
CA’ FOSCARI UNIVERSITY OF VENICE

DEPARTMENT OF
ENVIRONMENTAL SCIENCES, INFORMATICS AND

STATISTICS

Master’s Thesis in
Computer Science

Pruning strategies for Additive Ranking Models

Supervisor: Prof. Salvatore Orlando
Co-Supervisor: PhD Franco Maria Nardini
Co-Supervisor: PhD Salvatore Trani

Candidate:
Francesco Busolin, 851884

Academic Year 2020 - 2021

i

Abstract

The majority of current commercial web search engines rely on addi-
tive machine learned models for ranking web documents. The effort
required to evaluate each document on all the sub models that com-
pose the main one is directly tied to the responsivity of the system
as a whole by influencing the query response time. In this thesis we
explore some strategies which are query dependant and aim to stop
evaluating documents unlikely to be relevant. The strategies are eval-
uated using an ensemble of regression trees as ranking model trained
and tested over the well known MSLR dataset. We show that we can
achieve speed-ups of over 3x with almost no loss in result quality,
evaluated using the NDCG@10 index.

ii

Contents

Preface ix

1 Introduction 1

2 Learning To Rank 4
2.1 Ranking Problem . 4
2.2 Ranking Quality . 5
2.3 Simple Learning to Rank models 6

2.3.1 RankNet . 7
2.3.2 LambdaRank 9
2.3.3 Decision Trees 11

2.4 Ensemble Models . 14
2.4.1 Boosting . 15
2.4.2 MART . 18
2.4.3 LambdaMART 21

3 Faster Ranking 24
3.1 Efficient Tree Traversals 25

3.1.1 Naïve approach 26
3.1.2 IF-THEN-ELSE 26
3.1.3 Prediction . 27
3.1.4 QuickScorer 29

3.2 Document Pruning Strategies 34
3.2.1 Score Based Pruning 36
3.2.2 Rank Based Pruning 37
3.2.3 Proximity Based Pruning 38

4 Analysis Description 39
4.1 Thresholds’ definition 40
4.2 QuickScorer adaptations 41
4.3 Experimental Setting 42

iii

5 Results 44
5.1 General observations 44
5.2 Single sentinel search 47
5.3 Double sentinel search 50
5.4 Final Results . 52

6 Conclusions and Future work 54

iv

List of Algorithms

1 CART growth . 12
2 AdaBoost . 16
3 MART . 21
4 LambdaMART . 23

5 Naïve scoring . 26
6 General bitvector traversal 30
7 QuickScorer . 32
8 Score based pruning 36
9 Rank based pruning 37
10 Proximity based pruning 38

v

List of Tables

4.1 Dataset structure . 43

5.1 Single sentinel with dynamic thresholds 47
5.2 Single deep sentinel with dynamic thresholds 48
5.3 EST static vs dynamic 49
5.4 EPT static vs dynamic 49
5.5 ERT static vs dynamic 49
5.6 Double sentinel search 51
5.7 Python test results 52
5.8 QuickScorer test results 52

vi

List of Figures

1.1 Ranking overview . 3

2.1 Regression tree example 11
2.2 CART result . 13
2.3 Regression tree example with impurities 13
2.4 Ensemble schema . 14
2.5 Boosting overview 15
2.6 AdaBoost schema . 16

3.1 IF THEN ELSE translation 27
3.2 QuickScorer traversal 30
3.3 QuickScorer data structures 33
3.4 EST execution example 36
3.5 ERT execution example 37
3.6 EPT execution example 38

4.1 Sentinel positioning 39
4.2 QuickScorer with Early Exit 42

5.1 Score and relevance distributions 45
5.2 NDCG per tree . 45
5.3 Impact of tree block size 46
5.4 QuickScorer: online and offline read impact 46
5.5 Speedup and NDCG 47
5.6 Dual sentinel plot . 50

vii

viii

Preface

Chapter 1 serves as a general introduction. It starts by giving a brief
overview on the topic of web search to then move the focus towards
ranking and, in particular, Learning To Rank.

Chapter 2 is devoted to explain the problem of ranking and to
give a description of some key techniques and models used in the
field of Learning To Rank, putting a particular stress on ensembles
of tree-based models.

Chapter 3 introduces two different approaches to reduce the cost
of ranking. Firstly, we discuss how to efficiently use large tree ensem-
bles to rank. Then, in the second part of the chapter, we describe a
series of strategies presented by B. Barla Cambazoglu et al. in [18] to
prune from the document collection some of the likely uninteresting
candidates.

Chapter 4 describes the work done for this thesis. In particular
we explain how to modify some of the pruning strategies to make
them adapt to the different distributions of document scores, how
we added the possibility of performing Document Early Exit in the
ranking tool QuickScorer and the experiments done to assess the
validity of this new approach.

Chapter 5 is dedicated to the analysis and the discussions of the
results obtained.

Finally, in chapter 6 we will review and complete the discussion
and give some ideas for possible future developments.

ix

Chapter 1

Introduction

The Internet, and particularly the World Wide Web (WWW), is an
enormous collection of heterogeneous data. So much so that nowa-
days it has become the de-facto standard place where anyone will
look to satisfy any sort of information need they may have. How-
ever, this great repository of data as we know it today is substantially
different from its initial concept. Originally, the Web was born as
a distributed computer platform to share and link documents in a
standardized way among experts. Instead, today the Web is regu-
larly used by billions of users with widely different interests, needs
and capabilities. For this reason, a large number of software tools
have been developed over the years to facilitate the retrieval of in-
formation from the Web.

Typically, people try to satisfy their information needs, namely
their intents, through a specific category of such softwares, called
Web search engines. These have become the universally adopted
interfaces between users and the whole information contained on the
Web. As such, devising, implementing and improving search engines
is an important aspect of the modern era.

As one would expect, search engines are complex products, com-
posed of many different parts, each responsible for a particular task.
Nevertheless, we can simplify a search engine into three main compo-
nents: Crawler, Indexer and Ranker. The crawler is a simple piece of
software which is responsible to traverse the net and download web
documents. These are then parsed by the indexer which builds an
index using the content (keywords) of each page. Then, when a user
submits a query, the query processor will extract some keywords from
it and use the index to retrieve a number of matching documents.
Finally, the ranker sorts the retrieved documents by relevance before
sending them back to the user as a list of URLs.

For the remaining part of this thesis we will focus on ranking, that
1

is to sort documents by their relevance to the user’s query. Unfortu-
nately, the true objective of ranking is not to find which documents
are the most similar to the query content, but it is to promote doc-
uments that better than others satisfy the user’s information need,
and that is far from a trivial task. An important observation of this
last statement is that we will not necessarily find the true relevance
values of documents with respect to a query, but it will be sufficient
to present the results in the right order, hence our aim is to find
the right ordering of documents rather than their ”true” relevance
whatever it may be.

The majority of the modern ranking systems use a considerable
number of parameters, all of which need to be fine-tuned to achieve
acceptable ranking performance. Machine learning has been demon-
strating its effectiveness in automatically tuning parameters, com-
bining multiple evidences, and avoiding overfitting [22]. Therefore,
it seems quite promising to adopt ML technologies to solve our prob-
lem. However, with the except of a few examples, like OPRF in
1989 [2] and SLR in 1992 [3], such methods historically found little
ground in ranking or more generally in Information Retrieval tasks.
This was due majorly to two factors, on one hand for a long time
data was scarce and, outside academic settings, poorly descriptive
of users’ needs. Secondly, most of the early models are either non-
parametric (e.g. Binary, Vector space and Latent semantic models)
or use a very limited amount of parameters (e.g. BM25) and thus
it is possible to tune them manually. Things progressively changed
over time as the explosion of the internet increased exponentially the
availability of data, more sophisticated models were introduced and
ad-hoc techniques for Information Retrieval were presented. As such
in the recent years a new research area emerged called ”Learning To
Rank” with the purpose of using Machine Learning tools to train
ranking models.

Usually, modern ranking architectures are composed by a two-
stage approach. The first stage retrieves from the index a reason-
ably large set of documents, usually by performing some sort of word
matching with the query. This phase is aimed at maximizing the re-
call and is usually carried out by using a simple and fast ranking
function. Learning To Rank models are then employed in the sec-
ond phase to retrieve an even smaller subset of documents with the
objective of maximizing the precision [22].

2

Figure 1.1: Graphical representation of the ranking process.

3

Chapter 2

Learning To Rank

Typically in ranking and even more so in learning to rank problems,
we are not interested in documents nor queries alone but rather in the
relationships between them, as such the common way to represent
instances are the so called query-document pairs. These pairs are
nothing more than feature vectors where the features can describe
characteristics of the document, the associated query or something
linking the two [21]. This representation allows us to view each pair
as a point in ℝ𝑑, where 𝑑 is the number of features.

The Learning to Rank algorithms and techniques that we are go-
ing to discuss are all types of supervised learning, which means that
a perfectly known dataset is required for training. In our case it
consists of a set of query-document pairs labelled by relevance (from
0 being irrelevant to 4 for absolutely relevant). An interesting point
to note is that while it is true that each vector encompasses aspects
of both query and document, in practice we can still group vectors
by query since a typical entry of a dataset is something like [24]:

0 qid:1 1:3 2:0 3:2 4:2 … 135:0 136:0

Where the first value is the target label (relevance), then we have
the query id and after that the list of features. As such, we can view
these vectors improperly but without ambiguity as documents which
are associated to a specified query. After this brief introduction, we
can define more formally the concepts introduced so far.

2.1 Ranking Problem

Let 𝒬 be the set of 𝑄 queries and 𝒟 the set of 𝑁 documents. For
each query 𝑞𝑖 there is a set of documents 𝐷𝑖 = {𝑑𝑖,1, ⋯ , 𝑑𝑖,𝑗, ⋯ , 𝑑𝑖,𝑛𝑖

}
with 𝐷𝑖 ⊆ 𝒟. A feature vector 𝑥𝑖,𝑗 = 𝜙(𝑞𝑖, 𝑑𝑖,𝑗) is crafted for each
pair (𝑞𝑖, 𝑑𝑖,𝑗) so that 𝑥𝑖,𝑗 ∈ 𝒳 and 𝒳 ⊆ ℝ𝑑 where 𝑑 is the number of

4

features. As observed before, we can group feature vectors by query
so that x𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, ⋯ 𝑥𝑖,𝑛𝑖

} is the set of vectors associated to
𝑞𝑖. As such, from now on, unless differently stated, we will use the
terms document, instance and query-document pair interchangeably.
Let the documents in x𝑖 be identified by the integers {1, 2, ⋯ , 𝑛𝑖}.
A ranking 𝜋𝑖 on x𝑖 is a permutation of {1, 2, ⋯ , 𝑛𝑖} where 𝜋𝑖(𝑗)
denotes the rank of document 𝑥𝑖,𝑗. The goal is to train a function
𝐹(x𝑖) = [𝑠1, 𝑠2, ⋯ , 𝑠𝑛𝑖

] which outputs a list of scores such that we
have 𝜋𝑖(𝑗) < 𝜋𝑖(𝑘) ⟺ 𝑠𝑗 > 𝑠𝑘. Generally, the model learned is
local, which means that we learn a scorer 𝑓(𝑥) which takes as input
a single feature vector. Doing so, the model described earlier can be
expressed as 𝐹(x𝑖) = [𝑓(𝑥𝑖,1), ⋯ , 𝑓(𝑥𝑖,𝑛𝑖

)].
To train 𝐹 using a supervised learning method, a set of ground-

truth labels is needed. Let 𝑌 = {y1, ⋯ , y𝑄} be a set of label vectors
with y𝑖 = {𝑦𝑖,1, ⋯ , 𝑦𝑖,𝑛𝑖

} the labels of 𝑞𝑖 where 𝑦𝑖,𝑗 ∈ 𝒴 ⊂ ℕ represent
the relevance of document 𝑑𝑖,𝑗 with respect to the query. Define
𝑆 = {(𝑑𝑖,𝑗, 𝑦𝑖,𝑗)} or equivalently 𝑆 = {(𝑥𝑖,𝑗, 𝑦𝑖,𝑗)} as the training set.
More concisely, 𝑆 = {(x𝑖, y𝑖)}

𝑄
𝑖=1.

2.2 Ranking Quality

Since we assumed to have a labelled set of documents, we can suppose
to have an optimal ranker 𝐹 ∗(𝑞𝑖) = y𝑖 which will result in the optimal
ranking 𝜋∗

𝑖 . Thus, we can compare it with our ranking 𝜋𝑖 and so
measure the ”distance” between the two. There exist a large number
of possible measures to be used, in this work we primarily used the
Normalized Discounted Cumulative Gain (NDCG).

NDCG

The NDCG, as the normalized in its name suggest, is a regular-
ized version of another measure, the DCG or Discounted Cumulative
Gain. The DCG is often used because it takes into account both the
relevance and the position of documents in the result set, supporting
the ones appearing at the top and penalizing those in the tail. Given
a query 𝑞𝑖, a ranking 𝜋𝑖 and the vector of labels yi. The DCG of 𝑞𝑖
is defined as:

𝐷𝐶𝐺(y𝑖, 𝜋𝑖) = ∑
𝑗∈𝜋𝑖

𝐺(y𝑖, 𝑗)𝐷(𝜋𝑖(𝑗))

5

where 𝐺(𝑗) is the a measure of the Gain obtained by ranking a
document in position 𝑗 and takes into account its relevance 𝑦𝑖𝑗. While
𝐷(𝜋) is the Discount which penalizes the measure based on the rank
𝑗. A possible practical implementation of the DCG is the following

𝐷𝐶𝐺(y𝑖, 𝜋𝑖) = ∑
𝑗∈𝜋𝑖

2𝑦𝑖,𝑗 − 1
log2(𝜋𝑖(𝑗) + 1)

In order to normalize the DCG, we need a normalization factor, a
perfect candidate for that is the so-called Ideal DCG, that is, the
DCG that one would obtain if 𝜋𝑖 = 𝜋∗

𝑖 . All things considered, we
can define the NDCG as:

𝑁𝐷𝐶𝐺(y𝑖, 𝜋𝑖, 𝜋∗
𝑖) = 𝐷𝐶𝐺(y𝑖, 𝜋𝑖)

𝐷𝐶𝐺(y𝑖, 𝜋∗
𝑖)

Doing so, we will guarantee that 0 ≤ 𝑁𝐷𝐶𝐺 ≤ 1.

NDCG@K Usually we are really interested only in the first 𝑘 ranks,
as such we can truncate the computation after 𝑘 values:

𝐷𝐶𝐺@𝐾(y𝑖, 𝜋𝑖) = ∑
𝑗∈𝜋𝑖∶𝜋𝑖(𝑗)≤𝑘

2𝑦𝑖,𝑗 − 1
log2(𝜋𝑖(𝑗) + 1)

And consequently:

𝑁𝐷𝐶𝐺@𝐾(y𝑖, 𝜋𝑖, 𝜋∗
𝑖) = 𝐷𝐶𝐺@𝑘(y𝑖, 𝜋𝑖)

𝐷𝐶𝐺@𝑘(y𝑖, 𝜋∗
𝑖)

2.3 Simple Learning to Rank models

In the literature, there exist three main approaches to solve the rank-
ing problem:

• Pointwise: Pointwise solutions work by casting the ranking
problem into one of either regression or classification so to di-
rectly predict the right relevance of each document separately.
Some examples of this category are McRank [14] for classifica-
tion and Prank [6] for regression.

• Pairwise: Pairwise solutions work by predicting the relative or-
der of documents taken in pairs, minimizing the number of pair-
wise errors. Belong to this category models such as RankNet [10],
RankBoost [7], LambdaRank [11], MART [8] and LambdaMART [20].

6

• Listwise: Listwise solutions work by predicting an entire rank-
ing sequence at once by optimizing a query-wise measure (i.e.
NDCG) or by minimizing a loss function defined by considering
all the scores in a given query. Examples of models using this
approach are SoftRank [15], AdaRank [13] and ListNet [12].

Since the model used to score documents in our experiments is a
LambdaMART ensemble [20] we will focus on some key models using
a pairwise approach presented in the last couple of decades. Start-
ing from RankNet, a model built on top of neural networks, up to
ensembles of gradient boosted regression trees.

2.3.1 RankNet

RankNet is a ranking algorithm which uses an underlying model 𝑓
to score documents, such that for any input feature vector 𝑥 ∈ 𝒳
it produces a number ̂𝑦 = 𝑓(𝑥) ∈ ℝ. Such model can be any-
thing for which the output is a differentiable function of the model
parameters (originally RankNet used a neural network) [10]. The
training process works as follow. Given that the problem we are
tackling is ranking, it means that we have the training data parti-
tioned in queries, as such for a given query, each possible pair of
documents 𝑥𝑖 and 𝑥𝑗 is presented to the model which computes the
scores 𝑠𝑖 = 𝑓(𝑥𝑖) and 𝑠𝑗 = 𝑓(𝑥𝑗). Let 𝑥𝑖 ≺ 𝑥𝑗 denote the event
that 𝑥𝑖 should be ranked higher that 𝑥𝑗 or, in other words, that
𝜋∗(𝑥𝑖) < 𝜋∗(𝑥𝑗) ⟹ 𝜋(𝑥𝑖) < 𝜋(𝑥𝑗). The outputs are then mapped
into a probability of this event through a sigmoid function [10, 17]

𝑃𝑖𝑗 ≡ 𝑃(𝑥𝑖 ≺ 𝑥𝑗) = 1
1 + 𝑒−𝜎(𝑠𝑖−𝑠𝑗) = 𝑒𝜎(𝑠𝑖−𝑠𝑗)

1 + 𝑒𝜎(𝑠𝑖−𝑠𝑗) (2.1)

where the parameter 𝜎 dictates the shape of the sigmoid. The use
of a sigmoid is borrowed from the original neural network based
version of RankNet [10]. As Loss function we use the cross entropy,
penalizing the deviation of the model probabilities from the desired
ones. Let ̅𝑃𝑖𝑗 be the known probability of 𝑥𝑖 ≺ 𝑥𝑗. The loss is then

𝐿 = − ̅𝑃𝑖𝑗 log 𝑃𝑖𝑗 − (1 − ̅𝑃𝑖𝑗) log (1 − 𝑃𝑖𝑗) (2.2)

Let

𝑆𝑖𝑗 =
⎧{
⎨{⎩

1, if 𝑓(𝑥𝑖) > 𝑓(𝑥𝑗)
0, if 𝑓(𝑥𝑖) = 𝑓(𝑥𝑗)
−1, if 𝑓(𝑥𝑖) < 𝑓(𝑥𝑗)

(2.3)

7

Since, during training, we know the desired ranking 𝜋∗ we can com-
pute ̅𝑃𝑖𝑗 [17]

̅𝑃𝑖𝑗 = 1
2 (1 + 𝑆𝑖𝑗) (2.4)

Merging these observations gives

𝐿 = 1
2(1 − 𝑆𝑖𝑗)𝜎(𝑠𝑖 − 𝑠𝑗) + log(1 + 𝑒−𝜎(𝑠𝑖−𝑠𝑗)) (2.5)

The loss is symmetric, that is, swapping the roles of 𝑥𝑖 and 𝑥𝑗 (and
the sign of 𝑆𝑖𝑗) does not change it:
If 𝑆𝑖𝑗 = 1 we have

𝐿 = log(1 + 𝑒−𝜎(𝑠𝑖−𝑠𝑗)) (2.6)

while with 𝑆𝑖𝑗 = −1

𝐿 = log(1 + 𝑒−𝜎(𝑠𝑗−𝑠𝑖)) (2.7)

An interesting point is that when 𝑠𝑖 = 𝑠𝑗 the loss is log 2, which
implies that documents with different labels, but to which the model
predicts the same score are still pushed away from each other. More-
over, as desirable, the loss is asymptotically zero when the ranking is
correct [10, 17]. Since RankNet is trained using stochastic gradient
descent [10], the next step is to compute the partial derivatives of the
loss with respect to each of the parameters of the model. Starting
from 𝜕𝐿

𝜕𝑠𝑖
= 𝜎 (1

2(1 − 𝑆𝑖𝑗) − 1
1 + 𝑒𝜎(𝑠𝑖−𝑠𝑗)) = − 𝜕𝐿

𝜕𝑠𝑗
(2.8)

We can update each of the weights 𝑤𝑘 ∈ ℝ as

𝑤𝑘 → 𝑤𝑘 − 𝜂 𝜕𝐿
𝜕𝑤𝑘

= 𝑤𝑘 − 𝜂 (∑
𝑖𝑗

𝜕𝐿
𝜕𝑠𝑖

𝜕𝑠𝑖
𝜕𝑤𝑘

+ 𝜕𝐿
𝜕𝑠𝑗

𝜕𝑠𝑗
𝜕𝑤𝑘

) (2.9)

where 𝜂 is a positive, usually small, learning rate. The change in loss
can be explicated as

𝛿𝐿 = ∑
𝑘

𝜕𝐿
𝜕𝑤𝑘

𝛿𝑘 = ∑
𝑘

𝜕𝐿
𝜕𝑤𝑘

(𝜂 𝜕𝐿
𝜕𝑤𝑘

)

= −𝜂 ∑
𝑘

(𝜕𝐿
𝜕𝑤𝑘

)
2

< 0
(2.10)

The idea of learning using gradient descent is found in many dif-
ferent settings, even where the desired loss does not have well-posed

8

gradients or even when the model itself has non-differentiable param-
eters (such as in boosted regression trees) [11, 8]. Let us now make
some algebraic manipulations to make an observation regarding the
gradient of the loss with respect to the parameters

𝜕𝐿
𝜕𝑤𝑘

= ∑
𝑖𝑗

(𝜕𝐿
𝜕𝑠𝑖

𝜕𝑠𝑖
𝜕𝑤𝑘

+ 𝜕𝐿
𝜕𝑠𝑗

𝜕𝑠𝑗
𝜕𝑤𝑘

)

= ∑
𝑖𝑗

𝜎 (1
2(1 − 𝑆𝑖𝑗) − 1

1 + 𝑒−𝜎(𝑠𝑖−𝑠𝑗)) ⋅ (𝜕𝑠𝑖
𝜕𝑤𝑘

− 𝜕𝑠𝑗
𝜕𝑤𝑘

)

= ∑
𝑖𝑗

𝜆𝑖𝑗 (𝜕𝑠𝑖
𝜕𝑤𝑘

− 𝜕𝑠𝑗
𝜕𝑤𝑘

)

(2.11)
with

𝜆𝑖𝑗 = 𝜎 (1
2(1 − 𝑆𝑖𝑗) − 1

1 + 𝑒−𝜎(𝑠𝑖−𝑠𝑗)) = 𝜕𝐿(𝑠𝑖 − 𝑠𝑗)
𝜕𝑠𝑖

(2.12)

Let 𝐼 denote the set of pairs of indices {(𝑖, 𝑗)} for which 𝜋(𝑖) ≠
𝜋(𝑗) [17]. For convenience let’s include in 𝐼 only the pairs for which
𝑥𝑖 ≺ 𝑥𝑗, so that 𝑆𝑖𝑗 = 1. Now if we compute the gradient step for a
parameter 𝑤𝑘 we obtain [11]

𝛿𝑘 = −𝜂 ∑
(𝑖,𝑗)∈𝐼

(𝜆𝑖𝑗
𝜕𝑠𝑖
𝜕𝑤𝑘

− 𝜆𝑖𝑗
𝜕𝑠𝑗
𝜕𝑤𝑘

) ≡ −𝜂 ∑
𝑖

Λ𝑖
𝜕𝑠𝑖
𝜕𝑤𝑘

(2.13)

where Λ𝑖 is computed by considering all 𝑗 such that (𝑖, 𝑗) ∈ 𝐼 and
all the 𝑘 for which (𝑘, 𝑖) ∈ 𝐼 . In the first case we increment Λ𝑖 by
𝜆𝑖𝑗, in the second we decrement it by 𝜆𝑘𝑖. In general, we have

Λ𝑖 = ∑
𝑗∶(𝑖,𝑗)∈𝐼

𝜆𝑖𝑗 − ∑
𝑗∶(𝑗,𝑖)∈𝐼

𝜆𝑖𝑗 (2.14)

Intuitively, each Λ can be seen as a force pushing a document to
a higher rank if positive and to a lower one if negative. This fact
alone allows for a significant speedup in training time of RankNet,
since it cuts the amount of weight updates required by accumulating
the steps in the Λ’s and only when all pairs of documents have been
evaluated the weights are actually changed [11, 17].

2.3.2 LambdaRank

RankNet has been proven to work generally well, with the desirable
characteristic of following a classic pairwise approach by optimizing

9

for (a smooth and convex approximation of) the number of pairwise
errors [11, 17]. Unfortunately, such approach is not well translated
to the optimization of other IR measures (such as the NDCG). Since
most of those measures involve a sorting operation, then computing
gradients may become problematic. The idea behind LambdaRank
is to bypass the problem by giving the desired gradients directly[11].

Before, we have observed that the Λ’s can be viewed as forces
pushing documents up or down the order. Expanding on this idea,
LambdaRank works by defining an implicit loss function 𝐿 such that
the Λ’s are exactly the gradients 𝜕𝐿

𝜕𝑠𝑖
, without the need of comput-

ing the losses [11]. Empirically it was shown that modifying equa-
tion (2.12) by multiplying by the change in the target IR measure
𝑍 obtained by swapping the ranks of 𝑥𝑖 and 𝑥𝑗 gives excellent re-
sults[11, 17].

𝜆𝑖𝑗 = 𝜕𝐿(𝑠𝑖 − 𝑠𝑗)
𝜕𝑠𝑖

= −𝜎|Δ𝑍𝑖𝑗|
1 + 𝑒𝜎(𝑠𝑖−𝑠𝑗) (2.15)

resulting in

𝜕𝐿
𝜕𝑤𝑘

= ∑
𝑖𝑗

𝜆𝑖𝑗 (𝜕𝑠𝑖
𝜕𝑤𝑘

− 𝜕𝑠𝑗
𝜕𝑤𝑘

)

= ∑
𝑖𝑗

−𝜎|Δ𝑍𝑖𝑗|
1 + 𝑒𝜎(𝑠𝑖−𝑠𝑗) (𝜕𝑠𝑖

𝜕𝑤𝑘
− 𝜕𝑠𝑗

𝜕𝑤𝑘
)

(2.16)

which, as expected, does not require the derivative of the loss with
respect to the scores. Usually, for many measures, it is more natural
to rephrase the minimization of a loss function into a maximization
of an utility. As such, equation (2.9) becomes

𝑤𝑘 → 𝑤𝑘 + 𝜂 𝜕𝐿
𝜕𝑤𝑘

(2.17)

leading to

𝛿𝐿 = 𝜕𝐿
𝜕𝑤𝑘

𝛿𝑘 = 𝜂 (𝜕𝐿
𝜕𝑤𝑘

)
2

> 0 (2.18)

This fact tells us that although IR measures, viewed as functions of
the scores, are either flat or discontinuous everywhere [11], Lamb-
daRank bypasses this issue by computing the gradients after the sort-
ing of the scores. Furthermore, we did not specify which measure to
optimize, suggesting that we are able to quickly adapt LambdaRank
to work with any of them [11, 17].

10

2.3.3 Decision Trees

Two of state-of-the-art ranking models are Gradient Boosted Re-
gression Trees (GBRT) [5] and LambdaMART [11], both of which
are ensembles of decision trees. As such, it is useful to review and
briefly discuss what decision trees are and how they work.

The idea of tree-based models is to partition the input space 𝒳
into disjoint sets 𝑅1, ⋯ , 𝑅𝑗, ⋯ , 𝑅𝐽 . A possible strategy to achieve
this is by performing successive binary splittings based on different
features (as seen in figure 2.1). The final prediction of a sample
𝑥 ∈ 𝑅𝑗 ⊆ 𝒳 will be the average of the responses in his partition,
that is, ̂𝑦(𝑥) = 1

|𝑅𝑗| ∑𝑥𝑖∈𝑅𝑗
𝑦(𝑥𝑖).

Figure 2.1: Example of regression tree with corresponding partitions.
(https://insightr.wordpress.com/2017/09/23/
how-random-forests-improve-simple-regression-trees/)

Since later we are going to use regression trees, let us focus on
those. Suppose we have a scalar outcome 𝑦 ∈ ℝ, and a feature vector
𝑥 ∈ 𝒳 ⊆ ℝ𝑑 composed by 𝑑 features, also called prediction variables.
A regression tree partitions the 𝒳 space into 𝐽 disjoint regions 𝑅𝑗
and provides a value 𝐸(𝑦|𝑥 ∈ 𝑅𝑗) for each of them. To build ”good”
trees, we can use CART, a greedy algorithm which, in general, works
as follow[1]:

1. Grow an oversized tree using forward selection. At each step
select the best split. Grow until all the leaves either

11

https://insightr.wordpress.com/2017/09/23/how-random-forests-improve-simple-regression-trees/
https://insightr.wordpress.com/2017/09/23/how-random-forests-improve-simple-regression-trees/

(a) have < 𝑛 data points, maybe even 𝑛 = 1
(b) are ”pure” (all points have [almost] the same output)

2. Prune the tree back, creating a nested sequence of trees, de-
creasing the overall complexity.

The problem in construction is now how to determine the the best
split at each step. The key idea is to pick the split so that the data in
the resulting descendants are ”purer” then that in the parent. Thus,
the greedy approach tells us to choose the split that leads to the
greatest decrease in impurity [1, 5]. For regression trees, a common
measure of impurity is the residual sum of squares:

𝐷 = 𝑅𝑆𝑆 = ∑
𝑥𝑖∈𝑢𝑗

(𝑦(𝑥𝑖) − 𝜇𝑗)
2 (2.19)

where 𝜇𝑗 is the mean of the 𝑦’s of all points belonging to the same
node 𝑢𝑗 as 𝑥𝑖. The growth proceeds until the aforementioned condi-
tions are met or a custom stopping criterion is reached. Examples of
simple stopping criteria are maximum number of leaves or a maximal
height of the tree.

Algorithm 1: CART growth [1]
Data: S: stopping criterion
𝑇 = {𝑟𝑜𝑜𝑡} ;
Set all samples in the root node ;
while not S do

find best allowed split ;
divide the leaf according to split ;
split the samples in the node into the two new leaves ;

end
After building the initial tree, we need to reduce the complexity

by pruning some of its subtrees. This is necessary because decision
trees that are too large are susceptible to overfitting [16]. Pruning
attempts to improve the generalization capability of a decision tree
by trimming the branches of the initial tree, it is done by following
the steps below:

1. Start from a big tree 𝑇
2. Consider all rooted subtrees ̂𝑇𝑘

3. Let 𝐿𝑖𝑘 be the impurity at leaf 𝑖 in ̂𝑇𝑘

4. Define 𝐿𝑘 = ∑𝑖 𝐿𝑖𝑘 as the impurity of ̂𝑇𝑘

12

5. Let 𝜎𝑘 be the number of leaves in ̂𝑇𝑘

6. Let 𝐿𝛼(𝑇𝑘) = 𝐿𝑘 + 𝛼 ⋅ 𝜎𝑘

The final tree 𝑇𝛼, result of CART, is the nested set 𝑆 of rooted
subtrees of 𝑇 minimizing 𝐿𝛼 = ∑𝑘∈𝑆 𝑅𝛼(̂𝑇𝑘) [16].

(a) Example of regression tree (b) Example of a traversal

Figure 2.2: Example of the result of CART.

Figure 2.3: Example of regression tree with specified the level of impurity in each
node.
(https://www.add-for.com/ensemble-methods-gradient-boosted-trees/)

Trees are a popular choice for a variety of different problems
thanks to some convenient properties: are fast to use, features can
be of heterogeneous type being numerical or categorical, they are
resistant to outliers and there is an automatic intrinsic feature selec-
tion since not all features will be used as prediction variables in the
internal nodes. However, they come also with some disadvantages,
for example, as mentioned before, they are prone to overfitting due
to the fact that each layer of a tree is essentially another AND pred-
icate in a chain which may result in an overly specific sentence [1,

13

https://www.add-for.com/ensemble-methods-gradient-boosted-trees/

16]. On the other hand, trees can be inherently inaccurate if not
complex enough, those are the main reasons why they are almost
always used in ensembles where these weaknesses can be mitigated
by distributing the complexity among different trees [1, 8].

2.4 Ensemble Models

Many machine-learned ranking architectures are based on ensem-
bles of models, where many scorers are executed sequentially in a
chain and score contributions of individual scorers are accumulated
to compute the final document prediction. For this reason, we will
first give an overview of the general idea of ensemble models, how
it is translated to regression trees and then we will focus on how to
train them using Boosting and in particular Gradient Boosting.

Figure 2.4: A typical ensemble architecture[27]

An Ensemble is a cooperation of a group of independent models
whose individual results are combined to create a final unique pre-
diction, hopefully more accurate than each single model prediction.
In other words, an ensemble is a set of individually trained models
whose outputs are combined when classifying new instances. A pop-
ular kind of ensembles are additive ensembles where the final result
is a linear combination of the individual predictions (in case of clas-
sification is a weighted voting) [8, 17]. Let 𝑀 = {𝑚1, ⋯ , 𝑚𝑛} be
an additive ensemble of 𝑛 models and Θ = {𝜃1, ⋯ , 𝜃𝑛} a set of 𝑛
multipliers. The score given by the ensemble 𝑀 to a instance 𝑥 is

𝑀(𝑥) = 𝜃1𝑚1(𝑥) + … + 𝜃𝑛𝑚𝑛(𝑥) =
𝑛

∑
𝑖=1

𝜃𝑖𝑚𝑖(𝑥) (2.20)

14

2.4.1 Boosting

Boosting refers to a general technique to combine a set of weak learn-
ers1 (i.e., shallow regression trees) into an ensemble to build a more
reliable and performant model. Boosting is based on the assumption
that training (or craft) many weak learners is easier that training
a single powerful predictor [9]. The general procedure works by re-
peating for 𝑀 boosting rounds a training algorithm, building each
time a new model trained upon a weighted dataset where each sam-
ple weight is proportional to the mispredictions of that sample in
the previous round, in this way we emphasize those which are hard
to predict correctly. Finally, we will have an ensemble where each
component tries to rectify the mistakes of the others. The final result
will be again a weighted sum of the weak predictions.

Figure 2.5: Boosting Overview.
(https://www.geeksforgeeks.org/ml-xgboost-extreme-gradient-boosting/)

To give a practical example of how a boosting model is trained
let’s review one of the first of such models, AdaBoost [9]. In its initial
formulation, AdaBoost was designed for a generic binary classifica-
tion problem. Given a training set 𝑆 = {(𝑥1, 𝑦1), ⋯ , (𝑥𝑚, 𝑦𝑚)} with
𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌 = {−1, +1}. Set a number of rounds 𝑀 . For
each example in 𝑆 set a weight 𝐷𝑡(𝑖) being the one given to example
𝑖 in round 𝑚, for the first round set all equal weights. With these
premises, we can summarize AdaBoost in algorithm 2.

1simple models whose performances (accuracy) are at least better than chance

15

https://www.geeksforgeeks.org/ml-xgboost-extreme-gradient-boosting/

Figure 2.6: Visualization of the AdaBoost training process.
(https://www.pluralsight.com/guides/ensemble-methods:
-bagging-versus-boosting)

Algorithm 2: AdaBoost
foreach 𝑖 ∈ {1, … , 𝑚} do

𝐷1(𝑖) = 1
𝑚

end
foreach 𝑚 ∈ {1, ⋯ , 𝑀} do

train a weak classifier ℎ𝑚 on 𝑆 with weights 𝐷𝑚 ;
choose (or learn) a weight 𝛼𝑚 ;
update the examples weights:

𝐷𝑚+1(𝑖) = 𝐷𝑚(𝑖)𝑒−𝛼𝑚𝑦𝑖ℎ𝑚(𝑥𝑖)

𝑍𝑚

with 𝑍𝑚 normalization factor so that ∑𝑖 𝐷𝑚+1(𝑖) = 1;
end
build the final classifier H(x) = sign(∑𝑚 𝛼𝑚ℎ𝑚(𝑥)) ;
The choice of the weights 𝛼’s, also called expansion multipliers [8],

is done to give a measure of importance to each learner. In the
AdaBoost paper, a suggested value for binary classifiers is

𝛼𝑚 = 1
2 log (1 − 𝜖𝑚

𝜖𝑚
)

where 𝜖𝑚 is the error of the classifier[4]:

𝜖𝑚 = 𝑃 𝑟𝑖∼𝐷𝑖
(ℎ𝑚(𝑥𝑖) ≠ 𝑦𝑖)

However, as we will see, those weights could be also part of the
training process [8, 20].

16

https://www.pluralsight.com/guides/ensemble-methods:-bagging-versus-boosting
https://www.pluralsight.com/guides/ensemble-methods:-bagging-versus-boosting

Gradient Boosting

Gradient boosting is a variant of the general boosting method used to
perform gradient descent (or ascend) or otherwise hard to optimize
loss (or utility) functions. To better formulate this idea, consider
now the problem of function estimation. In such problems, starting
from a training set of known (𝑥, 𝑦) pairs, one would like to obtain a
function 𝐹 ∗(𝑥) that maps 𝑥 to 𝑦 such that the chosen loss function
𝐿(y, 𝐹 (x)) is minimized [5]:

𝐹 ∗(x) = arg min
𝐹(x)

𝐸y,x𝐿(𝑦, 𝐹(x)) (2.21)

Boosting, as seen in (2.20), finds an additive approximation 𝐹 in the
form:

𝐹(𝑥) = ∑
𝑚

𝛼𝑚ℎ𝑚(𝑥, a𝑚) (2.22)

where the function ℎ𝑚(𝑥, a𝑚) is the weak learner obtained in the
𝑚-th round and a𝑚 are the parameters of that model. Both the
expansion multipliers 𝛼’s and the parameters a’s are learned from the
training data. At each step 𝑚 of the boosting process, we augment
the overall model as such:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛼𝑚ℎ𝑚(𝑥, a𝑚) (2.23)

Gradient boosting finds an approximated solution of the minimiza-
tion problem in two steps. First, we fit ℎ(𝑥, a) using a least-squares
rule:

a𝑚 = arg min
a,𝜌

∑
𝑖

(̅𝑦𝑖𝑚 − 𝜌 ⋅ ℎ(𝑥𝑖, a))2 (2.24)

where ̅𝑦 are called pseudo-residuals [8]:

̅𝑦𝑖𝑚 = − [𝜕𝐿(𝑦𝑖, 𝐹 (𝑥𝑖))
𝜕𝐹(𝑥𝑖)

]
𝐹(𝑥)=𝐹𝑚−1(𝑥)

(2.25)

Then the multiplier 𝛼 is computed:

𝛼𝑚 = arg min
𝛼

∑
𝑖

𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛼ℎ𝑚(𝑥, a𝑚)) (2.26)

In this way, the original minimization problem (2.21) is replaced by
a likely simpler least-square formulation (2.24) followed by a single
parameter optimization (2.26).

17

2.4.2 MART

MART, which stands for Multiple Additive Regression Trees [8], is
a gradient boosting algorithm which, as the name suggests, uses re-
gression trees. Similarly to what defined in equation (2.22), a MART
model can be summarized as:

𝐹𝑀(𝑥) =
𝑀

∑
𝑖=1

𝛼𝑖𝑓𝑖(𝑥) (2.27)

where each 𝑓𝑖(𝑥) is a function modeled by the 𝑖𝑡ℎ regression tree and
𝛼𝑖 is the weight associated with it.
Let

𝐼(𝑝) = {1, if 𝑝 is true
0, otherwise

(2.28)

So that each tree 𝑇𝑖 = (𝑋, {𝑅𝑗𝑚}𝐽
1) gives a score

𝑓𝑖(𝑥) =
𝐽

∑
𝑗=1

̅𝑦𝑗𝑚𝐼(𝑥 ∈ 𝑅𝑗𝑚) (2.29)

where ̅𝑦𝑗𝑚 = 𝑚𝑒𝑎𝑛𝑥𝑖∈𝑅𝑗𝑚
(̅𝑦𝑖𝑚) is the mean of the pseudo-residuals

(2.25) in each region 𝑅𝑗𝑚 at iteration 𝑚. The parameters a𝑚, first
seen in (2.22), are the regions of the current tree. With trees, the
minimization problem (2.26) can be solved separately within each
region 𝑅𝑗𝑚 defined by the corresponding leaf node 𝑗 of the 𝑚𝑡ℎ
tree [8]. Since trees predict a constant value for each leaf, the solution
to problem (2.21) is simplified to

𝛾𝑗𝑚 = arg min
𝛾

∑
𝑥𝑖∈𝑅𝑗𝑚

𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥) + 𝛾) (2.30)

In MART, the hyper-parameters that need to be chosen before train-
ing are: the number of trees, the number of leaves and a positive
fixed learning rate 𝜂. MART trains the trees sequentially using
gradient descent [8]. Suppose that 𝑚 − 1 trees are already being
trained, the 𝑚𝑡ℎ tree will model the 𝑛 derivatives of the loss with
respect to the current model score evaluated at each training sample:

𝜕𝐿
𝜕𝐹𝑚−1

(𝑥𝑖), 𝑖 = 1 ⋯ , 𝑁 . Giving:

𝛿𝐿 ≈ 𝜕𝐿(𝐹𝑚−1)
𝜕𝐹𝑚−1

𝛿𝐹 (2.31)

18

if we take 𝛿𝐹 = −𝜂𝜕𝐿(𝐹𝑚−1)
𝜕𝐹𝑚−1

then 𝛿𝐿 < 0. The new model is then:

𝐹𝑚(𝑥𝑖) = 𝐹𝑚−1(𝑥𝑖) + 𝜂
𝐿

∑
𝑘=1

𝛾𝑘𝑚𝐼(𝑥𝑖 ∈ 𝑅𝑘𝑚)

To better appreciate how to combine the ideas of MART and
LambdaRank to obtain LambdaMART, which is to be discussed later
in section 2.4.3, let us examine how MART actually works in a simple
binary classification problem [17]. Let the labels be 𝑌 = {−1, +1}.
Denote the conditional probabilities 𝑃+ ≡ 𝑃(𝑦 = 1|𝑥) and 𝑃− ≡
𝑃(𝑦 = −1|𝑥). For convenience, define also two indicator functions:

𝐼+(𝑥𝑖) = {1, if 𝑦𝑖 = +1
0, if 𝑦𝑖 = −1 (2.32)

and

𝐼−(𝑥𝑖) = {1, if 𝑦𝑖 = −1
0, if 𝑦𝑖 = +1 (2.33)

As Loss function, we use the cross-entropy:

𝐿(𝑦, 𝐹) = −𝐼+ log 𝑃+ − 𝐼− log 𝑃− (2.34)

Thus, if 𝐹(𝑥) is the model output, we can compute both probabilities
as

𝑃+ = 1
1 + 𝑒−2𝜎𝐹(𝑥) , 𝑃− = 1 − 𝑃+ = 1

1 + 𝑒2𝜎𝐹(𝑥) (2.35)

which results in

𝐿(𝑦, 𝐹) = log (1 + 𝑒−2𝑦𝜎𝐹) (2.36)

The gradients of the loss with respect to the scores are the pseudo-
residuals defined in gradient boosting:

̅𝑦𝑖 = − [𝜕𝐿(𝑦𝑖, 𝐹 (𝑥𝑖))
𝜕𝐹(𝑥𝑖)

]
𝐹(𝑥)=𝐹𝑚−1(𝑥)

= 2𝑦𝑖𝜎
1 + 𝑒2𝑦𝑖𝜎𝐹𝑚−1(𝑥𝑖) (2.37)

Given that we are using regression trees, our goal is to find the
(approximate) optimal step for each leaf, that is

𝛾𝑗𝑚 = arg min
𝛾

∑
𝑥𝑖∈𝑅𝑗𝑚

log(1 + 𝑒−2𝑦𝑖𝜎(𝐹𝑚−1(𝑥𝑖)+𝛾)) ≡ arg min
𝛾

𝑔(𝛾)

(2.38)
19

Using Newton’s approximation, for a function 𝑔(𝛾) a step towards
an extremum of 𝑔 is

𝛾𝑛+1 = 𝛾𝑛 − 𝑔′(𝛾𝑛)
𝑔″(𝛾𝑛) (2.39)

Starting from 𝛾 = 0 we want to compute

arg min
𝛾

𝑔(𝛾) = arg min
𝛾

∑
𝑥𝑖∈𝑅𝑗𝑚

log 𝑆𝑖(𝛾) (2.40)

with 𝑆𝑖(𝛾) = 1 + 𝑒−2𝑣𝑖 = 1 + 𝑒−2𝑦𝑖𝜎(𝐹𝑚−1(𝑥𝑖)+𝛾).
Expanding from this we have

𝑔′ = ∑
𝑥𝑖∈𝑅𝑗𝑚

1
𝑆𝑖

(−2𝑦𝑖𝜎𝑒−2𝑣𝑖)

𝑔″ = ∑
𝑥𝑖∈𝑅𝑗𝑚

−1
𝑆2

𝑖
(−2𝑦𝑖𝜎𝑒−2𝑣𝑖)2 − 2𝑦𝑖𝜎

𝑆𝑖
(−2𝑦𝑖𝜎)𝑒−2𝑣𝑖

= ∑
𝑥𝑖∈𝑅𝑗𝑚

4
𝑆2

𝑖
𝑦2

𝑖 𝜎2𝑒−2𝑣𝑖

(2.41)

However,

̅𝑦𝑖 = 2𝑦𝑖𝜎
1 + 𝑒2𝑦𝑖𝐹 ⟹ 𝑔′ = ∑

𝑥𝑖∈𝑅𝑗𝑚

− 2𝑦𝑖𝜎
𝑒2𝑣𝑖𝑆𝑖

= ∑
𝑥𝑖∈𝑅𝑗𝑚

− ̅𝑦𝑖 (2.42)

And
𝑔″ = ∑

𝑥𝑖∈𝑅𝑗𝑚

4𝑦2
𝑖 𝜎2

(1 + 𝑒2𝑣𝑖)2𝑒2𝑣𝑖 (2.43)

Given that 𝑦2
𝑖 = +1 we know that

| ̅𝑦𝑖| = 2𝜎
1 + 𝑒2𝑣𝑖

(2.44)

so
| ̅𝑦𝑖|(2𝜎 − | ̅𝑦𝑖|) = 4𝜎2𝑒2𝑣𝑖

(1 + 𝑒2𝑣𝑖)2 (2.45)

Ultimately resulting in

𝛾𝑗𝑚 = − 𝑔′

𝑔″ =
∑𝑥𝑖∈𝑅𝑗𝑚

̅𝑦𝑖

∑𝑥𝑖∈𝑅𝑗𝑚
| ̅𝑦𝑖|(2𝜎 − | ̅𝑦𝑖|)

(2.46)

One last consideration is that we no longer need the 𝛼’s since that
information is now encapsulated inside the 𝛾’s which, as described

20

above, can be computed directly in some cases or be approximated
via Newton’s approximation in the others. This simplifies the overall
formulation to just

𝐹𝑀(𝑥) =
𝑀

∑
𝑖=1

𝑓𝑖(𝑥)

Algorithm 3: MART
Data: M: number of rounds; N: number of samples
𝐹0 = arg min𝛾 ∑𝑁

𝑖=1 𝐿(𝑦𝑖, 𝛾) ;
foreach 𝑚 ∈ {1, ⋯ 𝑀} do

̅𝑦𝑖𝑚 = − [𝜕𝐿(𝑦,𝐹(𝑥𝑖))
𝜕𝐹(𝑥𝑖)]

𝐹(𝑥)=𝐹𝑚−1(𝑥)
, 𝑖 = 1, 𝑁 ;

{𝑅𝑗𝑚}𝐽
1 = new Tree ({ ̅𝑦𝑖𝑚, 𝑥𝑖}𝑁

1) ;
𝛾𝑗𝑚 = arg min𝛾 ∑𝑥𝑖∈𝑅𝑗𝑚

𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛾) ;
𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜂 ∑𝑗 𝛾𝑗𝑚𝐼(𝑥 ∈ 𝑅𝑗𝑚) ;

end

2.4.3 LambdaMART

In this section, we will describe how to modify MART in order to
be able to give a value for each of the 𝛾’s depending only on the
scores and the relative ordering of all document pairs, thus making
the computation of gradients completely implicit. We will do that by
adapting the ideas described in section 2.3.2 regarding LambdaRank
into MART to obtain LambdaMART.

To define each step 𝛾, in MART we need to compute the pseudo
residuals ̅𝑦, which in our case will be the Λ’s. Recalling from equa-
tion (2.12) we know that

𝜆𝑖𝑗 = −𝜎|Δ𝑍𝑖𝑗|
1 + 𝑒𝜎(𝑠𝑖−𝑠𝑗) (2.47)

also
Λ𝑖 = ∑

𝑗∶(𝑖,𝑗)∈𝐼
𝜆𝑖𝑗 − ∑

𝑗∶(𝑗,𝑖)∈𝐼
𝜆𝑖𝑗 (2.48)

To simplify the notation, define
Λ𝑖 ≡ ∑

(𝑖,𝑗)⇌𝐼
𝜆𝑖𝑗 = ∑

𝑗∶(𝑖,𝑗)∈𝐼
𝜆𝑖𝑗 − ∑

𝑗∶(𝑗,𝑖)∈𝐼
𝜆𝑖𝑗 (2.49)

Thus, we can define an implicit utility function 𝐿 for which Λ𝑖 is its
derivative

𝐿 = ∑
(𝑖,𝑗)⇌𝐼

|Δ𝑍𝑖𝑗| log (1 + 𝑒−𝜎(𝑠𝑖−𝑠𝑗)) (2.50)

21

so that

𝜕𝐿
𝜕𝑠𝑖

= ∑
(𝑖,𝑗)⇌𝐼

−𝜎|Δ𝑍𝑖𝑗|
1 + 𝑒𝜎(𝑠𝑖−𝑠𝑗) ≡ ∑

(𝑖,𝑗)⇌𝐼
−𝜎|Δ𝑍𝑖𝑗|𝜌𝑖𝑗 (2.51)

with2

𝜌𝑖𝑗 = 1
1 + 𝑒𝜎(𝑠𝑖−𝑠𝑗) = −𝜆𝑖𝑗

𝜎|Δ𝑍𝑖𝑗|
(2.52)

So that
𝜕2𝐿
𝜕𝑠2

𝑖
= ∑

(𝑖,𝑗)⇌𝐼
𝜎2𝜌𝑖𝑗(1 − 𝜌𝑖𝑗)|Δ𝑍𝑖𝑗| (2.53)

Putting everything together we can compute the step for each leaf.
Given a leaf 𝑘 the gradient step at round 𝑚 for that leaf is [20]

𝛾𝑘𝑚 =
∑𝑥𝑖∈𝑅𝑘𝑚

𝜕𝐿
𝜕𝑠𝑖

∑𝑥𝑖∈𝑅𝑘𝑚
𝜕2𝐿
𝜕𝑠2

𝑖

(2.54)

Finally we have

𝛾𝑘𝑚 =
− ∑𝑥𝑖∈𝑅𝑘𝑚

∑{𝑖,𝑗}⇌𝐼 |Δ𝑍𝑖𝑗|𝜌𝑖𝑗
∑𝑥𝑖∈𝑅𝑘𝑚

∑{𝑖,𝑗}⇌𝐼 |Δ𝑍𝑖𝑗|𝜎𝜌𝑖𝑗(1 − 𝜌𝑖𝑗)
(2.55)

All the above allows to compute the value of any given leaf in the
ensemble based only on scores or pairwise changes in the target IR
measure up to that point, without the need to perform any derivative.

One of the perks of LambdaMART is that, since each tree mod-
els the Λ𝑖 for the entire dataset and not just for a single query [20,
17], it is able to decrease the utility for some queries as long as the
overall utility of the ensemble increases. This is possible since Lamb-
daMART updates the weights only after all data has been examined,
this means that although it changes only a few parameters at a time
(the current leaves’ values), those are influenced by all training sam-
ples, since all of them will land on some leaf of the current tree [20,
17].

2That is indeed correct since

𝜕𝐿
𝜕𝑠𝑖

= ∑
(𝑖,𝑗)⇌𝐼

−𝜎|∆𝑍𝑖𝑗|𝜌𝑖𝑗 = ∑
(𝑖,𝑗)⇌𝐼

−𝜎|∆𝑍𝑖𝑗|
1 + 𝑒𝜎(𝑠𝑖−𝑠𝑗) = ∑

(𝑖,𝑗)⇌𝐼
𝜆𝑖𝑗 = Λ𝑖

22

Algorithm 4: LambdaMART
Data: M: number of rounds; N: number of samples; L: number of leaves

per tree
foreach 𝑖 ∈ {1 … , 𝑁} do

𝐹0(𝑥𝑖) = BaseModel(𝑥𝑖);
end
foreach 𝑘 ∈ {1, … , 𝑀} do

foreach 𝑖 ∈ {1, … , 𝑁} do
𝑦𝑖 = Λ𝑖;
𝑤𝑖 = 𝜕𝑦𝑖

𝜕𝐹𝑘−1(𝑥𝑖) ;
end
{𝑅𝑙𝑘}𝐿

𝑙=1 // create L leaf tree on {𝑥𝑖, 𝑦𝑖}𝑁
𝑖=1 ;

𝛾𝑙𝑘 = ∑𝑥𝑖∈𝑅𝑙𝑘
𝑦𝑖

∑𝑥𝑖∈𝑅𝑙𝑘
𝑤𝑖

;
𝐹𝑘(𝑥𝑖) = 𝐹𝑘−1(𝑥𝑖) + 𝜂 ∑𝑙 𝛾𝑙𝑘𝐼(𝑥𝑖 ∈ 𝑅𝑙𝑘)

end

23

Chapter 3

Faster Ranking

The ranking process is a demanding, yet invaluable, task for Web
search engines, which on one hand need to maximize the quality of
the response to the users’ queries but on the other they also need to
minimize the time required to process a query [18, 26]. As we dis-
cussed, many of the modern ranking models are based upon ensem-
bles of regression trees [8, 20]. Such ensembles are typically composed
of hundreds or even thousands of trees, all of which to be traversed
at scoring time by any given document. As intuition suggests, it has
been shown that such rankers are the most impacting component in
terms of computational time, thus heavily influencing the latency and
throughput of query processing. Therefore, devising techniques and
strategies to speed up document ranking without losing in quality is
definitely a hot research topic in web search [19, 23, 25, 26].

In this chapter we are going to discuss two different approaches,
firstly we present various techniques of traversing trees and how we
can optimize this task at low level by using a clever representation of
each tree which provides a better usage and management of resources
leading to a lower running time [26]. In the second part we are going
to see how to sacrifice some potential quality in order to reduce
significantly the overall amount of trees to traverse and thus how to
find a good trade-off between speed and quality [18].

Let us now recall all the needed concepts from previous chapters:
By the additive nature of ensembles such as MART or LambdaMART
models, we know that the score of a document 𝑥 = [𝑣1, 𝑣2, … , 𝑣𝑑]
composed by 𝑑 features is

𝑠(𝑥) = 𝐹𝑀(𝑥) =
𝑀

∑
𝑖=1

𝑤𝑖𝑓𝑖(𝑥) (3.1)

where 𝑓𝑖 is a scorer of an ensemble ℳ = {𝑓1, ⋯ , 𝑓𝑀} of 𝑀 scorers
evaluated in sequence and 𝑤𝑖 is the weight associated with the 𝑖𝑡ℎ

24

model. The result of ranking, 𝜋, is then a sorted sequence of the ids
referring to the 𝑘 highest scored documents. From now now we will
suppose that ℳ is an ensemble of decision trees, which means that
each of them is composed by a set of internal nodes 𝐼 = {𝑢0, 𝑢1, …}
and a set of leaves 𝐿 = {𝑙0, 𝑙1, …} enumerated in breadth-first order.
Each 𝑢 ∈ 𝐼 is associated with a Boolean test over a feature with id
𝜙 (meaning 𝑣𝜙 ∈ 𝑉), and a constant threshold 𝜃 ∈ ℝ. We assume
that 𝑥 is densely packed in a floating-point array. This means that
performing the test at each node consists in a simple access to an
array and a numerical comparison, being 𝑥[𝜙] < 𝜃. Each leaf 𝑙𝑗 stores
a prediction value 𝛾𝑗 representing the potential contribution of the
tree to the score of 𝑥. We denote as false nodes all of whose test
is evaluated to false and true nodes the others [26]. In general, the
traversal of a tree begins at its root and recursively proceeds towards
the leaves by answering to the internal nodes’ tests. If a node is a
false one then the right branch is picked, otherwise the node is true
and the left branch is the one taken. When we arrive at a leaf then
its 𝛾 is returned. Such leaf is called an exit node and it is denoted
as 𝑒(𝑥) [26]. The tree traversal is then repeated for all other trees in
the ensemble. Using this slightly new notation, we can rewrite the
equation (3.1) as

𝑠(𝑥) = 𝐹𝑀(𝑥) =
𝑀

∑
𝑖=1

𝑤𝑖 ⋅ 𝑒𝑖(𝑥).𝛾 (3.2)

where 𝑒𝑖(𝑥).𝛾 is the value stored in the exit node of the 𝑖𝑡ℎ tree.

3.1 Efficient Tree Traversals

In order to be able to process a large quantity of queries and, at the
same time, guarantee a low response time to the users, the time bud-
get available to the final ranking of candidate documents is reduced
as much as possible [19, 26], therefore an ever increasing number
of optimizations are being presented. In the following section we
are going to discuss a particular kind of optimization regarding the
traversal of decision trees, starting from a naive approach up to a
modern algorithm based on bitvectors [26].

25

3.1.1 Naïve approach

A first and very basic traversal algorithm is a classic recursive proce-
dure. Exactly as described earlier, the traversal starts from the root
and moves down following a path to the leaves accordingly to the re-
sults of the Boolean conditions on the traversed nodes. This simple
approach, however, is unnecessarily slow for a number of reasons.
First, the next node to be processed is known only after the test
is evaluated. This entails that the next instruction to be executed
is not known, this induces frequent control hazards, i.e., instruction
dependencies introduced by conditional branches [23, 26]. As a con-
sequence, the efficiency of a code is strongly related to the branch
misprediction rate of the processor. Finally, the traversal has low
temporal and spatial locality, heavily hindering the cache hit ratio.
This becomes more prominent when dealing with a large number of
documents traversing a large ensemble of trees, since neither the doc-
uments nor the trees may fit in the cache[25, 26]. Although this last
issue can be mitigated by preemptively storing the whole tree in a
contiguous chunk of memory (STRUCT+ [23]), the former requires
some more advanced techniques to reduce the number of mispredic-
tions.

Algorithm 5: Naive Tree Scoring
def score(x: featureVector, u: treeNode):

if u.isLeaf() then
return 𝑢.𝛾;

end
else

if 𝑥[𝑢.𝜙] < 𝑢.𝜃 then
return score(x, u.left);

end
else

return score(x, u.right);
end

end

3.1.2 IF-THEN-ELSE

Another basic, yet surprisingly performing, approach is to translate
each tree into a nested sequence of conditional sentences. The result-
ing code is then compiled (i.e., in C) to generate the final scorer. This
strategy will produce a static description of the tree and thus makes

26

the generated machine instructions more compact, allowing a better
use of the instruction cache, significantly improving reference local-
ity and, as by product, slightly reducing the branch mispredictions
thanks to optimizations done by the compiler[23, 26].

(a) Example of regression tree (b) Corresponding translation

Figure 3.1: Comparison of a graphical representation of a tree with its IF THEN
ELSE translation

3.1.3 Prediction

A possible strategy to reduce branch mispredictions is to remove
branches altogether. This idea, known as Prediction, is widely used
in the field of compilers and it works by transforming control depen-
dencies into data dependencies (i.e., an instruction needs the result
of the previous one), removing jumps from the resulting assembly
code [23]. In the context of tree traversal, Prediction is implemented
by adding to each node, alongside the test feature id and threshold,
an array idx containing a pair of indexes referring to the left and
right child of the node respectively. Then the result of the compar-
ison 𝑥[𝜙] > 𝜃 is used directly as index of this array, retrieving the
next node to process. Finally, the whole traversal loop is unrolled
into ℎ operations, where ℎ is the height of the tree. In the end we
achieve a simple sequence of operations [23]:

ℎ 𝑠𝑡𝑒𝑝𝑠

⎧{{
⎨{{⎩

𝑗 ← 𝑢0.idx[𝑥[𝜙0] > 𝜃0]
𝑗 ← 𝑢𝑗.idx[𝑥[𝜙𝑗] > 𝜃𝑗]

⋮
𝑗 ← 𝑢𝑗.idx[𝑥[𝜙𝑗] > 𝜃𝑗]

(3.3)

27

Leaf nodes are trivially encoded using placeholder tests which in turn
will induce self-loops. At the end, the exit node of 𝑥 is identified by
𝑗 and its 𝛾 will be recovered using a lookup table. While Predic-
tion clearly solves the problem of control dependencies, it inherently
worsens the problem of data dependency. Furthermore, it adds a
new considerable overhead for many samples since even if 𝑥 reaches
an early leaf, it will perform all subsequent steps anyway [23].

Vectorized Prediction

To reduce the impact of data dependencies, we can try to borrow a
technique widely used in databases called vectorization. In practice,
it consists in evaluating multiple vectors at once, in an interleaved
fashion. Thus, while the processor is waiting for a memory access,
we are able to start working on another sample. For example, say
that we process 4 instances in parallel, the resulting instructions will
look like [23]:

⋮
𝑗0 ← 𝑢𝑗0

.idx[𝑥[𝜙𝑗0
] > 𝜃𝑗0

]
𝑗1 ← 𝑢𝑗1

.idx[𝑥[𝜙𝑗1
] > 𝜃𝑗1

]
𝑗2 ← 𝑢𝑗2

.idx[𝑥[𝜙𝑗2
] > 𝜃𝑗2

]
𝑗3 ← 𝑢𝑗3

.idx[𝑥[𝜙𝑗3
] > 𝜃𝑗3

]
𝑗0 ← 𝑢𝑗0

.idx[𝑥[𝜙𝑗0
] > 𝜃𝑗0

]
𝑗1 ← 𝑢𝑗1

.idx[𝑥[𝜙𝑗1
] > 𝜃𝑗1

]
𝑗2 ← 𝑢𝑗2

.idx[𝑥[𝜙𝑗2
] > 𝜃𝑗2

]
𝑗3 ← 𝑢𝑗3

.idx[𝑥[𝜙𝑗3
] > 𝜃𝑗3

]
⋮

(3.4)

The idea is to traverse a layer in the tree with many instances at
once. So that while we are waiting for the memory answering to
𝑥[𝜙𝑗0

] operations needed to access 𝑥[𝜙𝑗1
] can be started, and so on.

Hopefully, by the time the final memory access has been dispatched,
the contents of the first memory access are available, and we can
continue without processor stalls [23]. In this manner, we expect
vectorization to mask memory latencies, thus reducing the impact of
dependencies between instructions [23].

28

3.1.4 QuickScorer

An entirely different approach is to restate the problem of tree traver-
sal into a series of bitwise operations between bitvectors. This new
strategy will produce a bitvector encoding the exit leaf for a given
document [26]. A first nice property of this idea is that, thanks to
the nature of bitwise operations, it’s insensible to the order in which
the nodes are processed.

To better understand how can we implement this idea let us start
from a more general approach. Given a feature vector 𝑥, a tree
𝑇ℎ(𝐼ℎ, 𝐿ℎ) with nodes enumerated in a breath-wise manner and a
set of candidate exit leaves 𝒞ℎ ⊆ 𝐿ℎ, initially containing all leaves.
The goal is to refine 𝒞ℎ until it contains only one element which
will be the exit leaf of 𝑥 [26]. The algorithm works by evaluating
the internal nodes in an arbitrary order. For any node 𝑢 ∈ 𝐼ℎ if it
is a false node then all leaves in its left subtree cannot be the exit
leaf and so are removed from 𝒞ℎ, likewise if 𝑢 is a true node then
the leaves in the right subtree are removed. Once all the nodes are
considered, 𝒞ℎ will surely contain only 𝑒(𝑥). This initial formulation
does not induce a clear advantage in traversing the trees since we are
performing all nodes’ tests. However, suppose now to have an ora-
cle called FindFalse that given a tree will return all its false nodes
without evaluating any of the true nodes. With that we can remove
from 𝒞ℎ all the leaves in the left subtrees of the nodes returned by
the oracle, unfortunately now 𝒞ℎ will contain more than one node.
To understand this, consider the edge case in which 𝑇ℎ has no false
nodes, then we will not remove any node from 𝒞ℎ and thus it will
still be equal to 𝐿ℎ. This issue is resolved by the interesting fact
that the exit leaf will always be the leftmost leaf still in 𝒞ℎ, being
the one with the lowest identifier [26] (see the proof of theorem 1).
To perform operations in 𝒞ℎ efficiently represent it using a bitvec-
tor vℎ, where each bit corresponds to a leaf in 𝐿ℎ. Each internal
node 𝑢 is also associated with a bitvector acting as a mask signal-
ing the leaves to be removed from 𝒞ℎ whenever 𝑢 is a false node.
Doing so, performing a bitwise AND between 𝑣ℎ and the mask of
a false node 𝑢 is equivalent to removing all leaves in the left sub-
tree of 𝑢 from 𝒞ℎ [26]. This approach is summarized in algorithm 6.

29

Algorithm 6: General scoring algorithm using bitvectors [26]
def score(x: featureVector, 𝑇ℎ: Tree):

vℎ ← 11...11;
𝑈 ← FindFalse(𝑥, 𝑇ℎ);
foreach 𝑢 ∈ 𝑈 do

vℎ ←vℎ ∧ 𝑢.bitvector;
end
𝑗 ← index of the leftmost 1 in vℎ;
return 𝑙𝑗.𝛾;

Figure 3.2: Tree traversal using bitvectors. (Image taken from the QuickScorer
paper [26])

Theorem 1. Algorithm 6 is correct.

Proof. The proof of correctness in divided in two parts, first we prove
that at the end of the algorithm the bit corresponding to 𝑒ℎ(𝑥) in vℎ
is set to 1. Then we prove that the leftmost bit equal to 1 in vℎ at
the end of the algorithm is the one associated to 𝑒ℎ(𝑥). For the first
part, observe that only the bitvectors of the nodes in the path from
the root to 𝑒ℎ(𝑥) may change 𝑒ℎ(𝑥) to 0. However, since 𝑒ℎ(𝑥) is the
exit leaf, it belongs to the left subtree of any true node and to the
right subtree of any false node in the path. Thus, since the only bits
that are ever set to 0 reside on the left subtree of false nodes, then
surely 𝑒ℎ(𝑥) will remain unchanged and so be 1 at the end of the
algorithm. For the second part of the proof, let 𝑙← be the leftmost
bit equal to 1 in vℎ. Assume, by contradiction, that 𝑒ℎ(𝑥) ≠ 𝑙←. Let
𝑢 be their lowest common ancestor. Since 𝑙← is smaller than 𝑒ℎ(𝑥),
then the leaf 𝑙← belongs to the left subtree of 𝑢 and 𝑒ℎ(𝑥) to its right

30

subtree. This leads to a contradiction. Observe that 𝑢 has to be a
true node, otherwise 𝑙← would have been set to 0 by its bitvector, at
the same time 𝑢 should be a false node since the exit leaf 𝑒ℎ(𝑥) is in
its right subtree. Thus, the only option is that 𝑙← = 𝑒ℎ(𝑥) [26].

Unfortunately, this simple version relies on an unrealistic oracle.
As such, the next step will be to efficiently extrapolate the false
nodes of 𝑇ℎ. The key idea of QuickScorer is to traverse the ensemble
not tree by tree but rather feature by feature [26]. The algorithm
works by looping over the features, discovering for each 𝑣𝑘 ∈ 𝑉 all
false nodes in any tree of the ensemble involving it. This is an inter-
esting choice for two main reasons: for once we are able to consider
all and only the false nodes, without considering the true ones; on
the other we can proceed in a cache-friendly way reducing the cache
misses, the amount of comparisons and, consequently, branch mis-
predictions[26]. QuickScorer maintains all the bitvectors vℎ’s, one
for each tree, updating the corresponding one as soon as a node is
recognized as false. Once all features have been considered, each of
the vℎ will contain the information needed to retrieve the exit node
of that tree. After that, we can safely compute the score of 𝑥 by
summing up the 𝛾’s of the exit nodes [26].

As the last step let us see how we can efficiently retrieve the false
nodes using a given feature 𝑣𝜙. We can describe any node using
𝑣𝜙 by a triplet composed by: the threshold of the test; the id of
the tree in which the node resides; the node bitvector [26]. We sort
these triplets by ascending order of their thresholds. This sorting is a
essential step to achieve an efficient implementation [26]. Observing
that all tests are in the form 𝑥[𝜙] ≤ 𝜃ℎ

𝑠 then the feature value 𝑥[𝜙]
splits the sorted list of all thresholds involving 𝑣𝜙 into two sublists.
The first contains all thresholds for which 𝑥[𝜙] ≤ 𝜃ℎ

𝑠 evaluates to
false, symmetrically, the other contains the ones evaluated to true.
Thus, scanning the list we would encounter a long sequence of the
thresholds associated to false nodes, when we encounter a value for
which 𝑥[𝜙] ≤ 𝜃ℎ

𝑠 evaluates to true, we can stop since we already
encountered all, and only, the false nodes regarding 𝑣𝜙 [26]. In short,
the only comparisons we would ever do are all evaluated to false,
which will heavily reduce the number of branch mispredictions [26].

31

Algorithm 7: QuickScorer [26]
def QUICKSCORER(x: featureVector, 𝑀 : Ensemble):

Data:
x: input feature vector
𝑀 : ensemble of binary decision trees with:
- 𝑤0, … , 𝑤|𝑀|−1 weights, one per tree
- thresholds: sorted list of tresholds, one per feature
- treeids: tree’s ids, one per threshold
- bitvectors: node bitvectors, one per threshold
- offsets: offsets of the triplets
- v: result bitvectors, one per tree
- leaves: output values, one per leaf
foreach ℎ ∈ 0, 1 … , |𝑀| − 1 do

vℎ ← 11...11;
end
foreach 𝑘 ∈ 0, 1 … , |𝑉 | − 1 do

𝑖 ← offsets[𝑘];
𝑒𝑛𝑑 ← offsets[𝑘 + 1];
while 𝑥[𝑘] > thresholds[𝑖] do

ℎ ← treeids[𝑖];
𝑣[ℎ] ← 𝑣[ℎ]∧ bitvectors[𝑖];
𝑖 ← 𝑖 + 1;
if 𝑖 ≥ 𝑒𝑛𝑑 then

break;
end

end
end
𝑠 ← 0;
foreach ℎ ∈ 0, 1, … , |𝑀| − 1 do

𝑗 ← index of the leftmost 1 in 𝑣[ℎ];
𝑙 ← ℎ ⋅ |𝐿ℎ| + 𝑗;
𝑠 ← 𝑠 + 𝑤ℎ⋅ leaves[𝑙];

end

32

Figure 3.3: All the data structures used by quickscorer. Here the set of
features is represented as ℱ = {𝑓0, 𝑓1, … , 𝑓𝜙, … , 𝑓|ℱ|−1} instead of 𝑉 =
{𝑣0, 𝑣1, … , 𝑣𝜙, … , 𝑣|𝑉 |−1}(Image taken from the QuickScorer paper [26])

33

Block wise QuickScorer

We can slightly modify the algorithm to increase data locality by
scoring the documents in sequential portions of the ensemble, es-
sentially scoring each document in sub-ensembles. This approach
consists in partitioning the trees in blocks. Doing so allows us to
process each block independently, allowing more of the data struc-
tures likely to be used to reside in the cache [26]. The downside of
this approach is that we have to keep track of the partial scores for
each document. We can further build upon this idea by consider-
ing also blocks of documents to be scored on a given tree block, for
this we would need to replicate the result bitvectors 𝑣. The main
motivation behind this idea is that QuickScorer has been observed
to work better with small ensembles [26]. However, using a block-
wise strategy increases the space required and may result in a worse
cache hit ratio. Combining the two observations by a good trade-off
between data duplication and block size(s) will likely result in an
overall increase in performance [26].

3.2 Document Pruning Strategies

Thanks to the fact that in ranking we do not necessarily need accu-
rately computed document scores as long as the resulting ranking is
correct, and that users are usually interested only in a small subset of
the results (i.e. top 𝑘 documents) we can employ another, different
but complementary, approach by performing some optimizations at
a higher level, altering the scoring mechanism itself to speedup the
overall process.

If we assume that the scorers have all approximately the same
constant scoring cost 𝑐 > 0 then each document has the same cost
𝐶(𝑥) ≈ 𝑐𝑀 . Thus, the cost of ranking a query composed of 𝑛
documents is 𝐶(𝑞) = 𝑐𝑀𝑛. These observations lead to estimate the
overall ranking cost of a set 𝒟 of 𝑁 documents divided in a set 𝒬 of
𝑄 queries as

𝐶(𝒬) =
𝑄

∑
𝑖=1

𝐶(𝑞𝑖) =
𝑄

∑
𝑖=1

|𝑞𝑖|
∑
𝑗=1

𝐶(𝑥𝑖𝑗) ≈ 𝑐𝑀𝑁 (3.5)

where |𝑞𝑖| is the number of documents associated to query 𝑞𝑖.
This clearly shows that the cost can become quite large when both 𝑀
and 𝑁 grow in size (e.g., 𝑀 > 105 and 𝑁 > 1000 ⟹ 𝐶 ≥ 𝑐108).

34

A possible strategy to achieve better performance is to interrupt
the scoring of likely irrelevant samples. In general, we can early
exit a document 𝑥 at any position ℎ < 𝑀 , obtaining a partial score
̂𝑠(𝑥) = ∑ℎ

𝑖=1 𝑓𝑖(𝑥) using only the first ℎ scorers. The decision to early
exit a document depends on the likelihood that it will be one of the
top 𝑘 documents once all scorers have been executed, and accordingly
either continue the scoring of 𝑥𝑖 or exit it after the execution of
scorer 𝑓ℎ [18]. The decision will be performed using a so-called early
exit function. An early exit function ℇℎ(𝑥, Τ, 𝐻) at position ℎ is a
function indicating if 𝑥 should be early exited at ℎ which takes as
input the scored instance, 𝑥, a vector of parameters Τ = [𝜏1, …] and
some history information 𝐻 about the previous decisions. Thus, we
can define a general early exit function as

ℇℎ(𝑥, Τ, 𝐻) = {1, if 𝑥 is not stopped
0, if 𝑥 is stopped

(3.6)

Although it is possible to perform early exit at every possible position
1 ≤ ℎ ≤ 𝑀 , generally we mark some scorers as ”sentinels” after
which an early exit function is executed, resulting in a sequence
of early exit positions 𝑒 = [𝑒1, ⋯ , 𝑒𝑃] with 𝑃 ≪ 𝑀 . Thus we
can define an early exit strategy 𝑆 = (𝑒, {ℇℎ}ℎ∈𝑒) as a sequence of
sentinels, each with an associated early exit function. The cost of
scoring using early exit is

𝐶(𝒟, 𝑆) = 𝐶(𝒬, 𝑆) =
𝑄

∑
𝑖=1

𝐶(𝑞𝑖, 𝑆) =
𝑄

∑
𝑖=1

|𝑞𝑖|
∑
𝑗=1

𝑝(𝑥𝑖𝑗)

where 𝑝(𝑥𝑖𝑗) is the position at which the scoring of 𝑥𝑖𝑗 was stopped
by 𝑆 [18]. This cost is computed without considering the cost of
performing the early exit itself.

Clearly, considering only a partial score may degrade the result
quality as now some documents will not be in the rank they were sup-
posed to be with a complete score. Let ̂𝜋𝑆 be the ranking obtained
using early exit strategy 𝑆. Moreover, let 𝜒𝑘 (𝜋𝑞, ̂𝜋𝑆

𝑞) be a function
that measures the relevance loss in the top 𝑘 (i.e., NDCG@𝑘) of ̂𝜋𝑆

𝑞
relative to 𝜋𝑞. The early exit problem can now be stated as find-
ing the early exit strategy 𝑆 which minimizes the expected relevance
loss 𝐸 [𝜒𝑞 (̂𝜋𝑆

𝑞 , 𝜋𝑞)] and minimizes the scoring cost 𝐶(𝒟, 𝑆). The
remaining part of this section is dedicated to the discussion of three
possible early exit functions, presented in a paper in 2010 [18], which

35

served as the main building blocks for this work. In their original for-
mulation presented by B. Barla Cambazoglu et al. in [18], the early
exit functions required an offline computed array of fixed thresholds
(either score or ranked based).

3.2.1 Score Based Pruning

A first and intuitive approach is to stop documents based on their
partial scores, such method is called Early exit with Score Thresholds
(EST). EST works by filtering documents with low partial scores.
That is, at each position 𝑝 we compare the current partial score of
𝑥 with the lowest allowed score, being a fixed threshold st[𝑝]. If
the score is less than the threshold, we stop scoring 𝑥. The main

Algorithm 8: EST
Data: st[M]: array of 𝑀 score thresholds
scores = [0, 0, ⋯ , 0] ;
foreach 𝑥 ∈ {0, … , 𝑁} do

foreach 𝑝 ∈ {1, ⋯ , 𝑀} do
scores[𝑥] = scores[𝑥] + 𝐹𝑝(𝑥) ;
if scores[𝑥] < st[𝑝] then

𝑋 ← 𝑋 − {𝑥} //early exit;
break ;

end
end

end

Figure 3.4: Graphical representation of a possible EST execution

advantage of EST is its simplicity, making it incredibly trivial to
implement in any scoring architecture. Unfortunately, static score
thresholds lead to poor results as distribution of scores varies heavily
between queries.

36

3.2.2 Rank Based Pruning

Before introducing an early exit function based on rank, we need
to define the partial ranking of a query. A partial ranking ̃𝜋𝑖ℎ of
a query 𝑞𝑖 at depth ℎ is the ranking induced by the partial scores
accumulated after the first ℎ scorers [18].

With that definition, we can introduce the Early exit with Rank
Threshold (ERT). ERT works by comparing the partial ranking of
each document at position 𝑝 with a threshold rt[𝑝]. The documents
with a better rank than the threshold may continue to be scored.
ERT can be modified to retrieve the document with partial rank
rt[𝑝] and use its score as filter. ERT, as we will see, works very well

Algorithm 9: ERT
Data: rt[M]: array of 𝑀 rank thresholds
scores = [0, 0, ⋯ , 0] ;
foreach 𝑥 ∈ {0, … , 𝑁} do

foreach 𝑝 ∈ {1, ⋯ , 𝑀} do
if 𝑥 ∈ 𝑋 then

scores[𝑥] = scores[𝑥] + 𝐹𝑝(𝑥) ;
end
sort(scores);
𝑥′ ← scores[rt[p]] ;
if scores[𝑥] < scores[𝑥′] then

𝑋 ← 𝑋 − {𝑥} //early exit;
break;

end
end

end

Figure 3.5: Graphical representation of a possible ERT execution

in practice since at the cost of a more demanding exiting process, it
is more resilient to the varying score distributions [18].

37

3.2.3 Proximity Based Pruning

The last early exit function we used combines the first two. Early
exit with Proximity Thresholds (EPT) works by preserving the first
�̂� ≥ 𝑘 documents in the partial ranking and those whose score is suf-
ficiently close to the score of the �̂�-th document, where the closeness
is parameterized by a threshold 𝑝𝑡[𝑝]. EPT is essentially an ERT
with dynamic thresholds [18].

Algorithm 10: EPT
Data: pt[M]: array of 𝑀 proximity thresholds
scores = [0, 0, ⋯ , 0] ;
foreach 𝑥 ∈ {0, … , 𝑁} do

foreach 𝑝 ∈ {1, ⋯ , 𝑀} do
if 𝑥 ∈ 𝑋 then

scores[𝑥] = scores[𝑥] + 𝐹𝑝(𝑥) ;
end
sort(scores);
𝑥′ ← scores[𝑘] ;
if scores[𝑥] < scores[𝑥′] - pt[𝑝] then

𝑋 ← 𝑋 − {𝑥} //early exit;
break ;

end
end

end

Figure 3.6: Graphical representation of a possible EPT execution

38

Chapter 4

Analysis Description

As seen in section 3.2 the thresholds of the early exit functions need
to be statically decided. The novel idea we propose is to compute
them just before applying the pruning so that, by deciding before-
hand only one or two hyper-parameters, the information of the par-
tial scores and ranks can also be exploited. We tested this idea on
three out of four options provided in [18] being those described ear-
lier.

In our analysis we posed the following research question: what
is the impact of placing up to two early exit sentinels and the cor-
responding functions in our model? Recalling that placing an early
exit sentinel in an additive ensemble means to interrupt the scoring
of any document after a predetermined scorer and choosing, using a
early exit function, to either continue or stop processing that partic-
ular document, as depicted in figure 4.1.

Figure 4.1: Additive ensemble with early exit sentinels.
(Image taken from [18])

To give an answer to our question we performed a three step
analysis:

1. Firstly we searched for a single sentinel combination, we tried
to place it at trees 25, 50, 75 and 100 trying all the available
functions with some parameters. After doing so we picked three
candidates that seemed promising by looking at both their in-
duced speedup and drop in NDCG;

2. After that, for each of those candidates we tried every possible
39

choice of a second sentinel in the trees 150, 200, 250 and 300.
With those results we chose again three pairs forming three
possible early exit strategies, each composed by two sentinels
and two early exit functions.

3. Finally, we tested these strategies applying them in the test set
both in RankEval (Python) and QuickScorer (C++).

We also tested a more deeply placed single sentinel strategy at trees
150, 200, 250 and 300. This was done to understand if a single well-
placed sentinel could work better than a multisentinel approach.

4.1 Thresholds’ definition

Just to recall what said in the beginning of chapter 2, our data is com-
posed of 𝑁 documents divided in 𝑄 queries, for each query-document
pair (𝑞𝑖, 𝑑𝑗) a feature vector 𝑥𝑖𝑗 ∈ 𝒳 is crafted. Feature vectors are
then scored by the ensemble composed by 𝑀 regression trees com-
puting 𝐹(𝑥𝑖𝑗). Suppose now to be at an early exit sentinel 𝑒ℎ after
accumulating ℎ scores for all samples of query 𝑞𝑖, this means that for
each 𝑥𝑖𝑗 we have a partial score ̂𝐹ℎ(𝑥𝑖𝑗) = ∑ℎ

𝑙=1 𝑓𝑙(𝑥𝑖𝑗). Giving for
each each query 𝑞𝑖 a partial score vector ̂𝑠𝑖 = [̂𝐹ℎ(𝑥𝑖1), … , ̂𝐹ℎ(𝑥𝑖|𝑞𝑖|)].
For convenience, define also 𝑟(𝑠, 𝑧) the function that returns the 𝑧𝑡ℎ
element of the sorted version of a score vector 𝑠, essentially giving
the score of the document with rank 𝑧. Using these information,
we are able to dynamically define the pruning thresholds for each of
the three possible pruning methods of the early exit function associ-
ated to 𝑒ℎ. Since we use information coming from all the scores of a
given query, each pruning threshold 𝑝𝑖 is applied to all and only the
documents of query 𝑞𝑖:

1. For EST we decided to use the mean and standard deviation of
the partial scores:

𝑝𝑖 = 𝛼𝜇(̂𝑠𝑖) + 𝛽𝜎(̂𝑠𝑖) 𝛼 ∈ ℝ, 𝛽 ∈ ℝ (4.1)

2. For ERT we based the thresholds on the size of the query:
𝑝𝑖 = 𝑘 + 𝛿|𝑞𝑖| 0 < 𝛿 ≤ 1 (4.2)

3. For EPT we implemented the notion of score proximity to the
𝑘𝑡ℎ partial ranked document using the variability of the scores
through the standard deviation:

𝑝𝑖 = ̂𝐹𝑑 (𝑟(̂𝑠𝑖, 𝑘)) + 𝛽𝜎(̂𝑠𝑖) 𝛽 ∈ ℝ (4.3)
40

where 𝜇(𝑠) is the average of the scores in 𝑠 and 𝜎(𝑠) is their standard
deviation. The hyper-parameters 𝛼, 𝛽, 𝛿 are three multipliers chosen
beforehand and so they need to be tuned.

4.2 QuickScorer adaptations

In its original formulation, all that quickscorer does is score a se-
quence of documents, or blocks of documents, without any concept
of query grouping [26]. However, since we are interested in assess-
ing how our new pruning strategies affect the NDCG, which is a
query-oriented measure, we need to make some little variations to
quickscorer to make it more query-aware. The solution adopted was
to modify the concept of document blocking to make it work so that
the resulting portions of documents are aligned with the queries. For
example, instead of making quickscorer run on a batch of 50 docu-
ments at a time, we made it run on a block of 10 queries. In practice,
we implemented this idea by specifying the number of blocks in which
divide them, for example, the test set of the MSLRF1 dataset con-
tains 6306 queries, so if we specified 10 as the number of query blocks
we would end up with nine blocks of 630 queries and one of 636.

Later, we expanded this idea by allowing the on-demand read of
blocks of documents directly from file, the idea is that we do not
need the actual instances to build the data structures of quickscorer,
making it possible to save a good amount of memory by reading only
the documents belonging to the queries in the current block being
scored. We called this concept online read, and we will see if and
how making multiple accesses to the file affect the performance.

Lastly, we introduced the possibility to perform early exit in
quickscorer by allowing any tree block to behave as a sentinel, that is,
at the end of some predetermined blocks, we can perform document
pruning, as such we do not have a complete freedom in positioning
our sentinels but we have to place them at multiples of the tree block
size, the resulting structure will be similar to the one of figure 4.2.

41

Figure 4.2: QuickScorer with Early Exit

4.3 Experimental Setting

For our experiments we used the first fold of the publicly available
MSLR dataset [24], named MSLRF1 and described in table 4.1.
The ranking ensemble used is a LambdaMART model optimizing
the NDCG@10, it is composed by 1047 trees with 64 leaves each.
The ensemble was trained on the training split of the dataset using
LightGBM [28] as training framework. The searches described ear-
lier and analyzed in chapter 5 are performed in the validation split,
the selected candidates are then re-evaluated in the test split, see ta-
bles 5.7 and 5.8. The experiments are performed on a single core in
a machine equipped with: an Intel Xeon E5-2650v3 clocked at 2.30
GHz, with 126 GB of RAM, running Ubuntu Linux with 4.4.0-189-
generic as kernel. The CPU has 3 levels of cache. The L1 cache is
divided between data and instruction memory each of 32KB, while
L2 and L3 are shared and their sizes are, respectively, of 256 KB and
25600 KB.

42

Property Split
Train Validation Test

of features 136 136 136
of queries 18919 6306 6306
of documents 2270296 747218 753611
Average # of documents per query 120.0 118.5 119.5

Table 4.1: MSLRF1 dataset composition

Please note that to avoid modifying the internal structures of the
queries (sizes and offsets), to perform the early exit we simply marked
as deleted pruned documents and set their score to a very low value
(-1000) so that they will be ranked always at the bottom of the list,
effectively achieving a behaviour similar to the pseudo code presenter
earlier.

43

Chapter 5

Results

In this chapter we are going to explore our results starting from a
general overview of the data and the behaviour of our model to then
explore the actual impact of early exiting documents with dynamic
thresholds. For easiness in both presentation and analysis, we de-
cided to combine the parameters discussed in section 4.1 into one,
called 𝜏 , which will behave accordingly to the exit function consid-
ered (for EST we assumed 𝛼 = 1).

5.1 General observations

Let us start our discussion by observing the true relevance distri-
bution of randomly selected queries. As shown in Figure 5.1, in
general, relevances are distributed highly asymmetrically, since most
of the documents associated with a query are irrelevant to it (labels 0
and 1) while the truly relevant ones are scarce (labels 3 and 4). This
fact is partially reflected also in the distribution of the scores given
by the model, since while it is true that only a few of them have a
high score, there is not a clear gap between the scores of relevant
and irrelevant documents but rather it is a smooth transition, which
in turn seems to suggest that it will be hard to find a good static
threshold based entirely on the scores. Another consideration is that
query sizes can be quite different, ranging from a small collection of
a dozen samples to queries containing hundreds of documents, again
giving a possible hint on the difficulty of selecting static thresholds
based on rank.

44

(a) Distribution of the score by rank (b) Distribution of relevance labels

(c) Distribution of document scores

Figure 5.1: Example of the asymmetry of score and label distributions in three
randomly selected queries

One last interesting fact concerning the scores is how the aver-
age NDCG@10 varies as the documents traverse the ensemble. In
Figure 5.2 we can observe that after the first approximately 250
trees, the growth of NDCG slows down significantly, improving only
marginally for the remaining part of the scoring process.

Figure 5.2: Variation of the NDCG by tree

As the second part of this introductory section, let us explore how
our two main parameters for quickscorer, tree and query block size,
affect the scoring time.

Figure 5.3 clearly shows how dividing the ensemble in very small
blocks affects enormously the scoring time and how it is strongly cor-
related with the high cache miss ratio registered when using small

45

sizes for tree blocks. On the other hand, the number of query blocks
(figure 5.4) seems to have only a marginal effect on the scoring time
(roughly 2𝜇s per document), although using an online read approach
slows the scoring process by roughly 20%, with a difference of ap-
proximately 10𝜇𝑠 per document between online and offline reading.

(a) Scoring time and tree block size (b) Cache misses and tree block size

Figure 5.3: Scoring time and cache misses relative to the tree block size

Figure 5.4: Scoring time with online and offline read (tree b. size=100)

46

5.2 Single sentinel search

(a) Speedup and NDCG in ERT

(b) Speedup and NDCG in EPT (c) Speedup and NDCG in EST

Figure 5.5: Relation between speedup and drop in NDCG on the three strategies
with ℎ = 50

Sentinel position (ℎ)
25 50 75 100

ℇ 𝜏 Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup

EPT

0.25 3.09 7.01 1.72 6.12 1.32 5.42 0.98 4.86
0.50 1.75 5.25 1.02 4.75 0.72 4.33 0.48 3.97
0.75 1.06 4.01 0.60 3.73 0.36 3.46 0.25 3.24
1.00 0.73 3.14 0.28 2.96 0.18 2.79 0.10 2.65

ERT

0.10 1.05 4.79 0.46 4.41 0.31 4.07 0.18 3.77
0.25 0.23 2.81 0.03 2.70 0.03 2.59 0.04 2.49
0.50 0.00 1.66 0.00 1.64 0.00 1.62 0.00 1.59
0.75 0.00 1.19 0.00 1.18 0.00 1.18 0.00 1.17

EST

1.00 3.87 6.73 2.84 5.79 2.31 5.12 2.01 4.06
0.50 0.23 2.62 0.23 2.40 0.25 2.22 0.24 2.06
0.00 0.18 2.03 0.04 1.97 0.04 1.90 0.09 1.86
-0.50 0.00 1.39 0.00 1.38 0.01 1.37 0.01 1.35
-1.00 0.01 1.15 0.01 1.15 0.02 1.15 0.01 1.15

Table 5.1: Result of simulation with one pruning sentinel with local strategy

Table 5.1 shows the results obtained by placing a single sentinel
using all three strategies. The results, depicted also in figure 5.5,
clearly show that there is an obvious trade-off between speedup and
NDCG preservation, indeed, while facing drops in NDCG up to al-
most 4% we are able to obtain speedups reaching 7x. On the other
hand, we can get speedups around 2.7x without any significant loss
in quality (drop ≤ 0.05%).

Given that we have observed a high variation in average NDCG
in the first third of the model (figure 5.2), for the first sentinels, we

47

chose to be a bit conservative by picking combinations of functions
and parameters giving a low loss in quality, but still a substantial
speedup. Considering also the behaviour of QuickScorer when deal-
ing with small tree blocks, we also limited our choices to sentinels
positioned in multiples of at least 50. With these considerations, we
have highlighted the three candidates that we are going to use as
starting points for placing the second sentinel.

As anticipated at the beginning of chapter 4 we also tested the
possibility of placing a single sentinel well beyond the 100th tree, ob-
taining the results summarized in table 5.2. The main insight that
we can extrapolate from those values is that the idea of placing a
single sentinel at, for example, tree 200 will still provide an inter-
esting speedup (2.92x) with a very small drop in NDCG (0.04%),
coupled with a larger size for the blocks of trees it may result as a
valid alternative to a multi sentinel strategy.

Sentinel position
150 200 250 300

ℇ 𝜏 Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup

EPT

0.25 0.55 4.03 0.34 3.45 0.22 3.02 0.16 2.68
0.50 0.20 3.43 0.13 3.02 0.13 2.70 0.09 2.44
0.75 0.12 2.89 0.08 2.61 0.07 2.38 0.06 2.19
1.00 0.06 2.43 0.05 2.25 0.04 2.09 0.04 1.96

ERT

0.10 0.08 3.29 0.04 2.92 0.03 2.62 0.03 2.38
0.25 0.03 2.31 0.03 2.15 0.03 2.02 0.03 1.90
0.50 0.00 1.54 0.00 1.50 0.01 1.46 0.00 1.42
0.75 0.00 1.16 0.00 1.15 0.00 1.14 0.00 1.13

EST

1.00 1.42 3.85 1.31 3.32 1.32 2.92 1.21 2.61
0.00 0.06 1.77 0.06 1.70 0.03 1.63 0.03 1.57
-0.50 0.01 1.33 0.01 1.31 0.01 1.28 0.00 1.26
-1.00 0.01 1.14 0.01 1.13 0.01 1.12 0.00 1.11

Table 5.2: Result of simulation with one deep pruning sentinel with local strategy

Before continuing with the analysis towards two sentinels, let us
examine how our strategies perform compared to the original static
ones, tables 5.5, 5.3 and 5.4 reflect just that. From those results we
can observe that the only function with a clear and objective im-
provement is EST, since considering an equal, for example, speedup,
it has always a lower impact on the NDCG than the static counter-
part. EST is the one more affected by this change in perspective,
most likely because, as observed in Figure 5.1, scores can be signif-
icantly different from a query to another and thus finding an ap-
propriate static threshold is inherently non-trivial. While the other
two have comparable performances since there may exist some good
guesses for a rank-based threshold such as some multiple of 𝑘, being
the number of return results from the search engine.

48

Sentinel position
25 50 75 100

ℇ 𝜏 Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup

EST

1.00 3.87 6.73 2.84 5.79 2.31 5.12 2.01 4.06
0.00 0.18 2.03 0.04 1.97 0.04 1.90 0.09 1.86
-0.50 0.00 1.39 0.00 1.38 0.01 1.37 0.01 1.35
-1.00 0.01 1.15 0.01 1.15 0.02 1.15 0.01 1.15

GEST

0.25 15.75 9.4 12.24 6.12 10.83 4.89 10.35 4.25
0.00 6.24 3.92 6.29 3.56 6.34 3.26 6.37 3.06
-0.50 0.18 1.26 0.98 1.49 1.62 1.61 2.08 1.66
-1.00 0.00 1.03 0.09 1.12 0.21 1.20 0.4 1.25

Table 5.3: EST Comparison between static (global) and dynamic (local) thresholds

Sentinel position
25 50 75 100

ℇ 𝜏 Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup

EPT

0.25 3.09 7.01 1.72 6.12 1.32 5.42 0.98 4.86
0.50 1.75 5.25 1.02 4.75 0.72 4.33 0.48 3.97
0.75 1.06 4.01 0.60 3.73 0.36 3.46 0.25 3.24
1.00 0.73 3.14 0.28 2.96 0.18 2.79 0.10 2.65

GEPT

0.30 0.67 2.76 0.63 3.59 0.52 3.76 0.36 3.70
0.50 0.18 1.73 0.22 2.4 0.18 2.68 0.15 2.78
0.70 0.04 1.28 0.08 1.75 0.07 2.01 0.03 2.14
0.90 0.02 1.11 0.04 1.39 0.04 1.60 0.02 1.72

Table 5.4: EPT Comparison between static (global) and dynamic (local) thresholds

Sentinel position
25 50 75 100

ℇ 𝜏 Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup

ERT

0.10 1.05 4.79 0.46 4.41 0.31 4.07 0.18 3.77
0.25 0.23 2.81 0.03 2.70 0.03 2.59 0.04 2.49
0.50 0.00 1.66 0.00 1.64 0.00 1.62 0.00 1.59
0.75 0.00 1.19 0.00 1.18 0.00 1.18 0.00 1.17

GERT

20 1.19 5.15 0.67 4.7 0.54 4.31 0.38 3.97
30 0.61 3.67 0.25 3.46 0.16 3.27 0.13 2.16
50 0.14 2.37 0.09 2.3 0.05 2.23 0.03 2.16
75 0.09 1.69 0.02 1.67 0.01 1.64 0.00 1.62

Table 5.5: ERT Comparison between static (global) and dynamic (local) thresholds

49

5.3 Double sentinel search

Observing table 5.6 and figure 5.6 we can ascertain that, within some
degree, starting from any of the three first choices we are able to
reach a wide variety of results, from very safe strategies that without
losses in NDCG provide a speedup ranging from 1.6x to roughly 2x
up to some that facing a drop of around 1% will result in speedup of
over 5x, with a maximum of 6.32x. Additionally, we can state that
all strategies have a smooth transition from high gain - high risk
options to more conservative ones. Therefore, it is not unrealistic to
think about a procedure that given a target maximum loss of quality
will return a set of possible early exit strategies to employ.

As the last point in this analysis, we tested the highlighted strate-
gies on table 5.6 in the test set both in our simulation environment
and in QuickScorer so to have a more plausible measure of speedup.
We also picked a fourth one (marked in italics) since its parameters
will allow for a tree block size of 100 instead of 50 like the others
when run in QuickScorer.

Figure 5.6: Speedup and NDCG drop with a dual sentinel strategy, first strategy
is (ERT0.25)@50 and the second are (EPT𝜏)@200 and (EPT𝜏)@300

50

First Sentinel strategy
(ℇ1=ERT, 𝜏1 = 0.25)@50 (ℇ1=ERT, 𝜏1 = 0.50)@50 (ℇ1=ERT, 𝜏1 = 0.25)@100

ℇ2 𝜏2 ℎ2 Δ NDCG (-%) speedup Δ NDCG (-%) speedup Δ NDCG (-%) speedup

EPT

0.1
150 1.15 6.32 1.18 5.28 1.13 5.46
200 0.80 5.88 0.81 4.97 0.79 4.84
300 0.51 5.17 0.54 4.45 0.47 3.93

0.25
150 0.74 5.88 0.78 4.97 0.67 5.08
200 0.50 5.51 0.52 4.71 0.49 4.55
300 0.32 4.90 0.32 4.26 0.26 3.76

0.50
150 0.36 5.19 0.39 4.48 0.30 4.49
200 0.22 4.92 0.22 4.28 0.17 4.08
300 0.15 4.48 0.15 3.95 0.12 3.47

1.00
150 0.12 4.01 0.12 3.58 0.09 3.43
200 0.07 3.90 0.08 3.48 0.05 3.21
300 0.06 3.70 0.09 3.32 0.05 2.88

2.00
150 0.03 2.84 0.05 2.59 0.00 2.03
200 0.03 2.84 0.05 2.59 0.00 2.00
300 0.03 2.82 0.05 2.58 0.00 1.95

ERT

0.01
150 0.92 6.14 0.95 5.14 0.93 5.35
200 0.66 5.73 0.66 4.86 0.65 4.76
300 0.41 5.06 0.41 4.37 0.38 3.89

0.10
150 0.12 4.16 0.08 3.68 0.07 3.78
200 0.07 4.04 0.05 3.58 0.04 3.53
300 0.04 3.82 0.04 3.41 0.02 3.11

0.25
150 0.03 2.71 0.04 2.49 0.02 2.54
200 0.03 2.71 0.04 2.49 0.02 2.47
300 0.03 2.71 0.04 2.49 0.02 2.33

0.50
150 0.02 2.70 0.04 2.49 0.01 1.64
200 0.03 2.70 0.04 2.49 0.01 1.64
300 0.03 2.70 0.04 2.49 0.01 1.64

0.75
150 0.03 2.70 0.04 2.49 0.01 1.64
200 0.03 2.70 0.04 2.49 0.01 1.64
300 0.03 2.70 0.04 2.49 0.01 1.64

EST

0.25
150 1.68 5.85 1.78 5.0 0.25 3.78
200 1.39 5.46 1.49 4.72 0.21 3.51
300 1.11 4.86 1.26 4.25 0.22 3.08

-0.1
150 0.38 4.84 0.44 4.28 0.02 3.03
200 0.32 4.60 0.34 4.09 0.03 2.88
300 0.29 4.22 0.29 3.78 0.01 2.63

-0.5
150 0.11 3.79 0.13 3.46 0.02 2.34
200 0.05 3.69 0.10 3.36 0.03 2.27
300 0.04 3.52 0.06 3.21 0.01 2.17

-0.75
150 0.03 3.27 0.06 2.98 0.01 2.02
200 0.02 3.23 0.03 2.95 0.00 1.99
300 0.03 3.16 0.04 2.88 0.00 1.94

-1.00
150 0.03 2.94 0.05 2.66 0.00 1.80
200 0.03 2.94 0.05 2.66 0.00 1.80
300 0.02 2.91 0.04 2.65 0.00 1.78

Table 5.6: Result of simulation with two pruning sentinels with local strategy

51

5.4 Final Results

ℇ1 𝜏1 ℎ1 ℇ2 𝜏2 ℎ2 Document Pruned (%) Δ NDCG@10 (-%) speedup
ERT 0.25 50 EPT 0.1 300 90.83 0.57 5.18
ERT 0.50 50 EPT 0.5 300 85.98 0.15 3.48
ERT 0.25 50 EPT 1.0 200 80.30 0.21 3.92
ERT 0.25 100 EPT 1.0 200 80.47 0.13 3.51
ERT 0.10 200 - - - 81.27 0.13 2.93

Table 5.7: Results obtained in simulation on the test set

ℇ1 𝜏1 ℎ1 ℇ2 𝜏2 ℎ2 Doc. Pruned(%) Δ NDCG@10 (-%) Avg. Doc time (𝜇s) speedup
BWQS vanilla1 - - - - - 0 0 43.73 1

ERT 0.25 50 EPT 0.1 300 90.90 0.57 12.01 4.83
ERT 0.50 50 EPT 0.5 300 86.00 0.15 13.33 3.28
ERT 0.25 50 EPT 1.0 200 80.40 0.21 11.83 3.69
ERT 0.25 100 EPT 1.0 200 80.50 0.13 12.89 3.29 2

ERT 0.10 200 - - - 81.27 0.13 12.36 2.79 3

Table 5.8: Results obtained using QuickScorer on the test set

In tables 5.7 and 5.8 are summarized the results of performing doc-
ument early exit in the test set. From these results we can say that
the observations done on the validation set in the previous section
are well maintained also in the test.

Moreover, we observe lower speedups when using QuickScorer and
that is absolutely expected since these speedups, contrary to the
simulation’s, do take into account also the cost of performing the
pruning, that is sorting the scorers and comparing them with the
thresholds. Another quick note to make is that it is possible that
QuickScorer prunes slightly more documents than the simulation.
That is due to the fact that NumPy by default uses a 32 bit repre-
sentation of floating point numbers while QuickScorer uses 64 bits.
Given that the decision of stopping a document is done by both as a
greater or equal comparison, then some documents with a score equal
to the pruning threshold, and thus kept in Python, are stopped in
QuickScorer.

Lastly, we focus on the two strategies that we picked aside from
table 5.8 we can see that both of them have performances more or less
equal to the three that we chose from the simulation. Particularly,
the one with only one sentinel, which uses 200 as tree block size,
even though it scored the whole collection for a much longer period
(19% of the ensemble, reflected by its 2.79x speedup) has an average

1Block wise quickscorer with 50 as tree block size
2speedup relative to a BWQS with tree block size of 100
3speedup relative to a BWQS with tree block size of 200

52

scoring time comparable with the others. Interestingly, if its speedup
is computed with respect to the base scorer tree block size of 50, the
result would be of 3.53x, which is better than two out of four of the
dual sentinel strategies tested and with the lowest drop of NDCG
among all of them. Thus, making it a surely valid option when
deciding which one to use, confirming once more that the choice of
the parameters of the scorer is a fundamental one.

53

Chapter 6

Conclusions and Future work

In this thesis, we explored the possibility of extending the strate-
gies presented in [18] used to interrupt the scoring process of some
documents in predetermined points of an additive ensemble. We
did that by allowing the aforementioned strategies to adapt their
stopping criteria to the different score distributions of queries. We
explored how such ideas behave in an idealized scenario and in a
production-like environment. In this work, we also reviewed some of
the state-of-the-art ranking models based on ensembles of gradient
boosted regression trees and how we can efficiently use them. We
then discussed how we implemented the pruning process in a state-
of-the-art scoring system and the limitations that we encountered.
Ultimately, we summarized our findings in chapter 5, arriving at the
conclusion that performing document early exit is a viable option to
improve the responsivity of a search engine and that it has, when
performed cautiously, only a minimal impact on the quality of the
results.

The overall conclusion that we can derive from all this discussion
is that it is possible to effectively prune a lot of documents without
hindering considerably the quality of the final result, so much so that
in our experiments we were able to traverse approximately two thirds
of the trees of our ensemble with only 10% of the initial documents
and still have a reduction of NDCG@10 of just 0.57%, obtaining a
realistic speedup close to 5x. In a more conservative scenario where
we would want to limit the decrease of final result quality, we could
still achieve speedups of well over 3x with only a marginal loss of
NDCG. Furthermore, it seems plausible to be being able to find some
strategies that will at least halve the total scoring time without any
measurable difference of result quality.

One last important consideration is that all of this discussion
could be easily replicated with any additive ranking model since the

54

early exit functions, either their static or dynamic variants, do not
depend on the internal structure of the models composing the en-
semble but only on their outputs, making it a very flexible approach.

For future developments, we would like to separate the scorer pa-
rameters from the early exit sentinel positioning, to benefit from
both the running efficiency of large tree blocks and the pruning ca-
pacity of early exit points. Other than that, a possible direct future
development of this work is to have a learned model which, given a
position and a score vector, computes the right threshold for a de-
termined early exit function. Another interesting research question
is to couple these document-wise pruning strategies with a recently
presented query-wise approach [30] and observe how the two behave
together.

55

Bibliography

[1] Leo Breiman et al. Classification and regression trees. The Wadsworth statis-
tics/probability series. Monterey, CA: Wadsworth, Brooks/Cole Advanced
Books, and Software, 1984.

[2] Norbert Fuhr. “Optimum polynomial retrieval functions based on the prob-
ability ranking principle”. In: ACM Transactions on Information Systems
(TOIS) 7.3 (1989), pp. 183–204.

[3] William S Cooper, Fredric C Gey, and Daniel P Dabney. “Probabilistic re-
trieval based on staged logistic regression”. In: Proceedings of the 15th annual
international ACM SIGIR conference on Research and development in in-
formation retrieval. 1992, pp. 198–210.

[4] Yoav Freund. “An adaptive version of the boost by majority algorithm”. In:
Machine learning 43.3 (2001), pp. 293–318.

[5] Jerome H Friedman. “Greedy function approximation: a gradient boosting
machine”. In: Annals of statistics (2001), pp. 1189–1232.

[6] Koby Crammer and Yoram Singer. “Pranking with ranking”. In: Advances
in neural information processing systems. 2002, pp. 641–647.

[7] Yoav Freund et al. “An efficient boosting algorithm for combining prefer-
ences”. In: Journal of machine learning research 4.Nov (2003), pp. 933–969.

[8] Jerome H Friedman and Jacqueline J Meulman. “Multiple additive regression
trees with application in epidemiology”. In: Statistics in medicine 22.9 (2003),
pp. 1365–1381.

[9] Robert E Schapire. “The boosting approach to machine learning: An overview”.
In: Nonlinear estimation and classification. Springer, 2003, pp. 149–171.

[10] Chris Burges et al. “Learning to rank using gradient descent”. In: Proceedings
of the 22nd international conference on Machine learning. 2005, pp. 89–96.

[11] Christopher J Burges, Robert Ragno, and Quoc V Le. “Learning to rank with
nonsmooth cost functions”. In: Advances in neural information processing
systems. 2007, pp. 193–200.

[12] Zhe Cao et al. “Learning to rank: from pairwise approach to listwise ap-
proach”. In: Proceedings of the 24th international conference on Machine
learning. 2007, pp. 129–136.

[13] Jun Xu and Hang Li. “Adarank: a boosting algorithm for information re-
trieval”. In: Proceedings of the 30th annual international ACM SIGIR con-
ference on Research and development in information retrieval. 2007, pp. 391–
398.

56

[14] Ping Li, Qiang Wu, and Christopher J Burges. “Mcrank: Learning to rank
using multiple classification and gradient boosting”. In: Advances in neural
information processing systems. 2008, pp. 897–904.

[15] Mike Taylor et al. “SoftRank: Optimising Non-Smooth Rank Metrics”. In:
WSDM 2008. Feb. 2008. url: https : / / www . microsoft . com / en - us /
research/publication/softrank-optimising-non-smooth-rank-metrics/.

[16] Dan Steinberg and Phillip Colla. “CART: classification and regression trees”.
In: The top ten algorithms in data mining 9 (2009), p. 179.

[17] Chris J.C. Burges. From RankNet to LambdaRank to LambdaMART: An
Overview. Tech. rep. MSR-TR-2010-82. June 2010. url: https : / / www .
microsoft . com / en - us / research / publication / from - ranknet - to -
lambdarank-to-lambdamart-an-overview/.

[18] B Barla Cambazoglu et al. “Early exit optimizations for additive machine
learned ranking systems”. In: Proceedings of the third ACM international
conference on Web search and data mining. 2010, pp. 411–420.

[19] Lidan Wang, Jimmy Lin, and Donald Metzler. “Learning to efficiently rank”.
In: Proceedings of the 33rd international ACM SIGIR conference on Research
and development in information retrieval. 2010, pp. 138–145.

[20] Qiang Wu et al. “Adapting boosting for information retrieval measures”. In:
Information Retrieval 13.3 (2010), pp. 254–270.

[21] Hang Li. “A short introduction to learning to rank”. In: IEICE TRANSAC-
TIONS on Information and Systems 94.10 (2011), pp. 1854–1862.

[22] Tie-Yan Liu. Learning to rank for information retrieval. Springer Science &
Business Media, 2011.

[23] Nima Asadi, Jimmy Lin, and Arjen P De Vries. “Runtime optimizations for
tree-based machine learning models”. In: IEEE transactions on Knowledge
and Data Engineering 26.9 (2013), pp. 2281–2292.

[24] Tao Qin and Tie-Yan Liu. “Introducing LETOR 4.0 Datasets”. In: CoRR
abs/1306.2597 (2013). url: http://arxiv.org/abs/1306.2597.

[25] Lidan Wang et al. “Learning to efficiently rank on big data”. In: Proceedings
of the 23rd International Conference on World Wide Web. 2014, pp. 209–210.

[26] Claudio Lucchese et al. “QuickScorer: A Fast Algorithm to Rank Documents
with Additive Ensembles of Regression Trees”. In: SIGIR 2015: Proceedings
of the 38th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval. Santiago, Chile, 2015.

[27] Aleksandra Petrakova, Michael Affenzeller, and Galina Merkuryeva. “Hetero-
geneous versus Homogeneous Machine Learning Ensembles”. In: Information
Technology and Management Science 18 (Dec. 2015). doi: 10.1515/itms-
2015-0021.

[28] Guolin Ke et al. “LightGBM: A Highly Efficient Gradient Boosting De-
cision Tree”. In: Advances in Neural Information Processing Systems 30.
Ed. by I. Guyon et al. Curran Associates, Inc., 2017, pp. 3146–3154. url:
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-
gradient-boosting-decision-tree.pdf.

57

https://www.microsoft.com/en-us/research/publication/softrank-optimising-non-smooth-rank-metrics/
https://www.microsoft.com/en-us/research/publication/softrank-optimising-non-smooth-rank-metrics/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
http://arxiv.org/abs/1306.2597
https://doi.org/10.1515/itms-2015-0021
https://doi.org/10.1515/itms-2015-0021
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

[29] Claudio Lucchese et al. “RankEval: An Evaluation and Analysis Framework
for Learning-to-Rank Solutions”. In: SIGIR 2017: Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval. Tokyo, Japan, 2017.

[30] Claudio Lucchese et al. “Query-level Early Exit for Additive Learning-to-
Rank Ensembles”. In: arXiv preprint arXiv:2004.14641 (2020).

58

	Preface
	Introduction
	Learning To Rank
	Ranking Problem
	Ranking Quality
	Simple Learning to Rank models
	RankNet
	LambdaRank
	Decision Trees

	Ensemble Models
	Boosting
	MART
	LambdaMART

	Faster Ranking
	Efficient Tree Traversals
	Naïve approach
	IF-THEN-ELSE
	Prediction
	QuickScorer

	Document Pruning Strategies
	Score Based Pruning
	Rank Based Pruning
	Proximity Based Pruning

	Analysis Description
	Thresholds' definition
	QuickScorer adaptations
	Experimental Setting

	Results
	General observations
	Single sentinel search
	Double sentinel search
	Final Results

	Conclusions and Future work

