
 
 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

Master’s Degree 

in Economics and Finance 
 

Master’s Degree in Economics and Finance 

Erasmus Mundus Joint Master's Degree in 

Models and Methods of Quantitative Economics 

 

  

 
Final Thesis 

 

 

Improving computer’s performance 
with parallel computing 

an application to the Metropolis-Hastings algorithm using 
MATLAB and R 

 
 
 
 
 

Supervisor 
Ch.ma Prof.ssa Antonella Basso 

 
 
Assistant supervisor 
Ch. Prof. Paolo Pellizzari 

 
 
Graduand 

Fabio Grattoni 

857086 

 
 
Academic Year 

2019 / 2020 



Contents

Introduction 5

1 Parallel Computing 7

1.1 Elements of parallel computing . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Useful concepts in parallel computing . . . . . . . . . . . . . . . 9

1.1.2 Conditions for parallel computing . . . . . . . . . . . . . . . . . . 10

1.1.3 Performance metrics for parallel programming . . . . . . . . . . 11

Speedup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Amdahl’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Scalability and Gustafson’s law . . . . . . . . . . . . . . . . . . . 13

1.2 Parallel computing in MATLAB
®

. . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Parallel pools and MATLAB workers . . . . . . . . . . . . . . . . 17

Find the number of cores of your machine . . . . . . . . . . . . . 18

Modify the parallel pool profile . . . . . . . . . . . . . . . . . . . 18

1.2.2 The parfor function . . . . . . . . . . . . . . . . . . . . . . . . . 19

Exception to the independence of parfor loops . . . . . . . . . . 20

1.2.3 The spmd function: . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.4 The parfeval function . . . . . . . . . . . . . . . . . . . . . . . 22

2



CONTENTS 3

Execute a function asynchronously and fetch output . . . . . . . 23

Plot the result of a function during a computation: . . . . . . . . 24

When to use the parfeval over the parfor? . . . . . . . . . . . 26

1.3 Parallel computing in R . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.1 The parallel library . . . . . . . . . . . . . . . . . . . . . . . . 26

Find the number of cores of your machine . . . . . . . . . . . . . 27

Initialization of the parallel pool . . . . . . . . . . . . . . . . . . 28

Parallel versions of apply functions . . . . . . . . . . . . . . . . 28

1.3.2 foreach and the doParallel libraries . . . . . . . . . . . . . . . 28

Registering the doParallel parallel backend . . . . . . . . . . . 29

Difference between foreach and for loops . . . . . . . . . . . . . 30

The use of the .combine option . . . . . . . . . . . . . . . . . . . 30

Loading libraries on the parallel workers with the .library option 31

Getting information about the parallel backend . . . . . . . . . . 31

Stopping the cluster . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 Access to the VERA centre’s virtual machines . . . . . . . . . . . . . . . 32

1.4.1 Access from a Windows machine . . . . . . . . . . . . . . . . . . 32

Access to the Windows servers . . . . . . . . . . . . . . . . . . . 32

Access to the Linux servers . . . . . . . . . . . . . . . . . . . . . 34

1.5 Benchmark problems and scale-up study . . . . . . . . . . . . . . . . . . 36

1.5.1 Problems’ specification and code . . . . . . . . . . . . . . . . . . 36

Monte Carlo method: simulation of π . . . . . . . . . . . . . . . 36

Inversion of randomly generated matrices . . . . . . . . . . . . . 40

Maximum eigenvalue of random matrices . . . . . . . . . . . . . 42

1.5.2 Scale-up study and summary of the results . . . . . . . . . . . . 44



CONTENTS 4

2 Simulation 48

2.1 Simulation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Mathematical methods to generate stochastic sequences . . . . . . . . . 50

2.2.1 Tests for statistical randomness . . . . . . . . . . . . . . . . . . . 51

2.2.2 Random number generation: the Linear Congruential Generator 52

2.2.3 Random variable generation: the Inverse-Transform Method . . . 54

2.3 Variance reduction techniques . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Introduction to Metropolis-Hastings algorithm 60

3.1 Motivations of the method . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 The Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . . 62

3.3 Diagnostics and calibration of practical implementation . . . . . . . . . 63

4 Application of the M.-H. algorithm in parallel 69

4.1 Problem applied in the parallel analysis . . . . . . . . . . . . . . . . . . 69

4.1.1 A note on the parallelisation of the algorithm . . . . . . . . . . . 70

4.2 Calibration of the parallel algorithm . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Parameters used in the analysis . . . . . . . . . . . . . . . . . . . 71

4.2.2 Improving the results with different starting points: the patholog-

ical case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 MATLAB code for the Metropolis-Hastings algorithm . . . . . . 74

4.3.2 R code for the Metropolis-Hastings algorithm . . . . . . . . . . . 76

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Conclusion 80

Bibliography 82



Introduction

History of computers has been defined by an exponential growth in computing power

potential. So much so that for many years researchers, companies, programmers and

normal users who needed to perform computational demanding tasks could just wait few

years and the technological improvements would grant an improvement in computer’s

potential that was, in fact, exponential. To our days, this increment has seen a slowdown

while the problems’ dimension have kept rising at a, possibly, even faster rate due

to modern computing necessities, newer applications and the availability of growing

quantities of data opening for a vastness of possibilities. Thus, nowadays it is needed to

find alternative, more efficient, ways of getting an increase in computing power within

the boundaries of modern computers. Here comes into play the topic that this thesis

explores: parallel computing.

Parallel computing is a programming paradigm that offers the possibility to exploit

unused computing power. Often, in modern computers, modern architecture often pro-

vides a large number of different processors which are not always fully exploited. All of

the processors available can potentially be used at the same time, on the same task, in

order to reduce computing time and obtain results more effectively, and this is the new

paradigm that parallel computing offers. In the first Chapter this alternative paradigm

is analysed, firstly from a theoretical standpoint and, secondly, with a more practical

approach.

Before working on the actual parallelisation of a problem, it is needed to take some

preliminary steps, since some conditions and requirements must be met. The problem

should be computationally intensive to make parallelisation relevant and be comprised

of tasks that are independent from one another. These conditions are explored and

discussed further in Section 1.1.2.

An important aspect upon which this thesis dwells on is the trade-off that parallel

computing involves. Using more than one core at the same time can, in fact, determine

a performance improvement, however, uncovers also some difficulties in terms of how

the problem geta split among the available cores, how these are instructed and how they

need to be synchronised. On this aspect, some metrics used to determine the usefulness

5



6

and efficacy of parallel computing are discussed in Section 1.1.3, helping in the analysis

of whether parallelisation is worth the cost that it involves.

In Sections 1.2 and 1.3 the practical implementation of parallel computing in MAT-

LAB and R respectively is presented. Furthermore, the thesis presents how to access

the VERA machines in Section 1.4, with which the experiments have been performed.

This thesis is, in fact, born thanks to the collaboration with the VERA centre (Venice

centre in Economic and Risk Analytics for public policies) as a development of the work

started as the object of an extracurricular stage conducted in collaboration with profes-

sors A. Basso and R. Casarin, members of the VERA Centre. In particular, access to

some powerful computers of the centre was granted for the analysis lead in this thesis.

The last section of the first chapter, Section 1.5, is devolved to the presentation of

some problems, used as benchmark for an applied analysis of parallel computing. The

problems are described and the code is displayed. Then, a scale-up study is performed,

applying the same problems with a varying number of cores in parallel in order to observe

quantitatively how the parallel application can be beneficial, delivering the same results

in a fraction of the time.

Chapter 2 focuses on computer simulation, a method to numerically solve problems

otherwise too complex or even impossible. Firstly, the general definition and different

elements of models, together with the the evaluation of its validity and the general

limitations are explored. Secondly, in Section 2.2, the discussion moves on to some of

the mathematical methods to generate pseudorandom numbers and stochastic sequences

in a deterministic way with the computer. Finally, some techniques of variance reduction

are presented. These consist of techniques used to increase the precision of the estimators

that the model generates, making the simulation process more effective.

Chapter 3 exposes the Metropolis-Hastings algorithm, a Markov chain Monte Carlo

method used to sample a sequence of random numbers from a target distribution that

is difficult or impossible to compute. Section 3.1 presents the motivation of the method

while Section 3.2 describes the algorithm itself. Section 3.3, then, analyses all calibration

process that needs to be done when practically applying the algorithm.

In light of these considerations, the last chapter consists of a practical, parallel,

application of the Metropolis-Hastings algorithm. A new problem (made of specific

target and proposal distributions) is taken into consideration for the experiment. The

problem is described in Section 4.1.1 and then its calibration is discussed in Section

4.2.2. Then the specific code used is presented and, finally, in Section 4.4, the results of

the scale-up experiment similar to the one performed in Section 1.5 are showcased and

commented.



Chapter 1

Parallel Computing

1.1 Elements of parallel computing

Von Neumann’s architecture is a computer architecture based on the work of the great

Hungarian-American mathematician and physicist John Von Neumann in 1945. Dur-

ing the years the term has evolved to mean any computer that cannot execute at the

same time an instruction fetch and a data operation, defined as movement of data and

instructions essential for the computation process: instructions that need to be sent

to the processing units and results that need to be taken from the them. The key

component in the architecture design, responsible for this limitation, is the BUS: the

communication system employed to connect all of the computer’s components to the

motherboard. It is a pivotal resource and the fact that it is shared between program

memory and data memory determines the limitation that has been defined with the

name of Von Neumann’s bottleneck (Backus 1978). There is a limited throughput, data

transfer rate, between the CPU and the memory. The single BUS present in the design

can only access to one of the two classes of memory at a time, determining a loss of

potential computations that the CPU could do. The CPU is in fact continually forced

to wait for the needed data to move to or from memory. This architecture, and the

consequent limitation described, determined what has been called the serial computing

paradigm, meaning that the computer is able to perform only one action at a time. A

solution to this limitation can be found in the employment of parallel computing models.

Such models develop on the paradigm for which many calculations can be carried out

simultaneously by employing more processing units (CPUs). Large problems can often

be divided into smaller series of computations. These series can be further divided, dis-

tributed and, therefore, executed on different computational resources. These different

computational resources will therefore be working at the same time on different parts

of the same problem. In this way more resources present in most computers, or clusters

7



CHAPTER 1. PARALLEL COMPUTING 8

of computers, can be exploited simultaneously, with results obtained in a more efficient

way. Parallel computing, in fact, can take advantage and keep working on multiple cores

at the same time.

For many decades Moore’s Law bestowed a wealth of transistors that hardware de-

signers transformed into usable performance (Adve et al. 2008). Such law is the obser-

vation that the number of transistors in a dense integrated circuit used to double about

every two years. It has been a trend that held true up until around 2010 and it has been

useful for long-term planning and to set targets for the industry of semiconductors. But

things need to evolve as this trend is not valid anymore (Catalant Staff 2015). The se-

quential programming interface, for the most part, however, did not change as, in order

to have an increase in computing power, it was sufficient to wait few years for hardware

improvements. But, in recent years, as the power limit as been approached, sequential

programming could not determine a sufficient improvement in performance anymore.

“The computer industry has accepted that future performance increases must largely

come from increasing the number of processors (or cores) on a die, rather than making

a single core go faster”(Adve et al. 2008). Parallel computing can help tackle more and

more challenging problems, offering a way to take advantage of multi-core processors

that nowadays are very common also on personal computers. This procedure is even

more rewarding when working on big computer clusters where there is more potential

to be exploited, since parallel computing became the dominant paradigm in computer

architecture (Asanović et al. 2006), solving at the same time also the concern related

to increase in power consumption (and consequently heat generation). Parallelism is, in

fact, an energy-efficient way to easily achieve increase in performance (Anantha, Samuel,

and Robert 1992).

Traditionally computer software has been written for serial computations. Any task

is represented by an algorithm: a series of instructions that the computer executes one

after the other. After a task is completed the computer can move to the next one and

so on. All of the instructions are executed on the same central processing unit, which

can only do one computation at a time. The frequency scaling approach has been the

main form of performance improvement since the beginning of computers. It focuses

on the performance improvement of the common central processing unit as to enhance

the performance of the system containing the processor in question. Parallelism, on

the other hand, uses multiple processing units simultaneously to solve a problem. It

achieves this by separating a problem into many subtasks one independent from the

other. The results are combined afterwards, after completion. Of course not every task

can be parallelised. The simultaneous execution implies the application on an algorithm

that is not affected by the order of completion of each task. These aspects are analysed

in further detail in Section 1.1.2.



CHAPTER 1. PARALLEL COMPUTING 9

1.1.1 Useful concepts in parallel computing

In order to provide an introduction to parallel computing clearly, some useful concepts

that will be used throughout the paper are needed. These are both technical concepts,

fundamental in order to understand parallel computing, and definitions that will define

a common nomenclature useful to avoid confusion:

• CPU: acronym for Central Processing Unit. Sometimes also the term processor is

used, even though it is a more general term. The CPU handles basic instructions

and allocates the more complicated tasks to other specific chips to get them to do

what they do best.

• Core: it is a term that will be used many times due to its key importance for

the concept of parallel computing. Modern days CPUs have multiple cores. These

cores are the actual central processing units. A CPU with two cores (dual core) can

actually do two different computations at the same time. This is the corner-stone

of parallel computing, the main feature leading to the creation of such paradigm.

Figure 1.1: Quad-core CPU representation

• Multi-threading: also called hyper threading, it is a technology which creates

virtual processor cores. They aren’t as powerful as physical cores but they may

help improve performance. With multi-threading a single core can make two com-

putations at a time.

Figure 1.2: Windows’ Task Manager shows the multi-threading property very well as
the number of logical processors compared to the number of cores.

• Thread: smallest sequence of programmed instructions that can be managed

independently. ”Thread” is generally accepted as generic term for subtasks.



CHAPTER 1. PARALLEL COMPUTING 10

• Cluster: group of loosely coupled computers that work together closely, so that

in some respects they can be regarded as a single computer. The single machines

composing the cluster are connected by a network. Clusters by design are ideal

to be used for parallel computing due to their high number of cores compared to

personal computers. There is more potential to be exploited by parallelising.

1.1.2 Conditions for parallel computing

The idea of parallelism, in its essence, is fairly simple but its implications are powerful.

Yet, the many conditions that a program must fulfil in order to be parallelisable make

it a nearly impossible activity to automatize.

The simplest, trivial, situation in which parallelisation can be applied is the one in

which the program is composed of many tasks, everyone perfectly independent from one

another. In this case we call such programs embarrassingly parallel. These are the cases

in which little to no manipulation is needed in order to make them parallel so these

are the cases in which there may be more to gain. There is little human cost involved.

Furthermore, complete independence among tasks means also less communication or

synchronisation among different cores, which makes the parallelisation more efficient, as

we will see exploring the less trivial cases of parallelisation.

Problems that present some more difficulties, which need some communication among

different tasks, and therefore cores, even though not many times per second, are prob-

lems which are said to present coarse-grained parallelism. If they need to communicate

many times per second they present fine-grained parallelism. If the program needs a

level of synchronisation, it will need some form of barriers, that usually take the form

of a lock or a semaphore. These are techniques, programming language constructs, that

help control the access to some specific data or resource.

In addition to these considerations, one element to take into account is whether

parallelisation is profitable in terms of speed gains. Not always, in fact, it is beneficial

to parallelise. It may be the case that the program is not suitable for parallelisation, or

it may be the case that after parallelisation the program may require some extra steps

that may be difficult to program, or they may lead to loss in efficiency due to the needed

interaction among the different cores. A new level of analysis is needed and in order

to perform it, it is necessary to understand all possible factors that may play a role in

the process of parallelisation. Considerations, about how the number of cores will affect

improvements or the evaluation of the trade-off between the performance improvement

and the human cost involved in transforming the program into a parallel one, must be

done. In order to perform this analysis it is necessary to have some metrics, tools that

help measure performance.



CHAPTER 1. PARALLEL COMPUTING 11

1.1.3 Performance metrics for parallel programming

The main criterion for the performance evaluation of a parallel program is its running

time Tp(n). It is the time elapsed between the beginning of the computation and the end

of it on every processor involved (Rauber and Rünger 2013). It is usually defined, with a

specification p of the number of processors, as a function of the size n of the problem. The

problem size is given by the size of the data input, for instance the number of different

simulations in a Monte Carlo problem. This is a very generic measure that incorporates

different chunks of time devoted to various things: the runtime for the execution of

local computations of each participating processor, the runtime for the exchange of data

between processors, the runtime devoted to eventual synchronisation of data access,

and waiting times due to possible unequal load of distribution of processes or mutual

exclusive access to some data. The time spent for exchanging data, synchronization

and waiting can be considered as overhead since it does not contribute directly to the

computations to be performed. These are complementary activities, needed in order to

perform the computations.

Speedup

For the evaluation of parallel programs it is useful to compare the parallel version to a

serial (or purely sequential) one. We define, therefore, the speedup Sp(n) of a parallel

program with parallel execution Tp(n) as:

Speedup: Sp(n) =
T ∗(n)

Tp(n)
(1.1)

where p is the number of processors involved in the parallelisation, and T ∗(n) is the

serial execution time to solve the same problem with the best sequential algorithm.

Theoretically, Sp(n) ≤ p always holds. If we observe a situation in which Sp(n) > p, it

means that the sequential algorithm used was not optimal, and could easily be improved

deriving it from the parallel one. The new sequential algorithm could be constructed by

a round-robin simulation of what would be executed in the participating p processors.

So the first p steps of the new sequential algorithm would be the first step of each of

the p processors, the second p steps the second step of all of the p processors and so

on. Thus, the new sequential algorithm would perform p times more steps than each

one of the parallel one. Therefore, we have that the new sequential algorithm would

have execution time p · Tp(n)
(1.1)⇔ p · T

∗(n)
Sp(n)

< T ∗(n) given that Sp(n) > p. This result

is a contradiction of the assumption that the best sequential algorithm has been used

to compare the execution times. Nevertheless, since the best sequential algorithm may

be difficult to determine, or may be simply unknown or impossible to prove that is the

best possible one, the speedup is computed normally using a sequential version of the



CHAPTER 1. PARALLEL COMPUTING 12

parallel implementation (Rauber and Rünger 2013).

The typical situation is that a parallel implementation does not reach linear speedup

(Sp(n) = p), which can be seen as the optimal result. The decrease in speedup may be

caused by the limit in scalability of the parallel program or by the overhead cost for the

management of parallelism. As we have previously seen, this overhead can be caused by

the necessity to exchange data between different processors, by synchronization or by

waiting times caused by an unequal load balancing between the processors.

Efficiency

An alternative measure of performance of a parallel program is its efficiency. This

measure captures the fraction of time for which a processor is usefully employed by

computations that would have to be performed also by a sequential program (Rauber

and Rünger 2013). It is computed as:

Efficiency = Ep(n) =
T ∗(n)

Cp(n)
=
Sp(n)

p
=

T ∗(n)

p · Tp(n)

where T ∗(n) is the sequential execution time of the best sequential program, Tp(n) is

the parallel execution time on the parallel algorithm using p processors and Cp(n) is

the cost, a measure of the total amount of work performed by all processors, and is

defined as Cp(n) = p · Tp(n). The ideal speedup Sp(n) = p corresponds to an efficiency

of Ep(n) = 1.

Amdahl’s law

Ideally the speedup from parallelisation would be linear. Two cores would do a compu-

tation twice as fast compared to a single core, three cores three times as fast and so on.

Of course the number of cores employed constitutes an upper bound to the speedup. In

reality we do not observe a linear increase. The parallel execution time cannot be arbi-

trarily reduced by employing parallel resources. The reason lies in the fact that there

are some elements of the program that cannot be parallelised. Most algorithms have a

near-linear speedup for a small number of processing elements. The marginal return of

adding one more processing unit is, nevertheless, decreasing. This improvement flattens

out into a constant value for large number of processing elements. The potential speedup

of an algorithm on a parallel computing platform is quantitatively given by Amdahl’s

law (Amdahl 1967). In a program that is composed by a (constant) fraction f , f ∈ [0, 1],

that must be executed sequentially, then the sequential execution time will be f ·T ∗(n).

The fraction (1−f) ·T ∗(n) is the share of the program that is parallelisable which, once

parallelised with p processors, has an execution time of 1−f
p ·T

∗(n). Therefore, the total

execution time of the parallel program will be Tp(n) = f · T ∗(n) + 1−f
p · T

∗(n). From



CHAPTER 1. PARALLEL COMPUTING 13

this, and the definition of speedup from equation (1.1), it easy to see that the attainable

speedup Sp(n) is therefore:

Sp(n) =
T ∗(n)

Tp(n)

=
T ∗(n)

f · T ∗(n) + 1−f
p · T ∗(n)

=
1

f + 1−f
p

≤ 1

f
= lim
p→∞

Sp(n)

This estimation assumes that, as when we defined the speedup, the best possible se-

quential algorithm is used and that the parallel fraction is perfectly parallelisable. The

consequence of this law lies exactly in the upper bound that theorizes and how it is

directly connected with the sequential share of the program. To understand the con-

sequences an example is useful. Suppose 20% of a program must be run sequentially,

we have f = 0.2. The attainable speedup, the upper bound, is given by 1/f = 5. No

matter how many processors are involved in the parallel execution of the program, the

speedup will never be greater than 5.

Figure 1.3: Graphical representation of Amdahl’s law. It is possible to see how the
speedup of a program is limited by how much the program can be parallelised.

Scalability and Gustafson’s law

Scalability is a measure describing whether a performance improvement can be reached

that is proportional to the number of processors employed (Rauber and Rünger 2013).

As we have seen, scalability depends on the structure of the algorithm and its parallel

execution. Amdahl’s law shows that for a fixed problem size n a saturation level of

the speedup can be observed as the number of processors p is increased. The upper

bound observed before. This may be seen as a rather pessimistic view of potential



CHAPTER 1. PARALLEL COMPUTING 14

speedup. On the other hand, we generally observe that as more computation resources

become available they tend to get used on larger problems; with larger datasets, greater

number of simulations and so on. With the problems becoming larger, the parallel

side of the program usually increases much faster than the serial part, determining a

decrease of the serial fraction of the program overall, resulting in a linear increase in

the speedup (McCool, Reinders, and Robison 2012). Therefore, if this is the case of the

problem considered, Gustafson’s law (Gustafson 1988) gives a more realistic, and less

pessimistic, assessment of the parallel performance, with the dimension of the program

varying linearly with the number of processors. In fact, users have usually access on

specific parameters that can be adjusted to allow the program to run in some desired

amount of time. Therefore, it may be assumed that run-time on the parallel application,

and not problem size, is constant. If τf is the constant time of the sequential program

and τv(n, p) is the execution time of the parallelisable part of the program for problem

size n and p processors, then the speedup is expressed as:

Sp(n) =
T ∗(n)

Tp(n)
=
τf + τv(n, 1)

τf + τv(n, p)
(1.2)

Given perfect parallelisation, we may rewrite:

τv(n, 1) = T ∗(n)− τf (1.3)

τv(n, p) =
T ∗(n)− τf

p
(1.4)

It follows, by adding (1.3) and (1.4) in (1.2):

Sp(n) =
τf + T ∗(n)− τf
τf +

T∗(n)−τf
p

=

τf
T∗(n)−τf + 1

τf
T∗(n)−τf + 1

p

, (1.5)

and therefore, if T ∗(n) increases strongly monotonically in n, we have

lim
n→∞

Sp(n) = p.

A graphical illustration of this property is given in Figure 1.4. Bars represent the

computational time. First a task performed serially, and then, the same one performed

with two processors. In the second set of bars, the number p of processors is doubled and

so is the parallel part τ(2n, 2p) of the problem. In this way the final parallel computation

time is the same of the first case. But having doubled the size of the problem, to achieve

this, the speedup is increased. The degree of the increase is proportional to the share of

the initial problem that can be parallelised. We can show this behaviour by developing

equation (1.2) in a different way. First we observe that τ(n, 1) = τ(n, p) · p. Then,

without the loss of generality, we set τf + τv(n, p) = Tp(n) = f ·Tp(n) + (1−f) ·Tp(n) =



CHAPTER 1. PARALLEL COMPUTING 15

1 = f + (1− f). Therefore we have:

Sp(n) =
τf + τv(n, p) · p
τf + τv(n, p)

= f + (1− f) · p.

We see from this formula that the increase of the speedup as a function of p, with the

size n of the problem that increases proportionally, is represented as a line with slope

(1− f) as the ones in figure 1.5, i.e. the share of parallel computation of the algorithm.

Figure 1.4: Example of parallelisation of problems with size increasing proportionally
to the number of processors employed.

Figure 1.5: Graphical representation of the Gustafson’s law. The speedup of a program
is linear to the number of cores involved and increases with the parallelisable share.

A further element to be considered is the so called overhead cost. When a parallel

computation is set, there is a computational cost that affects speed improvements. Said

cost is needed in order to transfer the code to be executed on a different processor or

transfer data between different cores, and so on. This is why parallelisation should be

evaluated case by case and this is where some possible inefficiencies may lie, making

the predictions given by the laws we have just saw very rare to observe, because of

decreases in efficiency. In the case of computation-heavy parallel programs, most CPU-



CHAPTER 1. PARALLEL COMPUTING 16

time will be spent doing the computations, so there may be a high improvement through

parallelisation and the predictions may be quite accurate. For data-heavy programs in

which computations performed are trivial, the overhead time to transfer the data to

the many processors and then retrieve the results back may overweight the gain in

computation time. Each situation is different, and each problem must be evaluated

in order to determine whether parallelisation is the suitable path to take and which

parallelisation approach should be preferred.

1.2 Parallel computing in MATLAB
®

In the last few years MATLAB has implemented in its proprietary software a series of

tools and functionalities that take advantage of parallel computing principles (Math-

Works 2020). Some form of parallelisation is already implemented under the hood, with

some functions that run in parallel, without any different procedure required by the

user. This is done for instance in the matrix multiplication. The sintax is not changed

but the performance is improved considerably. We can show this by running MATLAB

from the terminal in the default way (> matlab) or with the -singleCompThread option

(> matlab -singleCompThread). Then we can run the same piece of code in the two

different instances of MATLAB and measure the time that the program takes to make

the computation:

1 rng(42); %set the seed to get consistent results

2 a = rand(5000);

3 b = rand(5000);

4 tic; a*b; toc

Computation time with the MATLAB with no different option was 3.96 seconds, while

with the -singleCompThread option computation time was 6.28 seconds. The same

conclusion can be drawn by observing the CPU usage during computation. The normal

MATLAB client gets to use double the amount of CPU compared to the single threaded

one.

In addition to these changes, new possibilities for parallel computing have been imple-

mented in the Parallel Computing ToolboxTM, which is a toolbox with functions aimed

at computation on multicore computers, GPU’s and computer clusters. This toolbox

with its functions and usage will be explored in the following sections, but first it will

be necessary to install it. To do so it is sufficient to follow the path Home\Add-Ons\Get
Add-Ons inside of MATLAB. Then it will be sufficient to search for the toolbox and

click install.



CHAPTER 1. PARALLEL COMPUTING 17

1.2.1 Parallel pools and MATLAB workers

Two fundamental elements of MATLAB’s Parallel Computing ToolboxTM are the con-

cepts of parallel pool and workers.

The workers are MATLAB processes that run in background without a graphical

desktop. Functions in the Parallel Computing Toolbox can be used to divide the different

tasks and assign them to different workers that can then perform the computations in

parallel. Workers can be run locally or it is possible to scale up to run the workers on a

cluster of machines. The MATLAB session you interact with is known as the MATLAB

client.

The parallel pool is the name given to the pools of workers. By default, parallel

language functions will initialize a parallel pool when necessary. The default parallel

pool assigns one worker per core available. This is because, although there could be

more virtual/logical cores available, some resources are shared among these. One of

the shared resources is the floating point unit (FPU) which is often used by MATLAB

because it is a double-precision floating point. This is very important in the case of

computationally intensive code. If this is not the case, for instance if it is input/output

(IO) intensive, using more workers per core would be more efficient.

A parallel pool can be initialized with the command parpool() which will start it

with the default settings. It is not always necessary to run this command since the par-

allel pool will be automatically started by the functions in the Toolbox that make use of

parallel computing and, therefore, require a pool. The number of workers of the parallel

pool will be the one defined in the pool’s default settings. This may be customized with

the command parpool(poolsize). Also different parallel pool’s profiles can be used by

means of the command parpool(profilename). How to set and modify parallel pool’s

profiles is detailed in Section 1.2.1.

A general structure to start a parallel pool is:

1 numWorkers = 2; % number of desired workers

2 poolObj = parpool(numWorkers, 'profilename');

3

4 % parallel computation goes here

5

6 delete(poolObj); % closes the parallel pool

In the bottom left corner of the MATLAB window there is the pool status indicator

which indicates whether a pool is running or not, how long it has been idle and when it

will automatically shut down, the number of workers and it lets you quickly start and

stop a parallel pool in addition to have a quick access to the parallel preferences.



CHAPTER 1. PARALLEL COMPUTING 18

Figure 1.6: Different states of the parallel pool indicator

To get the current parallel pool object (in the case the object was not created when

starting the pool) the command gcp() will address it. To avoid starting a pool by using

it if it was not already active, is it possible to use gcp('nocreate'). A common way

to close a parallel pool is with the command delete(gcp('nocreate')).

Find the number of cores of your machine

1 feature('numcores')

MATLAB detected: 2 physical cores.

MATLAB detected: 4 logical cores.

MATLAB was assigned: 4 logical cores by the OS.

MATLAB is using: 2 logical cores.

MATLAB is not using all logical cores because hyper-threading is enabled.

ans =

2

This function gives as a result the information above depicted for a dual-core com-

puter. Furthermore, it gives a value as a result: the number of physical cores present in

the machine, in this case 2.

In some cases it could be useful to get the number of logical cores programmatically

as a value that can subsequently used in the script, and to do so it is sufficient to run

the command str2num(getenv('NUMBER OF PROCESSORS')). This command will return

the number of logical cores, or processes, in our case 4.

1 str2num(getenv('NUMBER_OF_PROCESSORS'))

ans =

4

Modify the parallel pool profile

In order to modify the parallel pool settings it is necessary to reach the Parallel Com-

puting Toolbox in the preferences. In order to do so type preferences in the MATLAB



CHAPTER 1. PARALLEL COMPUTING 19

command line and then select Parallel Computing Toolbox in the Navigation tree on

the left. In this preferences window it is possible to modify the following settings:

• Default cluster: choose the cluster to use. The default one is 'local'.

• Preferred number of workers: specify the number of workers in your parallel

pool. The actual pool size may then be limited by licensing, cluster size, and

cluster profile settings.

• Automatically start a parallel pool: selecting this option many different MAT-

LAB functions will start automatically a parallel pool with the default values if

necessary (if a pool does not yet exist). If a parallel pool is started automatically

it is still possible to access it with the gcp() function.

• Shut down and delete a parallel pool: it is possible to set the idle time of

the parallel pool before its automatic shutdown. The countdown starts when the

pool stops to be used. If it gets used again the countdown resets.

Figure 1.7: Preferences window of Parallel Computing Toolbox

1.2.2 The parfor function

1 parfor loopvar = initval:endval; statements; end

2 parfor (loopvar = initval:endval, M); statements; end

The parfor is a widespread function due to its similarities with the usual for and,

therefore, its ease of use. The mere modification from a for to a parfor lets the code

run in parallel starting, therefore, a parallel pool (if it does not yet exist).



CHAPTER 1. PARALLEL COMPUTING 20

A necessary condition for the parfor-loop to work is for the statements that run

inside the loop to be independent from one another. More precisely, all the code that

follows the parfor statement should not depend on the loop iteration sequence since

they are not executed in a guaranteed order.

The function will also verify that the statements inside the loop are independent,

showing an error whenever this is not satisfied (for instance if a variable computed in a

previous iteration is called and used for a new computation).

The M variable in the specification of the characteristics of the loop, lets you modify

the maximum number of workers or threads used.

Exception to the independence of parfor loops

An exception to independence is given by the reduction variables. A reduction variable

is a variable that accumulates a value that depends on all iterations altogether, but

it is independent of the iteration order. A typical usage of reduction variables is the

following in which the variable X accumulates the values of all of the d(i) variables:

1 X = ...; % Do some initialization of X

2 parfor i = 1:n

3 X = X + d(i);

4 end

This loop is equivalent to the following expression, where you calculate each d(i) by a

different iteration, and for which the summation order does not matter:

X = X + d(1) + ... + d(n)

1.2.3 The spmd function:

1 spmd

2 statements

3 end

The spmd, acronym for single program, multiple data, is a technique employed to achieve

parallelism. Tasks are split up and run simultaneously on multiple processors with

different input in order to obtain results faster.

The “single program” aspect of spmd means that the identical code runs on multiple

workers. You run one program in the MATLAB client, and those parts of it labeled

by spmd blocks run on the workers, simultaneously. Each worker can operate on a

different dataset or different portions of distributed data, and can communicate with



CHAPTER 1. PARALLEL COMPUTING 21

other participating workers while performing the parallel computations. When the spmd

block is complete, your program continues running in the client. To execute it in parallel,

you must first create a pool of MATLAB workers using parpool or have your parallel

preferences to allow the automatic start of a pool.

Inside the body of the spmd statement, each MATLAB worker has a unique value

of labindex, while numlabs denotes the total number of workers executing the block of

code in parallel. Within the body of the spmd statement, communication functions for

communicating jobs (such as labSend and labReceive) can transfer data between the

workers.

Values returning from the body of a spmd statement are converted into a composite

object on the MATLAB client. This is an object containing references to the values

stored on the remote workers. Those values can be retrieved using cell-array indexing.

The actual data remains available on the workers for subsequent spmd execution, so

long as the composite object exists on the client and the parallel pool remains open. A

basic example of how to use the spmd function and how to retrieve the values from the

composite variable is presented below:

1 poolObj = parpool(2);

2

3 spmd

4 disp("Worker n." + labindex + "/" + numlabs + " is computing " +

labindex + "^2.")

5 result = labindex^2;

6 end

7

8 disp("The results retrieved from the composite variable are: ")

9 disp(result{1});

10 disp(result{2});

11

12 delete(poolObj);

The result of this code will be:

Starting parallel pool (parpool) using the ’local’ profile ...

Connected to the parallel pool (number of workers: 2).

Lab 1:

Worker n.1/2 is computing 1^2.

Lab 2:

Worker n.2/2 is computing 2^2.

The results retrieved from the composite variable are:

1



CHAPTER 1. PARALLEL COMPUTING 22

4

Parallel pool using the ’local’ profile is shutting down.

Another example of use of the spmd is using the labindex variable to open different

datasets and apply the same function to them:

1 spmd (3)

2 labdata = load(['datafile_' num2str(labindex) '.ascii'])

3 result = MyFunction(labdata)

4 end

1.2.4 The parfeval function

The parfeval function is useful to evaluate functions in the background, in a parallel

way, without waiting for them to be complete. Intermediate evaluation of the com-

putation’s result can be useful to create a plot showing the progress, or to stop an

optimization procedure that reached a good enough state. This can be done on one

or all of the workers, with parfeval or parfevalOnAll. Note the difference with the

parfor, where you have to wait for the loop to be complete.

1 F = parfeval(p,fcn,numout,in1,in2,...)

2 F = parfeval(fcn,numout,in1,in2,...)

– p: parallel pool object;

– fcn: function to execute on a worker, specified as a function handle, for example

fcn = @myFunction;

– numout: number of outputs expected from fcn;

– in1, in2, ...: input variables of the function fcn;

Furthermore, the output:

– F: future object, returned as a parallel.FevalFuture, that represents the exe-

cution of fcn on a parallel worker and holds its results. Use fetchOutputs or

fetchNext to collect the results.

The function wait(F) can be used to make the execution of the program stop, waiting

for the parfeval cycle to end. Furthermore, you can cancel the execution with cancel.



CHAPTER 1. PARALLEL COMPUTING 23

Execute a function asynchronously and fetch output

The parfeval function permits the execution of a function in the background, while

leaving the MATLAB client able to execute other pieces of code.

For instance it is possible to make a single request to the parallel pool and then

retrieve the outputs by means of fetchOutputs:

1 F = parfeval(@myFun,1,in1,in2,...);

2 %% more code can be executed here while parfeval runs on the

background

3 value = fetchOutputs(F);

Another option is making a vector of future requests on the parallel pool at the same

time and/or fetching the output one at a time, as soon as they become available:

1 % we preallocate a variable with results for efficiency

2 f(1:4) = parallel.FevalFuture;

3

4 for idx = 1:4

5 f(idx) = parfeval(@myFun,1,in1,in1,...);

6 end

7

8 results = NaN(1,4);

9 for idx = 1:4

10 [completedIdx,value] = fetchNext(f);

11 results(completedIdx) = value; % the value is stored in the

variable results

12 fprintf('Got result with index: %d.\n', completedIdx);

13 end

Got result with index: 2.

Got result with index: 1.

Got result with index: 4.

Got result with index: 3.

The results are stored in the variable results. As the example shows, the order of

completion is not guaranteed. The fetchNext function, as we said, will retrieve the

values as soon as they are ready.

The sintax of the fetchNext is the following:

1 [idx,B1,B2,...,Bn] = fetchNext(F)

2 [idx,B1,B2,...,Bn] = fetchNext(F,TIMEOUT)



CHAPTER 1. PARALLEL COMPUTING 24

where idx is the index of the parfeval’s completed future object and B1,B2,... are the

future results. Furthermore, F is the future object and TIMEOUT is the time in seconds

that the function can wait for the results to become available. If they don’t before the

timeout, then fetchNext will return a vector with empty arguments.

Plot the result of a function during a computation:

The parfeval permits to gather the values of a function before the whole completion of

the computations, in order to use them for further applications. One of these applications

can be to plot and keep updated a graph with all of the results already available.

An example in which a series of random walk trajectories (or paths) are computed is

presented below:

Xt = Xt−1 + εt εt ∼ N (0, σ2)

t = 1, . . . , T

with: X0 = µ

1 % Example: using the parfeval function to run a parallel code in the

background and fetch the results gradually from it

2 pp = parpool;

3

4 numPaths = 100;

5 numSteps = 252;

6 mn = 0;

7 sd = 1;

8

9 F(1:numPaths) = parallel.FevalFuture;

10 for i = 1:numPaths

11 F(i) = parfeval(@randomWalk, 1, mn, sd, numSteps);

12 end

13

14 % create the shell of the plot

15 figure

16 axes()

17 xlim([0,numSteps])

18 ylim([-numSteps*sd*0.2,numSteps*sd*0.2])

19 ylabel("Value of random walk")

20 xlabel("Number of steps")

21 hold on

22



CHAPTER 1. PARALLEL COMPUTING 25

23 while true

24 % we fetch the result

25 [idx, path] = fetchNext(F);

26 % we update the plot with the new results

27 plot(path);

28 title("Number of different paths generated: " + num2str(idx));

29 if idx == numPaths; break; end

30 end

31 hold off

32

33 delete(pp);

34

35 % we define the function used in the parfeval

36 function path = randomWalk(mean,sd, steps)

37 path = NaN(1,steps);

38 path(1) = mean;

39 for i = 2:steps

40 path(i) = path(i-1) + normrnd(mean,sd);

41 end

42 end

Figure 1.8: Plot that reached the 74th iteration. It is updated by means of the
parfeval function.



CHAPTER 1. PARALLEL COMPUTING 26

When to use the parfeval over the parfor?

The coding structure of the parfeval, compared to the parfor, is more involved. More

functions and steps are necessary in order to use it. It could be useful, for instance, in

an optimization algorithm computed in parallel, where the parfeval function, fetching

the result during the computation itself, could stop the algorithm as soon as the desired

level of accuracy is reached. Or parfeval could be used when you want to plot the

results as soon as they are available. In any case the main use of the function is to

execute code in the background, letting MATLAB execute code and computations with

the client and the remaining workers left.

1.3 Parallel computing in R

R, compared to MATLAB, is not a proprietary language. It is open-source, free to use

and it is possible to contribute to it (R Core Team 2019). This is the main reason why

the approach to parallel computing in R may be done in many different ways, making

use of many different libraries that its users over the years have developed. In this guide

one of these approaches will be analysed, without diving too deep into low-level settings

and considerations that are beyond the purpose of this guide. This approach to parallel

computing in R will make use of the following libraries, for which the usage and contents

will be later explained in detail:

• parallel: built-in library used for the creation of the parallel pool. It manages

the creation of the parallel structure and the communication among processors;

• foreach: library similar to the common for loop, used to split a program and

assign each part to different parallel workers;

• doParallel: library used to create the parallel backend needed for the use of the

foreach function.

1.3.1 The parallel library

The parallel package is developed by the R Core Team and it comes with the R

installation. It represents the combination of multicore and snow packages which are

packages that have been used before for parallel computation, for which it represents a

replacement. These libraries contained functions to connect the different cores together

and functions to take advantage of the multiple cores (R Core Team 2019). From these

packages it inherited the ”master-workers” framework design. In it a master R process,

running either interactively or as a batch process, creates a cluster of R workers that

perform computations on behalf of the master process (Rossini, Tierney, and Li 2003).



CHAPTER 1. PARALLEL COMPUTING 27

This package is principally concerned with coarse-grained parallelisation, meaning

that it handles running large chunks of computations in parallel. The crucial point is

that these chunks of computation are unrelated and do not need to communicate in any

way.

The basic computational model is:

(a) Start up M ‘worker’ processes, and do any initialization needed

on the workers;

(b) Send any data required for each task to the workers;

(c) Split the task into M roughly equally-sized chunks, and send the

chunks (including the R code needed) to the workers;

(d) Wait for all the workers to complete their tasks, and ask them

for their results;

(e) Repeat steps (b–d) for any further tasks;

(f) Shut down the worker processes.

Among the initialisations which may be needed in the M workers there is the loading

of libraries used in the program and initialize the random number stream.

Find the number of cores of your machine

1 detectCores()

[1] 4

In operating systems that allow hyper-threading, like Windows, the attribute logical

may help identify the number of actual cores.

1 detectCores(logical = FALSE)

[1] 2

In setting up parallel computations it can be helpful to have an idea of the number of

CPUs or cores available. It can only be considered, however, an indicative information.

The program can, in fact, only determine the total number of CPUs or cores/processors

physically present in the machine. This may not be the number of cores available to

the current user, which may have a restriction on accessing all of them. Therefore, this

information should only be taken into account as a guideline.



CHAPTER 1. PARALLEL COMPUTING 28

Initialization of the parallel pool

1 cl <- makeCluster(<size of pool>)

2 # parallel algorithm

3 stopCluster(cl)

The makeCluster() function creates a set of R instances running in parallel and com-

municating over sockets. In Unix-style operating systems the R instances are made

using the fork mechanism which means that the instances created are copies of the

master one. On Windows this is not possible so the R instances are started from zero.

This means that an eventual additional setup (loading of libraries or setting of random

number generators) is required.

After the parallel computations have been performed, it is good practice to stop the

parallel pool with the stopCluster(<cluster object>) command.

Parallel versions of apply functions

One of the main direct applications of the parallel library is surely the use of the

parallelised versions of lapply, sapply, apply and related functions. The parallelised

analogous functions of the lapply function, just taken as example without the loss of

generality, are

1 parLapply(cl, x, FUN, ...)

2 mclapply(X, FUN, ..., mc.cores)

The mclapply function, that is not available on Windows, sets up a pool of mc.cores

workers just for the computation that it performs, whereas, the parLapply function

makes use of an existing parallel pool of workers, specified by the cl object. Therefore,

with this second function the workflow is the following:

1 cl <- makeCluster(<size of pool>)

2 # one or more parLapply calls

3 stopCluster(cl)

To gather information about these functions it is possible to consult R help page by

typing ?apply in the R console.

1.3.2 foreach and the doParallel libraries

The use of the foreach package Microsoft and Weston 2019b, and consequently the

foreach function, comes from the relevant similarity in structure that shares with the



CHAPTER 1. PARALLEL COMPUTING 29

very easy, widespread and familiar for loop. This makes it easy to convert a for into a

foreach which has the capabilities to perform computations in parallel. In fact, unlike

many parallel programming packages for R, foreach doesn’t require the body of the

for loop to be converted into a function. The conversion to a parallel program can be

done in an easier way.

1 results <- foreach(i=1:n) %do% {

2 # computations

3 }

Registering the doParallel parallel backend

It is important to note that, in order to make the foreach library work in parallel, a

second library is needed, the doParallel library. This is a package that provides a

parallel backend for the foreach/%dopar% function using the parallel package (Microsoft

and Weston 2019a). It means that it provides a mechanism to execute foreach loops

in parallel. The user must register a parallel backend before the foreach execution,

otherwise its execution will be done sequentially, even when the %dopar% operator is

used. To open the backend it is necessary to use the registerDoParallel function.

The function can specify the number of processors to be used or it can directly take as

input a parallel object as defined by the makeCluster function.

This is, therefore, the structure of the foreach function with the proper setup of the

parallel backend by means of the doParallel library:

1 library(doParallel) #this will load the foreach and parallel libraries

2 cl <- makeCluster(2)

3 registerDoParallel(cl)

4 foreach(i=1:3) %dopar% {

5 sqrt(i)

6 }

7 stopCluster(cl)

[[1]]

[1] 1

[[2]]

[1] 1.414214

[[3]]

[1] 1.732051



CHAPTER 1. PARALLEL COMPUTING 30

Difference between foreach and for loops

The example in the previous subsection shows that the main difference between for and

foreach, is the fact that the latter returns a list of values. It is, in fact, a function and

being a function it cannot change the value of global variables but it can only return an

object or a data value as result, which is a list by default. The for, on the contrary, does

not return a value and uses side effects to convey its result. It is very common to modify

the value of a variable, which was previously defined, inside of a for loop; the foreach

can instead be used to directly define the value of a variable. This characteristic can

easily be shown with an example:

1 result <- foreach(i=1:3, .combine='c') %dopar% sqrt(i)

2 result

[1] 1 1.414214 1.732051

The use of the .combine option

The example in the previous subsection uses an additional argument for the creation of

the object to be returned by the foreach function: the .combine option. By default

the object returned is a list, a very versatile object since it can contain any R object

in itself. But there may be the need to produce different objects and this can be done

by combining the various outputs into different objects. It is possible to specify the

’c’ function to get a vector as a result, because the standard c function is used to

concatenate the results. It is possible to get a matrix as result by means of the ’rbind’

and ’cbind’ functions. It is also possible to specify other functions like, but not limited

to, ’+’ or ’*’ to get a single result, respectively, the total sum or the total product of

the different elements. Some examples are presented below:

1 foreach(i=1:3, .combine='cbind') %do% rnorm(4)

result.1 result.2 result.3

[1,] -0.4245840 0.02308216 0.6581994

[2,] 0.6860865 -0.37099407 -0.6858409

[3,] -1.7815098 -2.40871376 0.4807190

[4,] 0.7813660 0.97425489 -0.4594264

1 foreach(i=1:3, .combine=’*’) %do% sqrt(i)

[1] 2.44949

It is also possible to use a user-defined function to combine the results. In the next

example the function cfun takes two inputs and returns only the higher one.



CHAPTER 1. PARALLEL COMPUTING 31

1 cfun <- function(a,b) if(a>b) a else b

2 foreach(i=1:3, .combine='cfun') %do% sqrt(i)

[1] 1.732051

The .inorder option, which by default is set to TRUE, is used to specify whether

the order in which the arguments are combined is important. This is a relevant option

when using the foreach function in parallel. If the order is not important, for example

when using the ’+’ combining function, then the .inorder option may be set to FALSE,

getting some performance improvements. When the call ends, the result of foreach will

be shown in the same order as for a normal loop. However, there is no guarantee for

the order in which they are combined, even if the final result is then displayed in the

expected order, the same as if a sequential for loop was used.

Loading libraries on the parallel workers with the .library option

When working on the Windows operating system, the parallel workers will be created

opening new R instances. This means that eventual libraries needed during the com-

putations will have to be loaded on each worker. For this purpose the .library option

can be added to the foreach function, specifying the one or more libraries to be loaded

on all of the different workers.

1 foreach(i=1:3, .library=c('library1','library2')) %dopar% {

2 # computation performed on each worker

3 }

Getting information about the parallel backend

It is possible to get information about the parallel backend that was set in order to make

use of the foreach parallel capabilities. The command getDoParWorkers() allows to

know how many workers the foreach is going to use.

Two more commands may give more information, mainly useful for documentation

purposes: getDoParName() returns the name of the currently registered backend and

getDoParVersion() returns its version number.

Stopping the cluster

It is a good practice to close the parallel cluster after the use. We have seen in Sec-

tion 1.3.1 how to close the parallel pool created by the parallel library with the



CHAPTER 1. PARALLEL COMPUTING 32

stopCluster(<cluster object>) function. If, however, the cluster object was au-

tomatically created by the registerDoParallel function then the doParallel will

close it automatically with the .onUnload function. This procedure can also be done

manually by means of the stopImplicitCluster() function.

1.4 Access to the VERA centre’s virtual machines

The VERA Centre of the Department of Economics at Ca’ Foscari University of Venice

has available five virtual machines:

• Vera 1: Linux machine with 64 cores

• Vera 2: Linux machine with 24 cores

• Vera 3: Linux machine with 40 cores

• Vera 4: Windows machine with 40 cores

• Vera 5: Windows machine with 24 cores

1.4.1 Access from a Windows machine

Access to the Windows servers

The process of getting access to the remote desktop running windows is fairly easy, and

doing so from a Windows computer does not require software installation.

The first step is to search in the search bar for Remote Desktop Connection. It is

a program already included in the Windows utilities. Figure 1.9 provides a snapshot of

the main window of Remote Desktop Connection.

Figure 1.9: Remote Desktop Connection window.



CHAPTER 1. PARALLEL COMPUTING 33

After having inserted the ip address of the VERA machine to connect with, and having

pressed connect, the username and password will be asked as shown in Figure 1.10.

Figure 1.10: Username and password are necessary to connect to the virtual machine.

After having inserted username and password and pressed ok, the warning in Figure

1.11 may appear. It is sufficient to press Yes and the connection with the virtual

machine will start.

Figure 1.11: This warning can be ignored since the remote computer is internal to the
university and can therefore be trusted.

It could happen to face an error, the one in Figure 1.12. As can be seen through the

description of the error, this can be due to many factors. The machine may be available

or turned off, but the most common problem is that it is impossible to connect to the

remote computer because the connection is not initiated on the university’s network,

i.e. eduroam. If the connection is done in the university premises there should be no

problem as long as the eduroam connection is used, but is is also possible to connect



CHAPTER 1. PARALLEL COMPUTING 34

to the machines from anywhere. In order to do so it is necessary to make use of the

University’s VPN (Virtual Private Network). This program is able to simulate your

computer to be connected through the eduroam network making all of the reserved

resources accessible remotely. Anyone having a unive account can use the VPN.

Figure 1.12: Error message. This happens because the computer is not connected at
the eduroam network.

Access to the Linux servers

In order to connect to the Linux servers it is necessary to download some programs

that make it a fairly easy process. The first program is called PuTTY, which is a free

client program that manages the connection to any server with the SSH protocol, used

to run a remote session on a computer over a network. In simple terms, running the

program on a Windows machine creates a connection to the Linux server. It then opens

a terminal that communicates to the server. Anything that is typed in that terminal

is sent to the server and anything that is sent back from the server is displayed in the

terminal itself. So it is possible to run on the server as if you were sitting in the console.

Figure 1.13: PuTTY interface



CHAPTER 1. PARALLEL COMPUTING 35

In practice, when opened, the PuTTY interface is the one in figure 1.13. Here it is

only necessary to insert the ip address, check that the port is specified to be 22 and

press open. This will open the connection to the server and open a terminal window. In

this terminal window the program will ask username and password. If correctly inserted

then the connection will be set and it will be possible to interact with the server through

the terminal, shown in figure 1.14.

Figure 1.14: PuTTY terminal connection to the Linux server

In order to make the file management and transfer from the computer to the server

easier and more intuitive, a new program can be used: FileZilla Client. It is a free

FTP (File Transfer Protocol) software that uses an intuitive graphical user interface,

shown in figure 1.15, and makes possible to transfer files between a client and a server.

Figure 1.15: FileZilla user interface

The top section of the window is used to insert the credentials for the connection to

the server. So, as usual, it is necessary to insert ip address, username and password.

Note that also in this case it is necessary to specify the port to be 22. If not specified



CHAPTER 1. PARALLEL COMPUTING 36

the program, when trying to connect will show an error and the connection will not

be possible. After having clicked on Quickconnect the connection status section will

show the state of the connection. Below the status section the window is divided in two.

The left side shows the files on the local computer, while on the right, if the server is

connected, the server files will be displayed. Between these two section it is possible to

easily move files, for which transfer details will be show below.

1.5 Benchmark problems and scale-up study

1.5.1 Problems’ specification and code

In this chapter some benchmark problems from numerical analysis will be used to test

the efficiency of the parallel implementation, specifically analysing the potential im-

provements reached using the university’s machines. These are examples that are prone

to parallelisation, due to the embarrassingly parallel algorithm in the first case, or the

computation demanding tasks in the second and third ones. These are not, in fact,

data demanding problems. The parallel implementation does not, therefore, require

the transfers of big amounts of data between different workers which would affect effi-

ciency and therefore potential performance improvements and it is often the cause of

lost potential improvements.

Before presenting the results achieved on the VERA machines, the examples will be

discussed, and the code used in the experiment presented in the following subsections.

Monte Carlo method: simulation of π

This problem is, possibly, the most used example to present the capabilities of the Monte

Carlo simulation. It is a typical example of integral approximation, as we will proceed

to compute the area below a function, applied to the computation of one of the numbers

that have fascinated mathematicians the most across history: π.

The idea behind this problem is simple and very easy to visualize, making it the

perfect example to show off the principles behind the Monte Carlo technique. π will, in

fact, be calculated by computing the area of the unit circle. π will then be extrapolated

from it. Since we are computing the area of a circle of radius 1, the formula simplifies

and the area of the circle will be our actual approximation of π.

Area = πr2 with r = 1

= π



CHAPTER 1. PARALLEL COMPUTING 37

To compute the area of the circle we will proceed by generating a large number of random

points ai = (xi, yi) with xi ∼ U(0, 1) and yi ∼ U(0, 1) where U(a, b) denotes a uniform

distribution on the interval (a, b). By generating a large number of points we will be

able to cover more or less uniformly the whole area taken into consideration. As shown

in figure 1.16 we can do this on a single quadrant, in this case the first one, and then

assuming the same result applies to the other three. This is particularly useful because

in this way the generation of the random numbers used for the points coordinates is

simpler. Generating, in fact, numbers on a different range, say [−1, 1], requires an

extra step to convert each random variable from having a [0, 1] range, as it is given by

most random number generation functions. An extra step that would slow down the

computation when repeated millions of times.

Figure 1.16: Graphical representation of the Monte Carlo method to compute π with
350 points (green and red circles).

Then we can use these random points to approximate the area of the quarter of the

circle, compared to the area of the square surrounding it, by simply counting the number

of points inside of the circle and divide it by the total number of points. This is the

reason why this represents an example of integral numerical solution, because the result

approximated is equivalent to the integral with which we can compute the area below

the function. To determine if a point ai is inside of the circle the following function is

used: x2i + y2i ≤ 1 ai lies inside of the circle

otherwise ai lies outside of the circle

Thus, the formula to compute the area of the circle, and, therefore π is the following:

Area = 4 · Ninside
Ntotal



CHAPTER 1. PARALLEL COMPUTING 38

where Ninside is the variable containing the number of points generated that actually

lie inside of the circle, and Ntotal is the total number of iterations that the simulation

performs.

Below the code used in the experiment, both in MATLAB and R, is presented. The

functions that are presented in this chapter can be used in other scripts by importing

them. In MATLAB simply by having the files in the same folder it is possible to call

them as functionName(inputs). In R, instead, functions lying in external files can be

imported with the command functionName <- dget("filename.R"). Both functions

return a list containing both the approximation of π and the time spent to compute it,

information actually used later for the scale-up analysis with different amount of cores

employed.

The total workload has not been divided across single iterations, i.e. sending individ-

uals iterations to single workers and then repeating this process until the desired amount

of iterations has been reached. Instead, the amount of iterations that each worker needs

to do is divided and determined beforehand. Thus the workers are instructed once and

they have already defined the amount of work they need to do. The process of transfer-

ring the instructions to single workers is reduced to a minimum, being only performed

once. Then, upon completion partial results are collected and combined. This proce-

dure is ideal in this case because this parallel application has a very high number of

iterations, each taking up just a small fraction of a second. Therefore, each tiny com-

putation that is added to the single iteration adds up, being repeated millions of times,

to a considerable amount of time. At the same time, being the single computation very

simple and fast we do not worry about one worker taking more time than the others,

therefore not taking full advantage of the parallelisation, because the difference should

be minimal and the reduction of time outweighs this slim possible inefficiency.



CHAPTER 1. PARALLEL COMPUTING 39

MATLAB code for Monte Carlo simulation

1 function [time, res] = BenchMC(n, nCores)

2 %BencMH function that, by means of MonteCarlo simulation, simulates pi

3 % n : number of simulation steps

4 % nCores: number of cores employed

5

6 delete(gcp('nocreate'))

7 parpool(nCores);

8

9 tic

10

11 workload = round(n/nCores); %rounded iterations for each worker

12 mypi = zeros(1, nCores);

13 parfor i=1:nCores

14 partial = 0;

15 for j = 1:workload

16 x = rand; y = rand;

17 if (x^2+y^2) <= 1

18 partial = partial + 1;

19 end

20 end

21 mypi(i) = partial;

22 end

23

24 pi = (sum(mypi)/n) * 4;

25

26 time = toc;

27 delete(gcp('nocreate'))

28 res = pi;

29 end

R code for Monte Carlo simulation

1 function(n, nCores) {

2 #BencMH function that, by means of MonteCarlo simulation, simulates pi

3 # n : number of simulation steps

4 # nCores: number of cores employed

5

6 cl <- makeCluster(nCores)

7 registerDoParallel(cl)

8



CHAPTER 1. PARALLEL COMPUTING 40

9 workload <- round(n/nCores, 0) # rounded iterations for each worker

10

11 time <- system.time(

12 mypi <- foreach(i = 1:nCores, .combine='+') %dopar% {

13 piTemp <- 0

14 for (j in 1:workload) {

15 x <- runif(1)

16 y <- runif(1)

17 if (x^2+y^2 <= 1) {

18 piTemp <- piTemp + 1

19 }

20 } #for

21 return(piTemp)

22 }# foreach

23 )[3] #Sys.time

24

25 mypi = (mypi/n) * 4

26

27 stopCluster(cl)

28

29 return(list(mypi, time))

30 }

Inversion of randomly generated matrices

The second problem consists in the computation of the inverse of a matrix that has

been randomly generated. Specifically, the matrix is formed by the sum of the squared

elements of two matrices, composed themselves of normally distributed numbers. For-

mally:

Generate two independent matrix-variate normal random variables

Xjik
i.i.d.∼ Nm×m(Om×m, Im2), j = 1, 2, i = 1, . . . , n, k = 1, . . . ,K

and let ỹpq,ik = (x2pq,1ik + x2pq,2ik) with xpq,jik the (p, q)-th element of Xjik. Finally

compute the inverse:

Yik = Ỹ −1ik , , i = 1, . . . , n, k = 1, . . . ,K

MATLAB code for random matrix inversion



CHAPTER 1. PARALLEL COMPUTING 41

1 function [time] = BenchInvMatrix(i, k, m, nCores)

2 %BenchInvMatrix function that invertes randomly generated matrices

3 % n = parameter identifying dimension of the matrices

4 % nCores = num. of cores used for the computation

5

6 delete(gcp('nocreate'))

7 parpool(nCores);

8 tic

9

10 parfor v=1:i

11 for u=1:k

12 x=inv(randn(m,m).^2+randn(m,m).^2);

13 end

14 end

15

16 time = toc;

17 delete(gcp('nocreate'))

18 end

R code for for random matrix inversion

1 function(i, k, m, nCores) {

2 #BencInvMatrix function that invertes randomly generated m by m

matrices

3 # i: number of parallel iterations

4 # k: number of iteration for each _i_

5 # m: dimension of the matrix MxM

6 # nCores: number of cores employed

7

8 # function to compute the power of a matrix

9 # taken from

https://stat.ethz.ch/pipermail/r-help/2007-May/131330.html

10 # by: Alberto Vieira Ferreira Monteiro

11 matpowfast <- dget("matpowfast.R")

12

13 cl <- makeCluster(nCores)

14 registerDoParallel(cl)

15

16 time <- system.time(

17 temp <- foreach(v = 1:i, .combine='c') %dopar% {

18 for (u in 1:k) {

19 A <- matpowfast(matrix(rnorm(m*m), nrow = m, ncol = m), 2)



CHAPTER 1. PARALLEL COMPUTING 42

20 B <- matpowfast(matrix(rnorm(m*m), nrow = m, ncol = m), 2)

21 temp <- solve(A+B)

22 } #for

23 return(NULL)

24 }# foreach

25 )[3] #Sys.time

26

27 stopCluster(cl)

28

29 return(time)

30 }

This function makes use of the matpowfast() function1 which is a fast algorithm to

compute the power of a matrix as needed by the specified problem.

1 function(mat, n)

2 {

3 if (n == 1) return(mat)

4 result <- diag(1, ncol(mat))

5 while (n > 0) {

6 if (n %% 2 != 0) {

7 result <- result %*% mat

8 n <- n - 1

9 }

10 mat <- mat %*% mat

11 n <- n / 2

12 }

13 return(result)

14 }

Maximum eigenvalue of random matrices

The third problem consists in the computation of the eigenvalues of big randomly gen-

erated matrices. Then all of the values are compared and the maximum is found. The

eigenvalue calculation is a computationally demanding operation for which, therefore,

the employment of parallel computing can be beneficial in reducing computation time.

MATLAB code for the maximum eigenvalue

1 function [time] = BenchEig(k, dim, nCores)

1Function taken from the notes of Alberto Vieira Ferreira Monteiro, available at:
https://stat.ethz.ch/pipermail/r-help/2007-May/131330.html [accessed on 18/05/2020]



CHAPTER 1. PARALLEL COMPUTING 43

2 %BenchEig function that find the maximum eigenvalue of randomly

3 % generated matrices

4 % k = number of matrices to compute

5 % dim = dimension of matrices: dim x dim

6

7 delete(gcp('nocreate'))

8 parpool(nCores);

9

10 tic

11 b = zeros(1,k);

12 parfor i = 1:k

13 b(i) = max(eig(rand(dim)));

14 end

15 time = toc;

16 delete(gcp('nocreate'))

17 end

R code for the maximum eigenvalue

1 function(k, dim, nCores) {

2 #BenchEig function that computes the eigenvalues or k randomly

generated

3 # dim x dim matrices and finds the maximum value.

4 # k: number of randomly generated matrices

5 # dim: dimension of the randomly generated matrix: dim x dim

6 # nCores: number of cores employed

7

8 cl <- makeCluster(nCores)

9 registerDoParallel(cl)

10

11 time <-system.time(

12 temp <- foreach(v = 1:k, .combine='c') %dopar% {

13 m <- matrix(round(runif(n = dim*dim, min = 0,max = 1), 2), nrow =

dim, ncol = dim)

14 a <- eigen(m, only.values = T)

15 b <- max(Re(a$values))

16 return(NULL)

17 }# foreach

18 )[3] #Sys.time

19

20 stopCluster(cl)

21



CHAPTER 1. PARALLEL COMPUTING 44

22 return(time)

23 }

1.5.2 Scale-up study and summary of the results

A scale-up study of varying number of cores employed on the VERA’s machines has

been performed using the problems just described as benchmark. Each problem has

been repeated with varying number of cores, from 1 to the maximum of 24. Then, the

same experiment has been performed 25 times and the average outcome is taken as

result. This has been done in order to mitigate the variation in computing time due to

the stochastic nature of the Metropolis-Hastings algorithm.

Figure 1.17: Plot of the computation time of the three benchmark problems, in
relation to the number of cores employed for the computation.

The examples have been run both in R and MATLAB. They have been, however,

performed with different parameter settings such that the sequential version (with just

one core) took around 110 seconds to run. Different settings have been considered, to



CHAPTER 1. PARALLEL COMPUTING 45

highlight the strengths and weaknesses of each language. In fact to reach an equivalent

computation time for the simple Monte Carlo exercise, in R 3.4 · 107 simulations are

performed while on MATLAB this number is increased to 109. For the exercise of

inversion of matrices an order of magnitude is increased in the same direction, from

17, 000 in R to 170, 000 matrices in MATLAB. On the other hand, the Metropolis-

Hastings has proven to be more efficient in R where each path was carried on for 4, 000

steps, while only 1, 000 on MATLAB. This process of “balancing” the programs has

been done because the comparison of the two programs themselves was not the goal of

the study. Not to mention that the written programs, despite being written to be as

similar as possible, they may still present inefficiencies and asymmetries that influence

the execution times. The goal of the scale-up-study was the one of comparing the parallel

algorithm run-times when actually applied in practice with increasing number of cores

employed, comparing therefore the behaviour of the two programming languages with

different problems. Thus, to make it more easy to compare, the analysis needed to

be performed from a similar starting point, namely the sequential version running in

around 110 seconds.

Figure 1.18: Comparison of the speedup performance of the three benchmark
examples, with the reference of the ideal speedup, both for R and MATLAB.

The results, in seconds, are presented, for more details, in Table 1.1 but visualized

in Figures 1.17 and 1.18. From these results the first conclusion that can be done is

that the parallel computing may definitely prove itself useful determining a considerable

reduction in computation time. We see from Figure 1.17 the actual results. We see a

considerable reduction but it is still difficult to compare each program and extract the

meaning from these numbers. This is easier to do analysing the speedup, which is a

measure that, taking as reference the sequential algorithm of the respective exercise, is

possible to be compared.

In Figure 1.18 we see results from both languages in two plots, respectively for R and

MATLAB. In the case of R we can appreciate the constant increase in speedup, while



CHAPTER 1. PARALLEL COMPUTING 46

loosing progressively efficiency as the speedup was departing from the ideal measure

of speedup, i.e. the ideal scenario in which each additional core employed decreases

perfectly proportionally the computation time. We can see that the benchmark problems

that resulted gaining the most are the ones that are more computationally intensive: the

inverse and the computation of the maximum eigenvalue of random matrices. The reason

may lie in the fact that there is less communication between workers, while the workers

themselves have more computations to perform. Analysing the results of the MATLAB

speedup plot we observe, on the other hand, a great speedup achieved, staying fairly

close to the ideal speedup. The different programs themselves yield a similar result.

To conclude this analysis we observe that is a suitable path to achieve a considerable

reduction in computation time, even if done minimizing the effort, maintaining the

algorithms as close as possible to the sequential ones but taking some changes, some

precautions, to make it parallel.



CHAPTER 1. PARALLEL COMPUTING 47

R

Cores MC time Speedup MI time Speedup EIG time Speedup

1 97.49 1.00 100.91 1.00 104.59 1.00
2 50.70 1.92 51.41 1.96 53.35 1.96
3 35.21 2.77 34.49 2.93 35.55 2.94
4 27.50 3.55 26.26 3.84 27.06 3.87
5 23.13 4.22 21.13 4.78 21.64 4.83
6 20.20 4.83 17.73 5.69 18.06 5.79
7 18.37 5.32 15.30 6.59 15.53 6.73
8 16.61 5.88 13.55 7.44 13.69 7.64
9 15.21 6.42 12.08 8.35 12.21 8.57
10 14.13 6.90 10.97 9.20 11.02 9.49
11 13.15 7.42 10.04 10.05 10.11 10.35
12 12.27 7.95 9.33 10.82 9.37 11.17
13 11.58 8.42 8.70 11.60 8.67 12.06
14 11.00 8.87 8.19 12.32 8.16 12.81
15 10.37 9.41 7.80 12.94 7.71 13.57
16 9.87 9.89 7.35 13.73 7.31 14.31
17 9.48 10.29 6.94 14.54 6.94 15.08
18 9.09 10.73 6.71 15.03 6.64 15.75
19 8.72 11.19 6.45 15.64 6.38 16.40
20 8.58 11.38 6.23 16.21 6.23 16.80
21 8.23 11.87 6.05 16.72 5.98 17.52
22 7.87 12.41 5.80 17.41 5.82 18.01
23 7.91 12.39 5.74 17.65 5.79 18.12
24 8.07 12.11 5.67 17.83 5.75 18.26

MATLAB

1 112.94 1.00 127.56 1.00 132.01 1.00
2 58.55 1.93 65.21 1.96 68.48 1.93
3 39.61 2.85 44.16 2.89 45.63 2.89
4 30.21 3.74 33.42 3.82 34.58 3.82
5 23.89 4.73 27.07 4.71 27.55 4.79
6 20.21 5.60 22.90 5.57 23.51 5.62
7 17.36 6.51 19.89 6.42 20.36 6.48
8 15.50 7.29 17.68 7.22 18.14 7.28
9 13.99 8.09 15.81 8.07 16.32 8.09
10 12.40 9.12 14.42 8.85 14.85 8.89
11 11.39 9.92 13.42 9.50 13.81 9.56
12 10.67 10.59 12.47 10.23 12.84 10.28
13 9.71 11.64 11.63 10.97 12.20 10.83
14 9.29 12.17 10.87 11.74 11.37 11.61
15 8.64 13.08 10.27 12.42 10.67 12.38
16 8.20 13.79 9.75 13.08 10.23 12.91
17 7.81 14.49 9.33 13.67 9.69 13.63
18 7.28 15.53 8.82 14.47 9.16 14.42
19 7.10 15.93 8.53 14.95 8.91 14.83
20 6.88 16.44 8.11 15.73 8.44 15.65
21 6.61 17.18 7.87 16.22 8.25 16.03
22 6.35 17.84 7.65 16.69 8.05 16.45
23 6.26 18.14 7.36 17.33 8.01 16.53
24 6.63 17.14 7.45 17.14 7.98 16.59

Table 1.1: Detailed results of the benchmarks on the Linux machine.



Chapter 2

Simulation

Computer simulation has been employed in a wide variety of disciplines. Through com-

puter simulation, one can study the behaviour of real-life systems that are too diffi-

cult to examine analytically. Furthermore, recent advances in methodologies, software

availability, hardware improvement and stochastic optimization have combined to make

simulation one of the most widely accepted and used tools in system analysis and oper-

ations research (Rubinstein and Kroese 2017). If considered, then, the sustained growth

in size and complexity of emerging real-world systems and problems, we cannot expect

anything but a parallel growth in popularity of these methods, that may give us a way

to peek inside of problems otherwise too big and complex to tackle.

2.1 Simulation models

By model it is intended an abstraction of some real system that can be used to obtain

predictions and formulate control strategies. It is, therefore, useful to clearly define what

a system is. By system we mean a collection of related and interacting entities, called

elements, forming a unique complex unit. The elements possess certain characteristics,

or attributes, that take on logical or numerical values. Typically, the activities of sin-

gle elements interact over time, causing changes in the system’s state (Rubinstein and

Kroese 2017). For example the system may be considered to describe a firm. Elements

in this system may be the employees, the customers or the machinery. The attributes

may be the skill level of the employees, inventory’s capacity or machinery’s efficiency.

Then the system’s state may be the number of sales in a certain period. Clearly interac-

tion between the workers and customers, the division of work, the production capacity

of the machinery and the number of product ready and waiting in inventory all together

contribute to the determination of sales for the simulated period.

48



CHAPTER 2. SIMULATION 49

Given the attributes’ numerical or logical nature, the model developed will, in turn,

have a mathematical background, an analysable system to emulate the physical one.

In order to be useful, two conflicting dimensions will have to be balanced: realism and

simplicity. Ideally, the model should be as realistic as possible. The main goal of any

model is the one of representing reality as faithfully as possible, incorporating most of

the real aspects of the system. On the other hand, some degrees of realism can and

should be waived in favour of simplicity. A model too complex to be analysed is of little

usefulness since the main goal should be the one of being a tool to simplify interpretation

of reality. Furthermore, simplicity leaves the door open to manipulation that could be

useful to simulate different possible hypothetical scenarios.

After having defined the model, it is necessary to assess its validity. This may be

approached in many ways. One way is to reexamine and reevaluate the formulation

of the problem uncovering possible flaws. In doing so it is also useful to verify that

all of the mathematical expressions are dimensionally consistent. These two methods

involve valuating the mathematical expression of the model. A third way is the one of

varying input parameters and check that the model behaves in a plausible manner. It

is always useful during the programming phase of a model to spend some time checking

this aspect. In these regards, it is useful to analyse degenerate cases, or cases with

parameters that are unlikely observed in real life but for which the results may be

predictable. If we take the previous example we may analyse the model’s behaviour,

for instance, in the situation in which there are no customers or no employees and then

observing the model’s outcome. Finally, the fourth method to verify the validity of a

model is the, so called, retrospective test, which is a typical way of building and assessing

machine learning models. This practice consists in building a model based on historical

data and then check, again with a share of past data, how well the model would have

predicted reality. In this way it is possible to measure the effectiveness that the model

would have had if it would have been used. Comparing, then, this hypothetical accuracy

with what actually happens indicates how well the model predicts reality. However, the

big disadvantage of retrospective analysis lies in the assumption that past data is a good

representation of the future, which not always may be accepted a priori.

Finally, after the model has been set up and its validity verified, it is possible to de-

rive a solution from it. This may be done both analytically and numerically. In the first

case, a solution is obtained directly by working on the formulas and expressions of the

model. In the second case, a numerical solution is obtained via a suitable approximation

procedure. Here is where simulation comes into play. The use of stochastic computer

simulation - often called Monte Carlo simulation - introduces some randomness in the

model, that, therefore, deviates from a deterministic computer model. The randomness

introduced in the model, and that lets a computer program be able to compute numeri-

cal solutions to a model, also uncovers one of the shortcomings of computer simulation.

Simulation, in fact, cannot give exact measures of the model, rather it can derive sta-



CHAPTER 2. SIMULATION 50

tistical estimates. Thus, even if we assume we have a model that is faithful to reality,

the results that simulation is able to give are subject to a certain degree of uncertainty.

The second obvious shortcoming of simulation comes from the assumption, sometimes

not so acceptable, of a faithful model. If not a valid representation of reality, then the

model will not be able to provide meaningful results. Lastly, simulation modelling is

typically time consuming due to the random number generation processes needed to

introduce randomness, and the large number of iterations that are needed in order to

increase precision, reducing the variance of the estimate. This is exactly the flaw that

parallel computing is aimed at solving, or at least reduce in relevance.

2.2 Mathematical methods to generate stochastic se-

quences

As it has been discussed in the previous section, simulation of complex models aimed

at the generation of a numerical result often entails the introduction of randomness

in the formula. And even if in some cases deterministic algorithms have been found,

randomized algorithms are, generally, considerably simpler and more efficient (Vadhan

2012).

The computer, however, is unable, by itself, to achieve true randomness; the very

same concept of random is a complex conundrum that mathematicians and philoso-

phers have tried to tackle. In the early days of computer simulation randomness was

generated by manual techniques, such as coin flipping, dice rolling, card shuffling up to

more sophisticated techniques devised in later years like those based on the universal

background radiation or the noise of a PC chip (Rubinstein and Kroese 2017). Mechan-

ical techniques are still widely used in gambling (e.g. roulette) and lotteries but the

computer-simulation community abandoned such techniques for three main reasons:

1. mechanical methods were too slow for general, modern use;

2. the generated sequences could not be reproduced;

3. it was found that the generated sequences exhibited both bias and dependence.

Modern mechanical techniques do overcome the first and third issue. The speed has

increased considerably and they would pass most statistical tests for randomness, which

will be discussed in Section 2.2.1. The main drawback, however, remains the impossibil-

ity to reproduce a certain sequence. Some techniques, however, have been devised and

developed which lead to the generation to satisfactory and reproducible results. For this

reason they are called pseudorandom numbers.

Pseudorandomness is the theory of efficiently generating objects that “look random”



CHAPTER 2. SIMULATION 51

despite being constructed using little or no randomness at all (Vadhan 2012). These

objects may vary in nature but those that will be considered hereafter will simply be

numbers.

In general a random process generates unpredictable outcomes. A single event, any

event, cannot be predicted in advance with certainty given available information. On the

other hand, pseudorandom processes produce outcomes that, given some information,

can be predicted. An example of a physical random process can be a six-sided fair die.

On a single roll the outcome is supposed to be impossible to predict. There exists no

information, given a proper roll, that could permit a prediction with certainty. Now

let us consider a logbook in which a million outcomes, a million dice rolls in this case,

are transcribed. Then we have a logbook that has been produced randomly and that

can be produced to create (pseudo)random sequences of numbers. At the same time,

however, if we know the starting position of said sequence, say starting page and row, we

could perfectly predict future outcomes. The important aspect of this is that without

the information given by the logbook the pseudorandom sequence exhibits statistical

randomness. It does not matter that the true randomness is not reached as long as in

the sequence there are not present any recognizable patterns or regularities. In fact this

example is actually taken from reality. Nowadays many methods have been developed

in order to generate random numbers, and computing power has increased such that

thousands of random numbers can be generated in the blink of an eye. However, in

the past, a logbook with random numbers was something so useful that it was actually

published in 1955 by the RAND corporation. The book, A Million Random Digits with

100,000 Normal Deviates, was simply a long sequence of random numbers, generated

by an electronic simulation of a roulette wheel attached to a computer, culminating in a

400 pages book. The sequences had been carefully filtered and tested before being used

to generate the table. A few of these tests are presented in the following section.

2.2.1 Tests for statistical randomness

The first tests to check statistical randomness, which were followed by a prolific literature

on the subject but that are still valid today, are four hypothesis tests that take as their

null hypothesis the idea that each number in a given random sequence had an equal

chance of occurring. consequently, also any other pattern should be distributed evenly

with the same probability (Kendal and Babington Smith 1938).

– The frequency test is the first and most basic one. It simply checks the frequency

of every single digit. The expectation is that such frequency is the same for each

digit as each one has the same probability to occur;

– the serial test does the same thing of checking frequencies but for sequences of two

digits at a time (e.g. 00 01 02...). Again the observed frequency is then compared



CHAPTER 2. SIMULATION 52

to the expected one. This test verifies that the sequence is not locally random, i.e.

no digit tends to be followed by another specific digit. For instance the sequence

formed by repeating 1234567890... passes the first test but not this second one;

– the poker test consists on using all possible categories obtained from poker that

uses a hand of five cards. Thus, checks for 5 digits sequences comparing them to

the probability for them to happen;

Name Pattern Probability

All different ABCDE 0.3024
One Pair AABCD 0.5040
Two Pairs AABBC 0.1080

Three of a kind AAABC 0.0720
Full house AAABB 0.0090

Four of a kind AAAAB 0.0045
Five of a kind AAAAA 0.0001

Table 2.1: Probabilities tested by the poker test (Abdel-Rehim et al. 2015).

– the gap tests, lastly, controls the gap between two digits. For instance the sequence

00 has a gap of 0 between the two zero digits. The sequence 050 has a gap of 1, the

sequence 093510 has a gap of 4 and so on. The gap itself has a certain expectation.

In the example in which we consider the digit 0 then we may expect it to be followed

by another 0, having therefore a gap of 0, one tenth of the times.

A sequence that is able to pass all of these tests up to a certain confidence level (usually

5%) is said to be locally random. Kendall and Smith introduced this concept differen-

tiating it from the concept of true randomness. A truly randomly generated sequence,

in fact, may not be locally random to a certain degree. It could happen that these

sequences are random overall but do not present randomness in some of their smaller

blocks, for instance with many rows with the same number, meaning that they would

be useless to certain statistics applications.

2.2.2 Random number generation: the Linear Congruential Gen-

erator

The building block to introduce randomness to any stochastic process is the generation

of independent uniformly distributed random variables. These variables are then used

to generate any random variable that follows a different probability distribution, and

these methods will be discussed in Section 2.2.3.

For most applications, these ways of generating random numbers could be just con-

sidered a black box since most computer languages already have built-in code to generate

them. The user is usually only requested to input the starting seed, X0, which if not



CHAPTER 2. SIMULATION 53

specified is picked by the computer itself, usually based on the current date and time

when the program is run. In MATLAB uniformly distributed random numbers can be

generated by means of the function rand(...) and the seed set with rng(<seed>). In

R the function runif(...) generates the numbers while set.seed(<seed>) sets the

seed.

For some applications, however, understanding the generation of random numbers is

very useful, and for the parallel computing purpose can prevent some mistakes that could

lead to unwanted results. The simplest method for generating pseudorandom sequences

is to make use of linear congruential generators (Lehmer 1951). This method uses a

recursive formula to generate a deterministic sequence X of pseudorandom numbers:

Xt+1 = (aXt + c) (mod m)

where the initial value X0 is the seed, a, c and m are all positive integers and are

respectively called the multiplier, the increment and the modulus. The function modulo-

m (mod m) means that the result of the formula is divided by m and then only the

remainder is taken, becoming the element Xt+1 in the sequence. These components are

the variables shaping the resulting sequence. If c = 0 then the generator is called a

Lehmer Random Number Generator. The key component is the variable m that is the

component of the modulo function. This variable, in fact, defines the period length of

the sequence. Each component of the sequence can only be, in fact, smaller than m,

assuming uniquely values from the set {0, 1, ...,m − 1}. We have that this sequence is

uniformly distributed and we can transform it such that its support becomes [0, 1], as

most of the uses of uniform distributed random variables require, simply by:

Ut =
Xt

m
∼ U (0, 1)

The random variable Ut ∼ U (0, 1) is easy to generalize to have any support, so that

Ũt ∼ U (a, b). To expand, or shrink, the support of the variable it is sufficient to multiply

the random variable by a constant c, i.e. Ut · c = Ut′ ∼ U (0, c). By setting c = b− a it

is possible to create a random variable with the desired gap: the difference between a

and b. The second step is the one of translating the gap, which can be done by simply

adding, or subtracting, a constant from the variable, i.e. Ut′+ a = Ũt ∼ U (0 + a, c+ a)

This sequence of random numbers is periodic, meaning that it will repeat itself at

most everym iterations. For example, let a = c = X0 = 2 andm = 7. Then the recursive

formula will be Xt+1 = 2Xt + 2 (mod 7) which will produce the sequence, including

the starting point, 2, 6, 0, 2 which has period 3. The parameters will, therefore, have

to be carefully chosen to yield an optimal result without involving computations that

result too computationally expensive. For instance prime numbers are generally good m

candidates to produce long sequences. Prime numbers, in fact, reduce the likelihood of



CHAPTER 2. SIMULATION 54

obtaining as result the starting point, the seed, which would restart the sequence. The

more this event can be delayed by choosing the right numbers, so the larger the period

of the sequence, the better generation of random numbers we can aim to achieve.

More in general good generators are those that pass a large part of statistical tests.

Two examples, taken from Palczewski’s notes of a course in Computational Finance1,

are presented in Figure 2.1. The example shows the distribution of the sequence using

two different sets of parameters, a = 1229, c = 1,m = 2048 on the left and a = 1597, c =

51749,m = 244944 on the right. While the histogram depicting the distribution seems

fairly unbiased, considering the small sample size, and in any case no clear difference

among the two examples can be highlighted, the scatter plot presents clear differences

in the randomness. In particular, each point represents two consecutive elements in the

sequence, one in the x coordinate, and the second in the y. Thus, the plot represents the

relation between each point and its predecessor. In the first example this relationship is

biased, meaning that the sequence is not statistically random, and, therefore, not usable

for many simulation purposes. The second example presents no correlation between

subsequent numbers, denoting a more random behaviour. It is important to note that

these considerations are different to the ones about the period of the sequence. These are

two different observations that need to be simultaneously evaluated in order to obtain

good generators. In this case, since the period of the sequences was not the relevant

aspect, two non-prime m variables have been chosen in order to display their different

behaviour.

2.2.3 Random variable generation: the Inverse-Transform Method

In the previous section it has been discussed the generation of uniformly distributed

random numbers. In this section good uniformly distributed generated sequences will

be taken as given and will be used in the generation process of sequences of random

variables following distributions that are not uniform. For this purpose we will employ

the Inverse Transform Method. This method allows us to generate one-dimensional

random variables from a prescribed distribution.

Let X be a random variable with cumulative distribution function (CDF) FX . X is

the random variable that we want to simulate. Since FX is non-decreasing then F−1X

may be defined as

F−1X (u) = inf{x : FX(x) ≥ u} , 0 ≤ u ≤ 1.

The infimum function is used since cumulative distribution functions are weakly mono-

tonic and right continuous. If U is a uniform random variable on (0, 1), U ∼ U(0, 1), we

need to show that by setting F−1X (U) = X we get a random sequence with CDF FX .

1Lecture notes accessed on 12/05/2020 from: https://www.mimuw.edu.pl/∼apalczew/CFP lecture3.pdf



CHAPTER 2. SIMULATION 55

Figure 2.1: Two pseudo random sequences. The one on the left presents a correlation
between subsequent numbers. The one on the right, instead, is locally random in

addition to being globally random.

To show this, assuming FX is invertible, we have:

P(F−1X (U) ≤ x) = P(U ≤ FX(x)) by applying FX on both sides

= FX(x) since P(U ≤ y) = y when U ∼ U(0, 1)

⇒ FX(x) = P(F−1X (u) ≤ x)

Thus, if we have F and we can compute its inverse F−1, by drawing uniform random

variables U such that U ∼ U(0, 1) we can get X to be a random variable having CDF

F by setting X = F−1(U). This method is intuitive to understand through a graphical

visualization, as the one in Figure 2.2.

The algorithm of this methods is, therefore, the following:



CHAPTER 2. SIMULATION 56

Inverse-Transform Method

Needs: inverse cumulative distribution function F.

1. Generate ui from U(0, 1);

2. compute xi = F−1(ui);

3. repeat steps 1 and 2 n times;

4. return X.

Figure 2.2: Graphical representation of the Inverse Transform Method

A strength of the Inverse-Transform Method is the fact that it can be used to draw

from a discrete distribution. Let X be a discrete random variable with P(x = xi) = pi,

with i = 1, 2, . . ., such that
∑
i pi = 1 and x1 < x2 < . . .. The CDF FX of X is given

by
∑
i:xi≤x pi.

The algorithm will be slightly different and can be rewritten as such:



CHAPTER 2. SIMULATION 57

Inverse-Transform Method: discrete case

Needs: inverse discrete cumulative distribution function F.

1. Generate ui from U(0, 1);

2. Find smallest positive integer, k, such that u ≤ F (xk). Let

xi = xk;

3. repeat steps 1 and 2 n times;

4. return X.

Figure 2.3: Graphical representation of the Inverse Transform Method applied to a
discrete distribution

What is important to bear in mind when using this method is the fact that in order to

apply it we need to have a CDF F for which it is possible to compute the inverse, either

analytically or algorithmically. We need to be able to solve F (x) =
∫ x
−∞ f(t)dt = u with

respect to x and this is not always easy to achieve. In order to generate random variables

from distributions for which we cannot compute the inverse cumulative density function,

other methods are used. In this thesis the Metropolis-Hastings method is discussed in

depth in Chapter 3.

2.3 Variance reduction techniques

The concepts that this thesis presents are focused on the implementation of simula-

tions in parallel. Regardless, when writing about computer simulation techniques it is

relevant to talk about variance reduction. Parallel computing and variance reduction

are, fundamentally, two extremely different topics but they share the common objective

of increasing simulation’s performance. With the parallel computing approach, perfor-



CHAPTER 2. SIMULATION 58

mance is improved by exploiting the unused computational potential of computers. On

the other hand, variance reduction enhances the simulation’s performance by improving

the accuracy of its estimators. It does so by means of utilising known information about

the model. These are, in fact, techniques that take advantage of knowledge about the

system that is available.

A simple technique is the use of common random variables. Rubinstein (2017) uses a

simple example to show situations in which it could be useful and how it has an impact

on the reduction of variance. Let X and Y be random variables with known cdfs, F and

G. Suppose the need to estimate l = E[X − Y ] via simulation. The simplest unbiased

estimator for l is X − Y . The random variables X and Y can be simulated by means of

the Inverse Tranform method:

X = F−1(U1), U1 ∼ U(0, 1),

Y = G−1(U2), U2 ∼ U(0, 1).

In this setting the precision on the simulated estimator can be measured by the variance,

Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X,Y )

and since the marginal cdfs of X and Y have been prescribed, it follows that the variance

can be minimized by maximizing the covariance of the two variables. Thus the random

variables X and Y need to be not independent. In particular, it is said that common

random variables are used if it is set U2 = U1. Since both F−1 andG−1 are nondecreasing

functions, then

Cov(F−1(U), G−1(U)) ≥ 0.

Furthermore, using common random variables proves to be maximizing the covari-

ance between X and Y (Whitt 1976). Thus, variance reduction is achieved: the variance

of the estimator F−1(U) −G−1(U) is, in fact, smaller than the crude Monte Carlo es-

timator X − Y .

In the case in which the model requires the estimation of E(X + Y ) a different

technique offers the same advantages of variance reduction: the generation of antithetic

random variables. This technique sets U2 = 1 − U1 and this, just as with common

variables in the first case, minimizes the variance of the estimator.

Variance reduction can also be employed to drastically improve the simulation of

rare events. In this case the general idea is to modify the selection of random samples

in such a way that the desired events occur more frequently (effectively biasing them)

than they would normally, while simultaneously taking these changes into account in

order to obtain unbiased estimates (Biondini 2015). This method is called importance

sampling and is the most fundamental variance reduction technique (Rubinstein and



CHAPTER 2. SIMULATION 59

Kroese 2017).

Let

µ = Ef [H(X)] =

∫
H(x)f(x)dx

where H is the sample performance and f is the probability density for X. A mod-

ified density g, called the importance distribution or the instrumental distribution, is

introduced to apply a change of measure:

µIS =

∫
H(x)

f(x)

g(x)
g(x)dx = Eg

[
H(X)

f(X)

g(X)

]
.

The resulting integral is evaluated numerically by using a i.i.d. sample X1, . . . , Xn from

g:

µ̂ISn =
1

n

n∑
i=1

H(Xi)
f(Xi)

g(Xi)
(2.1)

The ratio W (x) = f(x)
g(x) is called the likelihood ratio or importance weights and it is

the term controlling for the bias generated by the introduction of the distribution g.

The choice of the importance sampling density g is linked with the resulting variance

of the estimator µ̂ in 2.1. From this derives the problem of variance reduction of µ̂ with

respect to g:

min
g

Varg

(
H(X)

f(X)

g(X)

)
. (2.2)

The solution to this problem has been proved (Rubinstein, Melamed, and Shapiro

1998) to be:

g(x)∗ =
|H(x)|f(x)∫
|H(x)|f(x)dx

and the resulting density is called the optimal importance sampling density.

These techniques are particularly relevant because their use may determine a signifi-

cant reduction in the number of different simulations that are needed in order to achieve

a certain result. Also parallel computing may provide a tool to achieve the same, or

even better, results compared to the sequential version reducing the time of computa-

tion. Nevertheless, it may not be considered a substitution to a model that is properly

designed and for which these techniques, if possible, have been employed.



Chapter 3

Introduction to

Metropolis-Hastings algorithm

The Metropolis-Hastings is an algorithm that allows us to sample from an arbitrary

generic probability distribution, our target distribution, even if we don’t know the nor-

malizing constant or, in general, we are not able to compute such function easily, making

it possible to use other methods to generate such sample.

Creating a sample from a given distribution “resembles” the mere computation of

an integral. The histogram of a well built sample, in fact, follows the shape of the

probability density function. In some cases the computation of such integral may prove,

however, impossible to perform analytically and numerical methods may be hindered as

well. In situations like these the Metropolis-Hastings algorithm may provide a solution,

producing as output a sample sequence of the target distribution.

3.1 Motivations of the method

The Metropolis-Hastings (M.-H. hereafter) is an algorithm that allows us to sample from

a generic probability distribution, the target distribution, that may otherwise be difficult

to sample from. There may be many reasons why computing an integral like

J(h) =

∫
X
h(x)dπ(x)

may be difficult or impossible. In this example dπ is a probability measure while X
is the domain, or support, of the function. Each of these elements may be source of

complexities difficult to overcome. In a scenario like this Monte Carlo methods could

60



CHAPTER 3. INTRODUCTION TO METROPOLIS-HASTINGS ALGORITHM 61

provide a solution: exploiting the probabilistic nature of π and its weighting over the

domain X is the most natural and most efficient way to produce approximations to

integrals connected to π and to determine the regions of the domain X that are more

heavily weighted by π (Robert 2016). As we have seen in the previous chapter, the

Monte Carlo approach, relying on the ability to produce a large number of simulations

of a random variable following a specific distribution, takes advantage of the stabilisation

of the empirical average, property given by the Law of Large Numbers (Rubinstein and

Kroese 2017). However, given the difficulty, or in some cases impossibility, of sampling

from a specific distribution, then the (standard) Monte Carlo methods is not able to

provide a solution.

In this scenario an indirect approach to the simulation of complex distributions is

necessary. We need to take a step back and observe the fact that we can evaluate each

point on the support space X if compared to a second one. To do so a Markov chain

associated to the target distribution π is used, taking advantage of it to validate the

convergence of the chain to the distribution of interest.

Let π be a probability density function, the target distribution, defined on a state

space X . π is computable up to a multiplying constant, so that π(x) ∝ π̃(x). We are able

to compute π̃(x) but we do not know the normalizing constant. The M.-H. algorithm,

developed from the work of Metropolis et al. (1953) and the work of Hastings (1970),

proposes a Markov chain that is ergodic and stationary with respect to π, meaning that

if X(t) ∼ π(x), with X(t) being the tth element of the Markov chain, then X(t+1) ∼ π(x)

as well. Therefore, the chain will converge in distribution to π (Robert 2016).

If the Markov chain is ergodic, meaning that it forgets its starting value, it is not

necessary to determine when the chain reaches stationarity since the empirical average

Ĵ(h) =
1

T

T∑
t=1

h(X(t))
a.s.−−→ J(h) ,

so it converges almost surely to the value that we are looking for. This implies that, in

theory, simulating a Markov chain is intrinsically equivalent to a standard i.i.d. simula-

tion from the target, the difference being in a loss of efficiency (Robert 2016). It is, in

fact, necessary to produce a high number of simulation to reach a given variance with

the Monte Carlo estimator.

The advantage of this methods lies in the approach that differs from other methods,

as the accept-reject method (Robert and Casella 2009), that aims directly at the “big

picture” by accepting or discarding each proposal subject to a passing test. A similar

process to this is also performed by the M.-H. algorithm but the approach differs in the

fact that the “picture” is built progressively: the target distribution’s shape is gradually

formed by local exploration of the state space X , ideally until all the regions of interest

have been uncovered.



CHAPTER 3. INTRODUCTION TO METROPOLIS-HASTINGS ALGORITHM 62

An analogy for this method may be a hound employed in the research of missing

people. We can imagine, in fact, a hound that is instructed by making it smell a piece

of clothing of the missing individual. Then we can assume that the hound is let free to

roam from a arbitrary, almost random, point; let’s say the edge of a wood. The hound

will wander, taking small steps, and at smelling the ground. Then it will evaluate how

the smell changed compared to the previous step and decide (here we should assume

a degree of randomness in the decision) whether to continue from there or go back to

the previous step. Slowly the hound will wander around enough to have a clear idea of

the smells in the territory, that we defined as the support of the function, and it will

eventually converge to the mean, saving the missing person.

In addition to these convenient characteristics of the method, the Markov chain

that the algorithm produces, X(1), X(2), · · · , X(t), · · ·, is such that X(t) is converging to

π. The result is a chain that can be considered as a sample from π, the distribution

itself. Due to the Markovian nature of the chain, the transition from one element to the

following one in the sequence, that we described as a small step, is highly dependent from

the previous one. In particular this is relevant for the initial values, extremely dependent

on the starting value X(1) which mat prove to be very far from the relevant areas of the

distribution. For this reason this aspect must be taken into account when setting the

algorithm. This, among other considerations regarding the practical application, will be

expanded in Section 3.3.

3.2 The Metropolis-Hastings algorithm

Resuming the notation from the previous section, let π be our target distribution. The

M.-H. algorithm requires the choice of a conditional density q, also called proposal dis-

tribution or candidate kernel. Let {X(t)}Tt=1 be a sequence of random variables. Such

sequence is generated with a M.-H. algorithm equipped with the proposal q(·|X(t)). The

transition from one element of the Markov chain to the following, from X(t) to X(t+1),

proceeds by means of the following algorithm:



CHAPTER 3. INTRODUCTION TO METROPOLIS-HASTINGS ALGORITHM 63

Metropolis-Hasting algorithm

At the t-th iteration, given X(t)

1. Generate Y (t) ∼ q(y|X(t))

2. Take

X(t+1) =

Y (t) with probability α(X(t), Y (t))

X(t) with probability 1− α(X(t), Y (t))

where

α(x, y) = min

{
π(y)

π(x)

q(x|y)

q(y|x)
, 1

}

The chain is irreducible, meaning that, over time, it will eventually explore the

entirety of the support X . This determines that, thanks to the accept-reject step of the

algorithm, the simulation from an almost arbitrary proposal q is turned into a sequence

that preserves π as the stationary distribution. Of course this is true in theory, but

results depend on the actual choice of q and its parameters. This is the topic of Section

3.3, in which the different errors leading to a wrong output are analysed.

3.3 Diagnostics and calibration of practical imple-

mentation

In order to capture the mechanisms and to visualize the different problems that may

arise when applying the M.-H. algorithm an example is presented taken from the article

of Robert (2016). In particular it is a random walk Metropolis-Hastings algorithm.

Our target density is a perturbed version of the normal N (0, 1) density, ϕ(·),

π̃(x) = sin2(x)× sin2(2x)× ϕ(x).

The proposal distribution function is a uniform U(x− θ, x+ θ):

q(y|x) =
1

2θ
I(x−θ,x+θ)(y).

It is a function that exploits as little as possible of the target distribution, proceeding

to a local exploration each step potentially spanning from X(t) − θ to X(t) + θ. The

proposed value Y (t) is simulated as:

Yt = X(t) + εt,



CHAPTER 3. INTRODUCTION TO METROPOLIS-HASTINGS ALGORITHM 64

where εt is a random perturbation with distribution q. It is called random walk M.-H.

all the cases when q is symmetric, q(y|x) = q(x|y), thus when computing α the formula

gets simplified to:

α(x, y) = min

{
π̃(y)

π̃(x)
, 1

}
.

The generic nature of the algorithm determines that it remains valid for almost

every choice of proposal q, regardless it being symmetric or not. This also means that

no indication, about proper proposal functions and/or calibration of such proposals, is

given by the theory. In the example given, in fact, the method is valid for every choice

of θ but it is actually a critical decision to do. We can see the proposal distribution as

a random walk kernel, and θ is the parameter determining how far the random walk

will oscillate. Furthermore, since the computation α(x, y) is independent of θ, a poor

choice of it can impact even more the results. The different behaviour of the algorithm

is shown in Figure 3.1. In it the M.-H. algorithm given from the example presented

above is repeated for the same number of iterations, T = 104, with different parameters

of the proposal distribution θ. The b) plot shows the results when using the parameter

θ = 1, which is the value yielding the better results. In this ideal case the chain is

able to explore the whole support giving a result that represents pretty accurately the

target distribution π(x), which has been plotted after being appropriately normalised

by numerical integration. If the parameter is too low, as in plot a) where θ = 0.1, then

the chain will not be able to explore the whole support. The random walk makes steps

that are too small and with which it is too difficult to overcome the attracting power of

a mode, thus being trapped in it. Eventually, since the chain is, from the theory, ergodic

it will explore the entire support. But it requires too many steps loosing in efficiency.

On the other side of the spectrum there is the case visualized in plot c). In this third

example we have a parameter θ = 100 that is too big, leading to candidates y that

are very often relatively far from the points of high density of the target distribution.

Therefore, when computing α(x, y) we have that the result is too often very small. What

happens is that the vast majority of candidates are rejected. In this way the support

is not explored properly leading to biased results that would require, as in the previous

case, a higher number of iteration to produce an accurate result.

Figure 3.2 illustrates the difference in performance when the θ parameter varies,

via the autocorrelation graphs of three chains. The parameters differ slightly from the

previous ones, θ = 0.3, 3, 30, in order to better illustrate the variation in performance.

This graph shows that the chain produced with θ = 3 should be preferred, measured

as the autocorrelation between different steps in the sequence. An autocorrelation that

faster approaches zero is a sign that the sequence it measures is properly exploring the

support, having therefore more information overall (Robert 2016).

Another parameter that needs to be taken into consideration when implementing

the algorithm is the starting point X0. The Markov chain, as it has been said ear-



CHAPTER 3. INTRODUCTION TO METROPOLIS-HASTINGS ALGORITHM 65

a) b)

c)

Figure 3.1: Plot showing the different sequences, plotted as histograms, formed by the
M.-H. algorithm with proposal distributions varying in their parameter θ. We can

observe that if this parameter, determining how far the proposal Yt can be from Xt, is
too low or too high then the sequence is not able to explore the support properly,

producing biased sequences.

Figure 3.2: Autocorrelation between lagged elements in the sequence with different θ
parameters. The better result is for θ = 3 since it contains more information as the

autocorrelation decreases faster.

lier, is ergodic, so it will eventually explore the whole support space X . However, the

starting point is a relevant parameter affecting the efficiency of the algorithm. Since

the transition kernel is a function that “translates” the chain one step at a time, if the



CHAPTER 3. INTRODUCTION TO METROPOLIS-HASTINGS ALGORITHM 66

starting point is very far from the points in which the density accumulates then a share

of the overall iterations will be devoted to reaching stationarity. Usually this part of the

sequence is eliminated; it is called the burn-in. This is done in order to leave the time

to the sequence to reach the point in which the exploration becomes more meaningful.

This behaviour is illustrated in Figure 3.3 where the values of the sequence are plotted

in a sequential manner. This plot is called the traceplot of the M.-H. sequence. The

simulation has been performed starting with X0 = 20 to show the path from that point

to where the higher values of the target distribution function lie. It is easy to see in

this representation the transition period which is not a real representation of the tar-

get distribution. More meaning is yield when the sequence gets closer to the value 0,

around which the function assumes higher density and the sequence displays a different

behaviour, due to the stationarity of the sequence.

Figure 3.3: Traceplot of a M.-H. sequence starting from the area of stationarity, where
the target probability density function is higher. The share of the sequence needed to

reach stationarity, referred to as the burn-in, gets discarded as it does not contain
meaningful information.

Finally, one of the parameters giving information about the calibration of the M.-H.

algorithm is the acceptance rate. Since there is, for each iteration t of the algorithm, an

acceptance step in which the next candidate, Y (t+1), can be accepted becoming X(t+1)

or rejected making the previous value be held for the following step, X(t+1) = Xt, the

acceptance rate can be defined as the share of candidates that are being accepted, on

average. It is, in fact, computed as the empirical average:

a =

T∑
t=1

1{u<α(xt,yt)}

where yt ∼ q(y|X(t)) and u ∼ U(0, 1). This gives us some information about the

quality of the candidates that are being generated. If the acceptance rate is too high

then the proposals Y (t) generated are too close to the previous term in the sequence.



CHAPTER 3. INTRODUCTION TO METROPOLIS-HASTINGS ALGORITHM 67

Consequently the ratio π̃(y)/π̃(x) will be close to 1, possibly even higher, making almost

every proposal be accepted. Consequently, a sequence generated as such gives very little

information. It does not differ too much from a sequence that may simply be generated

from the proposal distribution and the result is that it does not explore the support

properly. On the other side of the spectrum, if the acceptance rate is too low, it means

that most of the proposal are very far from the previous element in the sequence, and

they would not be accepted. They are not meaningful and do not let the sequence to

explore the support since the sequence will be composed by only few different elements.

Figure 3.4 illustrates the different behaviour of the sequences when exploring the support

space formed by proposals with different parameters θ.

Figure 3.4: Different traceplots of M.-H. sequences with different values of θ,
illustrating the different exploration that it determines. With θ = 0.1 the sequence is

not able to explore fully the support. With θ = 100 very few proposal get accepted by
the algorithm, determining a biased exploration. The better result comes from the

sequence generated with θ = 1 where the sequence is able to jump from one mode to
the other

Figure 3.5: The results of the Metropolis-Hastings algorithm with optimal calibration
of its parameters.

It is difficult to determine an optimal value that the acceptance rate should reach in

order to achieve a high degree of efficiency, reducing the Monte Carlo variance. Roberts



CHAPTER 3. INTRODUCTION TO METROPOLIS-HASTINGS ALGORITHM 68

et al. (1997) studied a formal Gaussian setting aiming at the ideal acceptance rate

that would maximize the efficiency of the algorithm. Their result, under fairly general

conditions gave rise to a very useful heuristics for random walk M.-H. applied in practice:

“tune the proposal variance so that the average acceptance rate is roughly 1/4”. Figure

illustrates this in the problem that has been taken as example for the section and with

the tools that have been explored: the plot of the first 500 elements of the sequence (the

number of elements plotted has been reduced for visual clarity), the histogram showing

the distribution of the generated sequence and finally the autocorrelation function of

the sequence.



Chapter 4

Application of the M.-H.

algorithm in parallel

4.1 Problem applied in the parallel analysis

This chapter will revolve around the discussion of the practical application of the M.-H.

algorithm, in particular taking advantage of the parallel capabilities that modern com-

puters have and that have been discussed in Chapter 1. All of the topics will be explored

starting from a specific example that is now presented and that will be used for the final

analysis of the improvements in computation time with parallel implementation1.

The target distribution function π̃(x, y), which will be the function that we aim

to simulate, comes from a bivariate mixture of normal distributions, 1
3N2(−ι, I2) +

2
3N2(ι, I2) where ι = (1, 1)

′
and I2 is the 2-dim identity matrix. Boldface variables

represent two-dimensional vectors, i.e. x = (x1, x2)′ ∈ R2, which represent x and y

coordinates on the support space X . Thus, the target distribution will be:

π̃(x) =
1

3
ϕ(x|−ι, I2) +

2

3
ϕ(x|ι, I2)

where ϕ(·|µ, I2) is the normal density function given mean µ and standard deviation I2.

The problem at hand is a random walk Metropolis-Hastings problem since the pro-

posal distribution q(·|x(t)) is a symmetric function, not depending on the target function:

y ∼ N2(x, σ2I2).

1Example taken from Robert Casarin’s lecture notes for PhD the course on Advanced Econometrics
(September 17, 2019) at Ca’ Foscari University of Venice

69



CHAPTER 4. APPLICATION OF THE M.-H. ALGORITHM IN PARALLEL 70

The proposal distribution is a myopic random walk generating random paths in the

two-dimensional support X 2. Its symmetry guarantees that the computation of α(x, y)

in the algorithm gets simplified to:

α(x,y) = min

{
π(y)

π(x)
, 1

}
= min

{
1
3exp

{
− 1

2 (y + ι)′(y + ι)
}

+ 2
3exp

{
− 1

2 (y − ι)′(y − ι)
}

1
3exp

{
− 1

2 (x + ι)′(x + ι)
}

+ 2
3exp

{
− 1

2 (x− ι)′(x− ι)
} , 1}

4.1.1 A note on the parallelisation of the algorithm

Since each step of Markov chains depend on, at least, the previous one in the chain,

then the M.-H. algorithm is not parallelisable. At least it is not parallelisable if applied

in a single chain. But it is possible to run multiple different chains at the same time,

one completely independent from the others. This results in is a different approach in

the calibration of the implementation which will be explored in Section 4.2.2.

4.2 Calibration of the parallel algorithm

As discussed in Section 3.3, the calibration of the practical implementation of the al-

gorithm is key to produce more precise and unbiased results. The objective, however,

is to perform a parallel implementation of the M.-H. algorithm. Consequently, a few

different considerations need to be made beforehand:

– since the parallel implementation entails multiple different chains, the impact of

the starting points is greater on the overall amount of iterations. It has been

shown the fact that each chain needs a certain amount of steps in order to reach

the point of interest of the chain, to reach, therefore, stationarity. This number of

steps is called burn-in. If there are more chains, then, each of these will need this

number of iterations. Therefore, more attention needs to be put in the choice of

the first element x0,j , for each different chain j.

– if the starting point x0,j of each chain assumes greater importance, the parameters

of the proposal distribution may have a smaller impact. This statement depends

heavily on the proposal distribution adopted by the model, but the possibility

to have different chains with different, random, starting points may help find a

solution to one of the problems of the implementation of the M.-H. algorithm: the

risk of the chain not exploring the whole support space, for instance because stuck

in a mode of the distribution and not being able to “get out” of it and explore

eventual others. This behavior is easily visualized in a random walk M.-H. when

the candidates proposed are very close to the the previous step in the chain. If



CHAPTER 4. APPLICATION OF THE M.-H. ALGORITHM IN PARALLEL 71

this is the case then the chain will not be able to explore the whole space, at least

not in a reasonable/efficient amount of steps, and a symptom of this is the high

acceptance rate as discussed in Section 3.3. This aspect, in the example on which

this chapter builds upon, is further analysed in Section 4.2.2.

4.2.1 Parameters used in the analysis

Keeping in mind these considerations, it is possible to analyse and calibrate the specific

problem at hand. First, it is useful to visualize the target distribution π(x, y). In

Figure 4.1 it is possible to observe the main areas of the support X 2 in which the

distribution is concentrated. From the knowledge gained analysing the plot, given that

many different starting points may yield better results as will be discussed in Section

4.2.2, an optimal area of deploying the numerous M.-H. chains can be (x0,j1 , x0,j2 ) where

x0,j1 , x0,j2 ∼ U(−3, 3), for every different chain j.

Figure 4.1: plot of the target distribution π(x1, x2) with the optimal starting area
highlighted.

Having defined the area in which all of the parallel chains will start, it is important to

set the parameters of the proposal distribution. In this example the proposal distribution

is a random walk depending on the parameter σ which defines the variance of the normal

random variable generating the new step. As it has been done in Section 3.3, various

different parameters have been tested to see the one yielding the better results. Figure

4.2 shows the different behaviour of the M.-H. sequence generated from the proposal

distribution when σ is varied. It is interesting to see the leftmost sequence, equipped

with σ = 0.08, exploring almost exclusively the lower mode and having difficulty to get

out of it. It remains trapped. The middle plot, on the other hand, being equipped with

σ = 8, takes bigger steps and this lets it explore both of the modes more uniformly.

The last plot displays a sequence with σ = 80. Here the parameter seems to be too

large, determining very few steps to be accepted. The number of iterations of the

algorithm is, in fact, the same for all of the sequences even if the number of actual



CHAPTER 4. APPLICATION OF THE M.-H. ALGORITHM IN PARALLEL 72

unique steps is different. This leads to the analysis of the other important aspect that

this representations can give: the number of steps accepted, or acceptance rate. The

discussion of the optimal acceptance rate in the case of random walk M.-H. algorithms

has lead to the heuristic of aiming at a rate of roughly 1/4 (Roberts, Gelman, and Gilks

1997). This second consideration leads to the same conclusion, namely that the optimal

parameter σ is 8. The traceplots of a sample sequence with σ = 8 are visualized in

Figure 4.3.

Figure 4.2: Different behaviour of the M.-H. sequences generated with different
parameters σ.

4.2.2 Improving the results with different starting points: the

pathological case

In a situation in which the model has not been well calibrated, i.e. the parameter of

the proposal distribution σ is too small and the path has difficulties exploring the whole

support, breaking the sequence into multiple, independent, sequences that have random

starting points may yield better results. This may prevent the situation in which the

sequence gets stuck into a mode. In Figure 4.4 this pathological case is visualized. The

two plots have been generated with the same number of total M.-H. iterations, as the

same is also the parameter σ = 0.02. On the left plot a single chain is generated and

does explore only one mode. On the other hand, on the right plot, four independent

sequences, each composed of one fourth of the steps of the unique one, are deployed in

different points of the support. In the histograms below, the distribution of all of the

components of the sequences are displayed and it is easy to see the bias that the first

sequences has fallen into, by exploring only one mode. On the other hand the set of four

sequences better simulate the target distribution by appreciating both of the modes,

even though not in a precise way. This, in fact, can not be taken as a solution making

a proper calibration of the model superfluous. That is, in any situation, the first thing

to be done and the one guaranteeing better results.



CHAPTER 4. APPLICATION OF THE M.-H. ALGORITHM IN PARALLEL 73

Figure 4.3: Traceplots of the components of the optimal sequence, generated with
σ = 8.

4.3 Code

This section presents the implementation of the discussed problem in the two different

programming languages for which parallel capabilities have been presented: MATLAB

and R. The code has been written to be as symmetrical as possible in order to be able

to perform a comparison of the results produced by the two languages.

The functions presented below have been written to directly manage the parallel

implementation of the algorithm. They require the same 4 inputs:

• nMH: variable specifying the number of iterations of the algorithm that each dif-

ferent path needs to do. This is, therefore, the length of each individual parallel

sequence;

• nPaths: variable controlling the number of different and parallel M.-H. sequences;

• sig: parameter σ of the proposal distribution;

• nCores: variable controlling the number of cores that the computation will involve.

Each core will, in parallel, perform the computations needed to generate a single

M.-H. sequence at a time, until the number of different sequences, nPaths, is

reached.



CHAPTER 4. APPLICATION OF THE M.-H. ALGORITHM IN PARALLEL 74

Figure 4.4: Illustration of how the simulation by M.-H. can be improved by deploying
many different chains vs. a single, longer, one.

As in the case of the functions used as benchmark in Section 1.5, these functions

can be recalled from a different script which can, in turn, control the behaviour the

parameter of the function. This is what has been done for the scale-up study, both in

Sections 1.5.2 and 4.4.

4.3.1 MATLAB code for the Metropolis-Hastings algorithm

1 function [time] = BenchMH(nMH, nPaths, sig ,nCores)

2 % MHtime function that evaluates in parallel nPaths different MH paths.

3 % NOTE: this function evaluates a specific pdf.

4 % nPaths: number of different paths to be computed

5 % nMH: number of steps for each path

6 % sig: variance of acceptance alpha



CHAPTER 4. APPLICATION OF THE M.-H. ALGORITHM IN PARALLEL 75

7 % nCores: number of cores employed in the computation

8

9 delete(gcp('nocreate'));

10 parpool(nCores);

11 tic

12

13 z1sequence = zeros(nMH, nPaths);

14 z2sequence = zeros(nMH, nPaths);

15

16 parfor idx = 1:nPaths

17 % we create support variables to be used inside of the nested for

loop

18 % this avoids errors due to the access of the same variable in

19 % multiple workers simultaneously

20 z1 = zeros(nMH,1);

21 z2 = zeros(nMH,1);

22 z1(1) = rand(1)*6-3; % starting x~unif[-3,3]

23 z2(1) = rand(1)*6-3; % starting y~unif[-3,3]

24 for i=2:nMH

25 z1(i) = z1(i-1);

26 z2(i) = z2(i-1);

27 z1star=z1(i-1)+sqrt(sig)*randn(1,1);

28 z2star=z2(i-1)+sqrt(sig)*randn(1,1);

29 u=rand(1,1);

30 alfaxy=min([exp(...

31 log(1/3*pdf('normal',z1star,-1,1)*pdf('normal',z2star,-1,1)+...

32 2/3*pdf('normal',z1star,1,1)*pdf('normal',z2star,1,1))-...

33 log(1/3*pdf('normal',z1(i-1),-1,1)*...

34 pdf('normal',z2(i-1),-1,1)+...

35 2/3*pdf('normal',z1(i-1),1,1)*...

36 pdf('normal',z2(i-1),1,1))...

37 ),1]);

38 if u<alfaxy

39 z1(i) = z1star;

40 z2(i) = z2star;

41 end

42 end %for

43

44 z1sequence(:, idx) = z1;

45 z2sequence(:, idx) = z2;

46 end % parfor

47



CHAPTER 4. APPLICATION OF THE M.-H. ALGORITHM IN PARALLEL 76

48 time = toc;

49 delete(gcp('nocreate'));

50 end

4.3.2 R code for the Metropolis-Hastings algorithm

1 function(nMH, nPaths, sig, nCores) {

2 # MHtime function that evaluates a single M.-H path with nMH steps.

3 # NOTE: this function evaluates a specific pdf.

4 # nPaths: number of different paths to be computed

5 # nMH: number of steps for each path

6 # sig: variance of acceptance alpha

7 # nCores: number of cores employed in the computation

8

9 cl <- makeCluster(nCores)

10 registerDoParallel(cl)

11

12 time <- system.time(

13 MHPaths <- foreach (i = 1:nPaths, .combine='cbind') %dopar% {

14 z1 <- rep(0, nMH) # Vector representing a column of the results

variable

15 z2 <- rep(0, nMH)

16 z1[1] = runif(1)*6-3; # starting x_unif[-3,3]

17 z2[1] = runif(1)*6-3; # starting y_unif[-3,3]

18

19 u <- runif(nMH)

20

21 # M.-H. Algorithm:

22 for (i in 2:nMH) {

23 # next step in the random walk:

24 z1star <- z1[i-1] + sqrt(sig)*rnorm(1);

25 z2star <- z2[i-1] + sqrt(sig)*rnorm(1);

26 alpha <- exp( log(1/3 * dnorm(z1star,-1,1) * dnorm(z2star,-1,1) +

27 2/3 * dnorm(z1star, 1,1) * dnorm(z2star, 1,1) ) -

28 log(1/3 * dnorm(z1[i-1],-1,1) *

dnorm(z2[i-1],-1,1) +

29 2/3 * dnorm(z1[i-1], 1,1) * dnorm(z2[i-1],

1,1) ) )

30 if (is.na(alpha)) alpha = 0

31 alphaxy <- min(alpha, 1)

32



CHAPTER 4. APPLICATION OF THE M.-H. ALGORITHM IN PARALLEL 77

33

34 if (u[i] < alphaxy) {

35 z1[i] = z1star

36 z2[i] = z2star

37 } else {

38 z1[i] = z1[i-1]

39 z2[i] = z2[i-1]

40 }

41 } # for

42

43 Path <- z1

44 Path <- cbind(Path, z2)

45 return(Path)

46 } #foreach

47 )[3] #system.time

48

49 stopCluster(cl)

50

51 return(list(MHPaths,time))

52 }

4.4 Results

Using the programs presented in the the previous sections, a scale-up study similar to

the one with the benchmark problems, done in Section 1.5 has been performed. The

machine used is equipped with Linux Ubuntu with a 24 core Intel
®

Xeon
®

Gold 6148

CPU @ 2.40GHz, the same VERA’s machine used in the previous experiment.

The experiment consisted of running both R and MATLAB versions of the M.-H.

algorithm with varying number of cores, from a single one (the sequential version) to

the employment of all 24. The experiment, then, has been repeated 25 times and the

average value has been computed.

The outcomes obtained show a different parallel potential: MATLAB’s speedup

result stays much closer to the ideal speedup which, as previously defined, is the speedup

that a parallel program can potentially achieve in optimal conditions, i.e. when the

addition of a core to the pool grants a proportional decrease of computation time, or

a constant increase in speedup. The parallel program that has been designed in R,

on the other hand, seems to be losing efficiency faster as the number of cores employed

increases, as shown by the speedup curve that is lower than MATLAB’s across the entire

spectrum of the experiment.



CHAPTER 4. APPLICATION OF THE M.-H. ALGORITHM IN PARALLEL 78

Figure 4.5: Results, in seconds, of the M.-H. computation times and the speedup in
MATLAB and R. The speedup graph illustrates an interesting difference in the

optimization of parallel problems in R and MATLAB.

This result is in-line with the results of the scale-up study performed with the bench-

mark problems, showcased in Section 1.5. Also in the previous case the R results high-

lighted a lower potential to be gained compared to MATLAB.

Nevertheless, these experiments show that in both cases some improvement is to

be gained through parallelisation, with a relatively small cost of conversion from the

sequential version of the code since the functions used in both languages retain the

same structure as the sequential counterparts with only few considerations and, possibly,

changes needed in order to make the problem parallelisable.



CHAPTER 4. APPLICATION OF THE M.-H. ALGORITHM IN PARALLEL 79

Figure 4.6: Result obtained by the M.-H. algorithm in the simulation of the target
distribution (represented in the right graph for reference). The histogram represents

the density that the points generated by the M.-H. simulation form.

R MATLAB

Cores MH time Speedup Cores MH time Speedup

1 114.36 1.00 1 111.35 1.00
2 57.71 1.98 2 54.12 2.06
3 38.93 2.94 3 36.58 3.04
4 31.02 3.69 4 27.06 4.11
5 26.92 4.25 5 21.81 5.10
6 24.14 4.74 6 18.45 6.04
7 21.72 5.27 7 15.65 7.12
8 20.26 5.65 8 13.81 8.06
9 18.90 6.05 9 12.45 8.94
10 17.80 6.43 10 11.21 9.94
11 17.03 6.71 11 10.34 10.77
12 15.84 7.22 12 9.56 11.65
13 15.04 7.60 13 8.81 12.64
14 14.33 7.98 14 8.37 13.31
15 13.73 8.33 15 7.87 14.14
16 12.90 8.86 16 7.52 14.80
17 12.63 9.05 17 7.18 15.50
18 12.20 9.37 18 6.82 16.32
19 12.33 9.27 19 6.65 16.73
20 11.57 9.89 20 6.39 17.41
21 11.98 9.54 21 6.14 18.15
22 12.23 9.35 22 6.17 18.04
23 11.65 9.82 23 6.11 18.21
24 12.13 9.43 24 6.06 18.37

Table 4.1: Detailed results of the scale-up study of the M.-H. algorithm in seconds.



Conclusion

Aimed at the exploration of a possible approach to parallel computing in programming,

with the objective of representing an introduction of parallel computing and a guide

for further practical implementations, this thesis has explored its potential, firstly from

a theoretical standpoint and then going through the practical applications, in both

MATLAB and R.

Parallel computing offers an alternative way to increase computational power of com-

puters, nowadays more and more required for modern applications. From the huge quan-

tities of data to analyse in complex statistical models to the many artificial intelligence

applications that are becoming more and more popular and accessible, technological

improvements in hardware components has not been able to keep-up with the raising

computing power demand.

The thesis takes the knowledge of the parallel computing paradigm and studies its

application on the Metropolis-Hastings algorithm, an optimal case due to its computa-

tional requirements that may determine long computation times. The algorithm also

required a rearrangement to be made parallelisable. In the original form it does not

meet, in fact, the requirement of having various sub-tasks independent from each other.

Thus, it is needed a small rework in order to make it parallelisable, namely by breaking

the Markov chains into many separate and independent chains. By running the algo-

rithm in parallel, significant reduction in the computation time has been achieved. More

specifically, MATLAB seems to be more optimized to work in parallel and takes greater

advantage from it, obtaining a greater reduction in the overall computation time. On the

other hand R, although achieving a sensible reduction, with the increase of the number

of cores employed, its efficiency reduces at a faster pace compared to MATLAB.

Furthermore, MATLAB has proved to be more easy to set-up for parallel computing,

as long as the Parallel Computing Toolbox is installed. The functions themselves are

more similar to the usual, sequential, way of programming for simpler constructs, such

as for loops. R requires the installation of few libraries and, even if with a few extra

steps, it is a process that has been made fairly easy, not too different from the sequential

programming constructs.

80



81

In conclusion, the aim of this thesis is the one to evaluate the implementation of par-

allel computing in the workflow of computer simulation, in the simplest way, achieving

the translation of sequential programs into parallel ones, reducing the effort required

as much as possible. Of course doing so is expensive in terms of knowledge needed

and programmer’s efforts of modifying the program, making it parallel and/or dealing

with possible new bugs and errors in the code that arise during the process. This is,

in fact, a way of thinking about programming that is inherently different from what

non-experts in the subject are used to. Nevertheless, in recent years a lot of effort has

gone into making parallel computing easier to approach, both from MathWorks in the

development of MATLAB and the open-source community developing libraries for R. In

conclusion, in light of the results achieved by the experiments performed in this thesis,

it is reasonable to state that parallelisation has become a feasible solution which can be

able to provide improvements that are worth the extra effort.



Bibliography

Abdel-Rehim, Wael M.F. et al. (2015). “Testing Randomness: The Original Poker Ap-

proach Acceleration Using Parallel MATLAB”. In: Journal of Computer Science and

Applications, pp. 52–57.

Adve, V. Sarita et al. (2008). Parallel Computing Research at Illinois. The UPCRC

Agenda. University of Illinois at Urbana-Champaign.

Amdahl, Gene M. (1967). “Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities”. In: Proceedings of the April 18-20, 1967, Spring Joint

Computer Conference. Association for Computing Machinery.

Anantha, P. Chandrakasan, Sheng Samuel, and W. Brodersen Robert (1992). “Low-

Power CMOS Digital Design”. In: IEEE Journal of Solid-State Circuits.

Asanović, Krste et al. (2006). The Landscape of Parallel Computing Research: A View

from Berkeley. Tech. rep. EECS Department, University of California, Berkeley.

Backus, John (1978). “Can Programming Be Liberated from the von Neumann Style?

A Functional Style and its Algebra of Programs”. In: ACM Turing Award Lectures.

New York, NY, USA: Association for Computing Machinery.

Biondini, Gino (2015). “An Introduction to Rare Event Simulation and Importance

Sampling”. In: Big Data Analytics. Ed. by Venu Govindaraju, Vijay V. Raghavan,

and C.R. Rao. Vol. 33. Handbook of Statistics. Elsevier.

Catalant Staff (2015). “The Slowing of Moore’s Law, and What It Really Means for Com-

puting”. In: gocatalant.com. Accessed on: 12/05/2020. url: https://gocatalant.

com/blog/the-slowing-of-moores-law-and-what-it-really-means-for-

computing/.

Gustafson, John L. (1988). “Reevaluating Amdahl’s Law”. In: Commun ACM 31.5.

Hastings, W. K. (Apr. 1970). “Monte Carlo sampling methods using Markov chains and

their applications”. In: Biometrika 57.1.

Kendal, M. G. and B. Babington Smith (1938). “Randomness and Random Sampling

Numbers”. In: Journal of the Royal Statistical Society.

82

https://gocatalant.com/blog/the-slowing-of-moores-law-and-what-it-really-means-for-computing/
https://gocatalant.com/blog/the-slowing-of-moores-law-and-what-it-really-means-for-computing/
https://gocatalant.com/blog/the-slowing-of-moores-law-and-what-it-really-means-for-computing/


BIBLIOGRAPHY 83

Lehmer, Derrick H. (1951). “Mathematical Methods in Large-scale Computing Units”.

In: Proceedings of the Second Symposium on Large Scale Digital Computing Machin-

ery. Cambridge, United Kingdom: Harvard University Press.

MathWorks (2020). Parallel Computing Toolbox™ User’s Guide. The MathWorks, Inc.

McCool, M., J. Reinders, and A. Robison (2012). Structured Parallel Programming:

Patterns for Efficient Computation. Elsevier Science.

Metropolis, N. et al. (1953). “Equations of state calculations by fast computing ma-

chine”. In: Journal of Chemical Physics 21.

Microsoft and Steve Weston (2019a). doParallel: Foreach Parallel Adaptor for the ’par-

allel’ Package. R package version 1.0.15.

Microsoft and Steve Weston (2019b). foreach: Provides Foreach Looping Construct. R

package version 1.4.7.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. Vienna, Austria.

Rauber, Thomas and Gudula Rünger (2013). Parallel programming for multicore and

cluster systems. Second. Springer.

Robert, P. Christian (2016). “The Metropolis Hastings algorithm”. In: ArXiv preprint

arXiv:1504.01896.

Robert, P. Christian and George Casella (2009). Introducing Monte Carlo Methods with

R. Springer-Verlag.

Roberts, G. O., A. Gelman, and W. R. Gilks (1997). “Weak convergence and optimal

scaling of random walk Metropolis algorithms”. In: Ann. Appl. Probab. 7.1.

Rossini, Anthony, Luke Tierney, and Na Li (2003). “Simple Parallel Statistical Comput-

ing in R”. In: UW Biostatistics Working Paper Series.

Rubinstein, R. Y., B. Melamed, and A. Shapiro (1998). Modern Simulation and Model-

ing. A Wiley-Interscience publication. Wiley.

Rubinstein, Reuven Y. and Dirk P. Kroese (2017). Simulation and the Monte Carlo

Method. John Wiley & Sons, Inc.

Vadhan, Salil P. (2012). “Pseudorandomness”. In: Foundations and Trends in Theoretical

Computer Science 7.

Whitt, Ward (Nov. 1976). “Bivariate Distributions with Given Marginals”. In: Ann.

Statist. 4.6.


