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Abstract

For many years, academic literature have celebrated the usage of Alternative Risk
Premia strategies (ARPs) to enhance overall portfolios performances. However, some
authors have recently stated that in the last decade the benefits obtained through their
implementation have decreased. In this thesis, I want to investigate how profitable have
been these kind of portfolios during the years. In order to do so, I will create risk premia
strategies portfolios for a wide range of asset classes and I will blend them in global
multi-factor portfolios making use of several asset allocation methods. The analysis
will not only provide an overview of the return and risk performances with respect to a
traditional 60/40 benchmark, but it will also examine portfolios’ sensitivity to different
macroeconomic variables.
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Chapter 1

The rise of Factor Investing

In this chapter I will introduce factor investing by describing the migration from tra-
ditional investing, which have long dominated the asset management industry, to the
employment of risk premia in the pursuit of diversification and optimal risk-adjusted
returns. After the first research on the topic, factor investing has started becoming
accepted in both academic and industry environment producing astonishing theoretical
excess returns. However, the spread of the approach through the public has revealed
critical implementation challenges which must be considered when assessing theoretical
performances.

1.1 From Traditional to ARPs

For several years, the dominant approach to investing was to allocate capital by asset
class, obtaining diversification through exposure to equities, bonds and money market
instruments. Notwithstanding stocks and bonds are generally considered weakly cor-
related, it was noted that during financial crises the correlation among asset classes
spiked, thereby nullifying the diversification benefits. To this extent, many private and
institutional investors started including alternative asset classes in their portfolios, such
as commodities, currencies, real estate, private equity and hedge funds. Unfortunately,
also these new assets provide only partial adequate diversification. The reason stems
from the fact that some of them still remain too exposed on traditional asset classes.
For instance, in their research Asness et al. (2001) founded that hedge funds who per-
formed long/short equity strategies were as exposed to stock market risk as an S&P500
index fund. In the aftermath of the last global financial crisis in 2008, a different ap-
proach called ‘Factor Investing’ has started gaining consensus. The underlying idea is
that investors are better off through investing in multiple risk premia rather than in
the solo equity risk premium (Bhansali (2011)).
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Defined a risk premium as the expected compensation earned by the investor for the
systematic risk borne, Bender et al. (2009) categorize three types of premia. The first
one is the ordinary asset class risk premium, which is the compensation earned in excess
of the risk-free rate in a traditional source of risk such as equities or bonds. Then there
is the style – or factor – risk premium, which is the systematic return coming from
individual security characteristics like book-to-price ratio of equities or credit spread of
fixed income securities. It is not in excess of the risk-free rate as the previous type, but
instead is in excess of the broad asset class premia. Examples are the value and the
momentum premia investigated by Bender et al. (2009) and Carhart (1997) in equities,
which I will cover later. The last type is the strategy risk premium, which derives
from replicating investment strategies. An example is the merger arbitrage strategy
where the manager invests in the target and shorts the acquirer. In addition to the
idea that factors earn excess returns because of the systematic risk attached to them,
there is another doctrine which states that factors produce superior returns because
of investors’ systematic errors due to cognitive or emotional weaknesses (Bender et al.
(2013)).

An extension of Factor Investing is the concept of ‘Alternative Risk Premia’ (ARPs).
Unlike traditional risk premia, commonly referred as ‘Smart Beta’, which can be har-
vested passively from long-only exposures in conventional asset classes such as stocks
and bonds, ARPs are dynamic and systematic sources of return gathered by using com-
plex long-short market-neutral strategies. An example is the so called dollar-neutral
strategy, where the long side is completely offset by the short side in dollar notional
terms, that is managers buy and sell simultaneously an equal dollar amount of assets.
A more intricate strategy is the beta-neutral strategy, which targets a zero total port-
folio beta by aligning the beta of assets bought and the beta of assets sold short. The
advantages provided by the composition of long-short portfolios are intuitive: they
are able to capture pure factor premiums and to facilitate diversification removing the
market exposure and improving risk-adjusted performances with respect to traditional
approaches. For instance, let us suppose that an investor decides to take a long position
in company X and a short position in company Y, both in the banking sector. Any
adverse event for the banking sector would lead to a loss on the company X position
and a profit on Y position. The opposite would occur in case of a positive event that
causes both stocks to rise. In any case, the two positions balance each other out, so
that the resulting market risk is minimal. The net effect, in the long run, will be a
profit/loss if the investor’s long side outperform/underperform its short side.

1.2 Academic Literature

Although the spread of the risk factor approach among the public has started recently,
there are some institutional investors, such as Quantitative managers, Global Tactical
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Asset Allocation (GTAA), Commodity Trading Advisors (CTAs) and Global Macro
Hedge Fund managers, who pioneered it long before (Kolanovic and Wei (2013)).

Initially, academic literature focused solely on traditional equity risk premia. The first
prominent model which included a risk factor was the ‘Capital Asset Pricing Model’
(CAPM), contributed by Treynor (1961), Sharpe (1964), Lintner (1965) e Mossin
(1966). The model can be defined by the relationships:

E[Ri]−Rf = βmi (E[Rm]−Rf ) (1.1)

βmi =
cov(Ri, Rm)

σ2(Rm)
(1.2)

where Ri and Rm are respectively the asset and market returns, Rf is the risk-free rate,
the coefficient βmi is the sensitivity of the ith asset with respect to the market portfolio
and E[Rm] − Rf is, actually, the market factor. In the CAPM, securities have two
drivers: systematic risk and idiosyncratic risk. Systematic risk, captured by beta, is
the risk which arises from exposure to the market and, contrary to idiosyncratic risk,
cannot be diversified away. Thus, investors are compensated with excess returns for
bearing this type of risk.

A decade later Ross (1976) proposed an alternative to the CAPM called ‘Arbitrage
Pricing Theory’ (APT), where expected return of a financial asset can be modelled as
a linear function of various macroeconomic factors (like surprises in inflation, growth,
shifts in the yield curve and so on) or theoretical market indices (like diversified stock
indices as the S&P500, influential commodities prices or currencies exchange rates)
instead of just one market factor. This can be considered as the first multi-factor
model. Since then, academic literature has focused on the research of significant factors
which have been persistent.

The most influential multi-factor model was conceived by Fama and French (1993).
The model is an extension of the CAPM, where size risk and value risk factors are
added to the pre-existing market factor. The size risk premia (SMB) captures excess
returns of smaller firms (by market capitalization) relative to their larger counterparts,
while the value risk premia (HML) describes excess returns to stocks that have low
prices relative to their fundamental value. The new relationship can be represented as:

E[Ri]−Rf = βmi (E[Rm]−Rf ) + βSMB
i E[RSMB] + βHML

i E[RHML] (1.3)

where RSMB is the return of small stocks minus the return of large stocks and RHML is
the return of stocks with high book-to-market values minus the return of stocks with
low book-to-market values. Further improvements were included in this three-factor

3



model later. Noteworthy are the inclusion of the momentum factor by Carhart (1997),
which set a standard in finance literature and the more recent Fama and French’s five-
factor model published in 2016, where they added profitability and investment factors
(Fama and French (2016)).

1.3 Issues with Factor Investing

Although factor investing works in theory, some problems arise when it comes to im-
plement strategies in practice. In a recent paper, Arnott et al. (2019) listed a series of
blunders which have affected investors’ expectations on risk premia strategies.

First of all, the question of which factors actually matter. Figure 1.1 provides the
results of the updated analysis conducted by Harvey and Liu (2019) about the amount
of factors documented in top-tier academic journals. In their research, they counted
almost 400 published factors claimed to be statistically significant. However, some of
them would seem profitable in the back-test by chance because standard significance
levels are not appropriate and do not consider multiple trials and testing. This thesis
focuses on the most widely known and broadly tested sources of returns like value,
carry, momentum and volatility.

Figure 1.1: Factors and Publications. Source: Harvey and Liu (2019)

But even if a factor has a true structural risk premium, real-world returns can disap-
point once the factor becomes crowded. In their article, Arnott et al. (2019) measured
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factor performances before and after the end of the sample period used in the original
study that discovered each factor. As shown in Figure 1.2, they found that factor
performances displayed a break point at the end of the in-sample period, when aver-
age returns started to decrease with respect to average returns over the 10 years prior
to this date (the break point period). The results are consistent with another study
conducted by McLean and Pontiff (2016), in which they found that after the discovery
of a factor, investors try to exploit the anomaly leading the average factor’s return to
decay by about 32%.

Figure 1.2: Cumulative performance before and after Publication. Source: Arnott et al.
(2019)

Another blunder with factor investing is that investors usually assume factor returns
to be normally distributed and this lead to underestimate the frequency of large draw-
downs using simple risk management, which ignore tail features. Given that most risk
factors have excess kurtosis (fat tails) and negative skewness, it means that the proba-
bility of sizeable negative events is actually greater than what it would be if estimated
using standard normal distribution.

The last issue is relative to constraints and implementation costs. Bambaci et al. (2013)
pointed out three investability limits:

• Constraints on short position: theoretical factor portfolios are based on long-
short portfolios with no constraints on the size of short positions. In practice, a
limit on short selling is generally imposed.

5



• Monthly rebalancing: theoretical factor portfolios are rebalanced monthly, which
means the turnover is considerably higher than for institutional benchmarks,
generally rebalanced yearly. When transactions costs are not properly estimated
or (worse) ignored, an overestimation of these factor portfolios performances may
occur.

• Small caps restrictions: theoretical factor portfolios usually include small caps in
their composition. In practice, large funds and institutional investors are often
constrained from investing in certain stocks, due to small size and reputation,
making it impossible to replicate a theoretical portfolio.
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Chapter 2

Risk Strategies

In this chapter I will define the four risk premia strategies selected for the research and
provide the rationale for their existence. Some guidelines about the methodology will
be offered too, in particular how to quantify the magnitude of each risk measure and
how to compose the long/short factor portfolio for each asset class.

2.1 Value

2.1.1 Definition

One of the oldest and best known selection approaches is value investing. It is based
on the assumption that assets have a tendency to mean revert around a fundamental
value when considered cheap or expensive. To capture the value premium, the idea is
to take a set of assets, sort them using some measures of value (for example the inverse
of the P/E ratio for stocks) and go long (or overweight) the assets with high value
measures ratios and short (or underweight) the assets with low ones.

The strategy has a long history. Since Graham and Dodd (1934), famous practitioners
(such as W. Buffett) has implemented value in their investment methods. However,
the topic caught strong academic attention in the early 1990s with the aforementioned
seminal Fama-French publication. Initially the attention was paid exclusively to US
stocks, but later studies (Chan et al. (1991), Fama and French (1998), Malkiel and Jun
(2009) and Asness et al. (2013)) confirmed value premium in different markets and
asset classes. As anticipated in chapter 1, the existence of these risk premia can be
due to both risk-based explanations and behavioural biases. From the point of view
of supporters of the first cause, value premium exists because value stocks are riskier
than growth stocks, due to high financial leverage, volatile future earnings and greater
sensitivity to economic shocks (Chen and Zhang (1998), Winkelmann et al. (2013)).
From the viewpoint of behaviourists, it may be caused by excessive extrapolation of
growth trends and delayed overreaction to information (Lakonishok et al. (1994)).
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2.1.2 Methodology

The value measure differs among asset classes. While for stocks we can use the ratio of
the book value of a company relative to its market price (or earnings, cash flows, sales,
dividends to price), for bonds, currencies and commodities other kind of fundamental
measures which do not derive from accounting statements are required.

The methodology used in this thesis is similar to the one proposed by Asness et al.
(2013):

• For equity indices, the inverse of the previous month’s P/E ratio for the MSCI
index of the country.

• For bonds, the 5-years change in the yields of 10-years bonds.

• For currencies, the negative of the 5-years return on the exchange rate, measured
as the log of the average spot exchange rate from 4.5 to 5.5 years ago divided
by the spot exchange rate today minus the log difference in the change in CPI
(Consumer Price Index) in the foreign country relative to the U.S. over the same
period. This is essentially the 5-year change in PPP (Purchasing Power Parity).

• For commodities, the negative of the spot return over the last 3 years computed
as the log of the spot price 3 years ago divided by the most recent spot price.
Given the unavailability of reliable spot prices for commodities, I will use the
front month futures prices as spot prices. The 3-years change return is a value
measure motivated by DeBondt and Thaler (1985), who showed the presence of
price reversals at a horizon of three to five years, so that buying past losers and
sell past winners produced positive returns.

After having computed a value measure for each security within each asset class, we
sort and rank them in ascending order. Now we can form the zero-cost long/short
value portfolios introduced in chapter 1 for every single asset class. Recall that the
term “zero-cost”, or dollar-neutral, indicates that the cash obtained by selling securities
with low signals offsets the long position of securities with high measures.

For any security i = 1, ..., N at time t with value measure Vi,t, the weight is computed
as:

wi,t = zt(rank(Vi,t)−
N + 1

2
) (2.1)

zt =
2∑N

i=1 |rank(Vi,t)− N+1
2
|

(2.2)
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where zt is a normalizing constant which ensures that the sums of the long and short
exposures are respectively +1 and −1.

The return on the value portfolio (asset class specific) is the weighted sum of individual
returns:

rV ALp,t+1 =
N∑
i=1

wi,tri,t+1 (2.3)

At this point, to get a value portfolio which is diversified across asset classes, an addi-
tional step must be taken. Asness et al. (2013), Koijen et al. (2018), Moskowitz et al.
(2012) and many others suggest blending the four asset class specific value portfolios
through equal-volatility weighting, or inverse volatility weighting. This is motivated
by the need to avoid that the risk generated by return strategies within asset classes
historically proven more volatile (commodities and equities) would dominate the over-
all portfolio risk. I will adhere to this recommendation but, at the same time, I will
generate five additional global value portfolio through various asset allocation methods
(all describe in the chapter 3).

2.2 Carry

2.2.1 Definition

Another strategy which has produced consistent returns over time is carry. It is based
on investing in higher yielding assets while financing the position by shorting lower
yielding assets. A standard definition is given by Koijen et al. (2018), who defined an
asset’s carry as “its future return, assuming that prices stay the same”. To make it
clearer, they decomposed a security’s return into the following blocks:

Returnt+1 = Carryt + Expected price appreciationt+1︸ ︷︷ ︸
Expected returnt+1

+Unexpected price shockt+1

(2.4)

They argued that while expected price appreciation must be estimated using an as-
set pricing model, carry has the advantage to be a model-free characteristic directly
observable ex ante from futures (or synthetic futures) prices.

Historically, carry strategies have been related to currencies only. The classic approach
has been sorting countries by their short-term rates and taking long positions in cur-
rencies of the countries with the highest interest rate and taking short position in
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currencies of the opposite countries. The existence of a long history of positive returns
is a clear violation of the uncovered interest rate parity (UIP) condition, which states
that the interest rates differential between two countries should equals the expected
depreciation of their currency exchange rates. The breaking of the law may be caused
by the presence of non-profit-seeking market participants, such as central banks, who
may introduce inefficiencies for short horizons into currency markets and interest rates
(Asness et al. (2015)), or may represent compensation for exposure to consumption
risk (Lustig and Verdelhan (2007)), crash risk and liquidity risk (Brunnermeier et al.
(2008), Burnside et al. (2011)).

Nevertheless, carry can also apply to other asset classes and the methodology will be
explained extensively soon. In fixed income, carry strategies can be sought by buying
the developed market government bonds with the highest yield and selling those with
lowest yield. In commodities, it can be useful to utilize the slope between the nearest
and second-nearest to maturity futures contracts and overweight the commodities with
the strongest backwardation (downward slope) and underweight those with strongest
contango (upward slope). Finally, carry strategies can also be applied to the equity
market by considering the dividend yield; in this last case, the factor has been proved
to be highly correlated to the equity value factor (Maeso and Martellini (2017)).

2.2.2 Methodology

So how to compute a carry measure for different type of assets? The appropriate
methodology is given in the research conducted by Koijen et al. (2018) mentioned
above. The general formula for the carry of a fully collateralized position is:

Ct =
St − Ft
Ft

(2.5)

where St is the spot price of the underlying security and Ft is the current future price of
a contract which expires at maturity t+1. This formula can be transformed depending
on the asset class considered.

I want to start from the most traditional asset class used with carry strategies: curren-
cies. Under the covered interest rate parity (CIP), the no-arbitrage price of a currency
future contract with a spot exchange rate St (measured as local currency units per unit
of foreign currency) and local and foreign short-term (3 months) interest rates being
respectively rft and rf

∗

t , must satisfies the following equation: Ft = St(1+rft )/(1+rf
∗

t ).
Based on this relation, investors should be indifferent between investing in the local
market or performing a carry trade by borrowing in the domestic market, lending in the
foreign higher rate market and entering a futures contract to lock the future exchange
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rate (Jurczenko (2017)). Therefore, the carry for currencies can be measured as the
spread between the two interest rates, adjusted for a scaling factor closed to one:

Ct =
St − Ft
Ft

=
rf∗t − r

f
t

1 + rft
(2.6)

The scaling factor (1 + rft )−1 represents the discount effect incurred today by using a
future contract, which implies the purchase of a unit of foreign currency at time t+ 1.

Carry for equity indices can be found in a similar fashion. The no-arbitrage price for a
futures contract is Ft = St(1 + rft )− EQ

t (Dt+1) where St and rft are still the currently
value of the underlying and the local interest rate (referred to the country of the equity
index) and EQ

t (Dt+1) is the expected future dividend payment computed using the
risk-neutral measure Q. As a consequence, the equity carry can be written as:

Ct =
St − Ft
Ft

=

(
EQ
t (Dt+1)

St
− rft

)
St
Ft

(2.7)

In this case, the scaling factor is the ratio between the current spot price and futures
price and, as before, is close to one. Note that a suggestion for the usage of dividends
yields was advanced for equity value measures too. The two dividends yields are related
but not equals; in fact, while for the equity value strategy realised (backward-looking)
dividend yields are used, for the equity carry approach we focus on expected (forward-
looking) dividend yields. However, this usually leads to a certain level of correlation
between the two strategies, relative to equities asset class. Tough this last formula is
the one suggested to compute the measure for equity indices, I will stick to the more
general initial formula which requires only spot and nearest to maturity futures prices.
This is imposed by the difficulty of finding long-enough reliable data series on expected
dividends.

For commodity futures contracts, the no-arbitrage condition is Ft = St(1+rft−γt) where
γt is the expected convenience yield in excess of storage costs. The convenience yield is
the premium obtained when holding a certain underlying product. For example, in case
of sudden drought of a resource, the short-term demand for the security may overcome
its actual supply, creating an advantage for the holder of the physical good. This is
opposed to the cost of holding the underlying, which is called storage cost. Rearranging
the equations, the commodity carry should result in the expected convenience yield in
excess of the prevailing risk-free rate, adjusted for a scaling factor close to one:

Ct =
St − Ft
Ft

= (γt − rft )
St
Ft

(2.8)
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However, as already mentioned, challenge occurs with commodities as their spot mar-
kets are illiquid and lack of reliable spot prices. The problem of comparing the spot
price with the first nearby futures price can be circumvented by using the slope between
the nearest and second-nearest to maturity future contracts. Hence, being F 1

t and F 2
t

respectively the nearest and second-nearest to maturity futures prices with T1 and T2
months to maturity (T1 < T2), we can rearrange the commodity carry of holding the
second-nearest contract, assuming that the spot price will converge to F 1

t after T2−T1
months, as:

Ct =
F 1
t − F 2

t

F 2
t

= (γt − rft )
F 1
t

F 2
t

(2.9)

Thus, the more backwardated is a contract (F 1
t > F 2

t ), the more carry yield it is
expected to provide. To take advantage of this measure while further smoothing the
portfolio performance, a trading technique called calendar spread is applied. The
strategy involves buying a derivative of an asset in one month and selling a derivative of
the same asset in another month. When carry is positive, a long position in the second-
nearest futures contract and a short position in the nearest to maturity contracts are
taken.

Finally, the carry of bond futures, which is computed simply considering the 10-years
term spread (10-year yield minus 3-month interest rate) of each bond security. This is
similar to what proposed by Koijen et al. (2018).

The process to form the asset class specific carry portfolios, to compute their returns
and to form the global carry portfolio diversified through asset classes is similar to the
one for the value strategy. The lone exception is the computation of the commodities
carry portfolio return. As each security entails simultaneously long and short position
on contracts with different maturities, its return contribution to the total portfolio is
formed considering the profit/loss generated from the calendar spread. If rLP,t and rSP,t
are respectively the returns produced by the long and short positions taken in each
commodity, the commodities carry portfolio return is computed including equation
2.10 as:

ri,t = rLP,t − rSP,t (2.10)

rCARp,t+1 =
N∑
i=1

wi,tri,t+1 (2.11)
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2.3 Momentum

2.3.1 Definition

The next strategy implemented in this thesis is momentum. I have already mentioned
it as the extension applied by Carhart (1997) to the prominent Fama-French’s three-
factor model, but one of the first papers on momentum was published by Jegadeesh and
Titman (1993). In their research, they reported evidence of return predictability in eq-
uity markets based on past returns and argued that buying stocks that have performed
well over the past three to twelve months and selling stocks that have performed poorly
produces abnormal positive returns. Despite the fact that this effect goes against the
hypothesis of efficient markets broadly accepted during those years, it has produced
astonishing excess returns across different asset classes over the years (Moskowitz et al.
(2012)). In particular, outstanding positive returns have been harvested in small cap
and emerging equity markets and, in particular, in commodities.

The common belief of considering momentum as a ‘market anomaly’ may be due to the
numerous behavioural theories advanced to explain its existence. The most relevant
thesis associate momentum to the investors tendency to underreact and overreact to
new information at a different speed, or to anchoring, that is when individuals depends
too heavily on initial piece of information, or mislead information (Hong and Stein
(1999)). But these patterns can be reinforced also by herding behaviour, that is when
investors follow what other investors are doing without acting under what their own
analysis suggest. Finally, the disposition effect, which is the tendency to sell winners
too soon and secure minimal profits (being afraid to lose the possibility to earn from the
investment) and to hold on losers too long, waiting for the price to turnaround (Frazzini
(2006)). Closely related to behavioural theories are the ones connected to the market
micro-structure, where investors employ products that mirror their behavioral biases.
For instance, the implementation of particular trading strategies enhance momentum
by committing investors to sell underperforming assets and to buy outperforming ones
in advance (Kolanovic and Wei (2013)). An examples is the stop-loss strategy, where
investors promptly switch their position from risky assets, such as stocks, to risk-free
assets or cash after that pre-determined cumulative losses occur, enhancing the trend
in place.

There are two types of momentum: cross-sectional and time-series. While they both
select assets on the basis of their past performance, the first approach assigns assets to
the winner and loser portfolio on the basis of their relative performance while the second
approach assigns assets on the basis of their absolute performance. Usually, cross-
sectional strategies impose that the notional amount of the long side of the portfolio
must offset the short side (dollar-neutral, like value and carry portfolios formed in this
thesis) or that the beta amount of the long side is offset by the beta of the short side
(beta-neutral, like the volatility portfolios described next), but time-series strategies
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do not entail such constraints. A recent paper by Bird et al. (2017) compares the two
strategies for a universe of stock indices and concluded that time-series momentum is
more profitable in the long run than cross-sectional momentum, even though it must
be said that they both acted positively. Because of these results, I will use the time-
series approach and, to do so, I will adhere to the well-known research conducted by
Moskowitz et al. (2012) on a wider range of assets (equities, bonds, currencies and
commodities).

2.3.2 Methodology

The momentum measure suggested is the simplest and most standard measure, com-
mon for all the asset classes involved: the 12-month cumulative raw return skipping
the most recent month’s return, to avoid the 1-month reversal related to liquidity or
micro-structure issues.

Mt,h =
Pt−1 − Pt−h

Pt−h
(2.12)

where Pt−h is the asset price delayed by a momentum period h, which is usually 12
months, in case of monthly data.

To arrange the asset class specific momentum portfolios, I refer to the Moskowitz
et al. (2012) procedure where a long/short portfolio is formed considering any security
i = 1, ..., N at time t with momentum measure Mi,t.

Ii,t =

{
+1 for Mi,t > 0

−1 for Mi,t ≤ 0
(2.13)

where +1 corresponds to a long signal and −1 a short signal.

The return on the momentum portfolio (asset class specific) is the weighted average of
individual returns:

rMOM
p,t+1 =

1

N

N∑
i=1

Ii,tri,t+1 (2.14)

Finally, to get the global momentum portfolio diversified across asset classes, I follow
the same approach described in the value section.
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2.4 Volatility

2.4.1 Definition

The last strategy I want to investigate is the defensive strategy, which attempts to
capture the so-called ‘low volatility anomaly’. The reason why the premium is consid-
ered an anomaly stems from the fact that it is in conflict with one of the most critical
principles in finance, that is higher risk is associated with higher returns. The first
author which observed this violation is Black (1972), who noticed that the security
market line in US stocks (the link between market beta to its average returns) was
flatter than the one predicted by the CAPM model. As a consequence, low-risk assets
were relatively more profitable than their riskier counterparts. Further research have
been conducted later on. Leading is the critique of capitalization-weighted bench-
mark advanced by Haugen and Baker (1991), who demonstrated how poorly those
capitalization-weighted indexes performed relative to low volatility US stocks during
the 1972 to 1989 period. Additional confirmations for the US market came from Chan
et al. (1999), Jagannathan and Ma (2003) and Clarke et al. (2006) and, for global
markets, from Ang et al. (2006) and Ang et al. (2009). Finally, a wider research which
included several asset classes across global markets was conducted by Frazzini and
Pedersen (2014).

One of the most accepted explanation for the low risk effect is the one considering
leverage restrictions. A basic premise of the CAPM is that all the agents seek to
invest in the portfolio of assets which produces the highest risk-adjusted return and to
leverage or deleverage the portfolio in order to achieve the desired level of risk. Leverage
is an investment style which use borrowed money to increase the potential return of
an investment. The problem is that some of these investors may face limitations on
this technique and thus decide to adjust the portfolio volatility by overweighting risky
assets and underweighting safe ones. By doing so, returns on assets become ‘biased’,
namely high risk securities generate lower than expected returns with respect to safe
securities, compared to a situation where all individuals access leverage Frazzini and
Pedersen (2014).

Other justifications are from a behavioural perspective. Bali et al. (2011) associated
the tendency of overpaying risky stocks and underpaying safe stocks to the gambling
behaviour where people are willing to accept high probability of small losses for minimal
chances of earning superior returns. This is known as the ‘lottery effect’. Bender et al.
(2013) listed other less relevant behavioural effects:

• Representativeness, where the attractive performances of some well publicized
risky stocks led investors to overestimate other volatile stocks.

• Asymmetric behaviour in bull/bear markets: during period of market distress low
volatility portfolios experience softer drawdowns with respect to high volatility
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portfolios, but during market expansions the difference in performances are not
so marked.

• Agency issue, where low volatility stocks are generally avoided by management
because there is less attention and research support.

2.4.2 Methodology

Metrics used to harvest low volatility premium for stocks range along several options.
For example, it can be used realized volatility, forecast volatility, correlations, beta
or even more fundamental measures of risk, where safe stocks are gauged as the less
exposed to macroeconomic oscillations, with high stable profitability, low leverage and
so on (Frazzini et al. (2012)).

The methodology used to compose factors portfolios for all asset classes is similar to
the procedure suggested by Frazzini and Pedersen (2014), where they considered the
traditional definition of beta as metric. First of all, an estimation of each security’
ex-ante beta is obtained from rolling regressions of excess returns on market excess
returns. The rolling period should be selected as much long as possible to improve
the quality of the estimation. However, choosing a long time windows may bias the
estimation using data generated in different market environment. Based on these issues
and considered the limited amount of data in possess for equities futures contracts, I
decided to set the rolling window equal to 12 months. The beta is then computed as:

β̂i,t = ρ̂im,t
σ̂i,t
σ̂m,t

(2.15)

where σ̂i,t and σ̂m,t are respectively the estimated volatilities at time t for the ith

security and the market and ρ̂im,t is the estimated correlation at time t between the
security and the market portfolio. The market portfolios to use in order to estimate
betas are GDP or risk weighted portfolios for each asset class. To bypass the lack
of consistent GDP/risk weighted benchmark portfolios, I decided to compose my own
equal-volatility weighted benchmarks using each security available in each asset class.

As the estimated betas are obtained, portfolios which are long low-beta securities and
short-sell high-beta securities can be constructed. The procedure is similar to the one
used for the other cross-sectional approaches (value and carry). Broadly speaking,
securities must be ordered in ascending order on the basis of their estimated beta and
those with a beta below the asset class median value will be considered as low-beta
assets (long position) and those with a beta above the median value will be counted as
high-beta securities (short position).
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However, the portfolio resulting by the process must be converted in a beta-neutral
portfolio by scaling the beta of the low-beta portfolio to +1 and the beta of the high-
beta portfolio to −1. To do so leverage is needed, but to avoid massive spikes and drops
(especially for commodities), constraints on the leverage applied to low-beta portfolios
are imposed. The strategies will scale returns to a maximum of 200% while limiting
the minimum exposure to 100%.

Finally, a global volatility portfolio diversified within asset classes is formed with usual
procedure.
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Chapter 3

Allocation Methods

In this chapter I will introduce the theory of the asset allocation methods that will
be employed to compose the global ARPs portfolios. As I will make clear in the next
chapter, the different strategies analysed will be blended in a final unique multi-factor
portfolio adopting various approaches ranging from the traditional mean-variance opti-
mization to other more recent methodologies which benefit from less estimation error.

3.1 Mean Variance Portfolios

In 1952, a 25-years old Harry Markowitz published a paper called “Portfolio Selec-
tion” in which he introduced what is nowadays known as the Modern Portfolio Theory
(MPT). His work (Markowitz (1952)) is not only considered a milestone in portfolio
construction but granted him the opportunity to share a Nobel Prize with Miller and
Sharpe, in 1990.

The main objective of the MPT is to create a set of efficient portfolios by accurately
weighting a universe of assets in order to maximize the expected return, given the level
of risk generated. In fact, Markowitz demonstrated that under certain assumptions
the allocation problem can be reduced to a mean-variance optimization procedure and
that, through diversification, we can lower the total portfolio risk without affecting
significantly the total expected return. Some of these assumptions imply that investors
are rational, have access to the same information and can borrow and lend money at a
risk-free rate. Furthermore, they do not influence market prices and seek to maximize
returns given their own personal utility function and risk aversion. Despite these
assumptions are hardly achieved in the real world, the mean-variance optimization
(MVO) has been massively used by investors and financial institutions when composing
their portfolios.

Let start considering a universe of n risky securities, a vector of weights in the portfolio
w = (w1, ..., wn) and assume that the portfolio is fully invested, that is

∑n
i=1wi = e

′
w =
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1, where e is a column vector of n ones. Let us define the vector of individual rate
of returns R = (R1, ..., Rn) and its expected value E[R] = r = (r1, ..., rn), which both
serve to derive the return of the portfolio

∑n
i=1wiRi = w

′
R and its expected value:

E[RP ] =
n∑
i=1

wiri = w
′
r (3.1)

Finally, we can obtain the variance of the portfolio as:

V ar[RP ] = σ2
P =

n∑
i=1

w2
i σ

2
i + 2

n∑
i=1

n∑
j=1

wiwjσi,j = w
′
Σw (3.2)

where Σ is the variance-covariance matrix, σ2
i is the variance of individual securities

and σi,j = ρi,jσiσj is the covariance between securities i and j, with ρi,j ∈ [−1, 1].

At this point, we can solve the optimization in the following alternative ways. The first
one is maximizing the expected return of the portfolio given a certain tolerable level of
volatility σ∗P . The second is to minimize the volatility of the portfolio given a certain
requested level of return, r∗p. For instance, in this last case the optimization problem
is:


min
w
w
′
Σw s.t.

w
′
r = r∗p

e
′
w = 1

(3.3)

The set of optimal portfolios generated by the optimization process for different values
of r∗p (or σ∗P , if we follow the first alternative) composes what is called the efficient
frontier, which is the blue curve in Figure 3.1. Every investor, considering his/her
ideal expected return and/or risk aversion, will select one of the portfolios placed on it
and will reject sub-optimal portfolios below and on the right of the curve because they
do not provide enough return with respect to the risk attached.
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Figure 3.1: Sample portfolios and the Efficient frontier. Source: Random simulation
generated on Matlab

This thesis will focus on two types of portfolio derived from the mean-variance frame-
work: the global minimum variance portfolio and the maximum Sharpe Ratio portfolio.

3.1.1 Global Minimum Variance Portfolio

The global minimum variance portfolio (GMV) is graphically identified as the left-
most component of the efficient frontier (Figure 3.2) and it is the portfolio whose
assets’ weights minimize the portfolio variance without being dependent on any prior
assumption about r∗p. It can be detected by solving the following optimization problem:

{
min
w
w
′
Σw s.t.

e
′
w = 1

(3.4)

By using the Lagrange multiplier, we can solve the problem and obtain that the vector
of optimal weights which minimizes the volatility is:

20



wGMV =
Σ−1e

e′Σ−1e
(3.5)

As already mentioned, this optimization procedure does not require to set a target
required rate of return r∗p. This is a crucial characteristic because the set of required
estimated parameters is reduced to the sole variance-covariance matrix, thus lowering
the chance of estimation error of the asset expected returns. In fact, Chopra and
Ziemba (1993) asserted that errors stemming from the estimation of returns is one
of the main explanations about why the mean-variance approach produces relatively
poor performances in practice. Other “return free” methods exist in literature. Some
of them, like the equally weighted portfolio and the risk parity portfolio, are considered
in this thesis.

3.1.2 Maximum Sharpe Ratio Portfolio

The maximum Sharpe ratio portfolio (MSR) is another mean-variance based approach
which select the portfolio in the efficient frontier with the highest Sharpe ratio offered.
The Sharpe ratio was developed by the Nobel prize William F. Sharpe in 1966 (Sharpe
(1966)) and is particularly useful to compare funds’ performances as it measures the
performance of an investment (rp) compared to a risk-free option (rf ), adjusted for the
risk generated (σp).

Sharpe Ratio =
rp − rf
σp

(3.6)

This is the choice for investors who do not set preferences relative to required returns
and/or volatilities because it automatically selects the portfolio which offers the overall
best risk adjusted performance.

The optimization problem is:

max
w

w
′
(r − rfe)√
w′Σw

s.t.

e
′
w = 1

(3.7)

which solved provides the following optimal portfolio weights:

wMSR =
Σ−1(r − rfe)
e′Σ−1(r − rfe)

(3.8)
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The MSR portfolio can be associated to the tangency portfolio between the Capital
Market Line (CML) drawn from the point of risk-free return and the efficient frontier,
as it can be seen in Figure 3.2.

Figure 3.2: GMV and MSR portfolios. Source: Random simulation generated on Mat-
lab

3.2 Equally Weighted Portfolio

The next allocation technique is perhaps the most straightforward and easy approach
because it does not require the estimation of parameters or to run complex optimization
procedures. For this reason, it is useful when limited reliable information about assets
characteristics are available. The equally weighted portfolio (EW) simply implies equal
capital weights on all the n assets considered:

wEW =
1

n
(3.9)

The strategy is broadly used among investors and institutions and it is usually employed
when creating benchmark portfolios. The reason is that benefits are not limited to
simplicity:
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• It mitigates concentration bias. For example, in the classic mean-variance opti-
mization there is an overweighting of assets with extreme returns, low volatility
and/or negative correlations among their returns.

• When rebalancing its universe of assets considered, it efficiently performs the
so called “Buy low, sell high” strategy by selling expensive assets and buying
cheaper ones.

• It captures the size premium by equally weighting small and large companies.

• It always invests in the asset which performs best.

• It requires smaller levels of turnover and, thus, transaction costs, compared to
more dynamic asset allocation methods.

• Its out-of-sample performances are relatively good with respect to other allocating
strategies (DeMiguel et al. (2009)).

However, the method also presents some drawbacks, mostly due to its simplicity. Be-
cause no information concerning assets’ characteristics (such as returns, volatilities and
correlation matrices) are considered, the strategy provides low diversification benefits.

3.3 Risk Parity Portfolios

As already revealed, alternatives to the MVO have been researched to solve some
critical problems about the concentration and estimation bias. One of the most recent
and interesting approaches is the risk parity portfolio construction. The concept is
to equalize the risk contributions carried by the different elements of the portfolio.
Although the topic was already known among CTAs and equity market neutral funds,
the first work on the subject was published by Qian (2005), a portfolio manager at
Panagora who demonstrated that working with risk contribution can limit the impact
of losses of individual components to the overall portfolio. But high approval came in
2008, when Maillard et al. conducted a research on analytical properties of risk parity
portfolios (Maillard et al. (2008)).

The reason why it is important to consider risk contributions can be clarified by taking
into consideration the traditional 60/40 portfolios example. It has been demonstrated
(Qian (2006)) that the risk contribution of the equity part of these portfolios is about
90%, thus far greater than their 60% weight allocation. For this reason, the portfolios
appear highly correlated to the stock market and provide weak diversification benefits
during financial meltdowns.

The risk contribution of a component i is the share of total portfolio risk attributable
to that component. It is obtained multiplying the weight of the asset by its marginal
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contribution, that is the (positive or negative) change in the overall portfolio risk
measure generated by an infinitesimal increment in the weight of the component.

As for the mean-variance case, let us consider a universe of n risky securities, a vector of
weights in the portfolio w = (w1, ..., wn) and volatility as a risk measure. The variance
of the portfolio is:

σp(w) =
n∑
i=1

w2
i σ

2
i + 2

n∑
i=1

n∑
j=1

wiwjσi,j =
√
w′Σw (3.10)

The marginal contribution can be represented as:

∂wi
σ(w) =

∂σp(w)

∂wi
=
wiσ

2
i +

∑
j 6=iwjσi,j

σp(w)
=

(Σw)i√
w′Σw

(3.11)

where (Σw)i is simply included to provide the vector form equation and represents
the ith row of the vector resulting from the product between Σ and w (Maillard et al.
(2008)).

The risk contribution of the asset i is:

σi(w) = wi∂wi
σ(w) (3.12)

Intuitively, the overall portfolio risk can be seen as:

σp(w) =
n∑
i=1

σi(w) =
w
′
Σw√
w′Σw

=
√
w′Σw (3.13)

which is the sum of each of these total contributions.

At this point, two types of risk parity portfolio can be presented: the equally risk
contribution portfolio and the inverse volatility one.
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3.3.1 Equally Risk Contribution Portfolio

The equally risk contribution portfolio (ERC) is the generic risk parity portfolio de-
signed such that all assets’ risk contributions are equal. For reason indicated in the
next chapter, all the allocation methods will be performed with restrictions on short-
selling and on weights. This implies w ∈ [0, 1]n and

∑n
i=1wi = e

′
w = 1. The problem

becomes:

{w ∈ [0, 1]n :
n∑
i=1

wi = 1, wi∂wi
σ(w) = wj∂wj

σ(w) for all i, j} (3.14)

Given that ∂wi
σ(w) is proportional to (Σw)i:

{w ∈ [0, 1]n :
n∑
i=1

wi = 1, wi(Σw)i = wj(Σw)j for all i, j} (3.15)

In their research, Maillard, Roncalli and Teiletche proposed to solve the problem using
a sequential quadratic programming (SQP) algorithm which minimizes the variance of
the risk contribution.

wERC = min
w

( n∑
i=1

n∑
j=1

(wi(Σw)i − wj(Σw)j)
2

)
(3.16)

The existence of the portfolio is ensured when wi(Σw)i = wj(Σw)j for all i, j, is verified.

3.3.2 Inverse Volatility Portfolio

The inverse volatility portfolio (IV) is a special case of risk parity where all pairwise
correlations across assets are assumed to be identical, thus ρi,j = ρ for all i, j. In this
case, the analytical solution to the ERC optimization problem is:

wIV =
1/σi∑n
i=1 1/σi

(3.17)

This means that the weight of each asset is the ratio of the inverse of its volatility
with the harmonic average of the volatilities. Thus, the assets are inversely weighted
to their volatility: the higher the ith volatility the lower its weight in the portfolio.
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3.4 Maximum Diversification Portfolio

The last technique is the maximum diversification portfolio (MD), which was proposed
by Choueifaty and Coignard (2008). They intended to boost diversification by maxi-
mizing the so called ‘diversification ratio’, which is the ratio of the weighted average
of volatilities divided by the total portfolio volatility. In order to do so, the strategy
must select assets which minimize/maximize the denominator/numerator (minimize
the correlation among the components).

DR =

∑n
j=1wiσi

σp
=

w
′
σ√

w′Σw
(3.18)

Note that a portfolio which is highly concentrated or with highly correlated holdings
may be inadequately diversified and might possess a DR close to 1.

Defined as usual a portfolio of n risky assets whose weights’ vector is w = (w1, ..., wn),
the optimization problem is the following one:

max
w

w
′
σ√

w′Σw
s.t.∑

i=1wi = 1 and wi ∈ [0, 1]

(3.19)

By using the Lagrange multiplier (like in the GMV and MSR cases), we obtain the
solution:

wMD =
Σ−1σ

σ′Σ−1σ
(3.20)
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Chapter 4

Portfolios Construction

In this last chapter I will implement all the approaches previously described to com-
pose multi-factor portfolios diversified through asset classes, risk strategies and asset
allocation methods. After an initial brief description of the securities employed, I will
provide results of the factor portfolios and then of the levered multi-factor portfolios.
To conclude, an analysis of the risk-adjusted performances across different macroeco-
nomic scenarios is explored.

4.1 Data and settings for Backtesting

In order to achieve the objective of building valid diversified long-short portfolios and
to take advantage of leverage benefits (e.g. attaining beta-neutral portfolios or setting
desired portfolio risk levels), I will make use of the most liquid futures contracts across
different asset classes.

Spot, nearest and second-nearest futures prices, spot benchmark prices and P/E ratios
are all obtained from Bloomberg while long-term (10 years) bond yields, short-term
(3 months) bond yields and PPP conversion rates are obtained from OECD Data. All
times series are US Dollar denominated, at a monthly frequency. PPP (Purchasing
Power Parity) conversion rates, which are the rates of currency conversion that try to
equalize the purchasing power of different currencies, are the only yearly time series. To
use these yearly data when computing monthly currencies value measures, the previous
year’s (t − 1) value was employed for each month of year t. For example, to compute
value measures for CAD (Canadian Dollar) in January/.../December 2001, the Canada
PPP conversion rate in 2000 was used. End date for all the series is December 2019.
The analysis aims to examine how the final portfolios performed at least from the
start of January 2000 but, because of (12-months) trailing estimations and (one-month
delayed) portfolio returns computations, futures and spot price time series date back to
September 1995 and all the other times series required to calculate risk measures date
back five years earlier. However, recall that not all the securities involved offer reliable
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extended time series before 2000, so start dates for securities’ and measures’ time series
may vary considerably. The choice to explore portfolios performance starting from (at
least) 2000 is motivated by the desire to investigate the profitability of these strategies
as more and more conventional investors became aware of them (which, as pointed in
the first chapter, occurred in the 2000s) and their response to the several challenging
political and economic events occurred in recent years. Examples are the dot-com
bubble and the 11th attacks (2000-2002), the 2000s energy crisis (2003-2009), the
subprime mortgage crisis and US housing bubble (2007-2009), the European sovereign
debt crisis (2009-2019, peaked in 2012), the Chinese stock market crash (2015), the
Brexit vote (2016) and other influential events such as environmental disasters and
wars. Table A.1 in appendix A provides a summary statistics of nearest to maturity
contracts and spot benchmark indices, including their date of inception.

The universe of securities includes 50 assets of different nature. Country equity index
futures covers 14 developed and influential equity markets: Australia (S&P/ASX 200),
Canada (S&P/TSX 60), Europe (Euro STOXX 50), the US (S&P 500), Japan (Nikkei
255), the UK (FTSE 100), Mexico (S&P/BMV IPC), Switzerland (SMI), Hong Kong
(HSI), India (NIFTY 50), Italy (FTSE MIB), Spain (IBEX 35), Germany (DAX 30)
and France (CAC 40). For bonds, liquid long-term government bonds futures from 8
developed countries were selected: Australia, Canada, Germany, the US, Japan, the
UK, Mexico and Switzerland. The list of currencies tries to emulate the G10 currencies,
with the inclusion of Mexico: EUR, GBP, JPY, AUD, NZD, CAD, CHF, NOK, SEK
and MXN (as previously stated, all denominated in USD). Finally, a group of the most
18 traded commodities: Crude Oil, Copper, Corn, Gold, Natural Gas, Silver, Soybean,
Sugar, Wheat, WTI Crude, Oil, Live Cattle, Lean Hog, Feeder Cattle, Platinum,
Cocoa, Cotton, Aluminium and Nickel.

Traditional 60-40 benchmarks are generally constructed allocating 60% of capital to
diversified stock indices (for example the S&P500) and 40% capital to safe government
bonds (for example 10 years US Notes). Ferri (2010) suggests diversification providing
different portfolio compositions which include stock indices of different countries (both
developed or emerging markets), government bonds (hedged or unhedged for inflation)
of developed and emerging market countries or corporate bonds of different rating,
G10 currencies, commodities and alternative assets (such as hedge fund indexes, real
estates, derivatives and so on). My benchmark portfolio is a more simplified version of
what proposed by Ferri, but still providing a proper grade of diversification. To build
the portfolio, I allocated 50% of the capital to a global gross equity index (MSCI World
Total Return), 40% to a global aggregate bonds index (Barclays Global Aggregate) and
10% to a diversified commodities composite (S&P Goldman Sachs Commodity Index).

To backtest the strategies, continuous price times series are needed. However, futures
prices are instruments that have limited lifespan and need to be rollover to maintain
the exposure to their underlying assets. Rollover is basically closing the position from
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the front month contract to another contract further in the future. If the two contract
prices are not equal, the times series would include “jumps” which would condition
the general backtested performance. Various techniques allow to adjust this problem
smoothing these jumps. The one considered in this thesis is the one which provides
better estimates when working with return series. To automatically compose these
continuous futures series, I used Bloomberg’s GFUT ratio-setting, which composes
continuous futures price series through a proportional adjustment approach rolling-
over contracts at their first notice.

Securities’ and portfolios’ weights are rebalanced monthly but, considering the high
turnover associated with these dynamic strategies (see Table 4.1) relative to the pas-
sive benchmark portfolio, estimated transaction costs must be subtracted from portfolio
returns. Locke and Venkatesh (1997) estimated that transaction costs in futures mar-
kets range from 0.0004% to 0.033% of the turnover reached. A conservative value of
0.05% (or 5 bps) is applied in this thesis.

Table 4.1: Annualized Turnover rate for Factor Portfolios

The table provides the annualized turnover rate for factor portfolios compared with the one produced
by the traditional benchmark portfolio. Series are from 31/10/1996 through 31/12/2019.

Equities Bonds Currencies Commodities Benchmark

Value 465.81% 528.38% 75.13% 594.41% 4.30%

Carry 155.36% 548.35% 153.21% 366.78% 4.30%

Momentum 234.76% 253.00% 287.09% 308.47% 4.30%

Volatility 752.42% 652.45% 711.15% 917.22% 4.30%

Finally, the risk-free rate for the computation of excess returns and performance ratios
(for example, the Sharpe Ratio) is set equal to 0. This is a simplistic assumption, but
if we consider the average US short-term real yield as risk free, we will obtain that for
the entire period of the analysis the value is close to zero.
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4.2 Factor Portfolios

4.2.1 Value Portfolios

For each asset class, a value portfolio is created using the methodologies explained
in chapter 2. In Figure 4.1 cumulative returns of value portfolios and the traditional
benchmark are represented covering the period from October 1996 to December 2019.

From the picture, it is clear how the traditional 60/40 benchmark performed better
than the value portfolios. In fact, the benchmark produced the greatest cumulative
return without manifesting substantial deviation in its path, thus suggesting higher
risk-adjusted ratios, such as the Sharpe Ratio. The worst performance was achieved
by commodities with a steady decrease lasted almost four years after a previous peak
in 2002. Except for currencies, all the style portfolios seem not to be influenced par-
ticularly by major market movements, such as the financial crisis in 2008.

Figure 4.1: Cumulative Returns of Value Portfolios
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To better understand the behaviour of the portfolios during the sample period, per-
formance and risk statistics are required. Table 4.2 confirms what Figure 4.1 suggests,
that is currencies and global equities were the sole value portfolios which provided
positive performances. They respectively realized annualized returns equal to 2.81%
and 2.17% and annualized volatility equal to 8.15% and 10.54%, against an annual-
ized returns of 5.91% and annualized volatility of 8.52% achieved by the benchmark.
This led the Sharpe Ratio of the benchmark to be more than twofold those of the two
style portfolios. An alternative risk-adjusted performance measure is the Sortino Ratio,
which considers the downside risk (or semi deviation) of the returns at the denominator
to adjust the performance, instead of total portfolio risk. The measures validate what
already said about the performances. However, it can be noted increases (with respect
to Sharpe ratios) of about 40%-75% for style portfolios against 26% for the benchmark.
This indicates that factor portfolios present a higher portion of upside volatility, which
is less harmful for investors.

A test for normality is also performed to check if the distributions of the returns
are normally distributed. This is important because risk management usually assumes
returns to be normally distributed and this underestimates tail behaviour, as mentioned
in chapter 1. The Jarque-Bera (JB) test provides the output 1 when the null hypothesis
of normality is rejected and 0 otherwise. As we can see, only commodities returns seems
to behave as a normal distribution. A confirmation comes also from the analysis of
skewness and excess kurtosis, where commodities portfolios exhibits values close to
zero, thus acting similarly to a normal distributed curve. Bonds portfolio presents
intense positive skewness, indicating a larger portion of extreme positive events with
respect to a normal distribution and an excess kurtosis of 11.35, thus with tails far
wider than normal. The others two style portfolios, but also the benchmark, seem
to behave like anticipated in chapter 1, that is style portfolios have modest negative
skewness and fatter tails.

Provided with these measures, adjusted versions of value-at-risk (VaR) and expected
shortfall (ES) can be computed. As these original risk measures assume that the asset
returns follow a normal distribution, a modified version that takes into consideration
skewness and excess kurtosis was considered. The Cornish-Fisher expansion is the ex-
pansion which allows to obtain proper VaR and ES to estimate tail features. While the
VaR is defined as the loss level that will not be exceeded with a certain confidence level
during a certain period of time, the ES represents the expected loss over a specified
time period given the loss being greater than the VaR level. Because the ES consid-
ers the entire curve shape and satisfied the properties of monotonicity, sub-additivity,
homogeneity, and translational invariance, it is considered a more conservative and co-
herent risk measure than VaR, violates the sub-additivity property (which states that
if you add two portfolios together the total risk can’t get any worse than adding the
two risks separately). Results reflect what the annual standard deviation stated: com-
modities have the greatest expected shortfall (14.62%), bonds have the lowest value
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(6.35%) and benchmark is somewhat positioned similar to the remaining currencies
and equities value portfolios at an average value of about 10%. Stated differently, com-
modities are expected to lose 14.62% when losses overcome the VaR level of 12.51%,
whose chance level is 99% over an entire trading month period. These are useful ex-
ante measures to estimate future tail events. An alternative measure which measure
ex-post risk performances is the maximum drawdown, which provides the measure
of the maximum observed loss from a peak to a trough of a portfolio, alternatively
quantifying its downside risk. During the period considered, the maximum drawdown
was performed by commodities in 30/03/2012, with an 81.16% decrease from its prior
peak in 30/11/2001. From a mere max drawdown observation, all the value portfolios
(except for commodities) outperformed the benchmark. Nevertheless, by using the
Calmar Ratio we can see how the situation is reverse. Calmar Ratio is an alternative
performance adjusted measure to Sharpe Ratio and Sortino Ratio, where the port-
folio return is adjusted for maximum drawdown. This confirms that value portfolios
provided a meager return performance given the downside risk borne.

The final analysis considers results about the annualized alphas and betas (and their
t-statistics) generated from the regression of the value portfolios returns on the bench-
mark returns. Let us begin with alpha, which is a method to compare asset perfor-
mances relative to a benchmark. All but bonds portfolio exhibit positive annualized
alphas and are marginally statistically significant (when the absolute value of their t-
statistics is greater than 1.96). This suggests that our market-neutral value portfolios
succeeded in identifying overperforming and underperforming assets, generating exces-
sive returns compared to the market, provided the systematic risk borne. Alpha is
usually considered when evaluating managers’ performance because it a measure that
indicates if they achieved returns independent from market movements. Beta measures
the systematic risk of a portfolio in comparison to the market as a whole (where the
market here is represented by the benchmark portfolio). Beta coefficients for value
portfolios are all small and statistically significant, implying that portfolios are not
highly exposed to market risk. The valuation of risk by using beta, in this case, mas-
sively diverge from the valuation resulted from annualized standard deviation. This
may be a sign that a huge portion of non-systematic risk (or idiosyncratic risk) still
lies in these portfolios. The Treynor Ratio is another performance ratio which allows
to evaluate a return performance considering risk. To do that, it defines the returns
per unit of systematic risk. It becomes useless when the numerator is negative, as the
other ratios (Sharpe, Sortino and Calmar), but also when the denominator (beta) is
negative, as in the case of commodities. As we can see from the results, Treynor Ratios
provide a completely different solution than the other risk-adjusted procedures. Con-
sidered the low systematic risk carried, equities and currencies portfolios produced an
annualized return that was high enough to overperform the benchmark. This clearly
confirm what assessed by the estimated alphas. However, because alpha, beta and the
Treynor Ratio consider only systematic risk when comparing performances, caution is
needed in the presence of portfolios not truly diversified (like these asset class specific
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factor portfolios which contain a high portion of idiosyncratic risk typical of their asset
class).

Table 4.2: Summary Statistics for Value Strategy across Asset Classes

The table provides results about performances and statistics relative to the value portfolios obtained in
each asset class compared with the traditional benchmark portfolio. All returns are after transaction
costs and series are from 31/10/1996 through 31/12/2019. Some additional information are needed
and they will be equal for all the ’Summary Statistics’ tables provided afterwards: 1) Performance
ratios (Sharpe, Sortino, Calmar and Treynor) are annualized. 2) The Jarque-Bera Test returns a test
decision for the null hypothesis that the data comes from a normal distribution with unknown mean
and variance. The result is 1 if the test rejects the null hypothesis at the significance level, and 0
otherwise. 3) VaR and ES are adjusted for skewness and excess kurtosis using the Cornish-Fisher
expansion. 4) α and β are estimated through linear regression of portfolio returns on the benchmark.

Equities Bonds Currencies Commodities Benchmark

Cum. Return 64.87% 0.59% 90.44% -15.81% 279.79%

Ann. Return 2.17% 0.03% 2.81% -0.74% 5.91%

Ann. St.Dev. 10.54% 5.20% 8.15% 18.07% 8.52%

Sharpe Ratio 0.21 0.00 0.34 -0.04 0.69

Sortino Ratio 0.30 0.01 0.48 -0.07 0.87

JB Test(99%) 1 1 1 0 1

Skewness -0.06 1.74 -0.62 -0.06 -0.88

Exc. Kurtosis 2.55 11.35 1.91 0.18 2.76

VaR(99%) 8.79% 3.84% 7.00% 12.51% 7.67%

ES(99%) 11.85% 6.35% 9.07% 14.62% 10.22%

Max Drawdown 22.10% 22.54% 26.83% 81.16% 34.18%

Calmar Ratio 0.10 0.00 0.10 -0.01 0.17

Ann. α 1.68% -0.59% 0.90% 2.64% -

t-statistic 2.62 -1.94 1.78 2.41 -

β 0.17 0.12 0.36 -0.29 -

t-statistic 2.28 3.40 6.79 -2.26 -

Treynor Ratio 0.13 0.00 0.08 0.03 0.06
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4.3 Carry Portfolios

Figure 4.2 provides the cumulative returns obtained in each asset class through carry
methodologies previously described. We can note that currencies carry portfolio re-
sembles its value counterpart with a discrete overall performance and a crash during
the 2008 financial crisis. The other asset classes present smoother paths even though
equities suffered high downside volatility during the end of the 90s which penalized
further its overall negative performance. Commodities carry portfolio seems to provide
the best risk-adjusted return over time.

Figure 4.2: Cumulative Returns of Carry Portfolios

In Table 4.3 it is confirmed the superior risk-adjusted performance of commodities,
whit a twofold Sharpe Ratio with respect to the passive benchmark. Even considering
only the downside risk instead of total risk, rankings are unchanged. However, as for
value portfolios, the percentage increase from Sharpe ratio values to Sortino one values
leads to think that factor portfolios possess a greater portion of upside volatility and,
thus, are relatively less risky than what the Sharpe ratio may suggest. The analysis
of the return distributions indicates that none of the portfolios behave like a normal
distribution and, except for currencies, reveal positive skewness. Lastly, also carry
portfolios confirmed fat tails.

34



The biggest adjusted ES during extreme negative events are observed in equities
(13.03%) and currencies (8.49%). Commodities portfolio reveals a surprisingly high
adjusted ES (7.43%), which may be explained by the excess kurtosis correction accom-
plished with the Cornish-Fisher extension. However, historical analysis of tail events
suggests that commodities offered the lowest maximum drawdown and, thus, the best
Calmar risk-adjusted performance (1.27) versus a benchmark value of 0.17 and other
asset classes’ values close to 0.

The t-statistics for alpha are all statistically significant and provided positive results for
almost all the portfolios. Equities confirmed its negative performance. Estimated beta
are low or negative, even though equities and commodities do not provide significant
values (t-statistics equal to 1.42 and 0.62, respectively). Finally, Treynor Ratio suggests
that the risk-adjusted performance of the commodities portfolio is 50 times better than
that of the benchmark (recall that beta is not significant) and that also currencies
offered a superior performance. Again, prudence must be exercised when considering
this ratios because the portfolios may still include a great portion of idiosyncratic risk.

Table 4.3: Summary Statistics for Carry Strategy across Asset Classes

The table provides results about performances and statistics relative to the carry portfolios obtained in
each asset class compared with the traditional benchmark portfolio. All returns are after transaction
costs and series are from 31/10/1996 through 31/12/2019. For additional information about the
statistics provided, please refer to Table 4.2

Equities Bonds Currencies Commodities Benchmark

Cum. Return -56.61% 15.34% 127.85% 290.48% 279.79%

Ann. Return -3.53% 0.62% 3.61% 6.03% 5.91%

Ann. St.Dev. 11.84% 4.79% 8.03% 4.60% 8.52%

Sharpe Ratio -0.30 0.13 0.45 1.31 0.69

Sortino Ratio -0.47 0.21 0.63 2.40 0.87

JB Test(99%) 1 1 1 1 1

Skewness 0.80 0.32 -0.62 1.94 -0.88

Exc. Kurtosis 4.82 1.82 1.59 16.45 2.76

VaR(99%) 9.23% 3.37% 6.65% 3.91% 7.67%

ES(99%) 13.03% 4.30% 8.49% 7.43% 10.22%

Max Drawdown 69.14% 14.95% 27.19% 4.57% 34.18%

Calmar Ratio -0.05 0.04 0.13 1.32 0.17

Ann. α -3.62% 1.99% 1.14% 5.85% -

t-statistic -5.01 7.27 2.64 20.79 -

Continued on next page
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Equities Bonds Currencies Commodities Benchmark

β 0.12 -0.21 0.45 0.02 -

t-statistic 1.42 -6.53 8.94 0.62 -

Treynor Ratio -0.30 -0.03 0.08 3.00 0.06

4.4 Momentum Portfolios

Cumulative returns for momentum portfolios are presented in Figure 4.3. Overall, the
performances of the four asset classes have been all positive with bonds being nearly
profitable and equities providing a final return similar to the benchmark, overcoming
it by more than 400% in the middle of the financial crisis and crashing subsequently.

Figure 4.3: Cumulative Returns of Momentum Portfolios
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The positivity of the performances is verified in Table 4.4. Each asset class provided
annualized returns ranging from 0.65% to 5.32%, approaching the annualized perfor-
mance of the benchmark equal to 5.91%. However, due to higher annualized volatility,
the risk-adjusted performances remain lower. Again, the presence of a higher degree
of upside volatility skew the results, validated by the percentage increase from Sharpe
Ratios to Sortino Ratios. However, benchmark still overperformed asset class specific
momentum portfolios.

Reinforced by negative skew distributions and fat tails, Jarque-Bera tests once again
did not unveiled normality similarities in return distributions.

Not surprisingly, equities momentum portfolio registered the highest maximum draw-
down (57.69%) during the post financial crisis period, followed by the benchmark
(34.18%) and then commodities and currencies (about 28%). Calmar Ratio confirmed
the Sharpe Ratio rankings indicating the benchmark as the best performer relative to
the specific risk borne (maximum drawdown), followed by slightly different ranking per-
formances for equities, commodities and currencies. Bonds, whose total volatility was
quite low, presented a discrete level of maximum drawdown which further penalized
its risk-adjusted performance.

Finally, statistically significant alpha measures indicates that the momentum portfolios
produced excess returns with respect to the benchmark, considered their systematic
risk. This cannot be verified by Treynor Ratios as mostly estimated beta present
negative exposure to the market or not statistically significant values.

Table 4.4: Summary Statistics for Momentum Strategy across Asset Classes

The table provides results about performances and statistics relative to the momentum portfolios
obtained in each asset class compared with the traditional benchmark portfolio. All returns are after
transaction costs and series are from 31/10/1996 through 31/12/2019. For additional information
about the statistics provided, please refer to Table 4.1

Equities Bonds Currencies Commodities Benchmark

Cum. Return 233.59% 16.37% 51.62% 109.55% 279.79%

Ann. Return 5.32% 0.65% 1.81% 3.23% 5.91%

Ann. St.Dev. 15.15% 3.56% 6.14% 9.37% 8.52%

Sharpe Ratio 0.35 0.18 0.29 0.34 0.69

Sortino Ratio 0.51 0.26 0.38 0.49 0.87

JB Test(99%) 1 1 1 1 1

Skewness 0.24 -0.21 -0.57 -0.20 -0.87

Exc. Kurtosis 3.30 1.18 2.11 1.33 2.76

Continued on next page
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Equities Bonds Currencies Commodities Benchmark

VaR(99%) 12.18% 2.75% 5.36% 7.19% 7.67%

ES(99%) 16.97% 3.46% 7.02% 9.15% 10.22%

Max Drawdown 57.69% 12.07% 23.85% 28.05% 34.18%

Calmar Ratio 0.09 0.05 0.08 0.12 0.17

Ann. α 8.35% 0.70% 2.21% 3.73% -

t-statistic 9.15 3.22 5.90 6.49 -

β -0.33 0.00 -0.04 -0.02 -

t-statistic -3.14 0.09 -0.89 -0.25 -

Treynor Ratio -0.16 2.94 -0.47 -1.92 0.06

4.5 Volatility Portfolios

The last style premia to discuss is volatility (or low beta strategy). In Figure 4.4
we can note that except for equities (and marginally bonds), none of the asset class
beat the benchmark. Moreover, both equities and commodities seemed to suffer the
2008 financial crisis whilst currencies dropped in late 2012, perhaps conditioned by the
worsening of the European sovereign debt crisis occurred in that period.

As usual, Table 4.5 provides summary statistic for the volatility strategy across asset
classes. The only asset class which presented a negative cumulated return over the
period is commodities, also penalized by the highest annualized volatility seen so far
across strategies. This should not surprise as this strategy makes use of leverage
to set beta-neutral portfolios, though constrained to a 200% amount. Overall, asset
classes are in line with their value, carry and momentum equivalents, providing low
or discrete risk-adjusted performance (both for total and downside risk) which did
not overcome the benchmark (except for commodities carry portfolio, which acted
handsomely over the period considered). As for value strategy, commodities presented
returns distribution which resembles a normal distribution while other asset classes
revealed fatter tails and left-skewed characteristics.

Adjusted VaR and adjusted ES reflect roughly the total risk of each portfolio, by dis-
playing extreme expected losses in commodities and equities. Adjusted ES is relatively
higher for the passive portfolio than for currencies given almost the same amount of
total risk. This may be cause by a larger presence of extreme returns, confirmed
by skewness and excess kurtosis. However, this is not emulated by maximum draw-
down results. In fact, currencies presented the second highest maximum drawdown
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surmounting both benchmark and equities. Calmar Ratio does not provide crucial
additional information to the previous risk-adjusted ratio.

The analysis of alphas and betas does not offer positive suggestions. Except for bonds
portfolio, which produced a positive significant annualized alpha, for the other asset
classes the value is not statistically significant. Betas analysis is not encouraging too.
The estimations are nearly significant for currencies and commodities and suggested a
market exposure way higher than preferred. In fact, despite portfolios were constructed
to be market neutral, beta estimated are not closer to zero than the other strategies.
Furthermore, estimated beta for equities portfolio is equal to 0.86. However, it must be
recalled that each portfolio has been constructed to be market neutral with respect to
asset specific risk-weighted indexes and not to the benchmark. Treynor Ratio confirmed
the poor performances already largely discussed.

Figure 4.4: Cumulative Returns of Volatility Portfolios
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Table 4.5: Summary Statistics for Volatility Strategy across Asset Classes

The table provides results about performances and statistics relative to the volatility portfolios ob-
tained in each asset class compared with the traditional benchmark portfolio. All returns are after
transaction costs and series are from 31/10/1996 through 31/12/2019. For additional information
about the statistics provided, please refer to Table 4.2

Equities Bonds Currencies Commodities Benchmark

Cum. Return 192.97% 37.28% 0.82% -12.09% 279.79%

Ann. Return 4.73% 1.37% 0.04% -0.55% 5.91%

Ann. St.Dev. 14.51% 5.25% 8.54% 21.68% 8.52%

Sharpe Ratio 0.33 0.26 0.00 -0.03 0.69

Sortino Ratio 0.46 0.34 0.01 -0.04 0.87

JB Test(99%) 1 1 1 0 1

Skewness -0.14 -0.72 0.14 -0.11 -0.88

Exc. Kurtosis 3.03 3.90 1.29 0.44 2.76

VaR(99%) 12.62% 5.29% 6.18% 15.53% 7.67%

ES(99%) 17.43% 7.37% 7.72% 18.53% 10.22%

Max Drawdown 37.91% 15.75% 40.59% 61.19% 34.18%

Calmar Ratio 0.12 0.09 0.00 -0.01 0.17

Ann. α 0.41% 2.05% -0.31% 0.19% -

t-statistic 0.53 6.44 -0.60 0.14 -

β 0.86 -0.09 0.12 0.26 -

t-statistic 9.77 -2.44 1.94 1.74 -

Treynor Ratio 0.05 -0.15 0.00 -0.02 0.06
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Overall, the four strategies across individual asset classes (except the commodities carry
portfolio) provided poor performances with respect to the benchmark, providing low
or negative annualized returns after costs and, for equities and commodities, large an-
nualized standard deviation. This lowered the absolute and adjusted performances for
both total and downside risks. Furthermore, it has been confirmed the non-normality
assumption of the return distributions with typical left-skewed distributions and fat
tails for the majority of the portfolios observed. The analysis of the regression of each
portfolio against the benchmark revealed contrarian situations alternating positive and
negative performances. However, lots of the coefficients were not statistically signifi-
cant and portfolios may still contain a great degree of idiosyncratic risk which must be
diversified away.

To do so, global factor portfolios were composed following the procedure described
in chapter 2, that is by using an equal-volatility scheme. It will be shown in the
next section that creating these factor portfolios, diversified across asset classes, does
improve considerably overall performances. This was augmented by the low correlation
among each portfolio return, which allowed to reach a superior diversification effect. As
we can see in Table 4.6, correlations across asset class specific portfolios are extremely
low (about 0.02) and momentum is the strategy which generally produced the highest
rate of correlation (even though the absolute highest correlation was obtained between
returns of currencies in value and carry strategies, 0.79). Compared to the benchmark
and a pure global equity index (MSCI World), the average correlation is equal to 0.07,
with the highest ratio obtained among returns of the volatility equities portfolio and
the benchmark.
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4.5.1 Global Factor Portfolios

For each strategy, a global factor portfolio is created applying an equal-volatility weight-
ing scheme on the four asset class specific portfolios. using the methodologies explained
in chapter 2. Figure 4.5 provides the cumulative returns of global factor portfolios
from November 1997 to December 2019. It can be noted a clear improvement in per-
formances, which are generally less volatile and not strongly conditioned by economic
and financial crisis occurred during the sample period.

Figure 4.5: Cumulative Returns of Global Factor Portfolios

Table 4.7 helps us to quantify the degree of performances. Cumulative and annualized
returns for factor portfolios ranged (respectively) from 33.59% to 73.78% and 1.32%
to 2.52%, while the benchmark kept overperforming with values equal to 232.61%
and 5.57%. However, the diversification obtained by low correlations among asset
classes and the greater amount of capital allocated to less risky assets allowed to lower
considerably the total risk. Except for carry, which obtained an annualized volatility
equal to 1.90% clearly benefitting from the superior commodities performance, the
other style premia produced an annualized standard deviation close to 4.5% against
a benchmark volatility of 8.5%. This permitted Sharpe ratios to get closer to the
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reference level achieved by the benchmark, that is a Sharpe Ratio of 0.65. Carry, whose
risk-adjusted performance is equal to 1.00, acted greatly also limiting the analysis to
downside risk doubling the performance and suggesting that a substantial portion of
its risk is “not harmful”. Tests on normality did not discover normal similarities.
However, if we look at skewness and excess kurtosis, we can note how they do not
depart significantly from standard normal values equal to 0.

The biggest improvements appeared when estimating ex-ante and ex-post risk expo-
sure. In fact, both adjusted VaR, adjusted ES and maximum drawdown plummeted
with respect to the benchmark. However, a deeper look at the drawdown chart (not
provided for factor portfolios but noticeable in the chart offered in the next section
for the levered multi-factor portfolios) advises that while the benchmark suffered two
major drawdowns during the dot-com bubble and the subprime crises, the risk premia
strategies registered frequently major and minor drawdown during the entire second
decade of 2000. The Calmar Ratio indicates that all the portfolios performed equally
with respect to the maximum drawdown shouldered, except for carry, which overper-
formed against the others.

Annualized alphas are all statistically significant and suggest weak overperformance
with respect to the benchmark. Beta coefficients, which resulted nearly statistically
significant for carry and momentum and highly statistically significant for value and
volatility, indicate low or negative exposures to market risk. Finally, the Treynor Ratio
awarded style portfolios with respect to the benchmark. The difference between Sharpe
ratios and Treynor ratios when ranking the performances once again may indicate that
a significant level of idiosyncratic risk is still included in global factor portfolios.

Table 4.7: Summary Statistics for the Global Factor Portfolios

The table provides results about performances and statistics relative to the global factor portfolios ob-
tained through equal-volatility weighting in each asset class compared with the traditional benchmark
portfolio. All returns are after transaction costs and series are from 28/11/1997 through 31/12/2019.
For additional information about the statistics provided, please refer to Table 4.2

Value Carry Momentum Volatility Benchmark

Cum. Return 33.59% 73.78% 51.70% 34.44% 232.61%

Ann. Return 1.32% 2.52% 1.90% 1.34% 5.57%

Ann. St.Dev. 4.18% 2.53% 4.54% 4.49% 8.52%

Sharpe Ratio 0.31 1.00 0.42 0.30 0.65

Sortino Ratio 0.55 1.74 0.54 0.42 0.81

JB Test(99%) 1 1 1 1 1

Skewness 0.39 0.26 -0.70 -0.37 -0.91

Continued on next page
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Value Carry Momentum Volatility Benchmark

Exc. Kurtosis 1.25 1.70 2.89 0.80 2.91

VaR(99%) 2.63% 1.62% 4.20% 3.43% 7.79%

ES(99%) 3.23% 2.11% 5.67% 4.21% 10.41%

Max Drawdown 10.33% 5.63% 13.93% 10.16% 34.18%

Calmar Ratio 0.13 0.45 0.14 0.13 0.16

Ann. α 0.68% 2.34% 2.33% 0.63% -

t-statistic 2.68 14.86 8.27 2.33 -

β 0.12 0.03 -0.06 0.14 -

t-statistic 4.23 1.77 -1.85 4.47 -

Treynor Ratio 0.11 0.79 -0.31 0.10 0.06

Before proceeding with the next section, a brief analysis of the correlation matrix for
the global factor portfolios returns is included (Table 4.8). As for individual asset class
specific portfolios, general correlation among strategies is close to zero or even negative,
implying that also näıve diversification approaches may improve further overall port-
folio performances. Furthermore, it can be seen that also correlation among strategies
and market benchmarks are truly low, that is diversification would be obtained also
by simply blending factor strategies with passive portfolios.

Table 4.8: Correlation Matrix for the Global Factor Portfolios

The table shows the correlations for returns produced among each global factor portfolio, traditional
equity beta (MSCI World Index (MSCI)) and the traditional benchmark. All returns are considered
after transaction costs and series are from 28/11/1997 through 31/12/2019.

Value Carry Momentum Volatility MSCI Benchmark

Value 1 0.16 -0.09 -0.09 0.27 0.25

Carry 1 0.03 -0.06 0.10 0.11

Momentum 1 0.11 -0.14 -0.11

Volatility 1 0.25 0.26

MSCI 1 0.96

Benchmark 1
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4.6 Multi-Factor Portfolio

In this section, I will present results about the multi-factor portfolios composed by
blending together the four global factor portfolios by making use of the six different as-
set allocation methods described in chapter 3 and I will also target annualized portfolio
volatility to 8% through leverage, limiting leverage factors to 1000%. This allows to ob-
tain superior returns while limiting the increase of risk to suffer. However, as volatility
risk premia already embedded leverage, the total scaling effect for some portfolios will
occasionally exceed that level. The choice of target volatility was done considering the
historical benchmark annualized volatility obtained from 1990 to 2000. With the gift
of hindsight, this is a reliable measure as the realized benchmark annualized volatility
during our sample period was not different (8.53%). Unlevered portfolios performances
are presented in Appendix B.

Before proceeding, it is important to inform that lower and upper bounds for individual
strategies’ participation were set to be respectively equal to 10% and 50%. By doing so,
I eased the problem of letting some assets concentrate for more than a half of portfolio’s
total position (discussed in chapter 3) while also denying the possibility of setting asset’s
weights close to zero, thus cutting diversification benefits. This procedure was applied
to GMV, MSR, ERC and MD optimization problems. Furthermore, to be consistent
with the positive weight constraints imposed (by construction) in the equally weighted
portfolio, all the asset allocation strategies were considered long-only.

Let us start with the cumulative returns plot in Figure 4.6 which covers a period of
twenty years: January 2000 to December 2019. Thanks to leverage effect, cumula-
tive returns generated by all the asset allocation methods now exceed the benchmark.
During the period, two events conditioned particularly the overall performance and
boosted instability: the 2008 financial crisis and the 2015-2016 stock market sell-off.
This last occurrence can also be seen as the moment when performances started to
diverge the most, except for MSR and EW which started their variation in 2009.

Table 4.9 provides all the summary statistics needed to evaluate portfolios profitability
and riskiness. In general, portfolios which favour a better management of volatility like
the GMV and the risk parity strategies, provided the best performances both in abso-
lute terms and relative to the risk associated (total risk for Sharpe Ratio or downside
risk for Sortino Ratio). Annualized portfolios volatility did not accomplish completely
the 8% target set, presumably because of the presence of transaction costs and leverage
constraints. Assumptions of normality were all rejected and returns distribution dis-
played mostly a slightly positive skewness, thus the presence of more extreme positive
events than normal and fat tails, which has been a common characteristic observed in
all the previous portfolios.
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Estimated and examined “tail” risks, despite the great level of leverage embedded, were
all in line or lower than the benchmark, with volatility-optimizer strategies achieving
their task of providing the safest portfolios. In fact, GMV, ERC and IV forecasted
monthly average losses during the worst 1% of months’ days equal to about 8.6% and
an observed maximum drawdown of 25% against benchmarks values of 10.69% and
34.18%, respectively (Figure 4.7 provides the drawdown function for the portfolios).
Return performances adjusted for maximum drawdown do not include additional in-
formation: GMV keeps overperforming, followed by the other strategies which try to
minimize or optimize risk.

Linear regression on the benchmark revealed the generation of superior statistically
significant alphas and statistically significant beta values which suggest that levered
portfolios are one fifth less risky than the market. The exception is the MSR portfo-
lio with an estimated beta of 0.07, but not statistically significant (t-statistics equal
to 0.99). Finally, the Treynor Ratio confirmed the overperformance of these levered
portfolios diversified by asset class and style premia.

Figure 4.6: Cumulative Returns of Levered Multi-Factor Portfolios
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Figure 4.7: Drawdowns of Levered Multi-Factor Portfolios

Table 4.9: Summary Statistics for the Levered Multi-Factor Portfolios

The table provides results about performances and statistics relative to the multi-factor portfolios
obtained through six different asset allocation strategies and scaled to obtain an annual standard
deviation equal to 10%, compared with the traditional benchmark portfolio. All returns are after
transaction costs and series are from 31/01/2000 through 31/12/2019. For additional information
about the statistics provided, please refer to Table 4.2

EW GMV MSR ERC IV MD Benchmark

Cum. Return 327.08% 493.83% 262.07% 437.58% 489.57% 386.02% 159.78%

Ann. Return 7.53% 9.32% 6.64% 8.77% 9.28% 8.23% 4.89%

Ann. St.Dev. 9.52% 9.33% 9.72% 9.40% 9.50% 9.32% 8.53%

Sharpe Ratio 0.79 1.00 0.68 0.93 0.98 0.88 0.57

Sortino Ratio 1.10 1.71 1.08 1.46 1.51 1.37 0.71

JB Test(99%) 1 1 1 1 1 1 1

Skewness -0.09 0.40 0.57 0.20 0.31 0.08 -0.88

Exc. Kurtosis 2.56 2.11 3.87 2.03 3.13 1.23 3.08

VaR(99%) 7.57% 5.87% 6.96% 6.43% 6.87% 6.18% 7.94%

Continued on next page
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EW GMV MSR ERC IV MD Benchmark

ES(99%) 10.37% 7.77% 9.89% 8.56% 9.65% 7.88% 10.69%

Max Drawdown 26.22% 24.55% 24.98% 25.75% 24.82% 25.74% 34.18%

Calmar Ratio 0.29 0.38 0.27 0.34 0.37 0.32 0.14

Ann. α 6.55% 8.36% 6.54% 7.84% 8.23% 7.41% -

t-statistic 10.70 13.87 10.26 12.92 13.45 12.28 -

β 0.23 0.20 0.07 0.20 0.22 0.19 -

t-statistic 3.25 2.79 0.99 2.85 3.08 2.66 -

Treynor Ratio 0.33 0.48 0.91 0.44 0.43 0.44 0.05

Overall, additional diversification obtained through multiple blending steps finally pro-
vided highly profitable portfolios capable of mimic or overperform the benchmark risk-
adjusted performance, even after having considered the high amount of transaction
costs and the added riskiness provided by leverage. This was particularly true when
considering asset allocation methods which favour low volatility levels, such as GMV,
ERC and IV. Given the minimal performance differences between them, but the clear
different ease of implementation, IV can be considered the best allocation strategy for
the period, securities and risk premia considered.

Recalling what already said in chapter 2, that is different global factor portfolios were
generated considering asset allocation strategies other than the sole equal-volatility
weighting scheme, other 30 levered multi-factor portfolios were composed using the
usual six allocation methods and analysed. Sharpe Ratios obtained from these portfo-
lios, combined using strategies different from that suggested in literature, are displayed
in Appendix C.

4.7 Macroeconomic Sensitivities

Ilmanen et al. (2014) presented an interesting alternative risk analysis which allows to
comprehend how these portfolios responded to different macroeconomic scenarios, thus
providing insights of when it is more favourable to adopt these strategies and when
it is better loosen their usage. In their research, they provided a guideline to verify
the sensitivity of investable return sources (as our portfolios) to non-investable macro
factors. According to their procedure, some of the most influential macroeconomic
indicators were first taken into consideration: growth, inflation, real interest rates and
volatility. Long and reliable times series for some global macro variables were not
found, so that US indicators were used, given their historical dominant role in the
global economy:

• For growth, the US PMI (Purchasing Managers Index) was retrieved from
Quandl.
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• For inflation, the y-o-y change in the US CPI (Consumer Price Index) was
obtained from OECD Data.

• For real interest rates, the average yield between long-term (10 years) US real
interest rates and short-term (2 years) US real interest rates (based on their
respective nominal yield adjusted for US CPI inflation rate) were obtained on
Bloomberg.

• For volatility, the CBOE VIX (Volatility Index) was acquired from Bloomberg.

Historical median values were computed for each indicator using a rolling period of
10 years (or 120 months, as data is monthly) and recession months were identified as
the periods when the macroeconomic variable was lower than its historical median.
Macroeconomic indicators and recession shadows are provided in Figure 4.8.

Figure 4.8: Macroeconomic Indicators
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Once recession periods were available, Sharpe Ratios for each levered multi-factor
portfolio were recomputed to verify the adjusted-performance during these “up” and
“down” environments. For instance, to compute the performance of a portfolio during
unusually decreasing growth, it was sufficient to set original rp,t = 0 whenever the
median value was lower than the growth indicator (that is in presence of unusually in-
creasing growth). Figure 4.9 shows Sharpe Ratio levels achieved by portfolios in each
macroeconomic scenario.

In general, findings are that levered portfolios diversified across asset classes and re-
turn premia appear less sensitive to macroeconomic risks while the traditional bench-
mark, which is diversified solely across asset classes, demonstrates more variable Sharpe
Ratios. Multi-factor portfolios performed slightly better during periods of stagnant
growth, even though the difference with economic booms is not so evident. They also
favoured periods of increasing inflation, low real interest rates and decreasing volatility.
While the latter characteristic is quite common among assets which do not provide a
certain type of insurance (e.g., volatility index options), the other two may be the re-
sult of low volatility overweighting schemes. The bond-like tendency of overperforming
during low real interest rates could be motivated by the effect that the equal-volatility
weighting method used to form global factor portfolios provoked when overweighting
less risky asset, as bonds portfolios. On the other hand, the superior adjusted perfor-
mance of the commodities carry portfolio brought all the allocation methods to assign
greater capital to commodities (in the global carry portfolio) and then carry (in the
multi-factor portfolio). This may have delivered the same historically positive influence
of commodities to inflation to multi-factor portfolios.

The traditional passive portfolio performed better in environments of high growth, low
inflation, higher real interest rates and (definitely) during low volatility. In fact, as the
total risk of these portfolios is predominated by equities risk (as stated in chapter 1
and proved by correlation matrices), it is not surprising to recognize that these are the
scenarios in which equities perform well.

To conclude, asset allocation strategies which minimize and optimize volatility are
(again) a valid choice when composing diversified portfolios of risk premia strategies.
In fact, they provide a long-term insurance against the majority of the macroeconomic
scenarios considered, overperforming the benchmark during favourable environments
and providing parallel results to it during unfavourable ones.
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Figure 4.9: Sharpe Ratios across Macroeconomic Scenarios
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Chapter 5

Conclusions

After decades of equity beta dominance across traditional passive portfolios held by
institutional investors, the search for new alphas and portfolio stability brought factor
investing and risk-parity strategies to dominate modern asset management. Lots of
research conducted provided evidence about the profitability of these new “risk pre-
mia” strategies across the XX century. Later, the discovery of low correlation among
these return premia suggested that blending them in one unique portfolio would have
increased considerably the overall risk-adjusted performances.

The main objective of this thesis was to investigate the profitability of these strategies
from the start of 2000 to our days and to verify the benefits of blending them in one
multi-factor diversified portfolio after considered transaction costs. Comparison with
a traditional passive 60/40 benchmark was also sought.

For the aforementioned sample period and the specific securities considered, results are
that while individual risk premia did not provide adequate risk-adjusted over time com-
pared to the benchmark after considering transaction costs, the multi-factor portfolios
diversified across asset classes and styles provided superior performances for the entire
analysis period. In particular, asset allocation methods which favoured a better man-
agement of risk provided the portfolios with the best absolute and risk-adjusted returns.
Furthermore, the macroeconomic sensitivities analysis suggested that the diversifica-
tion benefits embedded in these portfolios make them less exposed to macroeconomic
scenarios than conventional passive portfolios.

However positive these findings, many investors keep ignoring these strategies or strug-
gling to obtain them. In fact, to entirely implement these strategies leverage, short
selling and derivatives instruments are needed. While the biggest institutional investors
regularly make use of these instruments and have the resources to better manage the
risks they imply, the typical investor faces technical constraints and possess general
aversion to them. This is, selfishly speaking, a positive information for those big sub-
jects which are capable of harvesting alternative risk premia and benefiting from them

53



as recent research suggested that the most profitable and known risk premia (which
are the ones considered in this thesis) have started to become overcrowded.

To conclude, the discovery of risk premia other than equity and bond premia started
a new era of portfolio diversification which allowed investors to take advantage of
generally risky instruments (leverage, short selling and derivatives) while maintaining
target risk level under control.
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Appendix A

List of main Securities

Table A.1: Summary Statistics for Individual Securities

The table provides information about 50 futures contracts across asset classes and 3 benchmark indices.
From left to right the summary statistics include the instruments’ name, the start date of the price
series, the annualized return and the annualized standard deviation. All series end in December 2019.

Underlying Code Start Ann. Ret. Ann. Std.

Equities
S&P/ASX 200 XP1 Index 31/05/2000 0.04 0.19
S&P/TSX 60 PT1 Index 30/09/1999 0.05 0.18
Euro STOXX 50 VG1 Index 29/01/1999 0.01 0.20
S&P 500 SP1 Index 29/09/1995 0.06 0.15
Nikkei 255 NK1 Index 29/09/1995 0.02 0.19
FTSE 100 Z 1 Index 29/09/1995 0.03 0.16
S&P/BMV IPC IS1 Index 31/05/1999 0.01 0.22
Swiss Market Index SM1 Index 30/09/1998 0.05 0.15
Hang Seng Index HI1 Index 29/09/1995 0.06 0.24
NIFTY 50 NZ1 Index 30/06/2000 0.06 0.25
FTSE MIB 30 ST1 Index 31/03/2004 0.01 0.20
IBEX 35 IB1 Index 29/09/1995 0.05 0.23
DAX 30 GX1 Index 29/09/1995 0.07 0.32
CAC 40 CF1 Index 29/09/1995 0.05 0.20

Bonds
Australian Gov. 10y XM1 Comdty 29/09/1995 -0.01 0.07
Canadian Gov. 10y CN1 Comdty 29/09/1995 0.03 0.07
Germany Euro Bund RX1 Comdty 29/09/1995 0.04 0.10
US Treasuries 10y TY1 Comdty 29/09/1995 0.03 0.06
Japan Gov. 10y JB1 Comdty 29/09/1995 0.03 0.04

Continued on next page
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Underlying Code Start Ann. Ret. Ann. Std.

UK Gilt 10y G 1 Comdty 29/09/1995 0.03 0.07
Mexican Gov. 10y DW1 Comdty 30/09/2003 0.03 0.08
Swiss Gov. 10y FB1 Comdty 29/09/1995 0.04 0.05

Currencies
AUD/USD AD1 Comdty 29/09/1995 0.02 0.12
CAD/USD CD1 Comdty 29/09/1995 0.00 0.08
EUR/USD EC1 Comdty 29/05/1998 -0.01 0.09
CHF/USD SF1 Comdty 29/09/1995 -0.01 0.10
JPY/USD JY1 Comdty 29/09/1995 -0.03 0.10
GBP/USD BP1 Comdty 29/09/1995 -0.00 0.08
MXN/USD PE1 Comdty 29/09/1995 0.04 0.11
NZD/USD NV1 Comdty 30/05/1997 0.02 0.12
NOK/USD NO1 Comdty 31/05/2002 0.00 0.10
SEK/USD SE1 Comdty 31/05/2002 -0.00 0.10

Commodities
Crude Oil CL1 Comdty 29/09/1995 0.03 0.34
Copper HG1 Comdty 29/09/1995 0.02 0.26
Corn C1 Comdty 29/09/1995 -0.07 0.27
Gold GC1 Comdty 29/09/1995 0.03 0.16
Natural Gas NG1 Comdty 29/09/1995 -0.16 0.57
Silver SI1 Comdty 29/09/1995 0.02 0.29
Soybean S 1 Comdty 29/09/1995 0.03 0.25
Sugar SB1 Comdty 29/09/1995 -0.03 0.31
Wheat W 1 Comdty 29/09/1995 -0.12 0.29
WTI Crude Oil CO1 Comdty 29/09/1995 0.08 0.32
Live Cattle LC1 Comdty 29/09/1995 -0.01 0.14
Lean Hog LH1 Comdty 29/09/1995 -0.11 0.27
Feeder Cattle FC1 Comdty 29/09/1995 0.01 0.15
Platinum PL1 Comdty 29/09/1995 0.04 0.22
Cocoa CC1 Comdty 29/09/1995 -0.03 0.29
Cotton CT1 Comdty 29/09/1995 -0.09 0.27
Aluminium AA1 Comdty 31/05/2001 -0.01 0.13
Nickel LN1 Comdty 31/07/1997 0.03 0.34

Benchmarks
MSCI World Total Return M2WO 29/09/1995 0.08 0.15
Barclays Global Aggregate LEGATRUH 29/09/1995 0.05 0.03
S&P GSCI Total Return SPGSCITR 29/09/1995 0.00 0.22
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Appendix B

Unlevered Multi-Factor Portfolio

Table B.1: Summary Statistics for the Unlevered Multi-Factor Portfolios

The table provides results about performances and statistics relative to the unlevered multi-factor
portfolios obtained through six different asset allocation strategies, compared with the traditional
benchmark portfolio. All returns are after transaction costs and series are from 31/12/1998 through
31/12/2019. For additional information about the statistics provided, please refer to Table 4.2

EW GMV MSR ERC IV MD Benchmark

Cum. Return 38.43% 44.57% 32.57% 41.44% 42.61% 41.92% 196.29%

Ann. Return 1.55% 1.76% 1.35% 1.66% 1.70% 1.67% 5.29%

Ann. St.Dev. 1.99% 1.83% 2.14% 1.85% 1.84% 1.96% 8.50%

Sharpe Ratio 0.78 0.96 0.63 0.90 0.92 0.85 0.62

Sortino Ratio 1.07 1.55 0.88 1.35 1.37 1.25 0.78

JB Test(99%) 1 0 1 1 1 0 1

Skewness -0.32 -0.04 -0.25 -0.12 -0.14 -0.18 -0.86

Exc. Kurtosis 2.08 1.02 2.30 1.22 1.65 0.95 2.95

VaR(99%) 1.60% 1.23% 1.75% 1.30% 1.35% 1.37% 7.81%

ES(99%) 2.13% 1.55% 2.36% 1.67% 1.77% 1.73% 10.49%

Max Drawdown 5.61% 5.43% 7.60% 5.37% 4.91% 6.05% 34.18%

Calmar Ratio 0.28 0.32 0.18 0.31 0.35 0.28 0.15

Ann. α 1.24% 1.52% 1.26% 1.40% 1.42% 1.41% -

t-statistic 10.04 13.22 9.19 12.08 12.41 11.47 -

β 0.06 0.04 0.02 0.05 0.05 0.05 -

t-statistic 4.05 3.33 1.21 3.59 3.84 3.47 -

Treynor Ratio 0.27 0.40 0.71 0.35 0.33 0.34 0.05
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Appendix C

Sharpe Ratios through different
Asset Allocation Methods

Table C.1: Sharpe Ratios through different Asset Allocation Methods

The table provides the Sharpe ratios of the levered multi-factor portfolios obtained through six different
asset allocation strategies, starting from global factor portfolios achieved through the same different
asset allocation strategies, compared with the traditional benchmark portfolio. Rows indicate the
allocation methods used to compose the global factor portfolios while columns the allocation methods
for the levered multi-factor portfolios. All returns are after transaction costs and series are from
31/01/2000 through 31/12/2019.

Levered Multi-Factor Portfolios

EW GMV MSR ERC IV MD Ben

G
lo

b
al

F
ac

to
r

P
or

tf
ol

io
s EW 0.67 0.92 0.74 0.87 0.83 0.90 0.57

GMV 0.71 0.89 0.56 0.80 0.84 0.77 0.57

MSR 0.70 0.87 0.65 0.82 0.82 0.79 0.57

ERC 0.74 0.94 0.60 0.87 0.91 0.83 0.57

IV 0.79 1.00 0.68 0.93 0.98 0.88 0.57

MD 0.63 0.83 0.59 0.75 0.77 0.75 0.57
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