

CONTENTS

Acknowledgment ... 1

Abstract ... 2

1. Introduction .. 3

1.1 Project statement ... 5

1.2 Project Goals .. 6

2. Problem analysis .. 8

2.1 Features of interest .. 8

2.2 Available tools .. 10

2.3 Requirements ... 14

3. Implementation analysis ... 16

3.1 Tools and libraries ... 17

3.2 Pervious work ... 20

3.3 Application architecture .. 21

3.4 Compilation .. 24

4. Implementation .. 28

4.1 Simple Calculator ... 28

4.2 Show Message .. 37

5. Conclusion ... 56

5.1 Evolution ... 56

5.2 Future Work .. 56

6. Bibliography ... 58

1

Acknowledgment

I would like to thank everyone who helped me with this thesis, especially my

supervisor and my company tutor for his help with the development of this

project.

I would also like to thank all my family for their support, encouragement and

patience, for believing at me and helping me out in every moment during

this journey.

And at least, but not less important, I would like to thank all my friends and

university colleagues who have shared with me this difficult and beautiful

journey.

2

Abstract

 The aim of this thesis is to create an application, making use of C#

language and the Managed Extensible Framework (MEF) library, able to be

extended at run time choosing new libraries to add to the program or writing

the code of the own library using the code editor provided by the

application.

The code editor runs the user code at run time making possible to add the

created library to the principal program by extending it. It will also give a

research on the possibility to optimize this code by reducing its execution

time.

Throughout this thesis, are going to analyze the tools that are used and

identify their advantages and disadvantages, the requirements for this

application, the research that are done, the future works and develop the

application.

The result of the thesis is a small, extended application with an integrated

code editor that gives the possibility to extend the project and a research on

how the optimization can be done, evolved and be more complete and

more precise.

3

1. Introduction

C# is a type-safe object-oriented language, a very popular tool for

application development. It runs in the .NET ecosystem that is composed

of all the implementations of .NET, including .NET Core and .NET

Framework.

C# enables developers to create a variety of secure and robust applications

like Windows client applications, client-server applications, XML Web

services, etc.

C# syntax is highly expressive that provides powerful features such as

nullable types, enumerations, lambda expressions, delegates and direct

memory access. It supports generic types and methods, which provide

increased type safety and performance, and iterations, which gives the

possibility to the implementers of collection classes to define custom

iteration behaviors which are simple to use.

During its lifetime, the C# language has been extended with different

interesting features like LINQ or asynchronous programming support that

has permitted to users to produce a lot of different frameworks and libraries

for various purposes. In addition, this language allows a greater level of

abstraction and is more forgiving to beginners.

As said before, C# language has been extended with new features like

libraries, frameworks etc., and one of them is MEF, Managed Extensibility

Framework that has a fundamental role in the development of this thesis.

Managed Extensibility Framework (MEF) is a new library, released in April

2010, that is been developed by Microsoft aiming to create lightweight and

extensible applications. It is a component of .Net platform, more precise of

.Net Framework 4.0.

This library provides an infrastructure for enabling an application to easily

consume extensions by providing the ability to dynamically bind internal and

4

add-in components together through contract-based declarations.

MEF gives the possibility to discover the components implicitly instead of

registering them explicitly. It makes this available via composition.

The main components of the framework are:

− Parts: are logical units of composition within MEF. A part

declaratively specifies its dependencies, that are known as imports

and what capabilities it makes available, that are known as

exports. By doing this, the parts are discoverable at run time,

which means that an application can make use of them without

hard-coded references or fragile configuration files. Each part is

identified by a contract, which are used to identify the

dependencies between parts and takes the form of a string

identifier. A part is any object that imports or exports a value.

− Catalogs: are responsible for discovering dependencies that exists

between the registered parts. It provides a collection of parts from

a particular source.

− Containers: are responsible to manage the creation and

composition of the dependencies between parts. It uses the parts

that are provided by the catalog to perform composition, the biding

of imports to exports.

The Managed Extensibility Framework helps developers with providing tools

needed to easily create extensible .Net applications.

5

1.1 Project statement

This thesis is based on using the C# language and especially the MEF

library that are briefly explained in the introduction.

The principal idea of this thesis was to begin using the C# language, to show

its potential and also to work with the libraries, frameworks and all the

features that it offers.

The project that this thesis carries on, is focused on creating an application

which is capable to be extended at run time and this can be possible by

using the library that this language offers.

It has always been hard for the developer to create an auto-extendible

application at run time, deal with dependencies between the components of

the code, struggling to change the code every time that wants to add a new

feature or to delete it. Using MEF makes it easier and provides the tools that

let the user to be able to focus less on the concerns of the infrastructure

development and more on simply creating excellent software.

What the application consists of?

As it is already specified, in the center of this application is the extensibility,

how the user can extend the own program on run time, but also how to

delete some functionalities that for him are not important.

The application has different options to permit the user to upload or unload

the libraries.

− First of all, let the user to choose the libraries that he wants to add.

These libraries are saved on his machine (libraries created by him or

someone else) and of course are related to the relative application.

− Then, the user can choose to unload the libraries that do not want to

have in his application. These libraries are the existing libraries in the

application.

6

− A fundamental point of this project, is that the user can create a new

library (new feature to add to its application) at runtime by opening

the code editor that is available in this application, which act like an

IDE to create scrips of code, compile them and immediately add new

feature to the project, everything at runtime, without having to save

this code before or to compile and run it on a separate project. In

addition, the code editor gives the auto-completion of the code, code

highlighting, comments, tree-parser etc.

− And at least, but an important part of this thesis, is the possibility that

the code editor gave to optimize the algorithm written by the user by

giving him, at the same window, the new optimized algorithm, that

differently by the original one, has a reduced execution time. This

operation is done only on the algorithms that can be optimized by

substituting loops or statements that can change the executing time.

This part comes in form of researches done on how an algorithm can

be optimize, which are the methods to be substitute and how can be

changed an algorithm to be more efficient. All these researches led

to a new feature work that can improve the project that is going to be

developed throughout this thesis.

1.2 Project Goals

In the project statement is defined the project that is going to be carried on in

this thesis. The major part of the work is focused on creating a code editor

inside an extensible project, which provides the way to create new libraries

using the C# language that can be added to the main program and extended

its features and functionalities making use of MEF.

What makes all this really useful is the fact that the user can open the code

editor, write his own code, choose to optimize it, compile and so extend the

main project, everything at run time, without having to create the new library

7

separately, save it and then upload it form his project.

Therefore, it will be explained how all this is possible, what tools are used,

their advantages and disadvantages, how this application should look like

and finally create it.

Summary

The primary goals of this work are:

− Take a closer look at C# language and its libraries, and use it to

create the application

− Analyze the available tools that can be used to carry on this project

and then identify their advantages and disadvantages

− Analyze the requirements for this new application, the application

extensibility, the code editor, the optimization tool, explain how

should perform and create them

− State all the researches that are done on how an algorithm can be

optimized and what kind of optimization can be done

The result will be an extensible C# application, which provide a small and

easy to use tool for uploading or unloading libraries to the project and

creating extensions at run time that will add new features to the project taken

in consideration.

8

2. Problem analysis

In this chapter will be analyzed the available tools that can be used for this

project. Based on this analysis will be formulated the requirements for this

application and specify the goals of this work.

2.1 Features of interest

What follows is an analysis of the features that are of the interest in the

development of this application and explain why each feature is important

and how can be ideally solved with respect to the aim of this work.

Ease of use

First of all, what is important in the development of this application is how

effectively and easily the given tool can be used for extending an application.

An ideal tool should be small, easy to use, quick and not strain system

resources too much.

Free to choose the libraries to upload or unload

As this application will provide the possibility to extend a project, it is

important that the user can have the freedom to choose which library to

upload or which one to unload. To give this possibility, the user should have

the chance to navigate on his own machine and choose the library that want

to upload and as well, to have access to all the libraries of the project and to

select which one to unload.

Referencing external assemblies

When the user wants to write the own code for creating a new extension to

his project, an essential information of this process is the list of the

9

referenced assemblies for a successful compilation of any C# source code.

So, the code editor that is provided need to offer a way to pass the

information to the compiler. Because it is looking for an easy to use tool and

the compilation will be at run time and not using the command line, the

external assemblies will be specified in the same file in which is written the

code.

Presence of a ‘specialized’ C# code editor

It is important that the code editor includes features that make the code

authoring easier, such as syntax highlighting, error highlighting, code

competition, adding comments to the code or the presence of the parse tree.

An ideal code editor should include an advanced C# code editor, like having

the debugger option to make the code authoring easier. But int this project

the focus is on creating an application that can extend the principal project

and not creating a specialized source code editor.

Presence of the optimization tool

To make the code authoring more efficient, besides the features listed

before, another one that is helpful to be part of this application, is the

presence of an optimization tool. What this tool should do, is to optimize the

execution time of the user’s code by changing the loops or statements

present in the code and making it to be executed faster than before.

This part of feature that is useful to have, is a research done during the

development of this project and all this work will be presented throughout

this thesis.

10

2.2 Available tools

To begin with, if the chosen language to develop is the C#, then there are

some different IDE-s that can be used to carry on this project.

• Visual Studio Code

Visual Studio Code is one of the most popular code editors for C#

development. It supports different extensions for powerful editing, full

support for C# IntelliSense and debugging. Some of its features are:

o Excellent auto-complete code

o Build-in Git integration

o Large list of extensions to further enhance the platform

• SharpDevelop

It is a free, open source IDE for C#, VB.net etc. It is a lightweight alternative

to the Visual Studio Code.

Some of its features are:

o Some features offered by Visual Studio, like code editing,

debugging and compiling

o Some advanced features like background syntax check and

context actions

• Rider

Rider is a cross-platform .Net IDE from the Jet Brains suite of products. It is

based on IntelliJ platform and ReSharper.

Some of its features are:

o Supports both .NET Framework and .NET Core

o Integrates seamlessly with other Jet Brains products

o Context actions

11

These are a few IDE-s for C# development that can be considered for

developing this project.

Another tool that is fundamental in this work, is the Managed Extensibility

Framework.

 This Microsoft library makes extension easier and lets the programmer to

develop applications that can easily consume extensions by providing the

ability to dynamically bind internal and add-in components together through

contract-based declarations.

An extensible application that is written using MEF declares an import that

can be filled by extensions components and may also declare exports in

order to expose application services to extensions. Each extension

component declares an export and may also declare imports. In this way,

extension components themselves are automatically extensible.

To determine which exports can be matched with the imports, there exists a

contract. This contract can be a specified string, or it can be generated by

MEF automatically from a given type. The contract is fulfilled when any

export is declared with a matching contract.

There are two different types of imports that can be specified:

o ImportAttribute that is filled by one and only one ExportAttribute

o ImportManyAttribute that can be filled by any number of exports

Each import should have an export, because every import left unfilled will

result in a composition error. To get rid of this problem it is possible to

declare imports to be optional or to assign them default values.

Another feature of MEF, which will be used in this project, is that provides

the ability to look outside an application’s own source for parts. This means

that it extends the application with assemblies that are not parts of the

source, letting the user to choose the assemblies (libraries) to upload.

12

As part of this project is also the code editor and as explained in the

previous paragraph, to make the code authoring easier, it will support the

code completion, syntax highlighting, error highlighting etc.

In C# there are some libraries that can help to develop these features in an

application.

• AvalonEdit

Is a WPF-based text editor component. AvalonEdit can be used for syntax

highlighting and it also comes with a code completion drop down window,

but it needs to handle the text entering events to determine when to show

the window. It was written for the SharpDevelop IDE.

While the WPF RichTextBox is quite powerful, its quickly running into its

limits when trying to use it as a code editor: it is hard to write efficient syntax

highlighting for it, and the user can not really implement features like code

folding with the standard RichTextBox. The problem is that the RichTectBox

edits a rich document, in contrast, AvalonEdit simply edits text.

However, AvalonEdit offers lots of possibilities on how the text document is

displayed, so it is much more suitable for a code editor where things like the

text color are not controlled by the user, but instead depend on the text

(syntax highlighting).

The normal version of AvalonEdit requires .NET Framework 4.0 or higher.

 [http://avalonedit.net/documentation/html/c52241ea-3eba-4ddf-b463-

6349cbff38fd.htm]

• Roslyn Microsoft Analyzer

Roslyn is the compiler platform for .NET and consists of the compiler itself

and a powerful set of APIs to interact with the complier.

Roslyn Analyzers a C# analyzer that can be used to analyze the code for

style, quality, design, manageability and other issues. It can be used as an

extension for the Visual Studio Code or can be download as NuGet and

used in your own applications for code analysis, error highlighting, code

13

completion etc. It is an open source analysis library for C# and Visual Basic

.NET languages. It allows syntactic and semantic analysis, dynamic

compilation to IL and refactoring. [https://github.com/dotnet/roslyn-analyzers]

• RoslynPad

Is a cross-platform C# editor, based on Roslyn and AvalonEdit. It is available

as NuGet packages that can be downloaded and allow to use Roslyn

services and the editor in your own apps.

• NRefactory

Is the C# analysis library used in some C# IDE-s like SharpDevelop. It allows

applications to easily analyze the syntax and semantics of the C# programs.

It is similar to Microsoft’s Roslyn project, but it is not a full compiler, it just

analyzes C# code and does not generate the IL code. NRefactory 5 allows

parsing and semantic analysis and it also contains supports for refactoring,

formatting, code issue analysis and code completion.

Summary

As can be seen from the available tools that we can use to develop this

application, there are a few of them that are quite similar and can be used

equally to complete this work. Based on what is the aim of the project and

based on the different tools that can be used for the same scope, below will

be stated same requirements for this work, and then decide which of them

can be more effective and easy-on-use for this purpose.

14

2.3 Requirements

In the pervious section are examined some tools that can be used for

developing this application using the C# language. There are stated a few

features of these tools and based on the points of interest stated in section

2.1 and based on the available tools, in this section is going to be formulated

the exact requirements for the application.

2.3.1 Non-functional requirements

It is been stated several times that the aim is to create a small, quick and

easy to use application.

Familiarity

Since this application is destinated to developers, which are used to work

with classic IDE-s, it is a good choice to make the application look alike to

them, such as the syntax highlighting for C# language on the code editor, the

code completion etc.

 Extensibility

This application is not expected to be a complete, all-inclusive features, but a

well-usable basis that could be further extended and improved in the future

by other developers based on what is been done till now.

2.3.2 Code Editor

The application will support C# code editor which let the user to create the

own code. It supports a rich set of features that makes the code authoring

easier.

15

Syntax highlighting

This is an important feature for every code editor because makes the code

easier to read and understand. It is a good choice to include advanced

syntax highlighting, that is not based only on simple regular expressions, but

also on the semantic and syntactic analysis of the C# source code.

Code completion

While the user types, code completion offers a list of available types,

members, variables etc. It allows to choose the identifier without the need to

remember the exact name or without having to type out the full name. The

list of code completion will appear automatically when it is typed an identifier,

but only on places where it is expected.

Compilation

The code editor will be able to compile and run the scrip that is written

internally and at run time. What we obtain from the compilation and

execution of this file is a library, .dll, that will be automatically added to the

principal program and extend its functionalities.

The source code written in the code editor should be compatible with the

standard C# language but also compatible with the project that is going to

extended.

This C# code file cannot be compiled on its own. It needs additional

information such as the list of referenced assemblies. The referenced

assemblies are essential for successful compilation of the code, but they are

not part of the C# source code files themselves.

Since it will not have project files, the referenced assemblies should be

specified in an appropriate textbox specified in the code editor.

As this will not be a specified IDE for C# language, it will not contain

debugging, refactoring etc.

16

2.3.3 Optimization

This thesis, besides providing an extensible application and the code editor

to write new extension for the existing problem, is focused on the

optimization of the algorithms that are written in the code editor. What is

required form this work is to give a way how the written code can be

optimized, such as, rewriting the same code changing statements or loops

that make its execution faster. But this is not always possible, because not

always changing a statement with another or changing a loop with another

will reduce the execution time. Beside this simple way of optimization, will be

presented a research that is done during the development of this thesis on

how an algorithm can be optimized, in what terms is possible to optimize an

algorithm, like execution time, memory etc. and why is important to have an

optimized algorithm.

3. Implementation analysis

 In the pervious chapters it is been analyzed how this project can be

developed, which are the available tools that can be used to write down this

application and some general information about their functionality, what are

the requirements that this project should achieve and how it is thought to

work.

In this chapter the focus is on technical decisions regarding how this

application will be implemented.

17

3.1 Tools and libraries

 In the section 2.2 are represented the available tools that can be used for

this project and also the MEF library which is going to be used for the

implementation of this application.

The goal is to create a light-weight application, but creating a development

environment such as the code editor that is part of this project is a

demanding task, especially when are included features like code completion

or compiling and execution.

To make the application extensible and able to consume parts that will be

uploaded or created by the user is going to make use of the MEF library. On

the other hand, to create the code editor there are two possibilities:

a) Making use of an existing open-source classic IDE.

b) Create it from scratch making use of the existing libraries and

components that are designed to be used in IDE development.

The existing open-source classic IDE are large and complicated to use, so

the best option is to create a form for the code editor from scratch, but using

the libraries, which are represented in the section 2.2.

3.1.1 Programing environment

The implementation of this project is done in C# language, which will be also

the language of the development on the code editor, and in the section 2.2

are stated some of the development environments (IDE) that can be used.

The target platform to develop this project will be Microsoft .Net Framework

4.0. The IDE that is been chosen is the Visual Studio Code 2019, because it

is more complete, it provides full support for C# IntelliSense and debugging,

and it is an excellent tool for powerful editing.

18

3.1.2 User interface

Microsoft .Net Framework offers two different sets of APIs for user interface

development, that are:

• Windows Forms: used to create powerful Windows-based applications

• Windows Presentation Foundation (WPF): offers great flexibility and

has many features and abilities that Windows Forms lacks.

Windows Form and WPF will be part of this application.

Source code editor

A source code editor is a text editor program designed for editing source

code. It may be built into an integrated development environment (IDE) or

web browser. The source code editor is a fundamental programming tool

and is the component the user interacts with the most.

To make possible the code highlighting, the two most known libraries are

AvalonEdit and ScintillaNET. Both support a wide range of additional

features that are useful for source code editors.

AvalonEdit is written in C# and WPF, whereas ScintilaNET is a managed

Windows Forms wrapper around an unmanaged Scintilla control.

AvalonEdit library is also an easy to use one, which is chosen also for the

development of this project.

3.1.3 Syntactic and semantic analysis

 Creating the code editor, one of the most important goal is the ability of it to

analyze and understand the code that is been written by the user. This ability

is called syntactic and semantic analysis. There are some features that need

source code understanding to work properly, such as code completion,

syntax highlighting or code folding. Doing the syntactic and semantic

analysis of C# source code is a large and difficult problem, but to make this

possible it is making use of some libraries that are available for the C#

19

language.

In the section 2.2 there are listed some of the available libraries that can be

used for such purpose. But for the development of this project, it was thought

to use not just one of them but a combination of them and the reason why is

doing so is to understand better how this libraries works, to be familiar with

the different disponible libraries, what they offer, how easily to use they are,

and which are the limitations that they have. The libraries that are chosen to

be used are:

• AvalonEdit: it is used only for the syntax highlighting in a small part of

the code editor where are defined the extra required assemblies

• NRefactory: this library is chosen for making the parsing of the code

and creating the parsing tree

• Microsoft Roslyn (Roslyn Pad): it is a .NET Compiler Platform

analyzer that examine C# code for style, quality, design and other

issues. The analysis is performed at design time on all the open files.

It is a well documented library, easy to understand and to use. This

library is used to make the syntax highlighting of the written code,

code completion and error highlighting.

3.1.4 Extensibility

As it is stated several times till now, the key part of this thesis is the

extensibility, making the application extensible. Because of the aim of this

application is to give the possibility to the user to extend his own project by

choosing from his machine to add new libraries (as plugins) or unload them,

or creating new plugins at runtime, the application has to provide the

extensibility. A plugin in this context will be a separate unit of functionality

that extends the application. Therefore, it will need a means of discovering,

loading and initializing these plugins at runtime. The required functionality is

this:

20

• The user chooses and loads the assemblies with plugins in his own

computer

• The user chooses the assemblies on the application’s directory to

unload

• In these assemblies, find all classes that implement a specific

interface

• Create instanced of these classes and return them on demand, or

unload their assemblies

Microsoft .NET Framework contains two framework that support extensibility:

• Managed Add-in Framework (MAF): this does not suit very well to the

needs of this application. It is intended for large systems where the

host application and add-ins are strictly separated, run in different

application domains and communicate across these domains.

• Managed Extensibility Framework (MEF): it is light-weight and covers

the features this application needs, so this is the library that will be

used

3.2 Pervious work

One of the goals stated at the beginning of this thesis was: Take a closer

look at C# language and its libraries and use it to create the application.

Working with the C# language and their libraries was new and in fact, one of

the most important goals were to study deeper a new programming

language such as the C# language, be familiar with it, take a closer look to

the features that this language offers and the libraries that are implemented

to make the code authoring easier.

21

At the beginning, after having studied all the C# language from scratches, its

features and having explored on simple projects developed with C#

language and Visual Studio, was started with creating a simple button that

shows a simple message when is clicked on it. Then creating buttons that

are able to open a dialog window when it is clicked on them, selection files

and uploading them on the project. When is been explored with these simple

development features, was working on MEF and studied how it is

implemented, why and all the features and facilities that it offers making the

programming easier.

To understand better how MEF can be used and how it should be

implemented in a project, it was created a small project Calculator, that will

be used for the final application as the project that will be extended.

As can be seen from the project, it is structured in different windows (tab

items) at the same form, to show all the progresses that are done till arriving

to the final one, that is the final project and the main application.

It was a long and hard work to lean all the different characteristics of this

language and the library taken in consideration, but it was worth it and at the

end, all this work helps to develop the final project.

3.3 Application architecture

Creating an application able to extend a project and integrating a code editor

on it is not an easy application to build. To make this simpler, it is thought

that will be better to separate it into several components.

There will be these primary components:

• MainWindow, which will contain the main entry point and infrastructure

of the application

22

• CodeEditor, which will implement the code editor window and all the

features that it should contain and also the compliler

• Folding and RoslynEditor, which are files that contain the basic

functions of code completion and code folding that will be used on

CodeEditor

• SimpleCalculator, which is the small project created for learning how

to use MEF that will be used as the project that can be extended by

the application

3.3.1 Plugin, how this infrastructure works

The extensibility is the core of this application. Because of this, the

application should provide the possibility to extend a project adding new

plugins or unloading them. It is the user that will implement a plugin or

choose the different plugins to load or unload and in this way the application

should discover these plugins and load or unload their assemblies from the

project.

Plugin discovery

In order to add new functionality into the application, all that will be required

is to include the plugins into the application’s code and make sure they

implement a specific interface. These interfaces will have MEF’s

InheritedExport attribute which will ensure that they will be discovered, or

there will be a special Export attribute if they are also need additional

metadata.

Plugin initialization

A plugin will require some kind of initialization. This initialization could

happen in the plugin’s constructer, but plugin instances will be created by

23

MEF. For the plugins will be introduced a common base interface, that is the

following one:

public interface IOperation
 {
 int Operate(int left, int right);
 }

Any plugin that implements this interface will have its Operate method called

when it is loaded into the application.

When a plugin is created and it is not part of the same assembly as the

project is, it should implement this interface and it will look like:

[Export(typeof(SimpleCalculator.IOperation))]
[ExportMetadata(“ ”)]
 public class Name: SimpleCalculator.IOperation
 {
 public int Operate(int left, int right)

{
 Do something
}

 }

Otherwise, it has to be implemented like this:

[Export(typeof(IOperation))]
[ExportMetadata(“ ”)]
 public class Name: SimpleCalculator.IOperation
 {
 public int Operate(int left, int right)

{
 Do something
}

 }

Plugin dependency

Because of how this application is thought to work, the plugins should not be

dependent on each-other. This application gives the possibility also to

unload a plugin, that means, when a user chooses a plugin to unload, it will

24

unload its assembly too. If the plugin that the user has chosen is dependent

by another plugin that is currently uploaded in the project, it will not be

possible to unload it, or if the user unload a plugin and a currently loaded

plugin dependent on it, there will be an execution error, since the loaded

plugin can not work properly if something is missing.

There is also another ‘problem’, if the user decided to upload a plugin that

depends on another non loaded plugin, it will be an error execution since it is

missing a plugin.

3.4 Compilation

The requirement of the compilations on the code editor are stated in the

section 2.3.2.

In this section it will be discussed how that requirements will be satisfied.

3.4.1 Additional assemblies

Since it is required that the scripts written in the code editor be self-

contained, it is needed a way to pass the additional information, that are the

additional assemblies needed for the compilation and build. It is decided to

divide the window (form) of code editor in two parts, where in the upper part

will be specified the additional assemblies that should be included, in the

middle part will be the part reserved to implement the code, and the third

part will be the part to show the results of the compilation, if it is correct or

something went wrong and shows the errors too.

 This is how the code editor will look like:

(as you can see there is also written what each part of the window is

supposed to do)

25

Figure 1

Since this compilation will produce a library, .dll, and not an executable, .exe,

the assemblies will be of the form Assemblies.exe, if it is required to use an

external project, or Assemblies.dll.

To make possible the compilation of the code and the creation of the

assembly as a result, it will make use of the mechanism called Code

Document Object Model (CodeDOM).

The System.CodeDom namespace defines types that can represent the

logical structure of source code, independent of a specific programming

language. The System.CodeDom.Compiler namespace defines types for

generating source code from CodeDOM graphics and managing compilation

of source code in supported languages.

Error Highlighting

Error highlighting is a very useful feature of any source code editor because

it allows users to immediately see the errors within the source code without

having to look them up manually. As was mentioned before, for the error

highlighting it will be use Microsoft Roslyn.

https://docs.microsoft.com/it-it/dotnet/api/system.codedom
https://docs.microsoft.com/it-it/dotnet/api/system.codedom.compiler

26

Code completion and Syntax Highlighting

Code completion make the code authoring easier because it gives you

suggestions on what you can write and do not need to remember the whole

name of different classes, methods or libraries.

Syntax highlighting make the code easier to reed and understand but also

make the code editor familiar to the user, since every IDE has the syntax

highlighting for different languages. In this case, the syntax highlighting will

be compatible only with the C# language.

To make these two attributes possible, it is used the Microsoft Roslyn

(RoslynPad).

RoslynPad

It is a cross-platform C# editor based on Roslyn and AvalonEdit. RoslynPad

is available as NuGet packages which allow the users to apply Roslyn

services and the editor in their apps.

Some of the features that RoslynPad provides and that are used in the

developments of this project are:

• Completion

Figure 2

• Signature Help

Figure 3

27

• Diagnostics

Figure 4

NRefactory

NRefactory is a C# language that allows parsing of the C# source code. It is

not so easy to understand and work with it. In this thesis it is used only for

parsing and creating the parsing tree.

How is created the parsing tree?

A parser is invoked on the C# source code file. The result of this parser is an

abstract syntax tree that is called AST, which represents the syntactic

structure of the original file.

The AST contains additional information about comments, whitespaces and

exact position of individual syntactic elements within the original file, so that

refactoring transformations can alter the SDT and render it back into source

code text with minimum changes. It is represented by the SyntaxTree class

and its nodes by AstNodes abstract base class.

28

4. Implementation

In this chapter will be explained how the whole application is been

implemented. The source code of the implemented application can be found

on the enclosed folder. The project is divided in two parts: the

SimpleCalculator project and the ShowMessage project.

This chapter will be divided in 2 mini chapters dedicated respectively one to

SimpleCalculator and the other one to ShowMessage.

4.1 Simple Calculator

In this section, will be explained how this project is implemented, what

libraries are used and how does it work.

As was mentioned in the section 3.2 , Pervious work, this project was

created to begin working with MEF library, to understand how does this

library works, what are the facilities that it offers and how MEF can be

integrated on a project to make it extensible.

Having this simple project done at the beginning of this thesis, it was then

used as the project to be extended form the application that will be explained

in the second part of this chapter, ShowMessage.

Libraries

This project is a C# project and to implement it is used Visual Studio 2019. The

library that is fundamental for this project is the MEF library. Is possible to use

MEF in client applications where it is used Windows Form, WPF or in server

applications that use ASP.NET.

29

To use MEF in a project is necessary to add a reference to the

System.ComponentModel.Composition assembly, that is the assembly

where MEF is located.

On the project file it is needed to add Imports instruction for

System.ComponentModel.Composition and

System.ComponentModel.Composition.Hosting. These two namespaces

contain the MEF types that will be needed to develop an extensible

application.

Components

To begin with, this project is created as a Console Application in Visual

Studio.

The components of this project are:

• MyCalculator, which is the core of this project. It is created as a

Console Application in Visual Studio and the target framework is .NET

Framework 4.7.2.

In MyCalculator is the principal file where all the project is developed

that is called Calculator.cs.

• Extensions directory, which contain a Class Library file,

ExtendedOperations where are implemented the external extensions

of the project. The file where the code is implemented is called

Extensions.cs.

• NewParts and Estensioni directory, these are also Class Library in

which are implemented more extensions for the project.

30

MyCalculator

As is stated before, this is the core of this project. In the file Calculator.cs is

implemented all the application.

To begin with, in order to make use of the MEF library, is necessary to be

added the references to System.ComponentModel.Composition assembly,

that is the assembly where MEF is located. To add these references to the

project, goes to add references of the project, search for this assembly and

then add it to the references of the project.

Figure 5

Now, to begin using MEF in the project, as the first point it is important to

declare the contracts which are going to be used when an extension will be

implemented.

The first interface that should be declare is the one that define the base of a

calculator, the method calculate.

31

public interface ICalculator
 {
 string Calculate(string input);
 }

This interface has to be implemented by a class, which will implement the

method Calculate, that will contain the logic of the calculator.

[Export(typeof(ICalculator))]
 public class MySimpleCalculator: ICalculator
 {
 ...
 public String Calculate(String input)
 {
 ...
 }
 }

Having declared the interface for the calculator, now is important to declare

also the contracts for the extensions. As is explained in the Introduction how

MEF works, it is required a contract which will be declared both from Imports

and Exports, so in this way the extensions will be discovered from the

project.

There are two interfaced to be declared, the first one for the Operation that

will be done and the second one the second one is needed for the Metadata.

public interface IOperation //OPERATION
 {
 int Operate(int left, int right);
 }

public interface IOperationData //METADATA
 {
 Char Symbol { get; }
 }

But how can the application discover the different extensions that are

declared under these contracts?

The basis of the composition on MEF is the Composition Container, which

contains all the available parts and perform the composition between imports

32

and exports that are declared. The composition container uses a catalog to

identify the parts that can be accessible. The catalog is an object that make

available the parts found in source. There are different catalogs for different

implementation of extensions, such as, DirectoryCatalog, AssemblyCatalog,

AggregateCatalog etc.

So, in this project the catalog and the composition container are specified in

a new class called Program, where all the composition and discover of the

parts take please.

public class Program
{

 public static CompositionContainer _container;
 public static AggregateCatalog catalog= new AggregateCatalog();

...
Public Program{

 _container = new CompositionContainer(catalog);
 try

 {
 _container.ComposeParts(this);
 }
 catch (ReflectionTypeLoadException ex){...}

...
}

}

The class MySimpleCalculator should be discovered from the Program class

in order to use the method Calculate that is implemented there.

To make this possible, before the declaration of the class

MySimpleCalculator, is declared the Export under the contract ICalculator,

which means that, to discover this class it is required to declare the an

Import under the same contract in the class Program.

// export in MySimpleCalculator
 [Import(typeof(ICalculator))]
 public ICalculator calculator;

In this way, from the object calculator, it is possible to call the method

33

Calculate implemented in the class MySimpleCalculator.

It is specified that to discover an extension it should implement a contract,

the Export, that is compatible with an Import.

In order for an Import to be matched with more than one Export, it is required

to declare it in this way:

 [ImportMany]
 IEnumerable<Lazy<IOperation, IOperationData>> operations;

Lazy<T, TMetadata> is a type provided by MEF to hold indirect references

to exports. Each Lazy<T, TMetadata> contains an object representing an

actual operation and an object representing its metadata. The metadata, in

this specific case, is the symbol that represent the operation that can be

done, such as ‘+’, ‘-’, ‘*’ etc.

ImportMany gives the possibility to associate to it more than one Exports, so

more than one extension.

This statement is declared in the MySimpleCalculator class which is than

imported in the Program class, where is declared the composition container

and the catalog.

Having prepared all the elements that are necessary to discover an

extension, it is time to implement the extensions.

There are two different ways how to implement an extension and where. The

first one and most natural, is to implement the extensions directly to the

same file where are implemented all the other elements of the application,

which means to implement them in the same assembly. The other way, is to

implement the extensions in separate files, class libraries, that means that

the extensions are not in the same assembly of the principal file of the

application, but have to be discovered outside of it.

To implement an extension in the same file is easy. The essential thing to do

is to declare the contracts, the ExportAttribute for the operation and the one

for the metadata, ExportMetadataAttribute.

34

When the application will be Bild, it will discover this new part added to the

program and it will upload it to the application extending it with new features

and new functionalities.

[Export(typeof(IOperation))]
[ExportMetadata("Symbol", '+')]
public class Add : IOperation
{
 public int Operate(int left, int right)
 {
 return left + right;
 }
}

This represents an extension of this project. The ExportAttribute with the

contract IOperation and the ExportAttributeMetadata, which contain the

operation ‘+’. This class implement the IOperation interface, that means it

should implement the method Operate.

And at last, an important part of this components is the Main, which execute

all the methods that are declared before and pint on the console the results

of this application.

public static void Main(string[] args)
{
 var p= new Program();
 String s;
 foreach (var item in catalog){
 Console.WriteLine(item.ToString());
 }
 Console.WriteLine("Enter a command:");
 while (true){
 s = Console.ReadLine();
 try{
 Console.WriteLine(p.calculator.Calculate(s));}
 catch (Exception e){

Console.WriteLine(e.InnerException.ToString());}}

 }

35

Extensions directory

In this section will be stated how to implement an extension in another file,

on a separate assembly and how it is discovered by the application.

MEF offers the possibility to search for parts outside of the application’s

source code. In order for this application to be able to discover parts outside

of its source code it is added a DirectoryCatalog, which tells the application

where to search the parts. Done this, it is important also to change the

directory output of the ExtendedOperations Class Library.

Figure 6

This is the way how the application reaches the parts defined outside the

source code and this is the second way how an extension can be defined.

In this case the new extensions are defined in the file Extensions.cs.

This is how the extension out of the source code should be defined:

• First of all, should include the references for the MEF library,

otherwise it will generate an error

using System.ComponentModel.Composition;

• Then implement the extension inside the namespace
ExtendedOperations

36

[Export(typeof(SimpleCalculator.IOperation))]
[ExportMetadata("Symbol", '*')]
public class Multiplication : SimpleCalculator.IOperation
{
 public int Operate(int left, int right)
 {
 return left * right;
 }
}

Differently from the extensions declared on the same source code of the

application, in this case is necessary to specify in the contract the

namespace where the contract is defined and also is necessary to define the

namespace when the interface is used, SimpleCalculator.IOperation.

NewParts and Estensioni directory

These two components of this project are similar to the previous one. In

them are declared new extensions that are in different assemblies from the

source code and is preceded in the same way as it was done in the section

before.

Output

The output of this small project is a console extensible application.

Figure 7

37

The output of this small project looks like this. It shows all the extension that

are in the catalog, (in this case the extension is added twice) which are also

the available one that can be used.

After the line Enter a command, it is possible to enter an expression, just like

it is shown on the figure, and the application will give the result of that

operation. When an extension is deleted from the catalog it will not be shown

on the output window and also will not be available to use it. It is the same,

when a new extension will be added, it will be shown on the output window

and it will be available to use.

4.2 Show Message

Int this section, it will be treated the principal part of this thesis, that is the

application that extends the project explained before.

This application, besides this application, contains some other small

projects, which are divided in different tab windows and contains the small

projects developed before arriving to the final one. These projects are the

ones explained in the section 3.2, Pervious work.

The Figure 8 shows the interface of this application. There are 8 different tab

windows, where the first seven windows contain the pervious works that are

done before arriving to the creation of the final application for the thesis. It is

preferred to let them with the final application, in the way to show how this

work has evolved and to show that creating an application such is that one is

not an easy work that can be done in some days.

As was explained for the project Simple Calculator, in this section will be

explained the different libraries that are used, the references added, the

components of this application, how it is implemented and the final output.

38

Figure 8

 Libraries

The MEF library is important in this project too, since it will provide a way to

extend the Simple Calculator project. So, in this project will be added the

references to the libraries of MEF like in the previous one.

Besides these references there are a few more that should be added to the

application. The principal libraries that will be included and as a

consequence, will be added their references are:

• AvalonEdit, ICSharpCode.AvalonEdit

• RoslynPad, RoslynPad.Editor, RoslynPad.Roslyn

• NRefactory, ICSharpCode.NRefactory

To add their references to the project, is necessary to download them as

NuGet and then reference them inside the application. The references are

added in the same way that was added the references to MEF library.

Components

Since this is a long and complicated project, it is preferred to divide it in

39

different components, which are:

• MainWindow, ShowMessage is the application. It is a Windows

Application in Visual Studio and the target framework is the .NET

Framework 4.7.2.

The main file of this application is the MainWindow.xaml, that is

composed by MainWindow.xaml.cs.

• CodeEditor, which is a Windows Form file and contains all the code

for the implementation of the code editor.

• Folding directory, which contains two classes that are used for the

code folding in the code editor.

• MainWindow

In the application ShowMessage the principal file is the MainWindow.

MainWindow is a Windows Application that is composed by

MainWindow.xaml, that contains the design of the window and the

MainWindow.xaml.cs that contains the code of the application.

In the file MainWindow.xaml are declared all the different tab items, the

different buttons, textboxes etc., that make part of the output window of the

application.

As it was shown before, there are specified eight different tab items, one for

each exercise that is done, and the final one is the application that is treated

in this thesis.

What does the application window contain?

As it is shown on the Figure 9, the application window is composed by a

Menu, on the top of this window, in which are specified three different

buttons:

• Add Plugins

• Delete

• Text Editor

40

Figure 9

 Add Plugin

Add Plugin is a button on the Menu of this application.

 <MenuItem Header="Add Plugins" Click="AddClickDll" Visibility="Visible"/>

The functionality of this button is to add new plugins on the application and in

this way extending the project Simple Calculator by adding new libraries to

the catalog and then, show the plugins that are added on the text box that is

in the main window.

How does this button work?

First of all, when it is clicked it shows a Dialog Window, which is a directory

from the user computer, and gives the possibility to the user to choose either

a library or a zip folder which contains a library.

var openFileDialog = new OpenFileDialog();
openFileDialog.Multiselect = true;

This operation permit to the application to open a directory from the user

41

computer and setting the Multiselect at true, permit to the user to choose

more than one file simultaneously as is shown on the Figure 10. The

directory that will be open by this method is specified and in this case, it is

specified at a directory where are saved the plugins.

string root = @"C:\Users\fismailaj\source\repos\Plugins";

Figure 10

When this window is open, the user can choose the library or the libraries

that wants to add to the project. Ones the libraries are selected, and the user

clicks at Open, the libraries are uploaded to the catalog. If it is the case that

the user chooses to add a zip folder, the application does the unzip of the

folder, search on it if there is a library by searching the extension .dll and

then performs in the same way that it does when the user selects directly

one or more libraries.

Program.catalog.Catalogs.Add(new DirectoryCatalog(destinationFile));
System.Windows.MessageBox.Show("File is been reupload");

When the library is uploaded, a message is shown by the application, which

says that the files are uploaded to the catalog and then, to the central text

box are shown the new libraries that are uploaded.

The library that is added is shown on form of a tree, where at the top there is

42

the name of the library that was uploaded and the childes of this tree shows

the plugins that this library has. To make this possible, a TreeView is

declared.

<TreeView x:Name="TreeView3" Margin="30,64,60,43"

Visibility="Hidden" Grid.ColumnSpan="2"/>

To add all the component on the TreeView, the ShowPlugins method is

implemented, which add to the header of the tree, the name of the library

added, and as chiles, the names of the plugins (extensions) that this library

contains.

foreach (var part in SimpleCalculator.Program.catalog)
{

foreach (var dll in Directory.GetFiles(Path.Combine(root,
filename), "*.dll"))

 {
 if (Trim(part.ToString()) == Trim(Path.GetFileName(dll)))
 {
 if (!TreeViewContains(part.ToString()))

 treeitem.Items.Add(new TreeViewItem() {
Header = part.ToString()

});
 }
 }
 }
TreeView3.Items.Add(treeitem);

Figure 11

43

In the Figure 11, is shown that a library named ExtendedOperations.dll is

uploaded to the catalog. This library contains three different extensions in it,

which are the Multiplication, Mod and Fattoriale.

Delete

This button, as the Add Plugin button, is part of the menu of the application.

The button Delete is deigned to perform the unloading of the libraries from

the application. When the user wants to delete a specific plugin from the

application, all the library that contains that plugin will be deleted, since it is

not possible to delete just one plugin that is contained on a library. Also,

when the user selects a library to unload, all the plugins of that library will be

unloaded from the project.

When the user selects a specific plugin and then clicks to delete, the parent

of that plugin is searched, then the library is removed from the catalog and

also tree of the library is deleted from the text box.

 SimpleCalculator.Program.catalog.Catalogs.Remove(pointer.Current);

TreeView3.Items.RemoveAt(TreeView3.Items.IndexOf(treeViewItem));

In order that the text box always shows the current state of the catalog, the

catalog is updated. When the application is runed, the catalog is updated

and then are showed the libraries that are available on the catalog at that

specific time.

44

• Code Editor

The third button that is on the MainWindow is the Text Editor. When the user

clicks at this button, the code editor window is opened. The code editor is

implemented on the CodeEditor file.

CodeEditor.cs is a Windows Form file in Visual Studio. It contains the

CodeEditor.Designer.cs file, in which is implemented the design of the code

editor.

Figure 12

In the Figure 12 is shown the design of the code editor. Its window is divided

in three parts, the part where is declared the required assemblies, the central

part where dedicated to code implementation and the third part which shows

the output.

The first part, where are declared the extra assemblies, is implemented just

the code highlighting, since the assemblies that should be added are specific

and it was thought that the code competition is not necessary.

To make possible the code highlighting, AvalonEdit is used.

45

public TextEditor editor;
private void Editor()
{
 ElementHost host1 = new ElementHost();
 editor = new TextEditor();
 ...

editor.SyntaxHighlighting =
HighlightingManager.Instance.GetDefinition("C#");
...

}

Where TextEditor is an istance of the class

ICsharpCode.AvalonEdit.TextEditor.

The second part is the part dedicated to the code implementation, where the

user can implement his libraries. As specified in the requirements of this

application, this part should support syntax highlighting, error highlighting,

code completion etc. To make all these possible, the RoslynPad is used.

This part is declared as:

private RoslynCodeEditor roslynCodeEditor;
public void InitializeEditor(string sourcecode)
{
 roslynCodeEditor = new RoslynCodeEditor();

...

}

After having declared the RoslynCodeEditor in this part of the code editor, it

is important to initialize it, in such a way that all the features of RoslynPad

can be available to use on this application.

In the Figure 13, is represented one of the features that RoslynPAd offers to

the application that is the code completion. When the user starts typing

something, it automatically shows the different possibilities that the user may

be write down. As in this case, when at the user starts typing us, as that is

not written anything else, the two available things are the using statement

and ushort. But if the user is declaring a new variable, as it is represented in

the Figure 14, the autocompletion is not shown since it is a new variable that

46

is going to be declared and no suggestions are available in this case.

Figure 13

Figure 14

From this code editor it is required to generate a new library, .dll, and not an

executable, .exe. So, the code of the library will be as the code of plugins

that were specified in the SimpleCalcualtor project. In the Figure 15, is

shown how a new plugin can be implemented and how the assemblies are

specified.

In this case, there are some errors, but this is because what is defined is not

a code for an executable, but just a script that specifies a plugin for the

SimpleCalculator project.

47

Figure 15

At the top of this window there is a menu with some buttons that has

different functionalities.

Start

The start button is the most important one. It makes possible to compile the

code and execute it on run time. To make it possible the

CSharpCodeProvider is used.

CSharpCodeProvider codeProvider = new CSharpCodeProvider();

There are specified the compile parameters, the basic reference assemblies

and are also added the extra assemblies that are specified when the library

is implemented.

When all the components are added, the compile is done.

CompilerResults compilerResults =

codeProvider.CompileAssemblyFromSource(compilerParameters,

text);

48

If the compilerResults does not have errors, it means that the compilation is

done successfully and at the output is given the available plugins on the

catalog. As can be see from the Figure 15, the compilation is done

successfully, the output color is green, and it shows the plugins available at

that moment on the catalog.

 At the same time, the result of the code editor are added to the text box of

the application in form of a tree view, showing the name of the new library

added and the plugins that that library contains (Figure 16).

Figure 16

Clean

It is another button present on the code editor window. This button cleans all

the three parts of the code editor window, letting the user to write the new

code again from the beginning.

Comment/Uncomment

These two buttons give the possibility to the user to comments and

49

uncomment parts of code. It is necessary to select the part of code that want

to comment or uncomment and then click to the Comment/Uncomment

button.

//comment

roslynCodeEditor.SelectedText = "/*"+roslynCodeEditor.SelectedText+"*/";

//uncomment

roslynCodeEditor.SelectedText = roslynCodeEditor.SelectedText.Replace("/*", "");
roslynCodeEditor.SelectedText = roslynCodeEditor.SelectedText.Replace("*/", "");

Parse

The code editor offers another feature that is the possibility to build the

Parse tree. To realize this feature, it is used the NRefactory library, that

helps on building the parse tree of the implemented code. To build the parse

tree it needs to build first all the nodes of the tree and make all together to

create the final parse tree.

When a node of parse tree is selected it shows on the code which part of it is

representing. As in the Figure 17, the node class:CSharpTokenNode, shows

on the code the statement class.

Figure 17

50

• Folding directory

To make the code more legible the folding is necessary. In this case, it is

preferred to do the folding just for the curly brackets. In fact, in the folding

directory there are two different files, AbstractFoldingStrategy.cs and

BraceFoldingStrategy.cs.

In the first one is implemented the folding strategy, that is used in the second

file, which implements a specific folding strategy that in this case is the brace

folding.

Brace folding strategy means that the folding is done regarded the curly

braces that are present in the code.

As can be seen from the Figure 18, when a curly bracket is declared, in the

left there appears a ‘-’ symbol that can be clicked and the code regarded to

that block is folding. When the code is folding a ‘+’ symbol appears.

FoldingManager foldingManager;
AbstractFoldingStrategy foldingStrategy;

...

foldingStrategy = new BraceFoldingStrategy();

...

Figure 18

51

• Optimize

Optimization is an important issue in this thesis. What is going to be stated in

this section is a research on how an algorithm can be optimized and why.

When an algorithm is implemented, the first question that is posed is if this

algorithm can be optimized to obtain a better one.

But what is algorithm or code optimization?

Often, code optimization is defined with code that perform better. Code

optimization is said to be the writing or rewriting of code so an application

minimize its CPU time, so the time of execution, it uses the least possible of

the memory or disk space or it makes a better use of the additional cores.

But there is also another definition of code optimization, thought as writing

less code.

Before starting with optimization, let see what premature optimization is.

When it is starting coding, it is also thought to develop an optimized version

of the application that is going to be developed. But often happens to think

about optimization before starting, having a premature optimization which is

the attempt to optimize performance when first coding an algorithm or before

profiling pinpoints where it makes sense to optimize. It is right to say that

premature optimization is bad, because performance-optimized code is not

the first priority when coding, it is not above correctness, clarity, testability

and so on.

Let’s start this section with two rules by Jackson’s code optimization rules:

• Don’t do it

• (For experts only!) Don’t do it yet.

Don’t do it, is meant for all of them programmers that think to optimize before

having cleared what they are going to implement. It is also true that more a

programmer knows, the more they will be tempted to premature optimize.

The best way is to leave the optimization out for a while since it is time to do

52

it. When is the time to optimize? There are two types of optimization that can

be consider, higher-level optimization that can be done earlier in the project

and lower-level optimization that should be left for later.

So, a good way to optimize is in this order:

• Architecture

• Algorithms

• Assembly

Algorithm and Assembly, data structure, are the most effective place where

to optimize because is there where performance is concerned. But, it should

be kept in mind that sometimes is the architecture what determines what

algorithms and data structure can be used.

Architecture

When is developing a project, the architecture is the most expensive parts to

change and this is a place where makes sense to optimize at the beginning.

It is partially about anticipating to what degree the project will need to be

scaled and in what ways. Architecture is high-level, so it is difficult to say

what should be done and what shouldn’t without narrowing the focus to

specific domains and technologies.

Algorithms and Assembly

When the code is been implemented and it works, is really the time to let it

on ‘Don’t do it’? Will you optimize?

You are right. The next rule is, for experts only, Do not do it yet.

Check the standard library, check the framework’s ecosystem that solves the

problem already. Check for the concepts that you are dealing, it may have

pretty standard and well-known names, so making some research will save

time on implementing. When you do not have found nothing that can solve

the problem, think about designing it so that would be simple to explain to a

53

new programmer.

When it is arriving at this point and the algorithm is implemented, it is time to

benchmark.

What is benchmark? It is time to make some test if the code needs to be

optimized or it is fine what is been obtained. It needs to set all the algorithmic

benchmark baselines and once it is done, create and benchmark end-to-end

tests that covers the most real-world usage of the application created.

Having done all this, it can say that is time to optimize and use some

profiling tools. Profiling is always the first thing that needs to do in the

process of optimizing code for performance. It is used the profile to look

more for functional level profiling than statement level profiling, because the

goal is to find out which algorithm is the bottleneck. When the bottleneck is

found, is time to optimize being confident that the optimization is worth

doing. The optimization can be proved if it was effective or less thanks to the

baseline benchmarks that were set along the way.

Overall techniques

Stay high level as long as possible. At the whole algorithm level, one

technique is strength reduction. When it is reducing loops to formula, be

careful with the use of mathematical operations. It may happen that, what it

is thinking to be strength reduction, at the end results it is not. Whether it is

used a formula or replaced a loop-based algorithm with another loop-based

algorithm, it needs to measure the difference. It may be that gets better

performance simply by changing the data structure, such as hash, which

looks a bit messier to work with, but is the superior search time worth it over

an array?

54

 Micro optimization

When the system’s functionality is done, it is time to go ahead with statement

level profiling. This level of optimization is kind of trade off between

maintainability and clarity.

There are various categories of code optimization techniques:

- Caching

Is a hardware or software component that stores data so that future requests

for that data can be served faster; the data stored in a cache might be the

result of an earlier computation or a copy of data stored elsewhere. The use

of a cache also allows for higher throughput from the underlying resource, by

assembling multiple fine grain transfers into larger, more efficient requests.

- Loop optimization

Loop optimization is transforming a loop in such a way that improves

performance without changing the output. Because many transformations

can come at the cost of readability or maintainability, but this is often left to a

compiler.

Optimizing loops is important in compilation, because loop, in particular the

inner loops, are responsible for much of the execution’s times of many

programs. But what is a loop? The key to a loop is a back edge in the control

flow graph from a node l to a node h that dominates l. h is called the header

node of the loop. The loop itself then consists of the nodes on a path from h

to l. When loops are nested, the inner loops are optimized before the

outside loops, because the inner loops are likely to be executed more often

and it could move computation to an outer loop from which it is hoisted

further when the outer loop is optimized and so on.

Hoisting loop invariant computation is significant, optimizing computation

which changes by a constant amount each time around the loop is probably

even more important. This variable is called basic induction variable. The

opportunity to optimize arises from derived induction variables, which are

variables computed from basic induction variables.

55

- Memory hierarchy optimization

Besides these techniques there are some general advises to take in

consideration when optimize:

- Do not reuse a variable for multiple distinct purpose

- Do not hand unroll loops

- Do not use macros and inline functions without knowing why

56

5. Conclusion

At the beginning, the aim of this thesis was to create a small application with

an integrated code editor able to extend a project, loading new plugins or

creating them directly from the code editor at run time.

5.1 Evolution

Throw-out this thesis is explained all the work that is done for the

development of the application and the result is a small application able to

extend a project by adding new plugins in it or creating them directly using

the code editor. All the plugins are added at run time and also the code

editor let the user to create the new libraries at run time. This code editor lets

the user compiling the code, creating the new plugin and extending the

functionalities of the project without having to save it before.

There are also stated all the research done during the development of the

thesis about the code optimization.

The application is an easy to use tool, which is developed using the Visual

Studio Code IDE that make the code authoring easier, the C# language and

the MEF library which gives the possibility to develop extensible projects.

5.2 Future Work

The aim was to create an application able to extend a project including also

the code editor.

There are also some other features that can be added at this application to

make it more complete.

• Debugging: adding to the code editor the possibility to debug the

57

written code. This will make the code editor more complete and also

make the code authoring easier.

• Optimization: another features that can be added to this application is

the possibility to optimize the code implemented by the user and

giving him the new optimized algorithm in the same code editor

window or in another one. Then, the user can choose rather to use his

code or the new optimized one.

58

6. Bibliography

[1] Microsoft: Visual Studio, http://www.visualstudio.com/

[2] Microsoft: .NET Compiler Platform (“Roslyn”), MSDN, http://msdn.

microsoft.com/en-us/vstudio/roslyn.aspx

[3] Grunwald D.: Using NRefactory for analyzing C# code, CodeProject

2012,

http://www.codeproject.com/Articles/408663/Using-NRefactoryfor-

analyzing-Csharp-code

[4] IC#Code: ILSpy – .NET Decompiler, http://ilspy.net/

[5] Microsoft: Windows Forms, MSDN, http://msdn.microsoft.com/en-us/

library/dd30h2yb.aspx

[6] Microsoft: Windows Presentation Foundation, MSDN, http://msdn.

microsoft.com/en-us/library/ms754130.aspx

[7] IC#Code: AvalonEdit, http://avalonedit.net/

[9] Community: AvalonDock, Codeplex, http://avalondock.codeplex.com/

[10] Code Optimization: https://www.toptal.com/freelance/curse-premature-

optimization

[11] Using NRefactory for analyzing C# code:

https://www.codeproject.com/Articles/408663/Using-NRefactory-for-

analyzing-Csharp-code

[12] Compile code programmatically: https://docs.microsoft.com/en-

us/troubleshoot/dotnet/csharp/compile-code-using-compiler

[13] Managed Extensibility Framework: https://docs.microsoft.com/it-

it/dotnet/framework/mef/

http://www.visualstudio.com/
http://ilspy.net/
http://avalonedit.net/
http://avalondock.codeplex.com/
https://www.toptal.com/freelance/curse-premature-optimization
https://www.toptal.com/freelance/curse-premature-optimization
https://www.codeproject.com/Articles/408663/Using-NRefactory-for-analyzing-Csharp-code
https://www.codeproject.com/Articles/408663/Using-NRefactory-for-analyzing-Csharp-code
https://docs.microsoft.com/en-us/troubleshoot/dotnet/csharp/compile-code-using-compiler
https://docs.microsoft.com/en-us/troubleshoot/dotnet/csharp/compile-code-using-compiler
https://docs.microsoft.com/it-it/dotnet/framework/mef/
https://docs.microsoft.com/it-it/dotnet/framework/mef/

59

[14] Debugger visualizer for SharpDevelop IDE:

http://artax.karlin.mff.cuni.cz/~konim5am/thesis/MartinKonicek_DebuggerVis

ualizers.pdf

[15] An IDE for C# scritp development, Jan Pelc, Prague 2015

http://artax.karlin.mff.cuni.cz/~konim5am/thesis/MartinKonicek_DebuggerVisualizers.pdf
http://artax.karlin.mff.cuni.cz/~konim5am/thesis/MartinKonicek_DebuggerVisualizers.pdf

