concrete domain, which is a complete
lattice D [56]. In particular, given (D,vD) ––––––––! ––––––––

↵D

�D (D,vD), then �D � ↵D 2 uco(D). In
particular, an upper closure operator (over D) uniquely identifies a Galois Connection, and
vice-versa.

Lattice of Abstract Domains

If D is a complete lattice, then (uco(D),v, �x.x, �x.>,u,t) forms a complete lattice [51],
which is the set of all possible abstractions of D, where �x.x is the bottom element and
�x.> the top element. Let ⇢,⌘ 2 uco(D), {⇢i}i2I ✓ uco(D). We say that ⇢ is more precise
than ⌘, i.e., ⇢ v ⌘ if and only if 8d 2 D : ⇢(d) v ⌘(d). Let d 2 D, the greatest lower
bound is (ui2I⇢i)(d) = ui2I⇢i(d) and the least upper bound is (ti2I⇢i)(d) = d if and only
if 8i 2 I : ⇢i(d) = d.

2.6.2 Soundness and Completeness

Two fundamental notions in Abstract Interpretation are those of soundness and complete-
ness. Abstract Interpretation requires that the abstract semantics must be sound with
respect to the concrete one, i.e., the properties verified by the abstraction process must be
valid with respect to the concrete semantics. On the other hand, Abstract Interpretation
accepts incompleteness of the abstract results, i.e., the abstract results can be less precise
than the concrete ones.

Soundness

To accomplish soundness, the concretization of the result of the abstract computation must
over-approximate the result of the concrete semantics.

Definition 2.3 (Soundness). Let D and D form a Galois Connection. Moreover, let
S : D ! D and SD : D ! D be the concrete and the abstract semantics, respectively.
The abstract semantics is sound if and only if 8p 2 preFix(SD) ✓ D, we have that:

�D � SD[[p]] wD S[[�D(p)]]

4

2.6. Abstract Interpretation 17

Definition 2.3 presents soundness based on the computational process of the concrete
domain, but we could define it also in terms of the computational process of the abstract
domain.

Among all the sound abstract functions SD, we aim at the best one, namely the one
that loses less information approximating S (cf. Definition 2.4).

Definition 2.4 (Best correct approximation). Given D –––––! –––––
↵

�
D and a concrete function

S : D! D, the function ↵D � S � �D : D! D is the best correct approximation of S.
4

Note that there exist different ways of proving the soundness of an abstract semantics
[52]. Moreover, it is still acceptable if a Galois Connection between the concrete and the
abstract domain cannot be induced, i.e., if does not exist a minimal element abstracting
a concrete property of interest, as we can always choose an arbitrary abstract element
among all the available abstractions of a given concrete element [52] or weaken the relation
between the concrete and the abstract semantics without affecting the soundness [54].

Completeness

In Abstract Interpretation, there exist two notions of completeness: backward and forward.
Backward completeness property focuses on complete abstractions of the inputs, while
forward completeness [75, 76, 77] focuses on complete abstractions of the outputs, both
with respect to an operation of interest.

Definition 2.5 (Backward completeness). Given D –––––! –––––
↵

�
D, a concrete function S : D!

D and an abstract function SD : D! D, SD is backward complete with respect to S if:

↵D � S = SD � ↵D

4

Definition 2.6 (Forward completeness). Given D –––––! –––––
↵

�
D, a concrete function S : D! D

and an abstract function SD : D! D, SD is forward complete with respect to S if:

S � �D = �D � SD

4

Having backward complete abstract functions means that we have the guarantee that
no loss of information arises during the input abstraction process, with respect to an op-
eration of interest. Conversely, having forward complete abstract functions means that we
have the guarantee that no loss of information arises during the output abstraction process,
with respect to an operation of interest. While forward completeness is less known, back-
ward completeness is the one recognized ad standard notion of completeness in Abstract
Interpretation, and in this thesis, we will focus on it.

18 Chapter 2. Preliminaries

2.6.3 Fixpoints Approximation

As mentioned above, the concrete and the abstract semantics are defined as the fixpoint
computation of monotonic functions.

If the abstract domain respects the ACC, then the abstract computation terminates
in a finite time. Otherwise a widening operator [46, 51] must be defined to force the
convergence of the analysis, still maintaining the soundness.

Definition 2.7 (Widening). Let (L,vL)be a poset. A widening operator rL : L⇥ L ! L
satisfies the following conditions:

• 8x, y 2 L : x vL (xrLy) ^ y vL (xrLy)

• for every increasing chain x0 vL x1 vL . . . , the chain defined as

w0 = x0

wn+1 = wnrLxn–1

is not strictly increasing.

4

The widening often lead to a dramatic loss of information. Thus, a narrowing operator
is usually defined to improve the accuracy of the widening result.

Definition 2.8 (Narrowing). Let (L,vL)be a poset. A widening operator �L : L⇥L ! L
satisfies the following conditions:

• 8x, y 2 L : x vL (x�Ly) vL y

• for every decreasing chain x0 wL x1 wL . . . , the chain defined as

w0 = x0

wn+1 = wn�Lxn–1

is not strictly decreasing.

4

2.6.4 Product Operators

Abstract Interpretation allows the combination, through enhancing operators, of different
abstract domains within the same analysis, without affecting its soundness. Combinations
aim to improve the accuracy of the analysis, also at the cost of increasing its complexity.

Enhancing operators are those who refine the information tracked by abstract domains.
They can be formalized as lower closure operators on the set of all abstract interpretations

2.6. Abstract Interpretation 19

of a concrete domain D [42, 68, 79]. The best-known enhancement operators in Abstract
Interpretation theory include: reduced product, disjunctive completion, reduced cardinal
power [56], tensor product [137], open product, pattern completion [40, 41], functional
dependencies [78], complete shell [80], and logical product [88]. The reduced product is a
refinement of the Cartesian product as it enhance the accuracy of the information tracked
by one domain using the information tracked by the other, and vice-versa, instead of run-
ning the two abstract analysis in parallel. The disjunctive completion [56] enhances an
abstract domain by adding denotations for concrete disjunctions of its values [68]. In con-
trast, the reduced cardinal power [56] captures disjunctive information over abstract states
[42], being suitable for relational analysis. A further Cartesian product refinement is the
open product, presented by Cortesi et al. in [40, 41]. It works on open abstract interpre-
tations, which include queries and open operations. In [80], Giacobazzi et al. presented a
constructive way to obtain the so-called complete shell of an abstract interpretation, i.e.,
a domain transformer which includes the minimal number of abstract point to a certain
abstract domain D to make it complete with respect to a certain operation of interest. The
benefits of working with complete string abstract domains have been proven in Chapter 5.
Finally, the logical product [88], is more precise than the reduced product, and it combines
lattices which are defined over convex, stably infinite and disjoint theories.

In the following, we recall the Cartesian, reduced, and Granger products.

Cartesian Product

Let D and D' be two abstract domains representing sound approximations of the same
concrete domain D and let C = D⇥D' be their Cartesian product. The abstract elements
in C are pairs (d,d') such that d 2 D and demd' 2 D'. The partial order, upper and
lower bound and widening operators are defined as the component-wise application of
the corresponding operators of the two domains. The Cartesian product is a lattice. The
abstraction function on C maps a concrete element d 2 D to the pair (↵D(d),↵D'(d)), while
the concretization function on C maps an abstract element to �D(d) uD �D'(d'). Then,
the Cartesian product forms a Galois Connection with the concrete domain. An abstract
domain functor is a function from the parameter abstract domains D1,D2, ...,Dn to a
new abstract domain D(D1,D2, ...,Dn). The abstract domain functor D(D1,D2, ...,Dn)
composes abstract domain properties of the parameter abstract domains to build a new
class of abstract properties and operations [57].

Reduced Product

The reduced product [56] combines abstract domains, mutually refining them. Informally
speaking, it improves the precision of the information tracked by one domain exploiting the
information tracked by the other, and vice-versa [42]. Let (d1,d2) 2 C be the Cartesian
product of D1 and D2. The reduced product is a Cartesian product equipped with a

20 Chapter 2. Preliminaries

reduction operator. In particular, the reduced product search for the smallest element
(d'

1,d'
2) such that: �D1

(d'
1) ✓ �D1

(d1), �D2
(d'

2) ✓ �D2
(d2), and �D1

(d'
1) \ �D2

(d'
2) =

�D1
(d1)\�D2

(d2). Formally, the reduction operator, ⇢ : C! C, is defined as follows: let c
denote the pair (d1,d2) and c⇤ denote the pair (d'

1,d'
2) then, ⇢(c) =

d
C{c⇤ 2 C : �C(c) vC

�C(c⇤)}, where (d1,d2) vC (d'
1,d'

2) , d1 vD1
d'

1 and d2 vD2
d'

2. In the following we
will refer to the reduced product between two abstract elements d1 and d2 as d1 ⌦ d2.

Granger Product

The Granger product [87] is an approximation of the reduction operator. It is based on
two refinement operators iterated until a fixpoint is reached (or, in other words, when the
smallest reduction is obtained). Each of these operators takes advantage of the information
of one of the two domains involved in the product and it improves the information of the
other using the information of the first one [42]. Let D1 and D2 be two abstract domains,
d1 and d2 be abstract elements belonging to D1 and D2 respectively, and C be their
Cartesian product. The Granger operators are defined as follows: ⇢1 : C ! D1 and
⇢2 : C ! D2. In order to have a sound over-approximation of the reduction operator, ⇢1

and ⇢2 have to satisfy the following conditions: let c denote the pair (d1,d2) 2 C then,
⇢1(c) vD1

d1 ^ �C((⇢1(c),d2)) = �C(c) and ⇢2(c) vD2
d2 ^ �C((d1, ⇢2(c))) = �C(c).

21

Chapter 3

STRING ANALYSIS FOR C

In this chapter, we present the M-String abstract domain for strings manipulating C code.
In particular, M-String is a refinement of the segmentation approach to array content
representation proposed by Cousot et al. [57], and it is tailored to detect the presence of
common C strings managements errors. An experimental evaluation is also given to prove
its effectiveness.

The content of this chapter reports contributions published in [47, 48, 121].

Chapter Structure

Section 3.1 introduces the problem of handling C strings and explains our contribution.
Section 3.2 recalls the array segmentation abstract domain [57] on which M-String is based.
Section 3.3 gives the syntax of some operations of interest. Section 3.4 defines the concrete
domain and semantics. Section 3.5 presents the M-String abstract domain for C character
arrays and its semantics, whose soundness is formally proved. Section 3.6 presents a
general approach to abstraction as a program transformation and extends it to abstraction
of program strings. Sections 3.7 and 3.8 present implementation and evaluation details of
M-String abstraction. Section 3.9 concludes.

3.1 Introduction

C is still one of the mainstream programming languages [31], and a large portion of systems
of critical relevance is written in this language, e.g., embedded systems. Unfortunately, C
programs suffer from bugs due to the way they are laid out in memory, which malicious
parties may exploit to drive security attacks. Ensuring the correctness of such software is of
great concern. Our main interest is to guarantee the correctness of C programs that manage
strings because the incorrect string manipulation may lead to several catastrophic events,
ranging from loss or exposure of sensitive data to crashes in critical software components.

Strings in C are not a basic data type. As a matter of fact, strings in C are represented
by zero-terminated arrays of characters and there are libraries that provide functions which

22 Chapter 3. String Analysis for C

allow operating on them [30]. C programs that manipulate strings can suffer from buffer
overflows and related issues due to the possible discrepancy between the size of the string
and the size of the array (buffer). A buffer overflow is a bug that affects C code when a
buffer is accessed out of its bounds. In particular, an out-of-bounds write is a particular
(and very dangerous) case of buffer overflow. Out-of-bounds read is less critical as a bug. It
is important to design methods supporting the automatic correctness verification of string
management in C programs for the previously mentioned reasons and also because buffer
overflows are usually exploitable and can easily lead to arbitrary code execution [140].
Existing bugs can be identified by enhancing tools for code analysis, which can also reduce
the risk of introducing new bugs and limiting the occurrence of costly security incidents.

State of the Art

Static methods tailored to identify buffer overflows automatically have been extensively
studied in the literature, and several inference techniques were proposed and implemented:
tainted data-flow analysis, constraint solvers for various theories (including string theories),
and techniques based on them (e.g., symbolic execution), annotation analysis or string
pattern matching analysis [156]. Furthermore, the above mentioned techniques and a large
number of bug hunting tools based on static analysis had been implemented [62, 63, 97,
129, 175, 181].

For instance, Jones and Kelly [107] introduced a backward compatible method of
bounds checking of C programs, which leaves the representation of pointers unchanged,
allowing inter-operation between checked and unchecked code, with recompilation confined
to the modules where problems might occur. The just mentioned feature differentiates the
proposed schema from previously existing techniques. Dor et al. [62] introduced CSSV,
the static verifier of C strings. Contracts are supplied to the tool, which acts in 4 stages,
reducing the problem of checking code that manipulates string to checking code that ma-
nipulates integers. Finally, Splat, described in [183], is a tool that automatically generates
test inputs, symbolically reasoning about lengths of input buffers.

Most of the existing string abstract domains are general-purpose domains, focusing on
the generic aspects of strings, without accounting for the specifics of string handling by
the different programming languages. However, it is often beneficial to consider specific
aspects of string representation when designing abstract domains for program analysis.
Referring to the C programming language, Journault et al. proposed an abstract domain
for C strings which tracks both their length and the buffer allocated size into which they
are contained [108]. Combining it with the cell abstraction [134], such domain can de-
scribe relations between length of variables and offsets of pointers. Amadini et al. [10]
have evaluated several abstract string domains (and their combinations) for analysis of
JavaScript programs. In [142] the simplified regular expression domain for JavaScript

analysis was defined too. In addition to theoretical work, a number of tools based on the

3.2. FunArray 23

above mentioned abstract domains and their combinations have been designed and imple-
mented [105, 112, 142, 162]. While dynamic languages heavily rely on strings and their
analysis benefits much from tailored abstract domains, the specifics of the C approach to
strings also earns attention.

Contribution

We introduce M-String, a new abstract domain tailored for the analysis of strings in C.
This domain approximates sets of C character arrays, allows the abstraction of both shape
information on the array structure and value information on the contained characters, and
it highlights the presence of well-formed strings in the approximated character arrays.

M-String refines the segmentation approach to array representation introduced in [57].
M-String’s goal is to detect the presence of common string management errors that may
lead to undefined behaviours or, more specifically, which may result in buffer overflows.
Moreover, keeping track of the content of the characters occurring after the first null char-
acter, we reduce the number of false positives. In fact, rewriting the first null character in
the array is not always an error, as further occurrences of the null character may follow.
Just as the array segmentation-based representation introduced in [57], M-String is para-
metric in two ways: with respect to both the representation of the indices of the array and
with respect to the abstraction of the element values.

To provide evidence of the effectiveness of M-String, we extend LART [120], a tool which
performs automatic abstraction on programs, making it supporting also sophisticated (non-
scalar) domains such as M-String.

We extend LART along with DIVINE 4 [23], an explicit state model checker based on
LLVM. This way, we can verify the correctness of operations on strings in C programs
automatically. The experimental evaluation is performed by analyzing several C programs,
ranging from quite simple to moderately complex code, including parsers generated by
bison, a tool which translates context-free grammars into C parsers. The results show the
actual impact of an ad-hoc segmentation-based abstract domain on model checking of C
programs.

3.2 FunArray

In the following, we recall the array segmentation analysis presented in [57]. Notice that
we slightly modify the notation to be consistent with the whole chapter. For more details,
we refer the reader to the original paper.

3.2.1 Array Concrete Representation

Below, we recall the definition of the array concrete representation.

24 Chapter 3. String Analysis for C

Definition 3.1. Let Ra be the set of concrete array environments. A concrete array
environment ✓ 2 Ra maps array variables a 2 A to their values ✓(a) 2 A, such that:

• ✓(a) = (⇢, la, ha, Aa) and,

• ✓(a) 2 A = Rv ⇥E⇥E⇥ (Z ! (Z⇥V))

where

1. Rv is the set of concrete variable environments. A concrete variable environment
⇢ 2 Rv maps variables (of basic types) x 2 X to their values ⇢(x) 2 V.

2. E is the set of program expressions made up of constants, variables, mathematical
unary and binary operators; la, ha 2 E are expressions whose value,1 given by [[la]]⇢
and [[ha]]⇢, respectively represents the lower bound and the upper bound of an array
a, i.e., the lower and the upper bound of its indexes range.2 Note that the value
of an upper bound of an array concrete value corresponds to the index immediately
after the one that points to the last memory block allocated to the array when it has
been initialized. As usual, array indexes are 0-based.

3. Z is the set of integer numbers and V is the set of values. Let idx(a) be the set
of indexes i of an array a, i.e., idx(a) = {i | i 2 [[[la]]⇢, [[ha]]⇢)} ✓ Z and let pair(a)
be the set of pairs (i, v) such that v is the value of the element indexed by i in an
array a, i.e., pair(a) = {(i, v) | i 2 idx(a) ^ [[a[i]]]⇢ = v 2 V} ✓ Z ⇥ V.3 Thus,
Aa : idx(a) ! pair(a) is a function mapping the indexes of an array a to their
corresponding pairs (index, indexed array value).

4

Example 3.1. Let a be a C integer array initialized as follows: a[5] = {5,7,9,11,13}.
The concrete value of a is given by the tuple ✓(a) = (⇢, 0, 5, Aa), where the value of the
lower and the upper bound of a are clear from the context and the codomain of the function
Aa is the set pair(a) = {(0, 5), (1, 7), (2, 9), (3, 11), (4, 13)}. Moreover, let b denote the sub-
array of a from position 2 to 3 included, its concrete value is given by ✓(b) = (⇢, 2, 4, Ab)
such that pair(b) = {(2, 9), (3, 11)}.

7
1
For simplicity, in the following, expressions are evaluated to integers.

2
According to the denotational semantics approach [153], in [57] the value of an arithmetic expression

e is denoted by [[e]]⇢, where: (1) the double square brackets notation denotes the semantic evaluation

function and, (2) ⇢ is a variable environment. Typically, [[x]]⇢ is equivalent to ⇢(x), with x 2 X, and [[n]]⇢,

where n is a constant, is equivalent to n itself. Thus, for example, if e is the expression x – 1, its semantics

[[x – 1]]⇢ is defined as [[x]]⇢ – [[1]]⇢, which corresponds to ⇢(x) – 1.

3
Note that, in some cases, we use the interval notation to denote numeric sets, e.g., let x, y 2 Z, the

interval between x and y (not included) is denoted by [x, y) which corresponds to the set {w 2 Z | x 
w < y}.

3.2. FunArray 25

Observe that this array representation allows reasoning about the correspondence be-
tween shape components of an array and actual values of the array elements.

3.2.2 Array Abstract Domain Functor

According to [57], the FunArray abstract domain S (shortcut for S(B,A,R)) allows rep-
resenting a sequence of consecutive, non-overlapping and possibly empty segments that
over-approximate a set of concrete array values in P(A), i.e., the powerset of A. Each seg-
ment represents a sub-array whose elements share the same property (e.g., being positive
integer values) and is surrounded by the so-called segment bounds, i.e., abstractions on its
lower and upper bound.

Example 3.2. Consider the integer array a[5] = {5,7,9,10,12}. As an abstraction of
a we may consider {0} odd {3} even {5} saying that the array contains odd numbers in
the first three elements (indexed from 0 to 2) and two even elements (indexed from 3 to
4).

7
The elements of FunArray belong to the set S = {(B⇥A)⇥ (B⇥A⇥ {�,?})k ⇥ (B⇥

{�,?}) | k � 0} [{?S}, and have the form b1p1b2[?2]p2 . . .pn–1bn[?n] where

1. B is the segment bound abstract domain, approximating array indexes, with abstract
properties bi 2 B such that i 2 [1, n] and n > 1.

We denote by E the set of expressions of canonical form x + k, where x 2 X and
k 2 Z. The segment bounds bi are sets of expressions {e1

i
, . . . , em

i
}, such that ej

i
2 E.

The variable abstract domain X encodes program variables, i.e., X = X[{v0}, where
v0 is a special variable whose value is assumed to be zero. Moreover, bi = ; denotes
unreachability; if bi 6= ;, the expressions appearing in a segment bound are all
equivalent symbolic denotations of some concrete value (generally unknown in the
abstract representation except when one of the ej

i
is a constant). Thus, B depends on

the expression abstract domain E, which, in turn, depends on the variable abstract
domain X.

2. A is the array element abstract domain, with abstract properties pi 2 A. It denotes
possible values of pairs (index, indexed array element) in a segment, for relational
abstractions, array elements otherwise.

3. R is the variable environment abstract domain, which depends on the variable ab-
stract domain X, with abstract properties ⇢ 2 R.

4. the question mark, if present, expresses that the segment that precedes it may be
empty. The question mark can never precede b1. The space symbol in { , ?}
represents a non-empty segment.

26 Chapter 3. String Analysis for C

Example 3.3. Let A be the classical sign abstraction of numerical values. The segmenta-
tion abstract predicate {0} pos {3}? neg {5} represents arrays of length 5, with either 0 or
3 positive elements followed by either 5 or 2 negative elements, respectively. For instance,
it represents: [7, 9, 10, –11, –9], [6, 8, 5, –4, –2] and [–2, –6, –3, –1, –4, –8]. Please note that
in the last case, the lack of positive values is justified by the presence of the question mark
that says that the first segment is optional.

7
The unification algorithm [57] (cf. Appendix A) modifies two compatible segmentations

in order to align them with respect to the same list of bounds.4 The unification algorithm
does not guarantee the maximality of the result, but it is always well-defined, it does
terminate, and it is deterministic. The partial order vS over S is defined over unified
segmentations as well as the join tS and the meet uS operators. Please note that S is
not necessarily a lattice [73]. Moreover, S does not respect the ACC, therefore, in order
to ensure the convergence of the analysis, it is equipped with a widening operator rS.
A narrowing operator �S, which improves the precision of the widening result, is also
defined. rS and �S operate on unified segmentations.

This abstract array representation is effective for analyzing the content of arrays. In
the case of the C programming language, where a string is defined as a null-terminating
character array, it is however, not powerful enough to detect common string manipulation
errors.

3.3 Syntax

Strings in the programming language C are arrays of characters, whose length is determined
by the position of a terminating null character '\0'. Thus, for example, the string literal
''bee'' has four characters: 'b', 'e', 'e', '\0'. Moreover, C supports several string handling
functions defined in the standard library string.h.

We focus on the most significant functions in the string.h header (see Table 3.1),
manipulating null-terminated sequences of characters, plus the array elements access and
update operations. Recall that char, int and size_t are data types in C, const is a
qualifier applied to the declaration of any variable which specifies the immutability of its
value, and *str denotes that str is a pointer variable.

• strcat appends the null-terminated string pointed to by str2 to the null-terminated
string pointed to by str1. The first character of str2 overwrites the null-terminator
of str1 and str2 should not overlap str1. The string concatenation returns the
pointer str1.

4
Two segmentations, b1

1 . . .b
1
n[?

1
n] and b2

1 . . .b
2
n[?

2
n], are compatible if b1

1 \ b2
1 6= ; and b1

n \ b2
n 6= ;.

3.4. Concrete Domain and Semantics 27

char *strcat(char *str1, const char *str2)

char *strchr(char *str, int c)

int strcmp(const char *str1, const char *str2)

char *strcpy(char *str1, const char *str2)

size_t strlen(const char *str)

Table 3.1: String functions syntax in C.

• strchr locates the first occurrence of c (converted to a char) in the string pointed
to by str. The terminating null character is considered to be part of the string.
The string character function returns a pointer to the located character, or a null
pointer if the character does not occur in the string.

• strcmp lexicographically compares the string pointed to by str1 to the string pointed
to by str2. The string compare function returns an integer greater than (equal to,
or less than) zero when the string pointed to by str1 is greater than (equal to, or less
than) the string pointed to by str2.

• strcpy copies the null-terminated string pointed to by str2 to the memory pointed
to by str1. str2 should not overlap str1. The string copy function returns the
pointer str1.

• strlen computes the number of bytes in the string to which str points, not including
the terminating null byte. The string length function returns the length of str.

Accessing an array element is by indexing the array name. Let i be an index, the i-th
element of the character array str is accessed by str[i]. Instead, a character array element
is updated (or an assignment is performed to a character array element) by str[i] = 'x',
where 'x' denotes a character literal.

As mentioned in Section 3.1, C does not guarantee bounds checking on array accesses
and, in case of strings, the language does not ensure that the latter are null-terminated.
As a consequence, improper string manipulation leads to several vulnerabilities and ex-
ploits [154]. For instance, if non null-terminated strings are passed to the functions above,
the latter may return misleading results or read out of the array bound. Moreover, since
strcat and strcpy do not allow the size of the destination array str1 to be specified, they
are frequent sources of buffer overflows.

3.4 Concrete Domain and Semantics

We aim to capture the presence of well-formed strings in C character arrays, to avoid
undesired execution behaviours that may be security relevant. To reach our goal, we

28 Chapter 3. String Analysis for C

propose a character array concrete value that highlights the occurrence of null characters
in it, and we introduce the notion of string of interest of an array of chars. The concrete
semantics of the operations presented in Section 3.3 is also given.

3.4.1 Character Array Concrete Representation

Let C be the finite set of characters representable by the encoding in use, equipped with
a top element >C representing an unknown value; and let M be the set of character array
variables, such that M ✓ A (with A being the set of array variables - of any type - presented
in Section 3.2.2). Then, the operational semantics of character array variables are concrete
array environments µ 2 Rm. The semantics maps character arrays m 2 M to their values
µ(m). Precisely:

• µ(m) = (⇢, lm, hm, Mm, Nm) and,

• µ(m) 2M = Rv ⇥E⇥E⇥ (Z ! (Z⇥C))⇥ P(Z)

so that Rm is a map from M to M, where Rv and E are the concrete variable environment
and the expression domain of Definition 3.1 respectively, Z is the integer domain and C is
the character set introduced above. Note that with respect to the concrete array environ-
ment ✓ introduced in Definition 3.1, the function µ returns as a last component the set of in-
dexes which map to the string terminating characters Nm = {i | i 2 idx(m) ^Mm(i) = (i,'\0')},
with idx(m) being the domain of the function Mm. Instead, Mm behaves exactly as Aa in
✓(a), mapping each index i of the considered array to the pair of the index i and the indexed
array element v.

Thus, M extends A (cf. Section 3.2.1) by adding a parameter that takes into account
the presence of null characters in a character array. For well-formed strings, Nm is not
empty. Moreover, character array elements that have not been initialized are mapped to
the top value >C as they may be values already present in the memory assigned to the
locations array itself.

Example 3.4. Let m be a C character array initialized as follows: m[6] = {’b’,’e’,’e’,

’\0’,’b’}. The concrete value of m is given by the tuple µ(m) = (⇢, 0, 6, Mm, Nm), where
the codomain of the function Mm is the set pair(m) = {(0,'b'), (1,'e'), (2,'e'), (3,'\0'),(4,'b'),
(5,>C)} and Nm is the singleton {3}, being the array cell of index 3 the only one certainly
containing a null character.

7

String of Interest

We formally define the string of interest of a character array as the sequence of its elements
up to the first terminating one (included).

3.4. Concrete Domain and Semantics 29

Definition 3.2 (String of interest). Let m 2 M be an array of characters with concrete
value µ(m) = (⇢, lm, hm, Mm, Nm). The string of interest of the character array described by
µ(m) is defined as follows:

strInt(µ(m)) =

8
><

>:

hvi : i 2 [[[lm]]⇢, min(Nm)] ^Mm(i) = (i, v)i if Nm 6= ;

undef otherwise

with vi denoting the character value which occurs in the pair (i, v), and with min(Nm)
denoting the minimum element of Nm.

4

Example 3.5. Consider the concrete character array value of Example 3.4. Its string of
interest is the sequence of characters ''bee\0''.

7
Our definition of string of interest of character arrays allows us to distinguish well-

formed strings and avoid bad usage of arrays of characters. If the null character appears
at the first index of a character array, then we refer to its string of interest as null (null).
In general, we refer to character arrays which contain a well-defined or null string of interest
as character arrays that contain a well-formed string.

Moreover, when allocated memory capacity is not sufficient for a declared character
array, the system writes a null character outside the array, occupying memory that is not
destined for it and causing a buffer overflow. We do not represent this system behaviour
since it leads to an undefined one, so we consider the string of interest of such character
arrays as undefined (undef).

3.4.2 Concrete Domain

As a concrete domain for array of characters we refer to the complete lattice P(M) defined
as (P(M),✓P(M),?P(M),>P(M),[P(M),\P(M)) where: P(M) is the powerset of concrete
character array values, the set inclusion ✓P(M) corresponds to the partial order, the bottom
element ?P(M) is the emptyset ;, the top element >P(M) is the superset of any subset of M
(i.e., M itself), the set union [P(M) denotes the least upper bound and, the set intersection
\P(M) denotes the greatest lower bound.

We stress that our concrete domain is used as a framework to help us create the
abstract representation, and it is not how the (concrete) character array values are actually
represented in C programs.

3.4.3 Concrete Semantics

To formalize the concrete semantics of the C standard library functions from string.h

introduced in Section 3.3, we define the following auxiliary functions embedding (emb),

30 Chapter 3. String Analysis for C

extraction (ext), comparison (cmp) and substitution (sub) over single concrete character
array values.

Definition 3.3 (Embedding). Let µ(m1),µ(m2) 2 M be two concrete character array
values and let [l1, u1] ✓ [[[lm1]]⇢, [[hm1]]⇢), [l2, u2] ✓ [[[lm2]]⇢, [[hm2]]⇢) be two indexes ranges of
the same length. The function emb(µ(m1), [l1, u1],µ(m2), [l2, u2]) embeds the sequence of
characters of µ(m2) which occurs from the index l2 to the index u2 into µ(m1) from the
index l1 to the index u1. Formally, emb(µ(m1), [l1, u1],µ(m2), [l2, u2]) = µ(m1)' such that:

• [[lm'1
]]⇢ = [[lm1]]⇢ and [[hm'1

]]⇢ = [[hm1]]⇢

• Mm'1
:

– 8i 2 [[[lm'1
]]⇢, l1): Mm'1

(i) = (i, v) such that k = i ^ Mm1(k) = (k, v)

– 8i 2 [l1, u1]: Mm'1
(i) = (i, v) such that k = l2 + (i – l1) ^ Mm2(k) = (k, v)

– 8i 2 (l1, [[hm'1
]]⇢): Mm'1

(i) = (i, v) such that k = i ^ Mm1(k) = (k, v)

• Nm'1
= (Nm1 \ {i | i 2 [l1, u1]}) [{i | i 2 [l1, u1] ^ k = l2 + (i – l1) ^Mm2(k) = (k,'\0')}

4

Example 3.6. Let µ(m1) = (⇢, 0, 7, Mm1 , Nm1) and µ(m2) = (⇢, 0, 6, Mm2 , Nm2) be two
concrete character array values such that:

• pair(m1) = {(0,'a'), (1,'a'), (2,'a'), (3,'\0'), (4,'a'), (5,'a'), (6,'a')}

• pair(m2) = {(0,'b'), (1,'b'), (2,'b'), (3,'b'), (4,'b'), (5,'\0')}

Moreover, consider the intervals of equal length:

• [2, 4]m1 ✓ [[[lm1]]⇢, [[hm1]]⇢)

• [3, 5]m2 ✓ [[[lm2]]⇢, [[hm2]]⇢)

The function emb(µ(m1), [2, 4]m1 ,µ(m2), [3, 5]m2) = µ(m1)' where:

• [[lm'1
]]⇢ = [[lm1]]⇢ = 0 and [[hm'1

]]⇢ = [[hm1]]⇢ = 7

• pair(m'
1) = {(0,'a'), (1,'a'), (2,'b'), (3,'b'), (4,'\0'), (5,'a'), (6,'a')}

• Nm'1
= {4}

7
Definition 3.4 (Extraction). Let µ(m) 2 M be a concrete character array value and
let [l, u] ✓ [[[lm]]⇢, [[hm]]⇢) be an indexes range. The function ext(µ(m), [l, u]) extracts the
sequence of characters which occurs in µ(m) from the index l to the index u. Formally,
ext(µ(m), [l, u]) = µ(m)' such that:

3.4. Concrete Domain and Semantics 31

• [[lm']]⇢ = l and [[hm']]⇢ = u + 1

• Mm' : 8i 2 [[[lm']]⇢, [[hm']]⇢): Mm'(i) = (i, v) such that k = i ^ Mm(k) = (k, v)

• Nm' = Nm \ {i | i 62 [l, u]}

4

Example 3.7. Let µ(m1) be the character array concrete value of Example 3.6 and
[1, 3]m1 ✓ [[[lm1]]⇢, [[hm1]]⇢) be an indexes range of µ(m1). The function ext(µ(m1), [1, 3]m1) =
µ(m1)' such that:

• [[lm'1
]]⇢ = 1 and [[hm'1

]]⇢ = 4

• pair(m'
1) = {(1,'a'), (2,'a'), (3,'\0')}

• Nm'1
= {3}

7
Definition 3.5 (Comparison). Let µ(m1), µ(m2) 2 M be two concrete character array
values which contain a fully initialized well-formed string of interest, i.e., no >C occurs.
The function cmp(µ(m1),µ(m2)) (cf. Algorithm 1) lexicographically compares the strings of
interest of µ(m1) and µ(m2) and it returns an integer value n which denotes the lexicographic
distance between them.

4

Example 3.8. Let µ(m1) and µ(m2) be the character array concrete values of Exam-
ple 3.6. Both of them contain a fully initialized well-formed string of interest and the
function cmp(µ(m1),µ(m2)) computes the lexicographic distance between them. Precisely,
the procedure stops after the first iteration of the for loop (cf. Algorithm 1) and, assuming
ASCII as the character encoding set, it returns the value –1, i.e., n = 97 – 98, which means
that strInt(µ(m1)) lexicographically precedes strInt(µ(m2)).

7

Definition 3.6 (Substitution). Let µ(m) 2 M be a concrete character array value, let
z 2 [[[lm]]⇢, [[hm]]⇢) be an index, and let c 2 C be a character. The function sub(µ(m), z, c)
substitutes the character which appears in µ(m) at the index z with the character c. For-
mally, sub(µ(m), z, c) = µ(m)' such that:

• [[lm']]⇢ = [[lm]]⇢ and [[hm']]⇢ = [[hm]]⇢

• Mm' :

– 8i 2 [[[lm']]⇢, z): Mm'(i) = (i, v) such that k = i ^ Mm(k) = (k, v)

32 Chapter 3. String Analysis for C

Algorithm 1 Lexicographic comparison of concrete character array values.

Input: two concrete character array values µ(m1),µ(m2) 2M such that:

• both Nm1 and Nm2 are different from the emptyset and,

• for i1 2 [[[lm1]]⇢,min(Nm1)), i2 2 [[[lm2]]⇢,min(Nm2)):

– M(i1) 6= (i1,>C)

– M(i2) 6= (i2,>C)

Output: an integer value n.

1: n = 0, i1 = [[lm1]]⇢, i2 = [[lm2]]⇢

2: while i1 2 [[[lm1]]⇢,min(Nm1)] ^ i2 2 [[[lm2]]⇢,min(Nm2)] do

3: n = vi1 – vi2

4: if n 6= 0 then

5: return n
6: else

7: i1 = i1 + 1, i2 = i2 + 1

8: return n

– for i = z: Mm'(z) = (z, c)

– 8i 2 (z, [[hm']]⇢): Mm'(i) = (i, v) such that k = i ^ Mm(k) = (k, v)

• Nm' =

8
>>><

>>>:

Nm if (z 2 Nm ^ c is null) _ (z 62 Nm ^ c is not null)

Nm \ {z} if z 2 Nm ^ c is not null

Nm [{z} otherwise

4

Example 3.9. Let µ(m1) be the character array concrete value of Example 3.6, the in-
dex z be equal to 4 and the character c be the null termination '\0'. The function
sub(µ(m1), 4,'\0') = µ(m1)' such that:

• [[lm'1
]]⇢ = 0 and [[hm'1

]]⇢ = 7

• pair(m'
1) = {(0,'a'), (1,'a'), (2,'a'), (3,'\0'), (4,'\0'), (5,'a'), (6,'a')}

• Nm'1
= {3, 4}

7

Array Access

The semantic operator A, given the statement accessj and a set of concrete character
array values X in P(M) as parameter, returns a value in C. In particular, accessj(X)
returns the character v which occurs at position j if all the character array values in X

3.4. Concrete Domain and Semantics 33

contain v at index j and the latter is well-defined (i.e., it ranges in the array bounds) for
all the character array values in X; otherwise it returns >C. Formally,

A[[accessj]](X) =

8
><

>:

v if 8µ(m) 2 X : j 2 [[[lm]]⇢, [[hm]]⇢) and Mm(j) = (j, v)

>C otherwise

String Concatenation

The semantic operator M, given a statement and some sets of concrete character array
values in P(M) as parameters, returns a set of concrete character array values. When
applied to strcat(X1, X2), it returns all the possible embeddings in X1 of a string of
interest taken from X2 if all the character array values (which belong to both X1 and X2)
contain a well-formed string and the condition on the size of the destination character
array values is fulfilled; otherwise it returns >P(M). Please note that the size condition
ensures to perform the string concatenation only if the destination character array value
is big enough to contain the string of interest of the source character array value, thus
preventing undefined behaviours. Formally,

M[[strcat]](X1, X2) =

8
>>>>>>><

>>>>>>>:

X'
1 if 8µ(m1) 2 X1 : 8µ(m2) 2 X2 :

strInt(µ(m1)) 6= undef 6= strInt(µ(m2)) ^

size.condition is true

>P(M) otherwise

The size.condition is true if:

([[hm1]]⇢ – [[lm1]]⇢) � [(min(Nm1) – [[lm1]]⇢ – 1) + (min(Nm2) – [[lm2]]⇢)]

Moreover, X'
1 is the set of emb(µ(m1), [l1, u1],µ(m2), [l2, u2]) (cf. Definition 3.3), such that:

• µ(m1) 2 X1, l1 = min(Nm1) and u1 = l1 + (min(Nm2) – [[lm2]]⇢)

• µ(m2) 2 X2, l2 = [[lm2]]⇢ and u2 = min(Nm2)

String Character

The semantic operator M, when applied to strchrv(X), returns the set of string of interest
suffixes in X from the index corresponding to the first occurrence of the character v if all
the character array values in X contain a well-formed string containing v. Otherwise,
if all the character array values in X contain a well-formed string in which does not occur
the character v, it returns the emptyset (denoted by ?P(M)); otherwise it returns >P(M).
Formally,

34 Chapter 3. String Analysis for C

M[[strchrv]](X) =

8
>>>>><

>>>>>:

X' if 8µ(m) 2 X : strInt(µ(m)) 6= undef and v 2 strInt(µ(m))

?P(M) if 8µ(m) 2 X : strInt(µ(m)) 6= undef and v 62 strInt(µ(m))

>P(M) otherwise

In particular, X' is the set of ext(µ(m), [l, u]) (cf. Definition 3.4), such that:

• µ(m) 2 X, l = min({i : i 2 [[[lm]]⇢, min(Nm)] ^Mm(i) = (i, v)}) and u = min(Nm)

String Compare

The semantic operator P, given the statement strcmp and two sets of concrete character
array values X1, X2 in P(M) as parameters, returns a value in the set of integers equipped
with a top element, i.e., Z [>Z. In particular, strcmp(X1, X2) returns an integer value n
which denotes the lexicographic distance between strings of interest in X1 and X2 if for all
µ(m1) 2 X1 and µ(m2) 2 X2 the procedure cmp(µ(m1),µ(m2)) (cf. Definition 3.5) returns n;
otherwise it returns>Z.

Note that if n is negative, the string of interest of m1 precedes the string of interest
of m2 in lexicographic order. Conversely, if n is positive, the string of interest of m1 fol-
lows the string of interest of m2 in lexicographic order, and if n is equal to zero they are
lexicographically equal. Formally,

P[[strcmp]](X1, X2) =

8
><

>:

n if 8µ(m1) 2 X1 : 8µ(m2) 2 X2 : cmp(µ(m1),µ(m2)) = n

>Z otherwise

String Copy

The semantic operator M, when applied to strcpy(X1, X2), behaves similarly to the string
concatenation function above. Formally,

M[[strcpy]](X1, X2) =

8
>>>>>>><

>>>>>>>:

X'
1 if 8µ(m1) 2 X1 : 8µ(m2) 2 X2 :

strInt(µ(m1)) 6= undef 6= strInt(µ(m2)) ^

size.condition is true

>P(M) otherwise

The size.condition is true if:

([[hm1]]⇢ – [[lm1]]⇢) � (min(Nm2) – [[lm2]]⇢)

Moreover, X'
1 is the set of emb(µ(m1), [l1, u1],µ(m2), [l2, u2]), such that:

• µ(m1) 2 X1, l1 = [[lm1]]⇢ and u1 = l1 + (min(Nm2) – [[lm2]]⇢)

• µ(m2) 2 X2, l2 = [[lm2]]⇢ and u2 = min(Nm2)

3.5. M-String 35

String Length

The semantic operator L, given the statement strlen and a set of concrete character array
values X in P(M) as parameter, returns a value in the set of integers equipped with a top
element, i.e., Z[>Z. In particular, strlen(X) returns an integer value n which corresponds
to the length of the sequence of characters before the first null one of the character arrays
values in X if all the character array values in X contain a well-formed string of the same
length; otherwise it returns >Z. Formally,

L[[strlen]](X) =

8
><

>:

n if 8µ(m) 2 X : strInt(µ(m)) 6= undef ^ (min(Nm) – [[lm]]⇢) = n

>Z otherwise

Array Update

The semantic operator M, when applied to updatej,v(X), returns the set of character
array values in X where the character that occurs at position j has been substituted with
the character v if the index j is well-defined for all the character array values in X; otherwise
it returns >P(M). Formally,

M[[updatej,v]](X) =

8
><

>:

X' if 8µ(m) 2 X : j 2 [[[lm]]⇢, [[hm)]]⇢)

>P(M) otherwise

In particular, X' is the set of sub(µ(m), j, v) (cf. Definition 3.6).

3.5 M-String

In the previous section, we defined the concrete value of a character array, highlighting
the presence of a well-formed string in it. Moreover, we presented our concrete domain
P(M), made of sets of character array values, and its concrete semantics of some oper-
ations of interest. In the following, we formalize the M-String abstract domain, which
approximates elements in P(M), and its semantics for which soundness is proved.

3.5.1 Character Array Abstract Domain Functor

The M-String (M) abstract domain approximates sets of concrete character array values
with a pair of segmentations that highlights the nature of their strings of interest. The ele-
ments of the domain are split segmentation abstract predicates. As for FunArray (recalled
in Section 3.2.2), segments represent sequences of characters which share the same property
and are delimited by the so-called segment bounds. More precisely, the M-String abstract
domain is a functor given by M(B,C,R) where:

36 Chapter 3. String Analysis for C

1. B denotes the abstraction of segment bounds, equipped with the addition (�B) and
subtraction (B) operations.

2. C is the abstraction of the character array elements, it is signed, it contains the value
0, and it is equipped with isNull, a special monotonic function lifting abstract elements
in C to a value in the set {true, false, maybe} and with subtraction (C).

3. R denotes the abstraction of scalar variable environments (cf. Section 3.2.2). Namely,
the constant propagation domain on the set of variables X.

The elements of M-String belong to the set M , (Ms,Mns) [{?M,>M} where:

• Ms is {{B ⇥ C} ⇥ {B ⇥ C ⇥ { , ?}}k ⇥ {B ⇥ { , ?}} | k � 0} [{B} [{;} and it
represents the segmentation of the strings of interest of a set of character arrays.

• Mns is {{B⇥C}⇥ {B⇥C⇥ { , ?}}k⇥ {B⇥ { , ?}} | k � 0}[{;} and it represents
the segmentation of the content of character arrays after their string of interests,
or character arrays that do not contain the null terminating character.

• ?M, >M are special elements denoting the bottom/top element of M.

The elements in M are split segmentation abstract predicates of the form m = (s, ns).
For instance, when m is equal to (b1, ;), it abstracts concrete character array values of
length 1 and containing a null string of interest (cf. Section 3.4.1). Instead, when m
is equal to (b1,b2p2b3[?3] . . .bn[?n]), it approximates concrete character array values of
length greater than or equal to 1 containing a null string of interest. In particular:

1. bi 2 B denotes the segment bounds, chosen in abstract domain B, such that i 2 [1, n]
and n > 1. A segment bound approximates a set of indexes (i.e., positive integers
Z+), but contrary to what defined for the FunArray abstraction, the choice of B is
unconstrained.

For the sake of readability, we apply arithmetic operators on bi directly. For instance,
b �B 1 should be read as ↵B({i + 1 | i 2 �B(b)}) or b1 �B b2 as ↵B({i1 + i2 | i1 2
�B(b1) ^ i2 2 �B(b2)}), where ↵B and �B are respectively the abstraction and
concretization functions over the bounds abstract domain.

Please note that b1 and bn, respectively, represent the segmentation lower and upper
bound and in the case in which m corresponds to the split segmentation (b1p1b2[?2]
. . .bn–1[?n–1], ;) the segmentation upper bound is hidden, due to a representative
choice, and equal to bn–1�B1. Moreover, in a segmentation . . .bi[?i]pi+1bi+1[?i+1] . . .
we always assume that min(�B(bi+1)) > max(�B(bi)).

2. pi 2 C are abstract predicates, chosen in an abstract domain C, denoting possible
values of pairs (index, character array element value) in a segment, for relational
abstraction, character array elements otherwise.

3.5. M-String 37

3. the question mark ?, if present, indicates that the preceding segment might be empty,
while indicates a non-empty segment, and, as for [57], non-empty segments are not
marked.

Example 3.10. Consider the split segmentation abstract predicate m = ([0, 0] 'a' [2, 5], ;)
where C is the constant propagation domain for characters and B the interval domain. m
approximates character arrays certainly containing a string of interest, which is actually a
sequence of 'a', whose length goes from 2 to 5, followed by a null character, e.g., "aa\0"
and "aaaaa\0".

In the rest of the chapter, we will refer to the s and the ns parameters of a given split
segmentation abstract predicate m by m.s and m.ns respectively.

M-String, like FunArray, is equipped with partial order vM, join tM, meet uM, widen-
ing rM and narrowing �M operators (cf. Section 3.2.2). We highlight the fact that the
choice of B is let free, so the segmentation unification algorithm presented in [57] needs to
be accordingly modified, while preserving its original requirements. The unify procedure be-
haves as follows: given m1,m2 2M, unify(m1,m2) results into the pair unify(m1.s,m2.s)
and unify(m1.ns,m2.ns), where m1.s and m2.s (m1.ns and m2.ns resp.) are compatible,
leading to two abstract predicates (m'

1.s,m'
1.ns) and (m'

2.s,m'
2.ns), respectively. Given

two split segmentations m1 and m2, let lm1.s and hm1.s (lm2.s and hm2.sresp.) denote
the lower and upper bounds of m1.s (m2.s resp.). m1.s and m2.s are compatible if
lm1.s uB lm2.s 6= ?B and hm1.s uB hm2.s 6= ?B. The same apply to m1.ns and m2.ns.
Definitions 3.7 and 3.8 present how the join and the meet operators over M are computed.
The widening and narrowing can be easily derived.

Example 3.11. Consider following segmentations: m1 = ([0, 0] odd [2, 4] even [7, 7], ;)
and m2 = ([0, 0] odd [1, 2] >par [3, 6] even [7, 7], ;), where even, odd and >par are
elements of the parity domain [56]. Their unification leads to the abstract elements
m'

1 = ([0, 0] odd [2, 4] even [7, 7], ;) and m'
2 = ([0, 0] odd [2, 2] >par [7, 7], ;). Please

observe that the unify yields to a pair of segmentations with the same number of segments
and is not always optimal.

7
Definition 3.7 (M-String join). tM represents the join operator that defines a minimal
upper bound between two abstract elements. Let unify(m1,m2) = m'1,m'2, then m'

1 tM

m'
2 = (m'

1.s tM m'
2.s,m'

1.ns tM m'
2.ns) where:

• m'
1.s tM m'

2.s = b1

1 tB b2

1 p1
1
tC p2

1
. . . b1

k tB b2

k [?1

k
] g [?2

k
]

• m'
1.ns tM m'

2.ns = b1

k+1 tB b2

k+1 p1

k+1
tC p2

k+1
. . . b1

n tB b2

n [?1
n] g [?2

n]

if m'
1.s and m'

2.s (m'
1.ns and m'

2.ns resp.) are compatible; >M otherwise.5

4

38 Chapter 3. String Analysis for C

Definition 3.8 (M-String meet). uM represents the meet operator that defines a maximal
lower bound between two abstract elements. Let unify(m1,m2) = m'1,m'2, then m'

1 uM

m'
2 = (m'

1.s uM m'
2.s,m'

1.ns uM m'
2.ns) where:

• m'
1.s uM m'

2.s = b1

1 uB b2

1 p1
1
uC p2

1
. . . b1

k uB b2

k [?1

k
] f [?2

k
]

• m'
1.ns uM m'

2.ns = b1

k+1 uB b2

k+1p1

k+1
uC p2

k+1
. . . b1

n uB b2

n[?1
n] f [?2

n]

if m'
1.s and m'

2.s (m'
1.ns and m'

2.ns resp.) are compatible; ?M otherwise.6

4

Concretization

The concretization function on the M-String abstract domain �M maps an abstract element
to a set of concrete character array values as follows: �M(?M) = ;, otherwise �M(m) is
the set of all possible character array values represented by a split segmentation abstract
predicate m.

Formally, we firstly define the concretization function of a generic segment (bpb'[?])
(regardless of what part of the split it is part of) �⇤M, following [57], which corresponds to
the set of character array values whose elements in the segment [b,b'[?]) satisfy the pred-
icate p.

�⇤M(bpb'[?])⇢ = {(⇢, l, h, M, N) | ⇢ 2 �R(⇢) ^ 8b, b' : b 2 �B(b), b' 2 �B(b') ^
[[l]]⇢  b  b'  [[h]]⇢ ^ 8i 2 [b, b') : M(i) 2 �C(p) ^

N = {i | M(i) = (i, '\0')}}

where �R 2 R ! P(Rv) is the concretization function for the variable environment ab-
stract domain, �B 2 B ! P(Z+) is the concretization function for the segment bounds
abstract domain, and �C 2 C ! P(Z ⇥ C) is the concretization function for the array
characters abstract domain.

We remind that the upper bound of m.s is not followed by a segment abstract predicate.
Let b be the upper bound of m.s (which may coincide with the lower bound of m.s in the
case in which m approximates characters arrays containing null strings of interest). b is
equivalent to the segment bpb' such that b' = b�B 1 and p is null.

An abstract element in the M-String domain is a pair of segmentations. Thus, we define
the concretization function of the possible m.s and m.ns belonging to a character array
abstract predicate m, i.e., �?M 2 M ! R ! P(M). Let +

M
denote the concatenation of

several concrete values.

5
Note that tB, tC and g denote the join operator of B, C and { , ?}, respectively.

6
Note that uB, uC and f denote the meet operator of B, C and { , ?}, respectively.

3.5. M-String 39

�?M(m.s)⇢ = {(⇢, l, h, M, N) 2
k

+
M
i=1

�⇤M(bipibi+1[?i+1])⇢ | 8b1,bk : b1 2 �B(b1),

bk 2 �B(bk) ^ b1 = [[l]]⇢ ^ bk + 1  [[h]]⇢}

if m.s = b1p1b2[?2] . . .bk–1[?k–1]pk–1bk[?k]

= �⇤M(b1)⇢

if m.s = b1

= ;

otherwise

�?M(m.ns)⇢ = {(⇢, l, h, M, N) 2
n–1

+
M
i=1

�⇤M(bipibi+1[?i+1])⇢ | 8b1,bn :

b1 2 �B(b1), bn 2 �B(bn) ^ b1 = [[l]]⇢ ^ bn = [[h]]⇢}

if m.ns = b1p1b2[?2] . . .bn[?n]

= {(⇢, l, h, M, N) 2
n–1

+
M

i=k+1

�⇤M(bipibi+1[?i+1])⇢ | 8bk+1,bn :

bk+1 2 �B(bk+1), bn 2 �B(bn) ^ [[l]]⇢ < bk+1 ^ bn = [[h]]⇢}

if m.ns = bk+1pk+1bk+2[?k+2] . . .bn[?n]

= ;

otherwise

Finally, the concretization function of a split segmentation abstract predicate m is as
follows:

�M(m)⇢ , {(⇢, l, h, M, N) 2 �?M(m.s)⇢ +M �?M(m.ns)⇢ | 8b1,bn : b1 2 �B(b1),
bn 2 �B(bn) ^ b1 = [[l]]⇢ ^ bn = [[h]]⇢}

where +M returns all the possible concatenations between a concrete array value taken
from �?M(m.s), and a concrete array value taken from �?M(m.ns).

Definition 3.9 (Invalid segment). Given a generic segment bpb'[?], it is considered invalid
if its segment abstract predicate p is equal to ?C and its upper bound b' is not followed
by a question mark.

4

Theorem 3.1. Let X ✓ M such that all elements in X are compatible and their meet
does not result in split segmentation abstract predicates which contain invalid abstract
elements. Then, it holds that:

�M

d

M
m2X

m

!
=
T

M
m2X

�M(m)

40 Chapter 3. String Analysis for C

Proof. The following inference chain holds:

�M

d

M
m2X

m

!

= �M(m') where m' is the result of the meet operation over X (cf. Definition 3.8)

= {(⇢, l, h, M, N) 2 �?M(m'.s)⇢ +M �?M(m'.ns)⇢ | 8b1,bn : b1 2 �B(b1),
bn 2 �B(bn) ^ b1 = [[l]]⇢ ^ bn = [[h]]⇢} by definition of �M

=
T

M
m2X

{(⇢, l, h, M, N) 2 �?M(m.s)⇢ +M �?M(m.ns)⇢ | 8b1,bn : b1 2 �B(b1),

bn 2 �B(bn) ^ b1 = [[l]]⇢ ^ bn = [[h]]⇢}

=
T

M
m2X

�M(m) by definition of �M

Observe that if the hypotheses of Theorem 3.1 are not satisfied, i.e., if either the
abstract predicates in X are not compatible or their meet leads to invalid segmentations,

then �M

d

M
m2X

m

!
= �M(?M) = ;, and

T
M

m2X
�M(m) = ;.

In the implementation, we will use the following two functions: lift and lower that relate
single strings to their abstraction in M-String.

Definition 3.10 (Lift). Let µ(m) ✓ M be a concrete character array value. Given the
abstraction function ↵M on M-String, we define the lift operation of X as follows:

lift(µ(m)) = ↵M(µ(m)).

4

Definition 3.11 (Lower). Let m denote lift(µ(m)) (cf. Definition 3.10). Given the con-
cretization function �M on M-String, we define the lower operation of m as follows:

lower(m) = �M(m)

4

Abstraction

Let X be a set of concrete character array values. The abstraction function on the M-String
abstract domain ↵M maps X to ?M in the case in which X is empty. Otherwise, ↵M maps
X to an element of M-String that over-approximates values in X.

3.5. M-String 41

3.5.2 Abstract Semantics

We now formalize the abstract semantics of the concrete operations defined in Section 3.4.3,
over the M-String domain. In doing so, we will take advantage of the auxiliary function
minLenM which computes the minimum length of an element m 2M, as the upper bound
of a split segmentation is possibly followed by a question mark.

Definition 3.12 (m minimum length). Let m 2M be different from ?M and let lm, hm 2
B denote the lower and the upper bound of m, respectively. We define the minimum length
of a split segmentation abstract predicate m, denoted by minLenM(m), as follows:

minLenM(m) =

8
>>>><

>>>>:

bk B lm if m.ns 6= ; ^ hm is followed by ? ^ 9k 2m.ns :

k = max({i 2m.ns | bi is not followed by ?})

hm B lm otherwise
4

Please note that in the second case of Definition 3.12, the minimum length of a split
segmentation corresponds to its length, denoted by lenM(m). This operation can be also
applied to the parameters of m themselves, when they are different from the emptyset and
their upper bound is not question marked, which is always the case with m.s.

Example 3.12. Consider the split segmentation abstract predicate m = ([0, 0] 'a' [2, 5], [3, 6]
'b' [7, 7] 'c' [8, 8]?) where C is the constant propagation domain for characters and B the in-
terval domain. The minimum length of m is given by minLenM(m) = [7, 7] B [0, 0] = [7, 7]
as its upper bound is followed by a question mark. Logically speaking, the maximum length
of m is [8, 8] B [0, 0] = [8, 8]. The length of m.s is given by lenM(m.s) = [2, 5] B [0, 0] =
[2, 5].

7

Abstract Array Access

The semantic operator AM is the abstract counterpart of A (cf. Section 3.4.3). In particular,
access

j
(m) returns, if j is valid for m (i.e., there exist, and it is unique, a segment bounds

interval [bi[?i],bi+1) in m to which j belongs), the segment abstract predicate pi; otherwise
it returns >C. Formally,

AM[[access
j
]](m) =

8
><

>:

pi if 9!i 2m : j 2 [bi[?i],bi+1)

>C otherwise

where j 2 [bi[?i],bi+1) if 8j 2 �B(j) : 8[l, u) 2 {[l, u) | l 2 �B(bi)^u 2 �B(bi+1)} : j 2 [l, u).

42 Chapter 3. String Analysis for C

Abstract String Concatenation

The semantic operator MM is the abstract counterpart of M. When applied to strcat(m1,
m2), it returns m'

1 that is m1 into which m2.s has been embedded starting from the
upper bound of m.s, if both the input split segmentations approximate character arrays
which contain a well-formed string and the condition on the size of the destination split
segmentation is fulfilled; otherwise it returns >M. Formally,

MM[[strcat]](m1,m2) =

8
><

>:

m'
1 if m1.s 6= ; 6= m2.s ^ size.condition is true

>M otherwise

The size.condition is true if minLenM(m1) �B (lenM(m1.s)�B lenM(m2.s)�B 1). Let:

• m1 = (b1

1p1
1
b1

2[?1
2
] . . .p1

k–1
b1

k[?1

k
],b1

k+1p1

k+1
b1

k+2[?1

k+2
] . . .b1

n[?1
n])

• m2 = (b2

1p2
1
b2

2[?2
2
] . . .p2

k–1
b2

k[?2

k
], ns)

Then, m'
1.s = b1

1p1
1
b1

2[?1
2
] . . .p1

k–1
b1

k[?1

k
]p2

1
(b1

k �B (b2

2 B b2

1))[?2
2
] . . .p2

k–1
(b' �B (b2

k B

b2

k–1))[?2
2
] such that b' denotes the immediately preceding adapted segment bound. On the

other hand, m'
1.ns is the result of removing from m1.ns the sub-segmentation that goes

from the lower bound of m1.ns to the upper bound of m'
1.s included.

Example 3.13. Let ([0, 0] a⇤ [5, 7], [6, 8] br⇤ [13, 14]) and ([0, 0] a⇤[3, 3], ;) be two abstract
elements in M, such that B is the interval domain over array indexes and C is the prefix
domain over string values. Precisely, ([0, 0] a⇤ [5, 7], [6, 8] br⇤ [13, 14]) approximates all
the characters arrays having as string of interest any string starting with the character 'a'
whose length goes from 5 to 7, followed by the null character and any string starting with
''br'' whose length goes from 5 to 8. On the other hand, ([0, 0] a⇤ [3, 3], ;) abstracts all
the array of chars with string of interest equal to a string, of length 3, starting with a .
Consider now the concatenation between them,

MM[[strcat]](([0, 0] a⇤ [5, 7], [6, 8] br⇤ [13, 14]), ([0, 0] a⇤ [3, 3], ;))

The size condition is satisfied: the minimum length of the destination split segmentation
is equal to 13, which is strictly greater than 7 + 3 + 1, i.e., the maximum length of the
destination abstract array plus the maximum length of the source segmentation plus one
(the null character). Their concatenation results in the following abstract element:

([0, 0] a⇤ [5, 7] a⇤ [8, 10], [9, 11] br⇤ [13, 14])

which is equivalent to ([0, 0] a⇤ [8, 10], [9, 11] br⇤ [13, 14]).
7

3.5. M-String 43

Abstract String Character

The semantic operator MM, when applied to strchrv(m), returns a split segmentation
abstract predicate s with the left hand side parameter equal to the suffix segmentation
of the input m.s from the first segment in which v certainly occurs and the right hand
side parameter equal to the emptyset, if m approximates character arrays which contain
a well-formed string and the character v appears in at least one segment whose bounds
are not question marked. Otherwise, if m approximates character arrays which contain a
well-formed string of interest and the abstract character v does not occur in m.s, it returns
?M; otherwise it returns >M. Formally,

MM[[strchrv]](m) =

8
>>>>>>>><

>>>>>>>>:

s if m.s 6= ; ^ 9i 2m.s : pi = v ^

bi,bi+1 are not followed by ?

?M if m.s 6= ;^ 6 9i 2m.s : pi = v

>M otherwise

where s = (bjpjbj+1 . . .bk[?k], ;) such that

j = min({i 2m.s | pi = v ^ bi,bi+1 are not question marked})

Abstract String Compare

The semantic PM is the abstract counterpart of P. In particular, strcmp(m1,m2) returns
a value n denoting the lexicographic distance between m1.s and m2.s if both the input
split segmentations approximate character arrays which contain a well-formed string and
they can be unified; otherwise it returns >Z.

Note that if n is negative, the strings of interest approximated by m1 precede those
represented by m2 in lexicographic order. Conversely, if n is positive, the strings of interest
approximated by m1 follow those represented by m2 in lexicographic order, and if n is equal
to zero they are lexicographically equal. Formally,

PM[[strcmp]](m1,m2) =

8
><

>:

n if m1.s 6= ; 6= m2.s

>Z otherwise

where n = cmpM(m1,m2) (cf. Algorithm 2).

Abstract String Copy

The semantic MM, when applied to strcpy(m1,m2), returns m'
1 that is m1 into which

m2.s has been embedded starting from the lower bound of m, if both the input split seg-
mentations approximate character arrays which contain a well-formed string and the con-

44 Chapter 3. String Analysis for C

Algorithm 2 Lexicographic comparison of split segmentation abstract predicates.

Input: two compatible split segmentation abstract predicates m1,m2 2M.

Output: an integer value n.

1: n = 0, i = 1

2: unify(m1,m2) = m
'
1,m

'
2

3: if m
'
1.s = b

1
1 ^m

'
2.s = b

2
1 then

4: return n

5: else if m
'
1.s = b

1
1 ^m

'
2.s 6= b

2
1 then

6: n = n C p
2
1

7: return n

8: else if m
'
1.s 6= b

1
1 ^m

'
2.s = b

2
1 then

9: n = p
1
1 C n

10: return n

11: else

12: while i 2m
'
1.s ^ i 2m'2.s do

13: n = p
1
i C p

2
i

14: if n 6= 0 then

15: return n

16: else

17: i = i + 1

18: return n

dition on the size of the destination split segmentation is fulfilled; otherwise it returns >M.
Formally,

MM[[strcpy]](m1,m2) =

8
><

>:

m'
1 if m1.s 6= ; 6= m2.s ^ size.condition is true

>M otherwise

The size.condition is true if minLenM(m1) �B lenM(m2.s)�B 1. Let:

• m1 = (b1

1p1
1
b1

2[?1
2
] . . .p1

k–1
b1

k[?1

k
],b1

k+1p1

k+1
b1

k+2[?1

k+2
] . . .b1

n[?1
n])

• m2 = (b2

1p2
1
b2

2[?2
2
] . . .p2

k–1
b2

k[?2

k
], ns)

Then, m'
1.s = b1

1p2
1
(b1

1 �B (b2

2 B b2

1))[?2
2
] . . .p2

k–1
(b' �B (b2

k B b2

k–1))[?2

k
] where b' de-

notes the immediately preceding adapted segment bound. Instead, m'
1.ns is the sub-

segmentation of m1 that goes from the upper bound of m'
1.s plus one to the upper bound

of m1.

Abstract String Length

The semantic LM is the abstract counterpart of L. In particular, strlen returns a value n,
if m approximates character arrays which contain a well-formed string, the upper bound

3.5. M-String 45

of m.s is not followed by a question mark and in m.s do not occur possibly null segment
abstract predicates; otherwise it returns >B. Formally,

LM[[strlen]](m) =

8
>>>><

>>>>:

n if m.s = b1p1b2[?2] . . .bk ^

6 9i 2m.s : isNull(pi) = maybe

>B otherwise

where n = bk B b1.

Abstract Array Update

The semantic MM, when applied to update
j,v

(m), returns, if �B(j) corresponds to the
singleton {j} and j is valid for m (i.e., there exists - and it is unique - a segment bounds
interval [bi[?i],bi+1) in m to which j belongs), m' that is m where the segment bi[?i]pibi+1

is split so that the segment abstract predicate at position j is substituted with v; otherwise
it returns >M. Formally,

MM[[update
j,v

]](m) =

8
><

>:

m' if �B(j) = {j} ^ 9!i 2m : j 2 [bi[?i],bi+1)

>M otherwise

3.5.3 Soundness

Theorem 3.2. AM is a sound over-approximation of A. Formally,

�C(AM[[stm]](m)) ◆ {A[[stm]](µ(m)) : µ(m) 2 �M(m)}

Proof.

Consider the unary operator access
j
and let m be a split segmentation abstract predicate.

We have to prove that:

�C(AM[[access
j
]](m)) ◆ {A[[accessj]](µ(m)) : µ(m) 2 �M(m)}

accessj of µ(m) returns, by definition of A, the character array value v that occurs at
position j, if j belongs to [[[lm]]⇢, [[hm]]⇢); >C otherwise. Let ↵B(j) = j. Then, v belongs to
�C(AM[[access

j
]](m)) because access

j
of m, by definition of AM, is equal to the segment

abstract predicate pi, if there exists - and it unique - a segment bounds interval [bi[?i],bi+1)
to which j belongs; >C otherwise.

Theorem 3.3. MM is is a sound over-approximation of M. Formally,

�M(MM[[stm]](m)) ◆ {M[[stm]](µ(m)) : µ(m) 2 �M(m)}

46 Chapter 3. String Analysis for C

Proof.

• Consider the binary operator strcat and let m1 and m2 be two split segmentation
abstract predicates. We have to prove that:

�M(MM[[strcat]](m1,m2))

◆

{M[[strcat]](µ(m1),µ(m2)) : µ(m1)2�M(m1) ^ µ(m2)2�M(m2)}

by definition of M, strcat of µ(m1) and µ(m2) returns µ(m1)' where the first null-
terminating memory block of µ(m2) (including the null terminator), i.e., its string
of interest, is embedded into µ(m1) starting from the index to which the first null
character in µ(m1) occurs, if both µ(m1) and µ(m2) contain a well-formed string and
the size condition on the destination character array value is fulfilled; >M otherwise.
Then, µ(m1)' belongs to �M(MM[[strcat]](m1,m2)) because strcat of m1 and m2,
by definition of MM, is equal to m'

1 that is m1 into which m2.s has been embedded
starting from the upper bound of m1.s, if both m1 and m2 approximate character
arrays which contain a well-formed string and the size condition on the destination
segmentation abstract predicate is fulfilled; >M otherwise.

• Consider the unary operator strchrv, and let m be a split segmentation abstract
predicate. We have to prove that:

�M(MM[[strchrv]](m)) ◆ {M[[strchrv]](µ(m)) : µ(m) 2 �M(m)}

strchrv of µ(m) returns, by definition of M, µ(s) that corresponds to the suffix of
the string of interest of µ(m) starting from the index to which appears the first oc-
currence of v, if µ(m) contains a well-formed string and v occurs in m; the emptyset
(i.e., ?M), if µ(m) contains a well-formed string and v does not occur in µ(m); >M

otherwise. Let ↵C(v) = v. Then, µ(s) belongs to �M(MM[[strchrv]](m)) because
strchrv of m, by definition of MM, is equal to s that is the split segmentation ab-
stract predicate with s.s equal to the sub-segmentation of m.s starting from the first
segment to which v certainly occurs and s.ns equal to the emptyset if m approxi-
mates character arrays which contain a well-defined string and v appears in at least
one segment whose bounds are not question marked; ?M if m approximates char-
acter arrays which contain a well-formed string and v does not appear in m.s; >M

otherwise.

• Consider the binary operator strcpy and let m1 and m2 be two split segmentation
abstract predicates. We have to prove that:

�M(MM[[strcpy]](m1,m2))

3.5. M-String 47

◆

{M[[strcpy]](µ(m1),µ(m2)) : µ(m1)2�M(m1) ^ µ(m2)2�M(m2)}

strcpy of µ(m1) and µ(m2) returns, by definition of M, µ(m1)' where the first null-
terminating memory block of µ(m2) (including the null terminator), i.e., its string
of interest, is embedded into µ(m1) starting from the lower bound of µ(m1), if both
µ(m1) and µ(m2) contain a well-formed string and the size condition on the desti-
nation character array value is fulfilled, >M otherwise. Then, µ(m1)' belongs to
�M(MM[[strcpy]](m1,m2)) because strcpy of m1 and m2, by definition of MM,
is equal to m'

1 that is m1 into which m2.s has been embedded starting from the
lower bound of m, if both m1 and m2 approximate character arrays which contain
a well-formed string and the size condition on the destination segmentation abstract
predicate is fulfilled; >M otherwise.

• Consider the unary operator update
j,v

and let m be a split segmentation abstract
predicate. We have to prove that:

�M(MM[[update
j,v

]](m)) ◆ {M[[updatej,v]](µ(m)) : µ(m)) 2 �M(m)}

updatej,v of µ(m) returns, by definition of M, µ(m)' that is µ(m) where the char-
acter at position j has been substituted with the character v, if j is a valid index
for µ(m); >M otherwise. Let ↵B(j) = j and ↵C(v) = v. Then, µ(m)' belongs to
�M(MM[[update

j,v
]](m)) because update

j,v
of m, by definition of MM, is equal to

m' that is m where the segment that is valid for j is split so that the segment abstract
predicate which occurs at position j is substituted with v, if �B(j) is equal to the
singleton {j} and j is valid for m; >M otherwise.

Theorem 3.4. PM is a sound over-approximation of P. Formally,

�B(PM[[stm]](m)) ◆ {P[[stm]](µ(m)) : µ(m) 2 �M(m)}

Proof.

Consider the binary operator strcmp and let m1 and m2 be two split segmentation abstract
predicates. We have to prove that:

�C(PM[[strcmp]](m1,m2))
◆

{P[[strcmp]](µ(m1),µ(m2)) : µ(m1) 2 �M(m1) ^ µ(m2) 2 �M(m2)}

strcmp of µ(m1) and µ(m2) returns an integer value n, resulting from the difference be-
tween corresponding character array elements, denoting the lexicographic distance between

48 Chapter 3. String Analysis for C

the strings of interest of µ(m1) and µ(m2), if both contain a well-formed string, >Z other-
wise, by definition of P. Then n belongs to �C(PM[[strcmp]](m1,m2)) because strcmp of
m1 and m2, by definition of PM, is equal to n that is the difference between corresponding
segment abstract predicates, denoting the lexicographic distance between m1.s and m2.s,
if m1 and m2 are comparable, both approximate character arrays which contain a well-
formed string where >C does not occur; >Z otherwise.

Theorem 3.5. LM is a sound over-approximation of L. Formally,

�B(LM[[stm]](m)) ◆ {L[[stm]](µ(m)) : µ(m) 2 �M(m)}

Proof.

Consider the unary operator strlen and let m be a split segmentation abstract predicate.
We have to prove that:

�B(LM[[strlen]](m))◆{L[[strlen]](µ(m)) : µ(m)2�M(m)}

strlen of µ(m) returns, by definition of L, an integer value n which denotes the length of
the sequence of character before the first null one in µ(m), if µ(m) contains a well-formed
string; >Z otherwise. Then n belongs to �B(LM[[strlen]](m)) because strlen of (m),
by definition of LM is equal to the difference between the lower and the upper bound of
m.s if m approximates character arrays which contain a well-formed string of interest; >B

otherwise.

3.6 Program Abstraction

Adapting M-String to the analysis of real-world C programs requires, first of all, a proce-
dure that identifies string operations automatically. A subset of these operations must be
performed using abstract functions, carried out on a suitable abstract representation. The
technique that captures this approach is known as abstract interpretation. A typical im-
plementation is based on an interpreter in the programming language sense: it executes the
program by directly performing the operations written down in the source code. However,
rather than using concrete values and concrete operations on those values, part (or the
entirety) of the computation is performed in an abstract domain, which over approximates
the semantics of the concrete program.

In this chapter, we mainly focus on string abstraction. Therefore we will interpret
the program’s portions that do not make use of strings without abstracting values. We
only apply abstraction to strings that, within the program, are manipulated by string
operations. When the program deals with string variables that exhibit minimal variation,

3.6. Program Abstraction 49

e.g., string literals, the M-String representation will provide no benefit. Instead, it could
either hurt performance or it may introduce spurious counterexamples.

Based on the considerations above, it is clear that it is beneficial to reuse and refactor
existing tools that implement abstract verification in a modular way on explicit programs.
A compilation-based abstraction design that follows this approach was introduced and
implemented in [120]. However, this tool is designed to abstract scalar values only. This is
why we need to extend it to operate with more sophisticated domains that represent more
complex objects, such as strings.

In the rest of this section, we will first summarize the general approach to abstraction
as a program transformation. In Section 3.6.3, we explore the implications of aggregate
(as opposed to scalar) domains within this framework. Sections 3.6.4 and 3.6.5 discuss
the semantic (run-time) aspects of the abstraction and which operations we consider as
primitives of the abstraction.

3.6.1 Compilation-Based Approach

Instead of (re-)interpreting instructions abstractly, in a compilation-based approach, ab-
stract instructions are transformed into an equivalent explicit code that implements the
abstract computation. The transformation takes place before the analysis of the program
(e.g., model checking) during the compilation process.

Consequently, the analysis processes the program without needing special knowledge
of the abstract domains in use, as the abstraction is encoded directly in the program.
Figure 3.1 depicts a comparison of the compilation-based approach with respect to the
interpretation-based approach adopted by more conventional abstract interpreters.
In a compilation-based approach, two different abstraction perspectives are considered:

1. static, referring to the syntax and the type system,

2. dynamic, or semantic, referring to execution and values.

The LART tool performs syntactic (static) abstraction on LLVM bitcode [119]. Syntactic
abstraction replaces some of the LLVM instructions that occur in the program with their
abstract counterparts, as depicted in Figure 3.2.

3.6.2 Syntactic Abstraction

The first step of program abstraction performed by LART is a syntactic abstraction. Syn-
tactic abstraction replaces LLVM instructions or whole functions with their abstract coun-
terparts. Since we do not want to perform all operations abstractly, we need to classify only
those that might be applied to abstract values. The abstract values emerge in the program
as input values. From these values, LART computes all the operations that might deal
with abstract values through a combination of data flow and alias analysis. Finally, as a

50 Chapter 3. String Analysis for C

Interpretation-based Compilation-based

bitcode

linked bc.

C program

libs

libs
programllvm

static dynamic

VMVM

MC
transitions

e
x
t
r
a
c
t

bitcode

instrumentedinstrumented
bitcodebitcode

linked bc.

C program

libsabsabs

absabs libs

programllvm

VM

absabs MC

static dynamic

instrum.

e
x
t
r
a
c
t

transitions

Figure 3.1: Comparison of an abstract interpretation and a
compilation-based approach. In the interpretation-based approach,
the whole abstract interpretation is performed at runtime. The
bitecode operations are interpreted abstractly by the virtual ma-
chine (VM) that maintains an abstract state. In this way, an ab-
stract state-space is generated for a model-checking algorithm (MC).
The compilation-based approach is different. The abstract operations
are instrumented into the compiled program and their implementa-
tion is provided as a library. Then, the virtual machine executes the
instrumented program as a regular bitcode [120].

char *a = input_string ();
char *b = string ();
char *c = strcat(a, b);
int l = strlen(c);

abstract a = abstract_string ();
char *b = string ();
abstract c = abstract_strcat(a, lift(b));
abstract l = abstract_strlen(c);

Figure 3.2: Syntactic abstraction.

result of the analysis, LART obtains a set of possibly abstract operations that are replaced
by their abstract equivalents, e.g., strcat, strlen are replaced by abstract_strcat and
abstract_strlen. Abstract operations then implement the manipulation of abstract val-
ues, in our case with M-Strings as described in Section 3.4. In other words the specific
meaning of abstract instructions and abstract values then defines the semantic abstraction.

For the precise formulation of syntactic abstraction, we take advantage of the static
type system of LLVM. We leverage the fact that we can assign to each variable its type,
which is either concrete or abstract. In this way, we can precisely set a boundary between
concrete and abstract values.

We consider a simplified version of LLVM. It defines a set of concrete scalar types S.
The set of all possible types is given by a map � that inductively defines all finite (non-
recursive) algebraic types over the set of given scalars. To be precise, the set of types �(T)

3.6. Program Abstraction 51

derived from a set of scalars T is as follows:

1. T ✓ �(T), meaning each scalar type is included in �(T),

2. if t1, . . . , tn 2 �(T) then also the product type is in �(T): (t1, . . . , tn) 2 �(T), n 2 N,

3. if t1, . . . , tn 2 �(T) then also disjoint union is in �(T): t1 | t2 | · · · | tn 2 �(T), n 2 N,

4. if t 2 �(T) then t⇤ 2 �(T), where t⇤ denotes pointer type.

In a concrete LLVM program, the set of admissible types comprise those derived from
concrete scalars S, i.e., �(S). In syntactic abstraction, we need to extend admissible types
by abstract types. From these, we generate all possible types using �. Depending on the
type of abstraction, we use a different set of basic abstract types. In the case of scalar
abstraction, a set of basic abstract types contains abstract scalar types S. Correspondence
between abstract and concrete scalars is given by a bijective map ⇤ : S ! S. Finally,
each value, which exists in the abstracted program, has an assigned type of �(S [S).
Specifically, this implies that the abstraction works with mixed types—products and unions
might contain both concrete and abstract fields. Moreover, it is possible to create pointers
to both abstract or mixed values.

3.6.3 Aggregate Domains

In addition to scalar values that cannot be further decomposed, programs typically operate
with more complex data, which can be seen as compositions—aggregates—of multiple
scalar values. Depending on aggregates’ nature, we can classify them as aggregates that
contain a variable number of items (arrays), records that contain a fixed number of items in
a fixed layout, where each of these can be of a different type. The items in such aggregates
can be (and often are) scalars. However, more complex aggregates are also possible: arrays
of records, records which in turn contain other records, and so on.

While scalar domains only dealt with simple values, in aggregate abstraction, we con-
sider composite data in the spirit of the above definition. Similar to scalar domains,
abstract aggregate domains approximate concrete aggregate values by describing a partic-
ular set of aggregate properties. For example, we can describe a set of aggregates by their
length or a set of values that appear in the aggregate. In the M-String, we keep properties
in the form of segmentation, where segments are further abstracted by bounds and charac-
ters. Values in an aggregate domain then keep the representation of chosen properties and
operations updates them. For instance, consider an array length property domain—the
domain operations in such a case operate only with lengths of arrays, e.g., abstract concat

of arrays adds together lengths of its arguments (abstract arrays).
In general, aggregate domains can provide arbitrary operations. However, two oper-

ations are, in some sense, universal, being elementary memory manipulation operations,

52 Chapter 3. String Analysis for C

namely: byte-wise access and update of the aggregate. The universality of these opera-
tions originates from the fact that all aggregate operations can be represented as accesses
and updates. In a low-level representation of a program (assembly), they usually are pre-
sented in this form. LLVM allows a slightly higher level of manipulation to access and
update individual scalars present in the aggregates (as opposed to bytes). For M-String,
though, this distinction is not essential because the scalars stored in C strings are individual
bytes (characters). All other operations are present in the form of sequences of elemen-
tary instructions—possibly encapsulated in functions. Moreover, as in concrete programs,
the access and update represent an interface between scalars and memory, in the abstrac-
tion they form an interface between scalar and aggregate domains (even in the case of
byte-oriented access since bytes are also scalars). We refer the reader to the Section 3.5.2
for abstract semantics of access and update.

In comparison to scalar abstraction, the syntactic abstraction of aggregates does not
operate directly on aggregate types. In LLVM, aggregate values are usually represented
by a pointer to the underlying aggregate type. Therefore all the accesses and updates are
made through the pointers to the aggregates. For instance, strings are represented as a
pointer to a character array. We need to take this fact into account when we perform
the syntactic abstraction. In the analysis, we consider the pointers to aggregates as base
types for the abstraction. In the case of arrays, the base types are concrete pointers to
those arrays: we call them P⇤, where P⇤ ✓ �(S). A set of abstract pointers types P⇤

then describes types of abstracted aggregates (arrays). As for scalar domains, we define
a natural correspondence between pointers to concrete values and abstract aggregates as a
bijective map ⇤ : P⇤ ! P⇤. For instance, in the case of M-String abstraction, the map ⇤

assigns to char* a type of M-String value. Finally, we allow all the mixed types generated
from scalars and abstract aggregates: �(S [P⇤).

Observe that pointers, in general, also in LLVM maintain two pieces of information
about memory location: they represent both the memory object and an offset into that
object. In particular, our implementation treats the first 32-bits of the pointer as an object
identifier and the last 32-bits as its offset. This distinction is not very relevant in explicit
programs because those two components are represented uniformly in a single value and
often, they cannot be distinguished at all. However, the distinction becomes relevant when
dealing with abstract aggregate values. In fact, in this case, the object component of
the pointer is concrete as it determines a single specific abstract object. Instead, the offset

component may or may not be concrete. The choice depends on the specific abstract
aggregate domain: it may be more advantageous representing the offset in an abstract
way, i.e., by a 32-bit abstract scalar value. Observe that a memory access through such
a pointer needs to be treated in both cases as an abstract access or update operation.

The two basic memory access operations In LLVM, load and store, correspond to

3.6. Program Abstraction 53

the access and update operations. It is important to note that memory access is al-
ways explicit: memory is never directly used in a computation. This observation is used
in the design of aggregate abstraction, where we can assume that the access to the content
of an aggregate will always go through a pointer associated with the abstract object.

3.6.4 Semantic Abstraction

In syntactic abstraction, we dealt with operations’ syntax, their types, and the types of
values and variables. It described how LART performs a source-to-source transformation.
In contrast, semantic abstraction concerns the values computed at runtime by a program.
It defines how abstract operations modify values and how to transfer between concrete and
abstract values. Therefore, similarly to syntactic abstraction that defined the maps ⇤ and
⇤–1 to transfer between concrete and abstract types, the semantic abstraction makes use
of lift and lower (cf. Definitions 3.10 and 3.11): operations (instructions) converting values
between their concrete and abstract representations. They realize a runtime implemen-
tation of domain functions: abstraction (↵M in the case of M-String) and concretization
(�M).

The lift operation implements abstraction of concrete values by a single over-approxima-
ting abstract value. For example, in Figure 3.2, on line 3 of the abstracted program, a con-
crete string b is lifted to the abstract domain. This allows performing abstract_strcat

in a single abstract domain. In other words, operations do not need to consider concrete
values because all their arguments are lifted to the abstract domain. This simplifies the im-
plementation of a domain and reduces the number of possible domain interactions. While
⇤, which was a purely syntactic construct, lift and lower accomplish the actual conversion
of values between domains during program runtime. During program execution, lowering
an abstract value into multiple concrete values can be seen as a nondeterministic branching
in the program (and the lower operator is indeed based on a non-deterministic choice oper-
ator).7 For further details of the program transformation performed by LART, we kindly
refer the reader to [120].

3.6.5 Abstract Operations

As a result of syntactic abstraction, we obtain a program that temporarily contains abstract
operations. These operations take abstract values as operands and return abstract values
as a result. Though, after the program transformation, the resulting program is required to
be a semantically valid LLVM bitcode. Therefore, we demand that each abstract operation
can be realized as a sequence of concrete instructions. This allows us to obtain an abstract

7
In a model checker, the non-deterministic choice would be typically implemented as branching in

the state space (and the consequences of all possible outcomes would be explored). In a testing context,

however, the choice might be implemented by choosing one particular path at random.

54 Chapter 3. String Analysis for C

program that does not contain any abstract operations and executes it using standard
(concrete, explicit) methods.

Thoroughly, syntactic abstraction substitutes concrete operations with their abstract
counterparts: an operation with type (t1, . . . , tn) ! tr is substituted by an abstract opera-
tion of type (⇤(t1), . . . ,⇤(tn)) ! ⇤(tr). Furthermore, transformation inserts lift and lower

operations as needed, typically, in places where concrete values are operands of abstract
operations. The implementation is free to select the operations to be abstracted and where
value lifting and lowering be inserted, so long type constraints are satisfied. However, it
tends to minimize the number of abstracted operations.

In addition to LLVM instructions, the M-String abstraction requires the transformation
to abstract function calls to standard library functions, e.g., strcmp, strcat. From the
perspective of syntactic abstraction, we can treat function calls as single atomic opera-
tions that take abstract values and produce abstract results. Hence, the transformation
substitutes them in the same way as instructions: for instance strcmp operation of type
(m, m)! s is replaced by abstract_strcmp of type (⇤(m),⇤(m)) ! ⇤(s) where m is a con-
crete character array and s is a concrete scalar result of the string comparison. Afterwards,
all abstract operations are implemented by using concrete subroutines (implementation of
abstract semantics). For details, see [120].

Observe that, as an alternative approach, the standard library functions strcat, strcmp,
etc. could have been transformed instruction by instruction, by using abstract access and
update of a content only. However, the price to pay would have been losing a certain degree
of accuracy in the abstraction, the exact amount depending on the single operation.

3.7 Instantiating M-String

As an aggregate domain, M-String is parametrizable by scalar domains of characters and
indices (bounds). This allows us to tailor the abstraction to the needs of the analysis of
string values. Depending on the precision of chosen domains, the instance of the M-String
domain will inherit their properties. With more precise domains, the M-String values will
maintain a higher granularity of segmentation. But, simpler character representation will
decrease the segmentation granularity for the cost of a higher rate of false alarms.

A particular instance of M-String is automatically derived from a parametric description
given in Section 3.5, provided a suitable scalar domain C for characters and scalar domain
B to represent segment bounds. The instantiation demands that both scalar domains C
and B are equipped with operations that appear in the operations with the segmentation.
These are mainly elementary arithmetic and relational operations. In the implementation,
we provide an M-String domain template that automatically derives all the operations
from provided scalar domains.

3.7. Instantiating M-String 55

3.7.1 Symbolic Scalar Values

In program verification, it is common practice to represent certain values symbolically
(for instance, inputs from the environment). The symbolic representation allows the verifier
to consider all admissible values with a reasonably small overhead. In DIVINE, symbolic
verification is implemented using a similar abstraction to one described in the previous
section: symbolic scalar values represent their content by SMT formula expressions (terms)
in the form of abstract syntax trees. The input values are represented as unconstrained
variables in the bit vector logic. Operations then build formulae trees from their arguments.
In addition to these so-called data definitions, symbolic representation also maintains one
global formula of constraints (path-condition), which is derived from the control flow of
the program. A more detailed description of this symbolic representation is presented
in [120].

The domain of symbolic values (we call it a term domain) requires DIVINE to be
augmented with an SMT solver from a suitable theory.8 DIVINE uses the solver to detect
computations that have reached the bottom of the term domain (those are the infeasible
paths through the program). Furthermore, as a model checker, it needs to identify equal
states or whether the state subsumes another one. This is achieved by the equivalence
check of corresponding formulae. With these prerequisites, the symbolic representation in
joint with the bit-vector theory is a precise abstraction (i.e., it is not an approximation
but models the program state faithfully).

3.7.2 Concrete Characters, Symbolic Bounds

In the evaluation, we instantiate the M-String domain in two ways. The first simpler
instantiation sets the domain of characters C to be the concrete domain (i.e., we let the
characters be represented by themselves). We let the domain of segment bounds B to be
a symbolic 32b integers. This instantiation balances between simplicity on the one hand
(both domains we used for parameters were already present in DIVINE) and the ability to
describe strings with undetermined length and structure.

At the implementation level (described in more detail in the following section), the do-
main remains generic: the particular domains we picked can be easily substituted by other
domains. Compared to the theoretical description of M-String, the implementation uses
a slightly simplified representation of segmentation made of a pair of arrays (cf. Fig-
ure 3.3). The elements of these arrays are characters and bounds, whose type is derived
from parametrization, i.e., from the scalar domains C and B. The modification of the rep-
resentation is just for optimizing the implementation and does not affect the operations’
semantics. The analysis with this representation is presented in Example 3.14.

8
For scalars in C programs, we use the bitvector theory.

56 Chapter 3. String Analysis for C

a . . . a c . . . c \0 a . . . \0 . . .

segment

b1 b2 b3 b4 b5 b6 Characters:

a c \0 a \0

Bounds:

b1 b2 b3 b4 b5 b6

Figure 3.3: M-String value with symbolic bounds, where string of
interest is from b1 to b3.

This instantiation of M-String is particularly suitable for representing strings with
sequences of a single character of variable length, i.e., the strings of the form akblcm . . .

where relationships between k, l, m, . . . can be specified using standard arithmetic and
relational operators and each of a, b, c is a concrete letter. In turn, this allows M-String
to be used for the analysis of program behavior on broad classes of input strings described
this way. A more detailed description of this approach can be found in Section 3.8.

Example 3.14. Simple program analysis with symbolic bounds and concrete characters:

mstring str = abstract_string(x,b1 ,\0,b2,y,b3 ,\0,b4);

symbolic idx = abstract_int ();

if (idx < b4) {

str[idx] = ’y’;

symbolic len = abstract_strlen(str);

}

Imagine we are given symbolic bounds b1 < b2 < b3 < b4, then the first line of
the transformed program creates mstring value with characters [x, \0, y, \0] and bounds
[0,b1,b2,b3,b4]. In the following, we describe mstring values as pairs of these two ar-
rays. The second line creates a symbolic index of arbitrary value. On line 3, the program
constraints the index to be smaller than the mstring maximal length. Otherwise, the up-
date on the next line would yield an error. Next the program assigns to the position
of abstract index a character y. The assignment is implemented as update operation on
mstring value. Depending on the value of the idx, the operations results in the following
strings strx, as result we join all possibilities:

1. if idx < b1 : idx falls in the first segment: str1 = ([x, y, x, \0, y, \0], [0, idx, idx + 1,
b1,b2,b3,b4]) and creates a new segment between idx and idx + 1 containing char-
acter y. Notice that if idx = 0 the first segment is empty, similarly the third segment
for idx + 1 = b1. The string of interest for str1 is of form xidxy1xb1–idx–1.

2. if b1  idx < b2 : than str2 = ([x, \0, y, \0, y, \0], [0,b1, idx, idx + 1,b2,b3,b4]),
with string of interest as join of following forms:

• if the update is performed right after the first segment, i.e., idx = b1:

– if and
��b1 – b2

�� > 1, i.e., the segment of zeros contains more elements, then
the string has form xb1y,

3.7. Instantiating M-String 57

– otherwise the update overwrites the single zero character, hence extends
the string of interest by segment of y characters: xb1yb3–b1 .

• otherwise between first segment and idx is a terminating zero, hence the string
of interest remains unchanged: xb1 .

3. if b2  idx < b3 : then str3 = str, because update stores the same character as is
already present in the segment.

4. if b3  idx < b4 : then update creates a new segment inside of sequence of last
zeros: str4 = ([x, \0, y, \0, y, \0], [0,b1,b2,b3, idx, idx + 1,b4]).

Consequently, the abstract_strlen operation on the last line of the program computes
the join of all possible lengths of strings of interest, i.e., b1 tB b3.

7

3.7.3 Symbolic Characters, Symbolic Bounds

The second instantiation is used in benchmarks, where the computation with M-String
values encountered abstract scalars (characters). This occurs when the program obtains
some character as input from the environment and tries to store it into the M-String value.
Therefore, we instantiated the M-String domain with an abstract representation of char-
acters by setting the domain C to be the term domain, which keeps track of symbolic 8b
bitvectors (characters in C language). In this way, we do not need to lower abstract charac-
ters before storing them in the M-Strings, which was needed for the concrete domain used
in the previous instantiation. However, we pay the price for more expensive computation
with symbolic characters.

3.7.4 Implementation

Finally, we implemented the M-String abstraction as a LART domain.9 The LART domain
is a C++ library that implements abstract semantics of M-String operations presented in
Section 3.5. This library is then linked to the transformed program allowing the program
to perform abstract analysis with model-checker DIVINE. An abstract domain definition in
LART consists of a C++ class that describes both the representation (in terms of data) and
the operations (in terms of code) of the abstract domain.

In the case of M-String domain, this class contains 2 attributes: an array of bounds and
an array of characters, as outlined in Section 3.7.2 and depicted in Figure 3.3. The class has
two type parameters: the domain to use for representing segment bounds and the domain
to represent individual characters (i.e., the content of segments). A specific instantiation

9
The implementation with examples and documentation of domain usage can be found online on the

supplementary page: https://divine.fi.muni.cz/2020/mstring

https://divine.fi.muni.cz/2020/mstring/

58 Chapter 3. String Analysis for C

is then automatically derived by the C++ compiler from the classes representing the type
parameters and the parametric class, representing M-String values.

As a minimal set of operations, the M-String domain implements all requisite aggregate
operations: these are lift, update and access. Furthermore, the implementation pro-
vides an optimized version of string operations described in Sections 3.5: strlen, strcpy,
strcat, strcmp and strchr. These operations reduce the loss of abstraction precision that
would arise if only the abstraction of accesses and updates from strings were used.

Since C strings are stored as shared, mutable character arrays, the implementation of
the M-String domain reflects the sharing semantics of these arrays. If multiple pointers
exist into the same abstract string, modifications through one of them must also be visible
when the string is accessed through another pointer. Moreover, the pointers do not have
to be equal: they may point to different suffixes of the same string. Therefore, the repre-
sentation of pointers to abstract strings must treat the object and the offset components
separately (see also Section 3.6.3), and the representation of the offset component must be
compatible with the bound domain B.

3.8 Experimental Evaluation

In the evaluation, we chose a few scenarios to demonstrate the properties of the abstraction.
In the first scenario, we show that using abstract versions of standard functions is more
efficient than if concrete versions were transformed using only abstract string accesses and
updates. The second scenario investigates several implementations of standard library
functions: we transform them automatically in the means of accesses and updates, and we
show that their results agree with results generated by M-String library operations. In the
third scenario, we evaluate M-String instantiation with symbolic characters on the set of
benchmarks from real software that contain buffer-overflow errors. Here we show that
M-String can efficiently detect real-world bugs as well as prove that a program does not
contain them after they are fixed. The last benchmark shows the use of abstractions on
more complex C programs. As an example, we analyze automatically generated parsers
from bison and flex tools on abstract (M-String) inputs. The resource limits for all
scenarios were the same: each verification run was limited to 4 processing units (cores),
80 GB of memory, and 1 hour of CPU time. The processor used to run benchmarks was
AMD EPYC 7371 clocked at 2.60GHz.

M-String Operations

The first group of benchmarks focuses on the use of resources by abstraction. Benchmarks
compare the effectiveness of abstract domain operations with the automatically abstracted
implementation of standard library functions from PDCLib, a public-domain libc imple-
mentation, using only essential abstract operations: lift, update and access. The results

3.8. Experimental Evaluation 59

Word Sequence
Verification(s) Verification(s)

States 8 64 1024 4096 LART(s) States 8 64 1024 4096 LART(s)

strcmp 3562 480 498 472 481 1.70 70 0.26 0.24 0.21 0.25 1.76
strcpy 368 9.8 9.1 9.3 9.4 1.70 48 0.20 0.20 0.21 0.20 1.71
strcat 7398 898 873 865 843 1.72 105 0.51 0.52 0.53 0.51 1.72
strchr 49 0.3 0.4 0.3 0.3 1.71 15 0.04 0.04 0.03 0.04 1.70
strlen 78 1.1 1.2 1.0 1.3 1.70 16 0.05 0.04 0.05 0.06 1.81

Table 3.2: Measurements of M-String operations on two types of
inputs: Word and Sequence described in Section 3.8. Each benchmark
measures a size of state space and verification time for input M-Strings
of a given length. Lastly, the table shows an average transformation
time (LART). All measurements of time are in seconds. The size of
state space does not change for different lengths of input—for more
details, see discussion in Section 3.8.

8 64 1024

Time(s) States Time(s) States Time(s) States

strcmp 1.24 197 260 1597 T –
strcpy 0.7 122 61.5 962 T –
strcat 15.8 1102 T – T –
strchr 0.04 16 0.05 16 0.05 16
strlen 0.19 46 9.57 326 T –

Table 3.3: Benchmark of standard library functions abstracted us-
ing only the M-String definitions of access and update operations for
Sequence inputs of size 8, 64 and 1024 characters. Verification for
Word strings times out in most of the instances.

depicted in Table 3.2 were measured with parametrized M-String inputs of two kinds (l is
a parametric length of the input):

• Word w is a string of the form: w = ci1
1

· ci2
2

· . . . · cil
l

where
P

l

k=1
ik  l and cx is an

arbitrary character from domain C.

• Sequence w is a string of the form w = ci, where i  l and c is a character from
domain C.

For each standard library function and input type, we created an isolated benchmark
in two variants: one using an abstract semantics of M-String operations (see Table 3.2)
and the other variant (Table 3.3) only with an automatic abstraction of essential aggre-
gate operations.

The first notable difference between automatically abstracted implementations of li-
brary functions and M-String operations is that the analysis of the former timeouts for
input strings longer than 64 characters. The main cause of the lifted implementation’s in-
efficiency is that it iterates over all characters, while M-String operations leverage iteration

60 Chapter 3. String Analysis for C

Word Sequence
4 8 16 4 8 16

Time(s) States Time(s) States Time(s) States Time(s) States Time(s) States Time(s) States

strcmp 14.3 1005 105 2989 1350 9741 2.17 204 5.09 376 16.5 720
strcpy 5.15 515 57.4 1823 912 6935 0.83 183 2.49 347 9.14 675
strcat 468 5748 T – T – 8.56 751 113 2535 1940 9463
strchr 0.08 22 0.08 22 0.08 22 0.3 17 0.3 17 0.4 17
strlen 0.66 91 4.13 259 68.8 883 0.15 34 0.28 54 0.65 94

Table 3.4: Verification results of functions from PDCLib with time-
out of 1 hour. Measurements show the size of state space and verifi-
cation time for the parametric length of the input.

over larger segments. This difference also causes a blow-up of the model checker’s state
space for the lifted implementations while the state space size does not change for M-String
operations. The reason for this is that the number of segments does not change with the
length of the input. Therefore M-String operations always perform the same computation
independently of the M-String length.

C Standard Libraries

In the second set of benchmarks, we investigate whether the implementation from several
standard libraries matches the expected abstract implementation results. In other words,
we perform an equivalence check of results obtained from M-String operations with the
results of the automatically abstracted (originally concrete) standard library functions.
We expect that both give the same results. For the evaluation, we picked three open-
source libraries: PDClib, musl-libc and µCLibc. Since the results for the libraries are
rather similar, we present here only an evaluation of PDClib functions. The remaining
results are provided in the Supplementary Material. All benchmarks showed that our
implementation matches the standard one.

Similarly, as in the previous case, these benchmarks suffer from the state space blow
up caused by an exponential number of possible character combinations. For this reason,
we decreased the size of the input strings. In addition to large state space, many string
accesses and updates of concrete implementations result in a large smt formulae, causing
a long time spent in solvers.

Furthermore, notice that the computation analysis with Word input, which has more
segments, results in longer execution times than the analysis with Sequence. The reason
is that the more segments naturally also causes overhead for the analyses. For example,
the M-String needs to consider cases when some segments have zero length: this causes a
hard smt queries because, in the worst case, it needs to check all possible strings for given
segment bounds and characters.

3.8. Experimental Evaluation 61

Veriabs Overflow Benchmarks

In this scenario, we show that the domain is capable of efficient overflow bugs find-
ing. Veriabs benchmarks exhibit overflow errors and fixed variants of real-world software.
To soundly prove correctness of these benchmarks, we instantiate M-string with term do-
main also for characters. Hence we can reason about arbitrary strings of a symbolic length.
However, a drawback of this instantiation is that whenever the length of the string bounds
a loop, we might have to unroll the loop infinitely in the analysis—these cases timeouts in
the correct benchmarks.

Correct Error Found

Tests Time(s) Tests Time(s) Timeout

apache 0 – 26 384.26 24
openser 43 234.13 45 105.93 6
wu-ftpd 8 35.78 14 2461.27 19

libgd 4 9.01 4 1.85 0
madwifi 5 0.51 5 0.55 0

gxine 1 0.53 1 0.25 0

Table 3.5: Veriabs overflow benchmarks depict a few categories of
programs exhibiting an overflow error and their fixed variants. The
table shows the number of solved benchmarks (tests) and accumulated
time for each category. For each category, we correctly depict verified
benchmarks, benchmarks where the verifier finds an error, and the
number of timeouts.

Parsers

Lastly, we evaluate our implementation on more complex programs: automatically gener-
ated parsers. For the generation, we use a tool Bison. It reads a language specification in
the form of context-free grammar and produces a C parser that accepts the language. In the
benchmarks, we generate two such parsers. The first one accepts a language of numeri-
cal expressions (mathematical expressions that consist of numbers and binary operators).
The second parser is for a simple programming language with variables and branching. We
present an evaluation for both parsers in Table 3.6. As with the previous benchmark sets,
the M-String inputs with a smaller number of segments outperformed other analyses.

62 Chapter 3. String Analysis for C

Numeric Expressions Grammar

10 20 35

Time(s) States Time(s) States Time(s) States

add 40.2 416 319 3548 T –
ones 5.54 62 8.12 196 189 2186

alter 708 105 1582 11k T –

Table 3.6: Measurements of time and size of state space for analy-
ses of automatically generated parsers. In these benchmarks, we use
specifically hand-crafted M-String inputs for parsers. For parsing of
mathematical expressions, it was: addition input had a form of two
arbitrary numbers with a plus sign between them, ones was a simple
input of a single digit sequence, and lastly, alternation was input
that produced complicated M-Strings by alternating digits inside of
expressions. The other parser of simple programming language was
evaluated on: value was in input that created a variable and assigned
a constant to it, loop was a short program with some control flow
and wrong was a program that contained a syntax error.

Simple Programming Language Grammar

10 100 1000

Time(s) States Time(s) States Time(s) States

value 6.58 38 90.4 488 1100 4988
loop 1.53 23 4.88 23 33.3 23

wrong 7.34 82 67.7 892 311 8992

Table 3.6: cont

3.9 Discussion

A new segmentation-based abstract domain for approximating C strings has been intro-
duced, whose main novelty lies in abstracting both index bounds and substrings while
managing strings as a pair of two string buffers: the string of interest itself, and a tail of
allocated and possibly initialized but unused memory.

The presented approach enables more precise modelling of the functions in the stan-
dard C library for strings, also considering the known weaknesses for the management of
terminating null characters and buffer bounds. The M-string domain results effective for
identifying security leaks caused by string manipulation errors, e.g., buffer overflows.

3.9. Discussion 63

After theoretically describing the domain and the basic operations on strings, we have
implemented (using C++ language) the abstract semantics, combining them with a tool
that starting from string-manipulating C programs lifts them to the M-String domain.

Our experimental results have also focused on tuning the parameters of M-String (the
domains for both segment content and segment bounds) by instantiating them by both
concrete and symbolic characters and by symbolic (bitvector) bounds.

65

Chapter 4

COMBINING STRING DOMAINS

In this chapter, we specialize the segmentation domain FunArray, introduced in Section
3.2, for array content analysis [57], and we combine it, through reduced product, with
less sophisticated existing string abstract domains to improve the precision of the analysis.
Since the M-String abstract domain (cf. Section 3) is inspired by FunArray, and it is
tailored for string analysis of C programs, in the following, we use FunArray “as is”, and
we combine it with general-purpose existing string abstract domains.

The contribution of this chapter is submitted for publication.

Chapter Structure

Section 4.1 highlights some limits of existing string abstract domains and explains our con-
tribution. Section 4.2 introduce the syntax of some string operations of interest. Section
4.3 defines the concrete domain and semantics. Section 4.4 introduces the basic abstract
domains for string analysis. Section 4.5 specializes the Segmentation domain [57], sum-
marised in Section 3.2, to the approximation of strings. Section 4.6 defines our refined
string abstract domains. Section 4.7 concludes.

4.1 Introduction

Existing string abstract domains partially track the content and/or the shape information
of string values. We now consider some basic domains for strings [49]. The String Length
domain approximates the length of a string through an interval (e.g., the interval [2, 5]
represents all the possible strings whose length ranges from 2 to 5). The Character Inclusion
domain approximates strings through a pair of sets highlighting the characters definitely
and possibly contained (e.g., the pair of sets ({a, b}, {a, b, c}) represents all the possible
strings definitely containing the characters ‘a’ and ‘b’ and possibly containing the character
‘c’). The String Length and the Character Inclusion domains approximate string shape and
string content information, respectively. Instead, the Prefix domain partially detects the
shape and content information of the strings it approximates. For example, the prefix ab⇤

66 Chapter 4. Combining String Domains

represents all the possible strings sharing the starting sequence “ab”, with minimal length 2.
The Segmentation domain [57], summarised in Section 3.2, is a more sophisticated abstract
domain that was originally proposed to abstract arrays content by bounded, consecutive,
non-overlapping, and possibly empty segments. It allows both the abstraction of array
element values and relational abstractions between arrays content and their indexes.

Each abstract domain represents a trade-off between the precision and the efficiency
of the analysis, since usually more precise analyses require less efficient abstract domains,
slowing down the convergence of the computation of the fixpoint algorithm. However,
different abstract domains can be composed in various ways (such as the Cartesian and
the reduced product) within the Abstract Interpretation framework [38, 42, 56].

State of the Art

While the compositional operators introduced in Section 2.6.4 have been extensively used
to improve the precision of numerical analyses and implemented in various tools [59, 64],
when we talk about string analysis, their usages and instantiations are short.

In particular, Yu et al. [185] conducted an analysis of strings on Web applications, to
verify properties on strings that are relevant for security by combining (using the Carte-
sian product) the relation and alphabet abstractions. Elements in the product lattice are
the so-called abstraction classes which are chosen heuristically. Amadini et al. [10] de-
signed a framework that allows a flexible combination of several string abstract domains
for JavaScript analysis. This combination was implemented as an extension of the SAFE
tool [122]. Since this approach relied on the Cartesian product, the resulting analysis ex-
posed more precise results than the single abstract domains, but such information could
have been reconstructed from the individual execution of the analyses. A further im-
provement of such approach [11] introduced a general and modular framework to combine
several string abstract domains through the reduced product by introducing the concept of
reference domain. Let D be a concrete domain, and D1, ...,Dn be abstract domains. A ref-
erence domain soundly approximates D and captures any information expressible in each
of the abstract domains D1, ...,Dn. The reference domain can be applied as a medium for
systematically transferring information from all these abstract domains. The information
is exchanged through a strengthening function, i.e., a closure operator on D1, ...,Dn. De-
pending on the considered domains, the strengthening function may be computationally
expensive. Therefore, the authors introduced a weak strengthening function that is less
precise but more efficient.

Contribution

In this chapter, we combine through the reduced product some well-known string ab-
stract domains (such as the String Length [11], the Character Inclusion and the Prefix [49]
domains) with the Segmentation domain proposed by Cousot et al. in [57] to get more

4.1. Introduction 67

sophisticated and precise abstractions. On the one hand, string domains track information
about the content of string values. On the other hand, the Segmentation domain behaves
like a functor that allows lifting basic domains through structural information. Since it
represents the string values by distinct segments, it allows string domains to keep track of
information only on a part of the string.

The main contribution of the chapter can be summarized as follows:

• We highlight the limits of the existing basic string abstract domains that deal with
string shape and content properties separately or partially integrated, and the need
to overcome these limits by providing a systematic construction of domains where
string shape information is balanced with respect to string content information.

• We specialize the Segmentation domain for string analysis.
For instance, the string segmentation 'a' [2, 4] 'b' [0, 2] has two consecutive segments
(i.e., 'a' [2, 4] and 'b' [0, 2]), each of which is composed by the character representation
followed by a numerical interval. The latter indicates how many times the character
approximation that precedes it is repeated. Thus, the abstract string 'a' [2, 4] 'b' [0, 2]
represents all the possible strings having the character ‘a’ repeated from 2 to 4 times
followed by the character ‘b’ repeated from 0 to 2 times.

• We combine basic string abstract domains with the Segmentation domain, where
the tracked string information is homogeneous by exploiting the notions of Granger
methodology and refinement operators [87], and we show how to actually compute
these reduced products.
Consider the segmentation a⇤ [2, 4] b⇤ [0, 2] where character values are abstracted
by the Prefix domain. This segmentation represents all the strings of length ranging
from 2 to 4 and beginning with the character ‘a’ concatenated with strings of length
ranging from 0 to 2 and beginning with the character ‘b’. Note that this combination
of domains is in a position to fully cover both string shape and content information.

• We show how inconsistency conditions can be associated with abstract values, en-
abling the analysis to detect potential vulnerabilities within the source code.

To better understand the motivation and the results of this work, consider the example
below.

Example 4.1. Let SL, CI, PR and S be the String Length, Character Inclusion, Prefix
and Segmentation string abstract domains respectively. Table 4.1 depicts possible elements
of these abstract domains. Note that all the abstractions in Table 4.1 approximate a set
of string values that contains, for example, the literal “aaddd00xxyyy88”.
Consider in particular the following abstract values:

(i) aaddd⇤ (PR)
(ii) [a,d][5, 5] [0,0][2, 2] [x,y][5, 5] [7,10][2, 2] (S)

68 Chapter 4. Combining String Domains

String domain Abstract elements

CI ({a,d,0,x,y,8}, {a,d,0,x,y,8,4}) ({a,d}, {a...z,0...9}) (;, a,d,x,y,z,0...9) ...

PR a⇤, aad⇤, aaddd⇤ ...

SL [14, 14], [5, 16], [0, 20] ...

S

'a' [2, 2] 'd' [3, 3] '0' [2, 2] 'x' [2, 2] 'y' [3, 3] '8' [2, 2]

literal [5, 5], cypher [2, 2] literal [5, 5] cypher [2, 2]

[a,d][5, 5] [0,0][2, 2] [x,y][5, 5] [7,10][2, 2]

Table 4.1: Introductory example.

Prefix (i) approximates all the strings starting with the sequence of characters “aaddd”,
while segmentation (ii) approximates all the strings starting with a character from ‘a’ to ‘d’
repeated 5 times concatenated to the cypher ‘0’ repeated two times and so on. Note that
we write on boldface the segment character representations to distinguish them from the
segment bounds. The reduced product between these two values leads to an improvement
of the information precision tracked by each of the abstract elements. In particular, we can
safely add to the end of the prefix aaddd⇤ the sequence of cyphers 00 as the segmentation
approximates strings where the integer 0 occurs at position 5 and 6, obtaining aaddd00⇤.
Instead, the prefix clearly abstracts strings starting with a sequence of two ‘a’ followed
by a sequence of three ‘d’. Thus the first segment of the segmentation value can be split
accordingly, yielding to:

haaddd00⇤, [a,a][2, 2] [d,d][3, 3] [0,0][2, 2] [x,y][5, 5][7,10][2, 2]i (PR⌦ S)

Observe that in this way, both abstract components have been lifted to a more accurate
representation in the resulting reduced product.

7

4.2 Syntax

We briefly recall the string operators defined in [49], together with their intuitive semantics.
While mainstream programming languages support a wider set of operators, we will focus
our discussion and approach on this minimal set since they support the most important
computations over string values.

In particular, let str be a sequence of characters. new String(str) is the operator
that generates a new constant string. Also, let s1 and s2 be two strings; concat(s1,s2)
concatenates s1 and s2. Then, let s be a string and, let b and e be two integer values.
substringeb(s) returns the substring of s from the index b to the index e. Finally, let s be
a string and let c be a character. containsc(s) returns true if and only if the character c
appears in s.

4.3. Concrete Domain and Semantics 69

4.3 Concrete Domain and Semantics

In the following, we recall the concrete domain and semantics of [49]. We appropriately
modify the original notation to be consistent with the rest of this chapter.

4.3.1 Concrete Domain

Formally, let ⌃⇤ be the set of all possible finite sequences of characters introduced in
Section 2.1, a concrete domain is the complete lattice

�
P(⌃⇤),✓, ;,⌃⇤,\,[

�
where: P(⌃⇤)

denotes the powerset of ⌃⇤ (that is, the set of all string values), ✓ denotes the set inclusion
(i.e., the partial order between elements in P(⌃⇤)), the emptyset ; is the bottom element
of the lattice P(⌃⇤), ⌃⇤ is the top element of the lattice P(⌃⇤), the set intersection \ is
the greatest lower bound operand in P(⌃⇤), and the set union [is the least upper bound
operand in P(⌃⇤).

4.3.2 Concrete Semantics

We now define the concrete semantics S and B. Formally:

S : Stm⇥ ⌃⇤ [[P(⌃⇤)]k ! P(⌃⇤)

B : Stm⇥ P(⌃⇤) ! {true, false,>B}

where Stm denotes a generic string operators. In particular, the semantics S applies to new

String, concat and substring. Note that we deal with unary and binary operations then
k might be only 1 or 2. On the other hand, the semantics B applies to contains. The
concrete semantics is defined on the string operators introduced in Section 4.2 as follows:

• New String

S[[new String(�)]]() = {�}, that is, the semantics S, when applied to new String(�),
returns the singleton {�}.

• String concatenation

S[[concat]](S1, S2) = {�1 +�2 | �1 2 S1 ^�2 2 S2}. In this case, S1, S2 2 P(⌃⇤) and
let �1 + �2 denote the concatenation between the strings �1 and �2. The semantics
S returns a set containing all the possible concatenations between the strings which
belong to S1 and S2.

• Substring

S[[substringeb]](S) = {�b...�e | �1...�n 2 S ^ n � e ^ b  e} where S 2 P(⌃⇤). In
this case, the semantics S returns a set containing all the substrings from the b-th
to the e-th character (�b and �e respectively) of the strings which belong to S. If a
string is too short, the resulting set will not contain any element related to it.

70 Chapter 4. Combining String Domains

• Is contained

B[[containsc]](S) =

8
>>><

>>>:

true if 8� 2 S : c 2 char(�)

false if 8� 2 S : c /2 char(�)

>B otherwise

Let S 2 P(⌃⇤). In this case, B returns true if all the strings in S contain the character
c, false if c is not contained by any of the strings in S, otherwise it returns >B.

Example

1 ResultSet getPerishablePrices(String lowerBound) {

2 String query = "SELECT ’$’ || (RETAIL /100) FROM INVENTORY WHERE ";

3 if (lowerBound != null)

4 query += "WHOLESALE > " + lowerBound + " AND ";

5

6 query += "TYPE IN (" + getPerishableTypeCode () + ");";

7 return statement.executeQuery(query);

8 }

9 String getPerishableTypeCode () {

10 return "SELECT TYPECODE , TYPEDESC FROM TYPES WHERE NAME = ’fish ’ OR NAME

=’meat ’"

11 }

Listing 4.1: Java code building up and executing an SQL query

Listing 4.1 reports the source code of the example that will be used to explain how the
analysis with the basic string abstract domains works. This example is taken from Gould
et al. [86]. In particular, method getPerishablePrices aims at executing a SQL query
that selects, given a string representing a lowerBound, all the items from an inventory
that are either fish or meat and whose WHOLESALE is greater than the lowerBound if such
parameter is not null. This SQL query contains several errors:

1. '$'|| (RETAIL/100) concatenates the character $ with the numeric expression
RETAIL/100,

2. lowerBound is an arbitrary string that might contain non-numeric characters, and
therefore the comparison between WHOLESALE and its value might cause a runtime
error, and

3. the subquery returned by getPerishableTypeCode returns two columns instead of
one, and this could cause an error.

For the sake of readability we assign a shortcut to the string constants appearing in
Listing 4.1 (cf. Table 4.2).

4.4. String Abstract Domains 71

Name String constant

�1 "SELECT ’$’ || (RETAIL/100) FROM INVENTORY WHERE "

�2 "WHOLESALE > "

�3 " AND "

�4 "TYPE IN ("

�5 "SELECT TYPECODE, TYPEDESC FROM TYPES

WHERE NAME = ’fish’ OR NAME = ’meat’"

�6 ");"

Table 4.2: Shortcuts of string constants in Listing 4.1.

4.4 String Abstract Domains

In this section, we provide an overview of a suite of basic string abstract domains [11,
49] (cf. Appendix B for more details), which collect the set of possible string values. In
particular, we highlight and compare how the following string abstract domains track
content and shape information of strings.

4.4.1 String Length

The first domain we consider is the String Length abstract domain SL, as presented in
[11, 127]. This domain tracks, through a numerical interval [m, M] (such that m 2 N and
M 2 N [{1}), the minimum (i.e., m) and the maximum (i.e., M) length of the concrete
strings it represents.

The String Length abstract domain detects information about the shape of the concrete
strings it represents, i.e., their lengths. In particular, it precisely approximates only the
empty string. In all the other cases, the abstraction totally loses the information about
the content of the strings (e.g., the knowledge about characters order, repetitions, etc.).
Any abstract element different from the top element (>SL = [0,1]) leads to a finite set
of concrete strings whose cardinality depends on the cardinality of the alphabet ⌃ and on
the width of the abstract interval. SL can be implemented in a simple and efficient way
as operations on it run in constant time. SL is an infinite lattice, and it does not respect
the ACC, which is why it has been equipped with a widening operator.

Appendix B.1 reports the complete formalization and proof of soundness of this domain
and its semantics.

Example 4.2. The result of the analysis of the program in Listing 4.1, using SL, is in
Table 4.3. At pp.2, the variable query is associated to a state containing the abstraction
of �1. The latter is approximated by the length interval [|�1 |, |�1 |]. The input variable
lowerBound appears at pp.3 and, as it is unknown, it is abstracted by the top element
of the SL lattice, i.e., >SL = [0,1]. At pp.4, the variable query is associated to a

72 Chapter 4. Combining String Domains

Program point Variable SL

pp.2 query [|�1 |, |�1 |]
pp.3 lowerBound [0,1]
pp.4 query [|�1 | + |�2 | + |�3 |,1]
pp.5 query [|�3 |,1]
pp.6 query [|�3 | + |�4 | + |�5 | + |�6 |,1]

Table 4.3: Program analysis with SL.

state containing the concatenation of the abstractions of �1, �2, lowerBound and �3, i.e.,
[|�1 | + |�2 | + 0 + |�3 |, |�1 | + |�2 | + 1 + |�3 |] = [|�1 | + |�2 | + |�3 |,1]. Then,
at pp.5, the least upper bound (tSL) between the abstract value of query after pp.2 and
after pp.4 is computed, i.e., [|�1 |, |�1 |]tSL [|�1 | + |�2 | + |�3 |,1] = [min(|�1 |, |�2 |, |�3 |
), max(| �1 |,1)] = [| �3 |,1]. Finally, at pp.6, query is associated to a state containing
the concatenation of the abstractions of itself after pp.5 and the strings �4, �5 and �6.
Thus, at the end, query will have a length between |�3 | + |�4 | + |�5 | + |�6 | and 1.

7

4.4.2 Character Inclusion

The Character Inclusion abstract domain CI, as defined in [49], uses a pair of sets (C, MC),
to track the characters that are certainly contained (i.e., C) and those that might be
contained (i.e., MC) by the concrete strings it represents.

The Character Inclusion abstract domain detects information about the content of
the concrete strings it represents. Like the String Length abstract domain, also CI can
precisely approximate the empty string only, and it makes it possible to infer the minimum
length of the strings it abstracts, which corresponds to the cardinality of the set C. In all
the other cases, the abstraction loses the information about concrete strings shape. Indeed,
similarly to SL, CI does not preserve the information about the order of appearance of
the characters, characters repetitions, and other relevant string properties. Any abstract
element different from the bottom element (?CI) leads to an infinite set of concrete strings.
CI is not computationally expensive, and it has finite height; consequently, the termination
of the analysis is guaranteed by its least upper bound (used as widening operator).

Appendix B.2 reports the complete formalization and proof of soundness of this domain
and its semantics.

Example 4.3. The result of the analysis of the program in Listing 4.1, using CI, is in
Table 4.4. At pp.2, the variable query is associated with a state containing the abstraction
of �1. The latter is approximated by a pair of set of characters, i.e., (C1, MC1) with
C1 = MC1. The input variable lowerBound is abstracted by the top element of the CI
lattice, i.e., >CI = (;,⌃). At pp.4, the variable query is associated with a state containing
the concatenation of the abstractions of �1, �2, lowerBound and �3, i.e., (C1 [C2 [; [

4.4. String Abstract Domains 73

Program point Variable CI

pp.2 query (C1, MC1)
pp.3 lowerBound (;,⌃)
pp.4 query (C1 [C2 [C3,⌃)
pp.5 query (C1,⌃)
pp.6 query (C1 [C4 [C5 [C6,⌃)

Table 4.4: Program analysis with CI.

C3, MC1 [MC2 [⌃ [MC3) = (C1 [C2 [C3,⌃). Then, at pp.5, the least upper bound
(tCI) between the abstract value of query after pp.2 and after pp.4 is computed, i.e.,
(C1, MC1) tCI (C1 [C2 [C3,⌃) = (C1 \ (C1 [C2 [C3), MC1 [⌃) = (C1,⌃). Finally, at
pp.6, query is associated with a state containing the concatenation of the abstractions of
itself after pp.5 and the strings �4, �5 and �6. Thus, at the end, query will surely contain
the characters in �1, �4, �5 and �6 and it will probably contain any character.

7

4.4.3 Prefix and Suffix

The Prefix abstract domain PR, presented in [49], approximates a set of concrete strings
through a sequence of characters whose last element is ⇤, that denotes any possible suffix
string (the empty string " is included). Instead, the Suffix abstract domain SU for string
values mirrors the Prefix domain, and its notation and all its operators are dual to those
of PR. The suffix domain abstracts strings through their suffix preceded by ⇤, which
denotes any possible prefix string, " included. Moreover, Amadini et al. [11] discussed the
Prefix-Suffix abstract domain PS, which approximates string values by their prefix and
suffix simultaneously. Again, the notation and the operators of this domain can be easily
induced by the Prefix and the Suffix domains. Indeed, the Prefix-Suffix domain abstracts
strings through a pair of strings (p, s) which concretizes to the set of all possible strings
having p as prefix and s as suffix (note that here ⇤ is not included in the definition).

The domains discussed above partially detect both content and shape of the concrete
string they represent. Indeed, PR, SU, and PS can track part of the strings structure,
such as the initial part, the ending one or both of them, the minimum strings length, the
characters surely contained, etc. Again, any abstract element different from the bottom
element (?PR, ?SU and ?PS respectively) represents an infinite set of strings. Even though
operations on these domains can be computed in linear time, they suffer from having an
infinite height, e.g., given any prefix we can always add a character at the end of it,
obtaining a new prefix. However, the domains respect the ACC, and the termination of
the analysis is ensured.

Appendix B.3 contains the complete formalization and proof of soundness of the Prefix
domain. Costantini et al. [49] provides this on the Suffix domain, while the one for PS can

74 Chapter 4. Combining String Domains

Program point Variable PR

pp.2 query �1⇤
pp.3 lowerBound ⇤
pp.4 query �1⇤
pp.5 query �1⇤
pp.6 query �1⇤

Table 4.5: Program analysis with PR.

be obtained by the pointwise application of the operators and semantics on the Cartesian
product of PR and SU.

Example 4.4. The result of the analysis of the program in Listing 4.1, using PR, is in
Table 4.5. At pp.2, the variable query is associated with a state containing the abstraction
of �1. The latter is approximated by the prefix �1⇤. The input variable lowerBound is
abstracted by the top element of the PR lattice, i.e., >PR = ⇤. At pp.4, the variable
query is associated with a state containing the concatenation of the abstractions of �1,
�2, lowerBound and �3, i.e., �1 ⇤ +PR �2 ⇤ +PR ⇤ +PR �3⇤ = �1⇤. Then, at pp.5, the
least upper bound (tPR) between the abstract value of query after pp.2 and after pp.4

is computed, i.e., �1⇤ tPR �1⇤ = �1⇤. Finally, at pp.6, query is associated with a state
containing the concatenation of the abstractions of itself after pp.5 and the strings �4, �5

and �6. Thus, at the end, query will for sure begin with �1 followed by any possible suffix
string ⇤.

7

4.5 Segmentation Abstract Domain

In Section 3.2 we recalled FunArray, i.e., the array segmentation abstract domain functor
by Cousot et al. [57]. Since the order of characters in strings is fundamental to track
precise information on these values, we instantiate the FunArray abstract domain for string
analysis. In the following, we slightly modify the notation introduced in Section 3.2 to
highlight the fact that we are instantiating FunArray over strings.

4.5.1 String Concrete Representation

Let & 2 Rs = S ! S be concrete string environments mapping string variables s 2 S to
their instrumented values &(s) 2 S , Rv⇥E⇥E⇥ (Z ! (Z⇥⌃)). Thus, a string variable
s is represented by a quadruple &(s) = (⇢, ls, hs, As) 2 S, such that:

• ⇢ 2 Rv , X! V are concrete scalar variable environments mapping variables x 2 X

to their values [[x]]⇢ 2 V.

4.5. Segmentation Abstract Domain 75

• E is the expressions domain, built from constants and scalar variables, through math-
ematical unary and binary operators, and ls, hs 2 E. The values of ls and hs ([[ls]]⇢
and [[hs]]⇢) denote respectively the lower and the upper limit of the string variable s.

• As is a function mapping an index i 2 [[[ls]]⇢, [[hs]]⇢) to the pair hi, ci of the index i
and the corresponding string character c 2 ⌃.

Example 4.5. Let s be a string variable initialized to the value ''bunny''. The concrete
value of s is given by the tuple &(s) = (⇢, 0, 5, As), where the value of the lower and
the upper bound s is inferred from the context and the function As maps an index i 2
[0, 5) to the pair (index, indexed character value). Thus, the codomain of As is the set
{(0, 'b'), (1, 'u'), (2, 'n'), (3, 'n'), (4, 'y')}.

7

4.5.2 Abstract Domain

The Segmentation abstract domain functor S for strings is a function from the parameter
abstract domains B, C and R, where B and R are, in turn, abstract domain functors.
The segment bound abstract domain functor B is a function of the expression abstract
domain E(X) which depends on the variable abstract domain X, leading to the instanti-
ated segment bound abstract domain B(E(X)). C is the string element abstract domain.
Finally, R is the variable environment abstract domain functor which depends on X too,
leading to the variable environment abstract domain R(X). Precisely:

• The variable abstract domain X encodes program variables.

• The variable environment abstract domain functor R depends on X, leading to the
variable environment abstract domain R(X). Elements in R (shorthand for R(X))
are abstract variable environments ⇢ 2 R = X! V, where the value abstract domain
V approximates properties of values in V. R approximates sets of concrete variable
environments. Formally, the concretization is �R : R ! P(Rv), where Rv = X ! V
(cf. Section 4.5.1).

• The expression abstract domain functor E depends on X, leading to the expression
abstract domain E(X). Elements in E (shorthand for E(X)) are symbolic expressions
E 2 E(X), restricted to a canonical normal form, which depend on variables in X
(notice that ?E,>E 2 E). E approximates program expressions. Formally, the
concretization is �E : E ! R ! P(V). Moreover, E is equipped with sum (�E),
subtraction (E) and comparison (E) operations. The comparison result depends
on the normal form of the expressions. In general, two expressions are said to be
comparable if and only if their comparison returns true.

The choice of the expression canonical form is let free.

76 Chapter 4. Combining String Domains

Algorithm 3 align procedure.

Input: s1, s2

Output: s1, s2 (possibly modified) or error

1: i 1

2: k1 0; k2 0

3: if s1 6= ?S ^ s2 6= ?S then

4: while i  numSeg(s1) + k1 ^ i  numSeg(s2) + k2 do

5: if e'.b.s1[i] =E e'.b.s2[i] then

6: i++
7: else if e'.b.s2[i] E e'.b.s1[i] then

8: e'.b.s1[i] e'.b.s2[i]

9: s1[i].append(c.s1[i][0, e'.b.s1[i] E e'.b.s2[i]])

10: k1++, i++
11: else if e'.b.s1[i] E e'.b.s2[i] then

12: e'.b.s2[i] e'.b.s1[i]

13: s2[j].append(c.s2[i][0, e'.b.s2[i] E e'.b.s1[i]])

14: k2++, i++
15: else

16: return error (s1 and s2 can not be aligned)

17: else

18: return error (s1 and s2 can not be aligned)

19: return s1, s2

Note that in the following examples we will use the expression normal form x + k
where k 2 Z and x 2 X[{v0}, with v0 being a special variable whose value is always
0 and we omit it.

• The string element abstract domain C approximates sets of pairs (index, indexed
string element), where c 2 C. Formally, the abstraction is ↵C : P(Z⇥⌃) ! P(⌃) !
C, i.e., elements in P(Z ⇥ ⌃) may be first abstracted to P(⌃) so to perform a non-
relational analysis. The concretization is �C : C! P(Z⇥ ⌃).

The choice of C is let free.

• The segment bound abstract domain functor B is a function of the expression
abstract domain E, leading to the instantiated segment bound abstract domain
B(E). Elements in B (shorthand for B(E)) are symbolic intervals b 2 B, such that
b = [e, e'], where e, e' 2 {E \ {?E,>E}} and e E e'. Formally, the concretization
is �B : B! P(Rv).

Elements of S belong to the set S =
��

C ⇥ B
�k | k � 1

[{?S,>S}, where ?S and

>S are special elements denoting the bottom/top element of S. In particular, elements of
S are in the form of s = c1b1 . . . cnbn, where a segment cibi (with bi = [ei, e'

i]) abstracts
a sequence of equal characters whose length goes from ei to e'

i.

4.5. Segmentation Abstract Domain 77

Example 4.6. Consider the string variable of the Example 4.5. Its value in the Segmen-
tation abstract domain S is 'b' [1, 1] 'u' [1, 1] 'n' [2, 2] 'y' [1, 1], where C is the constant
propagation domain for characters.

7
Before defining the join and the meet operators of the Segmentation domain we present

the following helping procedures: align (cf. Algorithm 3) and fold (cf. Algorithm 4).
Algorithm 3 aligns two segmentations if they are both different from the bottom element

of S and comparable. The comparability is actually restricted to the segment bound upper
limits of each pair of corresponding segments under consideration during the alignment
procedure. Let s1, s2 2 S be different from ?S (line 3), the alignment procedure starts
analysing the two segmentations from their leftmost segments, i.e., s1[1] and s2[1], and
continues along their number of segments (line 4), i.e., numSeg(s1) and numSeg(s2), which
may change during the procedure, if all the corresponding segment bound upper limits
under consideration are comparable. If this is the case and the segment bound upper
limits are equal, then the procedure moves to the next segments; otherwise, if one of the two
segment bound upper limits is greater or equal than the other, the first is modified according
to the latter segment bound upper limit (line 10 o line 14), and the “remaining part” is
appended to the previously modified segment (line 11 or line 15). In the case in which one
or both the input segmentations are equals to ?S or if during the alignment procedure two
corresponding segment bound upper limits are not comparable, the algorithm stops, and
it returns an error message.

Example 4.7. Consider the segmentations:

• s1 = 'a' [0, 4] 'b' [1, 1] 'c' [0, x]

• s2 = 'a' [2, 5 + x]

where the segment predicate abstract domain C is the constant propagation domain for
characters and x is an integer variable whose value is greater than or equal to 0. Algorithm
3 on s1 and s2 is applied as follows: starting from i equal to 1, we enter into the loop. The
first segment bound upper limit of s1 is strictly smaller than the first segment bound upper
limit of s2 (for any value of x), i.e., e'.b.s1[1] <E e'.b.s2[1] (line 11), then the value of
e'.b.s1[1] is assigned to e'.b.s2[1] (line 12), and the segment c.s2[1][0, e'.b.s2[1] Ee'.b.s1[1]]
is appended to s2[1] (line 13). Thus, after the first iteration of the for loop, s1 is unchanged
and s2 is updated. We obtain:

• s1 = 'a' [0, 4] 'b' [1, 1] 'c' [0, x]

• s2 = 'a' [2, 4] 'a' [0, 1 + x]

78 Chapter 4. Combining String Domains

Algorithm 4 fold procedure.

Input: s

Output: s (possibly modified)

1: i 1

2: while i  numSeg(s) do

3: if c.s[i] =C c.s[i+1] ^ e.b.s[i+1] =E 0 then

4: b.s[i] b.s[i] + b.s[i+1]

5: s.remove(s[i+1])

6: else

7: i++
8: return s

The counter i is increased by 1 and, since e'.b.s1[2] E e'.b.s2[2] (line 11), to the second
segment bound upper limit of s2 is assigned the value of e'.b.s1[2] (line 12) and the segment
c.s2[2][0, e'.b.s2[2] E e'.b.s1[2]] is appended to s2[2] (line 13). After the second iteration
of the for loop, s1 is still unchanged and s2 is updated as follows:

• s1 = 'a' [0, 4] 'b' [1, 1] 'c' [0, x]

• s2 = 'a' [2, 4] 'a' [0, 1] 'a' [0, x]

Again the counter i is increased by 1. The third segment bound upper limits of s1 and s2

are equal (line 5), i.e., e'.b.s1[3] =E e'.b.s2[3], i is increased by 1, but, now, they exceed the
number of segments of both s1 and s2. Thus the final result is the pair of segmentations
obtained after the second iteration of the while loop.

7
The alignment procedure (cf. Algorithm 3) is used to facilitate the computation of the

join tS and the meet uS. The latter may lead to segmentations that need to be taken
back to their normal form, i.e., where there are no consecutive segments with the same
segment abstract predicate c. Thus, Algorithm 4 brings a segmentation to its normal form
and returns it, merging consecutive segments sharing the same segment abstract predicate
(line 4). The join and meet operators and the partial order of S are defined as follows:

• uS represents the meet operator between two string segmentations. The meet be-
tween two segmentations s1 and s2 is computed on their alignment if i) align(s1, s2)
raises no error, and ii) one of the two aligned segmentations has more segments than
the other, the exceeding segments have to be possibly empty, i.e., their lower limit
has to be equal to 0; otherwise ?S is returned. Formally, let s'

1 and s'
2 be the results

of align(s1, s2) then:

s1 uS s2 =

8
><

>:

fold(s'
1 uS s'

2) see (1)

?S otherwise

4.5. Segmentation Abstract Domain 79

(1) s1 uS s2 = fold(s'
1 uS s'

2) if the following conditions hold:

⇤ align(s1, s2) 6= error

⇤ given j, k 2 [1, 2] with j 6= k, if numSeg(s'
j) > numSeg(s'

k) then,

8i 2 [numSeg(s'
k) + 1, numSeg(s'

j)] of s'
j : ei =E 0

The meet between two aligned segmentations is performed so as the string character
abstract domain meet (uC) and the bound abstract domain meet (uB) are applied
segment-wise. Notice that if the number of segments of s'

1 (numSeg(s'
1)) is strictly

greater than the number of segments of s'
2 (numSeg(s'

2)) then all the exceeding seg-
ments of s'

1 are not preserved by uS (the vice-versa is similar). Finally, we compute
the fold of the meet between s'

1 and s'
2.

• tS represents the join operator between two string segmentations. The join between
two segmentations s1 and s2 is computed on their alignment if align(s1, s2) does not
raise an error; if only one of the two segmentations is equal to ?S then their join
returns the one which is different from the bottom element; if both s1 and s2 are the
bottom element then their join returns ?S; otherwise >S is returned. Formally, let
s'
1 and s'

2 be the results of align(s1, s2) (cf. Algorithm 3) then:

s1 tS s2 =

8
>>>>>>>>>>><

>>>>>>>>>>>:

fold(s'
1 tS s'

2) if align(s1, s2) 6= error

s1 if s2 = ?S ^ s1 6= ?S

s2 if s1 = ?S ^ s2 6= ?S

?S if s1 = ?S ^ s2 = ?S

>S otherwise

The join between two aligned segmentations is performed so as the string character
abstract domain join (tC) and the bound abstract domain join (tB) are applied
segment-wise. If the number of segments of s'

1 is strictly greater than the number of
segments of s'

2 then all the exceeding segments of s'
1 are preserved by tS, but their

segment bound lower limit is set to 0 (the vice-versa is similar).

• Let s1 and s2 be two abstract values in the Segmentation domain. The partial order
on S is defined as follows: 8s 2 S : ?S vS s^ s vS >S. Otherwise, if both s1 and s2

are different from ?S and >S then, s1 vS s2 , s1 tS s2 = s2

Concretization

The concretization function on the segmentation abstract domain �S : S ! R ! P(S)
maps an abstract element to a set of strings as follows: �S(?S) = ;, �S(>S) = S, while

80 Chapter 4. Combining String Domains

it is the set of all possible sequences of characters derivable from a segmentation abstract
predicate. The formalization below follows the one defined in Section 11.3 of [57]. Let
�R : R ! P(Rv) be the concretization function for the variable abstract domain and let
�C : C! P(Z⇥⌃) be the concretization function for the string elements abstract domain
(cf. Section 4.5.2). Then �?S denotes the concretization of a generic segment cb where
b = [e, e'], formally:

�?S(cb)⇢ = {(⇢, l, h, A) | ⇢ 2 �R(⇢) ^ [[l]]⇢ = 0 ^ 9e 2 [[[e]]⇢, [[e']]⇢] :
[[h]]⇢ = e ^ 8i 2 [0, e – 1) : A(i) 2 �C(c)}

where ⇢ 2 R. Then, the concretization function of a string segmentation is as follows:

�S(c1b1...cnbn) = {(⇢, l, h, A) 2
n

+S
i=1

�⇤S(cibi) | [[l]]⇢ = 0 ^ [[h]]⇢ =
nP

i=1

ei}

and �S(?S) = ;
Note that a segmentation abstract predicate is valid if the upper bounds of segments

that contain the bottom element in an abstract domain C are possibly empty; otherwise,
a string segmentation is invalid. The concretization function of an invalid segmentation
maps the latter abstract value to the empty-set.

Theorem 4.1. Let X ✓ S such that all elements in X can be aligned and their meet does
not result in an invalid segmentation. Then, it holds that:

�S

✓d
S

s2X
s
◆

=
T

s2X �S(s)

Proof. The following inference chain holds:

�S

✓l

S
s2X

s
◆

= �S(s?) by definition of uS

where s? denotes the result of the meet between the segmentations s in X

= {(⇢, l, h, A) 2
n

+
S

i=1

�⇤S(cibi) | [[l]]⇢ = 0 ^ [[h]]⇢ =
nX

i=1

ei} by definition of �S

=
\

s2X

{(⇢, l, h, m) 2
n

+
S

i=1

�⇤S(cibi) | [[l]]⇢ = 0 ^ [[h]]⇢ =
nX

i=1

ei}

=
\

s2X

�S(s) by definition of �S

Observe that if the hypotheses of Theorem 4.1 are not satisfied, i.e., if either the
abstract elements in X can not be aligned or their meet leads to an invalid segmentation,

then �S

✓d
S

s2X
s
◆

= �S(?S) = ;, and
T

s2X
�S(s) = ;

4.5. Segmentation Abstract Domain 81

Abstraction

Let X 2 P(S) be a set of concrete string values. The abstraction function on the segmen-
tation abstract domain ↵S maps X to ?S in the case in which X is equal to the empty set,
otherwise to the segmentation that over-approximates values in X.

To summarize, S abstracts strings by a sequence of segments in an abstract domain C
and a segment bound in an abstract domain B. The segments are computed according to
how the string content is manipulated. The value of a string segmentation abstract pred-
icate depends on three parameters: the abstract domain representing symbolic segment
bound expressions, the domain abstracting the pairs (index, character), and the abstract
domain assigning values to segment bound expressions [57]. Thus, S can be instantiated
with different abstract domains, achieving different levels of precision and costs of the
analysis. Note that the segmentation abstract domain has infinite height as a string may
have infinitely symbolic segments, and a segment might take successive strictly increas-
ing abstract values. Therefore, to guarantee the convergence of the analysis, we define a
widening similarly to the one presented by Cousot et al. in [57]. Informally, if the num-
ber of segments exceeds a certain threshold during the alignment procedure between two
segmentations, the widening transforms those segmentations into >S. Note that preciser
widening operator may be defined, possibly together with a narrowing operator, to improve
the accuracy of the analysis.

4.5.3 Abstract Semantics

In Section 4.2 we recalled the syntax of some operations of interest (i.e., newString, concat,
substring, and contains) presented in [49]. Moreover, in Section 4.3.2 we reported their
concrete semantics. Below, we formally define their approximation in the string segmenta-
tion abstract domain S. The semantics operators SS and BS are the abstract counterparts
of S and B respectively (cf. Section 4.3.2).

• New string

Let � be a string value. The semantics SS, when applied to new String(�), returns
the segmentation of the string constant �. Formally,

SS[[new String(�)]]() = s

s abstracts, in an abstract domain C, the sequences of equal characters in �. Notice
that each segment bound of s will have equal lower and upper limits in an abstract
domain E.

82 Chapter 4. Combining String Domains

• String concatenation

Let s1 (i.e., c1,1b1,1 . . . c1,n,b1,n) and s2 (i.e., c2,1b2,1 . . . c2,n,b2,n) be two abstract
values in S. The semantics SS, applied to concat(s1, s2) returns the concatenation
of the two input segmentations. Formally,

SS[[concat]](s1, s2) = s1 +S s2

Note that if the last segment of s1 and the first segment of s2 share the same abstract
character then these segments are unified. More precisely, given c1,1b1,1...c1,n,b1,n

and c2,1b2,1 . . . c2,n,b2,n, if c1,n =C c2,1 then their concatenation is equal to

c1,1b1,1 . . . c[e1,n �E e2,1, e'
1,n �E e'

2,1]c2,2b2,2 . . . c2,n,b2,n

where c represents the character contained in c1,n and c2,1.

• Substring

Let s (i.e., c1b1 . . . cnbn) be an abstract value in S. The semantics SS, applied to
substringeb(s) returns the subsegmentation of s from the segment whose associated
interval on the indexes that may refer to it contains b to the segment whose associated
interval on the indexes that may refer to it contains e, otherwise it returns >S.
Formally,

SS[[substringeb]](s) =
8
>>>>>>><

>>>>>>>:

ckbk . . . cjbj if 9hckbk, [i, i']ki, hcjbj, [i, i']ji 2 index(s) :

k = min({i | hcibi, [i, i']ii 2 index(s) ^ b 2 [i, i']i}) ^

j = max({i | hcibi, [i, i']ii 2 index(s) ^ e 2 [i, i']i})

>S otherwise

where index(s) is the function which associates each segment of s to the interval
of the index abstract values that may refer to it, i.e., index(s) = {hcibi, [i, i']ii | i 2
[1, numSeg(s)]}. For instance, consider the segmentation s = 'a' [0, 2] 'b' [4, 4] 'c' [0, 2],
index(s) = {h'a' [0, 2], [0, 1]i, h'b' [4, 4], [0, 5]i, h'c' [0, 2], [4, 7]i} and the subsegmenta-
tion of s from the index 2 to the index 5 is 'b' [4, 4] 'c' [0, 2].

• Is contained

Let s (i.e., c1b1...cnbn) be an abstract value in S. The semantics BS, applied to
containsc(s) returns (i) true if there exists a segment abstract predicate in s which
approximates only the character c and its segment bound lower limit is different from
zero, (ii) false if does not exist a segment abstract predicate in s which approxi-
mates only the character c and its segment bound lower limit is different from zero,
otherwise (iii) >B. Formally,

4.5. Segmentation Abstract Domain 83

BS[[containsc]](s) =

8
>>>><

>>>>:

true if 9ci[ei, e'
i] 2 s : charC(ci) = {c} ^ ei 6=E 0

false if @ci[ei, e'
i] 2 s : charC(ci) = {c} ^ ei 6=E 0

>B otherwise

where charC(c) = {c : hi, ci 2 �C(c)}.

4.5.4 Soundness

We prove the soundness of the Segmentation abstract semantics defined above.

Theorem 4.2. SS is a sound over-approximations of S. Formally,

�S(SS[[Stm]](s)) ◆ {S[[Stm]](�) | � 2 �S(s)}

Proof.

We prove the soundness separately for each operator.

• Consider the new String operator and let � be a sequence of characters. We have
to prove that,

�S(SS[[new String(�)]]()) ◆ {S[[new String(�)]]()}

This holds by the definitions of SS and �S.

• Consider the concat operation and let s1, s2 2 S. We have to prove that,

�S(SS[[concat]](s1, s2)) ◆ {S[[concat]](�1,�2) | �1 2 �S(s1) ^ �2 2 �S(s2)}

Let � be a generic element in {S[[concat]](�1,�2) | �1 2 �S(s1) ^ �2 2 �S(s2)},
that represents any possible concatenation between a string taken from �S(s1) and
a string taken from �S(s2). Therefore � belongs to �S(SS[[concat]](s1, s2)) because
SS[[concat]](s1, s2) = s1 +S s2, by definition of SS. Indeed �S(s1 +S s2) contains all
the strings which come from the concatenation of s1 and s2, by definition of �S.

• Consider the substring operation and let s 2 S. we have to prove that,

�S(SS[[substringeb]](s)) ◆ {S[[substringe
b]](�) | � 2 �S(s)}

We have two possible cases:

– If both b and e belong to an interval of the indexes associated with each segment
of a segmentation s, then SS[[substringeb]](s) returns the subsegmentation of s
from the leftmost segment whose associated indexes interval contains b to the

84 Chapter 4. Combining String Domains

rightmost segment whose associated indexes interval contains e, by definition
of SS. This means that any of the concrete strings in �S(s) contain the sub-
string from the index b to the index e, by definition of S and it follows that
any of the substrings in {S[[substringeb]](�) | � 2 �S(s)} is also contained in
�S(SS[[substringeb]](s)).

– Otherwise SS[[substringeb]](s) returns >S that over-approximates any possible
results of the concrete semantics.

Theorem 4.3. BS is a sound over-approximations of B. Formally,

�S(BS[[Stm]](s)) ◆ {B[[Stm]](�) | � 2 �S(s)}

Proof.

Consider the contains operator and let s 2 S. We have to prove that,

�S(BS[[containsc]](s)) ◆ {B[[containsc]](�) | � 2 �S(s)}

We have three possible cases:

• If any concrete string in �S(s) contains the character c it means that c is propagated
in a segmentation s by an abstract domain C and it appears in a segment whose
segment bound lower limit is different from zero, by definition of BS. Then both the
concrete and the abstract semantics return true.

• If any concrete string in �S(s) does not contain the character c it means that c is
propagated in a segmentation s by an abstract domain C and it appears in a segment
whose segment bound lower limit is equal to zero, or it is not propagated at all, by
definition of BS. Then both the concrete and the abstract semantics return false.

• Otherwise, if not all the concrete strings in ↵S(s) contain the character c it means that
c is over-approximated in a segmentation s by an abstract domain C, by definition
of BS. Then both the concrete and the abstract semantics return >B.

4.6 Refined String Abstract Domains

To obtain our refined string abstract domains, we exploit the notion of Granger product
[87]. The Granger product is a binary operator between abstract domains, based on two
refinement operators (cf. 2.6.4). Let D1 and D2 be two abstract domains. The Granger
operators iteratively lift the information of D1 using the information of D2, and vice-versa,
until the smallest reduction is obtained. We will show that the reductions we will provide

4.6. Refined String Abstract Domains 85

in the next sections can be achieved without iterating the refinement operators. Formally,
our Granger operators are as follows:

• refineD2
: D1 ! D1

• refineD1
: D2 ! D2

Given two abstract elements d1 and d2, which belong to D1 and D2 respectively, a
precondition to compute the reduced product between d1 and d2 (i.e., d1 ⌦ d2) is that
there must not be inconsistency (Inc) between them, i.e., �D1

(d1) \ �D2
(d2) 6= ;. In

case of inconsistency, the reduced product leads to the pair of bottom elements of their
respective abstract domains, formally:

d1 ⌦ d2 =

8
><

>:

(?D1
,?D2

) if Inc(d1,d2)

(refined2
(d1), refined1

(d2)) otherwise

4.6.1 Meaning of Refinement

Before presenting our refined string abstract domains, we intuitively sketch what refine-
ment means for any of the domains involved in the reductions. An improvement of the
precision of an abstract element in (i) String Length domain means decreasing its range,
(ii) Character Inclusion domain means either increasing the cardinality of the set of cer-
tainly contained characters and/or decreasing the cardinality of the set of maybe contained
characters, (iii) Prefix domain means increasing the length of its sequence of characters,
concatenating one or more characters to its end, and (iv) Segmentation domain means
either increasing the precision of its segment abstract predicates and/or decreasing the
range of the segment bounds.

4.6.2 Combining Segmentation and String Length Domains

The first combination involves the abstract elements s and n, which belong to the Seg-
mentation and the String Length abstract domains, respectively, where n denotes the
interval [m, M] introduced in Section 4.4.1 (cf. Appendix B.1 for more details). As men-
tioned above, we define the reduced product between s and n in terms of two refinement
operators, improving the approximation reached by one domain through the other and
vice-versa. Thus, below, we introduce the notion of inconsistency between two abstract
elements in the Segmentation and in the String Length domains and the definitions of both
refinement operators involved in the reduction of the latter abstract elements. Finally, we
prove the soundness of the reduction operators we present. We will follow this line-up also
for the reductions we will present later in the chapter.

In the following we denote by minLenS(s) the minimal length of a segmentation abstract
predicate s, i.e., the sum of all its segment lower bounds ei, and by maxLenS(s) its maximal

86 Chapter 4. Combining String Domains

length, i.e., the sum of all its segment upper bounds e'
i. Formally, let s = (ci[ei, e'

i])ni=1

with n � 1 (shortcut for c1[e1, e'
1]...cn[en, e'

n]) then,

• minLenS(s) =

8
><

>:

nP
E

i=1

ei if 8i 2 s : ei does not contain variables with constant value

0 otherwise

• maxLenS(s) =

8
><

>:

nP
E

i=1

e'
i if 8i 2 s : e'

i does not contain variables with constant value

>E otherwise

Definition 4.1 (Inconsistency between Segmentation and String Length). Let s and n be
two abstract elements in the Segmentation and in the String Length domains, respectively.
Moreover, let �S and �SL be the concretization functions of the domains just mentioned.
There is inconsistency between s and n when:

�S(s) \ �SL(n) = ;.

4

Lemma 4.1 (Inconsistency between Segmentation and String Length). Let s and n be
two abstract elements in the Segmentation and in the String Length domains, respectively.
If one of the following conditions holds, then s and n are inconsistent.

1. If the intersection between the interval from the minimal to the maximal length of s
and n is empty, then s and n are inconsistent. Formally:

[minLenS(s), maxLenS(s)] \ [m, M] = ;) Inc(s,n)

2. If one of the two abstract elements is the bottom element of their lattice, then s and
n are inconsistent. Formally:

s = ?S or n = ?SL) Inc(s,n)

Proof.

Case 1 The segmentation s approximates strings having length that might vary from
minLenS(s) to maxLenS(s). The interval n approximates all the possible strings
having length that ranges from m to M. If the intersection of the two length
intervals is empty, s and n are abstracting strings of different length. Thus, the
intersection of the concrete string sets represented by s and n will be empty.

Case 2 Trivial, as the concretization of bottom elements is the empty set.

4.6. Refined String Abstract Domains 87

Definition 4.2 (Segmentation refinement through String Length). Let s and n be two
abstract elements in the Segmentation and in the String Length domains, respectively. We
define refinen(s) as the refinement operator describing how the information tracked by n
improves the one from s. Formally, refinen(s) = s⇤ where:

a. if s contains only one segment and its segment bound lower limit is smaller than or
equal to the one of n, then the refinement means substituting ei with m. Formally:

s = c1[e1, e'
1] ^ e1 E m) s⇤ = s[e1/e1

⇤]

where e1
⇤ = m.

b. if s contains a single segment and its bound upper limit is greater than or equal to
the one of n, then the refinement means substituting e'

i with M. Formally:

s = c1[e1, e'
1] ^ M E e'

1) s⇤ = s[e'
1/e1

⇤]

where e1
⇤ = M.

Conditions a. and b. can occur at the same time. In this case, both refinements apply.
Observe that the order of application is not relevant.
If neither a. nor b. occur, then s⇤ = s

4

Example 4.8. Consider s = 'a' [3, 5 + x] where C is the constant propagation domain for
characters and n = [4, 7]. Moreover, assume that the value of x is greater than 4. The
refinement of s through n is as follows:

refinen(s) = s[e'
1/e1

⇤]

b1
⇤ = 7

= 'a' [3, 7]

Indeed the segment bound of s has the upper limit equal to 5+x where x is assumed to be
an integer variable whose value is greater than 4, and the maximal length of the strings
approximated by n is 7. So we could substitute the segment bound upper limit of s with
the upper limit of n, as by case b. of Definition 4.2.

7
Definition 4.3 (String Length refinement through Segmentation). Let s and n be two
abstract elements in the Segmentation and in the String Length domains, respectively. We
define refines(n) as the refinement operator describing how the information tracked by s
improves the one from n. Formally, refines(n) = n⇤ where:

88 Chapter 4. Combining String Domains

a. if the lower limit of n is smaller than the the minimal length of s, then the refinement
means substituting m with minLenS(s). Formally:

m <E minLenS(s)) n⇤ = n[m/minLenS(s)]

b. if the upper limit of n is greater than the maximal length of s, then the refinement
means substituting M with maxLenS(s). Formally:

maxLenS(s) <E M) n⇤ = n[M/maxLenS(s)]

Conditions a. and b. can occur at the same time. In this case both refinements apply.
Observe that the order of application is not relevant.
If neither a. or b. occur then n⇤ = n.

4

Example 4.9. Consider s = 'a' [3, 7] 'b' [1, 5] 'c' [1, 1 + x] (with the assumptions of the
example above) and n = [4, 7]. The refinement of n through s is as follows:

refines(n) = n[m/minLenS(s)]

minLenS(s) = 5

= [5, 7]

Indeed, the lower limit of n is strictly smaller than the minimum length of s. So we could
replace the lower limit of n with minLenS(s), as by case a. of Definition 4.3.

7
Definition 4.4 (Reduced product between Segmentation and String Length). Let s and n
be two abstract elements in the Segmentation and in the String Length abstract domains,
respectively. Moreover, consider the refinement operators presented in Definitions 4.2 and
4.3. The reduced product of s and n is obtained by applying refinen and refines as follows:

s⌦ n = (refinen(s), refines(n))

4

Lemma 4.2 (Soundness of Segmentation refinement). Let s and n be two abstract ele-
ments in the Segmentation and in the String Length abstract domains, respectively. More-
over, let �S and �SL be the concretization functions of the domains just mentioned, and
let refinen(s) = s⇤. The soundness of the Segmentation refinement can be expressed by:

� 2 [�S(s)\�S(s⇤)]) � /2 �SL(n)

4.6. Refined String Abstract Domains 89

Proof.

The set [�S(s)\�S(s⇤)] contains representations of strings whose length does not belong to
the interval n, either in case a. and in case b. of Definition 4.2. Thus, these strings do not
belong to �SL(n), by definition of �SL.

Lemma 4.3 (Soundness of String Length refinement). Let s and n be two abstract ele-
ments in the Segmentation and in the String Length abstract domains, respectively. More-
over, let �S and �SL be the concretization functions of the domains just mentioned, and
let refines(n) = n⇤. The soundness of the String Length refinement can be expressed by:

� 2 [�SL(n)\�SL(n⇤)]) � /2 �S(s)

Proof.

The set [�SL(n)\�SL(n⇤)] contains representations of strings whose length does not belong
to the interval that goes from the minimal to the maximal length of s, either in case a.
and in case b. of Definition 4.3. Thus, these strings do not belong to �S(s), by definition
of �S itself.

4.6.3 Combining Segmentation and Character Inclusion Domains

The second combination involves the abstract elements s and r, which belong to the Seg-
mentation and the Character Inclusion abstract domains respectively, such that r denotes
the pair of sets (C, MC) introduced in Section 4.4.2 (cf. Appendix B.2 for more details).

Definition 4.5 (Inconsistency between Segmentation and Character Inclusion). Let s and
r be two abstract elements in the Segmentation and in the Character Inclusion domains,
respectively. Moreover, let �S and �CI be the concretization functions of the domains just
mentioned. There is inconsistency between s and r when:

�S(s) \ �CI(r) = ;.

4

Lemma 4.4 (Inconsistency between Segmentation and Character Inclusion). Let s and
r be two abstract elements in the Segmentation and in the Character Inclusion domains,
respectively. If one of the following conditions holds, then s and r are inconsistent.

1. If for each character in C, i.e., the set of certainly contained characters of r, does not
exist at least one segment abstract predicate c in s that approximates it, then s and
r are inconsistent. Formally:

|C|= v ^ 8c 2 C : @vi 2 s : c 2 charC(ci)) Inc(s, r)

90 Chapter 4. Combining String Domains

where @v is the existential quantifier with cardinality v introduced in Section 2.1.

2. If there exists one segment abstract predicate c in s which abstracts only characters
that do not occur in MC, i.e., the set of maybe contained characters of r, and its
segment bound lower limit is strictly greater than 0, then s and r are inconsistent.
Formally:

9i 2 s : charC(ci) \MC = ; ^ ei >E 0) Inc(s, r)

3. If the set of certainly contained C and maybe contained characters MC of r are both
equal to the empty-set (i.e., r abstracts an empty string) and the minimum length
of s is strictly greater than 0, then s and r are inconsistent. Formally:

C = MC = ; ^ minLenS(s) >E 0) Inc(s, r)

4. If one of the two abstract elements corresponds to the bottom element of their lattice,
then s and r are inconsistent. Formally:

s = ?S or r = ?CI) Inc(s, r)

Proof.

Case 1 The pair r = (C, MC) approximates strings certainly containing the characters in
C and possibly containing the characters in [MC\C]. If for each character in C
does not exist at least one segment abstract predicate c in s approximating it,
this means that s is abstracting strings that do not simultaneously contain all the
characters belonging to the set of certainly contained characters of r. Thus, the
intersection of the concrete string sets represented by s and r will be empty.

Case 2 If the segmentation s contains at least one segment abstract predicate c approxi-
mating characters that do not belong to the set of maybe contained characters of
r and its segment bound lower limit is strictly greater than 0, this means that s is
abstracting strings in which a character not present in r surely occurs. Thus, the
intersection of the concrete string sets represented by s and r will be empty.

Case 3 If r approximates exactly the empty string and the minimum length of s is strictly
greater than 0 means that the concretization of s does not contain the empty
string. Thus, the intersection of the concrete string sets represented by s and r
will be empty.

Case 4 Trivial, as the concretization of bottom elements is an empty set.

4.6. Refined String Abstract Domains 91

Definition 4.6 (Segmentation refinement through Character Inclusion). Let s and r be
two abstract elements in the Segmentation and in the Character Inclusion domains, re-
spectively. We define refiner(s) as the refinement operator describing how the information
tracked by r improves the one from s. Formally, refiner(s) = s⇤ where:

a. if the number of segment abstract predicates c in s which (also) approximate the
characters belonging to C, i.e., the set of certainly contained characters of r, is equal
to the cardinality of the latter set and, their segment bound lower limit is equal to
0, then the refinement means substituting those lower limits with 1. Formally:

|C| = v ^ 9vi 2 s : charC(ci) \ C 6= ; ^ ei =E 0) s⇤ = s[ei/1]

b. if the number of segment abstract predicates c in s which (also) approximate the
characters belonging to C, i.e., the set of certainly contained characters of r, is equal
to the cardinality of the latter set, then the refinement means substituting those
predicates, followed by a segment upper bound equal to 1, with the abstract value,
in an abstract domain C, of the set resulting from the intersection between the set
of characters represented by c and the set of certainly contained characters of r (if
it is preciser than c). Formally:

|C| = v ^ 9vi 2 s : charC(ci) \ C 6= ; ^ e'
i =E 1

↵C(charC(ci) \ C) vC ci) s⇤ = s[ci/↵C(charC(ci) \ C)]

c. if there are segment abstract predicates c in s which (also) approximate characters
that do not belong to MC, i.e., the set of maybe contained characters of r, then the
refinement means substituting those predicates, followed by a segment upper bound
strictly greater than 1, with the abstract value, in an abstract domain C, of the set
resulting from the intersection between the set of characters represented by c and
the set of maybe contained characters of r (if it is preciser than c). Formally:

9i 2 s : charC(ci)\MC 6= ; ^ e'
i >E 1

↵C(charC(ci) \MC) vC ci) s⇤ = s[ci/↵C(charC(ci) \MC)]

The conditions above can occur at the same time. In this case, all refinements apply.
Observe that the order of application is not relevant.
If none of the conditions above apply, then s⇤ = s.

4

Example 4.10. Consider s = 'a' [0, 2] >CP[0, 1] 'b' [4, 8], where >CP is the top element
in the constant propagation domains for characters, and r = ({a, b, c}, {a, b, c, d}). The

92 Chapter 4. Combining String Domains

refinement of s through r is as follows:

refiner(s) = s[e1/1, e2/1, c2/↵CP({c})]

= 'a' [1, 2] 'c' [1, 1] 'b' [4, 8]

Indeed, the number of segment abstract predicates in s approximating characters contained
in the set of certainly contained characters of r is equal to the cardinality of the latter set.
So we substitute their segment bound lower limit with 1 when it was originally equal to
zero, as by case a of Definition 4.6. Moreover, we substitute the second abstract predicate
of s with the value (in the constant propagation abstract domain) of the only certainly
contained character of r that is not directly present in s, as by case b. of Definition 4.6,
thus refining it.

7
Definition 4.7 (Character Inclusion refinement through Segmentation). Let s and r be
two abstract elements in the Segmentation and in the Character Inclusion domains re-
spectively. We define refines(r) as the refinement operator describing how the information
tracked by s improves the one from r. Formally, refines(r) = r⇤ where:

a. if there is a segment abstract predicate c in s which (also) approximates exactly
one character belonging to MC, i.e., the set of maybe contained characters of r, but
that does not belong to C, i.e., the set of certainly contained characters of r, and
its segment bound lower limit is strictly greater than 0, then the refinement means
adding that character to the set of certainly contained characters of r. Formally:

9i 2 s : charC(ci) \ (MC\C) = {c} ^ ei >E 0) r⇤ = r[C/C [{c}]

b. if the the set of characters represented by s is a strict subset of MC, i.e., the set of
maybe contained characters of r, then the set of maybe contained characters of r can
be refined considering just the characters occurring in that intersection. Formally:

charC(s) ⇢ MC 6= MC) r⇤ = r[MC/(charS(s) \MC)]

where charS(s) =
S
c2s

charC(c)

If none of the conditions above apply, then r⇤ = r.
4

4.6. Refined String Abstract Domains 93

Example 4.11. Consider s = 'a' [2, 2] 'b' [3, 5] 'c' [4, 4] 'd' [0, 2] and r = ({a, b}, {a, b, c, d, e, f}).
The refinement of r through s is as follows:

refines(r) = r[C/(C [(charC(c3) \ (MC\C)), MC/charC(s)]

= ({a, b} [({c} \ {c, d, e, f}), {a, b, c, d})

= ({a, b} [{c}, {a, b, c, d})

= ({a, b, c}, {a, b, c, d})

Indeed, the third segment abstract predicate of s has a segment bound lower limit strictly
greater than 0 and it approximates exactly the character 'c' which belongs to the set of
maybe contained character of r, but that does not belong to the set of certainly contained
characters of r. So we add the character 'c' to the set of certainly contained characters of r,
as by case a. of Definition 4.7. Moreover, we modify the set of maybe contained character
of r considering just the characters occurring in the set of characters approximated by s
(charS(s)\MC = {a, b, c, d}\ {a, b, c, d, e, f} = {a, b, c, d}), as by case b. of Definition 4.7,
thus refining it.

7
Definition 4.8 (Reduced product between Segmentation and Character Inclusion). Let
s and r be two abstract elements in the Segmentation and in the Character Inclusion
abstract domains, respectively. Moreover, consider the refinement operators presented in
the Definitions 4.6 and 4.7. The reduced product of s and r is obtained by applying refiner
and refines as follows:

s⌦ r = (refiner(s), refines(r))

4

Lemma 4.5 (Soundness of Segmentation refinement). Let s and r be two abstract ele-
ments in the Segmentation and in the Character Inclusion abstract domains, respectively.
Moreover, let �S and �CI be the concretization functions of the domains just mentioned,
and let refiner(s) = s⇤. The soundness of the Segmentation refinement can be expressed
by:

� 2 [�S(s)\�S(s⇤)]) � /2 �CI(r)

Proof.

The set [�S(s)\�S(s⇤)] contains representations of strings in which do not occur at least
one character that appears in the set of certainly contained characters of r, either in case
a. and in case b. of Definition 4.6, or at least one character that does not appear in the set
of maybe contained characters of r, in case c of Definition 4.6. Thus, those strings do not
belong to �CI(r), by definition of �CI.

94 Chapter 4. Combining String Domains

Algorithm 5 isPrefix procedure.

Input: p and s

Output: res 2 {true, false,>B}

1: k 0, i 1, res true
2: s unFold(s)

3: while k 2 [0, lenPR(p) – 1] do

4: while i 2 [1, numSeg((s))] do

5: if p[k] 2 charC(c.s[i]) ^ b.s[i] 2 {[0, 1], [1, 1]} then

6: k k + 1, i i + 1

7: else if (p[k] 2 charC(c.s[i]) ^ b.s[i] 2 {[0, x], [x, x]}) _ (p[k] /2
charC(c.s[i]) ^ b.s[i] 2 {[x, x]}) then

8: return res >B

9: else if (p[k] /2 charC(c.s[i]) ^ b.s[i] 2 {[0, 0], [0, x], [0, 1]}) _ (p[k] 2
charC(c.s[i]) ^ b.s[i] 2 {[0, 0]}) then

10: i i + 1

11: else

12: return res false
13: return res

Lemma 4.6 (Soundness of Character Inclusion refinement). Let s and r be two abstract el-
ements in the Segmentation and in the Character Inclusion abstract domains, respectively,
and let �S and �CI be the concretization functions of the domains just mentioned, and let
refines(r) = r⇤. The soundness of the Character Inclusion refinement can be expressed by:

� 2 [�CI(r)\�CI(r⇤)]) � /2 �S(s)

Proof.

The set [�CI(r)\�CI(r⇤)] contains representations of strings in which occurs at least one
character that does not appear in the set of characters represented by s, either in case a.
and in case b. of Definition 4.7. Thus, those strings do not belong to �S(s), by definition
of �S.

4.6.4 Combining Segmentation and Prefix Domains

The last combination we present involves the abstract elements s and p, belonging to the
Segmentation and the Prefix abstract domains, respectively. The reductions between the
Segmentation and both the Suffix and the Prefix-Suffix abstract domains can be naturally
induced by the Granger product among s and p. Notice that the refinement of s is defined
according to the length of the sequence of characters of p.

Algorithm 5 determines if an abstract element in PR might be a prefix of (some of)
the strings approximated by a segmentation in S. Note that lenPR(p) denotes the length of

4.6. Refined String Abstract Domains 95

the prefix p and it is equal to the length of its sequence of characters, ⇤ included. Once the
segmentation has been unfolded (line 2),1 we compare the characters in the prefix element
p and the segments in the unfolded segmentation s. An element p is a prefix of (some
of) the strings approximated by s if for each character of p there exists a corresponding

segment whose segment abstract predicate approximates (also) the character of p under
consideration, and its segment bound is of the type [0,1] or [1,1] (lines 5-6). The algorithm
return >B if the character of p under consideration is approximated by a segment abstract
predicate whose bound is of the type [0,x] or [x,x] (lines 7-8). It returns >B also in the
case in which a character of p is not approximated by the segment abstract predicate under
consideration if its segment bound is of the type [x,x]. The algorithm returns false if the
corresponding segment of the character of p under consideration is not empty and does
not approximate it. In all the other cases, i.e., where possibly empty segments that do
not approximate the character of p under consideration or where possibly empty segments
approximate the character of p under consideration, the procedure moves the comparison
to the next segment (lines 9-10).

Definition 4.9 (Inconsistency between Segmentation and Prefix). Let s and p be two
abstract elements in the Segmentation and in the Prefix domains respectively. Moreover,
let �S and �PR be the concretization functions of the domains just mentioned. There is
inconsistency between s and p when:

�S(s) \ �PR(p) = ;

4

Lemma 4.7 (Inconsistency between Segmentation and Prefix). Let s and p be two abstract
elements in the Segmentation and in the Prefix domains, respectively. If one of the following
conditions holds, then s and p are inconsistent.

1. If isPrefix (cf. Algorithm 5) of p and s returns false, then s and p are inconsistent.
Formally:

isPrefix(p, s) = false) Inc(s, p)

2. If one of the two abstract elements corresponds to the bottom element of their lattice,
then s and p are inconsistent. Formally:

s = ?S or p = ?PR) Inc(s, p)

1
The unFold procedure can not be defined in general as it depends on the normal form of the expressions

in E, but it is reasonable to assume that an unfolded segmentation can have a limited set of segment bounds

types, that are: [0, 0], [0, 1], [1, 1], [0, x], [x, x], with x 2 X (cf. Section 4.5) if expressions contain variables.

96 Chapter 4. Combining String Domains

Proof.

Case 1 The prefix p approximates all the possible strings sharing the same starting se-
quence of characters. The segmentation s approximates strings highlighting se-
quences of equal characters. If the isPrefix procedure on p and s returns false,
then p and s are abstracting strings with different prefixes. Thus, the intersection
of the concrete string sets represented by s and p will be empty.

Case 2 Trivial, as the concretization of bottom elements is the empty set.

Definition 4.10 (Segmentation refinement through Prefix). Let s and p be two abstract
elements in the Segmentation and in the Prefix domains, respectively. We define refinep(s)
as the refinement operator describing how the information tracked by p improves the one
from s. Let unfold(s) = s'. Formally, refinep(s) = s⇤ where:

a. if the abstraction of a character in p, in an abstract domain C, precedes the segment
abstract predicate of its matching segment in s', then the refinement means substi-
tuting that segment abstract predicate with the abstract value of its corresponding
character in p. Formally:

8i 2 s' 8k 2 [0, lenPR(p) – 1]: cibi is the corresponding segment of p[k] ^

↵C(p[k]) vC ci) fold(s⇤ = s'[ci/↵C(p[k])])

b. if the matching segment in s' of a character in p is preceded by one or more segments
possibly empty and none of those is the matching segment of the character preceding
the first mentioned in p, then the refinement means removing these segments from
s'. Formally:

8i 2 s' 8k 2 [0, lenPR(p) – 1]: cibi is the corresponding segment of a p[k] ^

9(cjbj)
n2[i–1,1]

j=i–1
2 s' : cjbj is not the corresponding segment of p[k – 1] ^

p[k] 62 charC(cj) ^ bj 2 {[0, 0], [0, 1], [0, x]}) fold(s⇤ = s' –S (cjbj)
n2[i–1,1]

j=i–1
)

The conditions above can occur at the same time. In this case, both refinements apply.
Observe that the order of application is not relevant.
If none of the conditions above apply, then s⇤ = s.

4

4.6. Refined String Abstract Domains 97

Example 4.12. Consider s = 'a' [2, 4] 'b' [1, 1] 'c' [0, 2] and p = aab⇤. Let s' denote
unFold(s) = 'a' [1, 1] 'a' [1, 1] 'a' [0, 1] 'a' [0, 1] 'b' [1, 1] 'c' [0, 1] 'c' [0, 1]. The refinement of
s through p is as follows:

refinep(s) = fold(s' –S (ckbk)3
k=4

)

= fold('a' [1, 1] 'a' [1, 1] 'b' [1, 1] 'c' [0, 1] 'c' [0, 1])

= s = 'a' [2, 2] 'b' [1, 1] 'c' [0, 2]

Indeed, the fifth segment of s' is the matching segment for p[2] and it is preceded by two
possibly empty segments and none of them is the matching segment of p[1]. So we could
remove them from s', as by case b. of Definition 4.10, thus refining it.

7
Definition 4.11 (Prefix refinement through Segmentation). Let s and p be two abstract
elements in the Segmentation and in the Prefix domains, respectively. We define refines(p)
as the refinement operator describing how the information tracked by s improves the one
from p. Let unFold(s) = s'. Formally, refines(p) = p⇤ where: if there is one or more seg-
ments in s' after the one matching the last character of p, such that their segment abstract
element approximates exactly one character and their bound is equal to the interval [1, 1],
then the refinement means concatenating that character(s) to p. Formally:

9i 2 s': cibi is the corresponding segment of p[lenPR(p) – 1] ^

9(cjbj)
n2[i+1,numSeg(s')]
j=i+1

2 s' : charC(cj) = {c} ^

bj = [1, 1]) p⇤ = p + hc : charC(cj) = {c} ^ j 2 [i + 1, n]i

If the condition above does not apply, then p⇤ = p.
4

Example 4.13. Consider s = 'a' [2, 3] 'b' [2, 2] and p = aab⇤. Let s' denote unfold(s) =
'a' [1, 1] 'a' [1, 1]'a' [0, 1] 'b' [1, 1] 'b' [1, 1]. The refinement of p through s is as follows:

refines(p) = aaa + hbi

= aab + b

= aabb⇤

Indeed, the segment of s' that corresponds to the last character in p is followed by a
segment whose character abstract element approximates exactly the character 'b' and its
segment bound is the interval [1,1]. So we could concatenate to the sequence of character
of p, the character approximated by c5, as by Definition 4.11, thus refining it.

7

98 Chapter 4. Combining String Domains

Definition 4.12 (Reduced product between Segmentation and Prefix). Let s and p be two
abstract elements in the Segmentation and in the Prefix abstract domains, respectively.
Moreover, consider the refinement operators presented in the Definitions 4.10 and 4.11.
The reduced product of s and p is obtained by applying refinep and refines as follows:

s⌦ p = (refinep(s), refines(p))

4

Lemma 4.8 (Soundness of Segmentation refinement). Let s and p be two abstract elements
in the Segmentation and in the Prefix abstract domains, respectively. Moreover, let �S and
�PR be the concretization functions of the domains just mentioned, and let refinep(s) = s⇤.
The soundness of the Segmentation refinement can be expressed by:

� 2 [�S(s)\�S(s⇤)]) � /2 �PR(p)

Proof.

The set [�S(s)\�S(s⇤)] contains representations of strings which do not share the same
longest common prefix with the strings approximated by p, either in case a. and in case b.
of Definition 4.10. Thus, those strings do not belong to �PR(p), by definition of �PR.

Lemma 4.9 (Soundness of Prefix refinement). Let s and p be two abstract elements in
the Segmentation and in the Prefix abstract domains respectively- Moreover, let �S and
�PR be the concretization functions of the domains just mentioned, and let refines(p) = p⇤.
The soundness of the Prefix refinement can be expressed by:

� 2 [�PR(p)\�PR(p⇤)]) � /2 �S(s)

Proof.

The set [�PR(p)\�PR(p⇤)] contains representations of strings that do not share the same
longest common prefix with the strings approximated by s, as by Definition 4.11. Thus,
those strings do not belong to �S(s), by definition of �S.

4.7 Discussion

Strings are characterized by their content and shape. Existing string abstract domains
capture information about the content or the shape of strings separately, or they can track
both but partially, leading to a consistent loss of precision during the analysis. The Seg-
mentation domain specialised for string analysis tracks information about the shape and
the content of strings in their entirety. Its precision depends on the abstract domains

4.7. Discussion 99

for characters, segment bounds, and variables it has been instantiated. More precise do-
mains lead the segmentation analysis efficiency to decrease inevitably. Instead, less precise
domains increase the efficiency of the segmentation analysis at the expense of losing impor-
tant information, e.g., information useful to prevent undesired behaviours of the considered
program.

By lifting basic domains for strings by segmentation abstraction, we generate more
sophisticated domains where structural information and character-based information are
combined, yielding more accurate representation.

101

Chapter 5

COMPLETENESS OF STRING DOMAINS

In this chapter, we study the problem of completeness of string abstractions, and we show
how to complete two well-known string abstract domains for JavaScript. Moreover, we
provide a procedure to measure the precision gained by the complete domain with respect
to its original version.

The contribution of this chapter was published in [18].

Chapter Structure

Section 5.2 recalls relevant concepts related to the completeness property in Abstract In-
terpretation. Moreover, a motivating example is given to show the importance of guaran-
teeing completeness in an Abstract Interpretation-based analysis with respect to strings.
Section 5.3 introduces the syntax and the concrete semantics of the dynamic imperative
core language used in this chapter. Section 5.4 presents the completion of two well-known
string abstract domains with respect to two operations of interest. Section 5.5 highlights
the strengths and usefulness of the completeness approach to static analysis of string manip-
ulating programs. Section 5.6 defines the measurement procedure of the analysis precision
increment. Section 5.7 concludes.

5.1 Introduction

Important features of Abstract Interpretation are soundness (or correctness) and com-

pleteness [56] (cf. Section 2.6.2). While soundness should always be guaranteed, as a basic
requirement, by static analysis tools, to avoid the presence of false negatives, completeness
is frequently not met.

If completeness is satisfied, the abstract computations do not lose information during
the abstraction process with respect to a property of interest. The analysis can be therefore
considered optimal. Guaranteeing completeness of string analysis is of particular interest,
especially for dynamic languages, as poorly managed string manipulation code may easily

102 Chapter 5. Completeness of String Domains

lead to significant security flaws. For instance, in the context of web applications, the com-
mon programming languages used for web-based software development (e.g., JavaScript)
offer a wide range of dynamic features that make string manipulation dangerous.

In [80], Giacobazzi et al. highlighted the fact that completeness is an abstract domain
property. In the same paper, they presented a methodology to obtain complete abstract
domains with respect to operations by minimally extending or restricting the underlying
domains.

Contribution

We provide a way-to-proceed in the context of imprecise string abstractions. In particular,
we exploit the theoretical framework of the complete shells (cf. Section 2.6.4), construc-
tively showing how to improve precision of incomplete abstraction, without designing new
string abstract domains.

We consider two JavaScript string abstract domains defined as part of the TAJS [105]
and SAFE [122] static analysers, focusing on their completeness with respect to the main
string-manipulating operations. We compute their complete versions, and we discuss the
benefits of guaranteeing completeness in the context of Abstract Interpretation-based string
analysis of dynamic languages. Finally, we present an effective procedure to measure the
precision increment when analysing a program with a complete abstract domain.

5.2 Making Abstract Interpretation Complete

In this section, we introduce the notions and methodologies that we will use through the
whole chapter, as proposed in [80], to constructively build, from an initial abstract domain,
a new abstract domain that is complete with respect to an operation of interest. Finally,
through a motivating example, we show the usefulness of completing abstract domains for
string analysis.

It is worth noting that completeness is a property related to the underlying abstract
domain. Starting from this fact, Giacobazzi et al. proposed a constructive method to
manipulate the underlying incomplete abstract domain to get a complete abstract domain
with respect to a certain operation. In particular, given two abstract domains D and
D' and an operator f : Dn ! D' with n 2 N, the authors gave two different notions of
completion of abstract domains with respect to f. The first adds the minimal number of
abstract points to the input abstract domain D and captures the notion of the complete
shell of D. The second removes the minimal number of abstract points from the output
abstract domain D', and defines the complete core of D'.

5.2. Making Abstract Interpretation Complete 103

5.2.1 Complete Shell vs Complete Core

We will focus on the construction of complete shells of string abstract domains, rather than
complete cores. This choice is guided by the fact that a complete core for an operation f
removes abstract points from a starting abstract domain. So, even if it is complete for f,
its complete core could worsen the precision of other operations.

Conversely, complete shells augment the starting abstract domains (adding abstract
points), and consequently, they cannot compromise the precision of other operations.

Below, we recall two important theorems proved in [80] that provide a constructive
method to compute abstract domain complete shells, defined in terms of an upper closure
operator ⇢ (cf. Section 2.2). Precisely, these theorems present two notions of complete
shells:

• complete shells of ⇢ relative to ⌘ (where ⌘ is an upper closure operator), meaning
that they are complete shells of operations defined on ⇢ that return results in ⌘, and

• absolute complete shells of ⇢, meaning that they are complete shells of operations
defined on ⇢ and return results in ⇢.

Definition 5.1 (Complete shell of ⇢ relative to ⌘ [80]). Let hA,vA,tAi and hB,vB,tBi be
two posets and f : An ! B be a continuous function. Given ⇢ 2 uco(A) and ⌘ 2 uco(B),1

then let S
⌘
f

: uco(A) ! uco(A) be the domain transformer:

S
⌘
f
(⇢) =

G

uco(A)

{� 2 uco(A) | � v ⇢, h�,⌘i 2 �(A, B, f)}.

If hS⌘
f
(⇢),⌘i 2 �(A, B, f), then S

⌘
f
(⇢) is called complete shell of ⇢ relative to ⌘ with respect

to an operation f.
4

As discussed in [80], Definition 5.1 does not offer a constructive methodology to compute
S
⌘
f
(⇢). The theorem below offers a constructive characterization of the complete shell of ⇢

relative to ⌘ with respect to f, making use of the Moore closure operator defined in Section
2.2.

Theorem 5.1 ([80]). Let hA,vA,tAi and hB,vB,tBi be two posets and f : An ! B be
a continuous function. Given ⇢ 2 uco(A), ⌘ 2 uco(B) and S

⌘
f
(⇢) as in Definition 5.1, the

following equality holds:

S
⌘
f
(⇢) = M(⇢ [(

G

A
i2[1,n),

x2A
n
, y2⌘

maxvA({z 2 A | (fix)(z) vB y}))).

1
We recall that uco(A) denotes the set of upper closure operators of a poset A.

104 Chapter 5. Completeness of String Domains

⇤

As already mentioned above, the idea behind the complete shell of ⇢ (input abstraction)
relative to ⌘ (output abstraction) is to refine ⇢ adding the minimum number of abstract
points to make ⇢ complete with respect to an operation f. By Theorem 5.1, this is obtained
by adding to ⇢ the maximal elements in A, whose image under f is dominated by elements
in ⌘, at least in a single dimension i. Clearly, the so-obtained abstraction may not be
an upper closure operator for A. Hence, the Moore closure operator is applied. Instead,
absolute complete shells are involved in the case in which the operator f of interest has the
same input and output abstract domain, i.e., f : An ! A. In this case, given ⇢ 2 uco(A),
absolute complete shells of ⇢ can be obtained as the greatest fix-point (gfp) of the domain
transformer presented in Definition 5.1, as stated below.

Definition 5.2 (Absolute complete shell of ⇢ [80]). Let hA,vA,tAi be a poset and let
f : An ! A be a continuous function. Given ⇢ 2 uco(A), then let Sf : uco(A) ! uco(A) be
the domain transformer:

Sf(⇢) =
G

uco(A)

{� 2 uco(A) | � v ⇢, h�, �i 2 �(A, A, f)}.

If hSf(⇢), Sf(⇢)i 2 �(A, A, f), then Sf(⇢) is called absolute complete shell of ⇢ with respect
to an operation f.

4

Theorem 5.2 ([80]). Let A be a poset and f : An ! A be a continuous function, and let
⇢ 2 uco(A). If S⇢

f
(⇢) is the complete shell of ⇢ relative to ⇢ with respect to f, and if Sf(⇢)

is the absolute complete shell of ⇢ with respect to f, then the following equality holds:

Sf(⇢) = gfp(�⇢.S⇢
f
(⇢)).

⇤

In [80], Giacobazzi et al. have discussed the completeness and incompleteness of the Sign

numerical abstract domain. In particular, Sign = {NotPos, NotNeg}[{?Sign,>Sign}, where:
negative numbers are approximated by the abstract value NotPos, positive numbers by
NotNeg, and ?Sign and >Sign are the bottom and the top elements of Sign respectively. Sign

is complete for the product operation. Let ⇤ : P(Z)⇥P(Z) ! P(Z) be the concrete product
operation and ~Sign : Sign⇥ Sign ! Sign be the corresponding abstract product operation.
Given the expression e1 ⇤ e2, the equality ↵Sign(e1 ⇤ e2) = ↵Sign(e1) ~Sign ↵Sign(e2) holds,
with ↵Sign being the abstraction function of Sign. As an example, consider the concrete

5.2. Making Abstract Interpretation Complete 105

expression {2, 5} ⇤ {–1, –3}, then

↵Sign({2, 5} ⇤ {–1, –3}) = ↵Sign({–2, –5, –6, –15})

= NotPos

= ↵Sign({2, 5}) ~Sign ↵Sign({–1, –3})

= NotNeg ~Sign NotPos

= NotPos

Instead, Sign is not complete for the sum operation. Let + : P(Z) ⇥ P(Z) ! P(Z) be
the concrete sum operation and �Sign : Sign ⇥ Sign ! Sign be the corresponding abstract
sum operation. Consider the concrete expression {2} + {–1, –2}, then

↵Sign({2} + {–1, –2}) = ↵Sign({0, 1})

= NotNeg

6= ↵Sign({2})�Sign ↵Sign({–1, –2})

= NotNeg �Sign NotPos

= Z

In [80], the absolute complete shell of Sign with respect to the sum operation has been
computed, and it corresponds to the Interval abstract domain [51].

5.2.2 Domain Completion Procedure

To improve the understanding about how to obtain a complete domain with respect to
an operation of interest we provide a step-by-step reading of the formula in Theorem 5.1
(i.e., relative complete shell) by means of the procedure of Algorithm 6. The algorithm
takes as input two posets hA,vAi, hB,vBi, two closures ⇢ 2 uco(A), ⌘ 2 uco(B), which
correspond to the input and output abstraction respectively, and a continuous function
f : An ! B. The procedure returns the complete shell of ⇢ relative to ⌘ with respect to f.
Algorithm 6 follows Theorem 5.1 and collects in X, for each dimension i and element of ⇢,
any element z 2 A whose image under f is dominated by elements in ⌘ (lines 2-4). Then,
the starting input abstraction ⇢ is joined with the new elements collected in X and since
the so obtained result may not be a closure, we apply the Moore closure operator (line 5).
Finally, the complete shell of ⇢ relative to ⌘ is returned at line 6.

We reported the procedure only to improve the understanding of the complete shell
since, unfortunately, this is not an effective procedure. Indeed, Algorithm 6 diverges (at
lines 2-4) when A is an infinite set or ⌘ is not a finite closure.

106 Chapter 5. Completeness of String Domains

Algorithm 6 Relative complete shell procedure pseudo-code.

Input:

• hA,vAi, hB,vBi (posets)

• ⇢ 2 uco(A), ⌘ 2 uco(B) (abstractions)

• f : A
n ! B

Output: S⌘f (⇢)

1: X ;

2: for i 2 [1, n] and x 2 A and y 2 ⌘ do

3: let z 2 A be the maximum element such that f
i
x(z) vB y

4: add z to X

5: let S⌘f (⇢) be the Moore closure of ⇢ [X

6: return S⌘f (⇢)

5.2.3 Motivating Example

A common feature of dynamic languages, such as PHP or JavaScript, is to be weakly
typed. Hence, in those languages, the variable type may be changed through the program
execution. For example, in PHP, it is completely legal to write fragments such as x = 1;

x=true;, where the type of the variable x changes from integer to boolean. The first
attempt for statically reasoning about variable types was adopting the so-called Coalesced
Sum abstract domain (CS) [13, 118], to detect whether a certain variable has constant type
through the whole program execution. In Figure 5.1a, we show the Coalesced Sum abstract
domain for an intra-procedural version of PHP [13], that tracks null, boolean, integer, float,
and string types.2 Consider the formal semantics of the sum operation in PHP [67]. When
one of the operands is a string, implicit type conversion occurs and converts the operand
string to a number since the sum operation only acts on numbers. In particular, if the
prefix of the string is a number, it is converted to the maximum prefix of the string
corresponding to a number, otherwise it is converted to 0. For example, the expression
e = "2.4hello" + "4" returns 6.4. Let ↵CS and �CS be the abstraction function and the
abstract sum operation on the Coalesced Sum abstract domain respectively. The type of the
expression e is given by: ↵CS({"2.4hello"}) �CS ↵CS({"4"}) = String �CS String = >CS.
The static type analysis based on the Coalesced Sum abstract domain returns >CS (i.e.,

2
By closing the Coalesced Sum abstract domain with the powerset operation, we get a more precise

domain called Union Type abstract domain [118], that tracks the set of types of a certain variable during

program execution.

5.2. Making Abstract Interpretation Complete 107

(a) (b)

Figure 5.1: (a) Coalesced Sum abstract domain for PHP. (b) Com-
plete shell of Coalesced Sum abstract domain with respect to the sum
operation.

any possible value), since the sum between two strings may return either an integer or a
float value. Precisely, the Coalesced Sum abstract domain is not complete with respect to
the PHP sum operation, since for any string � and �', it does not meet the completeness
condition, i.e., ↵CS(� + �') = ↵CS(�) �CS ↵CS(�'). Indeed, ↵CS({"2.4hello" + "4"}) =
Float is different from ↵CS({"2.4hello"}) �CS ↵CS({"4"}) = >CS.

Intuitively, this happens because of the loss of precision that occurs during the abstrac-
tion process of the inputs, since the domain is not precise enough to distinguish between
strings that may be implicitly converted to integers or floats.

Figure 5.1b shows the complete shell of the Coalesced Sum abstract domain with respect
to the sum (CS?). It adds two abstract values to the original domain, namely StrFloat and
StrInt. They correspond to the abstractions of the strings that may be implicitly converted
to floats and to integers, respectively. Notice that the type analysis on the new abstract do-
main is now complete with respect to the sum operation, e.g., ↵CS?({"2.4hello" + "4"}) =
Float that is equal to ↵CS?({"2.4hello"}) �CS? ↵CS?({"4"}) = StrFloat �CS? StrInt =
Float.

As pointed out above, guaranteeing completeness in Abstract Interpretation is a de-
sirable property that an abstract domain should aim to, since it ensures that no loss of
precision occurs during the input abstraction process of the operation of interest. It is
worth noting that guessing a complete abstract domain for a certain operation becomes
particularly hard when the operation has a tricky semantics, as in our example or, more in
general, in dynamic languages operations. For this reason, complete shells become impor-
tant since they can mathematically guarantee completeness for a given operation, starting
from the abstract domain of interest.

108 Chapter 5. Completeness of String Domains

a ::= n | x | a + a | a - a | a * a | a \ a | toNum(s) | length(s)

b ::= x | true | false | b && b | b || b | ! b

s ::= x | "�" | concat(s1,s2)

e ::= a | b | s

st ::= x = e; | if (b) { st } else { st } | while (b) { st }
| st1 st2

P 2 µDyn ::= st

where x 2 Id, � 2 ⌃⇤, n 2 Int [Float

Figure 5.2: µDyn syntax

5.3 Core Language

We define µDyn, an imperative toy language, inspired by the JavaScript programming
language [128]. It is expressive enough to handle some interesting behaviors related to
strings in dynamic languages, e.g., implicit type conversion.

Note that, in this chapter, the semantics notation, both concrete and abstract, is
different from the one presented in the previous chapters to be consistent with the notation
used in [18].

5.3.1 Syntax

The syntax of µDyn is in Figure 5.2. The basic values are the set Val = Int [Float [
Bool[Str, where: Int is the set of signed integers Z, Float is the set of signed decimal
numbers,3 Bool is the set of booleans {true, false}, and Str is the set of strings ⌃⇤

over an alphabet ⌃. Then, let ⌃⇤ = ⌃⇤
Num [⌃⇤

NotNum, where:

⌃⇤
Num is the set of numeric strings (e.g., "42", "-7.2"), and

⌃⇤
NotNum is the set of non numeric strings (e.g., "foo", "-2a").

Moreover, we consider ⌃⇤
Num be additionally composed of four sets:

⌃⇤
Num = ⌃⇤

UInt [⌃⇤
UFloat [⌃⇤

SInt [⌃⇤
SFloat,

They correspond, from left to right, to the set of unsigned integer strings, unsigned
float strings, signed integer strings and signed float strings, respectively.

3
In general, floats are represented in programming languages in the IEEE 754 double precision format.

For the sake of simplicity, we use instead decimal numbers.

5.4. Making JavaScript String Abstract Domains Complete 109

Jx = e; K⇠ = ⇠[x JeK⇠]

Jif (b) bl1 else bl2K⇠ =

(
Jbl1K⇠ JbK⇠ = true
Jbl2K⇠ JbK⇠ = false

Jwhile (b) blK⇠ = Jif (b) {bl while (b) bl} else {}K⇠

J{}K⇠ = ⇠ J{st}K⇠ = JstK⇠

Jst1st2K⇠ = Jst2K(Jst1K⇠)

Jconcat(s, s')K⇠ = JsK⇠ · Js'K⇠ Jlength(s)K⇠ = |JsK⇠|

JtoNum(s)K⇠ =

(
N(JsK⇠) JsK⇠ 2 ⌃⇤

Num
0 otherwise

Figure 5.3: µDyn semantics

5.3.2 Concrete Semantics

The µDyn programs are elements generated by st syntax rules. Program states State :
Id ! Val, ranged over ⇠, are maps from identifiers to values. The concrete semantics
of µDyn statements follows [13],4 and it is given by the function J·K· : Stmt ⇥ State !
State, inductively defined on the structure of the statements, as in Figure 5.3. We abuse
notation in defining the concrete semantics of expressions: J·K· : Exp ⇥ State ! Val.
Figure 5.3 shows the formal semantics of two relevant expressions involving strings we
focus on: concat, that concatenates two strings, and string-to-number operation, namely
toNum, that takes a string as input and returns the number that it represents if the input
string corresponds to a numerical strings, 0 otherwise. Given � 2 Str, we denote by
N(�) 2 Int[Float the numeric value of a given string. For example, toNum("4.2") = 4.2
and toNum("asd") = 0.

5.4 Making JavaScript String Abstract Domains Complete

In this section, we study the completeness of two string abstract domains integrated into
two state-of-the-art JavaScript static analysers based on Abstract Interpretation, namely
TAJS [105] and SAFE [122]. Both the abstract domains track important information on
JavaScript strings, e.g., TAJS can infer when a string corresponds to an unsigned integer,
that may be used as an array index, and SAFE tracks numeric strings, such as "2.5" or
"+5".

4
Note that we only give the semantics of the operations that are of interest for this chapter. The

complete concrete semantics of µDyn is defined in [13].

110 Chapter 5. Completeness of String Domains

(a) (b)

Figure 5.4: (a) SAFE, (b) TAJS recasted for µDyn.

For the sake of readability, we recast the original string abstract domains for µDyn,
following the notation adopted in [10]. Figure 5.4 depicts them. Notice that the original
abstract domain part of SAFE analyser treats the string "NaN" as a numeric string. Since
our core language does not provide the primitive value NaN, the corresponding string, i.e.,
"NaN", has no particular meaning here, and it is treated as a non-numerical string.

5.4.1 Completing TAJS String Abstract Domain

Figure 5.4b depicts the string abstract domain TJ, the recasted version of the domain
integrated into the TAJS static analyser [105]. TJ splits the strings into Unsigned, that
denotes the strings corresponding to unsigned numbers, and NotUnsigned, any other string.
Hence, for example, ↵TJ({"9", "+9"}) = >TJ and ↵TJ({"9.2", "foo"}) = NotUnsigned.
Before reaching these abstract values, TJ precisely tracks each string.

Here we focus on the toNum (i.e., string-to-number) operation. Since this operation
clearly involves numbers, we introduce the TAJS numerical abstract domain, denoted
by TJN. The latter domain behaves similarly to TJ, distinguishing between unsigned
(UnsignedInt) and not unsigned integers (NotUnsignedInt).

Below we define the abstract semantics of the string-to-number operation for TJ. In
particular, we define the function: JtoNum(•)KTJ : TJ ! TJN that takes as input a string
abstract value in TJ, and returns an integer abstract value in TJN. Formally,

JtoNum(s)KTJ =

8
>>>>>>><

>>>>>>>:

?TJN
JsKTJ = ?TJ

JtoNum(�)K JsKTJ = �

UnsignedInt JsKTJ = Unsigned

>TJN
JsKTJ = NotUnsigned _ JsKTJ = >TJ

5.4. Making JavaScript String Abstract Domains Complete 111

When the input evaluates to ?TJ, the bottom is propagated, and ?TJN
is returned

(first row). If the input evaluates to a single string value, the abstract semantics relies on
its concrete one (second row), as single strings are precisely captured by TJ. When the
input evaluates to the string abstract value Unsigned, the integer abstract value UnsignedInt

is returned (third row). Indeed, in the concrete scenario, an unsigned and not float numeric
string, which exactly represents the strings approximated by Unsigned in TJ, is converted
into the correspondent numeric value by the string-to-number operation. Therefore, the
abstraction in TJN of the numeric value of all the strings approximated by Unsigned is
UnsignedInt. Finally, when the input evaluates to NotUnsigned or >TJ, the top abstract
value >TJN

is returned (fourth row). In the second case, i.e., when the input is evaluated
to >TJ, it is trivial to note that the result of the abstract string-to-number operation rep-
resents the best correct approximation. However, in the first case, it is not straightforward.
Note that NotUnsigned approximates not numeric strings and signed and/or float numeric
strings. Thus the only safe abstraction of the numeric value of strings approximated by
NotUnsigned is >TJN

.

Lemma 5.1. The TJ abstract domain is not complete with respect to the toNum operation.
In particular,5 9S 2 P(⌃⇤) such that:

↵TJN
(JtoNum(S)K) (JtoNum(↵TJ(S))KTJ

Proof.

As a counterexample to completeness, consider S = {"2.3", "3.4"}. We can show that
↵TJN

(JtoNum(S)K) 6= JtoNum(↵TJ(S))KTJ. Indeed,

↵TJN
(JtoNum(S)K) = NotUnsignedInt

6= JtoNum(↵TJ(S))KTJ

= JtoNum(NotUnsigned)KTJ

= >TJN

The completeness condition does not hold because the TJ string abstract domain
loses too much information during the abstraction process, and it cannot be retrieved
during the abstract toNum operation. In particular, when non-numeric strings and unsigned
integer strings are converted to numbers by toNum, they are mapped to the same value,
namely 0. Indeed, TJ does not differentiate between non-numeric and unsigned integer
string values, and this is the principal cause of the TJ incompleteness with respect to

5
We abuse notation denoting with J·K the additive lift to set of basic values of the concrete semantics,

i.e., the collecting semantics.

112 Chapter 5. Completeness of String Domains

Figure 5.5: Complete shell of ⇢TJ relative to ⇢TJN
w.r.t. toNum.

toNum. Additionally, more precision can be obtained if we could differentiate numeric
strings holding float numbers from those holding integer numbers. Thus, to make TJ
complete with respect to toNum, we have to derive the complete shell of the TJ string
abstract domain relative to the TJN numerical abstract domain, by applying Theorem 5.1.

Definition 5.3 (Complete shell of TJ). Let ⇢TJ, ⇢TJN
be the upper closure opera-

tors of TJ and TJN abstract domains respectively, i.e., ⇢TJ 2 uco(P(⌃⇤)) and ⇢TJN
2

uco(P(Int [Float)). Given JtoNum(•)KTJ : TJ ! TJN, we define by TJ? the trans-
former S

⇢TJN
toNum (⇢TJ).

4

By Definition 5.1, TJ? is the complete shell of ⇢TJ relative to ⇢TJN
with respect to the

toNum operation. As already argued in Section 5.4, to compute TJ? we use the constructive
characterization given by Theorem 5.1.

Figure 5.5 depicts TJ?. In particular, the abstract points inside dashed boxes are
the abstract values added during the computation of TJ?, the point inside the solid box
is instead obtained by the Moore closure of the other points of the domain, while the
remaining abstract values were already in TJ. A non-intuitive point added in TJ? is
SignedOrFloats, namely the abstract value such that its concretization contains any float
string and the signed integers. This abstract point is added during the computation of
TJ?. In particular, following Algorithm 6, instantiated with A = P(⌃⇤) and ⌘ = ⇢TJN

,
this abstract point is computed at lines 2-4 at the iteration when y is �TJN

(NotUnsignedInt),
i.e.,

SignedOrFloats 2 max✓({Z 2 P(⌃⇤) | JtoNum(Z)K ✓ �TJN
(NotUnsignedInt)})

5.4. Making JavaScript String Abstract Domains Complete 113

Informally: which is the maximal set of strings Z such that toNum(Z) is dominated
by NotUnsignedInt? To obtain only values dominated by NotUnsignedInt from toNum(Z),
the maximal set doing so is exactly the set of the float strings and the signed strings.
Other strings, such that: unsigned integer strings or not numerical strings are excluded,
since they are both converted to unsigned integers, and they would violate the dominance
relation. Similarly, the abstract point UnsignedOrNotNumeric is added to the complete shell
TJ?. Following again Algorithm 6, instantiated with A = P(⌃⇤) and ⌘ = ⇢TJN

, the above
abstract element is computed at lines 2-4 at the iteration when y is �TJN

(UnsignedInt), i.e.,

UnsignedOrNotNumeric 2 max✓({Z 2 P(⌃⇤) | toNum(Z) ✓ �TJN
(UnsignedInt)})

To obtain only values dominated by UnsignedInt from toNum(Z), the maximal set doing
so is exactly the set of the unsigned integer strings and the non-numerical strings, since
the latter are converted to 0.

Example 5.1. Consider again the string set S = {"2.3", "3.4"} of Example 5.4.1. We can
show that in TJ?, ↵TJN

(JtoNum(S)K) = [[toNum(↵TJ?(S))]]TJ?
. Indeed,

↵TJN
(JtoNum(S)K) = NotUnsignedInt

= [[toNum(↵TJ?(S))]]TJ?

= [[toNum(SignedOrFloats)]]TJ?

= NotUnsignedInt

7
Note that the new abstract semantics JtoNum(•)KTJ?

handles the abstract points added
by the complete shell. It corresponds to the best correct approximation, i.e., ↵TJ? �
JtoNum(•)K � �TJ? : TJ? ! TJN (cf. Definition 2.4).

5.4.2 Completing SAFE String Abstract Domain

Figure 5.4a depicts the string abstract domain SF, i.e., the recasted version of the domain
involved into SAFE [122] static analyser. It splits strings into the abstract values: Numeric

(i.e., numerical strings) and NotNumeric (i.e., all the other strings). As for TJ, before
reaching these abstract values, SF precisely tracks single string values. For instance,
↵SF({"+9.6", "7"})=Numeric, and ↵SF({"+9.6", "bar"})= >SF.

We study the completeness of SF with respect to concat operation. Figure 5.6 presents
the abstract semantics of the concatenation operation for SF, that is:

Jconcat(•, •)KSF : SF⇥ SF! SF

In particular, when both abstract values correspond to single strings, the standard
string concatenation is applied (second row, second column). When one abstract value,

114 Chapter 5. Completeness of String Domains

Jconcat(s1, s2)KSF

Js1KSF

Js2KSF

?SF �2 2 ⌃⇤ Numeric NotNumeric >SF

?SF ?SF ?SF ?SF ?SF ?SF

�1 2 ⌃⇤ ?SF �1 · �2

8
>><

>>:

Numeric �1 = "" or
�1 2 ⌃⇤

UInt

NotNumeric otherwise

NotNumeric >SF

Numeric ?SF

8
>><

>>:

Numeric �2 = "" or
�2 2 ⌃⇤

UInt

NotNumeric otherwise

>SF NotNumeric >SF

NotNumeric ?SF NotNumeric >SF NotNumeric >SF

>SF ?SF >SF >SF >SF >SF

Figure 5.6: SF concat abstract semantics
.

involved in the concatenation, is a string and the other is Numeric (third row, second col-
umn and second row, third column) we distinguish two cases: if the string is empty or
corresponds to an unsigned integer we can safely return Numeric, otherwise NotNumeric is
returned. This happens because, when two float strings (hence numerical strings) are con-
catenated, a non-numerical string is returned (e.g., concat("1.1", "2.2") = "1.12.2"). For
the same reason, when both input abstract values are Numeric, the result is not guaranteed
to be numerical. Indeed, [[concat(Numeric,Nu- meric)]]SF = >SF.

Lemma 5.2. The SF abstract domain is not complete with respect to the concat opera-
tion. In particular, 9S1, S2 2 P(⌃⇤) such that:

↵SF(Jconcat(S1, S2)K) (Jconcat(↵SF(S1),↵SF(S2))KSF

Proof.

As a counterexample to completeness, consider the sets S1 = {"2.2", "2.3"} and S2 =
{"2", "3"}. Then, in SF, ↵SF(Jconcat(S1, S2)K) 6= Jconcat(↵SF(S1),↵SF(S2))KSF. Indeed,

↵SF(Jconcat(S1, S2)K) = Numeric

6= Jconcat(↵SF(S1),↵SF(S2))KSF

= Jconcat(Numeric, Numeric)KSF

= >SF

The SF abstract domain loses too much information during the abstraction process,

5.4. Making JavaScript String Abstract Domains Complete 115

max✓({Z 2 P(⌃⇤)|Jconcat(X, Z)K ✓ �SF(Y)}): First Iteration

X

Y
Numeric NotNumeric "n" 2 Z "f" 2 F "s" 2 NotNum

[NotNum \ {""}]

Numeric {""} [UInt [NotUInt ?SF ?SF ?SF

[NotUFloat

NotNumeric ?SF NotNumeric ?SF ?SF ?SF

{""} [NotNum \ {""}]

"n" 2 Z [UInt [NotUInt ?SF _ str ?SF _ str ?SF _ str

[UFloat [NotUFloat

[NotNum \ {""}]

"f" 2 F {""} [UInt [Float ?SF ?SF _ str ?SF _ str

[NotUInt

"s" 2 NotNum ?SF NotNumeric ?SF ?SF ?SF _ str

Table 5.1: Completing SF.

which can not be retrieved during the abstract concatenation. Intuitively, to gain complete-
ness with respect to concat operation, SF should improve the precision of the numerical
strings abstraction, e.g., discriminating between float and integer strings.

Definition 5.4 (Complete shell of SF). Let ⇢SF 2 uco(P(⌃⇤)) be the upper closure oper-
ator related to SF abstract domain. Given Jconcat(•, •)KSF : SF ⇥ SF ! SF, we define
by SF? the transformer Sconcat(⇢SF).

4

By Definition 5.2, SF? is the absolute complete shell of ⇢SF with respect to the concat
operation. By Theorem 5.2, the transformer Sconcat(⇢SF) is equal to the Moore closure of
the union between SF and the binary operator defined in Table 5.1. Table 5.1 depicts the
first iteration of the fix-point computation of Theorem 5.2, where ?SF and >SF rows and
columns are omitted for space limitations. In particular, 8X 2 P(⌃⇤), when X 6= ?SF, we
have that:

• max({Z 2 P(⌃⇤) | [[concat(Z, X)]] ✓ �SF(?SF)}) = ?SF

• max({Z 2 P(⌃⇤) | [[concat(X, Z)]] ✓ �SF(?SF)}) = ?SF

• max({Z 2 P(⌃⇤) | [[concat(X, Z)]] ✓ �SF(?SF)}) = >SF

116 Chapter 5. Completeness of String Domains

NotNXmeric

Figure 5.7: Absolute complete shell of ⇢SF w.r.t. concat.

Instead, 8X 2 P(⌃⇤), when X 6= >SF, we have that:

max({Z 2 P(⌃⇤) | [[concat(Z, X)]] ✓ �SF(?SF)}) = ?SF

The complete shell SF? is in Figure 5.7. In particular, the points inside dashed boxes
are the abstract values added during the iterative computations of SF?, the points inside
solid boxes are instead obtained by the Moore closure of the other points of the domain,
while the remaining abstract values were already in SF. The meaning of abstract values in
SF? is intuitive. In order to satisfy the completeness property, SF? splits the Numeric ab-
stract value, already taken into account in SF, into all the strings corresponding to unsigned
integer (UInt), unsigned floats (UFloat), and signed numbers (SignedNum). Moreover, par-
ticular importance is given to the empty string, since the new abstract domain specifies
whether each abstract value contains the empty string "".6 Indeed, the UInt" abstract
value represents the strings corresponding to unsigned integer or the empty string, and
the UNum" abstract value represents the strings corresponding to unsigned numbers or the
empty string. An unexpected abstract value considered in SF? is NotUnsignedNotEmpty,
such that:

�SF?(NotUnsignedNotEmpty) = {� 2 ⌃⇤ | � 2 ⌃⇤
SInt [⌃⇤

SFloat [(⌃⇤
NotNum \ {""})}

Namely, the abstract point whose concretization corresponds to the set of any string
corresponding to a signed number, and any non-numerical string, except the empty string.
This abstract point has been added to SF?, following Theorem 5.2. Since the absolute

6
The empty strings ("") at the most-left and most-right sides of Figure 5.7 are not distinct elements.

They are only duplicated to declutter the figure.

5.5. Benefits of Adopting Complete String Abstractions 117

complete shell is the greatest fix-point of the relative one (that in our case is reached
after one iteration), the corresponding procedure is the greatest fix-point of Algorithm 6,
instantiated with A = P(⌃⇤) and ⌘ = ⇢SF. In particular, the abstract element is computed
at lines 2-4 at the iteration when y is �SF(NotNumeric), x is �SF(Numeric) and i = 1,
namely NotUnsignedNotEmpty belongs to

max✓(Z 2 P(⌃⇤) | [[concat(�SF(Numeric), Z)]] ✓ �SF(NotNumeric))

Informally: which is the maximal set of strings such that concatenated to any possible
numerical string will produce any possible non-numerical string? Indeed, to be sure to
obtain non-numerical strings, the maximal set doing so is exactly the set of any non-
numerical non-empty string, and any string corresponding to a signed number, that is
NotUnsignedNotEmpty.

Example 5.2. Let S1 = {"2.2", "2.3"} and S2 = {"2", "3"} be the string sets of Example
5.4.2. We can show that in SF?, ↵SF?(Jconcat(S1, S2)K) = Jconcat(↵SF?(S1),↵SF?(S2))KSF?

.
Indeed,

↵SF?(Jconcat(S1, S2)K) = UFloat

= Jconcat(↵SF?(S1),↵SF?(S2))KSF?

= Jconcat(UFloat, UInt)KSF?

= UFloat

7
As in the TJ? case, the new abstract semantics Jconcat(•, •)KSF?

handles the abstract
points added by the complete shell. It corresponds to the best correction approximation,
i.e., ↵SF? � Jconcat(•, •)K � �SF? : SF? ⇥ SF? ! SF? (see Definition 2.4).

5.5 Benefits of Adopting Complete String Abstractions

Now, we discuss and evaluate the benefits gained from using the complete shells reported
in Section 5.4 and, more in general, complete domains, with respect to a certain operation.
In particular, we compare the µDyn versions of the string abstract domains adopted by
SAFE and TAJS with their corresponding complete shells, and we discuss the complexity
of the complete shells. Finally we argue how adopting complete abstract domains can be
useful into static analysers.

5.5.1 Precision

In the previous section, we focused on the completeness of the string abstract domains
integrated into SAFE and TAJS, for µDyn, with respect to two string operations, namely

118 Chapter 5. Completeness of String Domains

concat and toNum, respectively. While string concatenation is common in any programming
language, toNum assumes critical importance for dynamic languages, where implicit type
conversion is provided. Since type conversion is often hidden to the developer, aim to
completeness of the analysis increases the precision of such operations. For instance, let x

be a variable, at a certain program execution point. x may take its concrete values in the
set S = {"foo", "bar"}. If S is abstracted into the original TAJS string abstract domain,
its abstraction will corresponds to NotUnsigned, losing the information about the fact that
the concrete value of x surely does not contain numerical values. Hence, when the abstract
value of S is used as input of toNum, the result will return >TJN

, i.e., any possible concrete
integer value. Conversely, abstracting S in TJ? (the absolute complete shell of TJ relative
to toNum discussed in Section 5.4.1) leads to a more precise abstraction, since TJ? is able
to differentiate between non-numerical and numerical strings. In particular, the abstract
value of S in TJ? is NotNumeric, and JtoNum(NotNumeric)KTJ?

will precisely return 0.
Adopting a complete shell with respect to a certain operation does not compromise the

precision of the others. For example, consider the domain of TAJS again and the following
JavaScript fragment.

1 var obj = {

2 "foo" : 1,

3 "bar" : 2,

4 "1.2" : 3,

5 "2.2" : "hello"

6 }

7

8 y = obj[idx];

Suppose that the value of idx is the abstraction of the string set S = {"foo", "bar"},
in the starting TAJS string abstract domain, namely the abstract value NotUnsigned. The
variable idx is used to access the property of the object obj at line 8 and, to guarantee
soundness, it accesses all the properties of obj, including the fields "1.2" and "2.2", intro-
ducing noise in the abstract computation, since "1.2" and "2.2" are false positives values
introduced by the abstraction of the values of idx. If we analyse the same JavaScript

fragment with the absolute complete shell (with respect to toNum operation) of the TAJS
string abstract domain defined in Section 5.4.1, we obtain more precise results. Indeed, in
this case, the value of idx corresponds to the abstract value NotNumeric, and when it is
used to access the object obj at line 8, only "foo" and "bar" are accessed, since they are
the only non-numerical string properties of obj.

5.5.2 Qualitative Evaluation of Complete Shells

We evaluate the complete shells we have provided in the previous section from a qualitative
point of view. As usual in static analysis, there is a trade-off between precision and

5.5. Benefits of Adopting Complete String Abstractions 119

efficiency: choosing a more precise abstract domain may compromise the efficiency of the
abstract computations. A representative example is in [80]: the complete shell of the Sign
abstract domain with respect to addition is the interval abstract domain. Hence, starting
from a finite height abstract domain (signs) we obtain an infinite height abstract domain
(intervals). In particular, fix-point computations on signs converge, while on intervals
it may diverge. Indeed, after the completion, the Interval abstract domain should also
be equipped with a widening operator [51] to still guarantee termination. A worst-case
scenario is when the complete shells with respect to a certain operation exactly corresponds
to the collecting abstract domain, i.e., the concrete domain. Clearly, we cannot use the
concrete domain due to undecidability reasons, so we change the starting abstract domain,
since it cannot track any information related to the operation of interest. An example
is the Suffix abstract domain [49] with substring operation: since this abstract domain
tracks only the common suffix of a set of strings, it can not track the information about
the indexes of the common suffix, and the complete shell of the suffix abstract domain
with respect to substring would lead to the concrete domain. Hence, if the focus of the
abstract interpreter is to improve the precision of the substring operation, we should
change the abstract domain with a more precise one for substring, such as the finite state
automata [16] abstract domain.

Consider now the complete shells reported in Section 5.4. The obtained complete
shells still have finite height. Hence termination is still guaranteed without equipping the
complete shells with widening operators. Moreover, the complexity of the string operations
of interest is preserved after completion. Indeed, in both TAJS and SAFE starting abstract
domains, concat and toNum operations have constant complexity, respectively, and the
same complexity is preserved in the corresponding complete shells. It is worth noting that
also the complexity of the abstract domain-related operations, such as least upper bound,
greatest lower bound and the ordering operator, is preserved in the complete shells. As
far as the complete shells we have reported for TAJS and SAFE are concerned, there is
no worsening when we replace the original string abstract domains with the corresponding
complete shells. As we have already mentioned before, this leads to completeness during
the input abstraction process with respect to the relative operations, namely concat for
SAFE and toNum for TAJS.

5.5.3 False Positives Reduction

In static analysis, a certain degree of abstraction must be added in order to obtain de-
cidable procedures to infer invariants on a generic program. Clearly, using less precise
abstract domains lead to an increase of false positive values of the computed invariants. In
particular, after a program is analysed, this burdens the phase of false positive detection:
when a program is analysed, the following phase consists in detecting which values of the

120 Chapter 5. Completeness of String Domains

invariants derived by the static analyser are spurious, namely those values that certainly
are not computed by the concrete execution of the program of interest.

In particular, using imprecise (i.e., not complete) abstract domains clearly increases
the number of false positives in the abstract computation of the static analyser, burdening
the next phase of detecting the spurious values. Conversely, adopting (backward) complete
abstract domains with respect to a certain operation reduces the number of false positives
introduced during the abstract computations, at least in the input abstraction process.
Clearly, in this way, the next phase of detecting false positives will be lighter since less
noise has been introduced during the abstract computation of the invariants. Consider the
JavaScript fragment of the previous paragraph again. As we already discussed before,
using the starting TAJS abstract domain to abstract the variable idx leads to a loss of
precision, since the spurious value "foo" and "bar" are taken into account in its abstract
value, namely Unsigned. Using the complete shell of TAJS with respect to toNum instead
does not add noise when idx is used to access obj.

5.6 Relative Precision

In this section, we recall the notion of pseudo-distance on abstract domains, firstly defined
in [125], which takes into account the order relation between abstract elements (together
with the fact that different abstract elements might approximate the same set of concrete
values) and their possible incomparability. Then we formalise the increment of the precision
obtained when analysing a program with a complete abstract domain with respect to the
original version of the domain.

5.6.1 Abstract Domains Precision: an Overview

It is well known that abstract domains precision can be qualitatively compared by ex-
ploiting the information they can capture [44, 45]. However, quantitatively evaluating
the precision of abstract domains has been proven to be quite challenging and frequently
resulted in ad hoc measures.

Di Pierro and Wiklicky [144], introduced the notion of probabilistic Abstract Interpre-
tation, used to numerically estimate the incompleteness of numerical abstract domains.

Sotin [160] presented the notion of precision of a numerical abstract value, measur-
ing the volume it describes, to quantitatively compare the precision of numerical abstract
domains. Finally, Casso et al. [32] compare the precision of different analyses on logic
programs. They proposed distances in two abstract domains used in constraint logic pro-
gramming, and they extended them to distances between the results of different analyses
of a given program.

5.6. Relative Precision 121

Logozzo et al. [125] gave a more general definition of pseudo-distance between abstract
domain elements that allows to quantify the error of approximating a concrete element in
an abstract domain.

Definition 5.5 (Pseudo-distance [125]). Let hD,vD,?D,>D,uD,tDi be an abstract do-
main. A function � : D ⇥D ! R [{+1} is a pseudo-distance over the abstract domain
D if and only if, for any d,d',d'' 2 D, it satisfies the following axioms:

• non-negativity : �(d,d') � 0

• if-identity : d =D d') �(d,d') = 0

• symmetry : �(d,d') = �(d',d)

• weak triangle inequality : d vD d'' vD d') �(d,d'')  �(d,d') + �(d',d'')

4

We recall the path length distance definition.

Definition 5.6 (Path length distance [125]). Let hD,vD,?D,>D,uD,tDi be an abstract
domain. The path length distance �plen : D⇥D! R [{+1} is defined as

�plen(d,d') =

8
>>><

>>>:

plen(d,d') d vD d'

plen(d',d) d' vD d

+1 otherwise

where plen(d,d') computes the distance between two abstract values d,d' 2 D and it is
defined as follows.

plen(d,d') = min{n | {d0,d1, . . . ,dn} 2 P(D),d0 = d,dn = d',

8i 2 [0, n).di vD di+1}

4

5.6.2 Measuring Precision Gained by Complete Shells

We aim at computing the distance, and in turn, the increment of precision, between ab-
stract points of an abstract domain D and its complete shell, with respect to a certain
operation of interest f, noting that the abstract values of D are all contained in its com-
plete shell. In order not to clutter the notation, given an abstract domain D, we denote
by Shellf(D) its complete shell with respect to the function f.

Let P be a µDyn program; let Lab(P) be the program points of P; let `i 2 Lab(P) be
i-th program point of P and let Vars(P) be the program variables. An example of µDyn

122 Chapter 5. Completeness of String Domains

1nums = "";
2notnums = "";
3i = 0;
4while (i < length(s)) {

5if (toNum(charAt(str , i)) == 0) {
6notnums = concat(notnums , charAt(s, i));7

} else {
8nums = concat(nums , charAt(s, i));9

}
10i = i + 1;11

}12

Figure 5.8: Example of µDyn annotated program

program annotated with its program points is in Figure 5.8. Given this program, as usual
in static program analysis, the goal is to compute the abstract values associated to each
variable x 2 Vars(P) at each program point ` 2 Lab(P).

We denote by ⇠D : Vars(P) ! D the abstract state associating each variable to an
abstract value of D. When clear from the context, we denote the abstract state by ⇠.
Hence, given an abstract domain D and a program P, the result of the analysis of P using
the abstract domain D (and the corresponding abstract semantics J·KD) is defined by

Analysis(P,D, ⇠;) = {(`i, ⇠i) | `i 2 Lab(P), ⇠i = JPKD⇠; at program point `i}

where ⇠; is the (initial) empty abstract state. For example, we analyse the µDyn program
in Figure 5.8 with the TAJS abstract domain of Figure 5.4b. The abstract state holding
at program point 12 (namely the exit program point) is ⇠12 = {i 7! UnsignedInt, nums 7!
>TJ, notnums 7! >TJ}, indeed the pair (12, ⇠12) 2 Analysis(P,TJ, ⇠;).

We can exploit the path length distance of Definition 5.6 to define, for each program
point ` 2 Lab(P), the distance from ?D and each abstract value associated with each
x 2 Vars(P).

Definition 5.7 (Set of ?-distances). Let P be a µDyn program, let D be an abstract
domain, and let �plen be the path length distance of Definition 5.6. The set of ?D-distances
for a given ` 2 Lab(P) is defined as follows.

�`(P,D) = {(x, �(?D, ⇠(x))) | (`, ⇠) 2 Analysis(P,D, ⇠;), x 2 Vars(P)}

4

For example, consider again ⇠12, defined above, that is the abstract state holding at
the program point 12 of the program in Figure 5.8. Hence, the set of the ?TJ-distances at
program point 12 is �12(P,TJ) = {(i, 2), (nums, 3), (notnums, 3)}.

5.6. Relative Precision 123

Note that, by the weak triangle inequality, given two abstract elements d,d' 2 D, if
d vD d') �(?D,d)  �(?D,d'). Moreover, since ?D is comparable with any abstract
value d 2 D, �(?D,d) 6= 1.

Definition 5.8 (Precision entropy at a program point). Let P be a µDyn program and let
D be an abstract domain. Given a program point ` 2 Lab(P), the precision entropy of D
for the program P at ` is defined as

P`(P,D) =
X

(xi,di)2�`(P,D)

di

where di is the path length distance from ?D to the abstract value of xi at the program
point `.

4

We can use Definition 5.8 to define the precision entropy of an analysis for a given
program.

Definition 5.9 (Precision entropy). Let P be a µDyn program and let D be an abstract
domain. The precision entropy P(P,D) of the abstract domain A for the program P is
defined as

P(P,D) =
X

`2Lab(P)

P`(P,D)

4

The precision entropy P(P,D) says how much information is expressed by the analysis
based on the abstract domain D: the more P(P,D) is low, the more the analysis based
on D is precise for the program P. Using this metric, we can compare the analysis results
based on a certain abstract domain and its corresponding complete shell. As we have
already mentioned at the beginning of Section 5.6, any abstract point of D is contained
in its complete shell. Moreover, it is worth noting that, given a variable x 2 Vars(P)
and a certain program point ` 2 Lab(P), the abstract value computed by the analysis
on D associated with x is always comparable with the abstract value computed by the
analysis on Shellf(D) associated with x. Formally, consider (`, ⇠) 2 Analysis(P,D, ⇠;)
and (`, ⇠') 2 Analysis(P, Shellf(D), ⇠;), for some program point ` 2 Lab(P), we have that
8x 2 Vars(P). ⇠'(x) vShellf(D)

⇠(x). This can be expressed by the following predicate

P(P, Shellf(D))  P(P,D).

Informally speaking, for a program point `, the analysis result of x on Shellf(D) is
always dominated (i.e., less than or equal to) by the analysis result of x on D (contained in
Shellf(D)). This fact directly comes from the dominance relation involved in the definition

124 Chapter 5. Completeness of String Domains

Variable TJ TJ?
P12(P,TJ) – P12(P,TJ?)

s UnsignedStr UnsignedStr 0

i UnsignedInt UnsignedInt 0

nums >TJ UnsignedOrNotNumeric 1

notnums >TJ UnsignedOrNotNumeric 1

Table 5.2: Analysis output results with TJ and TJ?.

of complete shells given in Theorems 5.1 and 5.2. For this reason, we can always compare
the analysis results produced by D and Shellf(D) for any variable and any program point.

This leads us to an automatic procedure to compute how much the analysis performed
by Shellf(D) is better than the one performed by D.

5.6.3 Experimental Evaluation

The Clam static analyzer for µDyn programs implements the TAJS and SAFE string
abstract domains and their corresponding complete shells discussed in Section 5.4.7 The
abstract interpreter is parametric, as it can be tuned by selecting the string abstract
domain to be used to analyse a given program. Other string abstract domains can be
easily plugged into our static analyser, without re-implementing the underlying abstract
interpreter. Moreover, it is possible to check the precision entropy, of Section 5.6, of an
abstract domain and its complete shell. In this way, it is possible to check at which program
point and for which variables the complete shell-based analysis gains precision with respect
to the analysis on the original abstract domain.

For example, consider the µDyn program in Figure 5.8, where the value of s is statically
unknown. The program takes the strings s and puts its non-zero numerical characters into
nums and the others into notnums. If the variable s is initialised as ”24kobe8”, at the
program point 12 the value of nums is ”248” and the value of notnumbs is ”kobe”. Consider
TAJS and its complete shell and let analyse the program with both the abstract domains.
When the variable s is initialised with the abstract value UnsignedStr, the analysis output,
for the exit point, is in Table 5.2, where the second and third columns correspond to the
result analysis of TJ and TJ? for the corresponding variable, respectively, and the last
column is the increment precision gained by performing the analysis on TJ?. Observe that,
for the variables s and i, we have no precision improvement, as stated by the last column
of Table 5.2. Concerning variables nums and notnumbs, the analysis on TJ returns the top
values, whereas the analysis on TJ? leads to an precision increment, since it returns the
abstract value UnsignedOrNotNumeric, for both variables. The precision increment is in the

7
Available at https://github.com/VincenzoArceri/clam

https://github.com/VincenzoArceri/clam

5.7. Discussion 125

last column of Table 5.2 for the variables nums and notnumbs, since their abstract values
(UnsignedOrNotNumeric) on the analysis on TJ? is distant 1 from the abstract values of the
analysis on TJ (>TJ). The total precision entropy of the analysis on TJ and the analysis
on TJ? is 54 and 44, respectively, so the overall precision increment when considering the
complete shell, in this case, is 10.

5.7 Discussion

In this chapter, we focused on backward completeness in JavaScript-specific string ab-
stract domains, and in particular, we provided the complete shells of TAJS and SAFE
string abstract domains with respect to toNum and concat operations, together with an ef-
fective procedure to measure the precision improvement of the analysis when moving to the
complete shell. Our results can also be easily applied to JSAI string abstract domain [112],
as it can be seen as an extension of the SAFE domain.

127

Chapter 6

RELATIONAL STRING ABSTRACT DOMAINS

In this chapter, we define an Abstract Interpretation framework for relational string anal-
ysis. The framework is based on string orders and allows us to detect relations between
the values of distinct string variables, in contrast to typical string abstract domains, that
describe the content of each string variable independently. We instantiate the framework to
some string order relations of interest. Note that the abstract domains we introduce in this
chapter are not language-specific, and consequently, they may be suitable for analysing pro-
grams written in different programming languages. Moreover, we track relations between
string variables and expressions and, based on the string order onto which the framework
has been instantiated, we can also infer content and shape information of string values.
Finally, our framework can be easily combined with basics string abstract domains and
lead to preciser analyses.

The contribution of this chapter is submitted for publication.

Chapter Structure

Section 6.1 highlights the importance of having relational string analysis and explains our
contribution. Section 6.2 presents our core language. Section 6.3 formalizes the frame-
work from which relational string abstract domains based on a given strings order can be
built and defines some instances of it. Section 6.4 presents the experimental evaluation.
Section 6.5 concludes.

6.1 Introduction

The static analysis community has spent a great effort in proposing new abstractions, to
better approximate and analyse string values. Unfortunately, almost all the existing string
abstract domains track information of single variables used in a program (e.g., if a string
contains some characters, or it starts with a given sequence), without inspecting their
relationships with other values (e.g., if a string is a substring of another one, despite their
actual values are unknown).

128 Chapter 6. Relational String Abstract Domains

String secName(String javaName , String pr1 , String pr2) {

if (javaName.startsWith(pr1)) {

return pr2 + javaName.substring (4);

} else if (javaName.startsWith(pr2)) {

return pr1 + javaName.substring (4);

} else {

return javaName;

}

}

Figure 6.1: secname sample.

Concerning integer abstractions, advanced and sophisticated relational abstractions
have been studied and improved over the years to track relations between integer variables:
a representative example, among others, is the Polyhedra abstract domain [58] proposed in
the late 70s, but constantly and heavily improved over the years, as reported by the more
recent important works on its optimization, e.g., [21, 20]. Unfortunately, we cannot say
the same for string abstract domains, where the majority of them infer only non-relational

information.
We illustrate the problem by considering the Java function secname in Figure 6.1.1

secname takes as input three arguments, javaName, pr1 and pr2. Then, if javaName

starts with pr1, the function returns pr2 concatenated to the substring, from the index 4,
of javaName. secname behaves analogously when javaName starts with pr2 and it concate-
nates pr1 with javaName.substring(4), otherwise javaName is returned. The relational
information we want to capture here is the one relating pr1 and pr2 with javaName and the
returned value. In particular, we want to infer that (i) javaName.substring(4) is always
part of the returned value, (ii) pr1 is returned as part of the return value if javaName starts
with pr2, and (iii) pr2 is returned as part of the returned value if javaName starts with
pr1. Unfortunately, in order to catch such information, non-relational abstractions, even
the more advanced and sophisticated ones, are not enough and new relational domains for
strings are a necessity.

State of the Art

Several relational abstract domains have been proposed for numerical values, such as Poly-
hedra [58], Octagons [135], Logahedra [98], Pentagons [126], Stripes [66], and Weighted
Hexagons [72]. Some of these domains have inspired us to build the string relational
domains that will be presented in Section 6.3. Indeed, consider the Octagons and the
Pentagons abstract domains. Octagons track relations of the form ±x ± y  k, where

1secname is the result of a slight modification made to the function available at https://

www.codota.com/code/java/classes/java.lang.String

https://www.codota.com/code/java/classes/java.lang.String
https://www.codota.com/code/java/classes/java.lang.String

6.2. Core Language 129

k is a constant. Instead, Pentagons, a less precise domain than Octagons, combines the
numerical properties tracked by the Interval domain (i.e., x 2 [n, m]) and the symbolic
ones captured by the Strict Upper Bound domain (i.e., x < y). Similar to the Strict Upper
Bound domain, our framework instantiates domains that track information of the form
x � y where � is a (general) order over string variables. Moreover, the framework exten-
sion we define to track relations between string expressions and variables, like x + y � z,
has been modelled similarly to Octagons.

Other abstractions have been proposed to infer information about the relations between
heap-allocated data structures a program manipulates [179]. Authors defined in [88] an
abstract domain that approximates must and may equalities among pointer expressions.
A relational abstract domain for shape analysis has been presented in [102], built on the
top of a set of logical connectives, that represents relations among memory states.

Also, for string values, a big effort has been made to improve the precision of string ab-
stractions, but contrary to the numerical world, most of them only focus on the abstraction
of a single variable (cf. Chapter 1).

Contribution

In this chapter, we define a general framework upon which relational strings abstract
domains can be instantiated, starting from a string order of interest. We introduce a suite
of relational abstract domains fitting the proposed framework, based on length inequality,
char inclusion, substring relations. Precisely, our framework will be firstly formalized to
track relations between single string variables, and later on extended to infer relations
between string expressions and variables, to appreciate the improvement of the captured
information precision.

We conclude by presenting the experimental analysis results of the relational string
abstract domain based on our substring relation, and we compare it with the state-of-the-
art general purpose string abstract domains.

6.2 Core Language

As core language we use Imp, a modified version of µDyn (cf. Section 5.3).

6.2.1 Syntax

The Imp syntax is given in Figure 6.2. Let P be an Imp program. Each Imp statement
is annotated with a label ` 2 Lab(P) (not belonging to the syntax), where Lab(P) denotes
the set of the P labels, i.e., its program points. We denote by `` the initial program point
and by `a the exit program point.

As usual in static analysis, a program can be analysed by looking at its control-flow
graph (CFG for short), i.e., a directed graph that embeds the control structure of a program,

130 Chapter 6. Relational String Abstract Domains

a 2 ae ::= x | n | a + a | a - a | a * a | a / a
| length(s) | indexOf(s,s)

b 2 be ::= x | true | false | b && b | b || b | ! b
| e < e | e == e | contains(s1,s2)

s 2 se ::= x | "�" | substr(s,a,a) | s1 + s2

e 2 e ::= a | b | s

st 2 st ::= `1st `2st`3 | `1skip;`2 | `1x = e;`2
| `1if (b) `2st`3 else 4st`56 | `1while (b) 2st3`4

P 2 Imp ::= `1st`2

where x 2 X (finite set of variables), n 2 Z and � 2 ⌃⇤

Figure 6.2: Imp syntax.

1x = "a";
2y = "c";
3while (B) {
4x = x + "a"; 5

}6

1

5

4

6

3

2

x = "a"
<latexit sha1_base64="MSMfCk1eW5PDSUimC/vWETakF4s=">AAAB/nicbVDLSgNBEJyNrxhfUY9ehgTBU9iNiF6EgBePEcwDskvonXTikNkHM71iWAJ+hVc9eROv/ooH/8VN3IMm1qmo6qary4+VNGTbn1ZhZXVtfaO4Wdra3tndK+8ftE2UaIEtEalId30wqGSILZKksBtrhMBX2PHHVzO/c4/ayCi8pUmMXgCjUA6lAMok1yVKH/glr0Bl2i9X7Zo9B18mTk6qLEezX/5yB5FIAgxJKDCm59gxeSlokkLhtOQmBmMQYxhhL6MhBGi8dJ55yo8TAxTxGDWXis9F/L2RQmDMJPCzyQDozix6M/E/r5fQ8MJLZRgnhKGYHSKpcH7ICC2zMpAPpEYimCVHLkMuQAMRaslBiExMsnZKWR/O4vfLpF2vOae1+k292jjLmymyI1ZhJ8xh56zBrlmTtZhgMXtiz+zFerRerTfr/We0YOU7h+wPrI9vcVeVQg==</latexit>

y = "c"
<latexit sha1_base64="iDPZ0aVo5PANduept/1pVMcDCfM=">AAAB/nicbVC7SgNBFJ31GeMramkzJAhWYTci2ggBG8sI5gHZJcxObuKQ2dlh5q4QloBfYauVndj6Kxb+i5t1C0081eGce7nnnlBLYdF1P52V1bX1jc3SVnl7Z3dvv3Jw2LFxYji0eSxj0wuZBSkUtFGghJ42wKJQQjecXM/97gMYK2J1h1MNQcTGSowEZ5hJvo+YTukVrfLqbFCpuXU3B10mXkFqpEBrUPnyhzFPIlDIJbO277kag5QZFFzCrOwnFjTjEzaGfkYVi8AGaZ55Rk8SyzCmGgwVkuYi/N5IWWTtNAqzyYjhvV305uJ/Xj/B0WWQCqUTBMXnh1BIyA9ZbkRWBtChMIDI5smBCkU5MwwRjKCM80xMsnbKWR/e4vfLpNOoe2f1xm2j1jwvmimRY1Ilp8QjF6RJbkiLtAknmjyRZ/LiPDqvzpvz/jO64hQ7R+QPnI9vdg+VRQ==</latexit>

B
<latexit sha1_base64="a9OKxPc5LtgkucEsGkyOi9d+feM=">AAAB+HicbVC7TsNAEDzzDOEVoKQ5ESFRRXYQgjKChjJI5CElVrS+bMKR80N3a6Rg5R9ooaJDtPwNBf+CbVxAwlSjmV3t7HiRkoZs+9NaWl5ZXVsvbZQ3t7Z3dit7+20TxlpgS4Qq1F0PDCoZYIskKexGGsH3FHa8yVXmdx5QGxkGtzSN0PVhHMiRFECp1O4TJZezQaVq1+wcfJE4BamyAs1B5as/DEXsY0BCgTE9x47ITUCTFApn5X5sMAIxgTH2UhqAj8ZN8rQzfhwboJBHqLlUPBfx90YCvjFT30snfaA7M+9l4n9eL6bRhZvIIIoJA5EdIqkwP2SElmkNyIdSIxFkyZHLgAvQQIRachAiFeO0l3LahzP//SJp12vOaa1+U682zopmSuyQHbET5rBz1mDXrMlaTLB79sSe2Yv1aL1ab9b7z+iSVewcsD+wPr4BadOTrg==</latexit>

¬B
<latexit sha1_base64="cVWjgy6jOdxJzZ5FczCj6rRRCAE=">AAAB/nicbVC7TsNAEDyHVwivACXNiQSJKrKDEJQRNJRBIg8ptqLzZRNOOZ+tuzVSZEXiK2ihokO0/AoF/4JtXEDCVKOZXe3s+JEUBm370yqtrK6tb5Q3K1vbO7t71f2DrgljzaHDQxnqvs8MSKGggwIl9CMNLPAl9Pzpdeb3HkAbEao7nEXgBWyixFhwhqnk1l0Fk7qLmFzNh9Wa3bBz0GXiFKRGCrSH1S93FPI4AIVcMmMGjh2hlzCNgkuYV9zYQMT4lE1gkFLFAjBekmee05PYMAxpBJoKSXMRfm8kLDBmFvjpZMDw3ix6mfifN4hxfOklQkUxguLZIRQS8kOGa5GWAXQkNCCyLDlQoShnmiGCFpRxnopx2k4l7cNZ/H6ZdJsN56zRvG3WWudFM2VyRI7JKXHIBWmRG9ImHcJJRJ7IM3mxHq1X6816/xktWcXOIfkD6+MbQNiVyA==</latexit>

x = x + "a"
<latexit sha1_base64="wbTaSTI0NIClYMTsrdH2XwfVDuA=">AAACBHicbVDLSgNBEJz1GeNr1aOXIUEQhLAbEb0IAS8eI5gHJCH0TjpxyOyDmd6QsOTqV3jVkzfx6n948F/crDloYp2Kqm66urxISUOO82mtrK6tb2zmtvLbO7t7+/bBYd2EsRZYE6EKddMDg0oGWCNJCpuRRvA9hQ1veDPzGyPURobBPU0i7PgwCGRfCqBU6tp2mygZ82s+5me8AIVp1y46JScDXybunBTZHNWu/dXuhSL2MSChwJiW60TUSUCTFAqn+XZsMAIxhAG2UhqAj6aTZMmn/CQ2QCGPUHOpeCbi740EfGMmvpdO+kAPZtGbif95rZj6V51EBlFMGIjZIZIKs0NGaJlWgrwnNRLBLDlyGXABGohQSw5CpGKcdpRP+3AXv18m9XLJPS+V78rFysW8mRw7ZgV2ylx2ySrsllVZjQk2Yk/smb1Yj9ar9Wa9/4yuWPOdI/YH1sc38LqWfg==</latexit>

Figure 6.3: Example of CFG generation.

where the nodes are the program points and the edges express the flow paths from the entry
to the exit block. Formally2, given a program P 2 Imp, we define the corresponding CFG

GP = hNodesP, EdgesP, InP, OutP i as the CFG whose nodes are the program points, i.e.,
NodesP = Lab(P); the input node is the entry program point, i.e., InP = ``; and the output
node is the last program point, i.e., OutP = `a. The algorithm computing the CFG of a
program P is standard and can be found, e.g., in [99, 14]. An example of CFG is depicted
in Figure 6.3, where the label true is omitted.

As observed in [99], the language of the edges label is different from Imp, since the
CFG embeds the control structure of the program. In particular, the grammar of the edges
label is Imp

CFG ::= skip | x = exp | b.

6.2.2 Concrete Semantics

Since we aim to analyse CFGs to answer questions on the corresponding programs, we define
the semantics of the edges label, elements of Imp

CFG, which express the effect that each
edge has from its entry node to its exit node. Let Val = Int [Bool [Str be the set of
the possible values associated with a variable, where Int denotes the set of signed integers

2
Both static analysis process and notation follow the one presented in [99].

6.2. Core Language 131

Z, Bool denotes the set of booleans {true, false}, and Str denotes the set of strings
⌃⇤ over an alphabet ⌃. Let m 2 M = X ! Val be the set of memories, where m; is the
empty memory. The semantics of expressions is captured by the function L e M : M ! Val.
Since the semantics of integer and Boolean expressions is standard (and not of interest of
this chapter), in the following we only give the concrete semantics of string expressions.

L s1 + s2 Mm = L s1 Mm · L s2 Mm L x Mm = m(x) L � Mm = �

L substr(s, a1, a2) Mm = �i . . .�j–1

where � = L s Mm, i = L a1 Mm, j = L a2 Mm, 0  i  j < |�|

L indexOf(s1, s2) Mm =

8
<

:
idx(�1,�2) if �2 y �1

–1 otherwise

where �1 = L s1 Mm,�2 = L s2 Mm
L length(s) Mm = |L s Mm|

L contains(s1, s2) Mm = L s2 Mm y L s1 Mm

Once we defined the expression concrete semantics, we formalize the edges label se-
mantics. Abusing notation, we define the function L st M : M ! M to capture the semantics
of the elements of Imp

CFG.

L skip Mm = m L x = e Mm = m[x L e Mm]

L b Mm =

8
<

:
m if L b Mm = true

m; if L b Mm = false

Finally, the store [14] is the collection of memories for each program point. The store
is defined as s 2 S = Lab(P) ! M and it associates a memory to each program point.

Static analysis computes (abstract) invariants for each program point; thus, we first
define a collecting semantics which associates with each program point, namely to each
node of a CFG, the set of its possible memories holding at that program point. This boils
down to lifting the concrete semantics L st M : M ! M (working on single memories), to
the collecting semantics JstK : P(M) ! P(M) working on sets of memories. We also slightly
change the notion of store, since it has to map each program point to sets of memories,
namely s 2 S = Lab(P) ! P(M).

Finally, we could use standard fix-point analysis algorithms (i.e., the ones presented
in [14, 99, 139]) which returns a store s such that, for each ` 2 Lab(P), s(`) is the fix-
point collecting semantics (i.e., a set of memories) for the program point `. In this way,
unfortunately, the invariants for each node of a CFG are not computable because of Rice’s
Theorem. Therefore, we need abstraction to make static analysis decidable.

132 Chapter 6. Relational String Abstract Domains

6.3 A Suite of String Relational Abstract Domains

In this section, we provide a suite of relational string abstract domains, based on several
well-known orders over strings. We start with a general framework to build string relational
abstract domains starting from a given string order. Within this framework, we present
three different string relational abstract domains: length inequality, character inclusion,
and substring domains, with the corresponding abstract semantics of Imp.

6.3.1 General Relational Framework

We aim at capturing relations between string variables in the form x � y, with respect to
some (partial or pre-order) relation � over strings, such as, for example, “y is a substring
of x” or “y is the prefix of x”. As introduced in Section 6.1, in the numerical world
such a relation is captured by the (strict) upper bound abstract domain [135, 126], which
expresses relations in the form y  x, for some numerical variables x and y. In this section,
we generalize the upper bound abstract domain to string variables, making it parametric
with respect to a given string order.

Our starting point is an order ⇠ ✓ ⌃⇤ ⇥ ⌃⇤ between strings, from which, given the
finite set of string variables Xstr, we build a new order � ✓ Xstr ⇥ Xstr between a pair
of string variables. Upon the order � we design a generalized relational string abstract
domain.

Definition 6.1 (General string relational abstract domain). Let � ✓ Xstr ⇥ Xstr be an
order over string variables. The general string relational abstract domain A, ranged over
the meta-variable A, is defined as

A = P({y � x | x, y 2 Xstr}) [{?A}

such that the top element >A corresponds to ; and the bottom element is ?A. The least
upper bound, greatest lower bound, and the partial order of A are defined as follows.

A1 uA A2 = {y � x | y � x 2 A1 _ y � x 2 A2}

A1 tA A2 = Clos({y � x | y � x 2 A1 ^ y � x 2 A2})

A1 vA A2 () A1 ◆ A2

where Clos : A ! A is the function performing the transitive closure of the abstract element
input.

4

The abstract domain A is intended to collect � must relations, i.e., informally speaking,
if a relation y � x is captured in the abstract, it means that it holds in the concrete.

6.3. A Suite of String Relational Abstract Domains 133

Note that elements of A (cf. Definition 6.1) are sets of relations y � x between single
string variables. Moreover, the general abstract domain A is finite, given that the set
of string variables is finite and, in turn, also the number of possible relations. Thus, it
is trivial to see that the domain (A,vA,?A,>A,uA,tA) is a complete lattice, and that
its greatest lower bound uA and least upper bound tA are defined as the union and
the intersection between abstract elements, respectively. Concretization and abstraction
functions �A : A ! P(M) and ↵A : P(M) ! A are generally defined as

�A(A) =
\

y�x2A
{m | m(x),m(y) 2 ⌃⇤,m(y) ⇠ m(x)} (6.1)

↵A(M) = {y � x | 8m 2 M. m(y) ⇠ m(x), x, y 2 Xstr} (6.2)

Also, (P(M),↵A,�AA) is a Galois Connection, since P(M) and A are complete lattices
and ↵A is a join-morphism.

At this point, we define a general and parametric abstract semantics of Imp. In par-
ticular, given an abstract domain A, built upon the order �, we define the function
J st KA : A ! A capturing the �-relations between variables generated by the state-
ment st. We start by defining the parametric abstract semantics of the assignment x = s.
Here, the crucial point is the definition of the auxiliary function extr : se ! P(Xstr) that,
given a string expression s, extracts all the variables appearing in s that are related with
respect to � with x. In particular, extr approximates the set of variables appearing in s

that are �-related with x.
Once defined the extraction function extr, we give the general abstract semantics of the

assignment, which is defined by the following steps:

• [remove]

Ar =

8
<

:
A \ {w � z | w = x} if x appears at the top-level of s

A \ {w � z | w = x _ z = x} otherwise

• [add]
Aa = Ar [{y � x | y 2 extr(s)}

• [closure]
J x = s KAA = Clos(Aa)

The first phase is [remove]: given the input memory A, it removes the relations that
surely do not hold anymore after the assignment execution. In particular, we always remove
the relations of the form x � z, for some z 2 Xstr, since x is going to be overwritten, but
we also remove any relations of the form w � x, for some w 2 Xstr, if and only if x does
not appear at the top-level of the expression s.

134 Chapter 6. Relational String Abstract Domains

Then, the [add] phase adds the �-relations y � x, for each variable y collected in
extr(s). Finally, [closure] performs the transitive closure of the abstract memory obtained
from [add], i.e., Aa, by means of the function Clos, in order to derive the implicit �-
relations which are not directly present in Aa.

As far as Boolean expressions are concerned, the only Imp Boolean expressions that gen-
erate �-relations (for the string domains presented in this chapter) are: contains(s1, s2),
s1 == s2, conjunctive, and disjunctive expressions. Note that given the expression
contains(s1, s2), we can infer �-relations only when s1 is a variable. In all the other
cases, no information is gathered.

J contains(x, s) KAA = Clos(A [{y � x | y 2 extr(s)})

Similarly, we can infer �-relations in the abstract semantics of s1 == s2 only when
either s1 or s2 is a string variable.

J x == s KAA = J s == x KAA =

8
<

:
Clos(A [{y � x, x � y}) if s = y 2 Xstr

Clos(A [{y � x | y 2 extr(s)}) otherwise

As far as the conjunctive and disjunctive expressions semantics, we rely on the least
upper bound and greatest lower bound operators given in Definition. 6.1.

J e1 && e2 KAA = J e1 KAA tA J e2 KAA

J e1 || e2 KAA = J e1 KAA uA J e2 KAA

Unlike the assignment case, the abstract semantics of Boolean expressions removes no
previous substring relations, since these expressions do not affect the (concrete) memory.

Moreover, this general abstract semantics only holds for the abstract domains that we
present in this chapter, and it may not hold for other abstract domains generated within
the framework proposed in this section.

6.3.2 String Length Relational Abstract Domain

Within the formal framework presented above, we generate several relational string abstract
domains. For instance, one may be interested in capturing the relations concerning the
length of a string variable with respect to another, when interacting during the program
execution. Formally, we are interested in identifying the relation �len✓ Xstr⇥Xstr between
string variables such that, given x, y 2 Xstr, y �len x if and only if the length of y is
smaller than or equal to the length of x.3 We instantiate the general abstract domain of

3�len is not a partial order but it is a pre-order binary relation. We will discuss later on how this

affects the abstract domain gathered information.

6.3. A Suite of String Relational Abstract Domains 135

Greatest lower bound: L1 ulen L2 = {y �len x | y �len x 2 L1 _ y �len x 2 L2}

Least upper bound: L1 tlen L2 = Clos({y �len x | y �len x 2 L1 ^ y �len x 2 L2})

Partial order: L1 vlen L2 () L1 ◆ L2

Figure 6.4: Lattice operations over Len.

Definition 6.1 over the order �len. In particular, we replace the general string order � with
�len, obtaining the relational string length abstract domain Len = P({y �len x | x, y 2
Xstr})[{?len}, ranged over the meta-variable L, where the top element, denoted by >len,
is ;, and ?len is the bottom element. The least upper bound tlen and the greatest lower
bound ulen operators and the partial order vlen are in Figure 6.4. It is straightforward to
prove that (Len,vlen,tlen,ulen,?len,>len) is a complete lattice. Similarly, we define the
concretization �len : Len ! P(M) and the abstraction ↵len : P(M) ! Len functions of the
relational string length abstract domain instantiating Equation 6.2 and 6.1 over �len:

�len(L) =
\

y�lenx2L
{m | m(x),m(y) 2 ⌃⇤, |m(y)|  |m(x)|}

↵len(M) = {y �len x | 8m 2 M. |m(y)|  |m(x)|, x, y 2 Xstr}

(P(M),↵len,�len, Len) is a Galois Connection.

Extraction function of Len. Given x = s, we can see the string expression s as an
ordered list of concatenated expressions s0, s1, . . . , sn, and the string variables that surely
have length less than or equal to x are the ones at the top-level of a concatenation appearing
in s. For instance, consider the assignment x = y + z + w. The substring relations we aim
to capture from it are y �len x, z �len x and w �len x, that is y, z, w have length less
than or equal to the length of x. These variables are collected by the extraction function
extr : se! P(Xstr) defined as:

extr(s) =

8
>>><

>>>:

{y} if s = y 2 Xstr

extr(s1) [extr(s2) if s = s1 + s2

; otherwise

The abstract semantics of Len is straightforward and reported in Appendix C.1.

6.3.3 Character Inclusion Relational Abstract Domain

In the following, we present the character inclusion relational abstract domain Char, track-
ing the characters included between a pair of string variables.

136 Chapter 6. Relational String Abstract Domains

Greatest lower bound: C1 uchar C2 = {y �char x | y �char x 2 C1 _ y �char x 2 C2}

Least upper bound: C1 tchar C2 = Clos({y �char x | y �char x 2 C1 ^ y �char x 2 C2})

Partial order: C1 vchar C2 () C1 ◆ C2

Figure 6.5: Lattice operations over Char.

Given x, y 2 Xstr, we are also interested in capturing “if the characters which appear in y
occur in x as well”. Formally, we introduce the binary relation �char ✓ Xstr⇥Xstr such that
y �char x if and only if the set of characters of y is contained or equal to the set of characters
of x. As �len, �char is not a partial order, but only a pre-order. We define the relational
character inclusion string abstract domain Char = P({y �char x | x, y 2 Xstr}) [{?char},
ranging over the meta-variable C, where the top element, denoted by >char, is ;, and ?char

is the bottom element. Note that (Char,vchar,tchar,uchar,?char,>char) is also a complete
lattice and its lattice operators are presented in Figure 6.5.

The concretization �char : Char ! P(M) and the abstraction ↵char : P(M) ! Char

functions are formally defined below, where char(·) computes the set of characters of a
string. As in the previous case, (P(M),↵char,�char, Char) is a Galois Connection.

�char(C) =
\

y�charx2C
{m | m(x),m(y) 2 ⌃⇤, char(m(y)) ✓ char(m(x))}

↵char(M) = {y �char x | 8m 2 M. char(m(y)) ✓ char(m(x)), x, y 2 Xstr}

The abstract semantics of Char relies on the extraction function defined for Len and can
be found in Appendix C.2.

6.3.4 Substring Relational Abstract Domain

The abstract domains Len and Char track relations about the lengths and the characters
of a pair of string variables. One main limit of these domains is that they are both based
on pre-orders: hence, when we have relations of the form x � y and y � x, we cannot
assert that the variables x and y are equal. Moreover, Len loses any information about
the contents of a string variable, while Char loses any information about the shape of
a string variable. We propose then a strictly more precise partial order-based relational
string abstract domain, still fitting in the formal framework presented in Section 6.3.1 and
solving the problems of Len and Char.

Given x, y 2 Xstr, let the binary relation �sub: Xstr⇥Xstr be such that x �sub y if and
only if x is a substring of y. The relation �sub is a partial order, being reflexive, transitive
and anti-symmetric. Thus, we define the relational string abstract domain Sub = P({y �sub

x | x, y 2 Xstr})[{?sub}, ranged over the meta-variable S, where the top element, denoted

6.3. A Suite of String Relational Abstract Domains 137

Greatest lower bound: S1 usub S2 = {x �sub y | x �sub y 2 S1 _ x �sub y 2 S2}

Least upper bound: S1 tsub S2 = Clos({x �sub y | x �sub y 2 S1 ^ x �sub y 2 S2})

Partial order: S1 vsub S2 () S1 ◆ S2

Figure 6.6: Lattice operations over Sub.

by >sub, corresponds to ;, and ?sub is the bottom element. Sub is is a complete lattice,
i.e., (Sub,vsub,tsub,usub,?sub,>sub) was operator are given in Figure 6.6.

The concretization �sub : Sub ! P(M) and the abstraction ↵sub : P(M) ! Sub functions
follow the definitions Eq. 6.1 and 6.2 reported in Section 6.3.1 and they are defined as:

�sub(S) =
\

y�subx2S
{m | m(x),m(y) 2 ⌃⇤,m(y) y m(x)}

↵sub(M) = {y �sub x | 8m 2 M. m(y) y m(x), x, y 2 Xstr}

(P(M),↵sub,�sub, Sub) is a Galois Connection.
Again, the abstract semantics of Sub relies on the extraction function defined for Len

and can be found in Appendix C.3.

6.3.5 Extension to String Expressions

The abstract domains previously proposed are able to track only �-relations between single
string variables. Consider the fragment below:

x = y + y + w; z = y + w;

If we analyse it with the substring abstract domain, the final abstract memory is {y �sub

x, w �sub x, y �sub z, w �sub z}, but other substring relations may be inferred, such as
z �sub x or y +w �sub x. In the following, we extend the framework introduced in Section
6.3.1 to catch also these relations.

We introduce the binary relation �⇤✓ se ⇥ Xstr that relates string expressions and
string variables. Note that also se is limited to the expressions encountered in a program.
Upon the binary relation �⇤ we build the new set of abstract memories A⇤ = P({s �⇤

x | s 2 se, x 2 Xstr}) [{?A}, ranged over the meta-variable A⇤ where the top element,
denoted by >A⇤ , is ;, and ?A⇤ is the bottom element. Note that, A⇤ is still a finite domain,
since, given a program P 2 Imp, both its string variables and string expressions are finite.
Thus, (A⇤,vA⇤ ,?A⇤ ,>A⇤ ,uA⇤ ,tA⇤) is a complete lattice, whose operators and partial
order are reported in Figure 6.7. The concretization �A⇤ : A⇤ ! P(M) and the abstraction

138 Chapter 6. Relational String Abstract Domains

Greatest lower bound: A⇤
1 uA⇤ A⇤

2 = {s �⇤ x | s �⇤ x 2 A⇤
1 _ s �⇤ x 2 A⇤

2}

Least upper bound: A⇤
1 tA⇤ A⇤

2 = Clos({s �⇤ x | s �⇤ x 2 A⇤
1 ^ s �⇤ x 2 A⇤

2})

Partial order: A⇤
1 vA⇤ A⇤

2 () A⇤
1 ◆ A⇤

2

Figure 6.7: Lattice operations over A⇤.

↵A⇤ : P(M) ! A⇤ functions form a Galois Connection and are defined as follows:

�A⇤(A⇤) =
\

s�⇤x2A⇤
{m | JsKm,m(x) 2 ⌃⇤, JsKm ⇠ m(x)}

↵A⇤(M) = {s �⇤ x | 8m 2 M. JsKm ⇠ m(x), x 2 Xstr, s 2 se}

At this point, we define the abstract semantics of A⇤. Given an assignment x = s, the
abstract semantics of A⇤ follows the one defined for A: from the expression s we retrieve any
sub-expression that is surely in a �⇤-relation with x, using the auxiliary function extr?. The
function extr? : se ! P(se) extends the previously defined function extr, extracting from
a string expression s, its top-level sub-expressions, in addition to its top-level variables (as
extr). For instance, extr?(y + w + "ab") = {y, w, w + "ab", y + w, y + w + "ab", "a",
"b"}. Hence, the abstract semantics of assignment is defined by the following steps:

• [remove]

A⇤
r =

8
>>>><

>>>>:

A⇤ \ {s' �⇤ z | x appears in s'} if x appaers

at the top-level of s

A⇤ \ {s' �⇤ z | z = x _ x appears in s0'} otherwise

• [add]
A⇤

a = A⇤
r [{s' �⇤ x | s' 2 extr?(s)}

• [inter-asg]
A⇤

i
= A⇤

a [{x �⇤ y | A⇤
a(x) ✓ A⇤

a(y)}

• [closure]
[[x = s]]A

⇤
A⇤ = Clos(A⇤

i
)

The [remove], [add] and [closure] phases are similar to those of the definition of
J · KA. The intermediate phase [inter-asg] instead differs from the previous definition.
Given z 2 Xstr and a generic memory A⇤ 2 A⇤, we denote by A⇤(z) the set of relations of
z, i.e., A⇤(z) = {s' �⇤ z | s' �⇤ z 2 A⇤}. If from the previous steps, any relation of x is

6.3. A Suite of String Relational Abstract Domains 139

Greatest lower bound: S?
1 usub? S?

2 = {s �sub? x | s �sub? x 2 S?
1 _ s �sub? x 2 S?

2}

Least upper bound: S?
1 tsub? S?

2 = Clos({s �sub? x | s �sub? x 2 S?
1 ^ s �sub? x 2 S?

2})

Partial order: S?
1 vsub? S?

2 () S?
1 ◆ S?

2

Figure 6.8: Lattice operations over Sub?.

contained in the ones of a string variable y, as checked in the [inter-asg] phase, we can
safely assert that x and y are related, and we can add that relation to A⇤

a.
The following abstract semantics of Boolean expressions is analogous to [[·]]A.

[[contains(x, s)]]A
⇤
A⇤ = Clos(A⇤ [{s' �⇤ x | s' 2 extr?(s)})

[[x == s]]A
⇤
A⇤ = [[s == x]]A

⇤
A⇤ = Clos(A⇤ [{s' �⇤ x | s' 2 extr?(s)})

[[e1 && e2]]A
⇤
A⇤ = [[e1]]A

⇤
A⇤ tA⇤ [[e2]]A

⇤
A⇤

[[e1 || e2]]A
⇤
A⇤ = [[e1]]A

⇤
A⇤ uA⇤ [[e2]]A

⇤
A⇤

Extended Substring Relational Abstract Domain

We extend the substring relational abstract domain following A⇤. The extended version of
the string length and character inclusion relational domains are in Appendix C.5 and C.6,
respectively.

Let �sub?✓ se ⇥ Xstr be the binary relation such that s �sub? x if and only if s is a
substring of x. For instance, y+y �sub? x means that y+y is a substring of x. Morover, let
Sub? = P({s �sub? x | s 2 se, x �sub? Xstr})[{?sub?} be the extended substring relational
abstract domain, ranged over the meta-variable S?, where the top element, denoted by
>sub? , is ;, and ?sub? is the bottom element. The least upper bound and the greatest lower
bound operators and partial order are tsub? , usub? and vsub? , respectively, and they are
in Figure 6.8. Similarly to the previous cases, also (Sub?,vsub? ,tsub? ,usub? ,?sub? ,>sub?)
is a complete lattice, and the concretization �sub? : Sub? ! P(M) and the abstraction
↵sub? : P(M) ! Sub? functions are defined as follows, forming again a Galois Connection.

�sub?(S
?) =

\

s�sub? x2S?

{m | JsKm,m(x) 2 ⌃⇤, JsKm y m(x)}

↵sub?(M) = {s �sub? x | 8m 2 M. JsKm y m(x), x 2 Xstr, s 2 se}

The abstract semantics of Sub is straightforward and is in Appendix C.4.

140 Chapter 6. Relational String Abstract Domains

r = "not constant ";

if ((* $*))

r = r + " passed ";

else

r = r + " failed ";

assert (r.contains ("con"));

assert (r.contains ("ed"));

Program notcon

v = readStr ();

r = "Elem: \n" + v + "\n";

while ((* $*)) {

v = readStr ();

r = r + v + "\n";

}

assert (r.contains ("em"));

assert (r.contains ("\n"));

assert (r.contains(v));

assert (r.contains ("f"));

Program rep

Figure 6.9: Program samples used for domain comparison.

6.4 Experimental Evaluation

We have implemented RSub, a prototypal static analyser for the toy language presented
in Section 6.2 using the new relational string abstract domain Sub?. Indeed it subsumes,
from the precision point of view, the other abstract domains and their extensions, inferring
the set of substring relations holding at each program point. RSub has been implemented
and tested over several representative string manipulating fragments,4 both taken from
real-world software and hand-crafted. A subset of these fragments is used and discussed
in this section to show limits and strengths of the aforementioned relational string domain
and the corresponding analysis. In Section 6.4.1, we compare our analysis with prefix PR,
suffix SU, char inclusion CI and bricks BR abstract domains [49] and with the finite state
automata FA abstract domain [17] on some simple yet representative code fragments,. In
Section 6.4.2 we discuss RSub on a real world example, comparing our analysis with the
finite state automata abstract domain. RSub implements trace partitioning [149], which
will be only used in the second part of the evaluation.

6.4.1 Test Cases

We consider the two code fragments manipulating strings, notcon and rep, in Figure 6.9.
notcon may update the variable r either appending the string "passed" or "failed". rep

iteratively appends to the variable r a read string stored in v (hence, statically unknown)
concatenated with the string "\n". In both the examples, the shortcut ? in the while and
if statements denotes a statically unknown Boolean guard.

Table 6.1 shows the analyses results at the end of the execution of the program notcon.
In particular, the second column reports the abstract value of r at the end of the analysis

4
Available at https://github.com/UniVE-SSV/rsubs/tree/main/src/test/resources/vmcai

https://github.com/UniVE-SSV/rsubs/tree/main/src/test/resources/vmcai

6.4. Experimental Evaluation 141

Domain r abstract value Asserts

PR not constant 7

SU ed 7

CI {n, o, t, c, n, s, a, e, d}, {n, o, t, c, n, s, a, p, s, e, d, f, i, l} 7

BR {not constant passed, not constant failed)}(1,1) X
FA not constant(passed || failed) X

RSub {not constant �sub r, ed �sub r } X

Table 6.1: Analyses results of notcon.

Domain r abstract value Asserts

PR Elem: 7

SU ✏ (unknown) 7

CI {˚}, {˚} (unknown) 7

BR {?}(0,+1) (unknown) 7

FA Elem: ?\n(?\n)⇤ 7

RSub {Elem: �sub r, v �sub r, r + v + \n �sub r, v + \n �sub r, \n �sub r} X

Table 6.2: Analyses results of rep.

and the third column is labeled with X if the corresponding analysis proves that all the
assert conditions of notcon (lines 6 and 7) hold, or with 7 otherwise. The analyses based
on PR, SU and CI are not able to precisely verify all the assertions. PR approximates
the value of r with the common prefix, hence it asserts line 6 but not line 7. Similarly, SU
approximates the value of r with the common suffix, hence it asserts line 7 but not line
6. CI neither asserts line 6 nor line 7, since the assertions check the containment of two
strings (namely ”con” and ”ed”) but CI only tracks the single characters that the variable
r may or must contain. Instead, BR and FA precisely track the possible string values
of the variable r and successfully verify the assertions. RSub also successfully verifies all
the assertions, since it tracks that the strings ”con” and ”ed” are definitely substrings of
r. It is worth noting that also other substring relations of r are tracked by RSub (e.g.,
any substring of the string ”not constant”) but they are not interesting for the assertions
that must be verified, and they have been omitted from Table 6.1 for space limitations.

Now consider rep, which differs from notcon since a fix-point computation is involved
and deals with statically unknown strings. In particular, four assertions must be checked:
the ones at lines 7-9 certainly holds, the one at line 10 may hold since the value of v is
statically unknown. The analyses results are in Table 6.2, where in the second column
“unknown” means that the corresponding analysis has returned the top abstract value,
and the symbol ? denotes “any possible string”. The third column is labelled with X if

142 Chapter 6. Relational String Abstract Domains

the corresponding analysis proves all the assert conditions at lines 7-9 of rep or with 7

otherwise.
PR can verify the assertion at line 7 but not the ones at lines 8-9, since it loses any

information on the rest of the string, except for the common prefix. In addition, it does
not track the fact that the variable v is certainly contained in r. SU, CI and BR analyses
lose any information about the value of r, abstracting it as the corresponding top abstract
value, making them unable to verify the assertions at lines 7-9. FA abstracts the value of
r as the regular expression of Table 6.2 hence it correctly verifies the assertions at lines 7-8
but not the one at line 9, being unable to track the relation between the variables r and
v. Even if statically unknown strings are manipulated by rep, RSub behaves as FA as
far as assertions at lines 7-8 are concerned, since the strings Elem: and \n are definitely
substrings of r. Also, it verifies the assertion at line 9, since it tracks that the variable v is
a substring of the variable r, independently from its abstract value. The analysis results
for RSub are in the last row of Table 6.2.

6.4.2 Evaluating a Real World Sample

We conclude this section evaluating and discussing RSub on secname, shown in Figure 6.1
in the introduction, compared with the string analysis based on FA.

Table 6.3 has the analyses results of secname, where we denote by res the abstract
value returned by secname. The second column contains the values obtained without trace
partitioning, while the third column has the results obtained applying trace partitioning.
We focus now on the first case. Since the function parameters are statically unknown, the
Boolean guards at lines 2-4 are statically unknown, as well. Consequently, FA needs to take
into account the values returned at lines 3, 5, and 7: unfortunately, being the parameter
statically unknown, each line returns the top abstract value, losing any information about
the value returned by secname, as shown by the second line of Table 6.3. The same
happens for RSub: each abstract value returned by each return statement (lines 3, 5
and 7) share no substring relation with the others, hence, lubbing the results, RSub
approximates the returned values of secname as the top abstract value.

Now, consider the same analysis with trace partitioning, whose results are in the third
column of Table 6.3; each [i] denotes a trace and the corresponding abstract value returned
at line i. As far as FA is concerned, the situation remains unaffected with respect to
the analysis without trace partitioning. In particular, each returned abstract value still
corresponds to the top abstract value. RSub precisely infers the information in the third
column of Table 6.3, describing the possible substring relations at each return hotspot.
In particular, three possible cases are detected: (i) when pr2 �sub javaName the results
definitely contains pr1 and javaName.substring(4), (ii) when pr1 �sub javaName the
results definitely contains pr2 and javaName.substring(4), (iii) in other cases, the results
simply contains javaName.

6.5. Discussion 143

Domain res abstract value res abstract value (with trace partitioning)

FA > [2] > [5] > [7] >

RSub >

[2]

8
<

:
pr1 �sub res

javaName.substring(4) �sub res

9
=

;

where {pr2 �sub javaName}

[5]

8
<

:
pr2 �sub res

javaName.substring(4) �sub res

9
=

;

where {pr1 �sub javaName}

[7]
n

javaName �sub res
o

Table 6.3: Analyses results of secname.

Even if FA provides a precise string analysis, it is limited when dealing with statically
unknown inputs, as highlighted in the previous example. Contrary, even if RSub does not
perform a collection of the possible string values of a variable, tracking only the definite

substrings of a variable, it treats variables and expressions symbolically, making itself able
to infer useful information, such as in the secname analysis. For instance, we can surely
assert that the string javaName.substring(4) is a substring of the result and that the
result surely includes part of the input (javaName).

6.5 Discussion

In this chapter, we have introduced a general framework to generate new relational abstract
domains starting from pre- and partial orders on string values. In particular, we have intro-
duced a new relational substring domain, Sub?, showing its impact on the accuracy of the
analysis with respect to state-of-art general-purpose string abstract domains. It is worth
noting that in this chapter, Sub? has been used as a standalone abstract domain. Of course,
further accuracy can be achieved by combining Sub? with existing non-relational domains
through the well-known reduced product operator. In fact, even the simple reduced prod-
uct between the constant string abstract domain and Sub? would lead to more accurate
analysis results, as it would be able to retrieve the exact value of some sub-expressions.

145

Chapter 7

STRING MANIPULATION

IN WATERMARKING SCENARIOS

The last chapter of the thesis is somehow orthogonal with respect to the previous ones,
as it moves to the usage of string manipulation in an applicative scenario. We investigate
how a semantics-based approach to string manipulation may be effective when combined
with watermarking techniques for ownership protection.

The content of this chapter reports contributions published in [85].

Context

Information security systems protect digital assets from piracy and prying eyes. As shown
in [5], those systems can be distinguished into two categories: cryptography and informa-
tion hiding. Cryptography aims to hide secret information, transforming a given text into
a cypher one (encryption phase), with the possibility of reversing the transformation, so
restoring the original information (decryption phase). As its name suggests, information
hiding looks for embedding unnoticeable data in the cover media, e.g., images, audio, video,
and texts. Based on the reason why some information is hidden in some particular cover
media, we can distinguish two techniques: steganography and watermarking. Steganogra-
phy hides a secret message into a cover media in order to transmit it. On the contrary,
watermarking hides data in cover media to protect their intellectual property from digital
piracy (see [103]).

Thus, digital watermarking aims to prove ownership of digital cover data by persistently
embedding, visibly or not, a watermark in the latter digital assets.1 The embedding has to
guarantees usability of the watermarked data, leaving them intact and recognisable. Then,
a detection and extraction process of the watermark may follow, to claim the intellectual
property [53, 158].

1
Precisely, the watermark is the set of all the marks introduced into a cover data by a watermarking

technique [3].

146 Chapter 7. String Manipulation in Watermarking Scenarios

Briefly, watermarking techniques were firstly proposed to protect multimedia data [3],2

exploiting the information redundancy they contain, and the limits of the human visual
and auditory systems, to embed the watermark [104]. Watermarking has been subse-
quently extended to digital texts, due to the increased demand of digital publishing [104].
Also software have been affected by unauthorised copies and illegal reuses, then software
watermarking techniques have been developed [61]. In particular, software watermarking
techniques, according to the nature of the watermark extraction process, are distinguished
in [53]: static, dynamic, and abstract. In [146], Dalla Preda and Pasqua defined a software
watermarking system based on program semantics and abstract interpretation that defines
the previous techniques as its instances.

Piracy also affected relational data, and thus watermarking database techniques have
been developed. Firstly meant for numerical data, relational database watermarking tech-
niques are based on the assumption that it is tolerable that watermarked databases contain
a small amount of errors [28], despite the possibility of compromising the answers of SQL
queries based on numerical conditions.

Chapter Structure

Section 7.1 introduces the watermarking methodology for relational data to protect their
integrity and intellectual property. Moreover, it highlights the problem of dealing with the
semantic perturbation which may rise by watermarking relational data and explains our
contribution. Section 7.2 defines the motivating examples that let clear the need of the
elements we introduce in our technique. Section 7.3 gives an overview about semantic sim-
ilarity theory and text watermarking techniques. Section 7.4 introduces our watermarking
approach, emphasizing the definition of the elements related to the preservation of the
semantic consistency, which constitutes a special feature of our work. Details related to
the implementation are also given. Section 7.5 presents the validation of our approach
through an experimental evaluation. Section 7.6 concludes.

7.1 Introduction

Relational databases are enterprise software systems, introduced in the 1970s [37], where
data are stored and eventually analysed to find hidden relations among them which are
useful to take strategic decisions. Data stored in relational databases can be pirated,
illegally redistributed, tempered, and their ownership claimed, as happens to all the other
digital assets (images, audio, video and texts). Indeed, the internet growth resulted in
a multitude of web-based services through which data are continuously transmitted and
easily accessible.

2
Multimedia data refer to images, audio, and video.

7.1. Introduction 147

Symbol Description

SK Secret key only known by the data owner.

PK Primary key identifying the tuple.

⌘ Number of tuples in a relation R being watermarked.

� Fraction of tuples being watermarked � 2 [1,⌘]. Also known as TF.

⌫ Number of attributes considered for the embedding.

⇠ Range of less significant bits (lsb) to embed the mark.

! Number of watermarked tuples after the embedding.

Table 7.1: AHK approach notation.

How can we protect the integrity and the intellectual property of data? Relational
database watermarking [4] has been proposed as a new field of security, to protect data
property value. Its main element is the watermark, i.e., a stream of binary elements called
marks, and it consists of two phases: watermark embedding and watermark extraction
[3]. Generally speaking, we can classify relational database watermarking techniques into
two categories [130]: those embedding the watermark in the data, causing distortions,
e.g., [106, 111, 189], and those that do not cause them, e.g., [28, 29, 89]. The distortion-
based techniques are mostly oriented to resist aggressive attacks as they are conceived to
protect data from false ownership claims [92]. Moreover, relational databases watermarking
techniques may be distinguished by: the type of watermark information to be embedded,
the type of the attribute into which marks are embedded, their granularity level (bit level,
character level, attribute level, tuple level), the detection and verification process in use
(deterministic or probabilistic, blindly or non-blindly, publicly or privately), and their
ultimate purpose [93]

The first watermarking technique for relational data was proposed by [4]. Also known
as the AHK algorithm, this distortion-based approach defines the notation of the elements
belonging to a relation R (see Table 7.1), embeds the marks in numerical attributes, in-
troduces a solid criteria for the selection of the places for the watermark embedding, and
it has been used by many authors [33, 65, 165] as starting point for other watermarking
proposals.

Relational database watermarking techniques deal with different issues [92]. Among
them, three are of particular interest: the watermark capacity (i.e., the optimal amount
of marks that can be embedded in a relational database), its robustness (i.e., the ability
of relational watermarking techniques to resist against malicious or unintentionally cyber
incidents), and imperceptibility (i.e., the ability of distortion-based relational watermarking
techniques to not affect the usability of the data). Each of these features is highly linked
to the others, and this is the reason why it is necessary to consider a trade-off among them
in the design of relational watermarking techniques. For example, one way to increase
the robustness of a watermarking technique is by embedding more marks, which also

148 Chapter 7. String Manipulation in Watermarking Scenarios

increases its capacity. But this may compromises its imperceptibility, affecting the data
usability and giving clues to attackers of the watermark presence. Instead, the higher the
imperceptibility, the higher is the robustness of the watermark, but this happens in despite
of its capacity.

State of the Art

After the approach of [4], several relational database watermarking techniques were pro-
posed using different types of attributes to embed the watermark. Despite that, dealing
with semantic perturbations provoked by the distortion is an issue ignored most of the
time. Among the few works addressing this problem there are the techniques by [26], by
[70] and by [69].

In [26], authors proposed a technique to protect the privacy and ownership of medi-
cal data. They worked with categorical attributes,3 and they performed the watermark
embedding as permutations of categorical values using a Domain Hierarchy Tree (DHT)
of the selected attribute. This scheme does not consider more complex data types (e.g.,
multi-word textual4), and despite the use of the DHT for reducing the semantic perturba-
tions, the changes compromise the inter-attribute semantic consistency. Furthermore, the
latter approach reduces the watermark capacity by marking only one attribute per tuple,
and if there was no DHT, then the watermark synchronization would be compromised, as
the DHT is the structure on which the embedding and the extraction processes rely.

In [69, 70] the distortion is controlled by using ontologies, seeking for the preservation of
the inter-attribute semantic consistency. In both the approaches, the requiring ontologies
(defined for specific contexts) directly impact the blindness of the techniques, and make the
watermark synchronization dependant on additional external information. Furthermore,
just a single numerical attribute per tuple is selected to embed the watermark, which limits
the application of the ontologies, considering the potential they may offer to increase the
watermark capacity, among other things. In the end, these approaches depend on the PK
of R to embed the watermark, which makes easy to compromise the watermark detection
in scenarios where R is used separately from the database.

Contribution

In this chapter, we propose a semantic-driven approach for watermarking multi-word tex-
tual attributes in relational databases, to protect their ownership. In order to preserve the
meaning, fluency, grammaticality, writing style and value [104] of the multi-word textual
attributes, the distortion is meant as a substitution of words that are strongly semantically
similar in a certain context (i.e., synonyms).

3
Categorical attributes represent discrete values which belong to a finite set of categories.

4
We refer to multi-word attributes as textual attributes formed by one or more than one sentence.

7.2. Motivating Examples 149

Student

IdNumber StudentName StudentSurname Subject Score ProfessorJudgment

1001 John Oliver Mathematics 95 John has improved a lot.

1002 Justin Fitzgerald Physics 69 Justin has problems to pass Physics.

1003 Andrea Russo History 98 Andrea is the first in his History class.

1004 Karla Olivare Mathematics 100 Karla is an outstanding student.

Table 7.2: Motivating example.

Our aims are (i) to achieve a high degree of robustness without compromising the
imperceptibility, (ii) increment the capacity taking care of the semantic of the data, and (iii)
preserve the results of the queries on the watermarked data in comparison to those obtained
with the same queries over the unwatermarked data. This avoids that the distortion caused
by the watermark embedding from affecting the decision making of the organizations using
and deploying the data.

Our approach is conceived so as to achieve a high watermark synchronization, making
our scheme resilient against attacks based on the elimination of tuples and/or attributes.
By involving other aspects to the watermarking process (e.g., the elements forming the
relation structure, information corresponding to other data types, and the low redundancy
of the stored data), our technique gets resilient against the random synonym substitution

attack. The features of our approach increase the chaotic nature of the mark embedding
places selection, making it difficult for attackers to determine their locations and to com-
promise the watermark detection by overwriting them.

We also introduce a novel approach to analyse watermark capacity through the cal-
culation of the index cw, which expresses the technique‘s resilience degree to malicious
operations. This new measure is described in Section 7.4 highlighting its differences to
traditional capacity measurement for relational data watermarking. Combining our pro-
posal with numeric cover type relational watermarking techniques, allows us to increase
the watermark capacity without compromising its imperceptibility, so also increasing the
robustness, and making our technique effective for any practical scenarios.

7.2 Motivating Examples

Using numeric attributes to embed the watermark gives high coverage to relational water-
marking techniques, making it possible the increment of the watermark capacity. Never-
theless, accomplishing the imperceptibility requirement at plain sight, numerical distortion
compromises SQL query results based on numeric conditions.

Example 7.1. Consider the relation Student depicted in Table 7.2, where the attribute
IdNumber denotes the primary key of the relation itself. According to the query below

150 Chapter 7. String Manipulation in Watermarking Scenarios

for selecting the students who have passed a certain grade (Score � 70), only the students
{John, Andrea, Karla} are recovered.

SELECT StudentName
FROM Student
WHERE Score � 70

If the attribute Score is selected to embed a mark, despite performing a passive distortion,
e.g., by just using the two less significant bits (lsb), the result of the query above would be
different. Indeed, Justin Fitzgerald could be listed among the students passing the grade
if the value of the 2nd

lsb is modified, changing, for example, the score from 69 to 71.
7

The distortion caused by the change of the lsb of numerical values in a relation is
not relevant when the values of the attribute chosen to embed the mark are not in the
boundaries of some criteria for data recovery or their classification (e.g., changing the
score of Andrea from 98 to 96 or 99, depending of the lsb selected as mark carrier, would
not produce a different answer to the query above). But when this is not the case, such
a distortion may lead to taking decisions based on wrong assumptions. Therefore, it
follows that numerical distortions compromise the semantics of the tuples, despite the latter
distortions being traditionally controlled by defining the maximum amount of tolerable
error over the numerical attributes being watermarked.

Embedding the marks in textual attributes avoids compromising the results of queries
based on numerical conditions, but applying the distortion over the lsb of a textual value
compromises the watermark imperceptibility requirement.

Example 7.2. Given the relation defined in Table 7.2, consider the value of the attribute
ProfessorJudgment for the tuple with IdNumber = 1002, i.e., “Justin has problem
to pass Physics.”. Changing one of the two lsb of this textual value will provoke chang-
ing “Physics” to “Physicr” or “Physicq” making perceptible the distortion and creating a
meaningless word.

7
Note that even when the marks are embedded in textual attributes exploiting the lim-

itations of the human vision for increasing the watermark capacity (e.g., by adding extra
white spaces between words [6] or using invisible characters according to the database
encoding [131]), is easy for the attacker to detect the position of the marks through com-
putational techniques. Thus, for the aforementioned reasons, when the marks have to be
embedded into textual attributes, a different approach is required.

7.3. Preliminaries 151

7.3 Preliminaries

As mentioned in Section 7.1, the relational watermarking technique we propose marks
multi-word textual attributes and preserves the semantic consistency between the original
database and the watermarked one performing semantically similar words substitutions,
and taking care of the context in which the words fall. Thus, we give below a brief overview
of semantic similarity theory and semantic-based text watermarking techniques.

7.3.1 Semantic Similarity Theory

Semantic similarity is about computing the resemblance between the meanings of textual
entities (e.g., words, sentences, texts), that are not necessarily lexically similar [24, 96]. It
has application in many research fields [2, 143, 155, 166] among which: Natural Language
Processing tasks (e.g., Word Sense Disambiguation and Synonym Detection), Artificial
Intelligence, Cognitive Science, Psychology, Information Retrieval and Bio-Informatics.

The literature has several methods for measuring semantic similarity between textual
entities [96]. They depend on one or several knowledge sources (e.g., taxonomies, thesaurus,
ontologies) and rely on different theoretical properties [24]. A measure of similarity takes
as input two textual entities and returns a numeric score that quantifies how much they
are alike [166]. Formally, let e1 and e2 be two textual entities, Sim(e1, e2) denotes the
semantic similarity between e1 and e2.

Different words that have highly related meanings are called synonyms. Generally
speaking, synonym words belong to the same node in a hierarchical knowledge organization
scheme and their semantic similarity is maximized [159].

7.3.2 Text Watermarking

According to classifications of text watermarking techniques presented in [5, 104, 110, 192],
we summarise them as follows:

a) Image-based approaches, where a text document, whose content is seen as a series
of text images, is used to embed the watermark bits. In general, these methods are
resilient against typical image watermarking attacks and format-based attacks.

b) Structure-based approaches, where imperceptible changes to the text structure, fea-
tures and font are made, into which the watermarking information to be hidden is
encoded. These techniques are more likely to be vulnerable to very simple attacks,
e.g., the text retyping attack and the copy paste to notepad attack, and to the use
of Optical Character Recognition (OCR) technologies.

c) Syntactic-based approaches apply syntactic transformation to plain text document
structures to embed the watermark. These schemes have been proved to be efficient

152 Chapter 7. String Manipulation in Watermarking Scenarios

with agglutinative languages like Turkish, but in general they are not adequate for
English language.

d) Semantic-based approaches embed the watermark into the semantic structure of text
documents, where text meaning analysis and text transformations are performed
using natural language processing algorithms. Semantic-based text watermarking
schemes are resilient against retyping attacks or to the use of OCR programs, but
prone to weaknesses related to natural language processing.

Note that syntactic-based and semantic-based text (or content-based) watermarking
schemes fall into the linguistic-based approach category. Therefore, they are highly depen-
dant on the type of language in use, which represents a disadvantage in a scenario where
languages rapidly evolve, and focused on do not (or minimally) alter the meaning of the
cover text.

Synonym Substitution Approach

Image-based and structure-based approaches are useful when the text is forced to be dis-
played by using specific means. In the case in which the text is stored as content (e.g., stored
as multi-word textual attribute in relational databases), independent from its graphical rep-
resentation, the text can actually be displayed in multiple ways, making those techniques
useless. Consequently, content-based text watermarking techniques are better suited in
the context of relational textual database watermarking. In particular, we focused on the
synonym substitution method for watermarking textual documents, where certain words
are replaced with their synonyms preserving the semantic consistency between the original
cover text and the watermarked one.

Firstly exploited by steganography [180], synonym substitution technique was later
used to watermark plain text document [169]. Still, this watermarking technique is limited
to the English language and highly depends on the quality of the text processing tools,
like the word sense disambiguator (i.e., a technique that aims to identify which is the sense
of a word in a sentence). Moreover, synonym substitution watermarking techniques are
vulnerable to synonym substitution attacks.

To overcome random synonym substitution attacks, Topkara et al. [169] proposed a
lexical watermarking system based on substituting words with homographs5 from their
synonym set, and using meaning-preserving generalizing substitutions. Then, in order to
guarantee the context-dependency between synonyms, they implemented a semi-automatic
interactive encoding mechanism that allows a person designated to decide on the accept-
ability of the substitutions given by the system.

5
Two or more words are homographs if they are spelled the same way but differ in meaning and origin,

and sometimes in pronunciation [169].

7.4. Semantic-based Watermarking Approach 153

7.4 Semantic-based Watermarking Approach

As pointed out in Example 7.2, modifying the lsb of a textual attribute value may, for
example, introduce syntactic errors or cause semantic inconsistencies, leading to the im-
perceptibility requirement violation of the watermarking technique.

In this section, we present our semantic-based watermarking approach for relational
data. Necessary condition for our technique to be applied is that the target relation must
contain at least one multi-word textual attribute into which we will embed the watermark.
The distortion is thought as synonym substitution.

Our proposal is focused on increasing the watermark capacity, without affecting its im-
perceptibility, achieving high degree of robustness against typical relational watermarking
and textual watermarking attacks. Indeed, by considering multi-word textual attributes as
cover type, multiple synonym substitutions can be performed over a single attribute value,
resulting in the increment of the embedded marks, despite some sentences being composed
of just few words, overcoming the downside of watermarking short documents, which re-
duces the watermark capacity [104]. Moreover, the capacity of the watermark increases
when numerical attributes, in addition to multi-word textual attributes, are considered to
embed the watermark. Also, taking care of preserving the meaning of the watermarked
text (by using the synonym substitution approach with a proper word sense disambigua-
tion), the imperceptibility remains untouched, which results in a direct increment of the
technique’s robustness.

Note that when dealing with multi-word textual cover type, there are malicious op-
erations focused on compromising the watermark embedded in textual documents (e.g.,
random synonym substitution attack) that must be considered to prove the effective ro-
bustness of our approach.

7.4.1 Architecture of the Proposal

Figure 7.1 depicts the architecture of the watermark embedding process of our proposal.
As usual, the watermark extraction involves the same elements of the embedding procedure
but it is performed in the opposite direction.

Our watermark embedding procedure (fully described in Section 7.4.2) relies on a rela-
tional database DB storing one or several relations R with at least one multi-word textual
attribute, one or several knowledge sources N, and a watermark WM. The choice of the
knowledge source(s) is let free, but it has to take care of the semantic links between words.
So that, on the latter, we can use a similarity engine to verify semantic consistency prop-
erties. A word sense disambiguation WSD module is needed for selecting the proper set of
synonyms, depending on the context in which the words that are candidates to be replaced
fall.

154 Chapter 7. String Manipulation in Watermarking Scenarios

Figure 7.1: Embedding process architecture.

We also encourage the use of meaningful sources for the generation of the watermark
considering that over this kind of signals can be applied methods to enhance the quality of
the extracted watermark, contributing to its recognition despite the execution of aggressive
attacks over the watermarked data. The secret key SK will be only known by the data
owner and its complexity will be crucial against malicious operations (e.g., the brute force
attack), as the security of watermarking techniques is based on the secrecy of the parameter
values [92]. Finally, a distorted database DB' is produced. Note that our watermarking
technique modifies R only for the values that are selected for the embedding. Every other
value remains the same.

Similarity Engine

Consider a relation R(PK, A1, . . . Am) belonging to a database DB which stores at least
one multi-word textual attribute. Let Ah (with h 2 [1,m]) be a multi-word attribute in R,
and let rk be the k-th instance of R. Then, let rk.Ah be the value of the attribute Ah with
respect to the tuple rk. Moreover, let s be a sentence in rk.Ah, and assume that the word
w part of s has been selected by a procedure P (see Algorithm 7 in Section 7.4.2) to embed
the watermark, i.e., to be replaced with its synonym w' (see Algorithm 8 in Section 7.4.2).
The embedding is performed if and only if the replacement complies the intra-attribute

consistency and the inter-attribute consistency semantic properties.
Note that, when it is possible, we replace only one word per sentence of a multi-word

attribute value, and the semantic distortion can be embedded in more than one attribute
per tuple.

Definition 7.1 (Intra-attribute consistency). Let rk.Ah 2 R be the value of the multi-word
attribute Ah for the k-th instance of R. Let s be a sentence in rk.Ah, w 2 s be the word to
replace, and let w' be the candidate substitute word. Then, s⇤ denotes the sentence s after
replacement, i.e., s[w/w']. Finally rk.Ah[s/s⇤] denotes the distorted result. We say that
[w/w'] is a substitution intra-attribute consistent if the semantic similarity score between
rk.Ah and rk.Ah[s/s⇤] is higher than or equal to a threshold �. Formally:

7.4. Semantic-based Watermarking Approach 155

Sim(rk.Ah, rk.Ah[s/s⇤]) � �

4

Definition 7.2 (Inter-attribute consistency). Given rk, i.e., the k-th instance of R, where
watermark will be embedded, let r⇤

k
be the distorted result, i.e., rk[rk.Ah/rk.Ah[s/s⇤]].

Moreover, let � be a function mapping tuple values to their concatenation (through
“�and�”). Following Definition 7.1, we say that [w/w'] is a substitution inter-attribute
consistent if the semantic similarity score between �(rk) and �(r⇤

k
) is higher than or equal

to a certain threshold µ. Formally:

Sim((�(rk),�(r⇤
k
)) � µ.

4

The value of the thresholds � and µ depends on the chosen semantic similarity measure.

The Word Sense Disambiguation Module

The correct functioning of the WSD module is a key element for the success of our ap-
proach. Two important issues depend on the WSD module performance: (i) maintaining
the semantic value of the database being protected (ii) and the guarantee of achieving a
high watermark synchronization.

WSD is considered an open research field in natural language processing. The main
challenges come due to the fact that words often change meanings depending on the context
they are used. For example, the noun tree can be used to refer to the programming data
structure, but also to the living organism belonging to the vegetable kingdom. Thus, the
set of synonyms allowed to replace tree must be shrunken according to certain context.
The same happens with words used as adjectives. The adjective hard can be used to
refer to someone with a sturdy temperament, to express determinism in business dealings,
or to describe a feature of a solid object. If the ambiguity of the word is not taken away
considering the context, there is a high probability the value of the text will be compromised
once the word replacement is performed [104].

Let D be a function that returns the ordered set Z of synonyms of a word w given a
context &, denoted by Z D(w, &). The following rules need to be accomplished:

1. w 2 D(w, &)

2. 8t 2 D(w, &) : D(t, &) = D(w, &)

Let Z[t] be the t-th element of the set Z.
For any word belonging to Z, the set of synonyms for the given context must be the

same to maintain the semantic value of the text from where w and & were selected. Of
course, if the WSD module does not work properly, these rules can be violated considering

156 Chapter 7. String Manipulation in Watermarking Scenarios

Figure 7.2: Synonyms sets linked to a word w.

the same word can be part of different synonym sets given by other contexts (see Fig. 7.2
where the word “point” has multiple sets of synonyms relying on different contexts in which
it can be used). In general, the correct functioning of the WSD module will depend on
the accuracy of the implementation of the function D, responsible for obtaining the set of
synonyms of w that more fit the context &.

Synchronization is the process of aligning two signals in time or space [60]. Considering
the embedded and extracted watermarks as those signals, achieving a high watermark
synchronization relies on extracting the exact same marks that were embedded. If WSD
fails, the rules 1. and 2. are not accomplished. Then, for example, there is the possibility
that a mark embedded considering the synonyms of the set Z1 is extracted looking at
synonyms of the set Z4. Because of that, wrong mark values will be detected, compromising
the quality of the extracted watermark and its synchronization. On the contrary, if previous
rules are not violated, the value of the textual attribute being watermarked is preserved
and the watermark synchronization is guaranteed.

Data Quality Preservation

The keeping of watermarked data quality will mainly depend on the WSD module and
the parameters defining the maximum allowable semantic distortion to perform the marks
embedding. According to [169], using ambiguous words increases the resilience of the
watermarking scheme against attacks, but not all documents being watermarked tolerate
this kind of operation, which reduces the options to perform word replacement.

As long as rules 1. and 2. are accomplished, the word used to replace w will be obtained
from Z, and the value of the mark detected during the extraction process will match the
embedded one. Also, by defining the maximum tolerated semantic distortion, it is avoided
the use of words belonging to Z that might involve ambiguity, increasing the probability of
falling in another synonym set. Thus, the equivalence above guarantees the preservation
of the data quality, no matter the nature of the text of R being protected.

7.4. Semantic-based Watermarking Approach 157

Algorithm 7 watermarkingEmbedding procedure

Input: R, SK, �, A, WM, ', �, N, C, �, µ

Output: R', i.e., the watermarked relation

1: for tuple r 2 R do

2: kr = VPK(SK � rK)

3: if (kr mod �) = 0 then

4: A' ⇥(A, rK,')

5: for v 2 A' do

6: S ⇤(v,�)

7: for sentence s 2 S do

8: ks = H(SK � kr � �(s))

9: i = ks mod ⌥(s).length

10: w = ⌥(s)[i]

11: & getSense(w, s, N)

12: Z getCandidates(&, w, N)

13: w'= getSubstitute(WM, ks,Z,C, #)

14: s
⇤ s[w/w']

15: v
⇤ v[s/s

⇤
]

16: if Sim(v, v
⇤
) < � then

17: rollback embedding

18: else

19: r
⇤ r[v/v

⇤
]

20: if Sim(�(r),�(r
⇤
)) � µ then

21: r r
⇤

22: v v
⇤

23: commit embedding

24: else

25: rollback embedding

7.4.2 Watermarking Procedure

Distortion-based relational watermarking techniques consist of two processes: (i) the em-
bedding of the watermark (ii) and its extraction [92]. To achieve the watermark synchro-
nization it is required the use of the same parameter values in both processes. Moreover,
the extraction is performed when it is required to demonstrate the watermark presence in
the data, as evidence in case of ownership claims, among others.

Watermark Embedding

Algorithm 7 presents the details of the watermark embedding procedure of our approach.
Given a relation R, for each tuple r 2 R, the values of the multi-word textual attributes
composing the list A are analyzed. Then, the virtual primary key kr is generated using
the VPK function (line 2). The input of the latter function results from the concatenation

158 Chapter 7. String Manipulation in Watermarking Scenarios

Algorithm 8 getSubstitute procedure

Input: WM,ks,Z,C, #

Output: w'

1: i = ks mod WM.length

2: m WM[i] set_order(Z, C)

3: if m = 1 then

4: return Z[0]

5: else

6: return Z[#]

(�) between a secret key SK, and data represented by rK identifying the tuple r (e.g., the
relation’s PK or other virtual primary keys generated by external schemes).

Next, in the case in which the if-statement condition is satisfied, a filter ' is applied
(by the function ⇥) to the multi-word attribute values in A, in order to exclude those
considering their content and links with the other attributes of the tuple (e.g., exclusion
of sentences containing acronyms or abbreviations). In this way, we add an extra step to
help maintain inter-attribute consistency while high unpredictability is incorporated into
the technique 6. The attributes passing the latter filter are stored in the set A' (lines 3-4).

Similarly as above, for each multi-word attribute value v in A', a filter � is applied (by
the function ⇤) to the sentences in v, to exclude those that do not accomplish the conditions
to be considered for the embedding process (e.g., involving just sentences composed of more
than certain number of words). Sentences accomplishing the conditions defined in � are
finally considered for the embedding, and they are stored in the set S (lines 5-6).

For each sentence in S the key ks is generated (from a one-way hash function H that
takes as input the concatenation of SK, kr and the elements of the sentence do not tolerating
changes obtained by the � function) that identifies the sentence inside the multi-word
attribute value, and using ks the word w to be replaced is selected (lines 7-10). Note that
⌥ is a function that returns, as an array of words, the elements of a sentence tolerating
substitutions.

Then, according to the sense & of the selected word in the sentence under consideration
(obtained using the getSense method), the set Z of synonyms of w is obtained (by using
the getCandidates method) (lines 11-12). Both getSense and getCandidates functions are
based on the set of rules and the definitions given by the knowledge source(s) N.

Finally, the mark to be embedded and the new word w' to replace w are selected (line
13). Algorithm 8 defines the function getSubstitute where the mark is selected according to
the value of ks. The set of candidate substitute words is sorted according to the criteria C,
and the new word is chosen depending on the value of the mark to be embedded. In lines
14-25, the replacement of the sentence in the carrier attribute and in the corresponding

6
Each attribute’s value contributes itself in varying the elements of R selected as mark carriers.

7.4. Semantic-based Watermarking Approach 159

tuple is performed. The substitution will only be carried out if intra-attribute and inter-

attribute consistencies properties are not violated.
If a word is not detected in the knowledge sources (i.e., cross-linguality problem [2]),

our approach ignores the position from the marking’s candidates and proceed with the rest
of the data stored in the relation.

Watermark Extraction

The watermark extraction process is similar to the embedding process but is performed
in the opposite direction. Also, it must be performed using the same parameter values
employed to embed the watermark to guarantee its right synchronization. In the extraction
process, for the same mark position in the watermark, several elements are recovered, and
before assigning the mark final value, a majority voting is performed. In this way, the
effect of attacks based on low aggressive data modifications are avoided.

The extraction is performed with no need to check the semantic distortion between the
words replaced to carry out the marks embedding (i.e., without considering the similarity
metrics value). Nevertheless, the extracted watermark quality depends on the knowledge
source(s) and on the precision of the WSD module, since words can be assigned to a set of
synonyms different from those considered for the embedding, adding noise to the extracted
signal. This is because, in the new set of synonyms, the original word can occupy a different
position, assigning to the extracted mark a wrong value.

7.4.3 Analysis of the Watermark Capacity

Since relational data have no fixed order, sequential watermarking approaches are vul-
nerable to subset reverse order attacks [92]. To overcome this vulnerability, techniques
have been designed performing a pseudo-random selection of both the watermark source
elements used to generate the marks and the embedding locations in R. In general, this
operation has been achieved by using a specific definition of Equation 7.1. Nevertheless,
besides contributing to robustness against subset reverse order attacks, pseudo-random se-

lection makes it difficult for the attackers to predict embedding locations for overwriting
or removing of marks.

V(x, y) mod MX (7.1)

where, V(x, y) is a value generated using data from a generic position (x, y) of R, and
MX is the maximum value of a given range. An example of a particular definition of this
expression is in line 10 of Algorithm 7, where V(x, y) is defined in line 9 as ks.

Because of pseudo-random selection, during the embedding process some marks are
selected more than once while others are entirely ignored. Embedding the same mark mul-
tiple times leads the technique to be resilient against update attacks, if a majority voting

160 Chapter 7. String Manipulation in Watermarking Scenarios

is performed over each mark position in the extraction process. On the other hand, if the
number of excluded marks is too high, the watermark synchronization can be compromised.
Indeed, the latter process would suffer from the the same negative consequences as when
aggressive attacks based on updating or deleting data are performed.

The pseudo-random selection downside can be reduced if the number of times the
watermark source elements are considered increases. This can be achieved by marking a
higher volume of data while the same watermark source is used.

In our approach, new elements to increase the watermark capacity, without affecting
the imperceptibility requirement, are introduced. Moreover, we propose a new metric for
measuring the watermark capacity which considers the different number of times each
mark is selected during the embedding process. The latter metric allows the evaluation
of the capacity in function of the technique’s robustness, since it assigns to each mark a
weight depending on the number of times it is embedded in R. In this way, the difficulty
of compromising each mark in the watermarked data is reflected in the metric.

For techniques embedding one mark per selected tuple, the number of embedded marks
E is equal to the number of marked tuples !. If, besides the numeric cover type, multi-
word textual attributes are considered (following the approach we proposed above), the
number of embedded marks increases for each tuple according to Equation (7.2), where �n

represents the number of numeric attributes, �s the number of marked sentences, and g the
number of marks embedded in each sentence. If the watermark capacity increases due to
marks embedded on multi-word textual attributes (besides those embedded on numerical
attributes), using an effective WSD module, the technique becomes more resilient without
compromising data usability.

E ⇡ ! ⇤ (�n + g ⇤ �s) (7.2)

Even if no numerical attributes are considered and only one multi-word textual at-
tribute is selected to perform the embedding, more than one mark can be embedded per
tuple, according to g, which still constitutes an increment of the capacity compared to
other watermarking techniques.

The number of marks selected for the embedding (denoted by me) using as reference
the watermark size (denoted by n) is commonly used to measure the technique’s watermark
capacity. We define that metric as the binary capacity, given by cb according to Equation
(7.3). The downside of cb is that all marks present the same weight, and only their
inclusion/exclusion represents information for the measurement.

cb = me ⇤ 100/n (7.3)

7.4. Semantic-based Watermarking Approach 161

Figure 7.3: Criteria to evaluate the watermark capacity.

We consider the number of times each mark is embedded and we propose the weight-
based capacity metric, given by cw according to Equation (7.4).

cw =
n–1X

i=0

({(mi))/n (7.4)

where, {(mi) represents the number of times the mark mi was embedded. This is given
since not all marks are selected the same number of times. In Figure 7.3 we used a scale
of colors to illustrate with an example the differences between cb and cw. The value of cw

is the mean of the number of times all marks of the watermark are embedded.
The higher cw the better, but it is also required that ⇢w ⇡ 0, being ⇢w the standard

deviation of the number of times each mark is embedded. This tells us that each mark
was selected multiple times evenly, adding higher relevance to the watermark recognition,
increasing the probability of its detection despite the execution of benign updates and
attacks over R.

Note that the highest value of cw will be difficult to achieve as this would mean em-
bedding each mark evenly the maximum possible number of times, and since the process
presents pseudo-random nature, this is not expected.

In general, cb does not reflect how embedding each mark multiple times contributes to
obtain a different degree of resilience as cw does. This is important to measure as when
more redundancy is achieved for the embedding of a mark value, it is more difficult to
compromise its value with update attacks, if a majority voting of all recovered values is
performed during watermark extraction.

7.4.4 Considerations for the Adversary Model

One of the major challenges textual watermarking techniques based on synonyms substi-
tution face is the random synonyms substitution attacks. This vulnerability is linked to
the tolerance a text has with respect to synonyms substitution on it, depending on the

162 Chapter 7. String Manipulation in Watermarking Scenarios

context in which the data was used. Performing embedding of marks in multi-word tex-
tual attributes through semantically similar words replacement, we must consider adding
resilience to this threat, as well as to the rest of the malicious operations an attacker may
perform over the database relation.

Depending on the context in which data are used, we have a margin of marks allowed
to be embedded. If the number of marks that can be embedded is high, an high degree of
robustness can be achieved, otherwise, the technique’s resilience gets compromised. More-
over, the data context also reduces the attacker’s freedom to perform aggressive operations
if he wants to preserve the quality of the data. Therefore, using textual watermarking to
relational data increases the difficulty to perform effective attacks.

Increasing the capacity by considering both, the numerical and textual cover types,
allows achieving higher robustness, making it hard to compromise the watermark detection.
Several elements of the relation, e.g., attributes storing float numbers, single sentences or
several paragraphs, can be selected to embed the marks, based on multiple features (e.g.,
numerical ranges, minimum number of nouns required per sentence, among others) which
highly increase the complexity to detect the marks embedding locations. Furthermore,
beyond the complexity of the pseudo-random selection of the marks embedding places in
the relation, we take advantage of the multi-word textual data structure to add a high
entropy to the embedding procedures.

[4] defined Equation (7.5) to get the probability for the attacker to successfully detect
the embedding locations used by the data owner. While ! refers to the number of tuples
watermarked by the data owner, �A, ⌫A, and ⇠A denote respectively the tuple fraction,
the number of attributes, and the lsb considered by the attacker.

P{success|!} =
⇣
1 –

1
2�A⌫A⇠A

⌘!
(7.5)

Considering all those elements, it is difficult to detect the marks embedding positions
used by the data owner. Despite that, we increase the difficulty by adding the element ⇣A

to Equation (7.5). Equation (7.6) extends Equation (7.5) as follows:

P{success|!} =
⇣
1 –

1
2�A⌫A(⇠A + ⇣A)

⌘!
(7.6)

The term ⇣A defines the complexity that derives from the consideration of marks em-
bedding locations among multi-word textual cover types. It expresses the possibility of
embedding one mark in the whole attribute value, or marking each sentence with one
mark, or embedding multiple marks in each sentence. Since all embedding positions for
textual attributes are also generated using pseudo-random selection and considering the
increment of the number of elements to know by the attacker, the probability of perform-
ing successful attacks reduces. Furthermore, by accomplishing security and public system

7.5. Experimental Results 163

Figure 7.4: Samples of the binary images used as WM sources.

requirements [3], we add secrecy to parameter values, increasing the difficulty of attackers
to detect embedding locations.

7.5 Experimental Results

Following the recommendation given in Section 7.4.1 of considering meaningful sources
to generate the watermark WM, we validated our approach by using binary images as
WM sources. Besides the benefits mentioned above, this type of data allows taking the
simplest pixel value for the mark generation, which contributes to perform less aggressive
distortions during the watermark embedding compared to techniques generating marks
from color (e.g., [190]) or gray-scale images (e.g., [191]).

To analyze the effect of the watermark length variation, images of different sizes were
used. Samples of them are shown in Figure 7.4: a) the Universiti Teknologi Malaysia
(UTM) logo (82 ⇥ 80 pixels), b) the logo of the World Wildlife Fund (WWF) (40 ⇥ 45
pixels), and c) the Chinese character dào (20⇥ 21 pixels). By convention, we used the red
color to highlight the missed pixels due to watermark incomplete embedding or malicious
operations by attackers.

To know the quality of the extracted WM two metrics were used: the Correction
Factor (CF) and the Structural Similarity Index (SSIM). The Correction Factor, defined
by Equation (7.7), is used to compare the pixels of the image generated from the embedded
WM (given by Imgemb) against the pixels of the image generated from the extracted WM
(given by Imgext). In the equation, variables h and w represent the height and the width
of the images respectively. The maximum value of CF is 100, meaning that the WMs are
identical. In the case in which CF = 0, then the embedded and the extracted WMs are
completely different.

CF =
P

h

i=1

P
w

j=1
(Imgemb(i, j)� Imgext(i, j))

h⇥ w
⇥ 100 (7.7)

The SSIM is oriented to obtain an appreciation of the image’s quality closer to human
perception. The index is calculated according to Equation (7.8), using multiple windows.
The windows are defined by x and y and present common size N ⇥ N. The range of
possible values taken by this metric in this work is between 0 and 1, where 1 means there

164 Chapter 7. String Manipulation in Watermarking Scenarios

Attribute Type Description

ProductId String Id. of the product

UserId String Id of the user

ProfileName String Name of the user

HelpfulnessNumerator Numeric Numerator of the fraction of users who found the review
helpful

HelpfulnessDenominator Numeric Denominator of the fraction of users who found the review
helpful

Score Numeric Rating of the product

Time Numeric Time of the review (unix time)

Summary String Review summary

Text String Text of the review

Table 7.3: Structure of the dataset “Amazon Fine Food Reviews”.

exists a perfect structural similarity between the embedded and the extracted image, and
0 indicates no structural similarity.

SSIM(x, y) =
(2µxµy + C1) + (2�xy + C2)

(µ2
x + µ2

y + C1)(�2
x + �2

y + C2)
(7.8)

The symbols µx and µy represent the average of x and y respectively, �2
x and �2

y their
respective variance, and �xy their covariance. The elements C1 and C2 are two stabilization
constants.

The data to embed the marks was the data set Amazon Fine Food Reviews. The
structure is depicted in Table 7.3, from where we mostly used the attribute ‘Text ’, also
storing the text with the highest length. We also used the first 30.000 tuples out of 500,000
to compare our results with previous works.

We used the relation’s PK to perform the watermark synchronization. To avoid the
use of the PK we recommend the generation of virtual primary keys by using the Ext-
Scheme [81] or the HQR-Scheme [83]. These schemes were originally proposed for numerical
attributes, but they can be applied by combining numerical and textual cover types as well.

We used WordNet, as knowledge source, [132], which consists of a lexical database of
the English language, where nouns, verbs, adjectives, and adverbs are grouped into sets of
cognitive synonyms (synsets), each expressing a distinct concept [147]. So, given a word
w, and the context where w is used (i.e., the meaning of the sentence to which w is part
of), WordNet returns the appropriate synset of w. Notice that, in our experiment, the set
of synonyms Z (introduced in Section 7.4) will correspond to a synset in WordNet.

For the evaluation of our approach, we implemented a client-server architecture ap-
plication using Java 1.8 programming language for the client-side, the Oracle Database
12c for the server-side. We used WordNet 3.1 database files with the Java API jwnl 1.4.1

7.5. Experimental Results 165

rc2 for accessing and working with WordNet resources and ws4j 1.0.1 for using Semantic
Relatedness/Similarity algorithms already developed. The WSD module was based on the
Lesk algorithm [171], which compares the word definitions with the definitions of the rest
of the words presented in the sentence, finding the more convenient context for its use. Ac-
cording to that, the most appropriate set of synonyms can be chosen. Finally, the runtime
environment was a 3.60 GHz Intel i7-4790 PC with 16.0 GB of RAM running on Windows
10 OS.

7.5.1 Improvement of the Watermark Capacity

We compared the watermark capacity analysis of our approach with two other techniques
[151], which uses only one attribute, and [82] with two attributes. Of all techniques using
an image to generate the watermark (i.e., Image-Based Watermarking (IBW) [92]) these
techniques constitute a representation of the ones more recent, used to mark one or several
attributes per tuple. We selected only one attribute to mark with our approach to show that
WM capacity improves even compared to two-attributes embedding, due to the selected
cover type. The techniques we compare with performed the watermark embedding on the
numerical cover type, but by involving the same number of tuples we can appreciate how
much the watermark capacity increases for our approach.

Table 7.4 shows the value of cb (see Equation (7.3) Section 7.4.3) obtained for each
technique. In the table, columns titles “S & H”’ refers to Sardroudi and Ibrahim’s tech-
nique, “G. et al.” ’ to Pèrez Gort et al.’s and “Prop.” to our proposal. Given that, the
number of marks missed by using our approach is lower than the number of marks missed
by using the other techniques. Indeed, there are fewer red pixels in the images of the WMs
synchronized by our proposal. The main reason for WM improvement is that for some
cases the values stored in the attribute “Text” are composed of more than one sentence.
If allowed, we only embed one mark per sentence selecting a common nouns from it. By
more than one mark can be used as the carrier, in which case WM capacity will be even
higher.

The Table 7.5 shows the value of cw (see Equation (7.4) Section 7.4.3) with the corre-
spondent ⇢w for each case, giving a clear idea about how we not only improve the value
for cb but for cw as well, increasing the probability of overcoming attacks based on data
updates.

The experiments to register the capacity values were applied over a set of 30000 tuples.
For the case of Sardroudi & Ibrahim’s and Pérez Gort et al.’s, it was used the numerical
data set Forest Cover Type [39] as these techniques were designed for marking numerical
values. Also, the watermark embedding with Pérez Gort et al.’s technique was performed
with Attribute Fraction equal to 5 in order to mark only two attributes per tuple.

Once the WM capacity increase was proven, it is critical to guarantee marks detection,
otherwise, it will not be possible to recognize the WM signal in the protected data. In

166 Chapter 7. String Manipulation in Watermarking Scenarios

TF
UTM WWF Dào

S & H G et al. Prop. S & H G et al. Prop. S & H G et al. Prop.

2

88.34% 98.61% 99.91% 99.94% 99.94% 99.94% 99.76% 99.76% 99.76%

5

57.93% 81.46% 93.67% 95.16% 99.72% 99.89% 99.76% 99.76% 99.76%

10

35.64% 56.99% 75.35% 78.77% 94.88% 99.44% 99.29% 99.76% 99.76%

20

19.25% 34.28% 48.96% 53.88% 78.66% 91.83% 97.38% 99.52% 99.76%

40

9.66% 18.14% 27.99% 31.27% 51.88% 69.56% 80.95% 94.04% 98.81%

Table 7.4: Value of cb for different techniques.

TF
UTM WWF Dào

S & H G et al. Proposal S & H G et al. Proposal S & H G et al. Proposal

2 2 (±1.47) 4 (±2.12) 6 (±2.73) 7 (±2.95) 15 (±4.20) 24 (±5.12) 33 (±5.92) 67 (±8.96) 105 (±11.18)

5 0 (±1.27) 1 (±1.51) 2 (±1.87) 3 (±1.81) 6 (±2.56) 10 (±3.27) 13 (±3.65) 26 (±5.46) 43 (±6.79)

10 0 (±0.80) 0 (±1.26) 1 (±1.23) 1 (±1.43) 3 (±1.79) 5 (±2.28) 6 (±2.72) 13 (±3.73) 21 (±4.67)

20 0 (±0.51) 0 (±0.78) 0 (±1.07) 0 (±1.18) 1 (±1.36) 2 (±1.64) 3 (±1.86) 6 (±2.72) 10 (±3.20)

40 0 (±0.34) 0 (±0.50) 0 (±0.66) 0 (±0.72) 0 (±1.16) 1 (±1.12) 1 (±1.37) 3 (±1.89) 5 (±2.33)

Table 7.5: cw value with its correspondent ⇢w for each experiment.

the following, the results focused on testing the WM detectability are shown. It is also
analyzed the way the WSD module precision determines the quality of the extracted WM.

7.5.2 Detectability Analysis

The detectability of marks in our approach is directly linked to the precision of the WSD
module. Since for WM embedding are used set of synonyms of the selected word, it is
not expected data quality degradation, but if for WM extraction, the WSD module does
not assign the same set of synonyms used for the embedding, then several marks will be
recovered with wrong values, adding noise to the extracted WM signal. If the signal is too
noisy, WM synchronization can be compromised, making impossible its identification.

The main goal of this work is not to improve the WSD algorithms, but to use those
already defined that guarantee high precision for marks detection. The WSD module
precision will be denoted as P, which is obtained according to Equation (7.9), where WT

7.5. Experimental Results 167

TF UTM WWF Dào

2 0.9479 0.9498 0.9518

5 0.9478 0.9500 0.9517

10 0.9518 0.9513 0.9516

20 0.9482 0.9422 0.9466

40 0.9532 0.9472 0.9463

Table 7.6: WSD precision during WM detection.

represents the number of tagged words (i.e., words selected for sense disambiguation) and
WCT the number of words correctly tagged (i.e., words that during the extraction process
were linked to the same synonym set used for WM embedding).

P = WCT/WT (7.9)

The WSD module we used is based on the Lesk algorithm [171]. The precision described
by this module was registered through a set of experiments, whose results are shown in
Table 7.6.

Note that when combining WSD along with the watermarking technique, WSD lack
of precision can be compensated by the majority voting performed over WM extraction.
Then, the higher cw with ⇢w closer to zero, the stronger the effect of the majority voting to
overcoming low WSD precision. The Table 7.7 shows the results experimentally supporting
this point, linking the quality of the detected WM to the results of Table 7.5 despite the
precision weaknesses shown in Table 7.6.

The results shown in Table 7.7 correspond to a set of experiments with different values
for TF and WM sources. For each case, it is shown the embedded WM (the small image),
the detected one (the big image), and the value of SSIM with a percentage corresponding
to the number of pixels not matching between the two images. The low value of this metric
compared to those shown in Table 7.6 directly endorses our statement.

Previous results show how wrong mark values are not reflected in red pixels, but in black
and white, added to wrong regions of the image. This can be understood as a Gaussian

noise which degree is directly linked to the precision of the WSD module. In Table 7.8 are
shown other results, which describe the quality of the extracted WM in more detail. This
time, the quality of the detected WM is given respect to both, the embedded WM and
the original one. Of course, since depending on the parameter’s values the original WM
is not usually entirely embedded, the higher quality will be the one given respect to the
embedded WM.

168 Chapter 7. String Manipulation in Watermarking Scenarios

TF UTM WWF Dào

2

0.69 1.00 1.00

4.92% 0 0

5

0.55 0.94 1.00

18.00% 1.94% 0

10

0.56 0.75 1.00

24.56% 8.33% 0

20

0.58 0.61 1.00

21.55% 19.89% 0.48%

40

0.63 0.62 0.84

13.70% 23.66% 7.38%

Table 7.7: Quality of the detected WM w.r.t. he embedded one.

TF

UTM WWF Dào

vs. Embedded vs. Original vs. Embedded vs. Original vs. Embedded vs. Original

CF SSIM CF SSIM CF SSIM CF SSIM CF SSIM CF SSIM

2 99.42% 0.69 95.06% 0.68 100% 1 99.94% 0.99 100% 1 99.76% 0.99

5 88.34% 0.55 80.06% 0.49 100% 0.94 98.00% 0.93 100% 1 99.76% 0.99

10 71.11% 0.56 61.32% 0.37 98.77% 0.75 91.72% 0.75 100% 1 99.76% 0.99

20 54.42% 0.58 37.85% 0.25 83.54% 0.61 76.66% 0.54 100% 1 99.28% 0.99

40 46.51% 0.63 21.9% 0.17 67.41% 0.62 55.33% 0.41 98.07% 0.84 91.9% 0.83

Table 7.8: Detectability achieved for each WM over different num-
bers of marked tuples.

Data detectability is benefited from the combination between the WSD module, which
takes care of imperceptibility, and majority voting, which allows being tolerated WSD lack
of precision. The positive impact of this effect increases when WM size decreases or the
number of tuples being watermarked increases. The following experiments are meant to
analyze how data usability and watermark imperceptibility are maintained. This two WM

7.5. Experimental Results 169

TF UTM WWF Dào

2 0.3752 0.3655 0.3146

5 0.3765 0.3652 0.3142

10 0.3763 0.3597 0.3153

20 0.3768 0.3591 0.3094

40 0.3961 0.3590 0.3068

Table 7.9: Value of Tw for previous experiments.

requirements are critical, since if are not accomplished, the technique becomes useless for
practical scenarios.

7.5.3 Watermark Imperceptibility

As mentioned before, the embedding process is carried out through the replacement of
a pseudo-randomly selected word by a synonym from a specific set of synonyms. The
word selected from the latter set will depend on the value of the mark extracted from
the binary image. Occasionally, the word selected from the set of synonyms is the same
one that was selected from the sentence. That is the scenario that best contributes to
WM imperceptibility since the mark is embedded without any modification in the data.
We compute the rate of marks embedded without performing word replacement through
the rate of fixed words given by Tw = WF/WT, where WF represents the words that do
not change during the embedding process and WT, as previously defined, represents the
number of tagged words. The value of Tw for each one of the experiments is shown in Table
7.9, where more or less for all cases a third of the selected words allows mark embedding
without being replaced, which positively contributes to achieving WM imperceptibility.

From the knowledge source point of view, it is also possible to detect the quality of
the WM imperceptibility. For this case, since we are using WordNet, we can use a set of
similarity metrics that are defined to measure the relatedness or similarity between words.
According to WordNet structure, and the way the metrics are defined, when two words are
selected from the same synonym set, the metrics report the highest possible value between
them. Table 7.10 gives the accumulated value for some metrics commonly used, for the
experiments performed during mark embedding using UTM as WM source. The table’s
column “Iter.” refers to iterations, meaning the number of times the measurement between
words was carried out.

Thanks to the use of similarity metrics it is possible to determine and control the
amount of distortion introduced during WM embedding. This contributes to maintaining
data usability and WM imperceptibility, goals that highly depend on the knowledge source,
the similarity engine and the WSD module. For our case, as long as the words belong to
the same set of synonyms, quality results are guaranteed.

170 Chapter 7. String Manipulation in Watermarking Scenarios

TF Iter. WUP JCN LCH LIN RES PATH LESK

2 44510 44.64⇥ 103 4.73⇥ 1011 16.40⇥ 104 44.45⇥ 103 38.02⇥ 104 44.46⇥ 103 44.22⇥ 104

5 18321 18.39⇥ 103 1.96⇥ 1011 67.55⇥ 103 18.31⇥ 103 15.71⇥ 104 18.31⇥ 103 18.17⇥ 104

10 9091 91.20⇥ 102 9.72⇥ 1010 33.52⇥ 103 90.84⇥ 102 78.00⇥ 103 90.85⇥ 102 89.75⇥ 103

20 4427 44.37⇥ 102 4.73⇥ 1010 16.32⇥ 103 44.22⇥ 102 38.00⇥ 103 44.23⇥ 102 43.05⇥ 103

40 2156 21.63⇥ 102 2.31⇥ 1010 79.53⇥ 102 21.55⇥ 102 18.65⇥ 103 21.56⇥ 102 21.45⇥ 103

Table 7.10: Similarities metrics for WM UTM.

Even though, since our technique is meant to be used for relational data copyright
protection, we have to guarantee robustness against malicious operations. The core of our
approach has been proved to be resilient against common malicious operations oriented to
compromise relational data watermarking techniques [4, 82, 151]. Nevertheless, we need to
consider another threat more focused on compromising WM detection over text documents.
The next section is oriented to analyze the resilience of our technique.

7.5.4 Technique’s Robustness

The major threat our technique faces is linked to random synonym substitution attacks
from watermarking techniques created for document protection. In a similar way that WSD
and majority voting combined allow overcoming WSD lack of precision, using textual as
WM cover type in relational data reduces the probability of performing a successful random

synonym substitution attack. This is because to successfully compromise the mark value,
the right words need to be selected. But first, it is required to detect the right tuple,
and the attribute selected for marking inside the tuple. The high number of parameters
involved in the technique makes that very difficult to achieve.

This is one of the benefits of combining both cover types. The probability of successfully
overwriting marks decreases if, besides relational elements, textual’s are considered. To
that, once the position is correctly detected in the relation, it is necessary to know the type
of word selected for the embedding (e.g., noun, adverbs, adjectives, etc.), the sentence itself,
and break the secrecy of ks (see Algorithm 7). As we mentioned in Section 7.4.4, this is
ruled by the adversary model obtained as a result of extending Equation (7.5) to Equation
(7.6).

To study our approach’s resilience to random updates we performed two types of ex-
periments, random tuple deletion and random actualization of words stored in the same
attribute we use for marking. In Table 7.11 is depicted the degree of damage the WM
gets while the number of pseudo-randomly deleted tuples increases. This experiment was
performed attacking the relation marked with the WM generated from the image WWF
with parameters TF = 2, detected with quality of SSIM = 1 with no pixels in contradiction
with respect to the embedded WM. (see Table 7.7).

7.5. Experimental Results 171

Datum
Percentage of tuples deleted (attack degree).

0 10% 20% 30% 40% 50% 60% 70% 80% 90%

Image

SSIM 1 0.99 1 0.99 0.94 0.93 0.90 0.82 0.74 0.55
CF 100% 100% 100% 100% 100% 100% 100% 99.88% 97.10% 78.65%

Table 7.11: WMs detected after pseudo-random tuple deletion at-
tacks.

Datum
Percentage of the attributes updated (attack degree)

0 10% 20% 30% 40% 50% 60% 70% 80% 90%

Image

SSIM 1 1 0.99 0.99 0.97 0.92 0.89 0.89 0.78 0.78
CF 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 7.12: WMs detected after pseudo-random update attacks.

The second robustness experiment was performed under the same conditions of the
previous one, but updating the value of the attribute, randomly selecting the tuple accord-
ing to the attack’s percentage. In this case, the update operation is based on selecting the
same attribute value but replacing a word from the sentence for a synonym. The selection
of the tuple, the word being replaced, and the synonym was made pseudo-randomly. This
experiment was performed this way to simulate random synonym substitution attacks fo-
cused on compromising textual watermarking. If the mark value during the WM detection
is given by exclusion (assigning 1 if the word is the first one in the synonym set and 0 if it
is not), the probability of success for this type of attack decreases considerably.

From the experiments performed in this section, it is clear our technique describes
a resilience that guarantees WM preservation despite data degradation due to malicious
operations (see Tables 7.11 and 7.12). Considering attackers are also interested in main-
taining data quality, it is not expected they will exceed the degree of damage caused to
the data in the experiments we performed. Then, we claim our technique is resilient, being
recommended for practical scenarios to guarantee copyright protection.

7.5.5 Scalability and Complexity

Since WM embedding and extraction processes are similar in complexity, in this section
we report the time required for WM embedding. We carried out a set of experiments,
performing WM embedding multiple times involving a different number of tuples. Figure
7.5 depicts the linear correlation between the time required by WM embedding and the

172 Chapter 7. String Manipulation in Watermarking Scenarios

Figure 7.5: Correlation described by the times required for water-
marking different amount of tuples.

⌘
Time (s)

Average Proportion

15000 609.75 (±2.70) none

30000 1336.00 (±7.35) 2.19

45000 2081.57 (±3.40) 1.55

60000 2699.07 (±7.90) 1.30

75000 3401.25 (±14.49) 1.26

90000 4050.67 (±27.41) 1.19

Table 7.13: Time required for WM embedding involving different
tuples number.

number of tuples in R. This experiment was performed using � = 5, the WM source WWF
and the attribute “Text”, increasing the value of ⌘ of 15000 units each time.

For each amount of tuples, the same experiment was performed several times until
reaching a standard deviation of the time required as close as zero as possible. Table 7.13
shows along with the standard deviation, the mean of the time recorded. According to
column “Proportion”, which compares the average of the time required for marking the
tuples with respect to the average of time required for the previous row, our approach
describes a linear behavior.

The approach’s complexity will depend on the Similarity Engine, the WSD module,
and the number of sentences stored in the attribute being watermarked. Despite all these
factors, for the conditions given by the experimental set up to validate our work, it is
recorded a linear behavior. Then, it can be established that the overall time complexity
corresponds to O(n), being reliable its application to different sizes of data stored in R.

7.6. Discussion 173

7.6 Discussion

In this chapter, we proposed a watermarking technique for relational data that uses multi-
word textual attributes as cover type. The embedding of the marks in our approach is
performed by substitutions of synonym words in sentences, guaranteeing the semantic
preservation of the data, and the total imperceptibility of the watermark. Despite multiple
attributes can be considered for each tuple, when paragraphs are stored, the selection of
one word per sentence allows the increment of the watermark capacity with respect to
previous techniques, and with it, its robustness.

This technique works in combination with a WSD module, a semantic similarity en-
gine, and one or several knowledge sources, linking its complexity and precision to the
behavior of those external elements. For the experimental validation we used WordNet as
knowledge source and the Lesk algorithm for WSD. The results show that how our tech-
nique guarantees the watermark embedding, its detection, and robustness against subset
attacks and random synonym substitution attacks, making it a valuable tool for ownership
protection, and the data integrity validation. For the case of random synonym substitution
attacks, which constitute a serious threat for techniques focused on watermarking textual
documents, the combination of the relational data structure and the multi-word textual
data type guarantees the watermark persistence independently the attack’s degree. The
preservation of the semantic was defined as the main priority for this approach, adding
as a feature the tolerance to the watermark embedding in a way that, to the best of our
knowledge, no other technique did before.

175

Chapter 8

CONCLUSION AND FUTURE WORK

In this thesis we have studied the problem of string analysis for software verification,
which is also relevant from a security point of view. Indeed, more precise string approxi-
mations better detect program errors that may lead to significant exploitations (voluntary
or otherwise). We adopted the Abstract Interpretation theory both to design novel string
approximations and to refine the existing ones.

It emerges that the analysis of programs that manipulate strings is a complex problem,
far from being solved. One of the main reasons for its difficulty lies in the fact that
programming languages represent strings, and their operations, in different ways. This is
clearly an obstacle since it enormously increases the number of possible scenarios to be
tackled, making the design of effective analyses that would not be language-specific quite
difficult.

In this context, the semantic-based approach used in this thesis has led to interesting
results detailed throughout this dissertation. We investigated different aspects of the string
analysis problem, among which the correct management of character arrays in C programs
and the enhancement of existing string analyses. This brought us to the conclusion that
semantic-based approaches can be effectively implemented and fully incorporated in the
software development life-cycle. One of the advantages of the Abstract Interpretation
approach is that the degree of freedom in the choice of the abstract domain allows to
adequately address the trade-off between efficiency and accuracy of the analysis.

Among the countless scenarios that we could explore in depth, we consider the following
logical developments of this thesis, as they are an expansion of the work done so far. In
fact, in the short term, we aim to:

• Further enhance the effectiveness of the M-String domain by combining it by reduced
product with other either numerical or symbolic domains.

• Design a tailoring method to select what domain combination better suits the string
analysis of a given program based on a pre-process of the operations it applies on
string and character variables.

176 Chapter 8. Conclusion and Future Work

• Investigate forward completeness [80], the property that guarantees that no loss of
precision occurs during the output abstraction process of a given operation. We
aim to integrate the two completeness methodologies within an industrial JavaScript
static analyser to deeply evaluate their actual cost and overall impact. Moreover, we
aim to define a precision measure between string abstractions.

• Investigate suitable combinations of relational string domains with non-relational
ones and/or with complementary numerical domains. We also aim at optimizing
the efficiency of the implementation by taking full benefit from the results discussed
in [126] for numerical domains by representing relations as multi-valued maps.

• Investigate the possibility to integrate the string domains we have proposed in this
thesis, together with the techniques we have used to combine them, into LiSA.1

LiSA is a library for static analysis, aiming to ease the creation and implementation
of static analysers based on the Abstract Interpretation theory.

• Design a module of semantic preservation for numerical and textual data, considering
the elements of watermarking techniques and approximate query processing.

1
LiSA is available at https://github.com/UniVE-SSV/lisa.

https://github.com/UniVE-SSV/lisa

177

Appendix A

UNIFICATION ALGORITHM

We recall the unification algorithm of [57].
The first step of the algorithm is checking the compatibility of the two input segmenta-

tions to verify that they do have common lower and upper bounds. Then, the unification
proceeds recursively from left to right and maintains the invariant that the left part is
already unified. Let Il (Ir resp.) denote the left (right resp.) neutral element.

1 b[?1] p1 b'
1[?'

1] . . . and b[?2] p2 b'
2[?'

2] . . . have some lower bounds and so keep the
first segments as they are and go on with b'

1[?'
1] . . . and b'

2[?'
2] . . .

2 In case (b[b1)[?1] p1 b'
1[?'

1] . . . and b[?2] p2 b'
2[?'

2] . . . with b1 6= ; and b\b1 = ;,
let b⇤

1 be the set of expressions in b1 appearing in the second segmentation blocks
b'

2,

2.1 If b⇤
1 is empty, then go on with b[?1] p1 b'

1[?'
1] . . . and b[?2] p2

b'
2[?'

2] . . . following case 1.

2.2 Otherwise, go on with b[?1] Il b1? p1 b'
1[?'

1] . . . and b[?2] p2 b'
2[?'

2] . . . as in
case 1.

3 The symmetrical case is similar.

4 In case (b [b1)[?1] p1 b'
1[?'

1] . . . and (b [b2)[?2] p2 b'
2[?'

2] . . . with b1,b2 6= ;
and b \ b1 = b \ b2 = ;, let b⇤

1 (resp.b⇤
2) be the set of expressions in b1 (resp. b2)

appearing in the second (resp. first) segmentation blocks b'
2, . . . (b'

1, . . .).

4.1 If b⇤
1 and b⇤

2 are both empty, go on with b[?1] p1 b'
1[?'

1] . . . and b[?2] p2 b'
2[?'

2] . . .
as in case 1.

4.2 Else if b⇤
1 is empty (so that b⇤

2 in not empty) then go on with b[?1] p1 b'
1[?'

1] . . .
and b[?2] Ir b⇤

2? p2 b'
2[?'

2] . . . (where Ir is the right neutral element).

4.3 The symmetrical case is similar.

4.4 Finally if b⇤
1 and b⇤

2 are both non-empty, then go on with b[?1] Il
b⇤

1? p1 b'
1[?'

1] . . . and b[?2] Ir b⇤
2? p2 b'

2[?'
2] . . . as in case 1.

178 Appendix A. Unification Algorithm

5 In case b1[?1] p1 b'
1[?'

1] . . . and b2[?2] p2 b'
2[?'

2] . . . with b1\b2 = ;, we cannot be
on the first left segment block so we have on the left b0[?0] p0 b1[?1] p1 b'

1[?'
1] . . .

and b'
0[?'

0] p'
0 b2[?2] p2 b'

2[?'
2] . . . and go on by merging these consecutive blocks

b0[?0] p0 t p1 b'
1[?1 f ?'

1] . . . and b'
0[?'

0] p'
0 t p2 b2[?2 f ?'

2]

6 Finally, at the end either we are left with the right limits that have both been checked
to be equal or else we have b1[?1] p1 b'

1[?'
1] and b2[?2] with b'

1 = b2. Because we have
maintained the invariant that b1 is always equal to b2 in the concrete (so necessarily
[?'

1] =? since then b1 = b2 = b'
1), and so we end up with (b1 [b'

1 [b2)[?1] and
(b1 [b'

1 [b2)[?2].

179

Appendix B

STRING ABSTRACT DOMAINS

We formally define the String Length complete lattice introduced in Section 4.4.1 and its
abstract semantics. The soundness of the String Length domain abstract semantics is also
proved. Moreover, we recall the Character Inclusion (cf. Section 4.4.2) and the Prefix (cf.
Section 4.4.3) complete lattices and their abstract semantics [49].

B.1 String Length

The String Length abstract domain SL (cf. Section 4.4.1) is the complete lattice [11]:

(SL,vSL,?SL,>SL,uSL,tSL)

where:

• SL , {[m, M] : m 2 N ^M 2 N [{1} ^m  M} [{?SL}

• Let [m1, M1] and [m2, M2] be two abstract values in the String Length domain then:

[m1, M1] vSL [m2, M2] , [m1, M1] = ?SL _ (m2  m1 ^M1  M2)

• ?SL is a special element denoting the bottom element of the considered lattice.

• >SL denotes the top element of the considered lattice, and:

>SL = [0,1]

• uSL represents the meet operator, that defines the greatest lower bound between two
string approximations in the String Length abstract domain, such that:

180 Appendix B. String Abstract Domains

[m1, M1] uSL [m2, M2] =

8
<

:
[max({m1, m2}), min({M1, M2})] if max({m1, m2})  min({M1, M2})

?SL otherwise

• tSL represents the join operator, that defines the least upper bound between two
string approximations in the String Length abstract domain, such that:

[m1, M1] tSL [m2, M2] = [min({m1, m2}), max({M1, M2})]

Abstraction

Let X be a set of concrete string values. The abstraction function on the String Length
abstract domain ↵SL maps X to ?SL in the case in which X is equal to the empty set,
otherwise to the interval [min(LX), max(LX)], where LX = {|� | : � 2 X}. Notice that, if X
contains only one string element, i.e., if X = {�}, then ↵SL(X) = [|� |, |� |].

Concretization

The concretization function on the String Length abstract domain �SL maps an abstract
element to a set of strings as follows: �SL(?SL) = ;, while is {� : � 2 ⌃⇤ ^m  |� |  M},
i.e., the set of all the possible strings whose length goes from m to M.

Galois connection

We follow Theorem 1.1 of [49] and we prove that (↵SL,�SL) is a Galois Connection.

Theorem B.1. Let the abstraction function ↵SL be defined as:

↵SL = �X. uSL {[m, M] : X ✓ �SL([m, M])}

Then, (P(⌃⇤),✓) –––––––––! –––––––––
↵SL

�SL (SL,vSL).

Proof.

By Theorem 1.1 of [49], we only need to prove that �SL is a complete meet morphism.
Formally, we have to prove that:

�SL

✓ d
SL

[m,M]2X
[m, M]

◆
=
T

[m,M]2X �SL([m, M])

�SL

✓ d
SL

[m,M]2X
[m, M]

◆

by definition of uSL

= �SL([m', M']) where m' = max[m,M]2X m and M' = min[m,M]2X M

B.1. String Length 181

SSL[[new String(�)]]() = [|� |, |� |]

SSL[[concat]]([m1, M1], [m2, M2]) = [m1 + m2, M1 + M2]

SSL[[substringeb]]([m, M]) =

(
[n, n] if n 2 [m, M]

?SL otherwise

where n = (e – b) + 1

BSL[[containsc]]([m, M]) = >B

Table B.1: SL abstract semantics.

by definition of �SL

= {� | � 2 ⌃⇤ ^m'  |� |  M'}

by definition of \

=
T

[m,M]2X{� : � 2 ⌃⇤ ^m  |� |  M}

by definition of �SL

=
T

[m,M]2X �SL([m, M])

Widening operator

The String Length abstract domain has infinite height and does not respect the Ascending
Chain Condition. Therefore it needs to be equipped with a widening operator. The
widening rSL for the string length analysis is as follows:

[m1, M1]rSL[m2, M2] = [if m2 < m1 then 0 else m1,

if M2 > M1 then 1 else M1]

Abstract semantics

We define the abstract semantics of the String Length domain and we prove its soundness.
The semantics SSL and BSL are the abstract counterparts of S and B (cf. Section ??).

Table B.1 formalizes the abstract semantics of SL. Precisely,

• SSL[[new String(�)]]() = [|� |, |� |]

Let � be a sequence of characters.

The semantics SSL, when applied to new String(�), returns the interval [|� |, |� |],
as when a new string constant is evaluated both its minimum and its maximum
length coincide and are equal to the length of �.

182 Appendix B. String Abstract Domains

• SSL[[concat]]([m1, M1], [m2, M2]) = [m1 + m2, M1 + M2]

Let [m1, M1], [m2, M2] 2 SL.

The semantics SSL, when applied to concat([m1, M1], [m2, M2]), returns the sum
of the input intervals, i.e., [m1, M1] + [m2, M2] = [m1 + m2, M1 + M2], as the length
of a string resulting from the concatenation between two other strings is the sum of
the lengths of the latter, i.e., |�1�2 | = |�1 | + |�2 |.

• SSL[[substringeb]]([m, M]) =

8
<

:
[n, n] if n 2 [m, M]

?SL otherwise

Let [m, M] 2 SL and let n be equal to (e – b) + 1.

The semantics SSL, when applied to substringeb([m, M]), returns the interval [n, n]
if n belongs to the input interval [m, M], otherwise it returns ?SL, as the substring
of a string from the b-th to the e-th index has length equal to n.

• BSL[[containsc]]([m, M]) = >B

Let [m, M] 2 SL.

The semantics BSL applied to containsc([m, M]) returns >B, as we can not infer
any information about the content of the strings approximated by [m, M].

Theorem B.2. SSL and BSL are sound over-approximations of S and B respectively.
Formally,

�SL(SSL[[Stm]]([m, M])) ◆ {S[[Stm]](�) | � 2 �SL([m, M])}

�SL(BSL[[Stm]]([m, M])) ◆ {B[[Stm]](�) | � 2 �SL([m, M])}

Proof.

We prove the soundness separately for each operator.

• Consider the new String operator and let � be a sequence of characters. We have
to prove that,

�SL(SSL[[new String(�)]]()) ◆ {S[[new String(�)]]()}

This holds from the definitions of SSL and of �SL.

• Consider the concat operation and let [m1, M1], [m2, M2] 2 SL. We have to prove
that,

�SL(SSL[[concat]]([m1, M1], [m2, M2]))

◆

{S[[concat]](�1,�2) | �1 2 �SL([m1, M1]) ^ �2 2 �SL([m2, M2])}

B.2. Character Inclusion 183

Let �1�2 be a generic element in {S[[concat]](�1,�2) : �1 2 �SL([m1, M1]) ^ �2 2
�SL([m2, M2])}. As �1 is any string whose length goes from m1 to M1 and �2 is
any string whose length goes from m2 to M2, the concatenation of �1 and �2 is any
string whose length goes from m1 + m2 to M1 + M2. Therefore �1�2 belongs to
�SL(SSL[[concat]]([m1, M1], [m2, M2])), because SSL[[concat]]([m1, M1], [m2, M2]) =
[m1 +m2, M1 +M2], by definition of SSL. Indeed, �SL([m1 +m2, M1 +M2]) contains
all the strings whose length goes from m1 + m2 to M1 + M2, by definition of �SL.

• Consider the substring operation and let [m, M] 2 SL. we have to prove that,

�SL(SSL[[substringeb]]([m, M])) ◆ {S[[substringeb]](�) | � 2 �SL([m, M])}

Let �b...�e be a generic element in
n

S[[substringeb]](�)
o
� 2 �SL([m, M]). As � is

any string whose length goes from m to M, its substring from the b-th to the e-th
index, if it exists, i.e., if n  |� |, has length equal to n. Therefore �b...�e belongs
to �SL(SSL[[substringeb]]([m, M])), because SSL[[substringeb]]([m, M]) = [n, n] if n 2
[m, M], by definition of SSL. Indeed, �SL([n, n]) contains all the strings of length n
and �SL(?SL) is the emptyset, by definition of �SL.

• Consider the contains operator and let [m, M] 2 SL. We have to prove that,

�SL(BSL[[containsc]]([m, M])) ◆ {B[[containsc]](�) | � 2 �SL([m, M])}

This holds as the abstract semantics returns the top element >B that approximates
any possible result of the concrete semantics.

B.2 Character Inclusion

The Character Inclusion abstract domain CI is the complete lattice [49]:

(CI,vCI,?CI,>CI,uCI,tCI)

where:

• CI , {(C, MC) : C, MC 2 P(⌃) ^ C ✓ MC} [{?CI}

Where ⌃ denotes the alphabet.

• Let (C1, MC1) and (C2, MC2) be two abstract values in the Character Inclusion
domain then:

(C1, MC1) vCI (C2, MC2) , (C1, MC1) = ?CI _ (C1 ◆ C2 ^MC1 ✓ MC2)

184 Appendix B. String Abstract Domains

• ?CI denotes the bottom element of the considered lattice, and:

?CI = {(C, MC) | C * MC}

• >CI denotes the top element of the considered lattice, and:

>CI = (;,⌃)

• uCI represents the meet operator, that defines the greatest lower bound between two
string approximations in the Character Inclusion abstract domain, such that:

uCI((C1, MC1), (C2, MC2)) =

8
><

>:

(C1 [C2, MC1 \MC2) if C1 ✓ MC2 and C2 ✓ MC1

?CI otherwise

• tCI represents the join operator, that defines the least upper bound between two
string approximations in the Character Inclusion abstract domain, such that:

tCI((C1, MC1), (C2, MC2)) = (C1 \ C2, MC1 [MC2).

Abstraction

Let X be a set of concrete string values. The abstraction function on the Character
Inclusion abstract domain ↵CI maps X to ?CI in the case in which X is equal to the empty
set, otherwise to the pair of sets (

T
HX,

S
HX) where HX = {char(�) : � 2 X}. Notice

that, if X contains just one string element, then ↵CI(X) = (HX, HX).

Concretization

The concretization function on the Character Inclusion abstract domain �CI maps an
abstract element to a set of strings as follows: �CI(?CI) = ;, while is {� : � 2 ⌃⇤, C ✓
char(�) ✓ MC}, i.e., the set of all the possible strings certainly containing the elements in
C and possibly containing the elements in MC.

Galois connection

The functions �CI and ↵CI form a Galois Connection (Theorem 4.2 of [49]).

Widening operator

The Character Inclusion abstract domain has finite height. Therefore its widening operator
coincides with its least upper bound operator.

B.2. Character Inclusion 185

SCI[[new String(�)]]() = (char(�), char(�))

SCI[[concat]]((C1, MC1), (C2, MC2)) = (C1 [C2, MC1 [MC2)

SCI[[substringeb]]((C, MC)) = (;, MC)

BCI[[containsc]]((C, MC)) =

8
>><

>>:

true if c 2 C

false if c /2 MC
0.5ex]>B otherwise

Table B.2: CI abstract semantics.

Abstract semantics

We recall the Character Inclusion domain abstract semantics. Table B.2 formalizes the
abstract semantics of CI. Precisely,

• SCI[[new String(�)]]() = (char(�), char(�))

Let � be a sequence of characters.

The semantics of SCI, when applied to new String(�) returns the pair (char(�), char(�)),
as when a new constant string is evaluated both the sets of characters it certainly
and probably contains are those appearing in �.

• SCI[[concat]]((C1, MC1), (C2, MC2)) = (C1 [C2, MC1 [MC2)

Let (C1, MC1), (C2, MC2) 2 CI.

The semantics SCI, when applied to concat((C1, MC1), (C2, MC2)), returns the
pair (C1 [C2, MC1 [MC2), as the characters which occur in a string resulting from
the concatenation between two other strings are those appearing in the first string
plus those appearing in the second string, i.e., char(�1�2) = char(�1) [char(�2).

• SCI[[substringeb]]((C, MC)) = (;, MC)

Let (C, MC) 2 CI.

The semantics SCI, when applied to substringeb((C, MC)) returns the pair (;, MC),
as we do not have any information about the position of the characters in C.

• BCI[[containsc]]((C, MC)) =

8
>>><

>>>:

true if c 2 C

false if c /2 MC

>B otherwise

Let (C, MC) 2 CI.

The semantics BCI applied to substringc((C, MC)) returns true if the set C con-
tains the character c, false if the set MC does not contain the character c, otherwise

186 Appendix B. String Abstract Domains

>B, as the characters which occur in C are those certainly appearing in all the strings
approximated by (C, MC).

The Character Inclusion domain abstract semantics is a sound over-approximation of
the string domain concrete semantics (Theorem 4.3 of [49]).

B.3 Prefix

A prefix is a sequence of characters followed by an asterisk ⇤. Since the asterisk at the end
of the literal part is always present, it is not included in the domain. The Prefix abstract
domain PR is the complete lattice [49]:

(PR,vPR,?PR,>PR,uPR,tPR)

where:

• PR , ⌃⇤ [{?PR}

• Let p1 and p2 be two abstract values in the Prefix domain then:

p1 vPR p2 , p1 = ?PR _ (len(p2)  len(p1) ^ (8i 2 [0, len(p2) – 2] : p2[i] = p1[i]))

Notice that len(p) corresponds to the number of characters spelled out in the prefix.

• ?PR is a special element denoting the bottom element of the considered lattice.

• >PR denotes the top element of the considered lattice and it corresponds to the
empty prefix value, such that:

>PR = ⇤

• uPR represents the meet operator, that defines the greatest lower bound between
two string approximations in the Prefix abstract domain, such that:

uPR(p1, p2) =

8
>>><

>>>:

p1 if p1 vPR p2

p2 if p2 vPR p1

?PR otherwise

• tPR represents the join operator, that defines the least upper bound between two
string approximations in the Prefix abstract domain, such that:

tPR(p1, p2) =

8
<

:
>PR if p1[0] 6= p2[0]

lcp(p1, p2) otherwise

where lcp(p1, p2) denotes the longest common prefix of p1 and p2.

B.3. Prefix 187

SPR[[new String(�)]]() = �

SPR[[concat]](p1, p2) = p1

SPR[[substringeb]](p) =

8
>><

>>:

p[b...e] if e < len(p)

p[b...(len(p) – 1)] if e � len(p) ^ b < len(p)

>PR otherwise

BPR[[containsc]](p) =

(
true if c 2 char(p)

>B otherwise

Table B.3: PR abstract semantics.

Abstraction

Let X be a set of concrete string values. The abstraction function on the Prefix abstract
domain ↵PR maps X to ?PR in the case in which X is equal to the empty set, otherwise
to the longest common prefix of all the strings in X (which is followed by ⇤). Notice that,
if X contains just one string concrete value, its abstract value will be equal to any possible
sequence of characters having that string as prefix.

Concretization

The concretization function on the Prefix abstract domain �PR maps an abstract element
to a set of strings as follows: �PR(?PR) = ;, while is {� : � 2 ⌃⇤, len(�) � len(p) ^ 8i 2
[0, len(p) – 1] : �[i] = p[i]}, i.e., the set of all the possible sequences of characters sharing
the same prefix.

Galois connection

The functions �PR and ↵PR form a Galois Connection (Theorem 4.7 of [49]).

Widening operator

The Prefix abstract domain has infinite height, but it respects the Ascending Chain Con-
dition. Therefore there is no need to define a widening operator to ensure the convergence
of the analysis.

Abstract semantics

We recall the Prefix domain abstract semantics.
Table B.3 formalizes the abstract semantics of PR. Precisely,

• SPR[[new String(�)]]() = �

Let � be a sequence of characters.

188 Appendix B. String Abstract Domains

The semantics SPR, when applied to new String(�), returns the �, as when a new
string constant is evaluated its most precise prefix corresponds to the string itself.

• SPR[[concat]](p1, p2) = p1

Let p1, p2 2 PR.

The semantics SPR, when applied to concat(p1, p2), returns p1, as a string resulting
from the concatenation of two other strings will always begin with the first string
involved in the concatenation.

• SPR[[substringeb]](p) =

8
>>><

>>>:

p[b...e] if e < len(p)

p[b...(len(p) – 1)] if e � len(p) ^ b < len(p)

>PR otherwise

Let p 2 PR.

The semantics SPR, when applied to substringeb(p), returns the subprefix from the
index b to the index e if e < len(p), as the substring is completely contained in p; the
subprefix from the index b to the index len(p) minus 1 if e � len(p) and b < len(p),
as the substring is not entirely contained in p; otherwise it returns >PR.

• BPR[[containsc]](p) =

8
<

:
true if c 2 char(p)

>B otherwise

Let p 2 PR.

The semantics BPR applied to containsc(p) returns true if the prefix contain the
character c, otherwise >B, as we can not infer any information about the content of
the strings approximated by p after the prefix itself.

The Prefix domain abstract semantics is a sound over-approximation of the string
domain concrete semantics (Theorem 4.5 of [49]).

189

Appendix C

RELATIONAL STRING ABSTRACT DOMAINS

C.1 Abstract Semantics of Len

Let J st Klen : Len ! Len be the function that given an input abstract memory returns an
abstract memory containing the new string length relations introduced by st.

• Assignment abstract semantics

Consider the assignment x = s such that x 2 Xstr and s 2 se. Formally, its abstract
semantics, i.e., J x = s KlenL, is given by the following steps:

- [remove]

Lr =

8
<

:
L \ {w �len z | w = x} if x appears at the top-level of s

L \ {w �len z | w = x _ z = x} otherwise

- [add]
La = Lr [{y �len x | y 2 extr(s)}

where extr is the extraction function defined in Section 6.3.2.

- [closure]
J x = s KlenL = Clos(La)

• Boolean expressions abstract semantics

- contains abstract semantics

J contains(x, s) KlenL = Clos(L [{y �len x | y 2 extr(s)})

- equality abstract semantics

J x == s KlenL =

8
<

:
Clos(L [{y �len x, x �len y}) if s = y 2 Xstr

Clos(L [{y �len x | y 2 extr(s)}) otherwise

190 Appendix C. Relational String Abstract Domains

The same applies to J s == x KlenL.

- conjunction abstract semantics

J e1 && e2 KlenL = J e1 KlenL tlen J e2 KlenL

- disjunction abstract semantics

J e1 || e2 KlenL = J e1 KlenL ulen J e2 KlenL

Theorem C.1. The abstract semantics of Len is sound. Indeed, it holds that:

8M 2 P(M). ↵len(Jx = sKM) vlen (J x = s Klen↵len(M))

and

8M 2 P(M). ↵len(JbKM) vlen (J b Klen↵len(M))

Proof.

The proof is analogous to the one provided for Theorem C.3.

C.2 Abstract Semantics of Char

Let J st Kchar : Char ! Char be the function that given an input abstract memory returns
an abstract memory containing the new character inclusion relations introduced by st.

• Assignment abstract semantics

Consider the assignment x = s such that x 2 Xstr and s 2 se. Formally, its abstract
semantics, i.e., J x = s KcharC is given by the following steps:

- [remove]

Cr =

8
<

:
C \ {w �char z | w = x} if x appears at the top-level of s

C \ {w �char z | w = x _ z = x} otherwise

- [add]
Ca = Cr [{y �char x | y 2 extr(s)}

where extr is the extraction function defined in Section 6.3.2.

- [closure]
J x = s KcharC = Clos(Ca)

C.3. Abstract Semantics of Sub 191

• Boolean expressions abstract semantics

- contains abstract semantics

J contains(x, s) KcharC = Clos(C [{y �char x | y 2 extr(s)})

- equality abstract semantics

J x == s KcharC =

8
<

:
Clos(C [{y �char x, x �char y}) if s = y 2 Xstr

Clos(C [{y �char x | y 2 extr(s)}) otherwise

The same applies to J s == x KcharC.

- conjunction abstract semantics

J e1 && e2 KcharC = J e1 KcharC tchar J e2 KcharC

- disjunction abstract semantics

J e1 || e2 KcharC = J e1 KcharC uchar J e2 KcharC

Theorem C.2. The abstract semantics of Char is sound. Indeed, it holds that:

8M 2 P(M). ↵char(Jx = sKM) vchar (J x = s Kchar↵char(M))

and

8M 2 P(M). ↵char(JbKM) vsub (J b Kchar↵char(M))

Proof.

The proof is analogous to the one provided for Theorem C.3.

C.3 Abstract Semantics of Sub

Let J st Ksub : Sub ! Sub be the function that given an input abstract memory returns an
abstract memory containing the new substring relations introduced by st.

• Assignment abstract semantics

Consider the assignment x = s such that x 2 Xstr and s 2 se. Formally, its abstract
semantics, i.e., J x = s KsubS is given by the following steps:

– [remove]

Sr =

8
<

:
S \ {w �sub z | w = x} if x appears at the top-level of s

S \ {w �sub z | w = x _ z = x} otherwise

192 Appendix C. Relational String Abstract Domains

– [add]
Sa = Sr [{y �sub x | y 2 extr(s)}

where extr is the extraction function defined in Section 6.3.2.

– [closure]
J x = s KsubS = Clos(Sa)

• Boolean expressions abstract semantics

- contains abstract semantics

J contains(x, s) KsubS = Clos(S [{y �sub x | y 2 extr(s)})

- equality abstract semantics

J x == s KsubS =

8
<

:
Clos(S [{y �sub x, x �sub y}) if s = y 2 Xstr

Clos(S [{y �sub x | y 2 extr(s)}) otherwise

The same applies to J s == x KsubS.

- conjunction abstract semantics

J e1 && e2 KsubS = J e1 KsubS tsub J e2 KsubS

- disjunction abstract semantics

J e1 || e2 KsubS = J e1 KsubS usub J e2 KsubS

Theorem C.3. The abstract semantics of Sub is sound, namely 8M 2 P(M)

↵sub(Jx = sKM) vsub J x = s Ksub↵sub(M)

and

↵sub(JbKM) vsub J b Ksub↵sub(M)

Proof.

The soundness proofs for the Boolean expressions (contains, ==, disjunction and conjunc-
tion) are trivial and straightforward. Hence, we focus only on the soundness proof of the
assignment.

First, we observe that given a string expression s, any sub-expression s' of s is a
substring of s, for any m 2 M, namely

8m 2 M : Js'Km y JsKm (C.1)

C.4. Abstract Semantics of Sub? 193

Hence, we prove that:

↵sub(Jx = sKM) vsub (J x = s Ksub↵sub(M))

Without loss of generality, let us suppose that x does not appear at the top-level of the
expression s. Note that the case in which x appears at the top-level of the expression s is
analogous.

↵sub(Jx = sKM) =

= {y �sub z | 8m 2 M. m[x JsKm](y) y m[x JsKm](z)} [Def. ↵sub]

= {y �sub z | 8m 2 M. m[x JsKm](y) y m[x JsKm](z), z 6= x}

[{y �sub x | 8m 2 M. m[x JsKm](y) y m[x JsKm](x)} [Set prop.]

vsub ({y �sub z | 8m 2 M. m[x JsKm](y) y m[x JsKm](z), z 6= x}

\ {y �sub z | y = x _ z = x})

[{y �sub x | 8m 2 M. m[x JsKm](y) y m[x JsKm](x)}

= ({y �sub z | 8m 2 M. m[x JsKm](y) y m[x JsKm](z), z 6= x}

\ {y �sub z | y = x _ z = x})

[{y �sub x | 8m 2 M. m[x JsKm](y) y JsKm} [Def. m(x)]

vsub ({y �sub z | 8m 2 M. m[x JsKm](y) y m[x JsKm](z), z 6= x}

\ {y �sub z | y = x _ z = x} [{y �sub x | y 2 extr(s)}) [Eq. C.1]

= Clos(Sa) = J x = s Ksub↵sub(M) [Def. J · Ksub]

C.4 Abstract Semantics of Sub?

Let J st Ksub? : Sub? ! Sub? be the function that given an input abstract memory returns
an abstract memory containing the new substring relations introduced by st.

• Assignment abstract semantics

Consider the assignment x = s such that x 2 Xstr and s 2 se. Formally, its abstract
semantics, i.e., J x = s KsubS is given by the following steps:

194 Appendix C. Relational String Abstract Domains

– [remove]

S?
r =

8
>>>><

>>>>:

S? \ {s' �sub? z | x appears in s'} if x appears

at the top-level of s

S? \ {s' �sub? z | z = x _ x appears in s'} otherwise

– [add]
S?

a = S?
r [{s' �sub? x | s' 2 extr?(s)}

– [inter-asg]
S?

i
= S?

a [{x �sub? y | S?
a (x) ✓ S?

a (y)}

– [closure]
J x = s Ksub?S? = Clos(S?

i
)

• Boolean expressions abstract semantics

- contains abstract semantics

J contains(x, s) Ksub?S? = Clos(S? [{s' �sub? x | s' 2 extr?(s)})

- equality abstract semantics

J x == s Ksub?S? = Clos(S? [{s' �sub? x | s' 2 extr?(s)})

Thee same applies to J s == x Ksub?S?.

- conjunction abstract semantics

J e1 && e2 Ksub?S? = J e1 Ksub?S? tsub? J e2 Ksub?S?

- disjunction abstract semantics

J e1 || e2 Ksub?S? = J e1 Ksub?S? usub? J e2 Ksub?S?

Theorem C.4. The abstract semantics of Sub? is sound, namely 8M 2 P(M)

↵sub?(Jx = sKM) vsub? J x = s Ksub?↵sub?(M)

and

↵sub?(JbKM) vsub? J b Ksub?↵sub?(M)

Proof. In the following we prove that:

↵sub?(Jx = sKM) vsub? (J x = s Ksub?↵sub?(M))

C.5. Len? Relational Abstract Domain 195

The proof is similar to the one reported above, except for the phase [inter-asg]. As above,
we assume that x does not appear at the top-level of the expression s and the contrary in
analogous.

↵sub?(Jx = sKM) =

= {s' �sub? z | 8m 2 M. [[s']](()m[x JsKm]) y m[x JsKm](z)} [Def. ↵sub?]

= {s' �sub? z | 8m 2 M. s0(m[x JsKm]) y m[x JsKm](z), s' 6= x}

[{x �sub? z | 8m 2 M. m[x JsKm](x) y m[x JsKm](z)} [Set prop.]

= {s' �sub? z | 8m 2 M. s'(m[x JsKm]) y m[x JsKm](z), s0 6= x, z 6= x}

[{s' �sub? x | 8m 2 M. s'(m[x JsKm]) y m[x JsKm](z), s' 6= x}

[{x �sub? z | 8m 2 M. m[x JsKm](x) y m[x JsKm](z)} [Set prop.]

vsub? {s' �sub? z | 8m 2 M. s'(m[x JsKm]) y m[x JsKm](z), s' 6= x, z 6= x}

\ {s' �sub? x | z = x _ x appears in s}

[{s' �sub? x | 8m 2 M. s'(m[x JsKm]) y m[x JsKm](z), s' 6= x}

[{x �sub? z | 8m 2 M. m[x JsKm](x) y m[x JsKm](z)}

vsub? ({s' �sub? z | 8m 2 M. s'(m[x JsKm]) y m[x JsKm](z), s' 6= x, z 6= x}

\ {s' �sub? x | z = x _ x appears in s})

[{s' �sub? x | s' 2 extr?(s)}

[{x �sub? z | 8m 2 M. m[x JsKm](x) y m[x JsKm](z)} [Eq. C.1]

= S?
a [{x �sub? z | 8m 2 M. m[x JsKm](x) y m[x JsKm](z)} [Def. S?

a]

vsub? Clos(S?
a [{x �sub? z | S?

a (x) ✓ S?
a (z)}) = J x = s Ksub?↵sub?(M) [Def. J · Ksub?]

C.5 Len? Relational Abstract Domain

The Len relational string abstract domain can be extended in order to track also relations
between string expressions and variables, e.g., if the length of the concatenation between
two string variables is smaller than or equal to the length of another string variable. Thus,
similarly to Section 6.3.5, we introduce the binary relation �len?✓ se ⇥ Xstr and the
extended abstract domain Len? = P({s �len? x | x 2 Xstr, s 2 se}) [{?len?}, which
ranges over the meta-variable L?, where the top element, denoted by >len? , is ;, and ?len?

is the bottom element. Len? inherits the properties of Len. Len? lattice operations are tlen?

(lub), ulen? (glb) and �len? (partial order) and are similar to the ones of Len reported in
Figure 6.4. Its concretization �len? : Len? ! P(M) and abstraction ↵len? : P(M) ! Len?

196 Appendix C. Relational String Abstract Domains

functions, which form a Galois Connection, are defined as follows:

�len?(L
?) =

\

s�len? x2L?

{m | m(x), JsKm 2 ⌃⇤, |JsKm|  |m(x)|}

↵len?(M) = {s �len? x | 8m 2 M. |JsKm|  |m(x)|, x 2 Xstr, s 2 se}

The Len? abstract semantics extends the one defined for Len and it is defined as follows.
Let J st Klen

?
L? : Len? ! Len?.

• Assignment abstract semantics

Consider the assignment x = s such that x 2 Xstr and s 2 se. Formally, its abstract
semantics, i.e., J x = s Klen

?
L?, is given by the following steps:

– [remove]

L?
r =

8
>>><

>>>:

L? \ {s' �len? z | x appears in s'} if x appears

at the top-level of s

L? \ {s' �len? z | z = x _ x appears in s} otherwise

– [add]
L?

a = L?
r [{s' �len? x | s' 2 extr?(s)}

– [inter-asg]
L?

i
= L?

a [{x �len? y | L?
a(x) ✓ L?

a(y)}

– [closure]
J x = s Klen

?
L? = Clos(L?

i
)

• Boolean expressions abstract semantics

- contains abstract semantics

J contains(x, s) Klen
?
L? = Clos(L? [{s' �len? x | s' 2 extr?(s)})

- equality abstract semantics

J x == s Klen
?
L? = Clos(L? [{s' �len? x | s' 2 extr?(s)})

The same applies to J s == x Klen
?
L?.

- conjunction abstract semantics

J e1 && e2 Klen
?
L? = J e1 Klen

?
L? tlen? J e2 Klen

?
L?

C.6. Char? Relational Abstract Domain 197

- disjunction abstract semantics

J e1 || e2 Klen
?
L? = J e1 Klen

?
L? ulen? J e2 Klen

?
L?

Theorem C.5. The abstract semantics of Len? is sound. Indeed, it holds that:

8M 2 P(M). ↵len?(Jx = sKM) vlen? (J x = s Klen
?
↵len?(M))

and

8M 2 P(M). ↵len?(JbKM) vlen? (J b Klen
?
↵len?(M))

Proof.

The proof is analogous to the one provided for Theorem C.4.

C.6 Char? Relational Abstract Domain

We define �char? as the extension of the binary relation �char to string expressions such
that �char?✓ se ⇥ Xstr. Moreover, Char becomes Char? = P({s �char? x | x 2 Xstr, s 2
se}) [{?char?}, where the top element, denoted by >char? , is ;, and ?char? is the bottom
element. The abstract domain Char? ranges over the meta-variable C?. The extended
relational character inclusion string abstract domain is a complete lattice and its lattice
operations (tchar?(lub), uchar?(glb), vchar? (partial order)) are similar to the ones of Char.
The concretization �char? : Char? ! P(M) and abstraction ↵char? : P(M) ! Char? functions,
defined below, form a Galois Connection.

�char?(C
?) =

\

s�char? x2C?
{m | m(x), JsKm 2 ⌃⇤, char(JsKm) ✓ char(m(x))}

↵char?(M) = {s �char? x | 8m 2 M. char(JsKm) ✓ char(m(x)), x 2 Xstr, s 2 se}

As usual, the abstract semantics is captured by the function J st Kchar?C? : Char? !
Char?. and it is defined as follows.

• Assignment abstract semantics

Consider the assignment x = s such that x 2 Xstr and s 2 se. Formally, its abstract
semantics, i.e., J x = s Kchar?C? is given by the following steps:

– [remove]

C?r =

8
>>><

>>>:

C? \ {s' �char? z | x appears in s'} if x appears

at the top-level of s

C? \ {s0 �char? z | z = x _ x appears in s0} otherwise

198 Appendix C. Relational String Abstract Domains

– [add]
C?a = C?r [{s' �char? x | s' 2 extr?(s)}

– [inter-asg]
C?
i

= C?a [{x �char? y | C?a(x) ✓ C?a(y)}

– [closure]
J x = s Kchar?C? = Clos(C?

i
)

• Boolean expressions abstract semantics

- contains abstract semantics

J contains(x, s) Kchar?C? = Clos(C? [{s' �char? x | s' 2 extr?(s)})

- equality abstract semantics

J x == s Kchar?C? = Clos(C? [{s' �char? x | s' 2 extr?(s)})

The same applies to J s == x Kchar?C?.

- conjunction abstract semantics

J e1 && e2 Kchar?C? = J e1 Kchar?C? tchar? J e2 Kchar?C?)

- disjunction abstract semantics

J e1 || e2 Kchar?C? = J e1 Kchar?C? uchar? J e2 Kchar?C?

Theorem C.6. The abstract semantics of Char? is sound. Indeed, it holds that:

8M 2 P(M). ↵char?(Jx = sKM) vchar? (J x = s Kchar?↵char?(M))

and

8M 2 P(M). ↵char?(JbKM) vsub? (J b Kchar?↵char?(M))

Proof.

The proof is analogous to the one provided for Theorem C.4.

199

BIBLIOGRAPHY

[1] P. A. Abdulla et al. “Norn: An SMT Solver for String Constraints”. In: Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I. 2015, pp. 462–469. doi: 10.1007/978-
3-319-21690-4_29.

[2] E. Agirre et al. “A Study on Similarity and Relatedness Using Distributional and
WordNet-based Approaches”. In: Human Language Technologies: Conference of the
North American Chapter of the Association of Computational Linguistics, Pro-
ceedings, May 31 - June 5, 2009, Boulder, Colorado, USA. The Association for
Computational Linguistics, 2009, pp. 19–27.

[3] R. Agrawal, P. J. Haas, and J. Kiernan. “Watermarking Relational Data: Frame-
work, Algorithms and Analysis”. In: VLDB J. 12.2 (2003), pp. 157–169. doi: 10.
1007/s00778-003-0097-x.

[4] R. Agrawal and J. Kiernan. “Watermarking Relational Databases”. In: Proceedings
of 28th International Conference on Very Large Data Bases, VLDB 2002, Hong
Kong, August 20-23, 2002. Morgan Kaufmann, 2002, pp. 155–166. doi: 10.1016/
B978-155860869-6/50022-6.

[5] M. T. Ahvanooey et al. “A Comparative Analysis of Information Hiding Techniques
for Copyright Protection of Text Documents”. In: Security and Communication
Networks 2018 (2018), 5325040:1–5325040:22. doi: 10.1155/2018/5325040.

[6] A. Al-Haj and A. Odeh. “Robust and Blind Watermarking of Relational Database
Systems”. In: Journal of Computer Science 4.12 (2008), pp. 1024–1029.

[7] F. E. Allen. “Control flow analysis”. In: SIGPLAN Notices. Vol. 5. 1970, pp. 1–19.
doi: 10.1145/390013.808479.

[8] R. Amadini, G. Gange, and P. J. Stuckey. “Dashed Strings for String Constraint
Solving”. In: Artificial Intelligence. Vol. 289. 2020. doi: https://doi.org/10.
1016/j.artint.2020.103368.

200 Bibliography

[9] R. Amadini et al. “A Novel Approach to String Constraint Solving”. In: Principles
and Practice of Constraint Programming - 23rd International Conference, CP 2017,
Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings. 2017,
pp. 3–20. url: 10.1007/978-3-319-66158-2_1.

[10] R. Amadini et al. “Combining String Abstract Domains for JavaScript Analysis: An
Evaluation”. In: Tools and Algorithms for the Construction and Analysis of Systems
- 23rd International Conference, TACAS 2017, held as part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings, Part I. 2017, pp. 41–57. doi: 10.1007/978-3-662-
54577-5_3.

[11] R. Amadini et al. “Reference Abstract Domains and Applications to String Analy-
sis”. In: Fundam. Inform. 158.4 (2018), pp. 297–326. doi: 10.3233/FI-2018-1650.

[12] V. Arceri. “Taming Strings in Dynamic Languages - An Abstract Interpretation-
based Static Analysis Approach”. PhD thesis. May 2020. doi: 10.13140/RG.2.2.
27093.45286.

[13] V. Arceri and S. Maffeis. “Abstract Domains for Type Juggling”. In: Electron. Notes
Theor. Comput. Sci. 331 (2017), pp. 41–55. doi: 10.1016/j.entcs.2017.02.003.

[14] V. Arceri and I. Mastroeni. “A Sound Abstract Interpreter for Dynamic Code”.
In: SAC ’20: The 35th ACM/SIGAPP Symposium on Applied Computing, online
event, Brno, Czech Republic, March 30 - April 3, 2020. Ed. by C. Hung et al. ACM,
2020, pp. 1979–1988. doi: 10.1145/3341105.3373964.

[15] V. Arceri and I. Mastroeni. “An Automata-based Abstract Semantics for String
Manipulation Languages”. In: Proceedings Seventh International Workshop on Ver-
ification and Program Transformation, VPT@Programming 2019, Genova, Italy,
2nd April 2019. Ed. by A. Lisitsa and A. P. Nemytykh. Vol. 299. EPTCS. 2019,
pp. 19–33. doi: 10.4204/EPTCS.299.5.

[16] V. Arceri and I. Mastroeni. “Static Program Analysis for String Manipulation Lan-
guages”. In: Proceedings Seventh International Workshop on Verification and Pro-
gram Transformation, Genova, Italy, 2nd April 2019. Ed. by A. Lisitsa and A. Ne-
mytykh. Vol. 299. Electronic Proceedings in Theoretical Computer Science. Open
Publishing Association, 2019, pp. 19–33. doi: 10.4204/EPTCS.299.5.

[17] V. Arceri, I. Mastroeni, and S. Xu. “Static Analysis for ECMAScript String Manip-
ulation Programs”. In: Appl. Sci. 10 (2020), p. 3525. doi: 10.3390/app10103525.

[18] V. Arceri et al. “Completeness of Abstract Domains for String Analysis of JavaScript
Programs”. In: Theoretical Aspects of Computing - ICTAC 2019 - 16th International
Colloquium, Hammamet, Tunisia, October 31 - November 4, 2019, Proceedings. Ed.

10.1007/978-3-319-66158-2%5C_1

Bibliography 201

by R. M. Hierons and M. Mosbah. Vol. 11884. Lecture Notes in Computer Science.
Springer, 2019, pp. 255–272. doi: 10.1007/978-3-030-32505-3_15.

[19] N. Ayewah et al. “Using Static Analysis to Find Bugs”. In: IEEE Software 25.5
(2008), pp. 22–29. doi: 10.1109/MS.2008.130.

[20] R. Bagnara, P. M. Hill, and E. Zaffanella. “Exact Join Detection for Convex Polyhe-
dra and Other Numerical Abstractions”. In: Comput. Geom. 43.5 (2010), pp. 453–
473. doi: 10.1016/j.comgeo.2009.09.002.

[21] R. Bagnara, P. M. Hill, and E. Zaffanella. “The Parma Polyhedra Library: Toward a
Complete Set of Numerical Abstractions for the Analysis and Verification of Hard-
ware and Software Systems”. In: Sci. Comput. Program. 72.1-2 (2008), pp. 3–21.
doi: 10.1016/j.scico.2007.08.001.

[22] C. Baier and J. P. Katoen. “Principles of Model Checking”. MIT Press, 2008.

[23] Z. Baranová et al. “Model Checking of C and C++ with DIVINE 4”. In: Automated
Technology for Verification and Analysis - 15th International Symposium, ATVA
2017, Pune, India, October 3-6, 2017, Proceedings. 2017, pp. 201–207. doi: 10.
1007/978-3-319-68167-2_14.

[24] M. Batet and D. Sánchez. “A Review on Semantic Similarity”. In: Encyclopedia of
Information Science and Technology, Third Edition. IGI Global, 2015, pp. 7575–
7583.

[25] S. Bautista, T. Jensen, and B. Montagu. “Numeric Domains Meet Algebraic Data
Types”. In: Proceedings of the 9th ACM SIGPLAN International Workshop on
Numerical and Symbolic Abstract Domains. NSAD 2020. Virtual, USA: Association
for Computing Machinery, 2020, 12–16. doi: 10.1145/3427762.3430178.

[26] E. Bertino et al. “Privacy and Ownership Preserving of Outsourced Medical Data”.
In: Proceedings of the 21st International Conference on Data Engineering, ICDE
2005, 5-8 April 2005, Tokyo, Japan. Ed. by K. Aberer, M. J. Franklin, and S. Nishio.
IEEE Computer Society, 2005, pp. 521–532. doi: 10.1109/ICDE.2005.111.

[27] A. Bessey et al. “A Few Billion Lines of Code Later: Using Static Analysis to
Find Bugs in the Real World”. In: Commun. ACM 53.2 (2010), pp. 66–75. doi:
10.1145/1646353.1646374.

[28] S. Bhattacharya and A. Cortesi. “A Distortion Free Watermark Framework for
Relational Databases”. In: ICSOFT 2009 - Proceedings of the 4th International
Conference on Software and Data Technologies, Volume 2, Sofia, Bulgaria, July
26-29, 2009. Ed. by B. Shishkov, J. Cordeiro, and A. Ranchordas. INSTICC Press,
2009, pp. 229–234.

202 Bibliography

[29] S. Bhattacharya and A. Cortesi. “A Generic Distortion Free Watermarking Tech-
nique for Relational Databases”. In: Information Systems Security, 5th International
Conference, ICISS 2009, Kolkata, India, December 14-18, 2009, Proceedings. Ed. by
A. Prakash and I. Gupta. Vol. 5905. Lecture Notes in Computer Science. Springer,
2009, pp. 252–264. doi: 10.1007/978-3-642-10772-6_19.

[30] T. Bultan et al. “String Analysis for Software Verification and Security”. Springer,
2017. doi: 10.1007/978-3-319-68670-7.

[31] S. Cass. “IEEE Spectrum Ranking 2019”. https://spectrum.ieee.org/computing/
software/the-top-programming-languages-2019. Last check: November 23rd,
2020.

[32] I. Casso et al. “Computing Abstract Distances in Logic Programs”. In: Logic-Based
Program Synthesis and Transformation - 29th International Symposium, LOPSTR
2019, Porto, Portugal, October 8-10, 2019, Revised Selected Papers. Ed. by Maurizio
Gabbrielli. Vol. 12042. Lecture Notes in Computer Science. Springer, 2019, pp. 57–
72. doi: 10.1007/978-3-030-45260-5_4.

[33] C. Chang, T. S. Nguyen, and C. Lin. “A Blind Robust Reversible Watermark Scheme
for Textual Relational Databases with Virtual Primary Key”. In: Digital-Forensics
and Watermarking - 13th International Workshop, IWDW 2014, Taipei, Taiwan,
October 1-4, 2014. Revised Selected Papers. Ed. by Y. Shi et al. Vol. 9023. Lecture
Notes in Computer Science. Springer, 2014, pp. 75–89. doi: 10.1007/978-3-319-
19321-2_6.

[34] A. S. Christensen, A. Møller, and M. I. Schwartzbach. “Precise Analysis of String
Expressions”. In: Static Analysis, 10th International Symposium, SAS 2003, San
Diego, CA, USA, June 11-13, 2003, Proceedings. 2003, pp. 1–18. doi: 10.1007/3-
540-44898-5_1.

[35] E. M. Clarke, O. Grumberg, and D. E. Long. “Model Checking and Abstraction”.
In: ACM Trans. Program. Lang. Syst. 16.5 (1994), pp. 1512–1542. doi: 10.1145/
186025.186051.

[36] E. M. Clarke et al. “Symbolic Model Checking”. In: Computer Aided Verification,
8th International Conference, CAV ’96, New Brunswick, NJ, USA, July 31 - August
3, 1996, Proceedings. 1996, pp. 419–427. doi: 10.1007/3-540-61474-5_93.

[37] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In: Com-
mun. ACM 13.6 (1970), pp. 377–387. doi: 10.1145/362384.362685.

[38] M. Codish et al. “Improving Abstract Interpretations by Combining Domains”. In:
ACM Trans. Program. Lang. Syst. 17.1 (1995), pp. 28–44. doi: 10.1145/200994.
200998.

https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019
https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019

Bibliography 203

[39] Colorado-State-University. “Forest CoverType, The UCI KDD Archive”. http://
kdd.ics.uci.edu/databases/covertype/covertype.html. Information and
Computer Science. University of California, Irvine. Remote Sensing and GIS Pro-
gram Department of Forest Sciences. College of Natural Resources. Colorado State
University. Fort Collins, CO 80523. June 1999.

[40] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. “Combinations of Abstract
Domains for Logic Programming”. In: Conference Record of POPL’94: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Port-
land, Oregon, USA, January 17-21, 1994. 1994, pp. 227–239. doi: 10.1145/174675.
177880.

[41] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. “Combinations of Abstract
Domains for Logic Programming: Open Product and Generic Pattern Construction”.
In: Sci. Comput. Program. 38.1-3 (2000), pp. 27–71. doi: 10.1016/S0167-6423(99)
00045-3.

[42] A. Cortesi, G. Costantini, and P. Ferrara. “A Survey on Product Operators in Ab-
stract Interpretation”. In: Semantics, Abstract Interpretation, and Reasoning about
Programs: Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth
Birthday, Manhattan, Kansas, USA, 19-20th September 2013. 2013, pp. 325–336.
doi: 10.4204/EPTCS.129.19.

[43] A. Cortesi, G. Costantini, and P. Ferrara. “The Abstract Domain of Trapezoid Step
Functions”. In: Computer Languages, Systems & Structures 43 (2015), pp. 41–68.
doi: 10.1016/j.cl.2015.04.002.

[44] A. Cortesi, G. Filé, and W. H. Winsborough. “Comparison of Abstract Interpreta-
tions”. In: Automata, Languages and Programming, 19th International Colloquium,
ICALP92, Vienna, Austria, July 13-17, 1992, Proceedings. 1992, pp. 521–532. doi:
10.1007/3-540-55719-9_101.

[45] A. Cortesi, G. Filé, and W. H. Winsborough. “The Quotient of an Abstract Interpre-
tation”. In: Theor. Comput. Sci. 202.1-2 (1998), pp. 163–192. doi: 10.1016/S0304-
3975(97)00137-0.

[46] A. Cortesi and M.Zanioli. “Widening and Narrowing Operators for Abstract Inter-
pretation”. In: Comput. Lang. Syst. Struct. 37.1 (2011), pp. 24–42. doi: 10.1016/
j.cl.2010.09.001.

[47] A. Cortesi and M. Olliaro. “M-String Segmentation: A Refined Abstract Domain for
String Analysis in C Programs”. In: 2018 International Symposium on Theoretical
Aspects of Software Engineering, TASE 2018, Guangzhou, China, August 29-31,
2018. Ed. by J. Pang et al. IEEE Computer Society, 2018, pp. 1–8. doi: 10.1109/
TASE.2018.00009.

http://kdd.ics.uci.edu/databases/covertype/covertype.html
http://kdd.ics.uci.edu/databases/covertype/covertype.html

204 Bibliography

[48] A. Cortesi et al. “String Abstraction for Model Checking of C Programs”. In: Model
Checking Software - 26th International Symposium, SPIN 2019, Beijing, China,
July 15-16, 2019, Proceedings. Ed. by F. Biondi, T. G. Wilson, and A. Legay.
Vol. 11636. Lecture Notes in Computer Science. Springer, 2019, pp. 74–93. doi:
10.1007/978-3-030-30923-7_5.

[49] G. Costantini, P. Ferrara, and A. Cortesi. “A Suite of Abstract Domains for Static
Analysis of String Values”. In: Softw., Pract. Exper. 45.2 (2015), pp. 245–287. doi:
10.1002/spe.2218.

[50] P. Cousot. “Abstract Interpretation Based Formal Methods and Future Challenges”.
In: Informatics - 10 Years Back. 10 Years Ahead. 2001, pp. 138–156. doi: 10.1007/
3-540-44577-3_10.

[51] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints”. In:
Conference Record of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, California, USA, January 1977. 1977, pp. 238–252. doi:
10.1145/512950.512973.

[52] P. Cousot and R. Cousot. “Abstract Interpretation Frameworks”. In: J. Log. Com-
put. 2.4 (1992), pp. 511–547. doi: 10.1093/logcom/2.4.511.

[53] P. Cousot and R. Cousot. “An Abstract Interpretation-based Framework for Soft-
ware Watermarking”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2004, Venice, Italy, January
14-16, 2004. 2004, pp. 173–185. doi: 10.1145/964001.964016.

[54] P. Cousot and R. Cousot. “Comparing the Galois Connection and Widening/Nar-
rowing Approaches to Abstract Interpretation”. In: Programming Language Imple-
mentation and Logic Programming, 4th International Symposium, PLILP’92, Leu-
ven, Belgium, August 26-28, 1992, Proceedings. 1992, pp. 269–295. doi: 10.1007/3-
540-55844-6_142.

[55] P. Cousot and R. Cousot. “Constructive Versions of Tarski’s Fixed Point Theorems”.
In: Pacific Journal of Mathematics 81.1 (1979), pp. 43–57.

[56] P. Cousot and R. Cousot. “Systematic Design of Program Analysis Frameworks”.
In: Conference Record of the Sixth Annual ACM Symposium on Principles of Pro-
gramming Languages, San Antonio, Texas, USA, January 1979. 1979, pp. 269–282.
doi: 10.1145/567752.567778.

[57] P. Cousot, R. Cousot, and F. Logozzo. “A Parametric Segmentation Functor for
Fully Automatic and Scalable Array Content Analysis”. In: Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

Bibliography 205

POPL 2011, Austin, TX, USA, January 26-28, 2011. 2011, pp. 105–118. doi: 10.
1145/1926385.1926399.

[58] P. Cousot and N. Halbwachs. “Automatic Discovery of Linear Restraints Among
Variables of a Program”. In: Conference Record of the Fifth Annual ACM Sym-
posium on Principles of Programming Languages, Tucson, Arizona, USA, January
1978. 1978, pp. 84–96. doi: 10.1145/512760.512770.

[59] P. Cousot et al. “The ASTREÉ Analyzer”. In: Programming Languages and Sys-
tems, 14th European Symposium on Programming, ESOP 2005, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2005,
Edinburgh, UK, April 4-8, 2005, Proceedings. Ed. by S. Sagiv. Vol. 3444. Lecture
Notes in Computer Science. Springer, 2005, pp. 21–30. doi: 10.1007/978-3-540-
31987-0_3.

[60] I. Cox et al. “Digital Watermarking and Steganography”. M. Kaufmann, 2007.

[61] A. Dey, S. Bhattacharya, and N. Chaki. “Software Watermarking: Progress and
Challenges”. In: (2018). Exported from https://app.dimensions.ai on 2019/03/16,
pp. 1–11. doi: 10.1007/s41403-018-0058-8.

[62] N. Dor, M. Rodeh, and S. Sagiv. “CSSV: towards a realistic tool for statically
detecting all buffer overflows in C”. In: Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation 2003, San Diego,
California, USA, June 9-11, 2003. 2003, pp. 155–167. doi: 10.1145/781131.781149.

[63] D. Evans and D. Larochelle. “Improving Security Using Extensible Lightweight
Static Analysis”. In: IEEE Software 19.1 (2002), pp. 42–51. doi: 10.1109/52.

976940.

[64] M. Fähndrich and F. Logozzo. “Static Contract Checking with Abstract Interpre-
tation”. In: Formal Verification of Object-Oriented Software - International Con-
ference, FoVeOOS 2010, Paris, France, June 28-30, 2010, Revised Selected Papers.
Ed. by B. Beckert and C. Marché. Vol. 6528. Lecture Notes in Computer Science.
Springer, 2010, pp. 10–30. doi: 10.1007/978-3-642-18070-5_2.

[65] M. E. Farfoura et al. “A Blind Reversible Method for Watermarking Relational
Databases Based on a Time-stamping Protocol”. In: Expert Syst. Appl. 39.3 (2012),
pp. 3185–3196. doi: 10.1016/j.eswa.2011.09.005.

[66] P. Ferrara, F. Logozzo, and M. Fähndrich. “Safer unsafe code for .NET”. In: Pro-
ceedings of the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2008, October 19-23,
2008, Nashville, TN, USA. Ed. by G. E. Harris. ACM, 2008, pp. 329–346. doi:
10.1145/1449764.1449791.

206 Bibliography

[67] D. Filaretti and S.Maffeis. “An Executable Formal Semantics of PHP”. In: ECOOP
2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Swe-
den, July 28 - August 1, 2014. Proceedings. 2014, pp. 567–592. doi: 10.1007/978-
3-662-44202-9_23.

[68] G. Filé, R. Giacobazzi, and F. Ranzato. “A Unifying View of Abstract Domain
Design”. In: ACM Comput. Surv. 28.2 (1996), pp. 333–336. doi: 10.1145/234528.
234742.

[69] J. Franco-Contreras and G. Coatrieux. “Robust Watermarking of Relational Databases
With Ontology-Guided Distortion Control”. In: IEEE Trans. Inf. Forensics Secur.
10.9 (2015), pp. 1939–1952. doi: 10.1109/TIFS.2015.2439962.

[70] J. Franco-Contreras et al. “Ontology-guided Distortion Control for Robust-lossless
Database Watermarking: Application to inpatient hospital stay records”. In: 36th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBC 2014, Chicago, IL, USA, August 26-30, 2014. IEEE, 2014, pp. 4491–
4494. doi: 10.1109/EMBC.2014.6944621.

[71] X. Fu et al. “A Static Analysis Framework For Detecting SQL Injection Vulnerabil-
ities”. In: 31st Annual International Computer Software and Applications Confer-
ence, COMPSAC 2007, Beijing, China, July 24-27, 2007. Volume 1. 2007, pp. 87–96.
doi: 10.1109/COMPSAC.2007.43.

[72] J. Fulara et al. “Relational Abstract Domain of Weighted Hexagons”. In: Electron.
Notes Theor. Comput. Sci. 267.1 (2010), pp. 59–72. doi: 10.1016/j.entcs.2010.
09.006.

[73] G. Gange et al. “Abstract Interpretation over Non-lattice Abstract Domains”. In:
Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA,
June 20-22, 2013. Proceedings. Ed. by Francesco Logozzo and Manuel Fähndrich.
Vol. 7935. Lecture Notes in Computer Science. Springer, 2013, pp. 6–24. doi: 10.
1007/978-3-642-38856-9_3.

[74] H. Gericke. “Alfred Tarski. A Lattice-theoretical Fixpoint Theorem and its Applica-
tions”. In: Journal of Symbolic Logic. Pacific journal of mathematics, Bd. 5 (1955)
22.4 (1957), 285––309. doi: 10.2307/2963937.

[75] R. Giacobazzi and I. Mastroeni. “Making Abstract Models Complete”. In: Math.
Struct. Comput. Sci. 26.4 (2016), pp. 658–701. doi: 10.1017/S0960129514000358.

[76] R. Giacobazzi and I. Mastroeni. “Transforming Abstract Interpretations by Ab-
stract Interpretation”. In: Static Analysis, 15th International Symposium, SAS 2008,
Valencia, Spain, July 16-18, 2008. Proceedings. Ed. by M. Alpuente and G. Vi-
dal. Vol. 5079. Lecture Notes in Computer Science. Springer, 2008, pp. 1–17. doi:
10.1007/978-3-540-69166-2_1.

Bibliography 207

[77] R. Giacobazzi and E. Quintarelli. “Incompleteness, Counterexamples, and Refine-
ments in Abstract Model-Checking”. In: Static Analysis, 8th International Sympo-
sium, SAS 2001, Paris, France, July 16-18, 2001, Proceedings. Ed. by P. Cousot.
Vol. 2126. Lecture Notes in Computer Science. Springer, 2001, pp. 356–373. doi:
10.1007/3-540-47764-0_20.

[78] R. Giacobazzi and F. Ranzato. “Functional Dependencies and Moore-Set Comple-
tions of Abstract Interpretations and Semantics”. In: Logic Programming, Proceed-
ings of the 1995 International Symposium, Portland, Oregon, USA, December 4-7,
1995. Ed. by J. W. Lloyd. MIT Press, 1995, pp. 321–335.

[79] R. Giacobazzi and F. Ranzato. “Refining and Compressing Abstract Domains”. In:
Automata, Languages and Programming, 24th International Colloquium, ICALP’97,
Bologna, Italy, 7-11 July 1997, Proceedings. 1997, pp. 771–781. doi: 10.1007/3-
540-63165-8_230.

[80] R. Giacobazzi, F. Ranzato, and F. Scozzari. “Making Abstract Interpretations Com-
plete”. In: J. ACM 47.2 (2000), pp. 361–416. doi: 10.1145/333979.333989.

[81] M. L. P. Gort, E. A. Díaz, and C. F. Uribe. “A Highly-Reliable Virtual Pri-
mary Key Scheme for Relational Database Watermarking Techniques”. In: 2017
International Conference on Computational Science and Computational Intelligence
(CSCI). IEEE. 2017, pp. 55–60. doi: 10.1109/CSCI.2017.10..

[82] M. L. P. Gort, C. F. Uribe, and I. Nummenmaa. “A Minimum Distortion: High
Capacity Watermarking Technique for Relational Data”. In: Proceedings of the
5th ACM Workshop on Information Hiding and Multimedia Security. ACM. 2017,
pp. 111–121. doi: 10.1145/3082031.3083241.

[83] M. L. P. Gort et al. “HQR-Scheme: A High Quality and Resilient Virtual Primary
Key Generation Approach for Watermarking Relational Data”. In: Expert Systems
with Applications 138 (2019), p. 112770. issn: 0957-4174. doi: 10.1016/j.eswa.
2019.06.058.

[84] M. L. P. Gort et al. “Preventing Additive Attacks to Relational Database Water-
marking”. In: Research and Practical Issues of Enterprise Information Systems -
13th IFIP WG 8.9 International Conference, CONFENIS 2019, Prague, Czech Re-
public, December 16-17, 2019, Proceedings. Ed. by P. Doucek et al. Vol. 375. Lec-
ture Notes in Business Information Processing. Springer, 2019, pp. 131–140. doi:
10.1007/978-3-030-37632-1_12.

[85] M. L. P. Gort et al. “Semantic-driven Watermarking of Relational Textual Databases”.
In: Expert Systems with Applications (2020), p. 114013. doi: 10.1016/j.eswa.
2020.114013.

208 Bibliography

[86] C. Gould, Z. Su, and P. Devanbu. “JDBC Checker: a Static Analysis Tool for
SQL/JDBC Applications”. In: Proceedings. 26th International Conference on Soft-
ware Engineering. IEEE, 2004. doi: 10.1109/ICSE.2004.1317494.

[87] P. Granger. “Improving the Results of Static Analyses of Programs by Local De-
creasing Iterations”. In: Shyamasundar R. (eds) Foundations of Software Technology
and Theoretical Computer Science. FSTTCS 1992. Lecture Notes in Computer Sci-
ence, vol 652. Springer, Berlin, Heidelberg. 1992. doi: 0.1007/3-540-56287-7_95.

[88] S. Gulwani and A. Tiwari. “Combining Abstract Interpreters”. In: Proceedings of
the 27th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. New York, NY, USA: Association for Computing Machinery, 2006,
376–386. doi: 10.1145/1133981.1134026.

[89] J. Guo. “Fragile Watermarking Scheme for Tamper Detection of Relational Database”.
In: 2011 International Conference on Computer and Management (CAMAN). IEEE.
2011, pp. 1–4. doi: 10.1109/CAMAN.2011.5778907.

[90] M. K. Gupta, M. C. Govil, and G. Singh. “Static Analysis Approaches to Detect SQL
Injection and Cross Site Scripting Vulnerabilities in Web Applications: a Survey”.
In: International Conference on Recent Advances and Innovations in Engineering
(ICRAIE-2014). 2014, pp. 1–5. doi: 10.1109/ICRAIE.2014.6909173.

[91] S. Gupta and B. B. Gupta. “Cross-Site Scripting (XSS) Attacks and Defense Mecha-
nisms: Classification and State-of-the-Art”. In: Int. J. Systems Assurance Engineer-
ing and Management 8.1 (2017), pp. 512–530. doi: 10.1007/s13198-015-0376-0.

[92] R. Halder, S. Pal, and A. Cortesi. “Watermarking Techniques for Relational Databases:
Survey, Classification and Comparison”. In: J. Univers. Comput. Sci. 16.21 (2010),
pp. 3164–3190. doi: 10.3217/jucs-016-21-3164.

[93] R. Halder, S. Pal, and A. Cortesi. “Watermarking Techniques for Relational Databases:
Survey, Classification and Comparison”. In: J. UCS 16.21 (2010), pp. 3164–3190.
doi: 10.3217/jucs-016-21-3164.

[94] W. G. J. Halfond and A. Orso. “AMNESIA: Analysis and Monitoring for NEu-
tralizing SQL-injection Attacks”. In: 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2005), November 7-11, 2005, Long Beach,
CA, USA. 2005, pp. 174–183. doi: 10.1145/1101908.1101935.

[95] W. G. J. Halfond, J. Viegas, and A. Orso. “A Classification of SQL Injection Attacks
and Countermeasures”. 2006.

[96] A. Hliaoutakis et al. “Information Retrieval by Semantic Similarity”. In: Int. J.
Semantic Web Inf. Syst. 2.3 (2006), pp. 55–73. doi: 10.4018/jswis.2006070104.

[97] G. J. Holzmann. “UNO: Static Source Code Checking for UserDefined Properties”.
In: 6th World Conf. on Integrated Design and Process Technology, IDPT ’02. 2002.

Bibliography 209

[98] J. M. Howe and A. King. “Logahedra: A New Weakly Relational Domain”. In:
Automated Technology for Verification and Analysis, 7th International Symposium,
ATVA 2009, Macao, China, October 14-16, 2009. Proceedings. 2009, pp. 306–320.
doi: 10.1007/978-3-642-04761-9_23.

[99] H.Seidl, R. Wilhelm, and S. Hack. “Compiler Design - Analysis and Transformation”.
Springer, 2012. doi: 10.1007/978-3-642-17548-0.

[100] Y. W. Huang et al. “Securing Web Application Code by Static Analysis and Runtime
Protection”. In: Proceedings of the 13th international conference on World Wide
Web, WWW 2004, New York, NY, USA, May 17-20, 2004. 2004, pp. 40–52. doi:
10.1145/988672.988679.

[101] IEEE. “IEEE Standard for Software Verification and Validation Plans”. IEEE Std
1012-1986. 1986.

[102] H. Illous, M. Lemerre, and X. Rival. “A Relational Shape Abstract Domain”. In:
NASA Formal Methods - 9th International Symposium, NFM 2017, Moffett Field,
CA, USA, May 16-18, 2017, Proceedings. 2017, pp. 212–229. doi: 10.1007/978-3-
319-57288-8_15.

[103] J. R. Ingram. “Digital Piracy”. In: The Encyclopedia of Criminology and Criminal
Justice (2014). doi: 10.1002/9781118517383.wbeccj116.

[104] Z. Jalil and A. M. Mirza. “A Review of Digital Watermarking Techniques for Text
Documents”. In: 2009 International Conference on Information and Multimedia
Technology. Dec. 2009, pp. 230–234. doi: 10.1109/ICIMT.2009.11.

[105] S. H. Jensen, A. Møller, and P. Thiemann. “Type Analysis for JavaScript”. In:
Static Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA, USA,
August 9-11, 2009. Proceedings. 2009, pp. 238–255. doi: 10.1007/978-3-642-
03237-0_17.

[106] C. Jiang, X. Chen, and Z. Li. “Watermarking Relational Databases for Ownership
Protection Based on DWT”. In: Proceedings of the Fifth International Conference
on Information Assurance and Security, IAS 2009, Xi’An, China, 18-20 August 2009.
IEEE Computer Society, 2009, pp. 305–308. doi: 10.1109/IAS.2009.220.

[107] R. W. M. Jones and P. H. J. Kelly. “Backwards-Compatible Bounds Checking for
Arrays and Pointers in C Programs”. In: Proceedings of the Third International
Workshop on Automated Debugging, AADEBUG 1997, Linköping, Sweden, May
26-27, 1997. Vol. 2. Linköping Electronic Articles in Computer and Information
Science 009. Linköping University Electronic Press, 1997, pp. 13–26.

210 Bibliography

[108] M. Journault, A. Miné, and A. Ouadjaout. “Modular Static Analysis of String Ma-
nipulations in C Programs”. In: Static Analysis - 25th International Symposium,
SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings. 2018, pp. 243–262.
doi: 10.1007/978-3-319-99725-4_16.

[109] N. Jovanovic, C. Kruegel, and E. Kirda. “Pixy: a Static Analysis Tool for Detect-
ing Web Application Vulnerabilities”. In: 2006 IEEE Symposium on Security and
Privacy (S P’06). 2006, 6 pp.–263. doi: 10.1109/SP.2006.29.

[110] N. S. Kamaruddin et al. “A Review of Text Watermarking: Theory, Methods, and
Applications”. In: IEEE Access 6 (2018), pp. 8011–8028. url: https://doi.org/
10.1109/ACCESS.2018.2796585.

[111] M. Kamran and M. Farooq. “A Formal Usability Constraints Model for Water-
marking of Outsourced Datasets”. In: IEEE Trans. Inf. Forensics Secur. 8.6 (2013),
pp. 1061–1072. doi: 10.1109/TIFS.2013.2259234.

[112] V. Kashyap et al. “JSAI: a Static Analysis Platform for JavaScript”. In: Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014. 2014, pp. 121–
132. doi: 10.1145/2635868.2635904.

[113] G. A. Kildall. “A Unified Approach to Global Program Optimization”. In: Con-
ference Record of the ACM Symposium on Principles of Programming Languages,
Boston, Massachusetts, USA. 1973, pp. 194–206. doi: 10.1145/512927.512945.

[114] H. Kim, K. Doh, and D. A. Schmidt. “Static Validation of Dynamically Generated
HTML Documents Based on Abstract Parsing and Semantic Processing”. In: Static
Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-
22, 2013. Proceedings. Ed. by F. Logozzo and M. Fähndrich. Vol. 7935. Lecture
Notes in Computer Science. Springer, 2013, pp. 194–214. doi: 10.1007/978-3-
642-38856-9_12.

[115] S. Kim et al. “Inferring Grammatical Summaries of String Values”. In: Program-
ming Languages and Systems - 12th Asian Symposium, APLAS 2014, Singapore,
November 17-19, 2014, Proceedings. 2014, pp. 372–391. doi: 10.1007/978-3-319-
12736-1_20.

[116] D. A. Kindy and A. K. Pathan. “A Survey on SQL Injection: Vulnerabilities, At-
tacks, and Prevention Techniques”. In: 2011 IEEE 15th International Symposium
on Consumer Electronics (ISCE). 2011, pp. 468–471. doi: 10.1109/ISCE.2011.
5973873.

[117] J. C. King. “Symbolic Execution and Program Testing”. In: Commun. ACM 19.7
(1976), pp. 385–394. doi: 10.1145/360248.360252.

https://doi.org/10.1109/ACCESS.2018.2796585
https://doi.org/10.1109/ACCESS.2018.2796585

Bibliography 211

[118] E. Kneuss, P. Suter, and V. Kuncak. “Phantm: PHP analyzer for type mismatch”. In:
Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010. 2010,
pp. 373–374. doi: 10.1145/1882291.1882355.

[119] C. Lattner and V. Adve. “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”. In: International Symposium on Code Generation and
Optimization (CGO’04). Palo Alto, California, Mar. 2004. doi: 10.1109/CGO.2004.
1281665.

[120] H. Lauko, P. Rockai, and J. Barnat. “Symbolic Computation via Program Transfor-
mation”. In: Theoretical Aspects of Computing - ICTAC 2018 - 15th International
Colloquium, Stellenbosch, South Africa, October 16-19, 2018, Proceedings. 2018,
pp. 313–332. doi: 10.1007/978-3-030-02508-3_17.

[121] H. Lauko et al. “Abstracting Strings for Model Checking of C Programs”. In: Appl.
Sci., 10(21), 7853; (2020). doi: 10.3390/app10217853.

[122] H. Lee et al. “SAFE: Formal Specification and Implementation of a Scalable Analysis
Framework for ECMAScript”. In: Proceedings of the 19th International Workshop
on Foundations of Object-Oriented Languages (FOOL’12). 2012.

[123] T. Liang et al. “An Efficient SMT Solver for String Constraints”. In: Formal Methods
in System Design 48.3 (2016), pp. 206–234. doi: 10.1007/s10703-016-0247-6.

[124] V. B. Livshits and M. S. Lam. “Finding Security Vulnerabilities in Java Applications
with Static Analysis”. In: Proceedings of the 14th USENIX Security Symposium,
Baltimore, MD, USA, July 31 - August 5, 2005. Ed. by P. D. McDaniel. USENIX
Association, 2005.

[125] F. Logozzo. “Towards a Quantitative Estimation of Abstract Interpretations”. In:
Workshop on Quantitative Analysis of Software. Microsoft, June 2009.

[126] F. Logozzo and M. Fähndrich. “Pentagons: a Weakly Relational Abstract Domain
for the Efficient Validation of Array Accesses”. In: Sci. Comput. Program. 75.9
(2010), pp. 796–807. doi: 10.1016/j.scico.2009.04.004.

[127] M. Madsen and E. Andreasen. “String Analysis for Dynamic Field Access”. In:
Compiler Construction - 23rd International Conference, CC 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings. 2014, pp. 197–217. doi:
10.1007/978-3-642-54807-9_12.

[128] S. Maffeis, J. C. Mitchell, and A. Taly. “An Operational Semantics for JavaScript”.
In: Programming Languages and Systems, 6th Asian Symposium, AP-LAS 2008,
Bangalore, India, December 9-11, 2008. Proceedings. 2008, pp. 307–325. doi: 10.
1007/978-3-540-89330-1_22.

212 Bibliography

[129] MathWorks. “Polyspace”. http://www.mathworks.com/products/polyspace.
html. Last check: November 23rd, 2020.

[130] B. B. Mehta and H. D. Aswar. “Watermarking for Security in Database: a Review”.
In: 2014 Conference on IT in Business, Industry and Government (CSIBIG) (2014),
pp. 1–6. doi: 10.1109/CSIBIG.2014.7056938.

[131] S. Melkundi and C. Chandankhede. “A Robust Technique for Relational Database
Watermarking and Verification”. In: Communication, Information & Computing
Technology (ICCICT), 2015 International Conference on. IEEE. 2015, pp. 1–7. doi:
10.1109/ICCICT.2015.7045676.

[132] G. A. Miller. “WordNet: An Electronic Lexical Database”. MIT press, 1998.

[133] Y. Minamide. “Static Approximation of Dynamically Generated Web Pages”. In:
Proceedings of the 14th international conference on World Wide Web, WWW 2005,
Chiba, Japan, May 10-14, 2005. Ed. by A. Ellis and T. Hagino. ACM, 2005, pp. 432–
441. doi: 10.1145/1060745.1060809.

[134] A. Miné. “Field-sensitive Value Analysis of Embedded C Programs with Union
Types and Pointer Arithmetics”. In: Proceedings of the 2006 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES’06),
Ottawa, Ontario, Canada, June 14-16, 2006. 2006, pp. 54–63. doi: 10 . 1145 /

1134650.1134659.

[135] A. Miné. “The Octagon Abstract Domain”. In: High. Order Symb. Comput. 19.1
(2006), pp. 31–100. doi: 10.1007/s10990-006-8609-1.

[136] A. Møller and M. I. Schwartzbach. “Static Program Analysis”. Department of Com-
puter Science, Aarhus University, 2015.

[137] F. Nielson. “Tensor Products Generalize the Relational Data Flow Analysis Method”.
In: Fourth Hungarian Computer Science Conference. 1985, pp. 211–225.

[138] F. Nielson and H. R. Nielson. “Type and Effect Systems”. In: Correct System Design,
Recent Insight and Advances, (to Hans Langmaack on the occasion of his retirement
from his professorship at the University of Kiel). Ed. by E. R. Olderog and B. Steffen.
Vol. 1710. Lecture Notes in Computer Science. Springer, 1999, pp. 114–136. doi:
10.1007/3-540-48092-7_6.

[139] F. Nielson, H. R. Nielson, and C. Hankin. “Principles of program analysis”. Springer,
1999. doi: 10.1007/978-3-662-03811-6.

[140] Aleph One. “Smashing The Stack For Fun And Profit”. Phrack Magazine. 1996.

[141] OWASP. “OWASP Top Ten”. https://owasp.org/www-project-top-ten/. Last
check: November 25th, 2020.

http://www.mathworks.com/products/polyspace.html
http://www.mathworks.com/products/polyspace.html
https://owasp.org/www-project-top-ten/

Bibliography 213

[142] C. Park, H. Im, and S. Ryu. “Precise and Scalable Static Analysis of jQuery Us-
ing a Regular Expression Domain”. In: Proceedings of the 12th Symposium on
Dynamic Languages, DLS 2016, Amsterdam, The Netherlands, November 1, 2016.
2016, pp. 25–36. doi: 10.1145/2989225.2989228.

[143] E. G. M. Petrakis et al. “X-Similarity: Computing Semantic Similarity between
Concepts from Different Ontologies”. In: J. Digit. Inf. Manag. 4.4 (2006), pp. 233–
237.

[144] A. Di Pierro and H. Wiklicky. “Measuring the Precision of Abstract Interpreta-
tions”. In: Logic Based Program Synthesis and Transformation, 10th International
Workshop, LOPSTR 2000 London, UK, July 24-28, 2000, Selected Papers. 2000,
pp. 147–164. doi: 10.1007/3-540-45142-0_9.

[145] M. Pradel and K. Sen. “The Good, the Bad, and the Ugly: An Empirical Study of
Implicit Type Conversions in JavaScript”. In: 29th European Conference on Object-
Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic.
Ed. by J. T. Boyland. Vol. 37. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015, pp. 519–541. doi: 10.4230/LIPIcs.ECOOP.2015.519.

[146] M. Dalla Preda and M. Pasqua. “Software Watermarking: A Semantics-based Ap-
proach”. In: Electr. Notes Theor. Comput. Sci. 331 (2017), pp. 71–85. doi: 10.

1016/j.entcs.2017.02.005.

[147] Princeton-University. “About WordNet. WordNet. Princeton University”. 2010. url:
http://wordnet.princeton.edu.

[148] H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision Problems”.
In: Transactions of the American Mathematical Society 74.2 (1953), pp. 358–366.

[149] X. Rival and L. Mauborgne. “The Trace Partitioning Abstract Domain”. In: ACM
Trans. Program. Lang. Syst. 29.5 (2007), p. 26. doi: 10.1145/1275497.1275501.

[150] H. Samimi et al. “Automated Repair of HTML Generation Errors in PHP Applica-
tions Using String Constraint Solving”. In: 34th International Conference on Soft-
ware Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 2012, pp. 277–
287. doi: 10.1109/ICSE.2012.6227186.

[151] H. M. Sardroudi and S. Ibrahim. “A New Approach for Relational Database Wa-
termarking Using Image”. In: 5th International Conference on Computer Sciences
and Convergence Information Technology. IEEE. 2010, pp. 606–610. doi: 10.1109/
ICCIT.2010.5711126.

[152] P. Saxena et al. “A Symbolic Execution Framework for JavaScript”. In: 31st IEEE
Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA. 2010, pp. 513–528. url: https://doi.org/10.1109/SP.2010.38.

http://wordnet.princeton.edu
https://doi.org/10.1109/SP.2010.38

214 Bibliography

[153] D. A. Schmidt. “Denotational Semantics: A Methodology for Language Develop-
ment”. USA: William C. Brown Publishers, 1986. isbn: 0697068492.

[154] R. C. Seacord. “Secure Coding in C and C++”. 2nd. Addison-Wesley Professional,
2013. isbn: 0321822137.

[155] N. Seco, T. Veale, and J. Hayes. “An Intrinsic Information Content Metric for
Semantic Similarity in WordNet”. In: Proceedings of the 16th Eureopean Conference
on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent
Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004. Ed. by R. L. De Mántaras
and L. Saitta. IOS Press, 2004, pp. 1089–1090.

[156] H. Shahriar and M. Zulkernine. “Classification of Static Analysis-Based Buffer Over-
flow Detectors”. In: Fourth International Conference on Secure Software Integration
and Reliability Improvement, SSIRI 2010, Singapore, June 9-11, 2010 - Companion
Volume. 2010, pp. 94–101. doi: 10.1109/SSIRI-C.2010.28.

[157] J. Shanmugam and M. Ponnavaikko. “Cross Site Scripting-Latest Developments and
Solutions: a Survey”. In: Int. J. Open Problems Compt. Math 1 (2008).

[158] P. Singh and R. S. Chadha. “A Survey of Digital Watermarking Techniques, Appli-
cations and Attacks”. In: 2013.

[159] T. Slimani. “Description and Evaluation of Semantic Similarity Measures Approaches”.
In: International Journal of Computer Applications 80.10 (Oct. 2013), 25–33.

[160] P. Sotin. “Quantifying the Precision of Numerical Abstract Domains”. 2010.

[161] A. Sotirov. “Automatic Vulnerability Detection Using Static Source Code Analysis”.
2005.

[162] F. Spoto. “The Julia Static Analyzer for Java”. In: Static Analysis - 23rd Interna-
tional Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings.
Ed. by X. Rival. Vol. 9837. Lecture Notes in Computer Science. Springer, 2016,
pp. 39–57. doi: 10.1007/978-3-662-53413-7_3.

[163] SQLi. “SQL Injection”. https://www.owasp.org/index.php/SQL_Injection. Last
check: December 18th, 2018.

[164] Z. Su and G. Wassermann. “The Essence of Command Injection Attacks in Web
Applications”. In: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2006, Charleston, South Carolina,
USA, January 11-13, 2006. 2006, pp. 372–382. doi: 10.1145/1111037.1111070.

[165] J. Sun, Z. Cao, and Z. Hu. “Multiple Watermarking Relational Databases Using
Image”. In: MultiMedia and Information Technology, 2008. MMIT’08. International
Conference on. IEEE. 2008, pp. 373–376. doi: 10.1109/MMIT.2008.211.

https://www.owasp.org/index.php/SQL_Injection

Bibliography 215

[166] M. A. H. Taieb, M. B. Aouicha, and A. B. Hamadou. “A New Semantic Relatedness
Measurement Using WordNet Features”. In: Knowl. Inf. Syst. 41.2 (2014), pp. 467–
497. doi: 10.1007/s10115-013-0672-4.

[167] T. Tateishi, M. Pistoia, and O. Tripp. “Path- and Index-sensitive String Analysis
Based on Monadic Second-order Logic”. In: ACM Trans. Softw. Eng. Methodol. 22.4
(2013), 33:1–33:33. doi: 10.1145/2522920.2522926.

[168] TIOBE. “TIOBE Index for November 2020”. https://www.tiobe.com/tiobe-
index/. Last check: November 25th, 2020.

[169] U. Topkara, M. Topkara, and M. J. Atallah. “The Hiding Virtues of Ambigu-
ity: Quantifiably Resilient Watermarking of Natural Language Text Through Syn-
onym Substitutions”. In: Proceedings of the 8th workshop on Multimedia & Se-
curity, MM&Sec 2006, Geneva, Switzerland, September 26-27, 2006. Ed. by S.
Voloshynovskiy, J. Dittmann, and J. J. Fridrich. ACM, 2006, pp. 164–174. doi:
10.1145/1161366.1161397.

[170] O. Tripp, P. Ferrara, and M. Pistoia. “Hybrid Security Analysis of Web JavaScript
Code Via Dynamic Partial Evaluation”. In: International Symposium on Software
Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26, 2014. 2014,
pp. 49–59. doi: 10.1145/2610384.2610385.

[171] F. Vasilescu, P. Langlais, and G. Lapalme. “Evaluating Variants of the Lesk Ap-
proach for Disambiguating Words”. In: Proceedings of the Fourth International Con-
ference on Language Resources and Evaluation, LREC 2004, May 26-28, 2004, Lis-
bon, Portugal. European Language Resources Association, 2004.

[172] M. Veanes, P. De Halleux, and N. Tillmann. “Rex: Symbolic Regular Expression
Explorer”. In: Third International Conference on Software Testing, Verification and
Validation, ICST 2010, Paris, France, April 7-9, 2010. 2010, pp. 498–507. doi: 10.
1109/ICST.2010.15.

[173] J. Viega et al. “Token-based Scanning of Source Code for Security Problems”. In:
ACM Trans. Inf. Syst. Secur. 5.3 (2002), pp. 238–261. doi: 10.1145/545186.

545188.

[174] P. Vogt et al. “Cross Site Scripting Prevention with Dynamic Data Tainting and
Static Analysis”. In: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2007, San Diego, California, USA, 28th February - 2nd March
2007. The Internet Society, 2007.

[175] D. A. Wagner et al. “A First Step Towards Automated Detection of Buffer Overrun
Vulnerabilities”. In: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2000, San Diego, California, USA. The Internet Society, 2000.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

216 Bibliography

[176] G. Wassermann and Z. Su. “Sound and Precise Analysis of Web Applications for In-
jection Vulnerabilities”. In: Proceedings of the ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation, San Diego, California, USA,
June 10-13, 2007. 2007, pp. 32–41. doi: 10.1145/1250734.1250739.

[177] G. Wassermann and Z. Su. “Static Detection of Cross-Site Scripting Vulnerabilities”.
In: 30th International Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, May 10-18, 2008. 2008, pp. 171–180. doi: 10.1145/1368088.1368112.

[178] G. Wassermann et al. “Static Checking of Dynamically Generated Queries in Database
Applications”. In: ACM Trans. Softw. Eng. Methodol. 16.4 (2007). doi: 10.1145/
1276933.1276935.

[179] R. Wilhelm, S. Sagiv, and T. W. Reps. “Shape Analysis”. In: Compiler Construction,
9th International Conference, CC 2000, Held as Part of the European Joint Confer-
ences on the Theory and Practice of Software, ETAPS 2000, Berlin, Germany, March
25 - April 2, 2000, Proceedings. 2000, pp. 1–17. doi: 10.1007/3-540-46423-9_1.

[180] K. Winstein. “Lexical Steganography through Adaptive Modulation of the Word
Choice Hash”. Secondary education at the Illinois Mathematics and Science Academy.
1999.

[181] Y. Xie, A. Chou, and D. R. Engler. “ARCHER: Using Symbolic, Path-sensitive
Analysis to Detect Memory Access Errors”. In: Proceedings of the 11th ACM SIG-
SOFT Symposium on Foundations of Software Engineering 2003 held jointly with
9th European Software Engineering Conference, ESEC/FSE 2003, Helsinki, Fin-
land, September 1-5, 2003. 2003, pp. 327–336. doi: 10.1145/940071.940115.

[182] XSS. “Cross Site Scripting”. https://www.owasp.org/index.php/Cross-site_
Scripting_(XSS). Last check: November 23rd, 2020.

[183] R. Xu, P. Godefroid, and R. Majumdar. “Testing for Buffer Overflows with Length
Abstraction”. In: Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008.
2008, pp. 27–38. doi: 10.1145/1390630.1390636.

[184] F. Yu, M. Alkhalaf, and T. Bultan. “Patching Vulnerabilities with Sanitization
Synthesis”. In: Proceedings of the 33rd International Conference on Software Engi-
neering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. 2011, pp. 251–
260. doi: 10.1145/1985793.1985828.

[185] F. Yu, T. Bultan, and B. Hardekopf. “String Abstractions for String Verification”.
In: Model Checking Software - 18th International SPIN Workshop, Snowbird, UT,
USA, July 14-15, 2011. Proceedings. 2011, pp. 20–37. doi: 10.1007/978-3-642-
22306-8_3.

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

Bibliography 217

[186] F. Yu, T. Bultan, and O. H. Ibarra. “Symbolic String Verification: Combining String
Analysis and Size Analysis”. In: Tools and Algorithms for the Construction and
Analysis of Systems, 15th International Conference, TACAS 2009, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, March 22-29, 2009. Proceedings. Vol. 5505. Lecture Notes in Computer
Science. Springer, 2009, pp. 322–336. doi: 10.1007/978-3-642-00768-2_28.

[187] F. Yu et al. “Automata-based Symbolic String Analysis for Vulnerability Detection”.
In: Formal Methods Syst. Des. 44.1 (2014), pp. 44–70. doi: 10.1007/s10703-013-
0189-1.

[188] F. Yu et al. “Symbolic String Verification: An Automata-Based Approach”. In:
Model Checking Software, 15th International SPIN Workshop, Los Angeles, CA,
USA, August 10-12, 2008, Proceedings. 2008, pp. 306–324. doi: 10.1007/978-3-
540-85114-1_21.

[189] L. Zhang et al. “Relational databases watermarking for textual and numerical data”.
In: Aug. 2011, pp. 1633–1636. doi: 10.1109/MEC.2011.6025791.

[190] Y. Zhang et al. “A Method of Verifying Relational Databases Ownership with Im-
age Watermark”. In: The 6th International Symposium on Test and Measurement,
Dalian, PR China. 2005, pp. 6316–6319.

[191] Z. Zhang et al. “Watermarking Relational Database Using Image”. In: Proceedings
of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat.
No. 04EX826). Vol. 3. IEEE. 2004, pp. 1739–1744. doi: 10.1109/ICMLC.2004.
1382056.

[192] X. Zhou et al. “Security Theory and Attack Analysis for Text Watermarking”. In:
2009 International Conference on E-Business and Information System Security. May
2009, pp. 1–6. doi: 10.1109/EBISS.2009.5138072.

	Introduction
	Motivation
	Methodology
	Static Analysis
	Abstract Interpretation

	Contribution
	Thesis Structure

	Preliminaries
	Sets and Sequences
	Order Relations
	Functions
	Fixpoints
	Traces
	Abstract Interpretation
	Galois Connection
	Soundness and Completeness
	Fixpoints Approximation
	Product Operators

	String Analysis for C
	Introduction
	FunArray
	Array Concrete Representation
	Array Abstract Domain Functor

	Syntax
	Concrete Domain and Semantics
	Character Array Concrete Representation
	Concrete Domain
	Concrete Semantics

	M-String
	Character Array Abstract Domain Functor
	Abstract Semantics
	Soundness

	Program Abstraction
	Compilation-Based Approach
	Syntactic Abstraction
	Aggregate Domains
	Semantic Abstraction
	Abstract Operations

	Instantiating M-String
	Symbolic Scalar Values
	Concrete Characters, Symbolic Bounds
	Symbolic Characters, Symbolic Bounds
	Implementation

	Experimental Evaluation
	Discussion

	Combining String Domains
	Introduction
	Syntax
	Concrete Domain and Semantics
	Concrete Domain
	Concrete Semantics

	String Abstract Domains
	String Length
	Character Inclusion
	Prefix and Suffix

	Segmentation Abstract Domain
	String Concrete Representation
	Abstract Domain
	Abstract Semantics
	Soundness

	Refined String Abstract Domains
	Meaning of Refinement
	Combining Segmentation and String Length Domains
	Combining Segmentation and Character Inclusion Domains
	Combining Segmentation and Prefix Domains

	Discussion

	Completeness of String Domains
	Introduction
	Making Abstract Interpretation Complete
	Complete Shell vs Complete Core
	Domain Completion Procedure
	Motivating Example

	Core Language
	Syntax
	Concrete Semantics

	Making JavaScript String Abstract Domains Complete
	Completing TAJS String Abstract Domain
	Completing SAFE String Abstract Domain

	Benefits of Adopting Complete String Abstractions
	Precision
	Qualitative Evaluation of Complete Shells
	False Positives Reduction

	Relative Precision
	Abstract Domains Precision: an Overview
	Measuring Precision Gained by Complete Shells
	Experimental Evaluation

	Discussion

	Relational String Abstract Domains
	Introduction
	Core Language
	Syntax
	Concrete Semantics

	A Suite of String Relational Abstract Domains
	General Relational Framework
	String Length Relational Abstract Domain
	Character Inclusion Relational Abstract Domain
	Substring Relational Abstract Domain
	Extension to String Expressions

	Experimental Evaluation
	Test Cases
	Evaluating a Real World Sample

	Discussion

	String Manipulation in Watermarking Scenarios
	Introduction
	Motivating Examples
	Preliminaries
	Semantic Similarity Theory
	Text Watermarking

	Semantic-based Watermarking Approach
	Architecture of the Proposal
	Watermarking Procedure
	Analysis of the Watermark Capacity
	Considerations for the Adversary Model

	Experimental Results
	Improvement of the Watermark Capacity
	Detectability Analysis
	Watermark Imperceptibility
	Technique's Robustness
	Scalability and Complexity

	Discussion

	Conclusion and Future Work
	Unification Algorithm
	String Abstract Domains
	String Length
	Character Inclusion
	Prefix

	Relational String Abstract Domains
	Abstract Semantics of Len
	Abstract Semantics of Char
	Abstract Semantics of Sub
	Abstract Semantics of Sub⋆
	Len⋆ Relational Abstract Domain
	Char⋆ Relational Abstract Domain

	Bibliography

