
Ca’ Foscari University of Venice
and

Masaryk University

1

Challenging RSA cryptosystem
implementations

Doctoral Thesis

Matúš Nemec

Doctorate Coordinator Advisor (Masaryk University)
Prof. Riccardo Focardi Prof. Vashek Matyáš

Advisor (Ca’ Foscari University) Consultant
Prof. Riccardo Focardi Doc. Petr Švenda

Cycle: 32 Semester: Fall 2019
Matricola: 956333 UČO: 396066
SSD: INF/01 Informatica

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Matúš Nemec

Advisor (Ca’ Foscari University of Venice): Prof. Riccardo Focardi
Advisor (Masaryk University): Prof. Vashek Matyáš
Consultant (Masaryk University): Doc. Petr Švenda

i

Acknowledgements

I would like to thank Vashek Matyáš, Riccardo Focardi, Petr Švenda,
and Marek Sýs for their guidance and advice. I am thankful to all
my co-authors for their fantastic work, and to all the members of
CRoCS and ACADIA groups for creating a welcoming atmosphere.
I much appreciate the help of Nicola Miotello and Ada Nazarejová
with going through the red tape. Last but not least, this thesis would
not be possible without the support of my family and friends.

iii

Abstract

The aim of our research was to study security properties of real-
world deployments of the RSA cryptosystem. First we analyze RSA
key generation methods in cryptographic libraries. We show a prac-
tical application of biases in RSA keys for measuring popularity of
cryptographic libraries and we develop a factorization method that
breaks a proprietary key generation algorithm. Later we examine
published implementation issues in the TLS protocol, such as RSA
padding oracles, in the wider context of the Web ecosystem.

The main conclusion of our previous research on RSA keys was
that libraries leak information about their key generation algorithms
through the public keys. The bias in the key is often sufficient to
identify a library that likely generated the key. In this thesis, we fur-
ther demonstrate a practical method for measuring representation of
cryptographic libraries in large datasets of RSA public keys. We use
statistical inference to approximate a share of libraries matching an
observed distribution of RSA keys in an inspected dataset. Such esti-
mate also allows us to deploy an improved key classification method
that uses prior probabilities of libraries to more accurately determine
the source of a key.

Next we adapt a key factorization attack to keys generated by a
widely deployed proprietary cryptographic library. Our previous re-
search hinted at issues in the algorithm by showing an unusual bias in
the keys. We reveal the algorithm without the access to the source code
by analyzing algebraic properties of the keys. We develop a practical
factorization attack that can compute private keys corresponding to
the public keys used in electronic identification documents, Trusted
Platform Modules, authentication tokens, and other domains that use
secure chips with this RSA key generation algorithm. Our findings
were disclosed in coordination with the manufacturer of the devices
to minimize the resulting security threats.

Finally, we focus on implementation issues in the TLS protocol,
of which RSA key exchange is an integral part. We survey existing
practical attacks that affect current usage of TLS for securing the Web.
We specify conditions for the attacks as attack trees. Using measure-
ments on popular domains, we confirm that RSA padding oracles are

iv

currently the most common threat. We show how such security issues
get amplified by the complexity of the Web ecosystem. In many cases
of vulnerable websites, the issues are caused by external or related-
domain hosts.

Our work helps to demonstrate how RSA, a seemingly simple and
intuitive cryptosystem, requires a lot of knowledge to be implemented
correctly. Unlike RSA, elliptic curve cryptography (ECC) algorithms do
not require padding, and parameters can be chosen such that random
strings serve as keys. ECC is more resistant to bad user configurations
and provides many other benefits. We conclude that practitioners
should follow the example of TLS version 1.3 and stop using RSA in
favor of ECC.

v

Keywords

Bleichenbacher’s oracle, Coppersmith’s algorithm, cryptographic li-
brary, cryptographic protocol, factorization, key generation, RSA, TLS

vi

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Contributions . 3

1.2.1 Biased RSA key generation methods 3
1.2.2 Vulnerabilities in RSA key generation 3
1.2.3 TLS protocol vulnerabilities 4

1.3 Structure of the thesis . 5

2 State of the art 7
2.1 Survey of RSA key generation methods 7
2.2 Bias in RSA primes and keys 9

2.2.1 RSA prime types 9
2.2.2 RSA keypairs . 10
2.2.3 Modular bias . 10

2.3 Pseudo-random number generator failures 10

3 Measuring popularity of cryptographic libraries 13
3.1 Introduction . 14
3.2 Method overview . 17

3.2.1 Choice of key features 17
3.2.2 Clustering analysis 18
3.2.3 Dataset classification – original approach 20
3.2.4 Dataset classification – our approach 20
3.2.5 Limitations . 22

3.3 Methodology in detail . 23
3.3.1 Model . 23
3.3.2 Prior probability estimation 23
3.3.3 Key classification 24
3.3.4 Evaluation of accuracy 24
3.3.5 Additional accuracy considerations 28

3.4 Results on relevant datasets 31
3.4.1 Data preparation 31
3.4.2 Internet-wide TLS scans 35
3.4.3 Popularity between usage domains 37
3.4.4 TLS to CT comparison 37

vii

3.4.5 Detection of transient events 38
3.5 Related work . 40
3.6 Additional results . 41
3.7 Conclusions . 42

4 Factorization of widely used RSA moduli 47
4.1 Introduction . 47
4.2 Fingerprinting and factorization 51

4.2.1 Format of the constructed primes 52
4.2.2 Fingerprinting . 53
4.2.3 Factorization – attack principle 54
4.2.4 Coppersmith’s algorithm in detail 57
4.2.5 Application of Coppersmith’s algorithm 60
4.2.6 Computing the order of a generator in Z∗M′ . . . 61
4.2.7 Optimization of the parameters M′, m, t 61
4.2.8 Guessing strategy 68

4.3 Practical implementation 68
4.3.1 Details and empirical evaluation 68
4.3.2 Possible improvements and limitations 70

4.4 Analysis of impacts . 71
4.4.1 Summary of results 72
4.4.2 Electronic identity documents 74
4.4.3 Code signing . 75
4.4.4 Trusted Platform Modules 77
4.4.5 PGP with cryptographic tokens 79
4.4.6 TLS and SCADA-related keys 81
4.4.7 Certification authorities 82
4.4.8 Generic Java Card platform 83
4.4.9 Other domains 84

4.5 Mitigation and disclosure 85
4.5.1 Mitigation . 85
4.5.2 Future prevention and analysis 87
4.5.3 Responsible disclosure 89

4.6 Related work . 89
4.7 Conclusions . 91

5 Amplification of TLS vulnerabilities on the Web 93
5.1 Introduction . 93

viii

5.2 Background on TLS . 98
5.2.1 The Handshake Protocol 98
5.2.2 Ciphersuites . 100

5.3 Attack trees for TLS security 101
5.3.1 Threat model . 101
5.3.2 Review of known attacks against TLS 102
5.3.3 Insecure channels 105
5.3.4 Leaky channels 105
5.3.5 Tainted channels 108
5.3.6 Partially leaky channels 109

5.4 Experimental setup . 110
5.4.1 Analysis platform 110
5.4.2 Data collection and findings 111
5.4.3 Roadmap . 113

5.5 Page integrity . 114
5.5.1 Security analysis 114
5.5.2 Experimental results 116

5.6 Authentication credentials 118
5.6.1 Security analysis 118
5.6.2 Experimental results 121
5.6.3 Detected attacks 123

5.7 Web tracking . 124
5.7.1 Security analysis 124
5.7.2 Experimental results 126

5.8 Closing remarks . 127
5.8.1 Related work . 127
5.8.2 Ethics and limitations 128
5.8.3 Summary and perspective 129

5.9 Additional results . 130
5.9.1 Notable out of scope attacks against TLS 130
5.9.2 More detailed attack trees 134

6 Conclusions 139

Bibliography 143

A Author’s publications 167

ix

1 Introduction

The RSA cryptosystem predates most currently used cryptographic
libraries. It is often a necessary part of a new library and perhaps
one of the first features to be implemented. In a survey of RSA key
generation implementations [Šve+16a], we saw how the source code
for RSA in community-driven open-source libraries often remained
untouched over many library versions. We sought to challenge RSA
cryptosystem implementations to find out whether they were the best
they could be or lagging behind the constantly advancing attacks and
recommendations. It was proven time after time that it is necessary to
repeatedly scrutinize both old and new systems, to actively improve
the security of practical applications.

Cryptographic implementations were shown to fall short of ex-
pectations set by standards, such as when RSA key generation in
cryptographic libraries did not follow standards [Šve+16a], the size
of the Diffie-Hellman subgroup was not validated by libraries as re-
quired [Val+17], or random number generators were not working
correctly [Hen+12; Bel08; Bar+16; HFH16]. By scrutinizing not just
specifications, but also practical applications, urgent problems can
be discovered and addressed. To complicate the matter, without the
cooperation of the authors, proprietary systems must be evaluated
without the knowledge of their inner workings. This is addressed by
black-box testing [Som16b] and reverse engineering [Nem+17b].

With the presence of bugs in library implementations, it is also
desirable to measure impacts of resulting security vulnerabilities. In
some cases, the observation cannot be made directly, but the applicabil-
ity of the attack becomes known only after expending non-trivial work.
Previously, we proposed a method for inferring the cryptographic li-
brary from bias in an RSA key [Šve+16a], reducing the uncertainty of
the presence of a vulnerable library. However, we also identified the
shortcoming of the method, which we address in this thesis.

Despite some attacks being known in theory, often system design-
ers do not deploy countermeasures unless the feasibility of the attack
is demonstrated. There are several examples in the TLS protocol suite.
The RC4 stream cipher was known to have biased keystream [MS02],
but it was only deprecated [Pop15] in TLS when practical attacks were

1

1. Introduction

constructed [AlF+13; GPM15; VP15]. Weak cryptographic algorithms,
such as the MD5 hash function and deliberately weakened RSA and
Diffie-Hellman parameters were supported, until SLOTH (transcript
collision attacks) [BL16a], FREAK [Beu+15] and Logjam [Adr+15],
respectively, exploited them. Legacy protocol versions often remain
supported beyond their usefulness, leading to attacks on the weakest
part of the system [JSS15; Avi+16]. Even old attacks need to be revis-
ited and their applicability to new systems verified. Malicious parties
may have already done so and may be exploiting the weaknesses.

1.1 Problem statement

We aim to scrutinize RSA key generation methods from the perspec-
tives of design and implementation, including an empirical analysis
of keys used in real systems. We also study the resiliency of TLS pro-
tocol implementations to a variety of known attacks, amplified by the
complex dependencies in the Web ecosystem. In summary, the main
areas of our research are:

• Biased RSA key generation methods – in the literature (standards
and practical implementations) there is no consensus on RSA key
generation methods. As a result, alternative methods produce
keys with different biases. We aim to explore the consequences
of using keys from biased distributions, such as RSA key classi-
fication and cryptographic library popularity measurements.

• Vulnerabilities in RSA key generation – we aim to identify design
choices of a selected RSA key generation method to evaluate its
security properties.

• TLS protocol vulnerabilities – many diverse attacks against im-
plementations of the TLS protocol were published. It can be
challenging to understand how they can be mounted and miti-
gated. Their consequences are not easily evaluated for a specific
target in the intricate system of servers running the Web. We
aim to ease these tasks and make the results understandable to
a wider audience.

2

1. Introduction

1.2 Contributions

We discuss the specific contributions to the research questions.

1.2.1 Biased RSA key generation methods

Accurate library popularity measurements are not readily available.
They serve an important role for precise RSA key origin classification
and for measuring impacts of security vulnerabilities in cryptographic
libraries. We created a practical tool capable of making such measure-
ments and able to evaluate the trends in library popularity in historical
datasets.

Previous solutions that relied on indirect measurements based on
proxy information were not backed by rigorous analysis. Alternative
methods [Šve+16a] have known limitations. We propose a solution that
uses statistical inference to approximate a share of libraries matching
an observed distribution of RSA keys in an inspected dataset. The
method extends our previous work [Šve+16a]. The main difference is
the fact that datasets of keys are processed as a whole. The original
solution considered keys individually and did not take advantage of
the “big picture”.

We collected large datasets of public RSA keys from various sources
and applied our methods to answer questions pertaining to the pop-
ularity of cryptographic libraries on the Internet. We evaluated the
trends over time and demonstrated differences across application
domains.

The results were published as [Nem+17a] and are presented in
Chapter 3.

1.2.2 Vulnerabilities in RSA key generation

The RSA key generation algorithm used in libraries of Infineon Tech-
nologies exhibited remarkable statistical properties, as we noted in
[Šve+16a; Šve+16b]. It showed entropy loss and hinted at a possible
security vulnerability. The details of the key generation algorithm
were not published by the manufacturer since neither the source code
nor the object code was made available.

3

1. Introduction

We analyzed a large number of public and private RSA keys from
Infineon smartcards using statistical and algebraic methods, in or-
der to reveal the key generation method. We were able to correctly
determine the algorithm and precisely measure the entropy loss re-
sulting from its unsound efficiency improvements. We developed and
optimized a practical factorization method that reveals the private
key given the public key. An efficient fingerprinting technique was
used to detect affected RSA keys in a variety of domains. Millions of
electronic identity documents used in several countries were affected,
as well as Trusted Platform Modules in multiple laptop models. Other
applications that used the flawed library to generate RSA keys used
for electronic signatures were also threatened.

The results were published as [Nem+17b] and are presented in
Chapter 4. The vulnerability received a lot of media attention [Goo17b;
Ley17b; Kha17], especially in connection with electronic identity doc-
uments [Goo17a; Ley17a; Vah17].

1.2.3 TLS protocol vulnerabilities

We systematically described the conditions and consequences of prac-
tical attacks against the TLS protocol. We streamlined the analysis of
whether they can be mounted and mitigated on real targets in a wider
scope of the Web ecosystem. We performed a security assessment of a
selected set of popular websites. We presented the results as specific
threats to essential aspects of the security of the sites.

Our results showed that the most commonly applicable attacks
are variants of the RSA padding oracle. Their consequences range
from threatening the confidentiality of past recorded messages to pro-
viding an attacker with active Man in the Middle capabilities. The
vulnerabilities are due to implementation errors. It has been argued
that the underlying cause is the poor choice of the padding algorithm
and complex collection of countermeasures that all need to be imple-
mented correctly. The findings help to reinforce our experience that
implementations are not up to date with best practices.

We increased the scope of our study from a typical list of most
popular websites also to the supporting infrastructure. We were able
to find much more vulnerable servers, as secondary systems often
receive less attention for maintenance. Most importantly, we were able

4

1. Introduction

to demonstrate how the flaws get amplified by systems that rely on
these vulnerable or misconfigured servers.

The results were published as [Cal+19] and are presented in Chap-
ter 5. The research was also covered by media [New19].

1.3 Structure of the thesis

The thesis is further divided as follows:

• Chapter 2 describes our initial research on RSA key generation
methods, leading to two major research areas of the thesis. It
represents the state of the art before we made our contributions
to the topics. More specialized related work is discussed individ-
ually in the chapters that cover our concrete research questions.

• Chapter 3 presents a practical application for the existence of
biased RSA key generation methods. We design and perform
measurements of the popularity of cryptographic libraries on
the Internet, over time, and across different application domains.

• Chapter 4 is dedicated to the flawed RSA key generation al-
gorithm found in a cryptographic library of a manufacturer of
secure chips. We describe our attack, its optimization, and perfor-
mance evaluation. We evaluate various domains for the presence
of vulnerable keys.

• Chapter 5 details our study of the feasibility and consequences
of practical TLS attacks. We demonstrate how a relatively few
exploitable vulnerabilities get amplified by the complexity of
the Web ecosystem.

• Chapter 6 concludes our research on the flaws and shortcomings
of RSA implementations. We summarize the main outcomes and
future work.

• Appendix A lists the publications of the author of the thesis,
including the specific contributions made by the author.

5

2 State of the art

The topic of this thesis was inspired by the 2016 paper The Million-
Key Question – Investigating the Origins of RSA Public Keys [Šve+16a]
co-authored by the author of the thesis. In this chapter, we summarize
its results of surveying implementations of RSA key generation. The
core idea of the paper – to explore biases in RSA keys in practice and
leverage them for RSA key classification – was unique. Hence the
single paper covers state of the art for a large part of our research
presented herein. The outcomes are very relevant for Chapters 3 and 4.
The paper also helps to demonstrate how complicated specifications
contribute to problems such as those studied in Chapter 5.

Chapters detailing our particular research questions provide more
specialized summaries of the more closely related work. Namely, in
Chapter 3, we dive deeper into the RSA key classification and discuss
alternative ways of estimating the popularity of libraries in Section 3.5.
For Chapter 4, we discuss RSA key generation methods and factoriza-
tion attacks on RSA in Section 4.6. We focus on TLS attacks throughout
Chapter 5, presenting both a survey of attacks in Section 5.3 and ref-
erences to related studies and measurements both for TLS and Web
security in Section 5.8.

2.1 Survey of RSA key generation methods

To use the RSA algorithm, one must generate a key:

1. Select two distinct large primes1 p and q.

2. Compute N = p ∗ q and ϕ(N) = (p− 1) ∗ (q− 1).

3. Choose a public exponent2 e < ϕ(N), e coprime to ϕ(N).

4. Compute the private exponent d as e−1 mod ϕ(N).

1. Generated randomly, but possibly constructed to achieve certain required prop-
erties.
2. Usually with a low Hamming weight for faster encryption.

7

2. State of the art

The pair (e, N) is the public key; either (d, N) serves as the secret
private key, or (p, q) can be used ((d, N) can be calculated from (p, q, e)
and vice versa).

We showed in [Šve+16a] that authors of different cryptographic
libraries adopt various methods for RSA key generation. The situa-
tion arose from the existence of different competing standards and
publications on the topic, as well as from varying limitations and re-
quirements placed on the libraries and similar products. Even subtle
differences in the algorithms can introduce small bias into the distri-
butions of the produced keys. We identified the most common sources
of the biases that can be detected in public or private keys.

Previous surveys of RSA prime generation algorithms were pub-
lished [LN11; LN14; JP06]. The crucial difference of our work [Šve+16a]
was that we focused on the actual outputs of the implementations.
Some libraries followed standardized algorithms; many did not in-
clude any specification or reference for their algorithms. In addition,
coding mistakes can create further discrepancies with the original al-
gorithm. A more recent survey [Alb+18] focused on primality testing
in implementations. It revealed how a few publications could shape
the choices of many independent implementations. Primality testing
is often described with the assumption that tested values are random,
and the same assumption got adopted in many cryptographic libraries.
However, in practical applications, the libraries may receive adversar-
ial inputs crafted by attackers to fool the primality test using specially
constructed composite numbers.

Our paper also shows how to use bias extracted from a specific
key to classify the key as originating from a concrete class of RSA
key generation implementations. In the best case, a single library can
be identified. On the other hand, large number of libraries behave
similarly, hence they belong to the same class. Even though the chosen
classification method is simple, a single key is correctly classified on
the first try with average accuracy over 40% for 13 classes.

This result was extended to large datasets of public RSA keys.
However, the produced statistics describing the collections of public
RSA keys from the Internet were skewed, due to keys being handled
individually. We developed a new method that considers the big
picture. It was published in [Nem+17a] and described in Chapter 3.

8

2. State of the art

Our survey paper was also the first to point out extensive biases
in keys generated by Infineon smartcards. By studying the biases
more precisely in subsequent work, we were able to reverse engineer
the key generation algorithm and devise a practical RSA key factor-
ization method as seen in Chapter 4. The results were published as
[Nem+17b].

2.2 Bias in RSA primes and keys

Bias in RSA primes was previously used to identify the source of
RSA keys factored using an efficient batch variant of the greatest
common divisor (GCD) algorithm [Hen+12; Mir12]. Our previous
work [Šve+16a] identified more types of bias found in RSA keys.

2.2.1 RSA prime types

According to the survey [Šve+16a], implementations most commonly
generate probable, provable, and strong primes. Papers such as [LN11;
JP06] imply an additional category of constructed primes.

Some categories can be distinguished based on the factorization
of p− 1 and p + 1, p being one of the RSA primes. For every strong
prime p, both p− 1 and p + 1 contain a factor of a certain length (or
the length is from a specific interval). Provable primes p have such
factor in p− 1, but not in the factorization of p + 1. Probable primes
may show some bias in the factorizations, yet there are no factors of
large fixed length in either p− 1 or p + 1.

The paper does not explicitly give a method to tell apart probable
primes generated randomly and by an incremental search. In the for-
mer case, random numbers are generated until a prime is found. In
the latter case, a single random value is generated and incremented
until a prime is found. Large primes are not evenly spaced. Incremen-
tal search biases the distribution of primes toward primes that are
preceded by a larger gap made of composite numbers. Generating any
value from a specific gap results in the same prime, hence gaps with
more values have a higher probability of being selected. It follows that
the distribution of the distance to the previous prime carries different
types of bias for these two methods.

9

2. State of the art

2.2.2 RSA keypairs

The RSA modulus is a product of two primes. The libraries usually
generate a modulus of a precise length supplied by the user, and the
primes have half the bit length of the modulus. A product of two k-bit
numbers has either 2k or 2k − 1 bits. It is possible to generate two
k-bit numbers and discard one or both of them in case their product
is too short. It is more common to generate the primes from a smaller
interval or to modify the high bits of the candidate values to ensure
that their product has the correct length. The choice of interval affects
the distribution of the most significant bytes of primes and resulting
RSA moduli.

2.2.3 Modular bias

All primes are odd, but some libraries also make values biased modulo
larger numbers. A specific case is the OpenSSL library, which does
not allow RSA primes equal to one modulo any prime from 3 to 17863.
This observation can serve as a fingerprint of the private key, as the
probability that two random primes have this property is quite low. It
was used to identify keys originating from OpenSSL in a study of keys
factorable by the Batch GCD method due to shared primes [Mir12].

In the extended technical report [Šve+16b] of our survey [Šve+16a],
we correctly identified further bias in Infineon primes and moduli.
The remainders modulo certain small primes were only from specific
subgroups of residue classes and did not represent all residue classes.
It was observed that the values were almost uniformly distributed
modulo all other tested primes. In this thesis and [Nem+17b], we
extended this analysis to composite moduli and were able to describe
the bias modulo a product of several consecutive primes. All primes
originated from a single subgroup generated by a single generator.

2.3 Pseudo-random number generator failures

The pseudo-random number generator (PRNG) provides random bits
for the key generation. In the case of probable primes, it is usual that
the random bits are directly used to construct the candidate value.
Hence we can test the bytes of the prime instead of the PRNG output.

10

2. State of the art

We skip the bottom bytes that get incremented in incremental search
and the top bytes that are modified to fit the intervals. In [Šve+16a],
we performed a simple non-overlapping serial test on two consecutive
bytes, finding one case of apparent bias.

One family of smartcards occasionally produced keys that shared
primes that make the keys easy to factor, if they share a prime [Hen+12].
The reason was an unchecked failure of the PRNG that provided
zero-value bytes. The top bits were modified, and the value was in-
cremented until a prime was found. It is not necessary to have a fully
predictable PRNG output. Even a partial or approximate knowledge
of a prime can be used to factor keys with a variant of Coppersmith’s
attack [Cop96a; Ber+13].

In many cases of constructed primes, we do not have direct access to
the random sequence. The resulting prime is constructed from partial
values. For example, if the library uses strong primes, we would have
to factor p − 1 and p + 1 and correctly identify which factors were
generated as the auxiliary primes.

11

3 Measuring popularity of cryptographic li-
braries

In 2016, we surveyed RSA key generation methods used in practice
[Šve+16a]. We demonstrated that public RSA keys carry enough bias
to classify them to their originating cryptographic library with much
higher success than for random guessing. As an additional practical
demonstration, we processed millions of keys from public sources
and used our method to attribute them to a probable source. How-
ever, when we summarized the most likely sources of all keys, some
objectively unlikely libraries were represented, such as cryptographic
smartcards in the domain of TLS servers.

In this chapter, we explain and fix the imprecise measurements. In
summary, the problem lies in looking at keys individually instead of
considering them all at once. The classification of an individual key
always returns the library that produces such key with the highest
likelihood. However, the likelihood would be different for a group
of two, three, or more keys. We must consider that a library may
contribute anything from zero to millions of keys used on the Internet.

Individual instances of the same key generation algorithm running
independently on thousands of machines produce results very similar
to what we collected by running it on a single computer repeatedly.
Hence if we look at all the keys generated collectively by millions of
computers, all of them using one of a few cryptographic libraries, we
can observe a mixture of the distributions that we collected from the
same libraries locally. The main principle of our new approach is to
discover the parameters of the mixture – how much of the whole is
contributed by each library. This, in turn, gives us an approximation of
the popularity of cryptographic libraries used on the Internet. Based
on our experimental measurements and comparisons with other indi-
cators on the usage of libraries, our new method is much closer to the
truth than before.

The results in this chapter were published in [Nem+17a].

13

3. Measuring popularity of cryptographic libraries

3.1 Introduction

With solid mathematical foundations for the currently used crypto-
graphic algorithms like RSA or AES, a successful attack (a compromise
of used keys or exchanged messages, a forgery of signatures, etc.) is
achieved only very infrequently through mathematical breakthroughs,
but dominantly by a compromise of secrets at the end-points, by at-
tacks on the protocol level or via so-called implementation attacks,
often combined with an immense computational effort required from
the attacker.

Implementation attacks exploit some shortcomings or a specific
behavior of the software leading to unintended data leakages in oth-
erwise mathematically secure algorithms. A large number of practical
attacks in recent years [Laz+14] testifies how difficult it is to make
an implementation secure, robust and without side-channel leakage.
Even major libraries such as OpenSSL, Java JCE or Microsoft Cryp-
toAPI were hit by multiple problems including extraction of RSA
private keys [BB05] or AES secret keys [Ber05] remotely from a tar-
geted web server and generation of vulnerable keys by a weak or a
malfunctioning random generator [Bel08; Hen+12]. It is reasonable to
expect that similar problems will occur in future for these and other
cryptographic libraries as well.

The prediction of an impact for a future bug depends not only on
the nature of the bug (unknown in advance) but also on the overall
popularity of the affected cryptographic library within the targeted
usage domain. A security bug in OpenSSL will probably cause more
harm than a bug in an unknown or sparsely used library.

Yet the estimation of the popularity of a given library is a com-
plicated affair. As a library produces random keys, it is difficult to
attribute a particular key to its originating library based only on the
bits of the key. A common approach is to make indirect estimates
based on additional information such as specific strings inserted into
certificates, default libraries used by a software package which is
identified by other means (e.g., the Apache HTTP Server typically
uses OpenSSL) or specific key properties (uncommon key lengths or
domain parameters). All these approaches leave a large uncertainty
about the real origin of the target key. A certificate can be crafted by a
different software than its key was, a server key may be imported, and

14

3. Measuring popularity of cryptographic libraries

a combination of an algorithm and key length are only rarely specific
to a single library.

Our work aims to accurately measure the popularity of libraries
based on the subtle biases in bits of RSA public keys due to different
implementations of the prime pair selection process, as recently de-
scribed in [Šve+16a]. The bias has almost no impact on the entropy of
a key and poses no threat with respect to factorization attacks. How-
ever, it allows for a probabilistic attribution of a key to the originating
library. We focus on answering the following questions:

1. How many keys in an inspected dataset originate from specific crypto-
graphic libraries?

2. How does the popularity of cryptographic libraries change over time?
Can we detect sudden temporary changes?

3. What library generated a single given RSA key if the key usage domain
(TLS, SSH, etc.) is known?

In the original work, all libraries were assigned the same prior
probability – an assumption that is certainly inaccurate (intuitively,
OpenSSL is a far more common source of TLS keys than PGP software).
We propose an improved method that automatically extracts the prior
probability directly from a large dataset – obtaining the popularity
of libraries in the inspected dataset and subsequently improving the
classification accuracy of individual keys.

The answer to the first question tells us the popularity of crypto-
graphic libraries in different usage domains. Since the method is based
on the actual key counts instead of anecdotal proxies (e.g., installed
packages or server strings), it is significantly more accurate. Besides
providing usage statistics, the popularity of the libraries is important
when estimating the potential impact of (past and future) critical flaws,
as well as when deciding where to most efficiently spend the effort on
development and security code review.

The availability of large Internet-wide scans of TLS handshakes
performed every week, Certificate Transparency logs and append-only
PGP keyserver databases, allow us to perform a study of cryptographic
library popularity over time, hence to find an answer to the second
question. When the scans are performed as frequently as every week or

15

3. Measuring popularity of cryptographic libraries

even every day, temporary changes in the popularity ratio can reveal
sudden changes in the distributions of the keys, possibly making a
library more prominent than expected. Such phenomena may indicate
users reacting to a disclosed vulnerability (e.g., by replacing their
keys) or some significant changes in security procedures of server
implementations.

Finally, an accurate answer to the third question allows us to reveal
the originating library of a particular key. The previous work [Šve+16a]
correctly labeled the origin of about 40% of random keys, when a
single public key was classified in a simulation with evenly probable
libraries. We improved the accuracy to over 94% for prior probabilities
of libraries typical for the TLS domain.

Contributions. Our work brings the following contributions:

• A method for an accurate survey of popularity of cryptographic
libraries based on matching observed counts of RSA keys to
a mixture of biased reference distributions produced by the
libraries.

• Analyses of usage trends for large real-world archived datasets
of certificates for TLS, SSH and PGP from 2010 through 2017.

• Detection and analysis of abrupt transient events manifested by
a sudden change in the ratio of libraries.

• Release of the classification tool and extensible catalog of more
than 60 profiles for open/closed-source software libraries, hard-
ware security modules, cryptographic smartcards and tokens.

The rest of the chapter is organized as follows: Section 3.2 provides
the necessary background for understanding the RSA key classifica-
tion method based on slight biases in the distribution of keys and a
basic overview of the automatic extraction of prior probabilities from
an inspected dataset. Section 3.3 explains the details of the library pop-
ularity measurement method and discusses the accuracy. Section 3.4
applies our method to large current and archived datasets to measure
the popularity of libraries in time and discusses the observed results.
Section 3.5 provides a review of related work. We list some additional
results in Section 3.6. The chapter is concluded in Section 3.7.

16

3. Measuring popularity of cryptographic libraries

3.2 Method overview

The authors of [Šve+16a] demonstrated how different implementation
choices made by developers of cryptographic libraries lead to biases in
generated RSA keys. To generate an RSA key pair, two large random
primes p and q (typically half of the binary length of the modulus)
must be found. The modulus N is the product of the primes. One
might expect that cryptographic keys would be chosen from a uniform
distribution, to help prevent brute-force attacks. However, most of the
libraries examined by [Šve+16a] produced primes with an unevenly
distributed most significant byte. As a result, the distribution of the
modulus was also non-uniform.

In order to reduce the uncertainty about the origin of a particular
key, three conditions must be satisfied: 1) bias is present in the key,
2) reference distributions of (ideally) all implementations are known,
and 3) a suitable method exists to match the reference data and the
observed data.

We use the same biases as observed in [Šve+16a]. We collected
reference distributions from additional sources and other versions
of cryptographic libraries, extending the knowledge of possible key
origins. The original classification method was based on conditional
probabilities and the application of Bayes’ rule. The origin (a group
of sources) of a key could be correctly estimated in 40% of attempts
– as opposed to 7.7% success of a random guess. We devised a new
method that estimates the proportion of sources in a given dataset
and more than doubles the average accuracy in TLS datasets.

3.2.1 Choice of key features

The most common reasons for the biases in the private primes were
efficiency improvements, a special form of the primes, bugs, and un-
common implementation choices. The biases propagate to public mod-
uli to a certain degree – some are directly observable, some require a
large number of keys to distinguish and some cannot be seen from the
public values. This calls for a creation of a mask of the public keys –
instead of dealing with the full keys, some properties are extracted and
each key is represented by a vector of features. We use the following
features, inspired by the original approach:

17

3. Measuring popularity of cryptographic libraries

1. The most significant bits of the modulus (2nd to 7th bit): The highest
bits of the primes are often set to a constant, e.g., the two highest
bits set to 1 to ensure the modulus has the correct bit length. The
high bits are sometimes manipulated further, up to four bits were
determined non-randomly. Even without directly manipulating
the top bits, the intervals from which the primes are chosen are
seen in the top bits of the modulus.

2. The modulus modulo 4: Due to bugs and unusual (for RSA) imple-
mentation choices, the moduli might end up being Blum integers
– due to the primes always being equal to 3 modulo 4, the moduli
are always equal to 1 modulo 4.

3. The modulus modulo 3: Another unexplained implementation
decision (in OpenSSL and elsewhere) avoids primes p if p− 1
has small divisors, other than 2. If p − 1 and q − 1 are never
divisible by 3, then the modulus is always equal to 1 modulo
3 and never equal to 2 modulo 3. For larger prime divisors (5,
7, 11, etc.), the property is not directly observable from a single
modulus and is therefore impractical for key classification.

We rely on the deep analysis of the key generation process and
statistical properties of the resulting keys presented in [Šve+16a]. We
construct our mask similarly, however, we decided to drop the feature
encoding the bit length of the modulus – as it is only relevant for one
uncommon library implementation.

Our choice of the mask is reflected in Figure 3.1, illustrated by
the distributions of mask values for OpenSSL. When compared to
[Šve+16a], we also changed the order of the features in the mask, to
allow for an easier interpretation of distributions from the illustrations.
The relevant biases for all sources are listed in Table 3.3 in Section 3.6.

3.2.2 Clustering analysis

For each source we generate a large number of keys (typically one mil-
lion), extract the features from the keys according to the feature mask
and compute the distributions of the feature masks. The previous re-
search [Šve+16a] used a highly representative sample of cryptographic
libraries in what were then the most recent available versions. For this

18

3. Measuring popularity of cryptographic libraries

0 64 128 192 255
Mask value

0.0

0.5

1.0

1.5

2.0

2.5

M
as

k
pr

ob
ab

ilit
y

[%
] N % 3 == 1 N % 3 == 2

 N % 4
 == 1

 N % 4
 == 3

 N % 4
 == 1

 N % 4
 == 3

N
=

10
00

00
0.

..
N

=
11

00
00

0.
..

N
=

11
11

11
1.

..
N

=
10

00
00

0.
..

N
=

11
00

00
0.

..
N

=
11

11
11

1.
..

N
=

10
00

00
0.

..
N

=
11

00
00

0.
..

N
=

11
11

11
1.

..
N

=
10

00
00

0.
..

N
=

11
00

00
0.

..
N

=
11

11
11

1.
..

Feature mask

Figure 3.1: Features extracted from a public RSA modulus. The plot
shows the probability that the given library generates a key with the
corresponding mask value. The moduli generated by OpenSSL are
always equal to one modulo three (N % 3 = 1), but they are uniformly
distributed modulo four (N % 4 = 1 and N % 4 = 3, with the same
probability). The most significant bits of the moduli are never equal
to 10002, and have the value 11002 more frequently than 11112.

research, we also added keys from two hardware security module
devices, two cryptographic tokens and from the PuTTy software, a
popular SSH implementation for Microsoft Windows. The latter is
valuable when we consider the domain of SSH authentication keys
collected from GitHub.

We also collected new keys from the latest implementations of
the considered libraries, this unveiled a change in the behavior of
Libgcrypt 1.7.6 in the FIPS mode. Furthermore, we added earlier re-
leases of several libraries, to support the claims made about older
datasets. However, we only detected a change in the algorithm for
Nettle 2.0, when comparing the libraries with their current versions.
Most notably, the addition of new sources did not change the results
of clustering analysis as performed previously – the number of groups
and their division remains mostly unchanged.

Since we examine many libraries across several versions, we often
encounter very similar distributions (i.e., the algorithm did not change
across versions or multiple libraries use the same algorithm). Since
these distributions are not mutually distinguishable, we use cluster-

19

3. Measuring popularity of cryptographic libraries

ing analysis to create clusters (groups) of sources with very similar
properties. We use the Euclidean distance as the metric with a bound
(threshold) for the creation of clusters, exactly as applied in [Šve+16a].
The result of the clustering analysis is visualized in Figure 3.2 as a
dendrogram. Instead of working with individual libraries, we do the
analysis with the groups. Even though we cannot differentiate between
libraries inside a group, luckily, the most popular libraries (OpenSSL,
Microsoft) are represented by a distinct or a very small group.

3.2.3 Dataset classification – original approach

The main focus of the authors of [Šve+16a] was to get information
about the origin (the most probable group G) of a particular key K. To
achieve it, the authors applied the Bayes’ rule:

P(G|K) = P(K|G)P(G)

P(K)
, (3.1)

where P(G|K) is the conditional probability that a group G was used
to generate a given key K (the aim of the classification), P(K|G) is the
conditional probability that a key K is generated by a given group G
(obtained from the reference distributions), P(G) is the prior proba-
bility of a group G and P(K) is the probability of a key K in a dataset.
The highest numerical value of P(G|K) corresponds to the first guess
on the most probable group G.

To reason about the popularity of libraries in large datasets, all keys
were considered separately and then the information was summarized.
Among the main shortcomings of the method was the assumption that
cryptographic libraries (alternatively, groups of libraries) are chosen
evenly by users (i.e., the prior probability P(G) is equal for all groups
G), which is evidently false. The method also failed to consider the
“big picture” – keys were considered in small batches (e.g., a single
key or a few keys assumed to originate from a same source), hence
the probability P(K) of a key was usually 1.

3.2.4 Dataset classification – our approach

We improved the method in the following way: to estimate the origin
of a key, we use an appropriate prior probability P(G) for the domain

20

3. Measuring popularity of cryptographic libraries

0.30 0.15 0.00

 Clustering of sources

Euclidean distance

o [2] G&D SmartCafe 4.x & 6.0

o [7] OpenSSL 0.9.7 & 1.0.2g & 1.0.2k & 1.1.0e

o [5] NXP J2A080 & J2A081 & J3A081 & JCOP 41 V2.2.1

o [6] Oberthur Cosmo Dual 72K

o [8] PGPSDK 4 FIPS

o [12] HSM Utimaco Security Server Se50

o [12] Bouncy Castle 1.53 (Java)

o [12] SunRsaSign OpenJDK 1.8.0

o [12] PuTTY 0.67

o [12] Cryptix JCE 20050328

o [12] Nettle 2.0

o [12] FlexiProvider 1.7p7

o [12] PolarSSL 0.10.0

o [12] mbedTLS 1.3.19 & 2.2.1 & 2.4.2

o [4] Gemalto GXP E64

o [13] PGPSDK 4

o [13] Oberthur Cosmo 64

o [13] Gemalto GCX4 72K

o [13] Feitian JavaCOS A22 & A40

o [13] HSM SafeNet Luna SA−1700

o [13] LibTomCrypt 1.17

o [13] Botan 1.5.6 & 1.11.29 & 2.1.0

o [13] OpenSSL FIPS 2.0.12 & 2.0.14

o [13] cryptlib 3.4.3 & 3.4.3.1

o [13] WolfSSL 2.0rc1 & 3.9.0 & 3.10.2

o [13] Libgcrypt 1.6.0 & 1.6.5 & 1.7.6

o [13] Nettle 3.2 & 3.3

o [13] Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS

o [11] Libgcrypt 1.7.6 FIPS

o [11] Crypto++ 5.6.0 & 5.6.3 & 5.6.5

o [11] Microsoft CryptoAPI & CNG & .NET

o [11] Bouncy Castle 1.54 (Java)

o [3] GNU Crypto 2.0.1

o [10] YubiKey NEO

o [10] NXP J2D081 & J2E145G

o [1] G&D SmartCafe 3.2

o [9] YubiKey 4 & 4 Nano

o [9] Infineon JTOP 80K

Clustering threshold = 0.02

Figure 3.2: The result of the clustering analysis visualized as a den-
drogram. Clusters are created based on the Euclidean distance, with
a separation threshold of 0.02 (blue dashed line), similarly as the ap-
proach of [Šve+16a]. The group numbers are listed in brackets next to
the source name.

21

3. Measuring popularity of cryptographic libraries

where the key can be found (e.g., different for TLS, PGP, SSH...). To
our best knowledge, no reliable estimates of the prior probability
P(G) were published for large domains. We therefore propose and
apply our own method for estimating the proportion of cryptographic
libraries in large datasets, based on statistical inference. In this way, we
construct a tailored prior probability estimate from the “big picture”
before we make claims about individual keys.

To accomplish the prior probability estimation, we create a model
based on our reference distributions and we search for parameters
of the model that best match the whole observed sample. We use a
numerical method – the non-negative least squares fit (NNLSF) [LH95].
It is the standard least squares fit method with a restriction on the
parameters, since the probabilities must be non-negative. A detailed
description of the methodology is given in Section 3.3.

The described approach also provides more than a two-fold in-
crease in the accuracy of origin estimation for public keys when com-
pared to the original approach of [Šve+16a] in the domain of TLS. The
improvement is due to the application of the obtained prior probabili-
ties. More details and accuracy measurements for the prior probability
estimation itself are discussed in Section 3.3.4.

3.2.5 Limitations

Individual sources that belong to a single group cannot be mutually
distinguished. Fortunately, the two most significant TLS libraries be-
long to small groups – OpenSSL is the single source in Group 7 and
Microsoft libraries share Group 11 only with Crypto++ and two re-
cently introduced library versions – Bouncy Castle since version 1.54
(December 2015) and Libgcrypt 1.7.6 FIPS (January 2017).

The particular version of a library cannot be identified, only a range
of versions with the same key generation algorithm. E.g., Bouncy
Castle from version 1.53 can be differentiated from version 1.54 due
to a change in key generation, but not from version 1.52 that shares
the same code in the relevant methods.

Based on our simulations, an accurate prior probability estimation
requires a dataset with at least 105 keys. However, note that the classi-
fication of a single key is still possible and on average benefits greatly
from the accurate prior probability of its usage domain.

22

3. Measuring popularity of cryptographic libraries

3.3 Methodology in detail

When aiming to estimate the library usage in a given domain, we create
a model of the domain backed by reference distributions collected
from known sources. We obtain RSA keys from the target domain and
search for the parameters of our model which fit the observed data.
We use the model and the estimated library probabilities to classify
individual keys according to their origin.

3.3.1 Model

We assume there are m groups of sources, created by clustering analy-
sis (Section 3.2.2) based on the similarity of the distributions of gen-
erated public keys. The probability P(K) that a randomly chosen key
in the sample has a particular mask value K (the feature mask is ex-
plained in Section 3.2.1) is given by:

P(K) =
m

∑
j=1

P(Gj)P(K|Gj), (3.2)

which is the sum of probabilities P(Gj)P(K|Gj) over all m groups Gj,
where P(Gj) is the probability that a source from a group Gj is chosen
in a particular domain (prior probability of source in the domain) and
P(K|Gj) is the conditional probability of generating a key with mask
K when a library from the group Gj is used.

The probabilities P(K|Gj) are estimated by generating a large num-
ber of keys from available sources, which represent the reference
distributions of the key masks (the profile of the group). The probability
of a key K in a dataset of real-world keys is approximated as #K/D,
where #K is the number of keys with the mask K and D is the number
of all keys in the dataset.

3.3.2 Prior probability estimation

The process of estimating prior probability is completely automated
and does not require any user input. This fact allows us to construct an
independent estimate of library usage from public keys only, without
an influence of other information.

23

3. Measuring popularity of cryptographic libraries

We find what are the likely prior probabilities of libraries that
would lead to the observed distribution of keys in a given sample,
based on the reference group profiles. The principle is illustrated in
Figure 3.3 – the observed distribution is reconstructed by combining
the 13 distributions in a specific ratio (prior probability estimated by
our approach). Intuitively, for a good estimate of prior probabilities
it is necessary (but not always sufficient) that the observed and the
reconstructed distributions match closely.

For each of n possible values of mask K, we substitute observed
values into Equation 3.2. In our case, the system has 256 equations
with 13 unknowns P(Gj). Since both the distribution of real world
keys and the reference distributions are empirical, a precise solution
may not exist, due to the presence of noise (see Section 3.3.4).

We chose the linear least squares method constrained to non-
negative coefficients (non-negative least squares fit or NNLSF) im-
plemented in Java [Kam13] based on the algorithm by Lawson and
Hanson [LH95] to find an approximate solution to the overdetermined
system of equations. The solution is the estimated prior probability
P̂(Gj) for each group Gj. The method numerically finds a solution
that minimizes the sum of squared errors (P(Ki)− P̂(Ki))

2 over all
n mask values Ki, where P(Ki) is the idealized probability of mask
Ki (obtained from the dataset) and P̂(Ki) is the estimated probability,
given by substituting the real group probability P(Gj) in Equation 3.2
with the estimated group probability P̂(Gj).

3.3.3 Key classification

We classify the keys according to their origin using the Bayes’ rule
(Section 3.2.3). When compared to the approach of [Šve+16a], we use
the estimated prior probabilities for a more precise classification. In
a classification of a single key, the groups are ordered by the value
of the conditional probability P(G|K). The group G with the highest
probability is the most likely origin of the key.

3.3.4 Evaluation of accuracy

We are interested both in the accuracy of the prior probability estima-
tion (given as the expected error in the estimation, Table 3.1) and in

24

3. Measuring popularity of cryptographic libraries

Figure 3.3: The reference distributions of the key mask from each li-
brary are used to compute the probability with which the given library
contributes to the overall distribution of keys in the measured sample.
The distribution of keys submitted to Certificate Transparency logs
during March 2017 likely contains keys from a mix of distributions
as given in the last picture. When we scaled each distribution accord-
ingly and plotted the bars on top of each other (note – the bars are not
overlapping), the fit is visually close (the original distribution is given
by a black dashed outline and matches the tops of the approximated
bars).

25

3. Measuring popularity of cryptographic libraries

the average correctness of the overall classification process (given as
the proportion of keys that were correctly classified, Table 3.2). For
the measurement, we repeatedly simulate large datasets according to
different distributions, add noise and perform our method.

Random noise

Even if keys in a large dataset were generated with the same library
across many users, the overall distribution will not match our ref-
erence distribution exactly, due to the non-deterministic nature of
key generation. This contributes to a random noise in the data. We
achieve such a noise in our simulations by generating masks non-
deterministically (i.e., instead of using reference distributions in place
of data, we randomly sample masks according to the distribution).

Systematic noise

Our analysis does not cover all existing libraries used on the Internet.
However, it is quite likely that algorithms used by unknown libraries
are similar to those already known (e.g., consider the size of Group
13). In such a case, the library would belong to one of our groups and
the only error of the estimation would be in the interpretation of the
results – the library is not correctly labeled as a part of our group. Yet
still, there may exist groups with profiles that do not match any of
our known groups, hence keys generated from these implementations
would add systematic noise to the profile of the sample. In our simula-
tions, we create a group representing all unknown distributions. The
group profile is chosen randomly in each experiment. To simulate the
presence of keys from this group, we modify the prior probability of
the simulation to include a certain percentage (e.g., ranging from 0%
to 3% in Tables 3.1 and 3.2) of keys to be sampled from the distribution.
For example, 3% of systematic noise represents the situation where
3% of the keys in the sample originate from an unknown distribution,
not covered by our analysis and belonging to a completely different,
never seen before, group.

26

3. Measuring popularity of cryptographic libraries

Simulation scenarios

We considered several distributions of prior probability library usage:
Evenly distributed probabilities match the approach in [Šve+16a],

however, we face an additional task of first estimating the probabilities
from the simulated data. Furthermore, our mask does not use one of
the original features (Section 3.2.1).

We also assign random prior probabilities to the groups in a different
scenario – each group is assigned a uniformly chosen real number
from 0 to 1 and the numbers are normalized to sum to 1.

Real-world popularities of libraries are better characterized by a
geometric distribution – one source dominates (e.g., 50% in our case)
and other are exponentially less probable. We additionally ensure that
each group has a probability at least 2%. This way, even very rare
sources are not completely excluded from the analysis, even if the
library is outdated (e.g., PGP SDK 4) or the hardware is very old (e.g.,
Gemalto GXP E64 smartcard from 2004). We also test the geometric
distribution for different permutations of the groups – while in TLS,
OpenSSL is always the most probable, in our tests each group may
take the first place.

Finally, we simulate the data according to the prior probabilities
extracted from TLS datasets. We add deviations to the probabilities to
simulate subtle changes in the popularity of libraries.

Accuracy of prior probability estimation

The accuracy of the prior probability estimation is given as the ex-
pected error in the resulting estimation. The summary is given in
Table 3.1.

We consider the average error (the expected error in percentage
points (pp) for each group probability in each experiment) and the
average worst error (the expected error in pp for the worst result in a
given experiment). As an example, if the real probabilities are 60%,
30%, and 10%, and we estimate them as 61%, 32%, and 7%, the average
error of the experiment is (1 + 2 + 3)/3 = ±2 pp and the worst error
is ±3 pp. The averages in Table 3.1 are given for 100 experiments,
each simulating one million keys. We considered distinct scenarios
(Section 3.3.4) and levels of systematic noise (Section 3.3.4).

27

3. Measuring popularity of cryptographic libraries

Estimation error (in percentage points)
Noise: 0% 1% 2% 3% 0% 1% 2% 3%

Distribution Average error Average worst error
Even 0.19 0.37 0.63 0.90 0.73 1.71 3.33 5.07

Random 0.19 0.37 0.61 0.84 0.78 1.74 3.25 4.68
Geometric 0.18 0.38 0.63 0.91 0.71 1.70 3.33 4.97

TLS 0.17 0.39 0.66 0.94 0.65 1.78 3.49 5.16

Table 3.1: Accuracy of prior probability estimation for different types
of distributions and different amount of systematic noise. The average
error gives the expected error of prior probability estimation for each
group in percentage points (pp). The average worst error gives the
expected value of the largest error in each experiment. E.g., when the
keys were generated from a TLS-like distribution with 1% of systematic
noise added, the probability of each group differed by ±0.39 pp on
average and the worst estimation was off by ±1.78 pp on average.

Accuracy of the overall classification process

The accuracy of key classification is given as the proportion of keys
that were correctly classified as the first guess or at least the second
guess. The values in Table 3.2 are given in percents.

Tables 3.1 and 3.2 refer to the same set of simulations. The prior
probability estimation is performed first. The results show that the
classification is quite robust even in the case of errors in prior proba-
bility estimations at a level of 5 percentage points, since the success of
the classification is not affected dramatically.

When compared to the approach of [Šve+16a], the average accuracy
increased for other than the even distribution of groups. However,
the classification accuracy is improved mostly for the more probable
groups and the less probable libraries may be classified incorrectly
more frequently than before.

3.3.5 Additional accuracy considerations

Some reference distributions can be approximated by a combination of
other reference distributions, similarly as the distribution observed in a
dataset can be obtained as a combination of reference distributions. An

28

3. Measuring popularity of cryptographic libraries

Classification accuracy (in %) with noise
Noise: 0% 1% 2% 3%
Guess: 1st 2nd 1st 2nd 1st 2nd 1st 2nd
Even 33.4 53.2 33.3 52.9 32.9 52.4 32.3 51.8

Random 45.5 67.5 46.1 67.8 45.0 66.7 43.9 65.1
Geometric 81.1 95.2 82.5 95.0 80.3 94.6 80.9 94.3

TLS 94.8 98.7 94.6 98.6 94.4 98.4 94.3 98.3

Table 3.2: Accuracy of key origin classification when prior probability
estimates are included in the method for different types of distribu-
tions and different amount of systematic noise. The values are in
percents. E.g., when the keys were generated from a TLS-like distri-
bution with 1% of systematic noise added, for 94.6% of the keys, the
original library was correctly identified on the first guess and 98.6%
of keys were correctly labeled by the first or the second most probable
group.

example of this phenomenon at its worst is the close match of Group
11 (Microsoft libraries) as a combination of 41.3% of Group 13, 30.6%
of Group 8, 22.7% of Group 4 and a small portion of other groups.
The situation for all groups is illustrated in Figure 3.4, with the most
notable groups enlarged. Group 13 has the next closest match, however
the error is much larger. Group 7 (OpenSSL) cannot be obtained as a
combination of other groups.

As a result, the prior probability estimation process may inter-
change the distribution of Group 11 for a mixture of other distributions
or vice versa. Currently, we do not detect such events automatically,
since an additional user input would be needed.

When considering the results, the domain must be taken into ac-
count. E.g., according to our measurement, around 1% of keys in some
samples of TLS keys originate from Group 8 (PGP SDK 4 FIPS). Since
the presence of the library in TLS is highly unlikely and no other
known implementation has the same (quite uncommon) algorithm,
we must conclude that this is an error in the estimation. We suspect
the error is due to the aforementioned approximation of Group 11.
However, there may exist different approximations of the group, hence
we cannot simply substitute the suspected ratio.

29

3. Measuring popularity of cryptographic libraries

Figure 3.4: Some distributions may be interchanged for a mix of other
distributions. We used our method to approximate each of the 13
distributions using only the remaining 12 distributions. The graphs
show the original distribution as a green outline and the combination
of libraries that minimizes the sum of squared distances is visualized
by stacking the scaled distributions on top of each other. The results
show that Group 7 (OpenSSL) cannot be easily approximated by other
groups (the process leads to a large squared differences in the distri-
butions that will not be permitted by the NNLSF method). However,
Group 11 (with Microsoft libraries) can be simulated relatively closely
by a combination of other distributions. Hence, when a real world dis-
tribution contains keys from Group 11, the method may misattribute
the keys as coming from a specific mixture of libraries instead.

30

3. Measuring popularity of cryptographic libraries

We hypothesize that such errors could be avoided if the prior
probability estimation would start from a very rough approximation
of the probabilities supplied by the user (we use evenly distributed
groups) as the starting guess of the NNLSF method. A more resolute
solution would remove groups from the analysis if they are unlikely
to occur in an examined domain according to empirical evidence.

3.4 Results on relevant datasets

Rough estimates of popularity for some cryptographic libraries were
provided in [Šve+16a] for TLS, CT and PGP, but with relatively high
expected errors. The improvement of accuracy in our work allows for
a better inspection of datasets, including the detection of transient
events. We also processed significantly more datasets, including the
archived ones.

3.4.1 Data preparation

We used a wide range of datasets for our analysis. Due to different
formats, we pre-process all data into a unified intermediate format.
For all datasets, only keys with unique moduli were considered.

Censys TLS scan

Censys [Dur+15a] performs a full IPv4 address space scan of TCP port
443 on a weekly basis [Cen15b]. The dataset contains historical scans
back to 2015-08-10 when the first scan was performed and continues
to present. Each scan is a full snapshot, independent from all other
scans, containing all raw and post-processed data from the scan in the
form of JSON and CSV files, compressed by LZ4 algorithm [Col15].
Some snapshots are only a few days apart and some larger gaps occur,
but overall the weekly periodicity is prevalent.

Censys scanner tries to perform a TLS handshake with the host
being scanned, respecting the IP blacklist maintained by Censys. The
latest scan tried to contact 53M hosts.

31

3. Measuring popularity of cryptographic libraries

10
/10

01
/11

04
/11

07
/11

10
/11

01
/12

04
/12

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0M

1M

2M

3M

4M

5M

6M

7M

8M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
EFF SSL Observatory

Rapid7 Sonar
Censys IPv4 TLS scan

Sonar fixed TLS 1.2 handshake

Unfinished Sonar scan

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

Figure 3.5: The combined results from scans of TLS services in the
whole IPv4 space as provided by four independent datasets, given
with one-month granularity. An absolute number of unique keys as
attributed to different groups by our method are shown. The sudden
“jump” for Group 11 (Microsoft libraries) in SonarSSL in 06/2015 is
caused by an improper implementation of TLS 1.2 handshake in the
scanning software, resulting in an exclusion of a significant portion of
Microsoft IIS servers for 18 months.

32

3. Measuring popularity of cryptographic libraries

Censys Alexa 1M

The dataset [Cen15a] has the same properties as the Censys IPv4
dataset (with respect to periodicity and format). It contains processed
TLS handshakes with the top 1 million websites according to the Alexa
ranking. The dataset also provides an insight into a specific portion of
the Internet certificates, which are otherwise hidden from ordinary
IPv4 scans because of the use of Server Name Indication (SNI) TLS
extension. SNI enables the web server to multiplex X.509 certificates
on a single IP address, because the client sends the desired host name
directly in the TLS handshake. Simple TLS handshake returns only one,
default virtual host certificate, hence other virtual hosts are hidden
from the scan. Moreover, the default certificate is usually generated
during server installation (if not overridden later) and thus does not
have to be relevant to the context.

Rapid7 Sonar SSL

Project Sonar [Rap15] performs a regular scan of IPv4 SSL services
on TCP port 443. The dataset includes both raw X.509 certificates and
processed subsets. It contains snapshots taken within a time frame of
maximum 8 hours. It ranges from 2013-10-30 to the present (still active)
with many samples. The files with certificates are incremental, so the
scan from a particular day contains only new certificates – not yet seen
in the preceding scan. We transform the increments into snapshots.
The scanning periodicity varies, making the analysis more compli-
cated. The project also maintains an independent IP address blacklist
that evolves in time. Additionally, the scanner code evolves (cipher
suite selection, bug fixes, methodology fixes) causing fluctuations in
the data.

HTTPS Certificate Ecosystem

IPv4 TLS scanning dataset [Dur+13] ranging from 2012-06-10 to 2014-
01-29. It is essentially the same as the Sonar SSL dataset with respect
to the format and the properties. This dataset contains one host-to-
certificate fingerprint mapping file for each scan and one big certificate
database for the whole dataset. The periodicity varies a lot. There are
many snapshots only two days apart, as well as large gaps between

33

3. Measuring popularity of cryptographic libraries

samples, up to 50 days. We recoded the dataset to the Sonar SSL format,
with an incremental certificate database. We then transformed it to
the full snapshot format identical as for Sonar SSL.

Certificate Transparency

The specification of CT (RFC 6962) allows retrieving an arbitrary range
of entries from a log. We processed all entries in logs maintained by
Google up to May 2017. All entries must be submitted with all the
intermediate certificates necessary to verify the certificate chain up
to a root certificate published by the log. We process only the leaf
certificates. Since the logs are append-only, there is no reliable way
of knowing whether an older certificate is still active (the validity
period gives an upper estimate), hence we do not have a sample of all
certificates in use for a given date. Instead, we process incremental
samples – all certificates submitted during a specific period (a day or
a week).

Client SSH keys – GitHub

GitHub gives users SSH-authenticated access to their Git repositories.
Developers upload their public SSH keys. One user can have no, one or
more SSH keys. GitHub provides an API to list all the registered users
and another endpoint allows downloading SSH keys on a per-user
basis. We downloaded a list of almost 25M GitHub users with almost
4.8M SSH keys found. The scan was performed in February 2017 and
took 3 weeks to finish on a commodity hardware. We implemented a
custom multi-threaded crawler for this purpose, downloading user
list, SSH keys, parsing them and producing a file for classification.

Pretty Good Privacy (PGP)

PGP key servers play an important role in the PGP infrastructure
as public registers of public PGP keys. The PGP servers synchro-
nize among themselves periodically. We downloaded a dump of the
database in April 2017, parsed it and extracted RSA master and sub-
keys for the analysis. Anyone can upload a valid PGP public key to
the key server and download the key later. This has to be taken into

34

3. Measuring popularity of cryptographic libraries

account during analysis. Anyone can generate thousands of keys and
upload them to the key server, which would skew a statistics. This
actually happened when a group called Evil 32 [KS15] generated a
new PGP key for thousands of identities in the PGP server with a
collision on the short key ID to demonstrate the weakness of using a
short 32-bit identifier in the PGP ecosystem.

3.4.2 Internet-wide TLS scans

Various projects performed Internet-wide scanning since 2010, with
different periods, frequencies and scanning techniques. We extracted
unique RSA keys from certificates collected by EFF SSL Observa-
tory (only two scans), HTTPS Ecosystem (07/2012-02/2014), Rapid7
SonarSSL (11/2013-05/2017) and Censys IPv4 TLS (08/2015-05/2017)
scans. The processing is described in Section 3.4.1.

The overlapping portions of the different scans provide a good
match except for Group 11 (Microsoft libraries) in the Rapid7 Sonar
SSL scan between 11/2013 to 06/2015. The significant decrease of
Microsoft libraries is caused by an improper implementation of the
TLS v1.2 handshake by the scanning software, resulting in exclusion
of a significant portion of Microsoft IIS servers for 18 months as con-
firmed by Project Sonar authors.

Figure 3.5 shows the absolute number of unique RSA keys at-
tributed by us to every classification group of cryptographic libraries.
OpenSSL (Group 7) is increasingly more popular, also relatively to
other libraries. As of May 2017, there are about 8 million active unique
RSA keys generated by OpenSSL. Group 11 that contains Microsoft
libraries is relatively stable since 2012 starting with 2M, rising to 2.4M
in 2014 and then slightly decreasing to 2.2M keys in 2016. Since there
are several changes in the data collection methodology and software,
it is difficult to make a conclusion about the significance of the num-
bers. However, the data indicates a comparably stable number of keys
originating from the group.

The large Group 13 (containing Nettle, OpenSSL FIPS, and WolfSSL
among others) used to be the third most common library with 0.4-0.5M
keys, but was gradually matched by Group 12 (containing OpenJDK
and mbedTLS) in year 2016. Both groups now have an almost equal
share of about 0.5 M unique keys.

35

3. Measuring popularity of cryptographic libraries

10
/10

01
/11

04
/11

07
/11

10
/11

01
/12

04
/12

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0M

1M

2M

3M

4M

5M

6M

7M

8M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
EFF SSL Observatory

Rapid7 Sonar
Censys IPv4 TLS scan

Sonar fixed TLS 1.2 handshake

Unfinished Sonar scan

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

Figure 3.6: Library share in different usage domains. The sources
responsible for at least 0.1% of all keys in a particular scan of the
domain are listed in the legend. OpenSSL library dominates in all
domains, except for the PGP dataset.

36

3. Measuring popularity of cryptographic libraries

The last somewhat significant group is Group 8 with about 1% of
keys, slightly decreasing in popularity since 2016. The group contains
only the PGPSDK 4 FIPS implementation, which is unlikely to be so
popular in TLS. There either exists a different popular library with a
similar prime generation algorithm (not included in the set of libraries
studied by us), or a portion of the dataset was misattributed to the
library due to a similarity of a combination of profiles, as explained in
Section 3.3.5.

3.4.3 Popularity between usage domains

Although the TLS ecosystem is the most frequently studied one, large
datasets of RSA keys exist for other usage domains. We analyzed
and compared the relative popularity of cryptographic libraries as of
March 2017 for Internet-wide TLS scans (Censys), obtained from the
1 million most popular domains according to the Alexa survey, and
the certificates uploaded to all Google’s Certificate Transparency logs
during that month. We also present the TLS keys as of December 2010
to illustrate the progress in time. Additionally, SSH authentication
keys of all GitHub users and all keys from PGP key servers were
analyzed. The differences are shown in Figure 3.6.

The analysis shows significant differences among the usage do-
mains. The GitHub SSH dataset is clearly dominated by OpenSSL
with more than 96% – the default library behind ssh-keygen utility
from OpenSSH software. Fewer than 3% belong to Group 12, which
contains the popular SSH client PuTTY for Microsoft Windows.

The PGP keys are generated mostly by Group 13 (containing
Libgcrypt from the widely used GnuPG software) with about 85%
share, followed by OpenSSL with approximately 11%.

3.4.4 TLS to CT comparison

According to a survey based on IPv4 scans, Certificate Transparency
(CT) and a large set of active domain names [Van+16], the combination
of CT and IPv4 scans provides a representative sample of the Internet.
We are interested in the differences between the methodologies.

An interesting popularity distribution can be observed from CT
logs. CT has been used on a large scale since 2015, with the first logs

37

3. Measuring popularity of cryptographic libraries

launching in 2013. The logs now contain almost an order of magnitude
more certificates than those reachable by direct IPv4 TLS scans. Due to
the validation of TLS certificates performed by all modern browsers,
all valid certificates used for TLS are now present in CT, but also more.
CT logs also contain TLS certificates hidden from IPv4-based scans
due to Server Name Indication (SNI) TLS extension. Additionally,
certificates never seen in TLS or not intended for TLS can be submitted
to the logs. According to a study of the CT landscape [Gus+17], almost
95% of certificates stored in CA operated logs are also seen in CT logs
operated by Google (Pilot, Icarus, Rocketeer, Skydiver, Aviator) – we
therefore use these logs with newly inserted certificates during certain
time frames (a day, a week, a month) to perform our analysis.

We compare selected results for certificates submitted to CT during
March 2017 with a Censys scan from the same month in Figure 3.6.
While OpenSSL is again the most common library in CT, it is respon-
sible only for about 60% of unique RSA keys, where the Censys scan
contains about 70% of the same. Microsoft libraries (Group 11) are in
a minority with 3.5% in CT, whereas they are responsible for almost
20% in TLS. The longer validity of certificates generated by Microsoft
software (especially when compared to certificates produced by Let’s
Encrypt CA with 3-month validity) is a potential reason, with SNI
multiplexing being another one. Groups 12 and 13 are relatively com-
mon in CT with 20% and 15%, respectively, whereas both are below
5% in TLS.

3.4.5 Detection of transient events

We used our method to estimate the proportion of libraries for keys
newly submitted every week to Google’s CT servers between October
2016 and May 2017, limited to certificates issued by Let’s Encrypt CA,
as shown in Figure 3.7. The number of certificates added every week
fluctuates significantly, as well as the responsible libraries. Only a
relatively small number of keys from Group 11 were inserted when
compared to the number of certificates in active use found by TLS
scans. This suggest that Microsoft libraries are less likely to be used
with Let’s Encrypt software. Interestingly, there is a certain periodicity
between such certificates being submitted.

38

3. Measuring popularity of cryptographic libraries

10
/16

11
/16

12
/16

01
/17

02
/17

03
/17

04
/17

05
/17

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

1
2

3
4

5
6

7
8

9
10

11
12

13

10
/10

01
/11

04
/11

07
/11

10
/11

01
/12

04
/12

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0M

1M

2M

3M

4M

5M

6M

7M

8M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
EFF SSL Observatory

Rapid7 Sonar
Censys IPv4 TLS scan

Sonar fixed TLS 1.2 handshake

Unfinished Sonar scan

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

Figure 3.7: The number of keys from distinct groups added to CT
weekly, found in certificates issued by Let’s Encrypt CA.

39

3. Measuring popularity of cryptographic libraries

Some periodic monthly insertion events are also visible for
Group 12 (OpenJDK, Bouncy Castle before v. 1.54, mbedTLS, etc.) and
bi-monthly for Group 13 (OpenSSL FIPS, WolfSSL, etc.). Most Let’s
Encrypt certificates from the events are reissued after 60 days.

3.5 Related work

Only very few prior publications are concerned with the identifica-
tion of the library responsible for generating an RSA key. Except for
[Šve+16a] (the work we directly improve on), the task was done by
[Mir12], who observed that particular biases in private keys generated
by OpenSSL can be also seen in the majority of keys that were found
in TLS scans and factored by [Hen+12; HFH16; Bel08]. However, the
method only worked because of the knowledge of the private primes.
Furthermore, the keys were generated with insufficient entropy due to
bad random generators. Hence the technique can be extended neither
to all keys generated by OpenSSL, nor to other libraries.

The popularity of a library can be also estimated from the positive
ratings (stars or likes) of open-source repositories, such as those hosted
on GitHub. However, this seems to be a very poor method – OpenSSL
only has four times as many stars as mbedTLS and closed-source
libraries like Microsoft CAPI/CNG cannot be compared this way at
all.

Server fingerprints were used to probabilistically determine the op-
erating system, or even the versions of the deployed software [Net17b;
Lyo17]. Indeed, the estimates on the number of servers running Mi-
crosoft OS published by [Net17a] matches the results of our analysis of
a scan of the Alexa Top 1 million domains. A similar analysis was per-
formed for software packages handling the SSH connection [Alb+16]
mostly served by Dropbear and OpenSSH, confirming the dominance
of OpenSSH-based software.

Debian-based Linux distributions offer public statistics about the
popularity of software packages as a part of a quality assurance effort
[GB17]. The results are based on a relatively high number of users
(almost 200K) and provide an insight into the number of package
installation, yet they cannot capture the number of keys in use. The li-

40

3. Measuring popularity of cryptographic libraries

braries used to validate SSL certificates in non-browser client software
were surveyed in [Geo+12].

A direct identification of software packages running on other cores
in a cloud environment based on cache side-channels was demon-
strated by [Ira+15; Inc+16]. The measurement requires a local presence,
does not scale and cannot be used on archived datasets. However, it
recovers not only the library, but also a particular version.

Measurements and analyses of the TLS ecosystem have a long
history with large scale scans starting in 2010 with the EFF SSL Obser-
vatory project [BE10], followed by analyses of both valid certificates
[CO13; Dur+13; Dur+14; DBH14; Fel+17] (the majority of papers) as
well as invalid ones [Chu+16]. The significant increase of popularity
of Certificate Transparency servers now provides a view of the certifi-
cates that are otherwise unreachable via IP address based scanning
[Van+16]. Researchers usually focus on the properties of the certifi-
cates (e.g., validity period) or the certificate chain extracted from the
TLS handshakes. Chosen cryptographic algorithms and key lengths
were also analyzed [Dur+15a; ICS17], showing that more than 85%
of currently valid certificates use the RSA algorithm – making our
method based on RSA keys representative of the ecosystem.

The client SSH authentication keys extracted from GitHub were
previously collected and analyzed [Reb15; Bar+16] with a focus on the
algorithms, key lengths, and presence of weak keys, detecting keys
generated from OpenSSL with insufficient entropy.

3.6 Additional results

Table 3.3 shows the sources considered in the analysis, together with
the relevant biases. There are two types of modular bias – modulo
4, due to RSA moduli being Blum integers and modulo 3, due to
implementations avoiding primes p such that p − 1 is divisible by
3. The primes are biased due to different intervals, from which they
are generated. The bias propagates to public keys. Notation: 112 – the
primes have the two top bits set to one; RS – the primes have the top bit
set to one, then short moduli are discarded;

√
2 – the primes are chosen

from the interval
[√

2 · 2 n
2−1, 2

n
2 − 1

]
(n – length of modulus). Other

proprietary implementations of prime selection are: G&D – Giesecke

41

3. Measuring popularity of cryptographic libraries

& Devrient (G&D); Gem. – Gemalto; Inf. – Infineon; NXP – NXP; PGP
– PGP SDK; Uti – Utimaco (similar to RS).

Figure 3.8 shows the number of keys attributed by us to different
cryptographic libraries in certificates from the Alexa Top 1 million
domains collected by Censys. The number of OpenSSL keys is rising
and the percentage of keys coming from Microsoft implementations
is much smaller than in general TLS scans.

Previous analyses of Internet-wide TLS scans [CO13; Dur+13;
Dur+14; DBH14] compared various properties of certificates. Valid
and invalid certificates were compared by [Chu+16], showing that the
majority of certificates found by scans are invalid and have interesting
properties.

We compared self-signed certificates to certificates signed by third
parties in historical datasets from HTTPS Ecosystem and Rapid7
Project Sonar. Figure 3.9 shows a significant difference in the keys
coming from such certificates. Most notably, Microsoft keys are found
in self-signed certificates less commonly than OpenSSL keys. As ex-
plained in Section 3.4.2, the decrease in the number of certificates
between 11/2013 to 06/2015 is caused by an improper implementa-
tion of the TLS v1.2 handshake used by Project Sonar.

3.7 Conclusions

A wide-scale accurate measurement of the popularity of cryptographic
libraries is an important precursor for a security analysis of the Inter-
net ecosystem, such as an evaluation of resilience against security bugs.
Yet so far, it was based only on proxy measurements, like the popu-
larity of web server implementations. We proposed a measurement
method based on statistical inference, which finds a match between
the observed distribution of keys on the Internet and a specific pro-
portion of reference distributions of RSA public keys extracted from
cryptographic libraries. Our method does not rely on active communi-
cation with a server implementation, hence it also works when proxy
information is not available, such as for SSH client keys, where direct
scanning of clients is not performed. The analysis is possible thanks to
the recently discovered biases in the implementations of RSA public
key generation [Šve+16a].

42

3. Measuring popularity of cryptographic libraries

The results show an overall increasing reliance on OpenSSL – its
share grew from 56% to 70% between the years 2010 and 2017 as ob-
served from keys used by TLS servers. The prevalence of OpenSSL
reaches almost 85% within the current Alexa top 1M domains and
more than 96% for client-side SSH keys as used by GitHub users.
The usage trends of Microsoft libraries are mostly stable with a share
of around 20% for TLS serves and a 10% share of the Alexa top 1M
domains. The GnuPG Libgcrypt library and statistically similar im-
plementations are responsible for 85% of all PGP keys. Certificate
Transparency logs provide a different ratio of libraries for recently
added certificates than Internet-wide scans – OpenSSL is down to
60%, Microsoft is at only 3.5% (probably due to longer validity of
certificates) and the remaining libraries account for more than 35%
(while their share in IPv4 TLS scans is lower than 10%).

This method can also capture short-term events, when incremental
datasets are examined (e.g., daily changes). We observed that many
certificates from specific libraries were submitted to Certificate Trans-
parency logs periodically, coinciding with the validity of Let’s Encrypt
certificates. Our measurement also revealed an inconsistency between
historical datasets, caused by a bug in the scanning software of Project
Sonar, which led to an omission of more than a million Microsoft
servers from IPv4 TLS scans during the period of 18 months.

43

3. Measuring popularity of cryptographic libraries

09
/15

10
/15

11
/15

12
/15

01
/16

02
/16

03
/16

04
/16

05
/16

06
/16

07
/16

08
/16

09
/16

10
/16

11
/16

12
/16

01
/17

02
/17

03
/17

04
/17

0.0M

0.1M

0.1M

0.1M

0.2M

0.2M

0.3M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

1
2

3
4

5
6

7
8

9
10

11
12

13

10
/10

01
/11

04
/11

07
/11

10
/11

01
/12

04
/12

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0M

1M

2M

3M

4M

5M

6M

7M

8M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
EFF SSL Observatory

Rapid7 Sonar
Censys IPv4 TLS scan

Sonar fixed TLS 1.2 handshake

Unfinished Sonar scan

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

Figure 3.8: More domains from the Alexa Top 1M list use OpenSSL
(Group 7) now than in 2015. Note that the number of keys does not
sum to 1M already in the original dataset collected by Censys. Some
websites do not support HTTPS [Fel+17] or the specific cipher-suite
used by the Censys scanner.

44

3. Measuring popularity of cryptographic libraries

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0.0M

1.0M

2.0M

3.0M

4.0M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
Rapid7 Sonar

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
Rapid7 Sonar

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

10
/10

01
/11

04
/11

07
/11

10
/11

01
/12

04
/12

07
/12

10
/12

01
/13

04
/13

07
/13

10
/13

01
/14

04
/14

07
/14

10
/14

01
/15

04
/15

07
/15

10
/15

01
/16

04
/16

07
/16

10
/16

01
/17

04
/17

0M

1M

2M

3M

4M

5M

6M

7M

8M

Es
tim

at
ed

 n
um

be
r o

f k
ey

s

HTTPS Ecosystem
EFF SSL Observatory

Rapid7 Sonar
Censys IPv4 TLS scan

Sonar fixed TLS 1.2 handshake

Unfinished Sonar scan

Group 1: G&D SmartCafe 3.2
Group 2: G&D SmartCafe 4.x & 6.0
Group 3: GNU Crypto 2.0.1
Group 4: Gemalto GXP E64
Group 5: NXP J2A080 & J2A081
 & J3A081 & JCOP 41 V2.2.1
Group 6: Oberthur Cosmo Dual 72K
Group 7: OpenSSL 0.9.7 & 1.0.2g
 & 1.0.2k & 1.1.0e
Group 8: PGPSDK 4 FIPS

Group 9: Infineon JTOP 80K, YubiKey 4 & 4 Nano
Group 10: NXP J2D081 & J2E145G, YubiKey NEO
Group 11: BouncyCastle 1.54 (Java), Crypto++ 5.6.0 & 5.6.3 & 5.6.5,
 Libgcrypt 1.7.6 FIPS, Microsoft CryptoAPI & CNG & .NET
Group 12: BouncyCastle 1.53 (Java), Cryptix JCE 20050328,
 FlexiProvider 1.7p7, HSM Utimaco Security Server Se50,
 Nettle 2.0, PolarSSL 0.10.0, PuTTY 0.67, SunRsaSign OpenJDK 1.8.0,
 mbedTLS 1.3.19 & 2.2.1 & 2.4.2
Group 13: Botan 1.5.6 & 1.11.29 & 2.1.0, Feitian JavaCOS A22 & A40,
 Gemalto GCX4 72K, HSM SafeNet Luna SA-1700, LibTomCrypt 1.17,
 Libgcrypt 1.6.0 & 1.6.5 & 1.7.6, Libgcrypt 1.6.0 FIPS & 1.6.5 FIPS,
 Nettle 3.2 & 3.3, Oberthur Cosmo 64, OpenSSL FIPS 2.0.12 & 2.0.14,
 PGPSDK 4, WolfSSL 2.0rc1 & 3.9.0 & 3.10.2, cryptlib 3.4.3 & 3.4.3.1

Figure 3.9: Comparison of library popularity for keys coming from
certificates signed by a third party (top) and self-signed certificates
(bottom). Self-signed certificates are dominated by OpenSSL. More
than 50% of OpenSSL keys observed in 2012 were found in self-signed
certificates. For OpenSSL, the number of not self-signed certificates
rose faster than the number of self-signed certificates, and significantly
more OpenSSL certificates are now signed by a third party. Fewer than
25% Microsoft keys were found in self-signed certificates in major-
ity of the scans. Self-signed certificates are implicitly not trusted by
web browsers. Only a subset of the not self-signed certificates have
certificates chains leading to a browser-trusted root CA.

45

3. Measuring popularity of cryptographic libraries

Source Version Year Group Bias
Prime %4 %3

Open-source libraries
Botan 1.5.6, 1.11.29, 2.1.0 2006, ’16, ’17 13 112
Bouncy Castle (Java) 1.53 2016 12 RS
Bouncy Castle (Java) 1.54 2016 11

√
2

Cryptix JCE 20050328 2005 12 RS
cryptlib 3.4.3, 3.4.3.1 2016, ’17 13 112

Crypto++ 5.6.0, 5.6.3, 5.6.5 2009, ’15, ’16 11
√

2
FlexiProvider 1.7p7 2014 12 RS
GNU Crypto 2.0.1 2005 3 RS X
Libgcrypt (GnuPG) 1.6.0, 1.6.5, 1.7.6 2013, ’16, ’17 13 112
Libgcrypt (GnuPG) 1.6.0 FIPS, 1.6.5 FIPS 2013, ’16 13 112

Libgcrypt (GnuPG) 1.7.6 FIPS 2017 11
√

2
LibTomCrypt 1.17 2015 13 112
mbedTLS 2.2.1, 2.4.2 2016, ’17 12 RS
Nettle 2.0 2010 12 RS
Nettle 3.2, 3.3 2016 13 112
OpenSSL 0.9.7, 1.0.2g, 1.0.2k, 1.1.0e 2002, ’16, ’17, ’17 7 112 X
OpenSSL FIPS 2.0.12, 2.0.14 2016, ’17 13 112
PGP SDK 4 2011 13 112
PGP SDK 4 FIPS 2011 8 PGP
PolarSSL 0.10.0, 1.3.9 2009, ’14 12 RS
Putty 0.67 2017 12 RS
SunRsaSign Provider OpenJDK 1.8 2014 12 RS
WolfSSL 2.0rc1, 3.9.0, 3.10.2 2011, ’16, ’17 13 112

Black-box implementations
HSM Utimaco SecurityServer Se50 12 Uti
HSM SafeNet Luna SA-1700 13 112

Microsoft CNG, CryptoAPI, .NET 2016 (Win 10) 11
√

2
YubiKey 4, 4 Nano 2015 9 Inf.
YubiKey NEO 2012 10 RS X X

Smartcards
Feitian JavaCOS A22 2015 13 112
Feitian JavaCOS A40 2016 13 112
G&D SmartCafe 3.2 2003 1 G&D X
G&D SmartCafe 4.x 2007 2 G&D X X
G&D SmartCafe 6.0 2015 2 G&D X X
Gemalto GCX4 72K <2010 13 112
Gemalto GXP E64 <2010 4 Gem.
Infineon JTOP 80K 2012 9 Inf.
NXP J2A080 2011 5 NXP X
NXP J2A081 2012 5 NXP X
NXP J2D081 2014 10 RS X X
NXP J2E145G 2013 10 RS X X
NXP J3A081 2012 5 NXP X
NXP JCOP 41 V2.2.1 <2010 5 NXP X
Oberthur Cosmo Dual 72K <2010 6 112 X
Oberthur Cosmo 64 2007 13 112

Table 3.3: List of sources with biases relevant for the analysis.

46

4 Factorization of widely used RSA moduli

In general, slight biases in public RSA keys do not have adverse effects
on the security of the keys. We demonstrated that an attacker could
learn what library was used to generate a given key [Šve+16a] or a
curious statistician could measure the popularity of cryptographic
libraries on the Internet [Nem+17a] (Chapter 3). Still, such results are
far from practically affecting the confidentiality or integrity of systems
that use RSA.

However, we also identified a case of severely biased RSA keys
generated by a smartcard [Šve+16a; Šve+16b]. In this chapter, we
describe how we used these indicators of a cryptographic weakness to
reveal and break the proprietary RSA key generation algorithm. Our
attack is based on the factorization of partially known RSA keys, a
technique closely related to the hidden number problem. We attributed
the observed biases to a severe entropy loss caused by the deployed
optimized algorithm. For a vulnerable public key, it is feasible to
search the whole space of random values and compute the redundant
information for a full factorization of an RSA modulus, including
practical key sizes, such as 2048 bits. Furthermore, vulnerable keys
can be identified in just microseconds due to a unique fingerprint.

Our findings had numerous practical consequences. Millions of
electronic identity documents had to be modified or reissued, a wide
range of Trusted Platform Modules required firmware updates, and
users of authentication tokens had to generate new keys. The ACM
recognized our contributions and awarded us with the Real-World
Impact Award at the CCS 2017 conference. More than two years after
the discovery, various applications of the secure chips running the
vulnerable library remain insecure.

The results in this chapter were published in [Nem+17b].

4.1 Introduction

RSA [RSA78] is a widespread algorithm for asymmetric cryptography
used for digital signatures and message encryption. RSA security is
based on the integer factorization problem, which is believed to be
computationally infeasible or at least extremely difficult for sufficiently

47

4. Factorization of widely used RSA moduli

large security parameters – the size of the private primes and the
resulting public modulus N. As of 2017, the most common length
of the modulus N is 2048 bits, with shorter key lengths such as 1024
bits still used in practice (although not recommend anymore) and
longer lengths like 4096 bits becoming increasingly common. As the
private part of the key is a very sensitive item, a user may use secure
hardware such as a cryptographic smartcard to securely store and use
the private key value.

Successful attacks against RSA based on integer factorization (find-
ing the private primes p and q from the public modulus N) enable the
attacker to impersonate the key owner and decrypt private messages.
The keys used by secure hardware are of special interest due to the
generally higher value of the information protected – e.g., securing
payment transactions.

RSA requires two large random primes p and q, that can be ob-
tained by generating a random candidate number (usually with half of
the bits of N) and then testing it for primality. If the candidate is found
to be composite, the process is repeated with a different candidate
number.

However, there are at least three reasons to construct a candidate
number from several smaller (randomly) generated components in-
stead of generating it randomly: 1) an improved resistance against
certain factorization methods, such as Pollard’s p− 1 method [Pol74];
2) certification requirements such as the NIST FIPS 140-2 standard,
which mandates that for all primes p, the values of p− 1 and p + 1
have at least one large (101-bit or larger) factor each; and 3) speedup of
keypair generation, since testing random candidate values for primal-
ity is time consuming, especially on restricted devices like smartcards.

Yet, constructed primes may bring new problems as demonstrated
in our work. In the past, practical attacks against RSA exploited the
use of insecurely short key lengths susceptible to factorization via
NFS [Pol93] (e.g., 512-bit, still found on the Internet [Hen+12]); faulty
or weak random number generators producing partially predictable
primes, as in the electronic IDs of Taiwanese citizens [Ber+13]; soft-
ware bugs causing primes to be generated from an insufficiently large
space, as in the Debian RNG flaw [Bel08]; or seeding with insufficient
entropy, leading to multiple keypairs sharing a prime [Hen+12]. The
knowledge or recovery of all bits of a private key is not always required

48

4. Factorization of widely used RSA moduli

for a successful attack thanks to the powerful technique proposed by
Coppersmith [Cop96a]. If at least one half of the bits of one of the
primes is known, the remaining bits can be computationally recovered.
Then, even otherwise secure designs can be attacked by various side-
channel and implementation-based attacks or by introducing faults
into the computation.

Only on very rare occasions is an attacker potentially able to recover
the private primes of a chosen key of a seemingly sufficient bit length,
without physical access to the target device or a large amount of side-
channel information. One notable attack that comes close is a simple
GCD computation [BHL12], which can quickly factorize a collection
of moduli, but only if they happen to share a common prime, making
the attack less likely to succeed on a single targeted keypair. The
cause of such vulnerability is typically insufficient entropy during
the keypair generation, as demonstrated for a large number of TLS
and SSH keys [Hen+12; HFH16], therefore requiring multiple public
keys to be created with the same malfunctioning implementation of a
random number generator.

We present our attack against keys generated in cryptographic
smartcards of Infineon Technologies AG (further denoted as Manufac-
turer), and our attack is not based on any weakness in a random bit
generator or any additional side-channel information. Instead, the
attack utilizes the specific structure of the primes as generated by Man-
ufacturer’s on-chip cryptographic library (further denoted as RSALib1).
We had access neither to the RSALib’s source code nor to the object
code (since it is stored only in the secure on-chip memory and is
not extractable), and the whole analysis was performed solely using
RSA keys generated and exported from the Manufacturer’s cards and
tokens.

Contributions. In short, our work has the following contributions:

1. Recovery of the internal structure of the primes: We identify
the structure of RSA primes as produced by a black-box crypto-
graphic library by a manufacturer of widely used cryptographic
smartcards. The structure was recovered solely from our obser-

1. Likely RSA v1.02.013 library and later revisions.

49

4. Factorization of widely used RSA moduli

vations of statistical properties of large number of private keys
generated in accordance with the specification of the product.

2. Practical factorization: We propose and implement a technique
for the factorization of such RSA keys, with lengths including
1024 and 2048 bits, using our derivation of the methods by Cop-
persmith and Howgrave-Graham.

3. Fast detection algorithm: We design a very fast algorithm to
verify whether a particular key originates from the inspected
library based on the properties of the public modulus. The im-
plementation was released2 to allow users to check their own
keys.

4. Analysis of impacted domains: We analyze multiple usage do-
mains (TLS, PGP, eID, authentication tokens, software signing,
etc.) for the prevalence of vulnerable keys and discuss the impact
of key factorization.

The specific structure of the primes as generated by RSALib (most
likely introduced to speed up prime generation) allows us to quickly
identify keys generated by the library using only the public modulus
(regardless of the length of the key) and to practically factorize RSA
keys with various key lengths up to 2048 bits. The factorization method
uses knowledge of the specific structure of such primes to apply our
derivation of Coppersmith’s method. Furthermore, we devised an
alternative representation of the primes in question to make the attack
computationally feasible on consumer hardware.

The impact is significant due to Manufacturer being one of the
top three secure integrated circuit (IC) producers. Furthermore, the
weakness lies in an on-device software library; hence, it is not limited
just to a particular range of physical devices. The weakness can be
traced back to at least the year 2012, increasing the number of affected
domains. We assessed the impact in a several important real-world
usage scenarios and made some recommendations for mitigation.

The fingerprinting method is fast, requiring just microseconds to
run on a modulus. We successfully used the fingerprinting technique

2. Full details and a tool for the detection of vulnerable keys can be found at
https://crocs.fi.muni.cz/papers/rsa_ccs17.

50

4. Factorization of widely used RSA moduli

on large datasets of certificates, such as those submitted to Certificate
Transparency logs, collected in Internet-wide TLS scans and stored
on public PGP keyservers. This led to a discovery of thousands of
keys in the wild with primes of the form in question. Our method has
negligible false negative and false positive rates (observed as zero), as
guaranteed by the very rare properties.

Where datasets with public RSA keys were not available (e.g.,
Trusted Platform Modules or EMV payment cards), we collected sam-
ple keys from different devices to get an idea about the typical key
lengths used for the domain and to estimate the prevalence of devices
producing potentially vulnerable keys.

Although the RSALib is not automatically shipped with every chip,
the developers are motivated to deploy it in order to benefit from
ready-to-use higher-level functions (such as the RsaKeyGen method
in question) and to get an implementation designed with protections
against side-channel and fault induction attacks in mind. However,
even for certification, the RSALib is provided only as object files, with-
out the source code [BSI15].

The rest of the chapter is organized as follows: Section 4.2 is in-
tended for readers with interest in the mathematical details of the dis-
covered flaw and the proposed factorization and fingerprinting meth-
ods. The readers interested mainly in the practical impacts should fo-
cus on the specifics of the implementation of the factorization method
covered in Section 4.3 and the survey of impacted usage domains
and the analysis of vulnerable keys found in the wild, as provided in
Section 4.4. The possible approaches to short- and long-term mitiga-
tion are discussed in Section 4.5. Related work and conclusions are
provided in Sections 4.6 and 4.7, respectively.

4.2 Fingerprinting and factorization

A factorization attack attempts to obtain the private primes p and
q from the knowledge of the public modulus N. Such an attack is
believed to be computationally infeasible for sufficiently long N. The
factorization can be sped up if some additional information about the
private exponent d or about the primes p or q is known by the attacker.

51

4. Factorization of widely used RSA moduli

4.2.1 Format of the constructed primes

Our motivation for a deeper analysis of the keys produced by Manufac-
turer’s devices stemmed from the observation of interesting statistical
properties extracted from a large number of keys as described in
[Šve+16a]. When compared to other implementations and theoretical
expectations on distribution of prime numbers, the keys exhibited
a non-uniform distribution of (p mod x) and (N mod x) for small
primes x. In this work, we recovered the structure responsible for the
properties. All RSA primes (as well as the moduli) generated by the
RSALib have the following form:

p = k ∗M + (65537a mod M). (4.1)

The integers k, a are unknown, and RSA primes differ only in their
values of a and k for keys of the same size. The integer M is known and
equal to some primorial M = Pn# (the product of the first n successive
primes Pn# = ∏n

i=1 Pi = 2 ∗ 3 ∗ · · · ∗ Pn). The value of M is related
to the key size, where the key size is a multiple of 32 bits for keys
generated by the RSALib. The value n = 39 (i.e., M = 2 ∗ 3 ∗ · · · ∗ 167)
is used to generate primes for an RSA key with a key size within the
[512, 960] interval. The values n = 71, 126, 225 are used for key sizes
within intervals [992, 1952], [1984, 3936], [3968, 4096].

The most important property of the keys is that the size of M is
large and almost comparable to the size of the prime p (e.g., M has
219 bits for the 256-bit prime p used for 512-bit RSA keys). Since M
is large, the sizes of k and a are small (e.g., k has 256− 219 = 37 bits
and a has 62 bits for 512-bit RSA). Hence, the resulting RSA primes
suffer from a significant loss of entropy (e.g., a prime used in 512-bit
RSA has only 99 bits of entropy), and the pool from which primes are
randomly generated is reduced (e.g., from 2256 to 299 for 512-bit RSA).

The specific format of the primes has two main consequences:

1. Fingerprinting: The keys are fingerprinted based on the exis-
tence of a discrete logarithm log65537 N mod M. While the size
of M is large, the logarithm can be computed easily since M
has small factors only. The keys generated by the RSALib can be
identified with a negligible error and within microseconds.

52

4. Factorization of widely used RSA moduli

2. Factorization: During the factorization of N, we are looking for
values of a, k. A naïve approach would iterate through different
values of a (treating the value of 65537a mod M as the “known
bits”) and apply Coppersmith’s algorithm to find the unknown
k, but the number of attempts is infeasibly large, as shown in
Table 4.1. We found an alternative representation of the primes
in question using smaller M′ values (divisors of M), leading to a
feasible number of guesses of the value a′. The reduction of M is
possible since the entropy loss is sufficiently high to have more
than enough known bits for the application of Coppersmith’s
algorithm to lengths including 1024 and 2048 bits.

4.2.2 Fingerprinting

The public RSA modulus N is a product of two primes p, q. The RSALib
generates primes of the described form (4.1). The moduli have the
corresponding form:

N =

p︷ ︸︸ ︷
(k ∗M + 65537a mod M) ∗

q︷ ︸︸ ︷
(l ∗M + 65537b mod M), (4.2)

for a, b, k, l ∈ Z. The previous identity implies

N ≡ 65537a+b ≡ 65537c (mod M), (4.3)

for some integer c. The public modulus N is generated by 65537 in
the multiplicative group Z∗M. The existence of the discrete logarithm
c = log65537 N mod M is used as the fingerprint of the public modulus
N generated by the RSALib.

Efficiency

Although the discrete logarithm problem is a hard problem in general,
in our case, it can be computed within microseconds using the Pohlig-
Hellman algorithm [PH06]. The algorithm can be used to efficiently
compute a discrete logarithm for a group G, whose size |G| is a smooth
number (having only small factors). This is exactly our case with the
group G = [65537] (subgroup of Z∗M generated by 65537). The size
of G is a smooth number (e.g., |G| = 24 ∗ 34 ∗ 52 ∗ 7 ∗ 11 ∗ 13 ∗ 17 ∗

53

4. Factorization of widely used RSA moduli

23 ∗ 29 ∗ 37 ∗ 41 ∗ 53 ∗ 83 for 512-bit RSA) regardless of the key size.
The smoothness of G is a direct consequence of the smoothness of M.
Since M is smooth (M is a primorial, M = 2 ∗ 3 ∗ 5 ∗ · · · ∗ Pn), the size
of Z∗M is even “smoother” (|Z∗M| = ϕ(M)). The size |G| is a divisor of
|Z∗M| (from Lagrange’s theorem), and it is therefore smooth as well.

False positives

The existence of the discrete logarithm serves as a very strong finger-
print of the keys. The reason is that while random primes/moduli
modulo M cover the entire Z∗M, the RSALib generates primes/moduli
from the group G – a tiny portion of the whole group. The sizes |G|
of the group G are listed in Table 4.1 in the Naïve brute force (BF)
column. The size of Z∗M is equal to ϕ(M). For example, |G| = 262.09

while |Z∗M| = ϕ(M) = 2215.98 for 512-bit RSA. The probability that a
random 512-bit modulus N is an element of G is 262−216 = 2−154. This
probability is even smaller for larger keys. Hence, we can make the
following conclusion with high confidence: an RSA key was generated
by the RSALib if and only if the Pohlig-Hellman algorithm can find
the discrete logarithm log65537 N mod M. Our theoretical expectation
was verified in practice (see Section 4.3.1) with no false positives found
within a million of tested keys.

4.2.3 Factorization – attack principle

Our method is based on Coppersmith’s algorithm, which was origi-
nally proposed to find small roots of univariate modular equations. In
[Cop96a], Coppersmith showed how to use the algorithm to factorize
RSA modulus N when high bits of a prime factor p (or q) are known.
We slightly modified the method to perform the factorization with
known p mod M (= 65537a mod M).

Coppersmith’s algorithm

Coppersmith’s algorithm is used as a parametrized black box in our
approach. Parameters affect the success rate and running time of the
algorithm. In order to optimize the entire factorization process, we
optimized the parameters of Coppersmith’s algorithm. We choose

54

4. Factorization of widely used RSA moduli

parameters so that the algorithm will certainly find unknown bits of
the factor and so the computation time will be minimal. The fraction
of known bits of the factor determines the optimal parameters (100%
success rate, best speed) of the algorithm. Coppersmith’s algorithm
is slowest when using the required minimum of known bits (half of
the bits of the factor). With more bits known, the running time of the
algorithm decreases.

Naïve algorithm

For N of the form (4.2), we look for factor p or q. In order to find a prime
factor (say, p), one has to find the integers k, a. A naïve algorithm would
iterate over different options of 65537a mod M and use Coppersmith’s
algorithm to attempt to find k. The prime p (q, respectively) is found for
the correct guess of parameter a (b). The cost of the method is given by
the number of guesses (ord) of a and the complexity of Coppersmith’s
algorithm. The term ord represents the multiplicative order of 65537 in
the group Z∗M (ord = ordM(65537)) and can be computed simply using
the technique described in Section 4.2.6. In practice, ord determines
the running time of the entire factorization. The number of attempts
is too high (see Table 4.1, Naïve BF # attempts) even for small key sizes.
Decreasing the number of attempts is necessary to make the method
practical.

Main idea

A crucial observation for further optimization is that the bit size of
M is analogous to the number of known bits in Coppersmith’s algo-
rithm. It is sufficient to have just log2(N)/4 bits of p for Coppersmith’s
algorithm [Cop96a]. In our case, the size of M is much larger than
required (log2(M) > log2(N)/4). The main idea is to find a smaller
M′ with a smaller corresponding number of attempts ordM′(65537)
such that the primes are still of the form (4.1), with M replaced by M′

and a, k replaced by a′, k′. The form of the primes p, q implies that the
modulus N is of the form (4.2) and (4.3) also for M′ – of course with
new corresponding variables a′, b′, c′, k′, l′.

In order to optimize the naïve method, we are looking for M′ such
that:

55

4. Factorization of widely used RSA moduli

1. primes (p, q) are still of the form (4.1) – M′ must be a divisor of
M;

2. Coppersmith’s algorithm will find k′ for correct guess of a′ –
enough bits must be known (log2(M′) > log2(N)/4);

3. overall time of the factorization will be minimal – number of
attempts (ordM′(65537)) and time per attempt (running time of
Coppersmith’s algorithm) should result in a minimal time.

For practical factorization, there is a trade-off between the number
of attempts and the computational time per attempt as Coppersmith’s
algorithm runs faster when more bits are known (see Figure 4.2).
In fact, we are looking for an optimal combination of value M′ and
parameters (m, t – for more details, see Section 4.2.7) of Coppersmith’s
algorithm. It should be noted that the search for value of M′ is needed
only once for each key size. The optimal parameters M′, m, t along
with N serve as inputs to our factorization Algorithm 1.

Input : N, M′, m, t
Output : p – factor of N
c′ ← log65537 N mod M′ . Use Pohlig–Hellman alg;
ord′ ← ordM′(65537) . See Section 4.2.6 for method;
forall a′ ∈

[c′
2 , c′+ord′

2

]
do

f (x)← x + (M′−1 mod N) ∗ (65537a′ mod M′) (mod N);
(β, X)← (0.5, 2 ∗ Nβ/M′) . Setting parameters;
k′ ← Coppersmith(f (x), N, β, m, t, X);
p← k′ ∗M′ + (65537a′ mod M′) . Candidate for a factor;
if N mod p = 0 then

return p
end

end
Algorithm 1: The factorization algorithm for RSA public keys N
generated by the RSALib. The input of the algorithm is a modulus
N of the form (4.1) with M′ as a product of small primes and
optimized parameters m, t for Coppersmith’s method.

56

4. Factorization of widely used RSA moduli

Results

The optimized values of M′ for different key lengths were found along
with parameters m, t using a local brute force search optimized by the
results of a greedy heuristic. The size of the resulting M′ is more than
the bound log2(N)/4 but is relatively close to it. The resulting order
(Table 4.1, Optimized BF # attempts) is small enough for the factorization
of 512, 1024 and 2048-bit RSA to be practically feasible. Figure 4.1
summarizes the factorization complexity and relevant parameters
for all key lengths between 512 and 4096 bits with 32-bit steps. The
search space of a′ can be trivially partitioned and parallelized on
multiple CPUs. We verified the actual performance of the proposed
factorization method on multiple randomly selected public keys.

Key size 512 b 1024 b 2048 b 3072 b 4096 b

M P39# = 167# P71# = 353# P126# = 701# P126# = 701# P225# = 1427#

Size of M 219.19 b 474.92 b 970.96 b 970.96 b 1962.19 b
Size of M′ 140.77 b 285.19 b 552.50 b 783.62 b 1098.42 b

Naïve attempts 261.09 2133.73 2254.78 2254.78 2433.69

Our attempts 219.20 229.04 234.29 299.29 255.05

Time/attempt 11.6 ms 15.2 ms 212 ms 1159 sec 1086 ms
Worst case 1.9 CPU h 97 CPU days 141 years 2.8 ∗ 1025 years 1.3 ∗ 109 years

Table 4.1: Overview of the used parameters (original M and optimized
M′) and performance of our factorization algorithms for commonly
used key lengths. Time measurements for multiple attempts were
taken on one core of an Intel Xeon E5-2650 v3 CPU clocked at 3.00
GHz, and the worst case time estimates are extrapolated from the
orders and the average times required per attempt. The expected
factorization time is half of the worst case time.

4.2.4 Coppersmith’s algorithm in detail

There are various attacks on RSA based on Coppersmith’s algorithm
(for a nice overview, see [May09]). The algorithm is typically used in
scenarios where we know partial information about the private key
(or message) and we want to compute the rest. The given problem is

57

4. Factorization of widely used RSA moduli

512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096
Key size [bits]

0

220
240
260
280
2100
2120
2140
2160
2180
2200
2220
2240
2260
2280
2300
2320
2340
2360
2380
2400
2420

O
rd

er
 o

f 6
55

37
 (N

um
be

r
of

 C
op

pe
rs

m
ith

 a
tt

ac
k

at
te

m
pt

s)

Full order of 65537: number of attempts with naïve application of Coppersmith's attack
Order of 65537 for optimized M': number of attempts for optimized order of 65537
Worst case factorization time estimate
No practical attack (theoretically possible - but lattice up to 71*71 insufficient)
Attack not possible based on Coppersmith's attack (not enough known bits)
Simulated private keys based on knowledge of real public keys

10−6
8.75 hours
1 year
103
106
109
1012
1015
1018
1021
1024
1027
1030
1033
1036
1039
1042
1045
1048
1051
1054
1057
1060
1063
1066
1069
1072

W
or

st
 c

as
e

fa
ct

or
iz

at
io

n
tim

e
es

tim
at

e
[y

ea
rs

]

Figure 4.1: The complexity of the factorization of keys produced by the
studied RSALib with different key lengths starting from 512 to 4096
bits in 32-bit steps (horizontal axis). The blue crosses show the worst
case estimate for the time to factorize a key with the given length, with
the vertical axis scale on the right side showing the estimated CPU
effort on one core of an Intel Xeon E5-2650 v3 CPU clocked at 3.00
GHz. The red lines show the full order of the group. The green dots
show the reduced order as achieved by our method. The yellow areas
indicate the key lengths for which our method, which is based on
Coppersmith’s attack, is not applicable due to an insufficient number
of known bits. The orange areas indicate the key lengths where the
attack should be possible in practice; however, we were not successful
in finding suitable parameters. The gray area shows the key lengths
where only public keys were available to us; hence, we simulated the
private keys for the computations backing the creation of the graph
(since the structure of the keys can be recovered from either private or
public keys, the simulation should be sufficient).

solved in the three steps:

problem → f (x) ≡ 0 (mod p) → g(x) = 0 → x0

58

4. Factorization of widely used RSA moduli

First, we transform the given problem to the modular polynomial equa-
tion f (x) ≡ 0 (mod p) with an unknown p (divisor of some known
N) and the small root x0 (f (x0) ≡ 0 (mod p)) we are looking for. The
root x0 should be smaller than some sufficiently small constant X (i.e.,
|x0| < X). The polynomial f (x) ∈ Z[x] should be constructed so
that the root x0 solves the problem. In the second step, Coppersmith’s
algorithm eliminates the unknown p by transforming the modular
equation to the equation g(x) = 0 over the integers that have the same
roots (i.e., x0 is a root of g(x)). In the third step, all roots x0 of the
integer polynomial g(x) are found easily by standard methods (e.g.,
the Berlekamp-Zassenhaus algorithm [Ber67; CZ81]).

The polynomial g(x) is constructed in Coppersmith’s algorithm as
a linear combination g(x) = ∑i ai ∗ fi(x), ai ∈ Z of some polynomials
fi(x) derived from f (x). The polynomials fi are chosen so that fi(x)
and f (x) have the same roots modulo p. This implies that g(x) and
f (x) share the same roots (with some additional roots) modulo p as
well. The main idea of Coppersmith’s algorithm is to find g(x) ∈ Z[x]
such that |g(x0)| < p, which means that the equivalence g(x0) ≡ 0
(mod p) also holds over the integers, i.e., g(x0) = 0. The polynomial
g(x) is found by the LLL algorithm [LLL82] using the fact that the
root x0 is small.

The LLL algorithm reduces a lattice basis b0, · · · , bn−1. The algo-
rithm computes an alternative basis b′0, · · · , b′n−1 of the lattice such
that the vectors b′0, · · · , b′n−1 are smaller than the vectors in the original
basis. The LLL algorithm is typically used to find one sufficiently short
vector of the lattice. The algorithm is applied to the matrix B, which
consists of row vectors bi. The result of the reduction is the matrix
B′ of short vectors b′j, which are all constructed as linear (but with
integer coefficients) combinations of basis vectors bi. Coppersmith’s
algorithm utilizes the LLL algorithm in order to find the desired poly-
nomial g(x) with a small function value g(x0). The LLL is used to
find an “equivalent” polynomial g(xX) (x – a variable, X – a known
constant) rather than g(x). The LLL is used here to find the polyno-
mial g(xX) as a linear combination of polynomials fi(xX). The LLL
algorithm is applied to the matrix B that consists of coefficient vectors
of polynomials fi(xX) for |x0| < X. The polynomial g(x) is defined
by the smallest vector b′0 of the reduced basis as g(x) = ∑n−1

i=0 b′0,ix
i

59

4. Factorization of widely used RSA moduli

for b′0 = [b′0,0, b′0,1, · · · , b′0,n−1]. A small norm |b′0| =
√

∑n−1
i=0 (b

′
0,iX

i)2

of the vector b′0 implies small function value |g(x0)| = |∑n−1
i=0 b′0,ix

i
0|

[May09, Proof of Theorem 2].

4.2.5 Application of Coppersmith’s algorithm

Our factorization is based on the SageMath implementation [Won15]
of the Howgrave-Graham method [How97] – a revisited version of
Coppersmith’s algorithm.

Howgrave-Graham method

In general, Coppersmith’s algorithm and the Howgrave-Graham
method use pm instead of p, i.e., x0 is root of polynomials fi(x)
modulo pm, and we are looking for g(x) such that |g(x0)| < pm. The
method uses the following set of polynomials fi(x) generated as:

fi(x) =xjNm−i f i(x) i = 0, · · · , m− 1, j = 0, · · · , δ− 1, (4.4)
fi+m(x) =xi f m(x) i = 0, · · · , t− 1, (4.5)

and parametrized by the degree δ of the original polynomial f (x)
(δ = 1 in our case). The Coppersmith-Howgrave-Graham method is
further parametrized by three parameters m, t, X (apart from f (x), N),
defining the matrix B and influencing the running time. The param-
eters m, t define the number of polynomials n = δ ∗ m + t and the
dimension of the square matrix B. The third parameter X – the upper
bound for the solutions we are looking for (x0 < X) – determines
the bit size of the entries of the matrix B. The running time of Cop-
persmith’s algorithm is dominated by the time needed for the LLL
reduction. The running time of the LLL reduction is given by the ma-
trix B (the row dimension and the size of its entries) and is mostly
determined by the matrix size n.

Application to (p mod M′) known

The Howgrave-Graham method is able to find a sufficiently small so-
lution x0 of the equation f (x0) ≡ 0 (mod p). In our case, the primes
p, q are of the form p = k′ ∗M′ + (65537a′ mod M′), with the small k′

60

4. Factorization of widely used RSA moduli

being the only unknown variable of the equation. Hence, the polyno-
mial f (x) can be constructed as f (x) = x ∗M′ + (65537a′ mod M′),
since f (x0) = 0 mod p has a small root x0 = k′. The method requires
f (x) to be monic (the leading coefficient is 1), but the form can be
easily obtained [May09] as:

f (x) = x + (M′−1 mod N) ∗ (65537a′ mod M′) (mod N). (4.6)

Setting the parameters X and β

The parameter β represents the upper bound for the ratio of the bit
size of the factor p and the modulus N, i.e., p < Nβ. Since the bit size
of both primes p, q is half of the bit size of N, the value β is set to 0.5.
The parameter X represents the upper bound for the solution x0 of
the modular polynomial equation. In our case, X represents an upper
bound for the value of k′ from the equation (4.1); hence, its value can
be computed as X = 2 ∗ N0.5/M′.

4.2.6 Computing the order of a generator in Z∗M′

The order of the generator 65537 is used in our Algorithm 1 and
also for the optimization of parameters (see the next section). The
multiplicative order ord′ = ordM′(65537) is the smallest non-zero
integer such that 65537ord′ ≡ 1 (mod M′), which is equivalent to
65537ord′ ≡ 1 (mod Pi) for all prime divisors Pi of M′. Since M′ is
the product of different primes, the ord′ can be computed as the least
common multiple of the partial orders ordPi = ordPi(65537) for primes
divisors Pi of M′:

ord′ = lcm(ordP1 , ordP2 , · · ·) for Pi|M′. (4.7)

4.2.7 Optimization of the parameters M′, m, t

The optimization of parameters is performed only once for all RSA
keys of a given size. The parameters M′, m, t affect the success rate and
the running time of our method. We are looking for parameters M′, m, t
such that the success rate of our empirical evaluation is 100% and the
overall time is minimal. The success rate is measured by verifying that

61

4. Factorization of widely used RSA moduli

k′ is found for a correct guess of a′ for each key in our testing sample.
The running time (the worst case)

Time = ordM′(65537) ∗ T(M′, m, t)

of our method is determined by the number of guesses (ordM′(65537)
for the parameter a′) and the computation average running time T
for one attempt (computation of k′ using Coppersmith’s algorithm).
The running time of Coppersmith’s algorithm is dominated by the
LLL reduction so it is affected mostly by the size n = m + t of the
square matrix B and partially by the size of matrix elements given
by the size of M′. The value M′ affects both the number of attempts
(ordM′(65537)) and the time for one attempt (T(M′, m, t)); hence, we
optimize all parameters M′, m, t together. During the optimization, we
focus on decreasing the value ord′ = ordM′(65537). The optimization
process can be described as follows:

1. Compute a set of candidates for M′, each candidate with suffi-
ciently small corresponding ord′;

2. For each candidate, find the optimal (100% success rate, mini-
mal time per attempt) parameters m, t – only reasonably small
parameters m, t are brute-forced (t = m + 1 and m = 1, · · · , 35).
For a given m, t, the Howgrave-Graham method is applied to
the polynomial (4.6) for correct guess of a′ (to compute success
rate) and also for incorrect guesses of a′ (to compute the average
time per attempt);

3. Return the best combination M′, m, t with the minimal corre-
sponding Time.

The best combination M′, m, t was obtained with respect to the
implementation [Won15] of the Howgrave-Graham method applied to
keys of a given size. We used a dataset of RSA keys of given sizes (512 to
4096 bits, by 32-bit increments) with known factorizations and having
our special form (4.2). The approximate size of the optimized M′ for
various key lengths can be found in Figure 4.1. The most common
key lengths used the following m, t values: m = 5, t = 6 for 512,
m = 4, t = 5 for 1024, m = 6, t = 7 for 2048, m = 25, t = 26 for 3072,
m = 7, t = 8 for 4096.

62

4. Factorization of widely used RSA moduli

221

225

N
um

be
r

of
at

te
m

pt
s

●

Parameter optimization
for 512-bit RSA keys

0.001

0.01

0.1

Ti
m

e/
at

te
m

pt
[s

ec
on

ds
] +

0.26 0.28 0.30 0.32 0.34
Known bits as a fraction of N

10−3

10−2

To
ta

l t
im

e
[y

ea
rs

]

231

238

N
um

be
r

of
at

te
m

pt
s

●

Parameter optimization
for 1024-bit RSA keys

0.01

1

Ti
m

e/
at

te
m

pt
[s

ec
on

ds
] +

0.26 0.28 0.30 0.32
Known bits as a fraction of N

100

101

102

To
ta

l t
im

e
[y

ea
rs

]

241

252

N
um

be
r

of
at

te
m

pt
s

●

Parameter optimization
for 2048-bit RSA keys

0.1

10

1000
Ti

m
e/

at
te

m
pt

[s
ec

on
ds

] +

0.26 0.28 0.30 0.32 0.34
Known bits as a fraction of N

102
103
104
105
106
107
108

To
ta

l t
im

e
[y

ea
rs

]

293

2135

2177

2219

N
um

be
r

of
at

te
m

pt
s

●

Parameter optimization
for 3072-bit RSA keys

0.1

10

1000

Ti
m

e/
at

te
m

pt
[s

ec
on

ds
] +

0.26 0.28 0.30
Known bits as a fraction of N

1028
1033
1038
1043
1048
1053

To
ta

l t
im

e
[y

ea
rs

]

247

265

283

N
um

be
r

of
at

te
m

pt
s

●

Parameter optimization
for 4096-bit RSA keys

0.1

10

Ti
m

e/
at

te
m

pt
[s

ec
on

ds
] +

0.26 0.28 0.30 0.32
Known bits as a fraction of N

1010
1012
1014
1016
1018
1020

To
ta

l t
im

e
[y

ea
rs

]

223

228

233

N
um

be
r

of
at

te
m

pt
s

●

Parameter optimization
for 544-bit RSA keys

0.01

0.1

1

Ti
m

e/
at

te
m

pt
[s

ec
on

ds
] +

0.26 0.28 0.30 0.32 0.34
Known bits as a fraction of N

10−2

10−1

To
ta

l t
im

e
[y

ea
rs

]

Figure 4.2: The trade-off between the number of attempts (green circles)
and the time per attempt (orange crosses) as the function of the number
of known bits (size of the optimized M′). We select the minimal overall
time of the factorization (blue stars). Values with the same lattice size
perform an attempt in an approximately same time. The best number
of attempts for each considered lattice size (m + t) is plotted. There
can be more than one local minimum for time (e.g., see 544-bit RSA
keys). The vertical axis has logarithmic scale.

63

4. Factorization of widely used RSA moduli

Input :primorial M, ord′ – divisor of ordM(65537)
Output : M′ of maximal size with ordM′(65537)|ord′

M′ ← M;
forall primes Pi|M do

ordPi ← ordPi(65537);
if ordPi - ord′ then

M′ ← M′/Pi;
end

end
return M′

Algorithm 2: The computation of the maximal divisor M′ of the
primorial M with ordM′(65537)|ord′ for a given ord′ (divisor of
ordM(65537)).

Optimizing M′

We aim to preserve the format of the primes so that we can effi-
ciently generate the candidate values for known bits using the formula
(65537c mod M′). To accomplish that, we are looking for a divisor M′

of M (see Section 4.2.3) that is a primorial M = 2 ∗ 3 ∗ · · · ∗ Pn. Divisor
M′ of M is selected as a candidate for an optimal M′ (with the best m, t)
if the value ordM′(65537) is sufficiently small but the size M′ is large
enough (Coppersmith’s algorithm requires log2(M′) > log2(N)/4).

Our aim is to perform a brute force search for M′. In order to speed
up the search we are looking for the value ordM′(65537) rather than
M′. Once ord′ = ordM′(65537) is found, the maximal corresponding
value M′ can be computed easily. Although the search space for ord′ is
smaller than the space for M′, the brute force search is still feasible only
for smaller key sizes. Hence, we used a combination of two heuristics
– greedy and local brute force search.

The general strategy is to maximize the size of M′ and simultane-
ously minimize the corresponding order. The value M′ for given key
size was found in two steps:

• First, we used a greedy heuristic (with a “tail brute force phase”)
to find an “almost” optimal M′, denoted by M′greedy with the
corresponding order ord′greedy.

64

4. Factorization of widely used RSA moduli

• Second, the value ord′greedy was used to reduce the search space
of a “local” brute force search for a better M′.

In both strategies, we used the simple Algorithm 2 that given ord′

looks for the maximal M′ (divisor of M) such that given ord′ equals
ordM′(65537). In some cases, no such M′ exists, then Algorithm 2 finds
M′ such that the corresponding order ordM′(65537) is the maximal
proper divisor of given ord′. Algorithm 2 is based on the formula (4.7).
The algorithm eliminates from M only those prime divisors Pi|M
whose partial order ordPi(65537) does not divide given ord′.

Greedy heuristic

In the greedy strategy, we try to minimize ordM′(65537) and simulta-
neously maximize the size of M′ (to get log2(M′) > log2(N)/4). The
greedy heuristic is an iterated strategy with local optimal improve-
ment performed in each iteration. In each iteration, we reduce (divide)
ord′ by some prime power divisor p

ej
j and compute the corresponding

M′ of maximal size using Algorithm 2. In the greedy choice, we select
the most “valuable” prime power divisor p

ej
j of ord′ that provides a

large decrease in the order ord′ at a cost of a small decrease in the
size of M′. The divisor is chosen as the highest reward-at-cost value,
defined as:

∆size of ordM′

∆size of M′
=

log2(ordM′old
)− log2(ordM′new

)

log2(M′old)− log2(M′new)

for M′new computed by Algorithm 2 with M′old, ord′ = ordM′old
/p

ej
j as

an input. The reward-at-cost represents the bit size reduction of the
order at the cost of the bit size reduction of M′. The following example
illustrates how our greedy heuristic works:

Example 1. The initial M′old for RSA–512 is set to M = P39# = 167# =
2 ∗ 3 ∗ · · · ∗ 167. The factorization of the initial order is: ord′ = ordM′old

=

24 ∗ 34 ∗ 52 ∗ 7 ∗ 11 ∗ 13 ∗ 17 ∗ 23 ∗ 29 ∗ 37 ∗ 41 ∗ 53 ∗ 83. There are 20 can-
didates 21, · · · , 24, 3, · · · , 34, 5, 52, 7, · · · , 83 for the most valuable prime
power divisor p

ej
j of ord′ in the first iteration. For the candidate p

ej
j =

65

4. Factorization of widely used RSA moduli

831, Algorithm 2 eliminates 167 from M′old since 831|ord167 = 166 and
831 - ord′. Algorithm 2 returns M′new = M′old/167 for the input val-
ues Mold, ord′ = ordM′old

/831. The reward-at-cost for 831 is computed as
log2 83/ log2 167 = 6.37

7.38 for the reduction of the order by 6.37 bits and
the reduction of M′ by 7.38 bits. For the candidate 171, Algorithm 2 elimi-
nates 103, 137 (i.e., M′new = M′old/(103 ∗ 137)), since 17|ord103 = 51 =

17 ∗ 3, 17|ord137 = 136 = 17 ∗ 8 and 171 - ordM′old
/17. The reward-at-cost

for 171 is computed as log2 17/ log2(103 ∗ 137) = 4.08/13.78, etc. The
most valuable candidate in the first iteration is p

ej
j = 831 with the highest

reward-at-cost 0.8633.
In the second iteration, we start with M′old = M/167 and ord′ =

ordM′old
= 24 ∗ 34 ∗ 52 ∗ 7 ∗ 11 ∗ 13 ∗ 17 ∗ 23 ∗ 29 ∗ 37 ∗ 41 ∗ 53

and compute the new reward-at-cost for all 19 candidates 21, · · · , 24,
3, · · · , 34,5, 52, 7, · · · , 41. In the second iteration, the best candidate for
divisor p

ej
j of new ord′ with the highest reward-at-cost is p

ej
j = 531, therefore

in the third iteration we start with M′old = M/167/107, etc.
Throughout the iterations, the following best candidates for pei

i are found:
831, 531, 411, 291, 371, 231, 171, 32, 111. The value of M is divided by these re-
spective numbers: 167, 107, 83, 59, 149, 47 ∗ 139, 103 ∗ 137, 19 ∗ 109 ∗ 163.

In the last iteration, the greedy heuristic computes M′ that is too small
(log2(M′) < log2(N)/4), which finishes the computation. The resulting
M′ = 0x1b3e6c9433a7735fa5fc479ffe4027e13bea from the previous
iteration is computed by Algorithm 2 for M′ = M/167/107/ · · · /(19 ∗
109 ∗ 163).

The greedy method returns an optimal M′ for 512-bit RSA keys.
The optimality was verified by brute force, testing all possible divisors
of M with sufficiently small corresponding order.

Tail brute force

The greedy strategy can be improved for larger keys by brute force
testing all divisors of ordM′ that is found by the greedy heuristic. First,
we execute the greedy strategy, that gives us the sequence of the values
of M′0 > M′1 > · · · > M′L from the iterations 0, 1, · · · , L. Then, we

66

4. Factorization of widely used RSA moduli

use brute force (testing all divisors) for ordM′i
, starting with M′L−1 and

continuing with M′L−2, · · · , limited by reasonable running time.

Local brute force

There are two ways to perform the brute force search for an optimized
M′ (divisor of M). We can search through divisors M′ of M, or we
can use an alternative search through all divisors ord′ of ordM(65537)
(M′|M =⇒ ordM′ |ordM) and compute the corresponding M′ from
ord′ using Algorithm 2. We use the second approach since the search
space for ord′ is significantly smaller than that for M′. For example,
for 512-bit RSA keys, M = P167# is product of 39 primes, i.e., there
are 239 different divisors of M, while there are only 52 ∗ 3 ∗ 29 ≈ 215

different divisors of ordM(65537) = 24 ∗ 34 ∗ 52 ∗ 7 ∗ 11 ∗ 13 ∗ 17 ∗ 23 ∗
29 ∗ 37 ∗ 41 ∗ 53 ∗ 83.

For smaller key sizes, it is possible to search through all divisors
of the order, but for large key sizes (e.g., 4096-bit RSA), the brute
force strategy is infeasible and needs to be optimized. We imple-
mented an algorithm that recursively iterates through all divisors
ord′ of ordM(65537). Recursion allows us to optimize the search and
to skip inappropriate candidates (small M′, big ordM′(65537)) for an
optimal M′.

We use two approaches that recursively iterate through orders:

• Decreasingly – In this approach we start with the full order
ord′ = ordM(65537), and in each iteration, we divide ord′ =
ord′/pj by a prime divisor of current ord′. The branch of the re-
cursion is stopped when M′ is too small (log2(M′) < log2(N)/4).
This approach is suitable for key sizes with bit sizes of M′ close
to the lower bound log2(N)/4 because only several primes pj
can be eliminated from ord′ and most inappropriate candidates
are skipped due to a small size of M′.

• Increasingly – We start with ord′ = 1 and in each step mul-
tiply the order ord′ = ord′ ∗ pj by some prime divisor pj of
ordM(65537). When ord′ is too large, we stop the given branch of
the recursion and skip the worst candidates. As an upper bound
for ord′, we use the value ordgreedy ∗ 25. This approach is suitable
for key sizes for which the bit size of M′ is significantly bigger

67

4. Factorization of widely used RSA moduli

than log2(N)/4 since most candidates are skipped due to the
large value of ord′.

4.2.8 Guessing strategy

Our method can find the prime factor p for the correct guess x of a′. A
simple incremental search x = 0, 1, · · · for a′ would iterate through
ordM′(65537) for different values of x in the worst case since

p ≡ 65537a′ (mod M′).

Denoting ord′ = ordM′(65537), we are looking for x ≡ a′ (mod ord′).
Since both p, q are of the same form, our method can also find

the factor q for x ≡ b′ (mod ord′). Hence, our method is looking
simultaneously for p and q. This fact can be used to halve the time
needed to find one of the factors p, q of N. In order to optimize the
guessing strategy, we are looking for the smallest subset (interval) of
Zord′ that contains either a′ or b′. We use the value c′ obtained during
the fingerprinting (a discrete logarithm of N) to describe the desired
interval. The interval is of the following form:

I =
[

c′

2
,

c′ + ord′

2

]
.

It is easy to see that either a′ or b′ (c′ ≡ a′ + b′ (mod ord′)) occur in
the interval I and that the size of the I is the smallest possible.

4.3 Practical implementation

We implemented the full attack in SageMath, based on an implemen-
tation [Won15] of the Howgrave-Graham method [How97]. We used
it to verify the applicability of the method on real keys generated on
the vulnerable smartcards. It was also used to perform time measure-
ments in order to optimize our parameters and evaluate the worst
case running time, as captured by Figure 4.1 and Table 4.1.

4.3.1 Details and empirical evaluation

The fingerprint verification algorithm computes the discrete logarithm
of a public modulus. We chose the primorial of 512-bit RSA as the

68

4. Factorization of widely used RSA moduli

Key size University cluster
Rented Amazon Energy-only

c4 instance price ($0.2/kWh)

512 b 1.93 CPU hours X 0.63 hours, $0.063 $0.002
1024 b 97.1 CPU days X 31.71 days, $76 $1.78
2048 b 140.8 CPU years 45.98 years, $40,305 $944
3072 b 2.84 ∗ 1025 years 9.3 ∗ 1024 years, $8.1 ∗ 1027 $1.90 ∗ 1026

4096 b 1.28 ∗ 109 years 4.2 ∗ 108 years, $3.7 ∗ 1011 $8.58 ∗ 109

Table 4.2: An estimation of factorization times and prices for different
key lengths on different types of computational devices. All results
are the worst case estimates with expected resources spent being the
half of the values shown. The time values marked with a check-mark
(X) were practically verified by factorization of real test keys while
others were extrapolated based on a know number of attempts and
a time per attempt. The energy consumption was estimated based
on the thermal design power (TDP) specifications of Intel Xeon E5-
2660 v3 @ 2.60 GHz [Int14] (note that peak power can be up to 1.5-3x
more), time per attempt as benchmarked on Amazon c4 instance,
energy price of $0.2/kWh and scaled to 2.90 GHz (as Amazon c4 uses
publicly unreleased Intel Xeon E5-2666 v3 clocked at a slightly higher
frequency). The university cluster column captures the factorization
times as measured by us on a university computational cluster with
Intel Xeon E5-2650 v3 @ 3.00 GHz CPUs scaled to a single-core of this
CPU. The Amazon c4 instance price corresponds to outsourcing of a
single key factorization to Amazon AWS (c4 price is $0.1/hour for a
2-core CPU). We performed benchmark on a c4 instance for a single
Coppersmith’s computation and extrapolated to number of attempts
in the worst case. The energy-only price corresponds to situation when
one operates own hardware and wants to factorize so many keys that
the price of hardware completely amortizes over all factorized keys.
A factorization benchmark on Microsoft Azure was also performed
with results roughly comparable to Amazon AWS (+10%).

modulus, since it applies to all key lengths. We recorded no false
negatives in 3 million vulnerable keys generated by RSALib, since all
of the keys have the sought structure. As expected, no false positives

69

4. Factorization of widely used RSA moduli

were recorded on 1 million non-affected keys generated by OpenSSL.
We estimated the probability of a false positive on a single key as 2−154

in Section 4.2.2.
We practically verified the factorization method on multiple ran-

domly selected 512 and 1024-bit keys. Since the complexity of fac-
torization of a 2048-bit key could be approximately 100 CPU years,
we did not select keys randomly. Instead, we generated keys on an
affected smartcard and exported the private keys. The knowledge of
the primes allows us to precisely compute the number of attempts
required for the factorization as the distance of the initial guess c′/2
(Section 4.2.8) to a′ or b′ (whichever is closer). Out of 137,000 freshly
generated keys, we selected 24 public keys with the least effort re-
quired (all keys with 221 attempts or fewer) for factorization and ran
the computation, each finishing within one week. We used the time
measurements to verify the linear relationship of factorization time on
the order and we checked that the worst case time estimate matches
the slope of the line.

4.3.2 Possible improvements and limitations

The attack can be trivially parallelized on multiple computers. Each
individual task is assigned a different subrange of the values a′ that
need to be guessed. The expected wall time of the attack can be de-
creased linearly with the number of CPUs (assuming that each task
can execute the same number of attempts per a unit of time). How-
ever, the expected CPU time and the worst case CPU time remain
unaffected.

The time of each attempt is dominated by lattice reduction. Our
implementation uses the default implementation of LLL in SageMath
(backed by the fpyLLL wrapper for fpLLL [The16]). A more efficient
implementation might speed up the process. However, we do not
expect significant improvements.

In our opinion, the best improvement could be achieved by a better
choice of polynomials in the phase of lattice construction. We follow
the general advice for polynomial choice from [May09]. More suitable
lattice may exist for our specific problem.

Our algorithm for optimizing the running time utilizes a heuristic
for finding an optimized value of the modulus M′. A better heuristic

70

4. Factorization of widely used RSA moduli

or a bruteforce search might find a modulus, where the generator has
a lower order or could discover a better combination of the lattice size
and M′ value.

Despite an extensive search for better values within a significantly
larger space (Section 4.2.7), we obtained only small improvements
of the overall factorization time (halving the overall time at best in
comparison to the greedy algorithm). We examined the trade-off be-
tween the number of attempts and the time per attempt, as captured
by Figure 4.2 to understand the nature of the optimization process.

We did not explore implementations of lattice reduction backed by
dedicated hardware or GPUs. Most key lengths are processed with a
lattice of low dimensions, however, some improvements may be gained
for lengths that require a large lattice [Her+10]. In our experience, the
memory used by one factorization was up to 300 MB. SageMath is an
interpreted language, so the requirements of a hardware circuit might
be different.

Finally, we cannot rule out that a fundamentally improved ap-
proach, which would utilize the properties of keys more efficiently,
will be devised.

4.4 Analysis of impacts

The discussion of impacts is far from straightforward. First, the preva-
lence of factorizable keys in a given usage domain is between very
easy to very difficult to obtain. For example, the prevalence of finger-
printed keys used for TLS is easy to enumerate thanks to Internet-wide
scans like Censys [Dur+15a]. Obtaining large datasets of public keys
for usage domains for devices expected to be more vulnerable (e.g.,
electronic passports) is usually significantly harder given the nature
of secure hardware use.

Secondly, the actual damage caused by a factorized key varies
significantly between and also within the usage domains. Finally, not
all key lengths are actually factorizable, and the factorization time
varies significantly – hence, the security of a particular key length
depends on the target domain.

We discuss the overall impact based on the following aspects:

71

4. Factorization of widely used RSA moduli

1. Accessibility of public keys – how difficult it is for an attacker
to obtain the target public key(s) for subsequent factorization
attempts;

2. Total number of factorizable keys found or assumed – as detected
by scans of a given usage domain;

3. Cost to factorize the keys with the lengths actually used in the
target domain (as estimated in Table 4.2);

4. Implications of a successful factorization – what damage the
attacker can cause.

Note that due to the varying parameter M used by the RSALib
when generating the keys of different lengths, the difficulty of key
factorization does not strictly increase with the key length (see Fig-
ure 4.1). Some shorter keys may be actually more difficult to factorize
using our method than other longer keys. As an example, a 1280-bit
key is more difficult to factorize than a 2048-bit key in our setting. It is
crucial to survey the precise key lengths as used within the inspected
domains. We take advantage of the possibility to quickly detect the key
fingerprint, with quick summary of the affected domains in Section
4.4.1 and in Table 4.3 and Table 4.4 followed with additional details
for every domain thereafter.

4.4.1 Summary of results

The electronic identity documents (eIDs) domain is significantly af-
fected. Despite the general difficulty of obtaining relevant datasets
with public keys from passports or eIDs that limited our analysis to
only four countries, we detected two countries issuing documents
with vulnerable keys. The public lookup service of Estonia allowed for
a random sampling of the public keys of citizens and revealed that
more than half of the eIDs of regular citizens are vulnerable and that
all keys for e-residents are vulnerable.

The use of two-factor authentication tokens and commit signing is
on the rise, yet these approaches are still adopted only by a minority of
developers – but usually for the more significant projects. The analysis
of the authentication keys of all GitHub developers found several

72

4. Factorization of widely used RSA moduli

hundreds of vulnerable keys. The developers with vulnerable keys
have access to crucial open-source repositories with more than 50,000
stars. Increased scrutiny should be applied to new commits before the
affected users replace vulnerable keys.

Trusted Platform Modules (TPMs) provide secure hardware an-
chor for trusted boot. Although it is difficult to directly extrapolate
the overall prevalence of chips with vulnerable keypair generation
from our limited sample of 41 laptops with different TPM chips, ap-
proximately 24% were producing vulnerable keys, indicating that the
domain is significantly affected. As the replacement of a chip alone is
very impractical or almost impossible, organizations have to replace
the whole laptop, slowing down the recovery from the problem. Im-
portantly, TPM is used not only to facilitate trusted boot, but also to
store sensitive secrets like ones necessary to access the Volume Mas-
ter Key (VMK) for Microsoft BitLocker full disk encryption software
[Mic13]. The possibility to factorize TPM’s 2048-bit key for “sealed
storage” might lead to a recovery of BitLocker’s disk decryption key
in the configuration using a TPM and a PIN.

The Pretty Good Privacy (PGP) keys used for digital signatures
and email encryption are easy to download from PGP keyservers.
We detected almost three thousand fingerprinted keys with slightly
less than one thousand practically factorizable. The Yubikey 4 token
seems to be the origin for the majority of these keys as hundreds even
contain identifying strings in the keyholder information and the date
of generation correlates with the release date of this token.

We found only a negligible fraction of vulnerable keys in the
TLS/HTTPS domain. However, all 15 unique keys found were tied
to different pages with SCADA-related topics, which may point to a
single provider of a SCADA remote connection platform.

We did not collect relevant datasets of public keys for authentica-
tion tokens implementing PIV standard but found at least one instance
of a widely used token utilizing chips with the affected RSALib. Simi-
larly, other devices (e.g., e-health and EMV payment cards) might be
impacted by the described vulnerability, although we were not able to
verify the impact in such domains.

We encourage the use of our tool for detecting vulnerable keys
described in Section 4.5 and the notification of affected parties if found.

73

4. Factorization of widely used RSA moduli

4.4.2 Electronic identity documents

Various citizen identity documents represent a large area for the ap-
plication of cryptographic smartcards, such as biometric passports
(ePassport, ICAO Doc 9303), eDriver licenses (ISO/IEC 18013) and
additional identity documents. Some national IDs are based on the
same suite of protocols as ePassports, which are standardized by ICAO
9303 [ICA06]. Other countries have implemented their own suite of
protocols, such as the Estonian EstEID [Trü17], the Belgian eID [AZ04]
or the Taiwanese ID.

Electronic passports and identity cards utilize digital signatures
for: 1) the authentication of stored data (passive authentication); 2)
the verification of the genuine origin of the chip inside (active authen-
tication, AA); and 3) the establishment of a secure channel between
the passport and the border inspection terminal with mutual authen-
tication (Extended Access Control, EAC-PACE). Additionally, in some
instances, the issuing country uses the national IDs for citizen authen-
tication when accessing government services via the Internet.

The suppliers of ePassport implementations typically provide the
platform in several possible configurations with different supported
algorithms (RSA-based, EC-based) and protocols (EAC-PACE, AA),
leaving the choice of the preferred configuration to the issuing country.
The use of the RSALib is referenced in multiple certification documents
of electronic passports of several countries.

We are not aware of any country disclosing publicly the full
database of their citizens public keys. A small fraction of countries
provide lookup services with significant limitations on the number of
queries allowed. We analyzed four different types of digital certificates
issued by the country of Estonia: a) regular citizenship eID keys (de-
noted as esteid); b) eID keys for electronic use only (“digital certificate
of identity”, denoted as esteid-digi); c) keys for operations from mobile
devices (denoted as esteid-mobiil); and d) e-resident keys (denoted
as esteid-resident). For every type, separate authentication (auth) and
signature (sign) 2048-bit RSA keys are available. The keys are used
to support various eGovernment services, including VAT forms,
private companies management (all types) and voting (esteid). In total,
we analyzed the keys of approximately 10% of randomly selected
citizens. The results showed a mix of on-card and out-of-card key

74

4. Factorization of widely used RSA moduli

generation. More than half of the analyzed keys were vulnerable for
esteid and all keys were vulnerable for esteid-digi and esteid-resident.
No vulnerable keys were detected for esteid-mobiil. Extrapolation to
the whole population results in at least hundreds of thousands of
vulnerable keys.

Additionally, we analyzed keys from a limited sample of keys
extracted from the physical electronic documents of three other coun-
tries and detected one (Slovakia) issuing documents with fingerprinted
2048-bit keys.

These results also demonstrate the general difficulty of analyzing
the impacted domains – large-scale analysis was possible only for the
Estonian eID because of the public directory with more than half of
the documents found to be vulnerable. The small samples collected
for other countries (like Slovakia) give only very limited insight – are
all other documents vulnerable or only a limited production series
given the two vulnerable IDs detected? Or were only documents from
non-vulnerable series for other countries inspected?

The possibility of factorizing on-card keys would lead to cloning
of legitimate passports or identity cards. The Slovak national ID in
question is also deployed in the wider context of an eGovernment
system, where the on-chip generated digital signatures serve as a
replacement for traditional hand-written signatures.

4.4.3 Code signing

The digital signing of applications, modules, OS distributions or code
is now common. In some cases, application signing is mandatory and
enforced by the platform (e.g., Android, iOS, OS drivers) or volun-
tarily adopted by the developers. GPG signatures can be also used
to authenticate commits or tags submitted by developers to a source
control system (e.g., GitHub).

GitHub

To access the Git repositories hosted on GitHub, developers can use
SSH authentication as an alternative to a password for both read
and write permissions. Users may also upload GPG keys for commit
signing. The public keys of all users are accessible via the public

75

4. Factorization of widely used RSA moduli

GitHub API. We analyzed the profiles of almost 25 million GitHub
users and found 4.7 M SSH keys in a scan performed in February 2017.

Hundreds of fingerprinted keys were found, including keys with
access to very popular repositories with up to 2,000 stars (users book-
marking the project) for user-owned repositories and more than 50,000
stars for organization-owned repositories, including repositories that
are very influential in the Internet community. The impact is increased
by the fact that some relevant repositories are libraries used in other
projects and are essentially trusted by third-party developers.

In total, we found 447 fingerprinted keys. More than half (237)
have practically factorizable key length of 2048 bits, with the rest
mostly being 4096-bit RSA keys. However, it is not straightforward to
determine whether a particular account has write access to repositories
not explicitly owned by the account. Similarly, membership in an
organization does not guarantee write access to particular repositories.
GitHub does not provide this kind of information directly, and the
APIs that can be used to derive this information are quite limited. The
information can be inferred from an analysis of previously performed
commits by the given user. We verified several instances manually
and confirmed access with factorizable keys.

We view the overall impact as significant. Luckily, any potential
changes made to a repository can be traced back to a particular commit
due to the nature of source control systems. Many projects also use
commit reviews (e.g., using pull requests), where increased caution
should be used until the affected users move to more secure keys.

Maven

The Maven public repository has required developers to sign uploaded
artifacts since approximately 2009 [Mak12]. Each developer must be
associated with a PGP key that is also publicly reachable from a PGP
keyserver. Each artifact is uniquely identified by a tuple (group ID,
artifact ID, version). We downloaded the most recent versions of each
artifact found in the Maven repository index in April 2017. In total,
we downloaded 180,730 artifacts equipped with the Maven index file
(pom.xml) – 161,841 had a signature on the pom.xml file. There were
16,959 unique PGP keys found, of which 5 were fingerprinted, all
with 4096-bit moduli (not considered practically factorizable by our

76

4. Factorization of widely used RSA moduli

method). The potentially affected artifacts appear as dependencies
only in a few other artifacts. We therefore estimate the impact as small.

Android

We downloaded the 540 most popular Android applications and the
540 top ranking Android games according to the Google Play top
charts. The content of the Android application package (APK) is signed
with the developer key before being published to the Google Play sys-
tem. There is no simple way for the developers to change the signing
keys; hence, the applications will most likely have used the same keys
since the time of the first upload. No fingerprinted keys were detected
among the top 540 applications and games in a scan performed in
January 2017. The analysis should be also extended to less popular
applications. If any vulnerable keys are found in other already estab-
lished applications, the affected developers may have complications
migrating to different signing keys.

4.4.4 Trusted Platform Modules

Trusted Platform Module (TPM) is a specification created by the
Trusted Computing Group [Tru06; Tru11]. TPMs are cryptographic
hardware (usually in form of a chip attached to a motherboard) that
provide basic cryptographic functionality. The typical use cases in-
clude: a) secure storage of a user’s private keys or disk decryption keys;
b) maintaining an unspoofable log of applications that were deployed
on a target machine via a hash chain (Platform Configuration Registers
– PCRs); and c) attestation of the state of the platform to a remote entity
by an on-TPM signature of the PCRs. The TPM specification version
1.2 supports only RSA with 2048-bit keys [Tru06].

We analyzed a sample of 41 different laptop models equipped with
TPM chips. Six different manufacturers were detected, with chips
supplied by Manufacturer (acronym IFX) being the most common and
found in 10 devices. TPM chips from devices produced before 2013
and with firmware versions3 between 1.02 and 3.19 do not exhibit a
fingerprint and are not factorizable by our method. All chips found in

3. The version of the firmware of the TPM chip does not directly relate to the version
of the RSALib.

77

4. Factorization of widely used RSA moduli

devices introduced in 2013 or later were vulnerable, including both
TPM 1.2 and TPM 2.0. In our sample, the fingerprinted keys from the
RSALib appear earliest in the firmware version 4.32 (however, we had
no TPM chip with a version between 3.19 and 4.32 in our sample). All
subsequent chip versions, including 5.x and 6.x, were also found to
produce vulnerable keys. We hypothesize that the RSALib was first
used with TPM firmware version 4.x.

There are two important RSA private keys stored inside a TPM –
the Endorsement key (EK), which is permanently embedded by the chip
manufacturer during its production and cannot be changed, and the
long-term Storage Root Key (SRK), which is generated on-chip when a
user claims the TPM ownership. Additionally, dedicated Attestation
Identity Keys (AIKs) used for Remote Attestation may be generated.

The factorization of the EK compromises the root of trust for chip
authentication. An attacker can generate a new keypair outside the
TPM and then sign it with the factorized EK; hence, it will be trusted
by the remote system (e.g., the company network).

The TPM can hold only a very limited number of private keys
directly on the chip. All other private keys are generated inside the
TPM but are then wrapped by the SRK and exported outside the TPM.
If required, the keys are imported back, unwrapped and used. The
factorization of the SRK therefore allows an attacker to decrypt all
previously exported wrapped private keys, including the “sealed stor-
age” packages with sensitive information otherwise readable only on
the particular machine with the associated AIK keys used for Remote
Attestation. If AIK is directly factorized or its value is compromised
due to the factorization of the SRK, an attacker is able to forge an at-
testation report – allowing the attacker to start additional or modified
malicious software without being noticed.

The “sealed storage” is also utilized by Microsoft BitLocker full
disk encryption software [Mic13] to store a sensitive value required to
obtain the Volume Master Key [Kor09; KK08]. BitLocker is typically
setup together with TPM and an additional secret – either a PIN, a
recovery key on a USB token, or both. The possibility to factorize
TPM’s 2048-bit SRK directly leads to a decryption of an unwrapping
key necessary to decrypt the Volume Master Key, thus bypassing the
need for TPM to validate the correctness of a PIN value via a dedicated
PCR. As a result, an attacker can decrypt a disk from a stolen laptop

78

4. Factorization of widely used RSA moduli

Domain name Used length Pub. key Misuse(bits) availability
TLS/HTTPS 2048 easy MITM/eavesdropping
Message security (PGP) 1024/2048 easy message eavesdropping, forgery
Trusted boot (TPM) 2048 limited unseal data, forged attestation
Electronic ID, ePassport 2048 limited clone passport, document forgery

Payment cards (EMV)* 768/960/ limited clone card, fraudulent transaction1024/1182
Certification authorities* 2048+ easy forged certificates, MITM
Authentication tokens 2048+ limited unauthorized access or operation
Software signing 2048+ easy malicious application update
Smartcard (Java Card) 1024-4096 depends depends on use

Table 4.3: The summary of the impact of key factorization in the dif-
ferent usage domains. The fingerprinted keys were found within all
listed domains with exceptions marked with an asterisk (*). No fin-
gerprinted keys were found in the very limited dataset of 13 EMV
cards that we collected or for large datasets of browser-trusted root
and intermediate CAs.

with a vulnerable TPM if encrypted by BitLocker in TPM+PIN mode
(but not in a configuration with an additional USB token). We did
not verify the attack in practice due to BitLocker’s proprietary storage
format and the cost of factorization of a 2048-bit SRK key.

4.4.5 PGP with cryptographic tokens

The private key as used in Pretty Good Privacy (PGP) [Gar95] is typi-
cally a very sensitive long-term secret. If compromised, an attacker
can forge new signatures and decrypt all previously captured mes-
sages since PGP does not provide forward secrecy. Many users choose
to use a cryptographic device that stores and performs private key
operations inside a secure environment using an OpenPGP compliant
application [Cal+07].

A large fraction of public keys used for PGP can be easily down-
loaded from PGP keyservers [Tub17]. Since the content of PGP key
servers is publicly available, the vulnerable keys can be easily iden-
tified together with the associated user contact information. We ana-
lyzed the state of a PGP keyserver from mid-April 2017 that contained
a total of 4.6 M master keys and 4.4 M sub-keys with 1.9 M and 1.7 M,
respectively, being RSA keys. We detected 2,892 fingerprinted keys. Of
these, two keys are 1024-bit and 954 keys are 2048-bit – both lengths

79

4. Factorization of widely used RSA moduli

Domain name Analyzed datasets Vulnerable keys
Count %

Complete/larger-scale datasets

Certification authorities all browser-trusted roots (173), 0 0level 6 3 intermediates (1,869)

ePass signing certificates ICAO Document Signing Certificates, 0 0CSCA Master Lists
Estonian eID sample of 130,152 randomly selected citizens 71,417 54.87
Estonian mobile eID random sample of 30,471 citizens 0 0
Estonian e-residents random sample of 4,414 e-residents 4,414 100
Message security (PGP) complete PGP key server dump (9 M) 2,892 0.03
Software signing (GitHub) SSH keys for GitHub developers (4.7 M) 447 0.01
Software signing (Maven) signing keys for all public Maven artifacts 5 0.003
TLS/HTTPS complete IPv4 scan, Certificate Transparency 15 <0.001
Trusted boot (TPM) 41 laptops with chips by 6 TPM makers 10 chips 24.39
Limited, custom-collected datasets
Payment cards (EMV) 13 cards (4 EU countries), 6 by Manufacturer 0 0
Programmable smartcard 25 cards (JCAlgTest.org), 6 by Manufacturer 2 cards 8.67
Software signing (Android) 1,080 top ranking applications and games 0 0

Table 4.4: The summary of the number and fraction of vulnerable keys
detected in different domains. The domains are ordered lexicographi-
cally and separated into two groups based on the representativeness
of inspected datasets.

are practically factorizable. Additionally, 86 and 1846 fingerprinted
(but not feasibly factorizable by our method) keys of 3072 and 4096-bit
lengths, respectively, were detected. Finally, four keys with uncommon
lengths of 3008 and 3104-bit were present.

The earliest creation date of a fingerprinted key as obtained from
a PGP certificate is 2006, yet only for a single user – we hypothesize
this finding was caused by an incorrect system clock. The subsequent
observed year is 2009, again with a single user only. 2013 is the earliest
year with keys from multiple users.

No key is observed originating in the year 2014, with more finger-
printed keys observed from July 2015 onwards. The date coincides
with the official launch of a cryptographic token Yubikey 4 (further
denoted as Token). This hints that Token is the major source of the
fingerprinted keys in the PGP dataset Out of 2,892 fingerprinted keys,
436 even contain some form of Token-related identification in the User
ID string (154 being master keys with the rest being sub-keys). Of
these, no key with a length shorter than 2048-bit is present, 96 keys
are 2048-bit and 340 keys have a length of 4096 bits. Given that an

80

4. Factorization of widely used RSA moduli

older version of Token is not producing fingerprinted keys, all these
keys were likely generated by the newer version of Token.

The Token vendor recommends generating a keypair outside the
token (for example, using OpenSSL) and importing it to facilitate
private key recovery after a potential token failure. Interestingly, such
advice seems not to have been followed by a significant number of
users (the users who followed this advice are not detected by our
fingerprinting method as their keys have no fingerprint).

The evidence for other devices (not produced directly by the Man-
ufacturer) generating fingerprinted keys also shows that the RSALib is
provided to external parties developing for the Manufacturer hardware.

We would like to stress that not all key lengths generated with
Token are immediately practically factorizable by our method. Token can
generate and use RSA keys up to 4096 bits long, which may be one of
the appeals of the device – given the lack of other available smartcards
supporting key lengths exceeding 2048 bits. Indeed, the analysis of
the fingerprinted PGP keys with respect to the used length shows a
strong user preference for 4096-bit keys. Token can also generate less
common key lengths including 3936-bit RSA where our attack is not
directly applicable, as seen in Figure 4.1. The majority of the Token
users on this domain therefore should not be imminently affected by
direct factorization using our attack, but we urge the generation of
fresh keys – in light of potential further improvement of an attack.

4.4.6 TLS and SCADA-related keys

We used our fingerprinting method on two large datasets of public
key certificates, used (mostly) to secure Internet TLS connections. One
dataset originates from a periodic scan of the whole IPv4 address space
between 2012 and 2017 [Dur+15a] collected from servers listening
on port 443 and configured to prefer RSA signatures. The second
dataset comes from the Certificate Transparency logs maintained by
Google [Goo17c] (CT logs maintained by Google included in Google
Chrome, date 2017-04-25). In total, we analyzed more than 100 million
certificates.

Despite the relatively large number of keys, we only found 15 dis-
tinct fingerprinted keys – four were 1024 bits long and eleven with
2048 bits – used in tens of different certificates. Surprisingly, almost

81

4. Factorization of widely used RSA moduli

all these certificates contain the string “SCADA” in the common name
field (probably referring to Supervisory Control and Data Acquisition
systems) or a URL leading to a website related to an industrial mon-
itoring system, or both. As a result, we hypothesize that there is at
least one provider of a remote connection platform with a focus on
SCADA systems. It is not clear to us whether the interfaces are linked
to real industrial systems since administrators of such systems may
want to limit the access from the Internet. Hence, there might exist
more systems with administration interfaces protected by vulnerable
keys, but deployed on local networks.

Interestingly, all 15 keys contain the inspected fingerprint, but the
majority of values of the most significant byte (MSB) of their moduli
are significantly outside the range observed in the RSALib (the MSB
of keys produced by the inspected smartcards and TPMs always falls
in the interval 0x90-0xA8). This finding suggests the existence of a
different implementation of the prime construction algorithm with
the same structure but a different modification of the most significant
bits.

The factorization of the key of a TLS server trivially leads to numer-
ous powerful attacks: server impersonation, active man-in-the-middle
attack or passive decryption of the content of the communication
when the connection establishment lacks forward secrecy. Overall, the
impact on the public portion of the Internet seems to be only very
marginal due to the small number of detected vulnerable TLS keys.
However, the potentially significant impact for the entry points of
some SCADA services should not be neglected.

4.4.7 Certification authorities

The presence of vulnerable keys belonging to certification authorities
would magnify the impact due to the possibility of key certificate
forgery. We therefore examined two significant usage domains.

Browser-trusted certificates. We examined the certificates of root
certification authorities stored in Mozilla Firefox as browser-trusted
roots (158 certificates) and in Ubuntu 16.04 (173 certificates). The in-
termediate authorities of level 1 (1,016 total), level 2 (832 total) and

82

4. Factorization of widely used RSA moduli

level 3 (21 total) as extracted from TLS scans were also analyzed. No
fingerprinted keys were detected as of May 2017.

ICAO signing certificates. We analyzed the collection of Document
Signing Certificates (DSCs) of the ICAO ePassport database (version
2044) containing 8,496 certificates, and the collection of CSCA Master
Lists (version 84) with 616 certificates. We also inspected the pub-
licly available national certificates (e.g., Belgium, Estonia, Germany,
Switzerland) [JMR17; Lau17] available as of May 2017. Fortunately,
no vulnerable keys were found in either dataset, as the occurrence of
such a certificate would lead to the possibility of impersonating an
inspection terminal or forging electronic document data.

4.4.8 Generic Java Card platform

Smartcards using the Java Card platform [Mic06] have two principal
configurations: 1) an open, fully programmable platform where the
users develop and upload their own applications; and 2) Java Card-
based systems closed from the point of view of cryptography (e.g.,
banking EMV or SIM cards). Here, we focus on the former configura-
tion.

The prevalence of the RSALib in the area of programmable smart-
cards is notoriously difficult to estimate. Not all smartcards based on
the Manufacturer’s hardware are vulnerable, as the vulnerability stems
from the deployed cryptographic library and not from the hardware
design itself. Many vendors use the bare hardware (e.g., SLE78 chip)
and choose not to deploy the RSALib in question. In such a case, the
implementation of the higher-level cryptographic functions (includ-
ing RSA keypair generation) is done by the company that builds on
the hardware produced by the Manufacturer. Although the vulnera-
ble keys have a strong fingerprint that can be easily verified, the real
problem (for impact assessment) lies in obtaining sample public keys.
No representative public databases (comparable to those for TLS and
PGP) are available.

Our analysis is based on smartcards from 10 different platform
providers (Axalto, Feitian, G&D, Gemalto, Infineon, JavaCardOS, NXP,
Oberthur, Softlock and Yubico) as recorded by the JCAlgTest database

83

4. Factorization of widely used RSA moduli

[CRo17]. The chip manufacturer (ICFabricator property) and the man-
ufacturing date (ICFabricationDate) can be obtained from the Card
Production Life Cycle (CPLC) information as defined by the Glob-
alPlatform specification [Glo06].

Out of the 63 different cards included, 25 cards are listed with the
provided CPLC information: 16x NXP (ICFabricator = 4790), 6x Infineon
(4090), 1x Samsung (4250) and 2x unknown (2050 and 4070). Out of
six cards with a Manufacturer chip, two produce fingerprinted keys.
The ICFabricationDate property indicates the years of manufacture
to be 2012 and 2015. Hence, our estimate of the prevalence of the
vulnerability is confirmed again since it corresponds to the situation
observed in TPM chips.

The full impact of the vulnerability will depend entirely on the
scenario in which the cards are actually used. The large number of
already fabricated and distributed smartcards may hinder the poten-
tial for a recall of the product from the market. The card operating
system and the base libraries are stored in read-only memory and
cannot be updated by the user to remove the vulnerability once a
card is deployed. We expect to see the cards for a rather long time
(several years) before all the vulnerable cards are eventually sold out,
especially when dealing with low volume markets. The buyers should
check the cards for the presence of fingerprinted keys and/or opt for
longer key lengths if they are supported by the card hardware.

4.4.9 Other domains

The smartcards are also used in many other domains than those sur-
veyed here in the previous sections, including authentication tokens;
e-health cards to authenticate both patients and medical staff to access
medical records or personal identity verification cards (FIPS 201 PIV
[NIS13]); and electronic payment cards (EMV).

The chip-based payment cards used world-wide are backed by a
set of protocols specified under the EMV standard [EMV11], which
is currently maintained by the EMV consortium. The RSALib was
approved for use in EMV cards by EMVCo [EMV12; EMV13], and
we found several references to it in related certification reports. How-
ever, we are not aware of any public dataset of keys originating from
EMV cards. We collected a tiny sample of RSA keys from 13 payment

84

4. Factorization of widely used RSA moduli

cards issued by different banks in four European countries. Although
6 cards reported chips produced by the Manufacturer, none of them
contained the distinctive fingerprint, meaning that the RSA key gen-
eration method implemented by the RSALib was not used in either
one.

If used, the potential impact of factorizable keys would be partic-
ularly damaging to EMV cards due to the generally short RSA key
lengths used. Short keys are often used for legacy reasons or to improve
the usability of payments by the shorter time required to authorize
the transaction (especially relevant for contactless payments). Out of
the 13 cards inspected, we observed the following bit lengths of ICC
keys: 768 (3x), 896 (4x), 960 (1x) and 1024 (5x).

We recommend analyzing the keys used in a particular scenario
with the provided fingerprint detection tool and following the recom-
mendations given in Section 4.5.

4.5 Mitigation and disclosure

We propose a mitigation of the attack impacts and report on the pro-
cess of responsible disclosure to the Manufacturer.

4.5.1 Mitigation

Mitigation can be performed on multiple levels. Inarguably, algorithm
replacement is the best long-term mitigation method. However, chang-
ing the algorithm requires updating firmware – which is usually not
possible in already deployed devices like smartcards or TPMs with
code stored in read-only memory. Other options are available even
within the hardware device with the vulnerable version of the RSALib
with some caveats. New keys can be still generated on the device if they
are configured to use key lengths not directly affected by our method
(yet still with a reduced security margin), or keypairs could be gener-
ated by another library (outside the device) and then imported to the
device. If the potentially vulnerable keys remain deployed, their usage
scenario can be supplemented with additional risk management.

85

4. Factorization of widely used RSA moduli

Changes to the algorithm

The library could adopt an approach common in open-source libraries
– instead of constructing candidates for the primes, they are generated
randomly and their value is incremented until a prime is found. Other
alternative constructions exist, such as provable or safe primes, as de-
scribed in the NIST FIPS 186-4 standard [Nat13]. We noticed a certain
similarity between the algorithm of the Manufacturer and an algorithm
published by Joye and Paillier [JP06] focused on key generation on
smartcards. The key difference seems to be the fact that the RSALib
uses a constant value in the generator (65537), while in the paper, the
value is always chosen randomly using a unit generation algorithm
[JP06, Figure 4]. The approach in the paper [JP06] is not affected by
the same vulnerability.

Note that due to the nature of deployment of the RSALib, some
devices already in use cannot be updated. The RSALib is often stored
in a read-only on-chip memory with no possibility to distribute and
apply a fix after deployment. As an exception, the firmware of the
TPMs of the Manufacturer can be updated.

Importing a secure keypair

A secure RSA keypair can be generated in another cryptographic
library and then imported to the affected device. We are not aware of
any vulnerability in Manufacturer devices as far as the use of securely
generated keys is concerned. Coincidentally, the import of externally
generated keypair is even recommended by Yubico vendor [Yub17],
although for the purpose of private key backup.

Use of less affected key lengths

As discussed in Section 4.2, we consider 512, 1024 and 2048-bit keys
to be insecure. Due to design choices made by the manufacturer, it
appears that 3072-bit keys are seemingly less affected by our method
than 4096-bit RSA though with a significantly reduced security margin.
Our attack is inefficient or directly inapplicable when applied to some
quite uncommon key lengths (such as 1952 bits or 3936 bits). Hence,
we recommend limiting the choice of the key lengths to the seemingly
unaffected keys if the usage of the vulnerable chips with on-chip

86

4. Factorization of widely used RSA moduli

generated keys is absolutely unavoidable. Note however, that these
keys still suffer from significant entropy loss. If a somewhat “standard”
key length is required, we recommend switching to 3072-bit keys.

We also suggest caution when using the fingerprinted 4096-bit
keys, even though our method is not practical for their factorization at
the moment (requiring 1.28 ∗ 109 CPU-years). The strongest possible
key length with respect to the general factorization methods and our
attack is 3936-bit RSA. If a device supports at most 2048-bit keys, the
key length of 1952 bits is the most secure option (see Figure 4.1).

Additional risk management

The use of potentially vulnerable keys (especially 2048-bit keys requir-
ing feasible yet still significant computational power) can be amended
with additional scrutiny to perform supplementary risk management.
The presence of the fingerprint is an advantage in this scenario since
the public keys can be quickly tested to decide when to apply addi-
tional measures by the cooperating system.

4.5.2 Future prevention and analysis

The impacts of the documented vulnerability may serve as cases sup-
porting the need for future systematic changes and deeper additional
analyses, not limited just to the library in question.

Preventing the single point of failure

The described problem would be mitigated if not a single but two
or even more independent implementations were used to generate
the RSA keypair. More generally, a secure multi-party protocol can be
utilized to remove the single point of failure, not only during the key-
pair generation, but also during its use. The general goal is to provide
tolerance against up to k out of t misbehaving (either faulty or inten-
tionally malicious) participants [CDN05]. Multiple protocols based on
common cryptographic primitives like RSA, Diffie-Hellman or Elliptic
curve cryptography were proposed in literature [BF97; Gil99; Str03;
Haz+12]. Such approaches protect not only against an intentionally
malicious party, but also against unintentional mistakes weakening

87

4. Factorization of widely used RSA moduli

the resulting key. The area of collaborative RSA keypair generation is
well studied with the primary goal to generate parts (shares) of RSA
keypairs, yet not to reveal the factorization of the resulting modulus
N, until all or a specified number (threshold) of parties cooperate.

Gilboa’s threshold RSA signature scheme [Gil99] requires collabo-
ration during every signature operation, introducing protocol changes.
A more efficient generation method by Straub based on 3-prime RSA
[Str03] is not suitable for use by smartcards that implement offline
signature generation with limited APIs, typically exposing only stan-
dard 2-prime RSA operations. Moreover, protocols securing against
active adversaries, like that described in Hazay et al. [Haz+12], are
time-consuming even on standard CPUs while having prohibitively
long keypair generation phases on performance-limited hardware.
Parsovs proposed a collaborative method that splits key generation
between card manufacturer and cardholder [Par14]. The resulting
4-prime 4096-bit RSA key is generated from two 2048-bit parts during
an interactive protocol executed before the card’s first use, limiting the
necessity to trust a vendor with the generation of the whole keypair,
as well as removing the single point of failure.

Gennaro et al. proposed a distributed key generation algorithm for
discrete-log cryptosystems (not directly applicable to RSA) [Gen+99],
with extensions to provably secure distributed Schnorr signatures
[SS01] and with the implementation shown to be efficient enough to
run on cryptographic smartcards [Mav+17] as a mitigation of hard-
ware Trojans.

Note that all the methods described above require changes to user
interfaces and protocols and are therefore less suitable for legacy sys-
tems. However, a systematic adoption of secure multiparty protocols,
instead of relying on a single vendor and implementation, can provide
a significant overall increase of security of a system.

Analysis of other limited devices

The need for fast keypair generation on limited hardware naturally
leads to a search for alternative methods for finding completely ran-
dom primes. The generation method of Joye and Paillier [JP06] is one
example. Therefore, other modifications (with respect to [JP06]) or
completely different methods may have been adopted by other hard-

88

4. Factorization of widely used RSA moduli

ware vendors. We did not detect any deviances in cards from 5 other
manufacturers using our fingerprinting method. However, even a mi-
nor change to unit generation used in RSALib will suppress the bias
that is detectable by our method (e.g., generators for p and q other
than 65537), yet these changes will not automatically result in keys
being secure against variations of our attack. The search for alternative
detection techniques as well as attack variations represents possible
future work.

4.5.3 Responsible disclosure

Disclosure of this vulnerability was made to Manufacturer in the be-
ginning of February 2017 together with the tools demonstrating fin-
gerprinting capabilities and practical factorization. The vulnerability
was subsequently confirmed with further notification of the affected
parties by Manufacturer.

We made public disclosure of the discovered issue in the middle of
October 2017 together with the release a tool for fingerprint detection
for provided public keys to facilitate a quick assessment of the presence
of the vulnerability for end-users. The full details of the attack were
published as [Nem+17b].

For the time being, we are not releasing our source code of the
factorization algorithm. We believe that honest parties can make their
own implementation based on our description.

4.6 Related work

The generation of RSA keys and attacks on them are the two main ar-
eas related to this work. Besides attacks on the messages (e.g., padding
oracle [Ble98; Bor+09; Bro05] or related messages [YY05; Cop+96]),
most attacks aim to deduce the private key from the corresponding
public key. The attacks can be divided into two classes based on the
assumptions about the key: 1) No additional information – methods
such as Pollard p-1 [Pol74], Pollard Rho [Pol75; Bre80], and a class of
several sieving methods (e.g., NFS, GNFS); 2) Partial information – low
private or public exponent [Cop97; Wie90; BD99; BM03], implemen-

89

4. Factorization of widely used RSA moduli

tation and side-channel attacks, and attacks based on Coppersmith’s
method [Cop96b].

The usage of generic attacks is limited to small RSA keys due to
their exponential time complexity (the current record for a general
768-bit RSA [Kle+10] was broken using NFS). Only attacks from the
second class are known to be used to break RSA moduli used in
practice. Side-channel attacks (e.g., timing attacks, power analysis) are
out of the scope of this work since they require active access to the
device performing the RSA computation. Except for Wiener’s attack
[Wie90] for a small private exponent, other notable attacks belong to
the same class as Coppersmith’s attack.

In 2012, two independent teams [Hen+12; Len+12] analyzed RSA
public keys on the Internet. The teams analyzed several millions of
widespread keys in network devices such as keys in SSL certificates,
SSH host keys and PGP keys. These teams observed that a small
portion (0.5% of TLS, 1% of SSH) of public RSA keys shared prime
factors. Due to insufficient entropy (e.g., SSL keys were generated
by low-powered devices with no source of entropy) during the gen-
eration process, these keys can be trivially factorized using GCD. In
2013, Bernstein et al. [Ber+13] analyzed the “Citizen Digital Certificate”
database of 3.2 million public RSA keys generated by smartcards used
as the national IDs of Taiwanese citizens. In addition to recovering
184 keys that shared primes using a batch GCD computation, the au-
thors adapted Coppersmith’s algorithm and computed an additional
81 private keys. To our knowledge, this is the only practical applica-
tion of Coppersmith’s method to attack real RSA keys prior to our
attack. Coppersmith’s algorithm can be viewed as a universal tool for
attacking RSA keys generated with improperly chosen parameters or
originating from a faulty implementation. The algorithm was adapted
for various scenarios where some bits of a factor, of the private expo-
nent or of the message are known [BM06]. The factorization of moduli
with known high [Cop96a] or low [Cop97] bits of a factor were among
the first variants of the method. A nice overview of these methods can
be found in [May09].

The generation of RSA keys is described in several standards
(e.g., FIPS 186-4 [Nat13], IEEE 1363-2000 [IEE00] – see [LN11] for
an overview), many having different requirements for the form of the
primes. One feature is common to all these standards – the primes

90

4. Factorization of widely used RSA moduli

should be generated randomly using a large amount of entropy. In ad-
dition to specialized construction methods (e.g., provable primes), the
generation of RSA primes is typically performed in several iterations,
repeating two fundamental steps: a random candidate is generated and
then tested for primality. Since the primality test is a time-consuming
process, several authors have proposed various speedups for the can-
didate generation process ([BDL93; Mau95; JPV00], see [JP06] for an
overview of such methods). The current state of the art focused on con-
strained devices is described in [JP06], where the authors decreased
the number of primality tests with a negligible loss of entropy (0.5
bits).

4.7 Conclusions

We presented a cautionary case of a vulnerable prime selection algo-
rithm adopted in RSA key generation in a widely used security library
of a cryptographic hardware manufacturer found in NIST FIPS 140-2
and CC EAL 5+ certified devices. Optimizations that were motivated
by a higher performance in the key generation process have inadver-
tently led to significantly weakened security of the produced keys.
The primes are constructed with a specific structure that makes the
factorization of the resulting RSA keys of many lengths (including
1024 and 2048 bits) practically feasible with only the knowledge of
the public modulus. Worse still, the keys carry a strong fingerprint,
making them easily identifiable in the wild. The factorization method
is based on our extension of the Howgrave-Graham refinement of
Coppersmith’s method.

To quantify and mitigate the impacts of this vulnerability, we inves-
tigated multiple domains where the RSA algorithm is deployed. Based
on the specific structure of the primes, we devised a very fast algo-
rithm to identify all vulnerable keys even in very large datasets, such
as TLS or Certificate Transparency. Where public datasets were miss-
ing (eID, TPM, etc.), we attempted to collect some keys on our own.
The results confirmed the use of the RSALib that produces vulnerable
RSA keys across many domains.

There is mounting evidence that prime generation is a critical
part of implementations that designers and developers struggle with.

91

4. Factorization of widely used RSA moduli

Authoritative design notes for robust approaches should be produced
and disseminated. Developers must follow existing standards without
modifications.

Our work highlights the dangers of keeping the design secret
and the implementation closed-source, even if both are thoroughly
analyzed and certified by experts. The lack of public information
causes a delay in the discovery of flaws (and hinders the process of
checking for them), thereby increasing the number of already deployed
and affected devices at the time of detection.

The certification process counter-intuitively “rewards” the secrecy
of design by additional certification “points” when an implementa-
tion is difficult for potential attackers to obtain - thus favoring security
by obscurity. Relevant certification bodies might want to reconsider
such an approach in favor of open implementations and specifications.
Secrecy may increase the difficulty of spotting a flaw (above the capa-
bility of some attackers) but may also increase the impacts of the flaw
due to the later discovery thereof.

92

5 Amplification of TLS vulnerabilities on the
Web

Implementing cryptographic functionality is not trivial, and mistakes
can lead to severe vulnerabilities, as we saw in the previous chapter. It
is especially true for a complex system with many complicated parts
that can interact in unexpected ways, such as in the TLS protocol.

In this chapter, we focus on known practical cryptographic attacks
on different building blocks of the TLS protocol. An important part
of TLS is the RSA key exchange – the application of RSA asymmetric
encryption to establish the keys used for symmetric encryption. It
was repeatedly shown that developers struggle with that part of the
implementation, likely due to the complicated nature of the padding
scheme used since SSL, the early predecessor of the TLS protocol.
Although we consider issues in other schemes as well, fittingly with
the topic of the thesis, the implementation mistakes in RSA decryption
are the most common reasons behind exploitable vulnerabilities.

We performed measurements that illustrate the idea of complex
interactions. Unlike studies that evaluated the prevalence of vulnerabil-
ities on popular domains, we also study the supporting infrastructure,
such as related domains and servers that provide imported resources.
Different servers that belong to the same organization may run on dis-
tinct implementations of TLS, some of which might be less secure than
others. We detected that vulnerabilities get amplified due to the inter-
connected nature of the Web. Sometimes the principle of the weakest
link applies. As an example, a single server that offers an exploitable
RSA padding oracle undermines the security of all servers that use
the same RSA key, even if they perform RSA decryption correctly. By
considering such challenges, we contribute a more realistic estimate
of the prevalence of exploitable vulnerabilities.

The results in this chapter were published in [Cal+19].

5.1 Introduction

The HTTP protocol is the central building block of the Web, yet it does
not natively provide any confidentiality or integrity guarantee. HTTPS

93

5. Amplification of TLS vulnerabilities on the Web

protects network communication against eavesdropping and tamper-
ing by running HTTP on top of cryptographic protocols like Secure
Socket Layer (SSL) and its successor Transport Layer Security (TLS),
which allow for the establishment of encrypted bidirectional commu-
nication channels. Besides confidentiality and integrity, HTTPS also
ensures authentication, because clients and servers may prove their
identity by presenting certificates signed by a trusted certification
authority. HTTPS has been increasingly recognized as a cornerstone
of web application security over time and it is routinely employed by
more and more websites, to the point that the average volume of en-
crypted web traffic has surpassed the average volume of unencrypted
traffic according to data from Mozilla [Fel+17]. It is plausible to be-
lieve that, in a near future, HTTP will be (almost) entirely replaced by
HTTPS, thanks to initiatives like Let’s Encrypt and the actions taken
by major browser vendors to mark HTTP as ‘not secure’ [Sch18].

Security experts know well that the adoption of HTTPS is nec-
essary for web application security, but not sufficient. Web applica-
tions can be attacked at many different layers, for example on session
management [Cal+17]. Moreover, the correct deployment of HTTPS
itself is far from straightforward [Kro+17]. For instance, bad security
practices like the lack of adoption of HTTP Strict Transport Security
(HSTS) may allow attackers to sidestep HTTPS and completely void
its security guarantees. But even when HTTPS is up and running,
cryptographic flaws in SSL/TLS may undermine its intended security
expectations. Many attacks against SSL/TLS have been found, allow-
ing for information disclosure via side-channels or fully compromis-
ing the cryptographic keys used to protect communication [Adr+15;
Avi+16; Beu+15; BL16a; BSY17; MDK14]. These attacks are not merely
theoretical: they have been shown to be effective in the wild and open
data from Qualys [Qua18] suggest that many servers are vulnerable
to them. Several papers have also discussed the results of similar data
collections [BSY17; DCE17; HFH16; Val+17; Val+18].

Despite this availability of data, however, previous analyses pro-
vide only a very limited picture of how much cryptographic weak-
nesses in HTTPS implementations harm the security of the current
Web. First, these studies are based on large-scale detections of server-
side vulnerabilities, but they do not provide a thorough account of
their exploitability on modern clients. Many known vulnerabilities such

94

5. Amplification of TLS vulnerabilities on the Web

Figure 5.1: An anonymized top Alexa website (central circle) and
its sub-domains (gray, on the right) and dependencies (white, with
arrows). The website is entirely deployed over HTTPS, but becomes
insecure due to three vulnerable sub-domains and three vulnerable
dependencies (striped circles).

as Bleichenbacher’s padding oracle attack on PKCS #1 v1.5 RSA en-
cryption [Ble98] or various padding oracle attacks on Cipher Block
Chaining (CBC) mode ciphers [AP13; MDK14; Vau02] rely on specific
assumptions on both the client and the server to be exploited, such as
that the TLS peers will negotiate a specific ciphersuite like RSA key
exchange or use a symmetric cipher in CBC-mode, respectively. Hence,
the mere existence of a vulnerability does not necessarily imply the
possibility to attack a TLS connection between an up-to-date client
and a vulnerable server, since all modern browsers implement various
mitigations that prevent many of the known TLS attacks. Moreover, at-
tacks against TLS at the transport layer may drastically differ in terms
of their impact at the application layer: for example, the POODLE-TLS
attack [Smi14] can gradually leak a secret, but it requires the attacker
to force the browser into re-sending the secret many times. Thus, the
attack can leak a session cookie by injecting requests from a page
under the attacker’s control, but not a password that is inserted by the
user on a secure login page and only sent once.

In this chapter we present the first systematic quantitative eval-
uation of web application insecurity due to cryptographic HTTPS
vulnerabilities. The analysis relies on a characterization of TLS vulner-
abilities in terms of attack trees [Sch04] capturing the conditions for the
various attacks to be enabled and on a crawl of the top 10,000 websites
from Alexa supporting HTTPS, including all their dependencies (hosts

95

5. Amplification of TLS vulnerabilities on the Web

from which sub-resources are included) and sub-domains. Crawling
dependencies and sub-domains is of ultimate importance, as secure
websites might be broken by importing sub-resources or sending do-
main cookies over vulnerable TLS channels. The complexity of the
web ecosystem, in fact, amplifies the effect of TLS vulnerabilities, as
illustrated in Figure 5.1. Our results are disquieting:

• 898 websites are fully compromisable, allowing for script injec-
tion, while 977 websites present low integrity pages that the
attacker can tamper with. Fully compromisable sites include
e-commerce sites such as alibaba.com, e-banking services such
as deutsche-bank.de and major websites such as myspace.com
and verizon.com. 660 out of the 898 compromisable websites
(73.5%) include external scripts from vulnerable hosts, thus em-
pirically demonstrating that the complexity of web applications
enormously amplifies their attack surface;

• 10% of the detected login forms have confidentiality issues,
which may enable password theft. 412 websites may be subject to
cookie theft, exposing to session hijacking, and 543 websites are
subject to cookie integrity attacks. Interestingly, we found that
more than 20% of the analyzed domain cookies can be potentially
leaked, suggesting that the organization of web applications as
related sub-domains amplifies their attack surface and needs to
be carefully analyzed;

• 142 websites include content from vulnerable hosts of the popu-
lar tracker PubMatic and thus expose users to profiling attacks.
Remarkably, this privacy attack can be amplified by the previ-
ous finding on compromisable websites, so as to affect up to
968 websites. This shows once more that attacks against TLS
on external resources may expose otherwise secure websites to
severe threats.

One of the original aspects of our work is that all of the presented
attacks on web applications are exclusively due to practical TLS vul-
nerabilities that are enabled on the server and not prevented by mod-
ern browsers, thus potentially exploitable. Our findings show that
a limited number of practical TLS vulnerabilities are amplified by

96

5. Amplification of TLS vulnerabilities on the Web

the web ecosystem and have a huge practical impact on otherwise
secure websites that depend on or are related to the vulnerable hosts.
We found vulnerabilities in popular, security-conscious websites. For
example, because of TLS weaknesses in related hosts or dependen-
cies, it is possible to break password confidentiality on myspace.com,
session security on yandex.com and cookie integrity on live.com. We
responsibly disclosed our findings to the interested websites.

Contributions and structure. In this work, we make the following
contributions:

1. we review existing cryptographic attacks against TLS, identify-
ing those which are still effective on modern clients. We then
characterize such attacks in terms of attack trees, which identify
conditions to break the confidentiality and/or integrity proper-
ties of the TLS protocol. To the best of our knowledge, this is the
most systematic model of such attacks presented in the literature
– with a special focus on their practical impact – and can serve
other security researchers working in the area (Section 5.3);

2. we build an analysis platform which implements the checks
defined by the attack trees and we run it on the homepages of
the top 10,000 websites of the Alexa ranking supporting HTTPS.
As part of this data collection process, we also scan 90,816 hosts
which either (i) store sub-resources included in the crawled
pages or (ii) are sub-domains of the websites. These hosts have
a major impact on the security of the crawled websites, which
we precisely assess (Section 5.4);

3. we rigorously identify a number of severe web application at-
tacks enabled by vulnerable TLS implementations and we run
automated checks for them on the collected data. We focus on
three different aspects of web application security: page integrity
(Section 5.5), authentication credentials (Section 5.6) and web track-
ing (Section 5.7). This list is not meant to be exhaustive, yet it is
rich enough to cover important security implications of existing
cryptographic flaws of TLS on major websites.

97

5. Amplification of TLS vulnerabilities on the Web

Section 5.2 provides background on TLS and Section 5.8 provides
our closing perspective, discussing related work, ethical issues and
limitations of our study. Finally, Section 5.9 presents some of our
additional findings.

5.2 Background on TLS

In this section, we describe TLS 1.0, 1.1 and 1.2. Readers who are
already familiar with TLS can safely skip this section. We do not
discuss TLS 1.3 [Res18], as there are no known attacks against it due
to the removal of vulnerable cryptographic constructions used in
previous protocol versions [Res18, Section 1.2]. Notice that version 1.3
is not yet widely supported in the wild: only 5.2% of hosts in our scan
supported some draft version of TLS 1.3 (the final version was not
yet published at the time of the scan). Moreover, we do not discuss
certificate-based client authentication as it is rarely adopted on the
Web.

The TLS protocol consists of the following sub-protocols:

• Record Protocol carries the data, that are optionally encrypted
and authenticated, of the application data protocol and the re-
maining TLS sub-protocols;

• Handshake Protocol negotiates cryptographic keys and authen-
ticates the server;

• Change Cipher Spec Protocol signals to the other peer that the
subsequent records will be encrypted and authenticated under
the negotiated keys;

• Alert Protocol signals status changes, with warnings and termi-
nating fatal alerts, following e.g., decryption errors.

5.2.1 The Handshake Protocol

We describe in detail the Handshake Protocol, as it is the one respon-
sible for agreeing on the cryptographic algorithms and keys used to
protect messages and for authenticating the server. As such, it consti-
tutes a clearly sensitive target for network attackers. The Handshake

98

5. Amplification of TLS vulnerabilities on the Web

Protocol is an authenticated key exchange protocol. The peers negoti-
ate the TLS version and the cryptographic algorithms (ciphersuites) for
key exchange, server authentication, and Record Protocol protection.

The client initiates the handshake with a ClientHello message,
that includes the highest supported TLS protocol version, a random
nonce for key derivation, the session identifier, the list of supported
ciphersuites, the supported compression methods (usually empty, as
TLS compression is deprecated for security reasons), and optional TLS
extensions.

The server responds with a ServerHello message with the lower
between its highest supported protocol version and the client’s version,
a random nonce, the session identifier, the selected ciphersuite and
compression method, and selected extensions (a subset of those offered
by the client). The server should follow an ordering of the ciphersuites,
ideally selecting the most secure ciphersuite offered by the client. If
there are no supported algorithms in common, the server responds
with a handshake failure alert.

The server also sends its X.509 certificate in the Certificate mes-
sage, that links its identity to its public key. Depending on the selected
ciphersuite, it may send a ServerKeyExchange message contributing
to the key material. The client sends the ClientKeyExchange message
with its key material. The shared key material is called the Premaster
Secret (PMS) and is used together with the exchanged random nonces
to compute the Master Secret, which is in turn used to derive the ses-
sion keys for the Record Protocol. Once the Master Secret is shared,
the peers run the Change Cipher Spec Protocol and start protecting
their messages.

Finally, the client and the server mutually exchange the Finished
message containing a transcript of the handshake. If the peers received
different messages, possibly due to tampering by an attacker, their
transcripts will differ. Since the communication is encrypted and au-
thenticated with the session keys at this point, the attacker cannot
tamper with the transcripts. The PMS is shared using a public key that
is tied to the identity of the server, hence the server authenticates by
using the PMS to compute the session keys.

99

5. Amplification of TLS vulnerabilities on the Web

5.2.2 Ciphersuites

A key ingredient of the Handshake Protocol is the negotiation of
the cryptographic mechanisms in the ciphersuite. The most common
algorithms are:

• Key exchange: how to share the PMS:

– RSA key exchange: the client randomly generates a PMS,
encrypts it with the RSA public key of the server obtained
from the server’s trusted certificate, and sends it in the
ClientKeyExchange;

– Static Diffie-Hellman key exchange – (EC)DH: the DH pa-
rameters are defined either on a prime field (DH) or on an el-
liptic curve (ECDH). The client generates a random (EC)DH
key and sends the public part in the ClientKeyExchange.
The public key of the server is contained within its certifi-
cate. The shared DH secret is used as the PMS;

– Ephemeral Diffie-Hellman key exchange – (EC)DHE:
similar to the previous case, however the client and the
server generate fresh (ephemeral) (EC)DHE keys and send
them in the Client- and Server- KeyExchange messages,
respectively. The server must sign its message with a
private key corresponding to its certificate. DHE uses RSA
or DSA [Nat13], ECDHE uses RSA or ECDSA [Nat13].

• Confidentiality and integrity: how messages sent over the
Record Protocol are protected:

– Block ciphers in AEAD mode: Authenticated Encryption
with Associated Data (AEAD) combines encryption and
authentication in a single primitive. Examples are AES in
the GCM or CCM mode of operation;

– Block ciphers in CBC mode with MAC: combination of
CBC mode of operation of a symmetric block cipher with
Keyed-hash Message Authentication Code (HMAC) for au-
thentication. The order of operations is MAC-then-Pad-
then-Encrypt. For example, AES, Camellia, Triple-DES or

100

5. Amplification of TLS vulnerabilities on the Web

DES in CBC mode combined with HMAC based on SHA-2,
SHA-1 or MD5;

– Stream cipher with MAC: for example, ChaCha20 with
Poly1305 (that combine into an AEAD primitive) or RC4
with HMAC based on SHA-1 or MD5.

5.3 Attack trees for TLS security

We describe notable cryptographic attacks against TLS and divide
them by their impact on confidentiality and integrity of the commu-
nication. We discuss how the attacks are mitigated by client config-
uration and specific countermeasures, focusing on attacks that fall
under our threat model. See Section 5.9.1 for out of scope attacks and
Section 5.9.2 for more details on the attacks introduced in this section.

5.3.1 Threat model

We assume an active network attacker able to add, remove or modify
messages sent between a client and a server. The attacker also controls a
malicious website, say at evil.com, which is navigated by the attacked
client. By means of the website, the attacker can inject scripts in the
client from an attacker-controlled origin, which is relevant for a subset
of the attacks. However, the attacker can neither break the Same Origin
Policy (SOP)1 nor exploit any bug in the browser. We assume the
attacker cannot exploit timing side-channels, since the feasibility of
such attacks is generally hard to assess.

The client is a modern browser that (i) supports TLS 1.0, 1.1, and
1.2 with key establishment based on ECDH and AEAD ciphersuites (cf.
MozillaWiki [Veh18] for the purpose of “Modern” compatibility); (ii)
does not support SSLv3 or lower, does not offer weak or anonymous
ciphersuites (such as DES, RC4 and EXPORT ciphers, or suites with-
out encryption or authentication) and enforces a minimal key size of
cryptographic algorithms; (iii) correctly handles certificate validation
and rejects certificates with weak algorithms. All the major browsers
released in the last two years satisfy these assumptions, starting from

1. https://developer.mozilla.org/docs/Web/Security/Same-origin_
policy

101

https://developer.mozilla.org/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/docs/Web/Security/Same-origin_policy

5. Amplification of TLS vulnerabilities on the Web

Firefox 44, Chrome 48, IE 11 on Windows 7, Edge, Opera 35, Safari 10,
and Android 6.0.

5.3.2 Review of known attacks against TLS

Protocol version downgrade

A TLS server should respond to a ClientHello with the offered ver-
sion of the protocol, or the highest it supports. However, some legacy
servers simply drop connections with unsupported TLS versions, with-
out offering an alternative. Thus, browsers may repeat the handshake
with a lower protocol version. An attacker in the middle could drop
ClientHello messages until the client downgrades to an older, vulner-
able version of the protocol. To prevent this attack, the client attaches
a fake ciphersuite to repeated handshake attempts, as defined in RFC
7507 [ML15], indicating that the handshake did not use the highest
client-supported TLS version. The presence of that ciphersuite in a
ClientHello, with a TLS version that is lower than the highest sup-
ported by the server, reveals a potential attack and should be treated as
such by the server. Safari, Internet Explorer, and Edge fall back to TLS
1.0. Only Safari appends the ciphersuite. Firefox, Chrome, and Opera,
instead, removed insecure fallback entirely when the ClientHello
messages are dropped.

RSA decryption oracles

In the RSA key exchange, the client chooses the PMS and sends it to
the server, encrypted under the server’s public RSA key. TLS uses the
padding scheme defined in PKCS #1 v1.5 [Kal98], which is known to
be vulnerable to a padding oracle attack [Ble98]. The attack is possi-
ble when the server provides a padding oracle, i.e., when it behaves
differently when decrypting messages that have invalid paddings. An
attacker can multiply a ciphertext to create a new ciphertext (RSA is
malleable), until a new correctly padded message is forged. When this
happens, the attacker learns partial information about the plaintext
message and the process can be iterated until the key exchange is
fully decrypted. The original attack was proposed by Bleichenbacher
in 1998 [Ble98] and requires on the order of million connections to
decrypt a ciphertext. The attack was later improved [Bar+12; JSS15;

102

5. Amplification of TLS vulnerabilities on the Web

KPR03; Mey+14], especially in the presence of an oracle that does not
strictly enforce the padding scheme [Bar+12], to require on the order
of tens of thousands of messages. In our analysis, we only consider
such strong version of the oracle as exploitable.

RSA signature oracles

A very fast decryption oracle can be used to compute RSA signatures.
Hence, even without the knowledge of the private key, an attacker can
impersonate the server in the (EC)DHE exchange with such oracle.
The attack applies to all TLS versions up to TLS 1.2. However, the
signature generation using a Bleichenbacher’s oracle is even slower
than the decryption [BSY17]. Therefore, the attacker would prefer the
decryption of RSA key exchange, if supported by the targeted host.
Interestingly, a signature oracle makes it possible to impersonate the
target server even with other certificates valid for that target (such as
wildcard certificates).

Advanced RSA padding oracles – DROWN and key reuse

When a server is vulnerable to the decryption oracle, all servers that
use the same RSA key for key encryption (e.g., due to using the same
certificate) are vulnerable to the decryption of the key exchange, even
if they do not provide the oracle directly. Furthermore, TLS can be en-
abled for other application level protocols than HTTPS, such as email
(SMTP, POP3, and IMAP with STARTTLS, or SMTPS, IMAPS, POP3S).
The attack surface of the DROWN attack [Avi+16] was in fact ampli-
fied by the possibility of using vulnerable servers supporting SSLv2
in order to break servers running newer protocol versions. DROWN
uses the fact that SSLv2 provides the padding oracle in combination
with weak export grade ciphersuites and specific OpenSSL bugs. The
attack comes in two variants, General and Special, requiring respec-
tively about 8 hours and less than a minute to complete. Thus, only
the Special case is suitable for Man In The Middle (MITM) attacks.
Not all handshakes are vulnerable: 1 out of 900, for the General case,
and 1 out of 260 for the Special case.

103

5. Amplification of TLS vulnerabilities on the Web

RSA padding oracle countermeasures

TLS 1.0 [DA99], 1.1 [DR06], and 1.2 [DR08] introduced countermea-
sures to remove the padding oracle, instead of replacing the padding
scheme. However, the ROBOT attack [BSY17] has shown that a sur-
prisingly high number of implementations in the wild still present
padding oracles that can be used to decrypt RSA encrypted messages.
The attacks are partially mitigated by the support for Perfect Forward
Secrecy, typically by preferring the elliptic curve Diffie-Hellman key
establishment with ephemeral private keys (ECDHE) over the RSA
key exchange on the server side. Since all modern web browsers sup-
port ECDHE cipher suites [Veh18], the RSA key exchange will be
voluntarily negotiated only with servers that prefer it due to lack of
ECDHE support or bad configuration. It would be thus recommended
to completely disable RSA encryption at the server side [BSY17].

CBC mode padding oracles

TLS uses the CBC mode of operation of a symmetric block cipher
with MAC-then-Pad-then-Encrypt scheme for record-level encryp-
tion. Since the padding is not covered by the MAC, changing the
padding does not change the integrity of the message, and could en-
able a padding oracle vulnerability. A class of vulnerabilities of the
MAC-then-Pad-then-Encrypt construction was described by Vaude-
nay [Vau02] and Canvel et al. [Can+03]. The attacks are based on
distinguishing failures due to bad padding and due to failed integrity
check. In TLS, the server should issue the same response in both situa-
tions, however there are buggy implementations (e.g., [Som16a]) that
produce different errors. The POODLE attack [MDK14] leverages the
above padding oracle problem in combination with the fact that SSLv3
(and some flawed TLS implementations) only checks the last byte of
padding. Since a padding error ends in a termination of the session,
the attacker must be able to force the client to open a new session every
time she wants to make a guess. Furthermore, the client must repeat
the target secret s in every connection, e.g., when s is a secret cookie
attached to every HTTPS request. All CBC attacks can be mitigated
in TLS 1.2 by supporting either AEAD ciphersuites or stream ciphers
that do not require padding, on both servers and clients (as in modern

104

5. Amplification of TLS vulnerabilities on the Web

browsers). TLS version downgrades must also be mitigated, to prevent
a downgrade to a version that only supports CBC-mode ciphers.

Heartbleed

Due to memory management problems in server implementations, an
attacker could reveal the long-term private keys of the server, thus
allowing a full impersonation of the server [Syn14; Dur+14].

5.3.3 Insecure channels

To understand the impact of cryptographic flaws of TLS on web appli-
cation security, it is useful to categorize known cryptographic attacks
in terms of the security properties they break. We propose three cate-
gories of insecure channels:

• Leaky: a channel established with servers vulnerable to confi-
dentiality attacks, which give the attacker the ability to decrypt
all the network traffic (Section 5.3.4);

• Tainted: a channel susceptible to Man In The Middle (MITM)
attacks, which give the attacker the ability to decrypt and ar-
bitrarily modify all the network traffic (Section 5.3.5). Tainted
channels are also leaky;

• Partially leaky: a channel exposing side-channels which give the
attacker the ability to disclose selected (small) secrets over time.
These channels typically rely on a secret repetition assumption,
because the attacker abuses the exchange of repeated messages
containing the secret on the vulnerable channel (Section 5.3.6).
Leaky and tainted channels also qualify as partially leaky.

In the rest of this section, we precisely characterize how we mapped
existing cryptographic attacks against TLS to the proposed channel
categories in terms of attack trees.

5.3.4 Leaky channels

Channels are leaky when established with servers vulnerable to attacks
that fully compromise confidentiality. The attacker tries to obtain the

105

5. Amplification of TLS vulnerabilities on the Web

GOAL Learn the session keys (allows decryption)
| 1 Decrypt RSA key exchange after the handshake

& 1 RSA key exchange is used
| 1 RSA key exchange is preferred in the

highest supported version of TLS
| 2 Downgrade is possible to a version of TLS

where RSA key exchange is preferred
& 2 RSA decryption oracle (DROWN or Strong

Bleichenbacher’s oracle) is available on:
| 1 This host
| 2 Another host with the same certificate
| 3 Another host with the same public RSA key

Figure 5.2: Attack tree for leaky channels.

PMS to learn the session keys, giving her the ability to decrypt all the
captured network traffic.

Figure 5.2 shows the attack tree of conditions that enable the at-
tacker to learn the session keys. The main goal is listed on the first
line. Each goal or sub-goal may have alternative ways of reaching it
(marked as logical OR ‘|’) or it may require several sub-goals to be
valid at once (marked as logical AND ‘&’). Sub-goals are differentiated
from their parent goal by increased indentation. Leaves, i.e., goals
without sub-goals, evaluate to True or False based on a concrete test
(e.g., for the presence of a vulnerability), a detected server configura-
tion, or are the result of a stand-alone, separate tree. If the entire tree
evaluates to True, the host suffers from an exploitable vulnerability
that can facilitate the main goal.

The attacker may obtain the PMS by decrypting the key exchange
(1). The parties must use RSA key exchange (1.1). Hence, the client
must support it and the server must prefer it either in the highest
version of TLS supported by both parties (1.1.1), or in any other com-
monly supported version, if protocol version downgrade is not prop-
erly mitigated (1.1.2). The attacker decrypts the RSA key exchange
(1.2) either using Strong Bleichenbacher’s oracle [BSY17] or with the
DROWN attack [Avi+16]. The oracle could be present on the target
host directly (1.2.1), or on a different host that uses the same certificate
(1.2.2) or at least the same RSA key (1.2.3).

106

5. Amplification of TLS vulnerabilities on the Web

GOAL Potential MITM (decryption and modification)
| 1 Force RSA key exchange by modifying ClientHello

and decrypt it before the handshake times out
& 1 RSA key exchange support in any TLS version
& 2 Fast RSA decryption oracle (Special DROWN or

Strong Bleichenbacher’s oracle) available on:
| 1 This host
| 2 Another host with the same certificate
| 3 Another host with the same public RSA key

| 2 Learn the session keys of a long lived session
& 1 Learn the session keys (Figure 5.2)
& 2 Client resumes the session

| 1 Session resumption with tickets
| 2 Session resumption with session IDs

| 3 Forge an RSA signature in the key establishment
& 1 Fast RSA signature oracle (Strong

Bleichenbacher’s oracle) is available on:
| 1 This host
| 2 Another host with the same certificate
| 3 Another host with the same public RSA key
| 4 A host with a certificate where the Subject

Alternative Names (SAN) match this host
& 2 The same RSA key is used for RSA key exchange

and RSA signature in ECDHE key establishment
| 4 Private key leak due to the Heartbleed bug

Figure 5.3: Attack tree for tainted channels.

107

5. Amplification of TLS vulnerabilities on the Web

5.3.5 Tainted channels

Channels are tainted if the attacker can mount a MITM attack that
gives her the ability to decrypt and modify all the traffic between the
server and the client. Hence, tainted channels are also leaky (implied
by the ability to decrypt). The attacker must learn the PMS of an active
session or she must influence its value and successfully impersonate
the server. The attack tree is shown in Figure 5.3 and described below.

Obtaining the PMS early is characteristic of a tainted channel. If
the attacker learns the session key after the session is over, she can
only decrypt, and the channel is only considered to be leaky. Such a
channel can be upgraded back to tainted in case of session resumption.

The attacker can force the use of RSA key exchange by modifying
the ClientHello sent to the server to only contain such ciphersuites
(1). Naturally, the server must support such ciphersuite (1.1). The
modification leads to different handshake transcripts, hence the de-
cryption of the key exchange must be performed very fast, in order to
generate valid Finished messages before the peers time out. Hence,
the attacker needs access to a fast instantiation of Strong Bleichen-
bacher’s oracle [BSY17] or to a server vulnerable to the Special variant
of the DROWN attack [Avi+16] (1.2). The authors of the ROBOT at-
tack [BSY17] estimate that it should be feasible to decrypt the key
exchange fast enough (in a few seconds) if the attacker can parallelize
the requests across multiple servers of the attacker and the target. An
analysis of such parallel attack was done by Ronen et al. [Ron+19].

Alternatively, the attacker may gain more time to obtain the session
keys, if they are long lived (minutes to hours) (2). She captures an RSA
key exchange and decrypts it offline (2.1), through the techniques of
Section 5.3.4 (Figure 5.2) as she cannot modify the initial ClientHello
at will. She then intercepts a resumed session with full MITM capabili-
ties (2.2). Server may support session resumption without server-side
state (2.2.1) [Sal+08] or with server-side state (2.2.2) [DR08].

Under some conditions, a very efficient RSA decryption oracle can
be used to forge signatures (3). The oracle can be found on a variety
of hosts (3.1.1− 3.1.3). Additionally, a host can be attacked using a
certificate that it neither uses nor shares an RSA key with, if the host
appears on the certificate’s list of Subject Alternative Names (SAN)
(3.1.4). The certificate’s RSA key used for signing (EC)DHE parameters

108

5. Amplification of TLS vulnerabilities on the Web

GOAL Partial decryption of messages sent by Client
| 1 CBC padding oracle on the server

| 1 POODLE-TLS padding oracle
& 1 Server checks TLS padding as in SSLv3
& 2 Any vulnerable CBC mode ciphersuite is used

| 1 A CBC mode ciphersuite is preferred
in the highest supported version of TLS

| 2 Downgrade is possible to a version of TLS
where a CBC mode ciphersuite is preferred

| 2 CBC padding oracle - OpenSSL AES-NI bug
& 1 Server is vulnerable to CVE-2016-2107
& 2 A ciphersuite with AES in CBC mode is used

| 1 AES in CBC mode is preferred in the
highest supported TLS version

| 2 Downgrade is possible to a TLS version
where AES in CBC mode is preferred

Figure 5.4: Attack tree for partially leaky channels.

must be the same as the RSA key used for RSA key exchange by a
server with a decryption oracle (3.2).

Finally, the attacker might obtain the private key of the server due
to the Heartbleed memory disclosure bug (4) [Syn14]. For ethical rea-
sons, we did not attempt to extract the private keys when we detected
Heartbleed, yet it was reliably shown possible [Ind14].

5.3.6 Partially leaky channels

Channels are partially leaky if they allow for a partial confidential-
ity compromise of secrets sent by the client to the server. Leaky and
tainted channels are also partially leaky. The conditions are described
by the attack tree in Figure 5.4. To exploit a CBC padding oracle (1),
the attacker must force repeated requests containing the secret (secret
repetition) and she is required to partially control the plaintext sent
by the client to a vulnerable server, e.g., by modifying the URL in
the header of the request. We check the server for the presence of
two CBC padding oracle types (as explained in Section 5.3.2). They
are instantiated as the TLS version of the POODLE attack [Smi14;
MDK14] (1.1) due to incorrect padding checks (1.1.1) and as a buggy
implementation [Som16a] providing a Vaudenay CBC padding oracle

109

5. Amplification of TLS vulnerabilities on the Web

[Vau02] (1.2) when using hardware accelerated AES (AES-NI) in cer-
tain versions of OpenSSL (1.2.1). Both attack types require the server
to choose a vulnerable ciphersuite (1.1.2, 1.2.2). It could be chosen by
the server in the highest TLS version (1.1.2.1, 1.2.2.1) or following a
protocol version downgrade (1.1.2.2, 1.2.2.2).

5.4 Experimental setup

We developed an analysis platform to identify exploitable crypto-
graphic weaknesses in TLS implementations and estimate their im-
port on web application security. The platform employs a crawler to
perform a vulnerability scan of the target website, testing also hosts
which either store sub-resources included by the homepage or belong
to related domains. Confidentiality and integrity threats are identified
by matching the relevant conditions of the attack trees introduced in
Section 5.3 against the output of existing analysis tools.

5.4.1 Analysis platform

The analysis platform performs the following steps: (i) access the web-
site, such as example.com, by instrumenting Headless Chrome with
Puppeteer;2 (ii) collect the DOM of the page at example.com, along
with its set of cookies and the hosts serving sub-resources (such as
scripts, images, stylesheets and fonts) included by the page; (iii) enu-
merate the sub-domains of example.com by querying the Certificate
Transparency3 logs and by testing for the existence of common sub–
domains, such as mail.example.com; (iv) run existing analysis tools
to identify cryptographic vulnerabilities on the target website and
on all the hosts collected in the previous steps; (v) map the output
of the tools to the conditions of the attack trees to find exploitable
vulnerabilities.

The analysis tools include testssl.sh,4 TLS-Attacker [Som16b] and
the nmap plugin for Special DROWN,5 which combined provide

2. https://github.com/GoogleChrome/puppeteer
3. https://www.certificate-transparency.org/
4. https://github.com/drwetter/testssl.sh
5. https://nmap.org/nsedoc/scripts/sslv2-drown.html

110

https://github.com/GoogleChrome/puppeteer
https://www.certificate-transparency.org/
https://github.com/drwetter/testssl.sh
https://nmap.org/nsedoc/scripts/sslv2-drown.html

5. Amplification of TLS vulnerabilities on the Web

Insecure
Attack

Attack tree Vulnerable
channel reference hosts

Leaky Decrypt RSA key exchange offline (1) Figure 5.2 733

Tainted

Force RSA key exchange and de-
crypt it online

(1)

Figure 5.3

1,877

Learn the session keys of a long
lived session

(2) 615

Forge an RSA signature in the key
establishment

(3) 2,279

Private key leak due to the Heart-
bleed bug

(4) 47

Partially POODLE-TLS padding oracle (1.1)
Figure 5.4

816
leaky CBC padding oracle – OpenSSL

AES-NI bug
(1.2) 96

Table 5.1: Overview of the detected insecure channels.

enough information. For ethical reasons, we did not perform any
aggressive testing for the presence of oracles other than the checks
run by these tools, e.g., we did not evaluate the performance of servers
with respect to the number of oracle queries they can answer in a short
time. Still, if some untested conditions have been considered realistic
in the literature, e.g., the performance of a Strong Bleichenbacher’s
Oracle for online decryption or for signature computation [BSY17],
we report the vulnerability as exploitable.

5.4.2 Data collection and findings

We used our analysis platform to collect data from the Alexa top 1M
list retrieved on July 20, 2018. We scanned websites starting at the top
of the ranking until we collected 10,000 websites correctly served over
HTTPS. Their sub-resources and related domains added up to 90,816
more hosts that underwent a vulnerability analysis, completed at the
beginning of August 2018.

Our tool reported exploitable TLS vulnerabilities in 5,574 hosts
(5.5%). 4,818 hosts allow for the establishment of tainted channels,
which is the most severe security threat. 733 hosts allow for the estab-

111

5. Amplification of TLS vulnerabilities on the Web

lishment of leaky channels, while 912 allow for partially leaky channels.
The majority of vulnerabilities is due to the 20 years old Bleichen-
bacher’s attack [Ble98] and its newest improvement ROBOT [BSY17].
Only 6.5% of the scanned hosts actually prefer RSA key exchange in
their highest supported TLS version, yet 76.9% hosts support it, pre-
sumably to maintain backward compatibility with old clients. More
than 90% of servers support a key exchange that provides Perfect For-
ward Secrecy. Hence, the majority of the exploitable hosts could be
secured by stopping the support for RSA key exhange. We provide a
breakdown of the identified insecure channels in Table 5.4.1 and we
comment it below.

Leaky channels

The connections to 733 hosts could be decrypted using ROBOT or
DROWN after the attacker captured the traffic – goal (1) of Figure 5.2.
727 hosts preferred the RSA key exchange (1.1.1), hence no action
would be necessary to make the peers negotiate RSA. Only on 6 hosts
the attacker would need to use the protocol version downgrade to
force the usage of RSA key exchange (1.1.2) instead of Diffie-Hellman
(DH). We found 136 hosts vulnerable to ROBOT that used ECDHE
in their highest protocol version and properly implemented protocol
version downgrade mitigation, showing the importance of the coun-
termeasure. Out of the 733 vulnerable hosts, 592 hosts were directly
exploitable (1.2.1), while 141 were only exploitable due to sharing a
certificate (1.2.2) or an RSA key (1.2.3) with a vulnerable host. Hence,
a conventional tool that only checks the host directly for the presence
of ROBOT would not detect confidentiality problems on 19% of the
exploitable hosts.

Tainted channels

In total, 4,818 hosts made connections over tainted channels due to
MITM attacks (Figure 5.3). 615 hosts were exploitable due to the com-
promise of a resumed session (2), where the attacker can decrypt the
key exchange over a longer period. 1,877 additional hosts were suscep-
tible to online RSA key exchange decryption attacks (1). The attack
was also possible for the previously mentioned 615 hosts, without

112

5. Amplification of TLS vulnerabilities on the Web

relying on the client to resume the session (2.2), yet requiring a faster
computation (1.2). When a decryption oracle is available on a host,
each certificate that uses the same RSA key for signatures could be
used to impersonate all the hosts that appear in its Subject Alternative
Name extension (SAN) (3). We found 2,279 such hosts, that could not
be impersonated with a less demanding version of the MITM attack:
(1) or (2). It is worth noticing that only 1,893 hosts in our scan had a
strong ROBOT oracle, yet the number of exploitable servers due to
ROBOT is much higher. This shows that the sharing of certificates and
RSA public keys, as well as the list of hostnames in the SAN extension,
should be kept minimal. Luckily, only 47 hosts were vulnerable to
Heartbleed (4). When a private RSA key is extracted in this way, the
attacker can repeatedly impersonate the host without its involvement.

Partially leaky channels

Exploitable partially leaky channels (Figure 5.4) were found on 912
hosts. Out of the 816 hosts with an exploitable POODLE-TLS padding
oracle (1.1), 797 hosts preferred the vulnerable ciphersuite (1.1.2.1)
and additional 19 hosts could be exploited after being downgraded to
an older version of TLS due to a lack of protection from downgrades
(1.1.2.2). Out of the 96 hosts with an exploitable OpenSSL AES-NI
padding oracle (1.2), only 20 hosts were vulnerable in the preferred
TLS version (1.2.2.1) and additional 76 hosts could be exploited after
an unmitigated version downgrade (1.2.2.2). Other 68 hosts have been
found affected by POODLE-TLS and 2 exposed OpenSSL AES-NI
padding oracle, yet a modern browser would negotiate a more secure
cipher making the vulnerabilities non-exploitable.

5.4.3 Roadmap

The presence of so many insecure channels is concerning, but their
actual impact on web application security is unclear. In the rest of the
chapter, we investigate and quantify this delicate point by focusing on
selected aspects of web application security. Since we are interested in
cryptographic attacks against HTTPS, we stipulate that every time we
refer to pages / channels we implicitly refer to HTTPS pages / channels,

113

5. Amplification of TLS vulnerabilities on the Web

unless otherwise specified. Attacks enabled by the (partial) adoption
of HTTP are out of the scope of this study.

5.5 Page integrity

In this section, we describe a number of attacks enabled by the pres-
ence of tainted channels, whose security impact ranges from content
injection to SOP bypasses.

5.5.1 Security analysis

If a web page is received from a tainted channel, the attacker may be
able to arbitrarily corrupt its contents, thus completely undermining its
integrity guarantees. Moreover, even if the page was received from an
untainted channel, the subsequent inclusion of scripts sent over tainted
channels in the top-level document may fully compromise integrity.
The only protection mechanism available in modern browsers against
the latter threat is Subresource Integrity (SRI) [Akh+16], a relatively
recent web standard which allows websites to bind to <script> tags an
integrity attribute storing a cryptographic hash of the script which is
expected to be included by them. If the included script does not match
the hash, the script is not executed, so SRI can be used to prevent the
threats of script injection via network attacks.

The two integrity attacks above are equally dangerous and the most
severe ones in terms of security, because they grant to the attacker
active scripting capabilities on the web page, which we can thus deem
as compromisable.

Definition 1 (Compromisable Page). A page is compromisable if and
only if any of the following conditions holds:

1. the page is received from a tainted channel;

2. the page includes scripts in the top-level document from tainted chan-
nels without using SRI.

Notice that the definition does not refer to Content Security Policy
(CSP) [Wes18], a web standard which can be used to prevent the
execution of inline scripts and restrict content inclusion on web pages

114

5. Amplification of TLS vulnerabilities on the Web

by means of a white-listing mechanism. In fact, CSP is ineffective
against network attackers: if a page is compromisable because it is
received from a tainted channel, the attacker may just strip away the
CSP headers and <meta> tags to disable the protection; if instead a page
is compromisable because it includes scripts from tainted channels,
observe that CSP does not prevent the replacement of legitimate scripts
with arbitrary malicious contents.

A second class of threats we are interested in allows SOP bypasses
through compromisable pages. If a host contains at least one compro-
misable page, SOP becomes largely ineffective at defending it, because
the attacker may get active scripting capabilities in its web origin
and get access e.g., to its cookies and web storage. This motivates the
following definition.

Definition 2 (Compromisable Host). A host is compromisable iff it is
possible to retrieve a compromisable page from it.

Finally, besides these obvious threats, it is worth noticing that there
are also other integrity attacks which are subtler than script injection,
but may achieve results as severe as page compromise under specific
circumstances. For example: (i) the inclusion of stylesheets and web
fonts can be used to perform scriptless attacks, which may enable the
exfiltration of confidential information stored in the DOM [Hei+14];
(ii) the inclusion of Scalable Vector Graphics (SVG) images using
tags like <embed> may lead to the injection of malicious HTML and
JavaScript contents [Hei+11]; (iii) the inclusion of iframes can lead
to exploitations against the top-level document via the postMessage
API [SS13]; (iv) the result of an XMLHttpRequest can be passed to a
function like eval, which converts strings into executable code and
thus enables script injection [Wei+16].

To comprehensively characterize the pages suffering from these
potential integrity issues, we leverage the Mixed Content [Wes16] spec-
ification, which defines the reference security policy for the inclusion
in HTTPS pages of contents delivered over HTTP channels. The key
idea to uniformly capture these attacks is to reuse the definition of
blockable request introduced in the Mixed Content specification, which
mandates that compliant browsers must prevent HTTPS pages from
sending this type of requests over HTTP channels.

115

5. Amplification of TLS vulnerabilities on the Web

Definition 3 (Blockable Request). A request is blockable if and only if it
is not requesting any of the following resources:

1. images loaded via or CSS;

2. video loaded via <video> and <source>;

3. audio loaded via <audio> and <source>.

We similarly consider blockable requests over tainted channels as
a possible source of integrity attacks, which leads to the following
definition of low integrity page.

Definition 4 (Low Integrity Page). A page has low integrity if and only
if any of the following conditions holds:

1. the page is compromisable;

2. the page includes sub-resources (other than scripts) via blockable re-
quests sent over tainted channels.

Low integrity pages which only satisfy the second condition do not
necessarily provide active scripting capabilities to the attacker, yet they
might still pose significant security threats in specific scenarios. That
said, in the next sections we will often reason about the integrity of
web pages to characterize additional web application attacks and our
analysis will always be optimistic, i.e., we will assume that the attacker
gets active scripting capabilities only in compromisable web pages
and not in low integrity pages. We will also dispense with potential
information leakages enabled by scriptless attacks [Hei+14], because
they are not easy to exploit and depend on the details of specific web
technologies. This conservative approach will limit the number of
false positives in our security analysis.

5.5.2 Experimental results

The homepages of the 10,000 crawled websites included sub-resources
from 32,642 hosts. Our analysis exposed 977 low integrity pages (9.8%),
including 898 compromisable pages where an attacker can get ac-
tive scripting capabilities. Examples of major security-sensitive web-
sites whose homepage was found compromisable include e-shops

116

5. Amplification of TLS vulnerabilities on the Web

(alibaba.com, aliexpress.com, tmall.com), online banks (bankia.es,
deutsche-bank.de, sparkasse.at, icicibank.com), social networks (mys-
pace.com, linkedin.com, last.fm) and other prominent services (veri-
zon.com, webex.com, livejournal.com).

Out of 898 compromisable pages, there are 238 pages received
from tainted channels and 660 pages including scripts from tainted
channels. Although the security dangers of these two cases are the
same, the latter cases are particularly intriguing, because they show
that the majority of the compromisable pages (73.5%) is harmed by the
inclusion of external scripts. Since the majority of these scripts is hosted
on domains which are not under the direct control of the embedding
pages, SRI is the way to go to mitigate their threats: unfortunately,
SRI is only used in 329 pages (3.3%) and does not prevent any page
compromise in our dataset. Rather, we observe that there are 25 pages
using SRI on some script tags, but are still compromisable because SRI
is not deployed on all the script tags including contents from tainted
channels.

Based on the previous considerations on external scripts, it is
noteworthy that there exist popular script providers which are
deployed on top of vulnerable HTTPS implementations, thus severely
harming the integrity of a very large number of websites which
include contents from them. Table 5.2 reports the most popular script
providers which allow for the establishment of tainted channels,
along with the number of the Alexa websites which include at least
one script from them in their top-level document. These numbers
show that by targeting only a couple of carefully chosen hosts, an
attacker can fully undermine the integrity of a much larger number of
websites, thus making integrity attacks cost-effective. For instance,
consider the LinkedIn Insight Tag, a JavaScript code that enables the
collection of visitors’ data on webpages which include it and provides
web analytics for LinkedIn ad campaigns. The script is loaded from a
tainted channel served on snap.licdn.com (second row of Table 5.2),
which is vulnerable to MITM attacks due to a host affected by ROBOT
at rewards.wholefoodsmarket.com, that presents a valid certificate
for snap.licdn.com. The inclusion of this script threatens the integrity
of 126 websites among the ones we analyzed, including notable
examples such as auth0.com, britishairways.com, linode.com and
teamviewer.com.

117

5. Amplification of TLS vulnerabilities on the Web

Script Provider Including Websites
hm.baidu.com 188
snap.licdn.com 126
ads.pubmatic.com 47
zz.bdstatic.com 39
cdn.tagcommander.com 37
tag.baidu.com 20
geid.wbtrk.net 19
cdn.wbtrk.net 19
cdn.blueconic.net 14
dup.baidustatic.com 12

Table 5.2: Top script providers introducing integrity flaws.

5.6 Authentication credentials

In this section, we discuss the impact of (partially) leaky and tainted
channels on the security of common authentication credentials, i.e.,
passwords and cookies.

5.6.1 Security analysis

In a typical web session, a website authenticates a user by checking her
access credentials in the form of a username and a password. Upon
their successful verification, the website stores in the user’s browser a
set of session cookies, which are automatically attached to the next re-
quests sent to the website in order to authenticate them. There are quite
a few well-known security threats in this common scenario [Cal+17]
and vulnerable HTTPS implementations may severely compromise the
security of web sessions. For example, if a user’s password is disclosed
to the attacker, the attacker will become able to start new sessions on
the user’s behalf and impersonate her at the website. Moreover, web
session security requires both the confidentiality and the integrity of
session cookies: lack of the former allows the attacker to hijack the
user’s session [Bug+15], while lack of the latter allows the attacker
to force the user in the attacker’s session [Zhe+15]. Though the latter
threat is easily underestimated, it may have serious security conse-
quences on many web applications: for instance, e-payment websites

118

5. Amplification of TLS vulnerabilities on the Web

may be targeted by such attacks to fool honest users into storing their
credit card numbers in an attacker-controlled session.

Confidentiality of passwords

A critical requirement for the confidentiality of passwords is that they
are only input on HTTPS pages and only sent over HTTPS channels.
Modern web browsers indeed warn users when these security im-
portant requirements are not met [Sch17]. Unfortunately, vulnerable
HTTPS implementations may make this security check insufficient:
password confidentiality cannot be ensured when the password is
sent over a leaky channel or entered into a compromisable web page
where the attacker can get active scripting capabilities, thus becoming
able to leak the password from the DOM.

Definition 5 (Low Confidentiality Password). A password has low con-
fidentiality if and only if any of the following conditions holds:

1. the password is submitted over a leaky channel;

2. the page where the password is input is compromisable.

Notice that partially leaky channels cannot be exploited to steal
passwords, because the secret repetition assumption required by such
side-channels is not satisfied by them.

Confidentiality of cookies

The confidentiality of cookies against network attackers can be en-
forced by means of the Secure attribute, because browsers ensure that
Secure cookies are only sent on HTTPS channels and only made ac-
cessible to scripts running in HTTPS pages [Bar11]. However, this
defense mechanism becomes useless when HTTPS does not provide
the expected security guarantees: for example, even partially leaky
channels may be sufficient to disclose the content of Secure cookies,
since cookies are automatically attached by browsers and thus satisfy
the secret repetition assumption required by attacks like POODLE-TLS.
Moreover, compromisable pages can be exploited to steal Secure cook-
ies by means of malicious scripts which exfiltrate them, unless these

119

5. Amplification of TLS vulnerabilities on the Web

cookies are also protected with the HttpOnly attribute, which prevents
script accesses to them.

To make this intuition more precise, given a cookie c, we let hosts(c)
note the set of the hosts matching the domains which are entitled to
access the content of c, as prescribed by RFC 6265 [Bar11]. Intuitively,
c is attached to a request towards h if and only if h ∈ hosts(c).

Definition 6 (Low Confidentiality Cookie). A cookie c set by the host h
has low confidentiality if and only if any of the following conditions holds:

1. there exists a host h′ ∈ hosts(c) which allows for the establishment of
partially leaky channels;

2. c does not have the HttpOnly attribute set and there exists a compro-
misable host h′ ∈ hosts(c).

Notice that breaking the confidentiality of a single session cookie
may not be enough to let the attacker hijack the sessions of legitimate
users, because websites may use multiple cookies for authentication
purposes [Cal+15]. However, if all the session cookies of a website
have low confidentiality, we have definite evidence that there is room
for session hijacking.

Integrity of cookies

Cookie integrity has notoriously been a major problem on the Web
for many years, because cookies do not provide isolation by proto-
col, hence HTTP traffic can be abused to forge cookies which are
indistinguishable from legitimate cookies set over HTTPS [Bar11].
Also, cookies can be set by potentially untrusted related domains, i.e.,
domains that share a common suffix which is not included in the
Public Suffix List.6 The recommended way to enforce cookie integrity
against network attacks on the current Web is configuring HSTS so
that all the hosts entitled to set cookies can only be contacted over
HTTPS [Zhe+15]. An alternative approach is using cookie prefixes,7 a re-
cent addition to web browsers which can be used to prevent the setting
of cookies over HTTP (when the __Secure- prefix appears in the cookie

6. https://publicsuffix.org/
7. https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-02

120

https://publicsuffix.org/
https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis-02

5. Amplification of TLS vulnerabilities on the Web

name) and, potentially, also from untrusted related domains (when
the __Host- prefix appears in the cookie name, preventing cookie shar-
ing between related domains). Unfortunately, these defenses might
fail when HTTPS suffers from cryptographic flaws, because compro-
misable hosts would allow the attacker to break cookie integrity by
corrupting HTTPS traffic; in particular, if the __Host- prefix is not
used, any compromisable host on a related domain would be enough
for the attack.

More precisely, given a host h, we let related(h) note the set of
the hosts whose domain is related to the domain of h. Technically,
this implies that any host h′ ∈ related(h) can set a cookie c such that
h ∈ hosts(c), which means that c might be eventually received by h
and harm its security. Notice that, although h′ may not be able to
directly overwrite host-only cookies set by h, it could still obtain the
same effect by cookie shadowing, i.e., by setting domain cookies with
the same name of host-only cookies so that the target website is fooled
into accessing the former [Zhe+15]. Also, the domain cookies may be
set before the host-only cookies are ever issued, which makes cookie
shadowing attempts undetectable in general.

Definition 7 (Low Integrity Cookie). A cookie c set by the host h has low
integrity if and only if any of the following conditions holds:

1. h is compromisable;

2. c does not have the __Host- prefix and there exists a compromisable
host h′ ∈ related(h).

5.6.2 Experimental results

We first isolated from the 10,000 crawled websites the 4,018 websites
with a private area, i.e., supporting the establishment of authenti-
cated sessions. This was assessed heuristically by checking any of the
following two conditions:

1. the page includes a login form, i.e., a form with both a text/email
field and a password field;

2. the page includes a single sign-on library from a list of popular
identity providers.

121

5. Amplification of TLS vulnerabilities on the Web

All cookies
Host-only (11,784) Domain (31,998) Total (43,782)

Confidentiality 1,469 (12.5%) 6,903 (21.6%) 8,372 (19.1%)
Integrity 2,093 (17.8%) 6,116 (19.1%) 8,209 (18.7%)

Session cookies
Host-only (3,942) Domain (7,818) Total (11,760)

Confidentiality 425 (10.8%) 1,633 (20.1%) 2,058 (17.5%)
Integrity 694 (17.6%) 1,435 (18.3%) 2,129 (18.1%)

Table 5.3: Cookie confidentiality and integrity issues.

Out of the 4,018 websites with a private area, we found 404 cases
where password confidentiality was not ensured (10.0%), either be-
cause the password was sent over a leaky channel or because the page
with the login form was compromisable. Attacks against these pages
would allow an attacker to impersonate legitimate users and start new
sessions on their behalf.

We then turned our attention to the security analysis of cookies.
The left portion of Table 5.6.1 reports the number of low confidentiality
and low integrity cookies collected from the full set of 10,000 websites.
In total, 19.1% of all cookies have low confidentiality, while 18.7%
have low integrity, which suggests that the risks of cookie leakage and
cookie tampering in the wild are far from remote. The most interesting
observation is that ensuring confidentiality for domain cookies is
much harder than for host-only cookies: 21.6% of the domain cookies
have low confidentiality, while this percentage decreases to 12.5% for
host-only cookies. The reason is that the attack surface for domain
cookies is much larger, because it is enough to find one related domain
which suffers from confidentiality issues to leak them; yet, 73.1% of
the collected cookies are domain cookies. As to integrity, the difference
between domain cookies and host-only cookies is almost negligible
and the most concerning observation there is that only one of the
10,000 websites we crawled makes use of cookie prefixes to improve
cookie integrity.

To better understand the impact of these numbers on web session
security, we restricted our attention just to the session cookies set from

122

5. Amplification of TLS vulnerabilities on the Web

the 4,018 websites featuring a private area. Session cookies were identi-
fied using a heuristic proposed in previous work [Bug+15], which was
shown to be fairly accurate in practice and nicely fits our large-scale
investigation. The right portion of Table 5.6.1 presents the results of
such analysis, which shows that the high-level picture does not change
significantly when we focus just on session cookies. Moreover, we ob-
served that 412 websites (10.2%) may leak all their session cookies due
to cryptographic flaws, which may allow network attackers to imper-
sonate legitimate users of these websites. It is worth noticing that, if
all these cookies could be marked as HttpOnly without breaking the
functionality of the websites, the number of websites vulnerable to
this threat would reduce to 207 (5.1%). This shows that a complete
deployment of the HttpOnly attribute would be quite effective, yet
not sufficient to fully protect honest users against session hijacking,
since session cookies could still be sent over partially leaky channels.

Finally, we found 543 websites (13.5%) whose session cookies all
have low integrity, which may allow the attacker to force honest users
into attacker-controlled sessions (cookie forcing). In all cases, the
cookie integrity problems were due to the presence of a vulnerabil-
ity in a related domain, but we also found 404 cases where also the
base domain suffers from integrity flaws. The __Host- cookie prefix
would be useful to improve session security in the 139 cases (25.6%)
where the integrity vulnerabilities are confined to related domains,
but unfortunately only one of the crawled websites (dropbox.com)
uses cookie prefixes. Remarkably, we observe that 22 out of these
139 cases (15.8%) could safely introduce the __Host- prefix without
compatibility problems, as none of their session cookies is a domain
cookie.

5.6.3 Detected attacks

Since the numbers in the previous section may have been affected by
the use of heuristics to detect private areas and session cookies, we
report on a selected set of manual experiments to confirm the existence
of credential stealing and session hijacking attacks on prominent web-
sites in the wild. For ethical reasons, we did not tamper with websites
to test concrete attacks. Rather, we carefully checked all the conditions

123

5. Amplification of TLS vulnerabilities on the Web

required to mount attacks against the targets and employed a local
proxy to simulate the attack.

One notable example where password confidentiality is not en-
sured is Myspace. The login page and the endpoint where the pass-
word is sent are both served on myspace.com, that is directly vulnera-
ble to ROBOT. Thus, an attacker could either sniff the password from
a tainted channel or actively inject a script in the page to leak access
credentials from the DOM.

Session hijacking has been identified as a realistic threat
on the yandex.com web portal. In this case the main host it-
self is secure, but the presence of a partially leaky channel on
api.developer.store.yandex.com makes possible for an attacker to
disclose all domain cookies by forcing the victim’s client to iterate
requests against that specific host from an attacker’s controlled origin.
All cookies set by the website after logging in are domain cookies,
including Session_id that is used to authenticate user sessions,
proving the attack to be practical.

Finally, cookie forcing has been found on the Microsoft webmail
live.com. Our large-scale assessment found that the host exchange.
backcountry.com is vulnerable to ROBOT and presents a certificate
valid also for outlook.live.com. Since the host of one of the related
domains of live.com is compromisable, an attacker could mount a
MITM to overwrite the cookies of a honest user, forcing her into the
attacker’s session.

5.7 Web tracking

In this section, we discuss how leaky and tainted channels can be
abused to track navigation behaviours of web users and breach privacy
at scale.

5.7.1 Security analysis

Online tracking is pervasive on the Web and has significant privacy
implications [RKW12; EN16]. Third-party tracking is particularly dan-
gerous for user privacy, because it allows trackers to reconstruct a
cross-site navigation profile of online users at scale. In this form of

124

5. Amplification of TLS vulnerabilities on the Web

tracking, the tracker is embedded on external websites in a third-party
position, i.e., using iframes, so that it is able to set a tracker-owned
cookie containing a unique identifier in the user’s browser. Every time
the user accesses a website where the tracker is present, her browser
will automatically send a request including the cookie to the tracker:
since this request also includes the Referer header, which tracks the
page from which the request was sent, the tracker becomes able to
reconstruct the navigation profile of the user identified by the cookie.

Network attackers can easily disclose a lot of information about
navigation patterns just because they are in control of the network.
For instance, they can link a given IP address to all the domain names
requested from it. However, this does not necessarily allow the at-
tacker to build a navigation profile of the target user, e.g., because
the same IP address is shared by multiple users (in case of NATs) or
because the same user is assigned different IP addresses upon differ-
ent connections. Still, it is known that network attackers may become
able to build cross-site navigation profiles of users by monitoring the
presence of tracking cookies in the HTTP traffic [Eng+15]. Here we
discuss a similar attack, which exploits existing confidentiality issues
in the HTTPS implementations of web trackers.

Assume the attacker wants to learn whether a user identified by the
tracking cookie c has ever accessed the page p. If the page p includes
sub-resources from a tracker-controlled host h ∈ hosts(c) over a leaky
channel, the attacker may be able to associate the value of c to the
page p via the Referer header. However, even if p does not include
anything from the tracker, the attacker can force such leaky content
inclusion when p itself is compromisable, thus amplifying the privacy
risks. This leads to the following definition.

Definition 8 (Profiling). A tracking cookie c allows profiling on the page
p if and only if there exists a host h ∈ hosts(c) which allows for the establish-
ment of leaky channels and any of the following conditions holds:

1. p sends a request to h;

2. p is compromisable.

125

5. Amplification of TLS vulnerabilities on the Web

Tracker Including Websites
snap.licdn.com 126
l.betrad.com 100
hbopenbid.pubmatic.com 76
kraken.rambler.ru 66
ads.pubmatic.com 47
simage2.pubmatic.com 30
counter.rambler.ru 25
tag.1rx.io 20
fw-sync.nuggad.net 18
t.pubmatic.com 17

Table 5.4: Top trackers introducing privacy flaws.

5.7.2 Experimental results

We downloaded a list of 2,399 prominent tracking domains provided
by Disconnect8 and we checked for content inclusions from them
in the 10,000 websites taken from Alexa. In particular, we focused
on inclusions from any sub-domain of the trackers, because domain
cookies could be used to perform tracking when including contents
(of any type) from them. By doing this, we managed to identify a
set of 4,226 tracker-controlled hosts which may potentially be abused
to perform user profiling on the Alexa websites. We then analyzed
these hosts, checking whether they allow the establishment of leaky
channels, and it turned out that 82 (1.9%) of them suffer from this
security issue.

We report in Table 5.4 the list of the most popular vulnerable
tracker-controlled hosts, along with the number of websites from
Alexa which included contents from them. These vulnerable hosts
are controlled by different companies basing their business on web
tracking and analytics. By checking against Cookiepedia,9 we con-
firmed that at least four of these companies rely on the practice of
setting long-lived domain cookies for third-party tracking: PubMatic,
Rambler, RhythmOne and nugg.ad. To understand the privacy impli-

8. https://github.com/disconnectme/disconnect-tracking-protection
9. https://cookiepedia.co.uk/

126

https://github.com/disconnectme/disconnect-tracking-protection
https://cookiepedia.co.uk/

5. Amplification of TLS vulnerabilities on the Web

cations of these security issues, we focused on the hosts controlled
by PubMatic, which are the most numerous: attacking the vulnerable
hosts of PubMatic would allow one to reconstruct navigation profiles
over 142 websites which include contents from them. Moreover, by
injecting references to these hosts in any of the 898 compromisable
homepages from our dataset, this privacy attack could be further
amplified to track navigation behaviors across 968 websites (9.7%).

5.8 Closing remarks

5.8.1 Related work

Novel attacks against TLS were often released with the analysis of
their impact in the wild, by measuring the number of vulnerable
servers in scans of the IPv4 address space or the most popular web-
sites ranked by Alexa. This was true for RSA keys factorable by Batch
GCD algorithm [Hen+12] and attacks like DROWN [Avi+16] or Log-
jam [Adr+15]. Small subgroup attacks against Diffie-Hellman were
measured by Valenta et al. [Val+17]. Dorey et al. [DCE17] measured
misconfigured DH key parameters that potentially contain backdoors.
The prevalence of several attacks against the Elliptic Curve DH key es-
tablishment in TLS was measured by Valenta et al. [Val+18]. Some vul-
nerability measurements were revisited to track the progress of patch-
ing, such as Heartbleed [Dur+14] and the Batch GCD method [HFH16].
The SSL Pulse project [Qua18] releases monthly measurements on the
prevalence of certain attacks and feature support. Novel variants of old
vulnerabilities were discovered, such as in the ROBOT attack [BSY17],
or for CBC oracles via the TLS-Attacker fuzzing tool [Som16b]. Sum-
maries of known TLS vulnerabilities were published by Levillain et
al. [Lev17; LGD15] and by the IETF [SHS15]. Lessons learned from
attacks known before 2013 have been summarized by Meyer and
Schwenk [MS14].

None of the papers above systematically discusses and quantifies
web application security issues. However, the risks coming from the
partial adoption of HTTP on HTTPS websites have been studied in
several research papers. For instance, [Che+13] performed a large-
scale analysis of the security risks of mixed content websites, [KB15]
analyzed the state of the HSTS deployment and [SPK16] studied the

127

5. Amplification of TLS vulnerabilities on the Web

threats posed by the leakage of cookies over HTTP channels. There
are also a few papers quantifying how much incorrect TLS imple-
mentations affect the security of the email infrastructure [Dur+15b;
Hol+16].

The present chapter contributes to the increasingly popular re-
search line on large-scale security evaluations of the Web [Goe+14].
Though several papers analyzed the security of the HTTPS certifi-
cate ecosystem [Dur+13; Hol+11; Van+16], we are not aware of any
scientific publication which quantifies how much cryptographic weak-
nesses in TLS implementations may harm web application security.
Other important aspects of web application security which have been
investigated by previous large-scale measurements include the dan-
gers of remote JavaScript inclusion [Nik+12], the prevalence of DOM-
based XSS [LSJ13] and the state of the CSP adoption [CRB16; CRB18;
Wei+16].

5.8.2 Ethics and limitations

Due to both legal and ethical reasons, our analysis of TLS vulnera-
bilities in the wild was limited to an unintrusive scan based on the
use of publicly available tools. The exploitability of the discovered
vulnerabilities was exclusively judged through a systematic analysis
of the output of those tools, defined via an extensive account of the
existing literature on attacks against TLS (summarized in the attack
trees of Section 5.3). All the vulnerabilities we tested have been first
published at major computer security conferences and/or received ex-
tensive coverage in the hacking community. They have all been shown
to be exploitable in the wild, requiring a practically feasible amount of
computational power. Since we did not run any active attack attempt,
it is possible that the vulnerabilities reported in the present study are
not actually exploitable in practice, e.g., due to the deployment of
anomaly detection systems. That said, the real effectiveness of such
kind of mitigations is hard to assess and fixing the vulnerabilities
would be certainly preferable from a security perspective.

The set of the studied web application vulnerabilities is not in-
tended to be exhaustive: it just gives evidence of significant security
threats posed by vulnerable TLS implementations and allows for a
systematic quantification of their practical relevance. The usage of

128

5. Amplification of TLS vulnerabilities on the Web

heuristics in a few parts of our experimental evaluation, e.g., for ses-
sion cookie detection, may have introduced a bias in our quantitative
assessment: better heuristics may make the analysis more precise, but
they are likely not going to entail a significant change of the currently
drawn picture, given the large scale of the experiments. We manually
confirmed some of the security issues to provide further evidence
of the effectiveness of our methodology. We also rechecked all the
vulnerable sites explicitly mentioned in this chapter at the beginning
of January 2019 and most of them have fixed the issues since our first
scan. We have responsibly reported the discovered flaws to the sites
that are still vulnerable and only one has answered dismissively with:
“this case has no direct security impact and we will not take an im-
mediate action or a fix”. In fact, we did not find a strong interest in
TLS-related issues even in vulnerability reward programs but the fact
that many sites fixed the problems is promising in terms of awareness
of the risks due to wrong HTTPS implementations.

5.8.3 Summary and perspective

Though the use of HTTPS is necessary for web application security, it
is not a panacea, because flaws in the underlying TLS implementation
may have a significant security impact at the application layer. We
have computed a few disquieting numbers in our present evaluation:
we summarize here the most relevant observations and present our
perspective on the main findings.

Almost 10% of the homepages of the crawled websites is compro-
misable, i.e., a determined network attacker may get active scripting
capabilities on them. For approximately 25% of the compromisable
pages, this security problem can be fixed just by revising the cryp-
tographic implementation of their host. Unfortunately, the security
of the other 75% pages is downgraded by the inclusion of external
scripts retrieved over tainted channels: this makes it hard for web
developers to get a realistic picture of the cryptographic robustness of
their web applications and fix potential issues. Since we only crawled
homepages, our findings under-approximate the real situation, as
other webpages might include more insecure content. SRI is a poten-
tially effective defense mechanism for these cases, but its adoption is
minuscule and sub-optimal: approximately, just 3% of the pages are

129

5. Amplification of TLS vulnerabilities on the Web

using SRI and none of the attacks we found is actually stopped by the
current deployment.

For what concerns web session security, we found room for session
hijacking attacks by cookie stealing in around 10% of the crawled
websites, while more than 13% of the websites were found vulnera-
ble to cookie forcing. The most concerning aspect of cookie security
is the impact of related domains: even a single security issue on a
related-domain host may completely undermine session security, be-
cause related-domain hosts may break both the confidentiality and
the integrity of session cookies. Room for password theft was also
found in 10% of the login pages.

Finally, cryptographic weaknesses in the TLS implementations of
web trackers may pose major threats to user privacy at scale. In our
experimental analysis, we discovered some prominent trackers inad-
vertently introducing this security problem on a significant amount
of websites. The most disquieting aspect here is that just a single vul-
nerable tracker may significantly harm user privacy at scale, as long
as it is popular enough to be included on many different websites:
for instance, one problem we found allows for user profiling on 142
websites, which can be further increased to 968 websites by running a
more powerful variant of the attack.

We expect this bleak picture to improve after both browsers and
servers provide a better support for TLS 1.3. Major browser vendors
already announced that they will deprecate TLS 1.0 and 1.1 in 2020
[Ben18]. However, backward compatibility and slow adoption are
always a major hindrance for web security improvements, so we expect
old TLS versions to stick around for at least a few years. The present
study acts as a cautionary tale of the threats they pose: we plan to
supply the toolchain developed for our study as a web application to
support developers who are interested in mitigating these threats.

5.9 Additional results

5.9.1 Notable out of scope attacks against TLS

Several vulnerabilities of TLS are not exploitable in the wild, based on
recent measurements or due to the configuration of modern clients.

130

5. Amplification of TLS vulnerabilities on the Web

Diffie-Hellman key establishment attacks (MITM attacks)

Static DH key exchange susceptible to small subgroup attacks [Val+17]
is not supported by modern browsers and support for vulnerable
static ECDH key exchange was removed in browsers we target. Fur-
thermore, some browsers already deprecated DHE [DCE17] and more
should follow. Possibly backdoored DH groups were observed in the
wild [DCE17]. It is not possible to intercept the connection without
the knowledge of the backdoor, hence only the attacker that generated
the backdoored parameters could mount MITM attacks. The Logjam
attack [Adr+15] forces the server to choose a small 512-bit DH group,
however modern browsers enforce minimal group size, where the
discrete logarithm problem is infeasible.

A recent paper [Val+18] measured the prevalence and feasibility
of several attacks on ECDH (static and ephemeral) key establishment.
Many servers fail to check parameters and many reuse ephemeral keys
[SDH16], no server was found that would do both. Their further find-
ings indicate that several other proposed attacks (such as CurveSwap)
are infeasible in TLS.

State machine bugs (up to MITM)

The state machines of TLS are complicated and not explicitly stated
in the standards. Their implementations are a common source of
bugs. The Early CCS attack found by [Kik14] allowed a MITM attack.
Due to a bug in OpenSSL, running the Change Cipher Spec Protocol
early, both the server and the client used a zero-length master key.
While the bug is still found on some servers [Qua18], browsers have
been patched. FREAK, another client-side bug [Beu+15] allowed the
attacker to downgrade the client to RSA_EXPORT (easily factorable 512-
bit keys), even when the client did not offer such ciphersuite. Searching
for new state machine bugs was out of our scope and is the focus of
systematic studies of state machine implementations [Beu+15; RP15].

Private key leakage (MITM)

Private RSA keys generated with insufficient entropy can lead to
servers sharing primes in their keys, allowing such RSA keys to be fac-
tored by a simple greatest common divisor (GCD) computation. Batch

131

5. Amplification of TLS vulnerabilities on the Web

GCD, an efficient version of the algorithm that can handle millions of
moduli, revealed that such keys were widespread [Hen+12; HFH16],
likely due to consumer devices that generate their keys shortly af-
ter boot, before entropy is collected. The bugs are not prevalent on
commercial servers from the Alexa list.

DSA and ECDSA private keys can be recovered if the same secret
nonce is used more than once [Nat13], yet it happens with negligible
probability. Even biased nonces can be used to reveal the private key,
if enough signatures with a small number of known nonce bits are
known [Shp03]. However, testing for such side-channels is infeasible.
Remote time side-channel attacks were demonstrated [BT11], yet the
bugs were known beforehand. Timing attacks often rely on observing
cache access [RPS18] that cannot be performed from a MITM position.

Certificate validation bugs (MITM)

Some non-browser clients were shown to have flawed certificate val-
idation [Geo+12], accepting invalid certificates. We assume correct
certificate validation in modern browsers and users following browser
warnings. Certificate validation bugs in software and hardware that
intercepts TLS connections [CM16; Dur+17; WMY18] are also out of
scope of our analysis.

Transcript collision attacks (MITM)

We leave out transcript collision attacks [BL16a] since the performance
of the algorithms for finding (chosen prefix) collision in the hash
functions is not yet practical enough.

Further CBC-mode attacks (partial secret leakage)

Attacks based on timing side-channels like Lucky13 [AP13] were in-
feasible for us to assess over the Internet. The original POODLE attack
[MDK14] cannot be applied, since browsers disabled SSLv3 support.
Browsers that fix bugs, such as an SOP-bypass, or implement the
1/n-1 split will resist BEAST [DR11]. We leave for future work the
attacks that enable partially leaky channels from server to client, like

132

5. Amplification of TLS vulnerabilities on the Web

BREACH [PHG13], that requires specific conditions at the server’s
application layer to be exploited.

Weak ciphers (partial secret leakage)

Authentication tokens and cookies could be disclosed due to collisions
in CBC mode of a 64-bit block cipher, such as Triple-DES (3DES), via
the Sweet32 attack [BL16b]. Due to the birthday paradox, a ciphertext
collision between a block that encrypts a known plaintext and a block
that encrypts the cookie is expected with high probability after the
client sends about 232 messages. Modern browsers may support 3DES
as a fallback in case that the preferred AES cipher (with at least 128-bit
blocks) is not supported by the server. An effective mitigation is to
disable 3DES support or enforce a conservative bound for the amount
of data encrypted under one key. We assumed such limit in browsers
and therefore removed the attack from scope.

It is possible to extract short secrets using a statistical attack against
the biased key stream of the RC4 stream cipher [GPM15]. Although
the current state of the art attack still requires a large number of
secret repetitions, IETF deprecated RC4 use in TLS [Pop15] and major
browsers disabled RC4 support.

Compression oracles (partial secret leakage)

A side-channel based on compression was described by Kelsey [Kel02].
If the attacker injects into the plaintext a copy of the secret, the com-
pression should reduce the size of the ciphertext, when compared
to injecting random plaintext of the same size. The attacker could
observe the size of the ciphertext (CRIME attack [RD12]) or the time of
the transmission (TIME attack [BS13]) to build an oracle for verifying
guesses of the secret. The attacks require secret repetition and partial
control over the plaintext. Modern clients disable compression of TLS
records, and so does the majority of the servers [Qua18].

Renegotiation and Triple Handshake (integrity)

We consider the Renegotiation attack [RD09] and the Triple Handshake
attack [Bha+14] as out of scope. The main idea of the attacks is that the

133

5. Amplification of TLS vulnerabilities on the Web

GOAL Bleichenbacher’s oracle on the server
| 1 The response to any of these client key

exchanges differs:
| 1 Correct padding:

00 02 <random> 00 <TLS version> <PMS>
| 2 Wrong first two bytes:

41 17 <random> 00 <TLS version> <PMS>
| 3 A 0x00 byte in a wrong position:

00 02 <random> 11 <PMS> 00 11
| 4 Missing 0x00 byte in the middle:

00 02 <random> 11 11 11 <PMS>
| 5 Wrong version number oracle [KPR03]:

00 02 <random> 00 02 02 <PMS>

Figure 5.5: A simplified test for general Bleichenbacher’s oracle from
testssl.sh.

messages sent by the client are “spliced” into ongoing communication
between the attacker and the server, and the server assumes continuity
before and after renegotiation, despite TLS not giving such guarantee.
We do not consider Client Authentication and do not test application
layer authentication for such behavior.

5.9.2 More detailed attack trees

Tests performed by security tools can be also described as attack trees.
To illustrate the specific conditions of some attacks, we present an
abstraction of the tests for Bleichenbacher’s oracle in Figure 5.5 and its
Strong variant in Figure 5.6, General and Special DROWN attack in
Figure 5.7 and Figure 5.8, respectively, and the conditions for POODLE-
TLS in Figure 5.9 and for a specific CBC padding oracle in Figure 5.10.

Some leaf conditions in the trees are represented by sub-trees. We
list some of them explicitly, namely the requirements for an attacker to
mount a protocol version downgrade attack (Figure 5.11), the condi-
tions indicating the presence of an RSA decryption oracle (Figure 5.12
and 5.13), and the tree for fast RSA signature oracle (Figure 5.14). Other
leaf conditions are more intuitive or they are mapped to the outputs of
the attack vulnerability testing tools, testssl.sh, TLS-Attacker [Som16b],
and the DROWN detection plugin for nmap.

134

5. Amplification of TLS vulnerabilities on the Web

GOAL Strong Bleichenbacher’s oracle on the server
& 1 Bleichenbacher’s oracle on the server (Figure 5.5)
& 2 The client key exchange messages 2, 3, and 4

invoked at least 2 different server responses

Figure 5.6: A simplified test for Strong Bleichenbacher’s oracle from
testssl.sh.
GOAL Server is vulnerable to General DROWN
| 1 Server supports a vulnerable SSLv2 ciphersuite

(using DES or a cipher with 40-bit keys)
| 1 Server offers such ciphersuite (CVE-2016-0800)
| 2 Server accepts such ciphersuite without

advertising its support (CVE-2015-3197)

Figure 5.7: The test for General DROWN according to the detection
script (the test is repeated for different application protocols).

GOAL Server is vulnerable to Special DROWN
& 1 Server supports SSLv2
& 2 Server has the "extra clear" oracle (it allows

clear_key_data bytes for non-export ciphers)

Figure 5.8: The test for Special DROWN according to the detection
script.

GOAL POODLE-TLS padding oracle on the server
| 1 Server does not respond with a Fatal Alert to

a message with an error on the first byte of the
padding (the rest of the padding is correct)

Figure 5.9: The test for a POODLE-TLS padding oracle as seen in
TLS-Attacker.
GOAL CBC padding oracle CVE-2016-2107 on the server
| 1 Server issues a RECORD_OVERFLOW alert

as a response to a specially crafted message

Figure 5.10: The test for a CBC padding oracle due to an OpenSSL bug
in AES-NI code (CVE-2016-2107) as seen in TLS-Attacker (simplified).

135

5. Amplification of TLS vulnerabilities on the Web

GOAL Downgrade to a specific lower protocol version <V>
& 1 At least one of the peers lacks version downgrade mitigation

| 1 Client does not support RFC 7507 TLS_FALLBACK_SCSV
(i.e., the Client does not append the ciphersuite to a
ClientHello with other than the highest supported TLS version)

| 2 Server does not support RFC 7507 TLS_FALLBACK_SCSV
(i.e., the Server does not check for the presence
of the ciphersuite in the ClientHello)

& 2 Client and Server support a specific lower protocol version <V>
(with some interesting property, e.g., with preferred CBC mode
of symmetric encryption, or only supporting RSA key exchange)

& 1 Server supports the lower protocol version <V>
& 2 Client supports the lower protocol version <V> (e.g., modern

web browsers support TLS 1.0 to 1.3, but not SSLv2 and SSLv3)

Figure 5.11: Attack sub-tree for protocol version downgrade.

GOAL RSA decryption oracle is available
| 1 Oracle allows feasible decryption

| 1 Strong Bleichenbacher’s oracle on the server (Figure 5.6)
| 2 General DROWN

& 1 Server is vulnerable to General DROWN (Figure 5.7)
& 2 Attacker can capture a key exchange in the required format

(1 in 900) (assumption)
| 2 Fast RSA decryption oracle (Figure 5.13)

Figure 5.12: Attack sub-tree for an RSA decryption oracle (that allows
a decryption of key exchange messages).

GOAL Fast RSA decryption oracle
| 1 Strong Bleichenbacher’s PKCS #1 v1.5 oracle and high performance

& 1 Strong Bleichenbacher’s oracle on the server (Figure 5.6)
& 2 Attacker can decrypt before the handshake finishes

(assumption about the performance of the Server and Attacker
to handle many parallel connections)

| 2 Special DROWN
& 1 Server is vulnerable to Special DROWN (Figure 5.8)
& 2 Attacker can capture a key exchange in the required format

(1 in 260) (assumption)

Figure 5.13: Attack sub-tree for a fast RSA decryption oracle (that
allows an online decryption).

136

5. Amplification of TLS vulnerabilities on the Web

GOAL Fast RSA signature oracle
| 1 Strong Bleichenbacher’s PKCS #1 v1.5 oracle and high performance

& 1 Strong Bleichenbacher’s oracle on the server (Figure 5.6)
& 2 Attacker can forge the signature before the handshake finishes

(assumption about the performance of the Server and Attacker
to handle many parallel connections)

Figure 5.14: Attack sub-tree for a fast RSA signature oracle (that allows
an online decryption or signature forgery).

137

6 Conclusions

This thesis advances the security of real-world systems and crypto-
graphic implementations and illustrates several interesting points. We
showed that seemingly small decisions in the design of an RSA key
generation algorithm could have surprising consequences. Even cor-
rect but distinct approaches reveal some information about the system.
We saw a deviation from the norm cause devastating consequences
for the security of an algorithm. Finally, when considering the security
of a complicated system, such as Internet servers running TLS pro-
tocol implementations, the scope of the study can change the results
dramatically. While many measurements focus on popular websites,
their supporting infrastructure tends to receive less attention, while
potentially hiding more issues.

The Internet is exceptionally complicated. We helped the com-
munity understand some of its security aspects a little better. Our
approach to measuring the popularity of cryptographic libraries lever-
ages slight biases in the distributions of RSA keys generated by the
libraries. We saw interesting trends that indicate that many servers
rely on a few popular libraries, with OpenSSL in the lead. Different
application domains have varying needs, and understanding them is
the first step towards improving their security. To improve our analysis
technique in the future, we encourage the use of data mining to obtain
more value from the data than summaries and statistics. It would also
be valuable to extend the measurement method to other cryptographic
algorithms. To developers of cryptographic libraries, we recommend
following a standardized RSA key generation approach to minimize
leaking the details of their implementation and to help prevent design
mistakes.

In our work on the security of the TLS protocol, we focused on the
outliers that have exploitable security weaknesses. By studying the
relatively few broken implementations in the interconnected context
of the Web, we saw that their weaknesses get amplified by systems
that rely on them. Many papers that measure the prevalence of crypto-
graphic attacks only evaluate primary targets and neglect to consider
the surrounding infrastructure. We encourage security researchers to
expand their analyses and practitioners to seek safe configurations.

139

6. Conclusions

An example of a potentially unsafe server configuration was the case
of reusing RSA keys or TLS certificates amongst servers with different
levels of attention to timely security updates. We also saw the impor-
tance of keeping the vulnerability tests lightweight, since the scope
quickly expands, when connections begin to be explored.

In both of the wide-scale measurements, it was crucial to present
the results in an accessible way. For the measurement of TLS attacks,
we described the conditions and effects of the attacks in the form of
attacks trees. The trees break a complicated topic into smaller parts that
are easier to understand and help highlight the important outcomes at
the top of the tree. For the popularity measurements, we transformed
a large dataset into concise summaries and graphs. Similar methods
could be applied to other studies as an avenue for future work.

Studying an outlier in the area of RSA key generation lead us to
the discovery of a severe flaw affecting a cryptographic library used in
many domains based on secure chips. The research resulted in a prac-
tical factorization method, but it also brought to light other interesting
questions. A disadvantage of a proprietary design was demonstrated.
The discovery of the issue was delayed for many years, possibly due
to the secret specification and implementation. A weakness of the cer-
tification process was illustrated, where the library received security
certifications as a whole, while an important part was not considered
for evaluation.

In future work, we aim to study more potential outliers and to look
for other features and transformations that could reveal such oddities.
We plan to evaluate both open and closed systems since neither the
open-source nature of the code nor the process of private certifications
can guarantee security by itself.

The most critical point that connects all our research questions
is that providing developers and users with many choices might be
harmful to security. There is no consensus on what RSA key generation
method is the most robust. Details are often left out of specifications,
such as low-level implementation decisions when generating RSA
keys. The developers were overwhelmed by a repeatedly expanding
list of countermeasures needed to make the use of RSA in TLS secure
from padding oracle attacks.

In contrast, recent publications and standards using elliptic curve
cryptography (ECC) are more authoritative. The recommended curves

140

6. Conclusions

are limited to robust choices, and the algorithm descriptions are more
precise. That is not to say that ECC is without pitfalls, but the commu-
nity has taken steps to limit both design and implementation mistakes.
Decisions were lifted from the developers, and more secure choices
were made for the standard applications of ECC. It might be a good
idea to follow the example of TLS version 1.3 and to deprecate the
use of RSA in favor of ECC. That might help escape the legacy of
implementations that do not stand up to the challenge.

141

Bibliography

[Adr+15] D. Adrian, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, P. Zimmermann, K. Bhargavan,
Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman,
N. Heninger, D. Springall, and E. Thomé. “Imper-
fect Forward Secrecy”. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Commu-
nications Security – CCS ’15. ACM Press, 2015. doi:
10.1145/2810103.2813707.

[Akh+16] D. Akhawe, F. Braun, F. Marier, and J. Weinberge. W3C
Recommendation: Subresource Integrity. 2016. url: https:
//www.w3.org/TR/SRI/ (retrieved 2019-09-24).

[Alb+16] M. R. Albrecht, J. P. Degabriele, T. B. Hansen, and K. G.
Paterson. “A Surfeit of SSH Cipher Suites”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’16. ACM, 2016, pp. 1480–
1491. isbn: 978-1-4503-4139-4.

[Alb+18] M. R. Albrecht, J. Massimo, K. G. Paterson, and J. So-
morovsky. “Prime and Prejudice”. In: Proceedings of the
2018 ACM SIGSAC Conference on Computer and Commu-
nications Security - CCS ’18. ACM Press, 2018. doi: 10.
1145/3243734.3243787. url: https://doi.org/10.
1145%2F3243734.3243787.

[AP13] N. J. AlFardan and K. G. Paterson. “Lucky Thirteen:
Breaking the TLS and DTLS Record Protocols”. In: 2013
IEEE Symposium on Security and Privacy. IEEE, May 2013.
doi: 10.1109/sp.2013.42.

[AlF+13] N. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poetter-
ing, and J. C. N. Schuldt. “On the Security of RC4 in
TLS”. In: Proceedings of the 22nd USENIX Security Sympo-
sium (USENIX Security 13). USENIX, 2013, pp. 305–320.
isbn: 978-1-931971-03-4. url: https://www.usenix.org/
conference/usenixsecurity13/technical-sessions/
paper/alFardan.

[Avi+16] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger,
M. Dankel, J. Steube, L. Valenta, D. Adrian, J. A. Hal-

143

https://doi.org/10.1145/2810103.2813707
https://www.w3.org/TR/SRI/
https://www.w3.org/TR/SRI/
https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1145%2F3243734.3243787
https://doi.org/10.1145%2F3243734.3243787
https://doi.org/10.1109/sp.2013.42
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/alFardan

BIBLIOGRAPHY

derman, V. Dukhovni, E. Käsper, S. Cohney, S. Engels,
C. Paar, and Y. Shavitt. “DROWN: Breaking TLS Using
SSLv2”. In: Proceedings of the 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association,
2016, pp. 689–706. isbn: 978-1-931971-32-4. url: https:
//www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/aviram.

[AZ04] Axalto and Zetes. Public user specification BelPic applica-
tion v2.0. 2004. url: http://www.foo.be/eID/opensc-
belgium/BEID-CardSpecs-v2.0.0.pdf (retrieved 2019-
09-24).

[Bar+16] M. Barbulescu, A. Stratulat, V. Traista-Popescu, and E.
Simion. “RSA Weak Public Keys Available on the Inter-
net”. In: Innovative Security Solutions for Information Tech-
nology and Communications (SECITC 2016). Springer Inter-
national Publishing, 2016, pp. 92–102. doi: 10.1007/978-
3-319-47238-6_6.

[Bar+12] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G.
Steel, and J.-K. Tsay. “Efficient Padding Oracle Attacks
on Cryptographic Hardware”. In: Advances in Cryptology –
CRYPTO 2012. Springer Berlin Heidelberg, 2012, pp. 608–
625. doi: 10.1007/978-3-642-32009-5_36.

[Bar11] A. Barth. RFC 6265: HTTP State Management Mechanism.
2011. url: http : / / tools . ietf . org / html / rfc6265
(retrieved 2019-09-24).

[BS13] T. Be’ery and A. Shulman. A Perfect CRIME? Only TIME
Will Tell. 2013. url: https://media.blackhat.com/eu-
13/briefings/Beery/bh- eu- 13- a- perfect- crime-
beery-wp.pdf (retrieved 2019-09-24).

[Bel08] L. Bello. DSA-1571-1 openssl – predictable random num-
ber generator. 2008. url: https : / / www . debian . org /
security/2008/dsa-1571 (retrieved 2019-09-24).

[Ben18] D. Benjamin. Modernizing Transport Security. 2018.
url: https://security.googleblog.com/2018/10/
modernizing - transport - security . html (retrieved
2019-09-24).

144

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
http://www.foo.be/eID/opensc-belgium/BEID-CardSpecs-v2.0.0.pdf
http://www.foo.be/eID/opensc-belgium/BEID-CardSpecs-v2.0.0.pdf
https://doi.org/10.1007/978-3-319-47238-6_6
https://doi.org/10.1007/978-3-319-47238-6_6
https://doi.org/10.1007/978-3-642-32009-5_36
http://tools.ietf.org/html/rfc6265
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://media.blackhat.com/eu-13/briefings/Beery/bh-eu-13-a-perfect-crime-beery-wp.pdf
https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571
https://security.googleblog.com/2018/10/modernizing-transport-security.html
https://security.googleblog.com/2018/10/modernizing-transport-security.html

BIBLIOGRAPHY

[Ber67] E. R. Berlekamp. “Factoring Polynomials Over Finite
Fields”. In: Bell System Technical Journal 46.8 (1967),
pp. 1853–1859. issn: 1538-7305.

[Ber05] D. J. Bernstein. Cache-timing attacks on AES. 2005. url:
https : / / cr . yp . to / antiforgery / cachetiming -
20050414.pdf (retrieved 2019-09-24).

[Ber+13] D. J. Bernstein, Y.-A. Chang, C.-M. Cheng, L.-P. Chou,
N. Heninger, T. Lange, and N. van Someren. “Factoring
RSA Keys from Certified Smart Cards: Coppersmith in
the Wild”. In: Advances in Cryptology - ASIACRYPT 2013.
Springer-Verlag, 2013, pp. 341–360. isbn: 978-3-642-42045-
0.

[BHL12] D. J. Bernstein, N. Heninger, and T. Lange. Batch gcd. 2012.
url: http : / / facthacks . cr . yp . to / batchgcd . html
(retrieved 2019-09-24).

[Beu+15] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C.
Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K.
Zinzindohoue. “A Messy State of the Union: Taming
the Composite State Machines of TLS”. In: 2015 IEEE
Symposium on Security and Privacy. IEEE, May 2015. doi:
10.1109/sp.2015.39.

[Bha+14] K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti, and
P. Y. Strub. “Triple Handshakes and Cookie Cutters:
Breaking and Fixing Authentication over TLS”. In: 2014
IEEE Symposium on Security and Privacy. IEEE, May 2014.
doi: 10.1109/sp.2014.14.

[BL16a] K. Bhargavan and G. Leurent. “Transcript Collision At-
tacks: Breaking Authentication in TLS, IKE, and SSH”.
In: Proceedings of the 2016 Network and Distributed Sys-
tem Security Symposium. Internet Society, 2016. doi: 10.
14722/ndss.2016.23418.

[BL16b] K. Bhargavan and G. Leurent. “On the Practical (In-
)Security of 64-bit Block Ciphers”. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Com-
munications Security - CCS’16. ACM Press, 2016. doi:
10.1145/2976749.2978423.

[Ble98] D. Bleichenbacher. “Chosen ciphertext attacks against
protocols based on the RSA encryption standard

145

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://facthacks.cr.yp.to/batchgcd.html
https://doi.org/10.1109/sp.2015.39
https://doi.org/10.1109/sp.2014.14
https://doi.org/10.14722/ndss.2016.23418
https://doi.org/10.14722/ndss.2016.23418
https://doi.org/10.1145/2976749.2978423

BIBLIOGRAPHY

PKCS#1”. In: Advances in Cryptology – CRYPTO
’98. Springer Berlin Heidelberg, 1998, pp. 1–12. doi:
10.1007/bfb0055716.

[BM06] D. Bleichenbacher and A. May. “New Attacks on RSA
with Small Secret CRT-Exponents”. In: Public Key Crypto-
graphy - PKC 2006. Springer-Verlag, 2006, pp. 1–13.

[BM03] J. Blömer and A. May. “New Partial Key Exposure At-
tacks on RSA”. In: Advances in Cryptology – CRYPTO 2003.
Springer-Verlag, 2003, pp. 27–43.

[BSY17] H. Böck, J. Somorovsky, and C. Young. Return Of Ble-
ichenbacher’s Oracle Threat (ROBOT). 2017. url: https:
//eprint.iacr.org/2017/1189 (retrieved 2019-09-24).

[BD99] D. Boneh and G. Durfee. “Cryptanalysis of RSA with
Private Key d Less than N0.292”. In: Advances in Cryptology
— EUROCRYPT ’99. Springer-Verlag, 1999, pp. 1–11.

[BF97] D. Boneh and M. Franklin. “Efficient generation of
shared RSA keys”. In: Advances in Cryptology-CRYPTO’97.
Springer. 1997, p. 425.

[Bor+09] M. Bortolozzo, G. Marchetto, R. Focardi, and G. Steel.
“Secure your PKCS#11 token against API attacks!” In:
3rd International Workshop on Analysis of Security APIs
(ASA-3). July 2009.

[BDL93] J. Brandt, I. Damgård, and P. Landrock. “Speeding up
prime number generation”. In: Advances in Cryptology —
ASIACRYPT ’91. Springer-Verlag, 1993, pp. 440–449.

[Bre80] R. P. Brent. “An improved Monte Carlo factorization
algorithm”. In: BIT Numerical Mathematics 20.2 (1980),
pp. 176–184.

[Bro05] D. R. L. Brown. A Weak-Randomizer Attack on RSA-OAEP
with e = 3. 2005. url: http://eprint.iacr.org/2005/
189 (retrieved 2019-09-24).

[BT11] B. B. Brumley and N. Tuveri. “Remote Timing Attacks
Are Still Practical”. In: Computer Security – ESORICS 2011.
Springer Berlin Heidelberg, 2011, pp. 355–371. doi: 10.
1007/978-3-642-23822-2_20.

[BB05] D. Brumley and D. Boneh. “Remote timing attacks
are practical”. In: Computer Networks 48.5 (Aug. 2005),
pp. 701–716. doi: 10.1016/j.comnet.2005.01.010.

146

https://doi.org/10.1007/bfb0055716
https://eprint.iacr.org/2017/1189
https://eprint.iacr.org/2017/1189
http://eprint.iacr.org/2005/189
http://eprint.iacr.org/2005/189
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1016/j.comnet.2005.01.010

BIBLIOGRAPHY

[BSI15] BSI. “Certification Report, BSI-DSZ-CC-0782-V2-2015,
Infineon Security Controller M7892 B11 with optional
RSA2048/4096 v1.02.013, EC v1.02.013, SHA-2 v1.01 and
Toolbox v1.02.013 libraries and with specific IC dedicated
software (firmware), v1.0,” in: 2015. url: https://www.
commoncriteriaportal.org/files/epfiles/0782V2a_
pdf.pdf (retrieved 2019-09-24).

[Bug+15] M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan.
“CookiExt: Patching the browser against session hijack-
ing attacks”. In: Journal of Computer Security 23.4 (2015),
pp. 509–537.

[BE10] J. Burns and T. EFF. The EFF SSL Observatory. 2010. url:
https://www.eff.org/observatory (retrieved 2019-09-
24).

[Cal+07] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R.
Thayer. RFC 4880: OpenPGP Message Format. 2007. url:
https://tools.ietf.org/html/rfc4880 (retrieved
2019-09-24).

[Cal+19] S. Calzavara, R. Focardi, M. Nemec, A. Rabitti, and M.
Squarcina. “Postcards from the Post-HTTP World: Ampli-
fication of HTTPS Vulnerabilities in the Web Ecosystem”.
In: IEEE S&P 2019. 2019.

[Cal+17] S. Calzavara, R. Focardi, M. Squarcina, and M. Tempesta.
“Surviving the Web: A Journey into Web Session Secu-
rity”. In: ACM Comput. Surv. 50.1 (2017), 13:1–13:34.

[CRB16] S. Calzavara, A. Rabitti, and M. Bugliesi. “Content Secu-
rity Problems?: Evaluating the Effectiveness of Content
Security Policy in the Wild”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security. 2016, pp. 1365–1375.

[CRB18] S. Calzavara, A. Rabitti, and M. Bugliesi. “Semantics-
Based Analysis of Content Security Policy Deployment”.
In: TWEB 12.2 (2018), 10:1–10:36.

[Cal+15] S. Calzavara, G. Tolomei, A. Casini, M. Bugliesi, and S.
Orlando. “A Supervised Learning Approach to Protect
Client Authentication on the Web”. In: TWEB 9.3 (2015),
15:1–15:30.

147

https://www.commoncriteriaportal.org/files/epfiles/0782V2a_pdf.pdf
https://www.commoncriteriaportal.org/files/epfiles/0782V2a_pdf.pdf
https://www.commoncriteriaportal.org/files/epfiles/0782V2a_pdf.pdf
https://www.eff.org/observatory
https://tools.ietf.org/html/rfc4880

BIBLIOGRAPHY

[CZ81] D. G. Cantor and H. Zassenhaus. “A New Algorithm
for Factoring Polynomials Over Finite Fields”. In: Math-
ematics of Computation 36.154 (1981), pp. 587–592. issn:
00255718, 10886842.

[Can+03] B. Canvel, A. Hiltgen, S. Vaudenay, and M. Vuagnoux.
“Password Interception in a SSL/TLS Channel”. In: Ad-
vances in Cryptology – CRYPTO 2003. Springer Berlin Hei-
delberg, 2003, pp. 583–599. doi: 10.1007/978-3-540-
45146-4_34.

[CM16] X. de Carné de Carnavalet and M. Mannan. “Killed by
Proxy: Analyzing Client-end TLS Interception Software”.
In: Proceedings 2016 Network and Distributed System Secu-
rity Symposium. Internet Society, 2016. doi: 10.14722/
ndss.2016.23374.

[Cen15a] Censys. TLS Alexa Top 1 Million Scan. 2015. url: https:
//censys.io/data/443-https-tls-alexa_top1mil
(retrieved 2019-09-24).

[Cen15b] Censys. TLS Full IPv4 443 Scan. 2015. url: https :
/ / censys . io / data / 443 - https - tls - full _ ipv4 /
historical (retrieved 2017-09-20).

[Che+13] P. Chen, N. Nikiforakis, C. Huygens, and L. Desmet. “A
Dangerous Mix: Large-Scale Analysis of Mixed-Content
Websites”. In: Information Security, 16th International Con-
ference, ISC 2013, Proceedings. 2013, pp. 354–363.

[Chu+16] T. Chung, Y. Liu, D. Choffnes, D. Levin, B. M. Maggs,
A. Mislove, and C. Wilson. “Measuring and Applying
Invalid SSL Certificates: The Silent Majority”. In: Pro-
ceedings of the 2016 ACM on Internet Measurement Confer-
ence – IMC ’16. ACM Press, 2016. doi: 10.1145/2987443.
2987454.

[CO13] J. Clark and P. C. van Oorschot. “SoK: SSL and HTTPS:
Revisiting past challenges and evaluating certificate trust
model enhancements”. In: IEEE Symposium on Security
and Privacy. IEEE. 2013, pp. 511–525.

[Col15] Y. Collet. LZ4 Extremely Fast Compression algorithm. 2015.
url: http://www.lz4.org/ (retrieved 2019-09-24).

148

https://doi.org/10.1007/978-3-540-45146-4_34
https://doi.org/10.1007/978-3-540-45146-4_34
https://doi.org/10.14722/ndss.2016.23374
https://doi.org/10.14722/ndss.2016.23374
https://censys.io/data/443-https-tls-alexa_top1mil
https://censys.io/data/443-https-tls-alexa_top1mil
https://censys.io/data/443-https-tls-full_ipv4/historical
https://censys.io/data/443-https-tls-full_ipv4/historical
https://censys.io/data/443-https-tls-full_ipv4/historical
https://doi.org/10.1145/2987443.2987454
https://doi.org/10.1145/2987443.2987454
http://www.lz4.org/

BIBLIOGRAPHY

[Cop96a] D. Coppersmith. “Finding a Small Root of a Bivariate In-
teger Equation; Factoring with High Bits Known”. In: Ad-
vances in Cryptology – EUROCRYPT ’96. Springer Berlin
Heidelberg, 1996, pp. 178–189. doi: 10.1007/3- 540-
68339-9_16.

[Cop96b] D. Coppersmith. “Finding a Small Root of a Univariate
Modular Equation”. In: Advances in Cryptology — EURO-
CRYPT ’96. Springer-Verlag, 1996, pp. 155–165.

[Cop97] D. Coppersmith. “Small Solutions to Polynomial Equa-
tions, and Low Exponent RSA Vulnerabilities”. In: Jour-
nal of Cryptology 10.4 (1997), pp. 233–260. issn: 1432-1378.

[Cop+96] D. Coppersmith, M. Franklin, J. Patarin, and M. Re-
iter. “Low-Exponent RSA with Related Messages”. In:
Springer-Verlag, 1996, pp. 1–9.

[CDN05] R. Cramer, I. Damgård, and J. B. Nielsen. “Multiparty
computation, an introduction”. In: Contemporary cryptol-
ogy (2005), pp. 41–87.

[CRo17] CRoCS MU. JCAlgTest: JavaCard Algorithm Test. 2017. url:
http://jcalgtest.org/ (retrieved 2019-09-24).

[DA99] T. Dierks and C. Allen. RFC 2246: The TLS Protocol Version
1.0. 1999. url: https://tools.ietf.org/html/rfc2246
(retrieved 2019-09-24).

[DR06] T. Dierks and E. Rescorla. RFC 4346: The Transport Layer
Security (TLS) Protocol Version 1.1. 2006. url: https://
tools.ietf.org/html/rfc4346 (retrieved 2019-09-24).

[DR08] T. Dierks and E. Rescorla. RFC 5246: The Transport Layer
Security (TLS) Protocol Version 1.2. 2008. url: https://
tools.ietf.org/html/rfc5246 (retrieved 2019-09-24).

[DCE17] K. Dorey, N. Chang-Fong, and A. Essex. “Indiscreet Logs:
Diffie-Hellman Backdoors in TLS”. In: Proceedings 2017
Network and Distributed System Security Symposium. Inter-
net Society, 2017. doi: 10.14722/ndss.2017.23006.

[DR11] T. Duong and J. Rizzo. Here Come The XOR Ninjas. 2011.
url: https : / / bug665814 . bugzilla . mozilla . org /
attachment.cgi?id=540839 (retrieved 2019-09-24).

[Dur+15a] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A.
Halderman. “A search engine backed by Internet-wide
scanning”. In: Proceedings of the 22nd ACM SIGSAC Con-

149

https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16
http://jcalgtest.org/
https://tools.ietf.org/html/rfc2246
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://doi.org/10.14722/ndss.2017.23006
https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839
https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839

BIBLIOGRAPHY

ference on Computer and Communications Security. ACM.
2015, pp. 542–553.

[DBH14] Z. Durumeric, M. Bailey, and J. A. Halderman. “An
Internet-Wide View of Internet-Wide Scanning.” In:
Proceeding of USENIX Security Symposium. 2014, pp. 65–
78.

[Dur+15b] Z. Durumeric, J. A. Halderman, D. Adrian, A. Mirian, J.
Kasten, E. Bursztein, N. Lidzborski, K. Thomas, V. Eranti,
and M. Bailey. “Neither Snow Nor Rain Nor MITM...”
In: Proceedings of the 2015 ACM Conference on Internet
Measurement Conference - IMC ’15. ACM Press, 2015. doi:
10.1145/2815675.2815695.

[Dur+13] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman.
“Analysis of the HTTPS certificate ecosystem”. In: Pro-
ceedings of the 2013 Internet Measurement Conference, IMC
2013. 2013, pp. 291–304.

[Dur+17] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sul-
livan, E. Bursztein, M. Bailey, J. A. Halderman, and V.
Paxson. “The Security Impact of HTTPS Interception”.
In: Proceedings 2017 Network and Distributed System Secu-
rity Symposium. Internet Society, 2017. doi: 10.14722/
ndss.2017.23456.

[Dur+14] Z. Durumeric, M. Payer, V. Paxson, J. Kasten, D. Adrian,
J. A. Halderman, M. Bailey, F. Li, N. Weaver, J. Amann,
and J. Beekman. “The Matter of Heartbleed”. In: Pro-
ceedings of the 2014 Conference on Internet Measurement
Conference – IMC ’14. ACM Press, 2014. doi: 10.1145/
2663716.2663755.

[EMV11] EMVCo. “EMV Integrated Circuit Card Specifications for
Payment Systems”. In: 2011. url: https://www.emvco.
com/document-search/ (retrieved 2019-09-24).

[EMV12] EMVCo. EMVCo Product Approval, ICCN0163, Master com-
ponent: M7892 A22/B11, 11 Jan 2012. 2012. url: https:
//2426-9805.el-alt.com/loa_se/EMVCo_ICCN0163_R_
02_2017.pdf (retrieved 2019-09-24).

[EMV13] EMVCo. EMVCo Product Approval, ICCN0200, Master com-
ponent: M7893 B11, 20 Dec 2013. 2013. url: https://2426-

150

https://doi.org/10.1145/2815675.2815695
https://doi.org/10.14722/ndss.2017.23456
https://doi.org/10.14722/ndss.2017.23456
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://www.emvco.com/document-search/
https://www.emvco.com/document-search/
https://2426-9805.el-alt.com/loa_se/EMVCo_ICCN0163_R_02_2017.pdf
https://2426-9805.el-alt.com/loa_se/EMVCo_ICCN0163_R_02_2017.pdf
https://2426-9805.el-alt.com/loa_se/EMVCo_ICCN0163_R_02_2017.pdf
https://2426-9805.el-alt.com/loa_se/EMVCo_ICCN0200_R_02_2017.pdf
https://2426-9805.el-alt.com/loa_se/EMVCo_ICCN0200_R_02_2017.pdf
https://2426-9805.el-alt.com/loa_se/EMVCo_ICCN0200_R_02_2017.pdf

BIBLIOGRAPHY

9805.el- alt.com/loa_se/EMVCo_ICCN0200_R_02_
2017.pdf (retrieved 2019-09-24).

[EN16] S. Englehardt and A. Narayanan. “Online Tracking: A
1-million-site Measurement and Analysis”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 2016.

[Eng+15] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman,
J. Mayer, A. Narayanan, and E. W. Felten. “Cookies That
Give You Away: The Surveillance Implications of Web
Tracking”. In: Proceedings of the 24th International Confer-
ence on World Wide Web. 2015, pp. 289–299.

[Fel+17] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel,
and P. Tabriz. “Measuring HTTPS Adoption on the
Web”. In: 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Association, 2017,
pp. 1323–1338. isbn: 978-1-931971-40-9. url: https :
//www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/felt.

[Gar95] S. Garfinkel. PGP: pretty good privacy. ISBN 978-1-56592-
098-9. O’Reilly Media, Inc., 1995.

[GPM15] C. Garman, K. G. Paterson, and T. V. der Merwe. “Attacks
Only Get Better: Password Recovery Attacks Against
RC4 in TLS”. In: Proceedings of the 24th USENIX Security
Symposium (USENIX Security 15). USENIX Association,
2015, pp. 113–128. isbn: 978-1-931971-232. url: https:
//www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/garman.

[GB17] I. Genibel and C. Berg. Debian quality assurance: Popularity
contest statistics. 2017. url: https://qa.debian.org/
popcon.php (retrieved 2019-09-24).

[Gen+99] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Se-
cure distributed key generation for discrete-log based
cryptosystems”. In: Eurocrypt. Vol. 99. Springer. 1999,
pp. 295–310.

[Geo+12] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh,
and V. Shmatikov. “The most dangerous code in the
world: validating SSL certificates in non-browser soft-
ware”. In: Proceedings of the 2012 ACM conference on Com-

151

https://2426-9805.el-alt.com/loa_se/EMVCo_ICCN0200_R_02_2017.pdf
https://2426-9805.el-alt.com/loa_se/EMVCo_ICCN0200_R_02_2017.pdf
https://2426-9805.el-alt.com/loa_se/EMVCo_ICCN0200_R_02_2017.pdf
https://2426-9805.el-alt.com/loa_se/EMVCo_ICCN0200_R_02_2017.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/garman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/garman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/garman
https://qa.debian.org/popcon.php
https://qa.debian.org/popcon.php

BIBLIOGRAPHY

puter and communications security – CCS ’12. ACM Press,
2012. doi: 10.1145/2382196.2382204.

[Gil99] N. Gilboa. “Two party RSA key generation”. In: An-
nual International Cryptology Conference. Springer. 1999,
pp. 116–129.

[Glo06] GlobalPlatform. Card Specification Version 2.2. 2006. url:
https://globalplatform.org/specs- library/ (re-
trieved 2019-09-24).

[Goe+14] T. van Goethem, P. Chen, N. Nikiforakis, L. Desmet, and
W. Joosen. “Large-Scale Security Analysis of the Web:
Challenges and Findings”. In: Trust and Trustworthy Com-
puting - 7th International Conference, TRUST 2014. Proceed-
ings. 2014, pp. 110–126.

[Goo17a] D. Goodin. Flaw crippling millions of crypto keys is worse
than first disclosed. Ars Technica. 2017. url: https : / /
arstechnica . com / information - technology / 2017 /
11/flaw-crippling-millions-of-crypto-keys-is-
worse-than-first-disclosed/ (retrieved 2019-09-24).

[Goo17b] D. Goodin. Millions of high-security crypto keys crippled
by newly discovered flaw. Ars Technica. 2017. url: https:
//arstechnica.com/information-technology/2017/
10/crypto- failure- cripples- millions- of- high-
security-keys-750k-estonian-ids/ (retrieved 2019-
09-24).

[Goo17c] Google. Certificate Transparency logs from April 25, 2017.
2017. url: https://www.certificate-transparency.
org/ (retrieved 2019-09-24).

[Gus+17] J. Gustafsson, G. Overier, M. Arlitt, and N. Carlsson.
“A First Look at the CT Landscape: Certificate Trans-
parency Logs in Practice”. In: Proceedings of the 18th Pas-
sive and Active Measurement Conference. Springer-Verlag,
2017, pp. 87–99.

[HFH16] M. Hastings, J. Fried, and N. Heninger. “Weak Keys Re-
main Widespread in Network Devices”. In: Proceedings of
the 2016 ACM on Internet Measurement Conference – IMC
’16. ACM Press, 2016. doi: 10.1145/2987443.2987486.

152

https://doi.org/10.1145/2382196.2382204
https://globalplatform.org/specs-library/
https://arstechnica.com/information-technology/2017/11/flaw-crippling-millions-of-crypto-keys-is-worse-than-first-disclosed/
https://arstechnica.com/information-technology/2017/11/flaw-crippling-millions-of-crypto-keys-is-worse-than-first-disclosed/
https://arstechnica.com/information-technology/2017/11/flaw-crippling-millions-of-crypto-keys-is-worse-than-first-disclosed/
https://arstechnica.com/information-technology/2017/11/flaw-crippling-millions-of-crypto-keys-is-worse-than-first-disclosed/
https://arstechnica.com/information-technology/2017/10/crypto-failure-cripples-millions-of-high-security-keys-750k-estonian-ids/
https://arstechnica.com/information-technology/2017/10/crypto-failure-cripples-millions-of-high-security-keys-750k-estonian-ids/
https://arstechnica.com/information-technology/2017/10/crypto-failure-cripples-millions-of-high-security-keys-750k-estonian-ids/
https://arstechnica.com/information-technology/2017/10/crypto-failure-cripples-millions-of-high-security-keys-750k-estonian-ids/
https://www.certificate-transparency.org/
https://www.certificate-transparency.org/
https://doi.org/10.1145/2987443.2987486

BIBLIOGRAPHY

[Haz+12] C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft. “Efficient
RSA Key Generation and Threshold Paillier in the Two-
Party Setting”. In: CT-RSA. Springer. 2012, pp. 313–331.

[Hei+11] M. Heiderich, T. Frosch, M. Jensen, and T. Holz. “Crouch-
ing tiger - hidden payload: security risks of scalable vec-
tors graphics”. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS 2011. 2011,
pp. 239–250.

[Hei+14] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J.
Schwenk. “Scriptless attacks: Stealing more pie without
touching the sill”. In: Journal of Computer Security 22.4
(2014), pp. 567–599.

[Hen+12] N. Heninger, Z. Durumeric, E. Wustrow, and J. A.
Halderman. “Mining Your Ps and Qs: Detection of
Widespread Weak Keys in Network Devices”. In: Pro-
ceedings of the 21st USENIX Security Symposium (USENIX
Security 12). USENIX, 2012, pp. 205–220. url: https :
//www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/heninger.

[Her+10] J. Hermans, M. Schneider, J. Buchmann, F. Vercauteren,
and B. Preneel. “Parallel Shortest Lattice Vector Enumer-
ation on Graphics Cards”. In: Progress in Cryptology –
AFRICACRYPT 2010. Springer-Verlag, 2010, pp. 52–68.

[Hol+16] R. Holz, J. Amann, O. Mehani, M. Wachs, and M. A.
Kaafar. “TLS in the Wild: An Internet-wide Analysis of
TLS-based Protocols for Electronic Communication”. In:
Proceedings 2016 Network and Distributed System Security
Symposium. Internet Society, 2016. doi: 10.14722/ndss.
2016.23055.

[Hol+11] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. “The
SSL landscape: a thorough analysis of the x.509 PKI using
active and passive measurements”. In: Proceedings of the
11th ACM SIGCOMM Internet Measurement Conference,
IMC ’11. 2011, pp. 427–444.

[How97] N. Howgrave-Graham. “Finding small roots of univariate
modular equations revisited”. In: Crytography and Coding.
Springer Berlin Heidelberg, 1997, pp. 131–142. doi: 10.
1007/bfb0024458.

153

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://doi.org/10.14722/ndss.2016.23055
https://doi.org/10.14722/ndss.2016.23055
https://doi.org/10.1007/bfb0024458
https://doi.org/10.1007/bfb0024458

BIBLIOGRAPHY

[ICA06] ICAO. “ICAO Doc 9303, Machine Readable Travel
Documents”. In: 2006. url: https://www.icao.int/
publications/pages/publication.aspx?docnum=9303
(retrieved 2019-09-24).

[ICS17] ICSI. The ICSI Certificate Notary. 2017. url: https : / /
notary.icsi.berkeley.edu/ (retrieved 2019-09-24).

[IEE00] IEEE. Standard Specifications for Public-Key Cryptography.
IEEE Std 1363. 2000. doi: 10.1109/IEEESTD.2000.92292.
url: https : / / books . google . com / books ? id =
KKc8nQAACAAJ (retrieved 2019-09-24).

[Inc+16] M. S. Inci, B. Gulmezoglu, T. Eisenbarth, and B. Sunar.
“Co-location detection on the cloud”. In: International
Workshop on Constructive Side-Channel Analysis and Secure
Design. Springer-Verlag. 2016, pp. 19–34.

[Ind14] F. Indutny. Extracting server private key using Heart-
bleed OpenSSL vulnerability. GitHub. 2014. url: https:
//github.com/indutny/heartbleed (retrieved 2019-09-
24).

[Int14] Intel. “Intel Xeon Processor E5-2660 v3 CPU specifica-
tion”. In: Intel. 2014. url: https://ark.intel.com/
products/81706/Intel-Xeon-Processor-E5-2660-v3-
25M-Cache-2%5C_60-GHz (retrieved 2019-09-24).

[Ira+15] G. Irazoqui, M. S. IncI, T. Eisenbarth, and B. Sunar.
“Know thy neighbor: crypto library detection in cloud”.
In: Proceedings on Privacy Enhancing Technologies 2015.1
(2015), pp. 25–40.

[JSS15] T. Jager, J. Schwenk, and J. Somorovsky. “On the Security
of TLS 1.3 and QUIC Against Weaknesses in PKCS#1 v1.5
Encryption”. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security – CCS
’15. ACM Press, 2015. doi: 10.1145/2810103.2813657.

[JMR17] JMRTD. Certificates for document validation. 2017. url:
http : / / jmrtd . org / certificates . shtml (retrieved
2019-09-24).

[JP06] M. Joye and P. Paillier. “Fast Generation of Prime Num-
bers on Portable Devices: An Update”. In: Cryptographic
Hardware and Embedded Systems - CHES 2006. Springer-
Verlag, 2006, pp. 160–173.

154

https://www.icao.int/publications/pages/publication.aspx?docnum=9303
https://www.icao.int/publications/pages/publication.aspx?docnum=9303
https://notary.icsi.berkeley.edu/
https://notary.icsi.berkeley.edu/
https://doi.org/10.1109/IEEESTD.2000.92292
https://books.google.com/books?id=KKc8nQAACAAJ
https://books.google.com/books?id=KKc8nQAACAAJ
https://github.com/indutny/heartbleed
https://github.com/indutny/heartbleed
https://ark.intel.com/products/81706/Intel-Xeon-Processor-E5-2660-v3-25M-Cache-2%5C_60-GHz
https://ark.intel.com/products/81706/Intel-Xeon-Processor-E5-2660-v3-25M-Cache-2%5C_60-GHz
https://ark.intel.com/products/81706/Intel-Xeon-Processor-E5-2660-v3-25M-Cache-2%5C_60-GHz
https://doi.org/10.1145/2810103.2813657
http://jmrtd.org/certificates.shtml

BIBLIOGRAPHY

[JPV00] M. Joye, P. Paillier, and S. Vaudenay. “Efficient Genera-
tion of Prime Numbers”. In: Cryptographic Hardware and
Embedded Systems — CHES 2000. Springer-Verlag, 2000,
pp. 340–354.

[Kal98] B. Kaliski. RFC 2313: PKCS #1: RSA Encryption Version
1.5. Internet Engineering Task Force (IETF). 1998. url:
https://tools.ietf.org/html/rfc2313 (retrieved
2019-09-24).

[Kam13] A. Kaminsky. Parallel Java 2 Library (PJ2). 2013. url: https:
//www.cs.rit.edu/~ark/pj2.shtml (retrieved 2019-09-
24).

[Kel02] J. Kelsey. “Compression and Information Leakage of
Plaintext”. In: Fast Software Encryption. Springer Berlin
Heidelberg, 2002, pp. 263–276. doi: 10.1007/3- 540-
45661-9_21.

[Kha17] S. Khandelwal. Serious Crypto-Flaw Lets Hackers Recover
Private RSA Keys Used in Billions of Devices. The Hacker
News. 2017. url: https://thehackernews.com/2017/
10/rsa-encryption-keys.html (retrieved 2019-09-24).

[Kik14] M. Kikuchi. How I discovered CCS Injection Vulnerabil-
ity (CVE-2014-0224). 2014. url: http://ccsinjection.
lepidum.co.jp/blog/2014- 06- 05/CCS- Injection-
en/index.html (retrieved 2019-09-24).

[KS15] R. Klafter and E. Swanson. Evil 32. 2015. url: https :
//evil32.com/ (retrieved 2019-09-24).

[Kle+10] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé,
J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A.
Osvik, H. te Riele, A. Timofeev, and P. Zimmermann.
“Factorization of a 768-Bit RSA Modulus”. In: Advances in
Cryptology – CRYPTO 2010. Springer Berlin Heidelberg,
2010, pp. 333–350. doi: 10.1007/978- 3- 642- 14623-
7_18.

[KPR03] V. Klíma, O. Pokorný, and T. Rosa. “Attacking RSA-Based
Sessions in SSL/TLS”. In: Cryptographic Hardware and Em-
bedded Systems – CHES 2003. Springer Berlin Heidelberg,
2003, pp. 426–440. doi: 10.1007/978- 3- 540- 45238-
6_33.

155

https://tools.ietf.org/html/rfc2313
https://www.cs.rit.edu/~ark/pj2.shtml
https://www.cs.rit.edu/~ark/pj2.shtml
https://doi.org/10.1007/3-540-45661-9_21
https://doi.org/10.1007/3-540-45661-9_21
https://thehackernews.com/2017/10/rsa-encryption-keys.html
https://thehackernews.com/2017/10/rsa-encryption-keys.html
http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/index.html
http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/index.html
http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/index.html
https://evil32.com/
https://evil32.com/
https://doi.org/10.1007/978-3-642-14623-7_18
https://doi.org/10.1007/978-3-642-14623-7_18
https://doi.org/10.1007/978-3-540-45238-6_33
https://doi.org/10.1007/978-3-540-45238-6_33

BIBLIOGRAPHY

[Kor09] J. D. Kornblum. “Implementing BitLocker Drive Encryp-
tion for forensic analysis”. In: Digital Investigation 5.3
(2009), pp. 75–84. issn: 1742-2876. doi: http://dx.doi.
org / 10 . 1016 / j . diin . 2009 . 01 . 001. url: http : / /
jessekornblum.com/publications/di09.pdf.

[KB15] M. Kranch and J. Bonneau. “Upgrading HTTPS in mid-
air: An empirical study of strict transport security and
key pinning”. In: 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015. 2015.

[Kro+17] K. Krombholz, W. Mayer, M. Schmiedecker, and E. R.
Weippl. “"I Have No Idea What I’m Doing" - On the Us-
ability of Deploying HTTPS”. In: 26th USENIX Security
Symposium, USENIX Security 2017. 2017.

[KK08] N. Kumar and V. Kumar. “Analysis of Window Vista
Bitlocker Drive Encryption”. In: NVLabs. 2008. url: http:
//www.nvlabs.in/uploads/projects/nvbit/nvbit_
bitlocker_presentation.pdf (retrieved 2019-09-24).

[Lau17] A. Laurie. “e-passport Certificates”. In: 2017. url: http:
//rfidiot.org/certificates.html (retrieved 2019-09-
24).

[LH95] C. L. Lawson and R. J. Hanson. Solving Least Squares Prob-
lems. Society for Industrial and Applied Mathematics,
Jan. 1995. doi: 10.1137/1.9781611971217.

[Laz+14] D. Lazar, H. Chen, X. Wang, and N. Zeldovich. “Why
does cryptographic software fail?: a case study and open
problems”. In: Proceedings of 5th Asia-Pacific Workshop on
Systems. ACM. 2014, pp. 1–7.

[LSJ13] S. Lekies, B. Stock, and M. Johns. “25 million flows later:
large-scale detection of DOM-based XSS”. In: 2013 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS’13. 2013, pp. 1193–1204.

[Len+12] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Klein-
jung, and C. Wachter. “Public Keys”. In: Advances in Cryp-
tology - Crypto 2012. Vol. 7417. Lecture Notes in Computer
Science. Springer-Verlag, 2012, pp. 626–642.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. “Factoring
polynomials with rational coefficients”. In: Mathematische
Annalen 261.4 (1982), pp. 515–534.

156

https://doi.org/http://dx.doi.org/10.1016/j.diin.2009.01.001
https://doi.org/http://dx.doi.org/10.1016/j.diin.2009.01.001
http://jessekornblum.com/publications/di09.pdf
http://jessekornblum.com/publications/di09.pdf
http://www.nvlabs.in/uploads/projects/nvbit/nvbit_bitlocker_presentation.pdf
http://www.nvlabs.in/uploads/projects/nvbit/nvbit_bitlocker_presentation.pdf
http://www.nvlabs.in/uploads/projects/nvbit/nvbit_bitlocker_presentation.pdf
http://rfidiot.org/certificates.html
http://rfidiot.org/certificates.html
https://doi.org/10.1137/1.9781611971217

BIBLIOGRAPHY

[Lev17] O. Levillain. A study of the TLS ecosystem. Dissertation
thesis. 2017. url: https://tel.archives-ouvertes.fr/
tel-01454976/document (retrieved 2019-09-24).

[LGD15] O. Levillain, B. Gourdin, and H. Debar. “TLS Record
Protocol: Security Analysis and Defense-in-depth Coun-
termeasures for HTTPS”. In: Proceedings of the 10th ACM
Symposium on Information, Computer and Communications
Security - ASIA CCS ’15. ACM Press, 2015. doi: 10.1145/
2714576.2714592.

[Ley17a] J. Leyden. Confusion reigns over crypto vuln in Spanish
electronic ID smartcards. The Register. 2017. url: https:
//www.theregister.co.uk/2017/11/15/spanish_id_
card/ (retrieved 2019-09-24).

[Ley17b] J. Leyden. ROCA ’round the lock: Gemalto says IDPrime
.NET access cards bitten by TPM RSA key gremlin. The
Register. 2017. url: https://www.theregister.co.uk/
2017/10/23/roca_crypto_flaw_gemalto/ (retrieved
2019-09-24).

[LN11] D. Loebenberger and M. Nüsken. “Analyzing standards
for RSA integers”. In: CoRR abs/1104.4356 (2011). url:
http://arxiv.org/abs/1104.4356.

[LN14] D. Loebenberger and M. Nüsken. “Notions for RSA In-
tegers”. In: International Journal of Applied Cryptography.
Inderscience Publishers, 2014, pp. 116–138.

[Lyo17] G. Lyon. Nmap Remote OS Detection. 2017. url: https:
//nmap.org/book/osdetect.html (retrieved 2019-09-
24).

[Mak12] S. Mak. “Verify dependencies using PGP”. In: 2012. url:
http://branchandbound.net/blog/security/2012/
08/verify-dependencies-using-pgp/ (retrieved 2019-
09-24).

[MS02] I. Mantin and A. Shamir. “A Practical Attack on Broad-
cast RC4”. In: Fast Software Encryption. Springer Berlin
Heidelberg, 2002, pp. 152–164. doi: 10.1007/3- 540-
45473-x_13.

[Mau95] U. M. Maurer. “Fast generation of prime numbers and
secure public-key cryptographic parameters”. In: Journal
of Cryptology 8.3 (1995), pp. 123–155.

157

https://tel.archives-ouvertes.fr/tel-01454976/document
https://tel.archives-ouvertes.fr/tel-01454976/document
https://doi.org/10.1145/2714576.2714592
https://doi.org/10.1145/2714576.2714592
https://www.theregister.co.uk/2017/11/15/spanish_id_card/
https://www.theregister.co.uk/2017/11/15/spanish_id_card/
https://www.theregister.co.uk/2017/11/15/spanish_id_card/
https://www.theregister.co.uk/2017/10/23/roca_crypto_flaw_gemalto/
https://www.theregister.co.uk/2017/10/23/roca_crypto_flaw_gemalto/
http://arxiv.org/abs/1104.4356
https://nmap.org/book/osdetect.html
https://nmap.org/book/osdetect.html
http://branchandbound.net/blog/security/2012/08/verify-dependencies-using-pgp/
http://branchandbound.net/blog/security/2012/08/verify-dependencies-using-pgp/
https://doi.org/10.1007/3-540-45473-x_13
https://doi.org/10.1007/3-540-45473-x_13

BIBLIOGRAPHY

[Mav+17] V. Mavroudis, A. Cerulli, P. Svenda, D. Cvrcek, D. Klinec,
and G. Danezis. “A Touch of Evil: High-Assurance Cryp-
tographic Hardware from Untrusted Components”. In:
to appear at 24th ACM Conference on Computer and Com-
munications Security (CCS’2017). ACM, 2017. isbn: 978-1-
4503-4946-8.

[May09] A. May. “Using LLL-Reduction for Solving RSA and
Factorization Problems”. In: The LLL Algorithm. Springer
Berlin Heidelberg, 2009, pp. 315–348. doi: 10.1007/978-
3-642-02295-1_10.

[MS14] C. Meyer and J. Schwenk. “SoK: Lessons Learned from
SSL/TLS Attacks”. In: Information Security Applications.
Springer International Publishing, 2014, pp. 189–209. doi:
10.1007/978-3-319-05149-9_12.

[Mey+14] C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk, S.
Schinzel, and E. Tews. “Revisiting SSL/TLS Imple-
mentations: New Bleichenbacher Side Channels and
Attacks”. In: Proceedings of the 23rd USENIX Security
Symposium (USENIX Security 14). USENIX Association,
2014, pp. 733–748. isbn: 978-1-931971-15-7. url: https:
//www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/meyer.

[Mic13] Microsoft. “Technet: BitLocker Overview”. In: Microsoft.
2013. url: https://technet.microsoft.com/en-us/
library/hh831713(v=ws.11).aspx (retrieved 2019-09-
24).

[Mic06] S. Microsystems. “Application Programming Interface
Java Card Platform, Version 2.2.2”. In: 2006.

[Mir12] I. Mironov. Factoring RSA Moduli II. 2012. url: https:
//windowsontheory.org/2012/05/17/factoring-rsa-
moduli-part-ii/ (retrieved 2019-09-24).

[ML15] B. Moeller and A. Langley. RFC 7507: TLS Fallback Signal-
ing Cipher Suite Value (SCSV) for Preventing Protocol Down-
grade Attacks. Internet Engineering Task Force (IETF).
2015. url: https://tools.ietf.org/html/rfc7507.

[MDK14] B. Möller, T. Duong, and K. Kotowicz. This POODLE
Bites: Exploiting The SSL 3.0 Fallback. 2014. url: https:

158

https://doi.org/10.1007/978-3-642-02295-1_10
https://doi.org/10.1007/978-3-642-02295-1_10
https://doi.org/10.1007/978-3-319-05149-9_12
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/meyer
https://technet.microsoft.com/en-us/library/hh831713(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831713(v=ws.11).aspx
https://windowsontheory.org/2012/05/17/factoring-rsa-moduli-part-ii/
https://windowsontheory.org/2012/05/17/factoring-rsa-moduli-part-ii/
https://windowsontheory.org/2012/05/17/factoring-rsa-moduli-part-ii/
https://tools.ietf.org/html/rfc7507
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf

BIBLIOGRAPHY

//www.openssl.org/~bodo/ssl-poodle.pdf (retrieved
2019-09-24).

[Nat13] National Institute of Standards and Technology. Digital
Signature Standard (DSS). FIPS 186-4. 2013. doi: 10.6028/
NIST.FIPS.186- 4. url: http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.186-4.pdf (retrieved 2019-
09-24).

[Nem+17a] M. Nemec, D. Klinec, P. Svenda, P. Sekan, and V. Matyas.
“Measuring Popularity of Cryptographic Libraries in
Internet-Wide Scans”. In: Proceedings of the 33rd Annual
Computer Security Applications Conference. ACSAC 2017.
ACM, 2017, pp. 162–175. isbn: 978-1-4503-5345-8. doi:
10.1145/3134600.3134612.

[Nem+17b] M. Nemec, M. Sys, P. Svenda, D. Klinec, and V. Matyas.
“The Return of Coppersmith’s Attack: Practical Factoriza-
tion of Widely Used RSA Moduli”. In: 24th ACM Confer-
ence on Computer and Communications Security (CCS’2017).
ACM, 2017, pp. 1631–1648. isbn: 978-1-4503-4946-8.

[Net17a] Netcraft Ltd. NetCraft April 2017 Web Server Survey. 2017.
url: https://news.netcraft.com/archives/2017/04/
21/april-2017-web-server-survey.html (retrieved
2019-09-24).

[Net17b] Netcraft Ltd. NetCraft operating system detection. 2017. url:
http://uptime.netcraft.com/accuracy.html%5C#os
(retrieved 2019-09-24).

[New19] L. H. Newman. HTTPS Isn’t Always as Secure as It Seems.
WIRED. 2019. url: https://www.wired.com/story/
https- isnt- always- as- secure- as- it- seems/ (re-
trieved 2019-09-24).

[Nik+12] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. V. Acker,
W. Joosen, C. Kruegel, F. Piessens, and G. Vigna. “You
Are What You Include: Large-scale Evaluation of Remote
JavaScript Inclusions”. In: ACM Conference on Computer
and Communications Security, CCS’12. 2012, pp. 736–747.

[NIS13] NIST. “FIPS PUB 201-2: Personal Identity Verification
(PIV) of Federal Employees and Contractors”. In: NIST.
2013. url: http://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.201-2.pdf (retrieved 2019-09-24).

159

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://doi.org/10.1145/3134600.3134612
https://news.netcraft.com/archives/2017/04/21/april-2017-web-server-survey.html
https://news.netcraft.com/archives/2017/04/21/april-2017-web-server-survey.html
http://uptime.netcraft.com/accuracy.html%5C#os
https://www.wired.com/story/https-isnt-always-as-secure-as-it-seems/
https://www.wired.com/story/https-isnt-always-as-secure-as-it-seems/
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.201-2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.201-2.pdf

BIBLIOGRAPHY

[Par14] A. Parsovs. “Identity Card Key Generation in the Ma-
licious Card Issuer Model”. In: MTAT Research seminar
report. 2014. url: https://courses.cs.ut.ee/MTAT.07.
022/2014%5C_spring/uploads/Main/arnis-report-
s14.pdf (retrieved 2019-09-24).

[PH06] S. Pohlig and M. Hellman. “An Improved Algorithm
for Computing Logarithms over GF(p) and Its Crypto-
graphic Significance”. In: IEEE Transactions on Information
Theory 24.1 (2006), pp. 106–110. issn: 0018-9448.

[Pol74] J. M. Pollard. “Theorems on factorization and primality
testing”. In: vol. 76. 3. Cambridge University Press, 1974,
pp. 521–528.

[Pol75] J. M. Pollard. “A Monte Carlo method for factorization”.
In: BIT Numerical Mathematics 15.3 (1975), pp. 331–334.

[Pol93] J. M. Pollard. “Factoring with cubic integers”. In: The
development of the number field sieve. Springer-Verlag, 1993,
pp. 4–10. isbn: 978-3-540-57013-4.

[Pop15] A. Popov. RFC 7465: Prohibiting RC4 Cipher Suites. 2015.
url: https : / / tools . ietf . org / html / rfc7465 (re-
trieved 2019-09-24).

[PHG13] A. Prado, N. Harris, and Y. Gluck. SSL, gone in 30 seconds:
A BREACH beyond CRIME. Black Hat USA 2013. 2013.
url: https://media.blackhat.com/us- 13/US- 13-
Prado-SSL-Gone-in-30-seconds-A-BREACH-beyond-
CRIME-Slides.pdf (retrieved 2019-09-24).

[Qua18] Qualys. SSL Pulse; Monthly Scan: October 03, 2018. 2018.
url: https://www.ssllabs.com/ssl-pulse/ (retrieved
2018-10-29).

[Rap15] Rapid7. Sonar SSL full IPv4 scan. 2015. url: https://
scans.io/study/sonar.ssl (retrieved 2019-09-24).

[RD09] M. Ray and S. Dispensa. Renegotiating TLS. 2009. url:
https://kryptera.se/Renegotiating%20TLS.pdf (re-
trieved 2019-09-24).

[Reb15] N. Rebours. Batch-GCDing Github SSH Keys. 2015. url:
https://cryptosense.com/batch- gcding- github-
ssh-keys/ (retrieved 2019-09-24).

160

https://courses.cs.ut.ee/MTAT.07.022/2014%5C_spring/uploads/Main/arnis-report-s14.pdf
https://courses.cs.ut.ee/MTAT.07.022/2014%5C_spring/uploads/Main/arnis-report-s14.pdf
https://courses.cs.ut.ee/MTAT.07.022/2014%5C_spring/uploads/Main/arnis-report-s14.pdf
https://tools.ietf.org/html/rfc7465
https://media.blackhat.com/us-13/US-13-Prado-SSL-Gone-in-30-seconds-A-BREACH-beyond-CRIME-Slides.pdf
https://media.blackhat.com/us-13/US-13-Prado-SSL-Gone-in-30-seconds-A-BREACH-beyond-CRIME-Slides.pdf
https://media.blackhat.com/us-13/US-13-Prado-SSL-Gone-in-30-seconds-A-BREACH-beyond-CRIME-Slides.pdf
https://www.ssllabs.com/ssl-pulse/
https://scans.io/study/sonar.ssl
https://scans.io/study/sonar.ssl
https://kryptera.se/Renegotiating%20TLS.pdf
https://cryptosense.com/batch-gcding-github-ssh-keys/
https://cryptosense.com/batch-gcding-github-ssh-keys/

BIBLIOGRAPHY

[Res18] E. Rescorla. RFC 8446: The Transport Layer Security (TLS)
Protocol Version 1.3. 2018. url: https://tools.ietf.org/
html/rfc8446 (retrieved 2019-09-24).

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. “A method for
obtaining digital signatures and public-key cryptosys-
tems”. In: Communications of the ACM 21.2 (1978), pp. 120–
126.

[RD12] J. Rizzo and T. Duong. The CRIME attack. 2012. url:
https : / / docs . google . com / presentation / d /
11eBmGiHbYcHR9gL5nDyZChu_ - lCa2GizeuOfaLU2HOU/
(retrieved 2019-09-24).

[RKW12] F. Roesner, T. Kohno, and D. Wetherall. “Detecting and
Defending Against Third-Party Tracking on the Web”.
In: Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2012. 2012,
pp. 155–168.

[Ron+19] E. Ronen, R. Gillham, D. Genkin, A. Shamir, D. Wong,
and Y. Yarom. The 9 Lives of Bleichenbacher’s CAT: New
Cache ATtacks on TLS Implementations. To appear in the
IEEE Symposium on Security and Privacy. Available
online: Cryptology ePrint Archive, Report 2018/1173
https://eprint.iacr.org/2018/1173. 2019.

[RPS18] E. Ronen, K. G. Paterson, and A. Shamir. Pseudo Con-
stant Time Implementations of TLS Are Only Pseudo Secure.
Cryptology ePrint Archive, Report 2018/747. https://
eprint.iacr.org/2018/747. 2018.

[RP15] J. de Ruiter and E. Poll. “Protocol State Fuzzing of
TLS Implementations”. In: 24th USENIX Security Sym-
posium (USENIX Security 15). USENIX Association,
2015, pp. 193–206. isbn: 978-1-931971-232. url: https:
//www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/de-ruiter.

[Sal+08] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig. RFC
5077: Transport Layer Security (TLS) Session Resumption
without Server-Side State. Internet Engineering Task Force
(IETF). 2008. url: https : / / tools . ietf . org / html /
rfc5077.

161

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/
https://eprint.iacr.org/2018/1173
https://eprint.iacr.org/2018/747
https://eprint.iacr.org/2018/747
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc5077

BIBLIOGRAPHY

[Sch17] E. Schechter. Next Steps Toward More Connection Security.
Google Security Blog. 2017. url: https : / / security .
googleblog.com/2017/04/next-steps-toward-more-
connection.html (retrieved 2019-09-24).

[Sch18] E. Schechter. A milestone for Chrome security: marking
HTTP as “not secure”. The Keyword. 2018. url: https:
/ / www . blog . google / products / chrome / milestone -
chrome - security - marking - http - not - secure/ (re-
trieved 2019-09-24).

[Sch04] B. Schneier. Secrets and lies - digital security in a networked
world: with new information about post-9/11 security. Wiley,
2004. isbn: 978-0-471-45380-2.

[SHS15] Y. Sheffer, R. Holz, and P. Saint-Andre. RFC 7457: Summa-
rizing Known Attacks on Transport Layer Security (TLS) and
Datagram TLS (DTLS). Internet Engineering Task Force
(IETF). 2015. url: https : / / tools . ietf . org / html /
rfc7457.

[Shp03] I. Shparlinski. “The Insecurity of the Digital Signature Al-
gorithm with Partially Known Nonces”. In: Cryptographic
Applications of Analytic Number Theory. Birkhäuser Basel,
2003, pp. 201–206. doi: 10.1007/978-3-0348-8037-4_17.
url: https://doi.org/10.1007%2F978-3-0348-8037-
4_17.

[SPK16] S. Sivakorn, I. Polakis, and A. D. Keromytis. “The
Cracked Cookie Jar: HTTP Cookie Hijacking and the
Exposure of Private Information”. In: IEEE Symposium
on Security and Privacy, SP 2016. 2016, pp. 724–742.

[Smi14] B. Smith. POODLE applicability to TLS 1.0+. IETF TLS
mailing list. 2014. url: https://www.ietf.org/mail-
archive/web/tls/current/msg14058.html (retrieved
2019-09-24).

[Som16a] J. Somorovsky. Curious Padding oracle in OpenSSL (CVE-
2016-2107). On Web-Security and -Insecurity blog. 2016.
url: https://web-in-security.blogspot.com/2016/
05/curious-padding-oracle-in-openssl-cve.html
(retrieved 2019-09-24).

[Som16b] J. Somorovsky. “Systematic Fuzzing and Testing of TLS
Libraries”. In: Proceedings of the 2016 ACM SIGSAC Con-

162

https://security.googleblog.com/2017/04/next-steps-toward-more-connection.html
https://security.googleblog.com/2017/04/next-steps-toward-more-connection.html
https://security.googleblog.com/2017/04/next-steps-toward-more-connection.html
https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
https://tools.ietf.org/html/rfc7457
https://tools.ietf.org/html/rfc7457
https://doi.org/10.1007/978-3-0348-8037-4_17
https://doi.org/10.1007%2F978-3-0348-8037-4_17
https://doi.org/10.1007%2F978-3-0348-8037-4_17
https://www.ietf.org/mail-archive/web/tls/current/msg14058.html
https://www.ietf.org/mail-archive/web/tls/current/msg14058.html
https://web-in-security.blogspot.com/2016/05/curious-padding-oracle-in-openssl-cve.html
https://web-in-security.blogspot.com/2016/05/curious-padding-oracle-in-openssl-cve.html

BIBLIOGRAPHY

ference on Computer and Communications Security – CCS’16.
ACM Press, 2016. doi: 10.1145/2976749.2978411.

[SS13] S. Son and V. Shmatikov. “The Postman Always Rings
Twice: Attacking and Defending postMessage in HTML5
Websites”. In: 20th Annual Network and Distributed System
Security Symposium, NDSS 2013. 2013.

[SDH16] D. Springall, Z. Durumeric, and J. A. Halderman. “Mea-
suring the Security Harm of TLS Crypto Shortcuts”. In:
Proceedings of the 2016 ACM on Internet Measurement Con-
ference - IMC ’16. ACM, 2016. doi: 10.1145/2987443.
2987480.

[SS01] D. R. Stinson and R. Strobl. “Provably secure distributed
Schnorr signatures and a (t, n) threshold scheme for
implicit certificates”. In: ACISP. Vol. 1. Springer. 2001,
pp. 417–434.

[Str03] T. Straub. “Efficient two party multi-prime RSA key gen-
eration”. In: Proceedings of IASTED International Confer-
ence on Communication, Network, and Information Security.
ACTA Press. 2003, pp. 100–105.

[Šve+16a] P. Švenda, M. Nemec, P. Sekan, R. Kvašňovský, D. For-
mánek, D. Komárek, and V. Matyáš. “The Million-Key
Question – Investigating the Origins of RSA Public Keys”.
In: Proceedings of the 25th USENIX Security Symposium
(USENIX Security 16). USENIX, 2016, pp. 893–910. isbn:
978-1-931971-32-4.

[Šve+16b] P. Švenda, M. Nemec, P. Sekan, R. Kvašňovský, D. For-
mánek, D. Komárek, and V. Matyáš. “The Million-Key
Question – Investigating the Origins of RSA Public Keys”.
In: FI MU Report Series, FIMU-RS-2016-03. Masaryk Uni-
versity, 2016, pp. 1–83.

[Syn14] Synopsys. The Heartbleed Bug (CVE-2014-0160). 2014. url:
http://heartbleed.com/ (retrieved 2019-09-24).

[The16] The FPLLL development team. “fplll, a lattice reduction
library”. 2016. url: https://github.com/fplll/fplll
(retrieved 2019-09-24).

[Trü17] Trüb Baltic AS. “Estonian Electronic ID card application
specification, EstEID v. 3.5”. In: 2017. url: http://www.

163

https://doi.org/10.1145/2976749.2978411
https://doi.org/10.1145/2987443.2987480
https://doi.org/10.1145/2987443.2987480
http://heartbleed.com/
https://github.com/fplll/fplll
http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf
http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf
http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf

BIBLIOGRAPHY

id . ee / public / TB - SPEC - EstEID - Chip - App - v3 . 5 -
20170314.pdf (retrieved 2019-09-24).

[Tru06] Trusted Computing Group. “TPM Main Specifica-
tion Version 1.2, Revision 94”. In: 2006. url: https://
trustedcomputinggroup.org/tpm-main-specification/
(retrieved 2019-09-24).

[Tru11] Trusted Computing Group. “TPM Main Specifica-
tion Level 2 Version 1.2, Revision 116”. In: 2011. url:
https : / / trustedcomputinggroup . org / tpm - main -
specification/ (retrieved 2019-09-24).

[Tub17] C. Tubio. PGP keydump from April 19, 2017. 2017. url:
http://pgp.key-server.io/dump/ (retrieved 2017-04-
19).

[Vah17] A. Vahtla. Potential security risk could affect 750,000 Esto-
nian ID cards. ERR. 2017. url: https://news.err.ee/
616732 / potential - security - risk - could - affect -
750-000-estonian-id-cards (retrieved 2019-09-24).

[Val+17] L. Valenta, D. Adrian, A. Sanso, S. Cohney, J. Fried, M.
Hastings, J. A. Halderman, and N. Heninger. “Measur-
ing small subgroup attacks against Diffie-Hellman”. In:
Proceedings 2017 Network and Distributed System Security
Symposium. Internet Society, 2017. doi: 10.14722/ndss.
2017.23171.

[Val+18] L. Valenta, N. Sullivan, A. Sanso, and N. Heninger. In
search of CurveSwap: Measuring elliptic curve implemen-
tations in the wild. Cryptology ePrint Archive, Report
2018/298. https://eprint.iacr.org/2018/298. 2018.

[Van+16] B. VanderSloot, J. Amann, M. Bernhard, Z. Durumeric,
M. Bailey, and J. A. Halderman. “Towards a Complete
View of the Certificate Ecosystem”. In: Proceedings of the
2016 ACM on Internet Measurement Conference, IMC 2016.
2016, pp. 543–549.

[VP15] M. Vanhoef and F. Piessens. “All Your Biases Belong to
Us: Breaking RC4 in WPA-TKIP and TLS”. In: Proceed-
ings of the 24th USENIX Security Symposium (USENIX
Security 15). USENIX Association, 2015, pp. 97–112.
isbn: 978-1-931971-232. url: https : / / www . usenix .

164

http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf
http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf
http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf
http://www.id.ee/public/TB-SPEC-EstEID-Chip-App-v3.5-20170314.pdf
https://trustedcomputinggroup.org/tpm-main-specification/
https://trustedcomputinggroup.org/tpm-main-specification/
https://trustedcomputinggroup.org/tpm-main-specification/
https://trustedcomputinggroup.org/tpm-main-specification/
http://pgp.key-server.io/dump/
https://news.err.ee/616732/potential-security-risk-could-affect-750-000-estonian-id-cards
https://news.err.ee/616732/potential-security-risk-could-affect-750-000-estonian-id-cards
https://news.err.ee/616732/potential-security-risk-could-affect-750-000-estonian-id-cards
https://doi.org/10.14722/ndss.2017.23171
https://doi.org/10.14722/ndss.2017.23171
https://eprint.iacr.org/2018/298
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef

BIBLIOGRAPHY

org / conference / usenixsecurity15 / technical -
sessions/presentation/vanhoef.

[Vau02] S. Vaudenay. “Security Flaws Induced by CBC Padding
– Applications to SSL, IPSEC, WTLS...” In: Advances in
Cryptology – EUROCRYPT 2002. Springer Berlin Heidel-
berg, 2002, pp. 534–545. doi: 10.1007/3- 540- 46035-
7_35.

[Veh18] J. Vehent. Security/Server Side TLS (version 4.1). MozillaWiki.
2018. url: https : / / wiki . mozilla . org / Security /
Server _ Side _ TLS # Recommended _ configurations
(retrieved 2018-10-29).

[WMY18] L. Waked, M. Mannan, and A. Youssef. “To Intercept or
Not to Intercept”. In: Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security - ASIACCS
’18. ACM Press, 2018. doi: 10.1145/3196494.3196528.
url: https://doi.org/10.1145%2F3196494.3196528.

[Wei+16] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc.
“CSP Is Dead, Long Live CSP! On the Insecurity of
Whitelists and the Future of Content Security Policy”.
In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. 2016.

[Wes16] M. West. W3C Candidate Reccomendation: Mixed Content.
2016. url: https://www.w3.org/TR/mixed-content/
(retrieved 2019-09-24).

[Wes18] M. West. W3C Working Draft: Content Security Policy Level
3. 2018. url: https://www.w3.org/TR/CSP3/ (retrieved
2019-09-24).

[Wie90] M. J. Wiener. “Cryptanalysis of short RSA secret expo-
nents”. In: IEEE Transactions on Information Theory 36
(1990), pp. 553–558.

[Won15] D. Wong. “Implementation of Coppersmith attack (RSA
attack using lattice reductions)”. 2015. url: https://
www.cryptologie.net/article/222/implementation-
of-coppersmith-attack-rsa-attack-using-lattice-
reductions/ (retrieved 2019-09-24).

[YY05] O. Yacobi and Y. Yacobi. “A New Related Message At-
tack on RSA”. In: Public Key Cryptography – PKC 2005.

165

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/vanhoef
https://doi.org/10.1007/3-540-46035-7_35
https://doi.org/10.1007/3-540-46035-7_35
https://wiki.mozilla.org/Security/Server_Side_TLS#Recommended_configurations
https://wiki.mozilla.org/Security/Server_Side_TLS#Recommended_configurations
https://doi.org/10.1145/3196494.3196528
https://doi.org/10.1145%2F3196494.3196528
https://www.w3.org/TR/mixed-content/
https://www.w3.org/TR/CSP3/
https://www.cryptologie.net/article/222/implementation-of-coppersmith-attack-rsa-attack-using-lattice-reductions/
https://www.cryptologie.net/article/222/implementation-of-coppersmith-attack-rsa-attack-using-lattice-reductions/
https://www.cryptologie.net/article/222/implementation-of-coppersmith-attack-rsa-attack-using-lattice-reductions/
https://www.cryptologie.net/article/222/implementation-of-coppersmith-attack-rsa-attack-using-lattice-reductions/

BIBLIOGRAPHY

Vol. 3386. Lecture Notes in Computer Science. Springer-
Verlag, 2005, pp. 1–8.

[Yub17] Yubico. “PGP, Importing keys”. In: 2017. url: https :
//developers.yubico.com/PGP/Importing_keys.html
(retrieved 2019-09-24).

[Zhe+15] X. Zheng, J. Jiang, J. Liang, H. Duan, S. Chen, T. Wan, and
N. Weaver. “Cookies Lack Integrity: Real-World Impli-
cations”. In: 24th USENIX Security Symposium, USENIX
Security 15. 2015, pp. 707–721.

166

https://developers.yubico.com/PGP/Importing_keys.html
https://developers.yubico.com/PGP/Importing_keys.html

A Author’s publications

We list the author’s publications relevant to the thesis.

1. Petr Svenda, Matus Nemec, Peter Sekan, Rudolf Kvasnovsky,
David Formanek, David Komarek, and Vashek Matyas. “The
Million-Key Question – Investigating the Origins of RSA Public
Keys”. In: Proceeding of the 25th USENIX Security Symposium
(USENIX Security 2016). USENIX, 2016. [Šve+16a]

• Awarded Best Paper. Contributed before being enrolled in
the PhD programme (24%): analysis of software libraries
(open source code and data collection), visualization and
analysis of distributions of the most significant bits of pri-
vate and public keys, writing.

• An extended technical report was published as [Šve+16b].

2. Matus Nemec, Dusan Klinec, Petr Svenda, Peter Sekan, and
Vashek Matyas. “Measuring Popularity of Cryptographic Li-
braries in Internet-Wide Scans”. In: Proceedings of the 33rd Annual
Computer Security Applications Conference (ACSAC 2017). ACM,
2017. [Nem+17a]

• Contributions (40%): design, implementation and accuracy
experiments of the measurement, data collection (Certifi-
cate Transparency dataset), result processing and visual-
ization, writing, conference presentation.

• The source code and datasets were published with the pa-
per at https://github.com/crocs-muni/classifyRSAkey.

3. Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec, and
Vashek Matyas. “The Return of Coppersmith’s Attack: Practical
Factorization of Widely Used RSA Moduli”. In: Proceedings of the
24th ACM Conference on Computer and Communications Security
(ACM CCS 2017). ACM, 2017. [Nem+17b]

167

https://github.com/crocs-muni/classifyRSAkey

A. Author’s publications

• Received Real-World Impact Award. Contributions (30%):
equally contributed with Marek Sys to the discovery of
the vulnerability and attack development. Implementation
(proof of concept, parameter optimization), writing, confer-
ence presentation.

4. Stefano Calzavara, Riccardo Focardi, Matus Nemec, Alvise Ra-
bitti, Marco Squarcina. “Postcards from the Post-HTTP World:
Amplification of HTTPS Vulnerabilities in the Web Ecosystem”.
In: Proceedings of the 40th IEEE Symposium on Security and Privacy
(IEEE S&P 2019). IEEE, 2019. [Cal+19]

• Contributions (20% by convention): Survey of attacks on
TLS, attack trees, writing, part of the implementation.

168

	Introduction
	 Problem statement
	 Contributions
	 Biased RSA key generation methods
	 Vulnerabilities in RSA key generation
	 TLS protocol vulnerabilities

	 Structure of the thesis

	State of the art
	 Survey of RSA key generation methods
	 Bias in RSA primes and keys
	 RSA prime types
	 RSA keypairs
	 Modular bias

	 Pseudo-random number generator failures

	Measuring popularity of cryptographic libraries
	 Introduction
	 Method overview
	 Choice of key features
	 Clustering analysis
	 Dataset classification – original approach
	 Dataset classification – our approach
	 Limitations

	 Methodology in detail
	 Model
	 Prior probability estimation
	 Key classification
	 Evaluation of accuracy
	 Additional accuracy considerations

	 Results on relevant datasets
	 Data preparation
	 Internet-wide TLS scans
	 Popularity between usage domains
	 TLS to CT comparison
	 Detection of transient events

	 Related work
	 Additional results
	 Conclusions

	Factorization of widely used RSA moduli
	 Introduction
	 Fingerprinting and factorization
	 Format of the constructed primes
	 Fingerprinting
	 Factorization – attack principle
	 Coppersmith's algorithm in detail
	 Application of Coppersmith's algorithm
	 Computing the order of a generator in ZM'*
	 Optimization of the parameters M', m, t
	 Guessing strategy

	 Practical implementation
	 Details and empirical evaluation
	 Possible improvements and limitations

	 Analysis of impacts
	 Summary of results
	 Electronic identity documents
	 Code signing
	 Trusted Platform Modules
	 PGP with cryptographic tokens
	 TLS and SCADA-related keys
	 Certification authorities
	 Generic Java Card platform
	 Other domains

	 Mitigation and disclosure
	 Mitigation
	 Future prevention and analysis
	 Responsible disclosure

	 Related work
	 Conclusions

	Amplification of TLS vulnerabilities on the Web
	 Introduction
	 Background on TLS
	 The Handshake Protocol
	 Ciphersuites

	 Attack trees for TLS security
	 Threat model
	 Review of known attacks against TLS
	 Insecure channels
	 Leaky channels
	 Tainted channels
	 Partially leaky channels

	 Experimental setup
	 Analysis platform
	 Data collection and findings
	 Roadmap

	 Page integrity
	 Security analysis
	 Experimental results

	 Authentication credentials
	 Security analysis
	 Experimental results
	 Detected attacks

	 Web tracking
	 Security analysis
	 Experimental results

	 Closing remarks
	 Related work
	 Ethics and limitations
	 Summary and perspective

	 Additional results
	 Notable out of scope attacks against TLS
	 More detailed attack trees

	Conclusions
	Bibliography
	Author's publications

