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Abstract

In modern software engineering, the mapping between the software layer and
the persistent data layer is handled by the Object Relational Mapping (ORM)
tools. These transform the operations on objects into DBMS CRUD queries.
The problem of formulating the query associated with the operations in the
most efficient way has been only partially solved by static code annotations.
This implies that the programmer must guess the behavior of the software
once it is deployed in order to choose the best configuration. In this work,
we make a step toward the dynamic configuration of the queries. The ORM
we propose aims to improve the overall system performance monitoring and
adapting the behavior of the query. The solution achieves the result by
pruning the query in two steps. In the first step, the ORM chooses the
columns to fetch, taking into account the system load and usage frequencies.
In the second step it exploits the join elimination optimization. This is a
feature implemented by some DBMS that removes unnecessary tables from a
query, avoiding useless scans and join operations. Then, the ORM proposed
applies together eager and lazy strategies. It loads the expected data eagerly,
and it loads lazily the data not expected but subsequently requested. The
efficiency of the proposed solution is assessed through customized tests and
through the Tsung benchmark tool, comparing the ORM developed with a
simple JDBC connection and the Hibernate ORM service.



Keywords: ORM, Java, performance, queueing systems, database, soft-
ware engineering
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Chapter 1

Introduction

1.1 Problem description
Nowadays, exist some interesting methodologies to allow communication be-
tween software layer and data layer. Avoiding verbose code to fetch data from
the last layer, it is possible to use the Object Relational Mapping (ORM)
tools. These tools implement ORM programming paradigm to favor the
integration among object oriented programming languages (OOP) and rela-
tion database management system (RDBMS). ORM tools try to solve the
problem of formulating the query associated with the operations in the most
efficient way by static code annotations. This implies that the programmer
must guess the behavior of the software once it is written in order to choose
the best configuration. A wrong static choice will lead to an unnecessary
waste in terms of computation time and resources used, these degrade per-
formance. For example, the developer chooses statically a query that loads a
big result set but the user always uses only some values. In this case, where
the user only needs a small amount of data, our application, set statically,
loads a lot of them anyway. With this strategy our developer has a heavy
application, which response time is higher than the optimal time. Then, the
developer chooses a cheaper static approach, at least at the beginning. He
chooses to load only values that user asks. This can improve response time
at the beginning, but if the user runs a routine that requires all information
he will load each parameter individually, giving a big waste of time. Then he
decides to study the entire system to decide how and where the application
must load a bigger result set and where a smaller one. But the system is
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too complex and in continuous evolution. In this case, the developer must
analyze and maintain too many cases, increasing developing time and costs.

In this thesis we present AdaORM , an ORM prototype that aims to improve
data fetch from database using a new strategy that handles the query after
the observation of its behavior. AdaORM also allows to reduce the development
and maintenance times of the application, thus makes the development of
the application cheaper. AdaORM automatically chooses the most probable
query to submit to RDBMS according to observed behaviors of the query and
parameters utilization. To achieve the goal, AdaORM performs optimization in
two steps. In the first step, it collects statistics over query columns usage and
chooses dynamically what of them can be removed from the query statement.
In the second step, after the submission of the new edited statement to
the DBMS, AdaORM exploits the join elimination optimization, a feature
implemented by some DBMS that removes not useful tables from the query,
avoiding unnecessary scans and join operations. AdaORM is able to improve
query execution times because DBMS works with less tables, it improves
system response time because AdaORM handles less data and, at the end, it
reduces the system load.

1.2 State of art solutions
In this section we describe firstly state-of-art strategies that ORM tools,
persistence framework and active record database pattern implement. For
simplicity, we always talk about these three solution as ORM tool. In fact we
are interested to understand how they works and how they try to optimize
data fetch. The strategies are described by treating their strengths and
weaknesses, demonstrating on which cases they are the best choice and in
which the worst one. Then, we talk about the most famous ORM solutions.
ORMs are described according to their purpose, their strategies and their
functions used to achieve it. So let’s describe their strengths and weaknesses.
At the end, we talk about an interesting technique called AutoFetch that
generates automatically prefetching using transversal profiling.

1.2.1 Evaluation strategy

Evaluation strategy changes the behavior of execution flow according to the
evaluation chosen. An evaluation strategy decides when and how evaluate
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an expression that is bound to a variable. Applying an evaluation strategy
to an ORM changes its behavior according to the static setting defined by
the developer. To understand better how a ORM tool works is important to
understand how the applied evaluation strategy works.

Strict evaluation: called also eager evaluation, is an evaluation strategy
which evaluates as soon as possible the expression that is bound to a vari-
able. Using this strategy it improves code workflow and facility the debug.
However, eager evaluation can reduce performance in case of too many and
unnecessary evaluations.

An ORM tool that uses this kind of strategy loads immediately all val-
ues from the goal table and also loads immediately all values from relation
one-to-many. Only many-to-many relations will be performed after request-
ing. An application that implements an ORM with this strategy provides
slower response times following an object request, but it has no delay when
asked to return the value of an object property with one-to-many relation-
ship. Avoiding making new connections to the database, the application is
much faster providing the required value. However, if the loaded values from
relations are never used, we can interpret this situation as a waste of time
and system resource.

Non-strict evaluation: also called lazy evaluation, is an evaluation strat-
egy which evaluates expressions bound to a variable only in the moment they
are required to complete the execution flow, correctly. This strategy allows
to improve performance in the opposite situation of eager evaluation. In fact,
in case we need the results of all evaluations and the strategy that we are
using is lazy, we have worse performance.

An ORM tool that uses this kind of strategy will load immediately all
values from the goal table and, when requested, the values from other table
with relations one-to-many or many-to-many. ORMs tool that works with
this strategy responds faster when a client requests the object fetch, but it
responds slower when it asks to return values from one-to-many relations.
The performance in this case degrades because ORM tool must pay some
fixed time in database connection, even if there is little data to load. However,
if the loaded values from relations will be never used, we can interpret this
situation as a gain of time and system resources.
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Non-deterministic evaluation In this evaluation strategy arguments are
loaded after heuristics evaluations at run-time. We cannot know how the
workflow will be. These family of evaluation strategies can give high per-
formance improvement, but its result might provide unexpected values. De-
bugging can be complicated and the execution flow is decided when choosing
whether to evaluate an expression or not.

AdaORM implements a predictive evaluation strategy that can be mapped
in this macro strategy.

1.2.2 ORM tools

Object-Relational Mapping (ORM) is a programming technique that aims
to improve integration among software system, that uses object oriented
paradigm and RDBMS systems, creating a virtual object database. A ORM
tool solves the problem of translating the information to be stored in a re-
lational database, preserving the properties and relationships that involve
object in OOP paradigm. Those tools load data from databases according
to the chosen evaluation strategy.

Advantages: by introducing this kind of technology, we obtain some ad-
vantages. As the reduction of the code to write. The less we write, the less
error we make. Also, development time is reduced and we are able to avoid
boilerplate code. Using an ORM improves the portability over the DBMS
used. Only changing some lines of code and importing the correct driver we
can use one specific language instead of SQL.

Disadvantages: there are some unfavorable points. The higher level of
abstraction doesn’t show what happens inside. Sometimes, it can be useful
making the process transparent. Other times, it doesn’t give enough infor-
mation and/or control to improve the behavior of an application. The last
disadvantage is the main point that we want to improve with AdaORM .

Also, an ORM tool helps the developer with other features like auto-
matic object graph loading, concurrency management, caching support and
improvement on DBMS communication.
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Figure 1.1: Hibernate architecture

Hibernate

Hibernate (H8) is an object-relational mapping framework that gives sup-
port to manage data persistence into databases, representing and maintain-
ing Java object in relational databases. H8 gives mapping between Java
classes and relational database tables. Also, it executes the queries that the
developer needs to update the objects. In this way, the developer does not
need to write any line of code to assure data persistence. Hibernate is an
ORM object-centric. It gives more importance to the object that uses data
from the database than the database itself.

In Figure 1.1 we can observe at high level Hibernate architecture. We can
see that model objects (called persistence objects) are the communication
bridge between Hibernate and our application. Also, our application never
communicates directly with DBMS, but only through Hibernate commands
(if we implement a homogeneous solution).

Hibernate became so famous, also for the previous ORM features, thanks
to its personal features as dual-layer cache architecture, custom query lan-
guage, session managed and general CRUD functionality.

H8 uses xml files, called mapping files (format name: class_name.hbm.xml)
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to describe the structure of persistent Java object and a configuration file that
contains information about database connections and mapping files. There-
fore, in order to use the previous data, we must write a class which takes
care of saving the persistent object in the db. The SQL code to make the
schema is created by mapping files.

Hibernate is a complete, stable and affordable solution suitable for com-
plicated systems with persistent domain. However, these features have the
downside in decreasing performance when running large SELECT operations
than the next solution, MyBatis.

MyBatis

MyBatis isn’t an ORM framework, it is instead a persistence framework.
Developed by Apache, it automates the mapping between objects in Java
(and .NET). It is the evolution of iBatis, that was dismissed since 2010. A
persistence framework maps SQL code into Java methods, while an ORM
framework maps Java classes to database tables.

MyBatis implements some interesting features as lazy loading and ag-
gressive lazy loading. The classical lazy loading loads all values from a table.
Aggressive lazy loading loads only required values. Besides, this framework
provides a caching system to improve performance. MyBatis is preferable
then Hibernate when our approach is database-centric and we want to use
analytic queries.

MyBatis works in reverse way respect to Hibernate. In fact, the devel-
oper starts writing SQL code into XML files to create a database schema,
and just at the end, MyBatis creates the Java objects and methods. Also,
MyBatis centers around XML files that contains SQL parameters to database
connection. The mappings are decoupled from the application logic to XML
configuration files, packaging the SQL statements into them. In this case the
developer does not have to develop low level SQL queries.

MyBatis is the best choice when we work with a database where you need
to write fairly complicated SQL queries. It gives high throughput but it isn’t
suitable for a large object-centric application.

jOOQ

jOOQ is a software library that implements active record database pattern.
It provides a language very similar to SQL to perform queries. This one
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allows to implement some functionalities that cannot be used with other
ORM, staying very light. jOOQ has a database-centric approach, as we could
imagine from its syntax. The syntax allows to standardize the language, in
this way it will be independent from under RDBMS layer. Also, jOOQ is
multi-tenancy, it works using many instance of the same service in a shared
environment.

jOOQ abstracts SQL through some function. In this way we become
independent from the under DB and we are less exposed to risk. It supports
many SQL features that cannot be used with other ORM. In fact, ORM
such as Hibernate, are expensive resources and they don’t permit all SQL
operations. jOOQ is very different than Hibernate and MyBatis. It gives
to the developer a lot of control, which in inexperienced hands can lead to
serious performance problems. jOOQ implements eager loading by default.
This means that if you are using a large database and you are loading a lot
of data, which of then might not be all used, it will lead to an unnecessary
waste of time and resources.

ORM quick matching

In Table 1.1 we can see a comparison of the main functionalities between
the ORMs seen previously. The comparison is done in terms of strategies,
caching, the philosophy to which it is oriented and the amount of resources
it needs.

Tool Strategies Caching Oriented to Resources

Hibernate Lazy/Eager Yes Object Expensive
MyBatis (Aggressive)Lazy/Eager Yes DB Cheap
jOOP Lazy/Eager Yes DB Cheap

Table 1.1: Matching principal ORMs

1.2.3 Auto-Fetch

Auto-Fetch is a technique that aims to automate prefetch. In fact, to im-
prove performance many architecture supports query prefetch associated to
an object as query result. Unfortunately prefetch must be done statically
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in the code and sometimes might be difficult to guess the correct query of
maintain it, mostly in modular system. Auto-fetch achieves this result
through the traversal profiling1 in object persistence architecture. This tech-
nique based its prefetch over previous query executions of similar queries.
Auto-fetch records traversed associations when we submit a query. Then,
recorded information are aggregated to profile a statistical application be-
havior. It can prefetches arbitrary transversal patterns. In this way, the
application performs less queries, improving performance. Auto-fetch maps
execution flow with a graph, because is the natural representation of relations
in most object persistence architectures. Auto-fetch understands only after
one execution how to prefetch correctly a query. In fact, from the second ex-
ecution it is already able to execute the best prefetch. However, it classifies
only on the criteria, without distinguish the different query utilization. In
this case the classification is too coarse. Furthermore, Auto-fetch does not
implement the feature to perform lighter prefetch if the load on the system
is higher. It also can possibly aggravating the system load.

1.3 Proposed solution
The contribution of this thesis is the development of an ORM prototype,
AdaORM , that aims to improve system response time and system load. AdaORM
uses a predictive strategy that exploits collected statistics and a feature im-
plemented in some DBMS, join elimination optimization. join elimination
prunes query statement removing useless tables. In this document we assess
through customized benchmark test and using Tsung benchmark tool, how
the system response time, the complexity of executed query and system load
decrease exploiting the features offered by AdaORM .

Achieving the fixed goals is possible to exploit a particular feature im-
plemented from a some DBMS, the join elimination optimization. This
optimization removes unnecessary tables from a submitted query. In this
way, the DBMS performs less operation, decreasing the query cost and im-
proving the response time. Before AdaORM , the developer was forced to hard
code different query for different execution contexts to improve performance,
handling the query each time that the system behavior changes. Then, main-
taining system efficient and performing each time that the behavior changes,
has an expensive cost in term of maintenance and complexity. Now, thanks

1transversal profiling is a technique to collect statistics tracking the control flow.
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to AdaORM we are able to solve these problems. It works observing the behav-
ior of requested query and the mapped column utilization. By the using of
collected statistics on the application behavior, AdaORM formulates the query
statement by removing the columns which are not evaluated as interesting.
Ranges are set up monitoring the current system load. When we reload the
interrogation we have to check the fixed system load. If a column frequency
usage is enough high and according to the full system usage, it is loaded into
the final query.

The tables are not removed by AdaORM but only from DBMS that imple-
ments join elimination .

1.4 Document content
In the first chapter we described the problems that we aim to face, how
to improve application response time and save resources. We described the
state-of-art solutions and how they try to solve the problem or some
shades of it. Then, we briefly described AdaORM , the proposed solution to
previous problems.

In the second part we give some theoretical knowledge about databases,
that are the heart of the problem. Then we describe the Object Oriented
Programming, a programming paradigm to develop structured and modular
applications. After that, we talk about Object Relational Mapping, a pro-
gramming technique to improve integrity and develop time among relational
database and Object Oriented Programming, with some principal solutions.
Then, we introduce the multitier architecture, a way to describe a particular
type of client-server architecture, to pass after that to talk about queueing
networks and how to perform performance testing. At the end, we spend
some words to describe the statistical methods that we want to use to assess
the performance improvement given by AdaORM .

In chapter 3 we describe how we implemented AdaORM , describing software
and hardware components. This chapter is necessary to understand better
the subsequent one.

In chapter 4 we show the experiments done with different databases to
assess the performance improvement gained having the join elimination
. Then, we comment some plots obtained from benchmark results of AdaORM
. Benchmarks have been done with a custom benchmark and with Tsung in
server configuration. We compare AdaORM with Hibernate and we show some
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cases of study where the proposed solution overcome Hibernate execution
time. At the end, we give some limits found in my prototype.

In the last chapter we give a last observation over the project and we
propose interesting possible future works to be implemented on AdaORM, fo-
cusing on improving data prediction and reducing the computation cost of
the application layer.
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Chapter 2

Theoretical Background

To make this self-contained thesis we decided to theoretically introduce the
main topics that will be covered. In the next sections we will talk about
databases, that are a key point of our research. We will introduce the Object
Oriented Programming (OOP) paradigm and we will describe principal pat-
tern used. After that, we will talk about Object Relational Mapping (ORM),
a technique that allows us to link together two different paradigm as RDBMS
and OOP. Then, we will describe Multi-tier architecture to represent a par-
ticular type of client-server architecture. Studying and testing the adopted
system will be possible thanks to Queueing system network, described below.
At the end, we will give some theoretical definition over statistics methods
that we will use to assess the obtained improvements.

2.1 Database
In this section, we will talk about the two families of databases and their
principal features.

A database is a collection of data, organized and electronically stored
over a computer system.[1] Interacting with a database is possible thanks
to the database management system (DBMS). A DBMS is a software layer
that allows users and applications to interact with data layer. According to
database model, that determines the database logical structure and defines
how data can be stored, organized and manipulated, we split DBMS in two
families: Relational database and NoSQL.
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2.1.1 Relational database

Relational database is a database structured over the concept of relation. It is
possible to interact with a relational database thanks to Relational Database
Management System (RDBMS). Data are presented to the end user and ap-
plication as relations of tables. Each table consists of a set of rows, called also
records or tuple; and columns, that are the attribute which value describes
rows. Each row is uniquely identifiable into the system through the use of a
primary key (PK), a particular attribute or set of attributes that are unique
in the table. PK can be used also as foreign key (FK) to link together rows
and to make relation among them.

SQL: acronym of Structured Query Language, is the query language used
to interact with a RDBMS. A RDBMS can extend SQL with many other
features as new commands or attribute type. This extension takes the name
of dialect.

2.1.2 NoSQL

A NoSQL database is a system that provides methods to store and to retrieve
information in different ways which are not the classic relational models.
NoSQL database can be split in different families that depend from the type
of data model they work with. The most used data models are document
graph, key-value and wide-column. Using NoSQL databases can offer some
advantages, as design simplicity, flexibility working with unstrucutured data,
simpler "horizontal" scaling to cluster, but NoSQL database has an high im-
pact over the amount of memory to storage data. However, the cost to store
data is a convenient cost because its simplicity decreases the development
costs. Now we explain better the difference between data model used by
NoSQL databases.

Document databases: data are stored into document as JSON. Into the
document we can find a couple of key-value. Values have type, that can be
primitive, or complex type as object. Sometimes, object/variable type into
document are the same used by programming language used. This simplifies
the mapping between data into document and classes.
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Graph databases: data are stored as a graph, where node represent values
and edges represent the relations among them. Graph representation is a
convenient choice when we have to work with algorithms that nativity require
handling graph.

Key-value databases: data are memorized in couples key-value. The key
is used to retrieve information linked with it. Key-value is a convenient rep-
resentation when we need to retrieve quickly a value, but we do not perform
complex query over our database.

Wide-column stores: data are saved in tables, rows, and dynamic columns.
Wide-column is like a relational database, but it provides a lot of flexibility
because each row is not required to have the same columns. Wide-column
is a convenient representation when you need to memorize large amounts of
data and you can predict what your query patterns are.

2.1.3 SQL vs NoSQL

In Table 2.1 we recap the main features of each paradigm. There is no best
paradigm. We must choose the best according to the problem we have to
sort out.

Type Cluster Join Representation Memory OOP use
SQL Difficult Provided Relations Low Hard

NoSQL Easy Absent Many type High Easy

Table 2.1: Comparison between SQL vs NoSQL

2.2 Object Oriented Programming
In this section we will see one of the most famous programming paradigm
used, Object Oriented Programming (OOP). After a quick explanation of it,
we will describe the pattern applied into our project.

Object Oriented Programming is a programming paradigm whose main
core concept is the Object. An object is a wrapper that contains data struc-
tured in fields or properties, and some action, accessible through methods.
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2.2.1 Patterns

We can define a pattern as a reusable solution to frequently current problems.
Exploiting pattern is the best way to develop good codes. In this document
we will see only pattern that we used developing AdaORM [7].

Strategy: is a behavioral pattern that allows to choose the right algorithm
at runtime. Delegating the algorithm choice at runtime, it improves the
code reusability. Validation algorithm and validating object are encapsulated
separately. In this way we can validate the same object in different contexts
without duplication codes.

Figure 2.1: UML representation of Strategy pattern

In Figure 2.1 we can observe how the Context class does not implement
directly any action, but delegates its implementation to others classes. In
fact, implementing Strategy interface, the Context will be able to change its
behavior dynamically, changing the referred strategy. Classes RealStrategyA
and RealStrategyB implement the Strategy class, then the algorithm that
will be executed.

Decorator: aims to solve the problem of how adding/removing object re-
sponsible dynamically or at runtime, avoiding subclassing explosion.

Decorator does not change the behavior of original class, but wraps it.
How we can see in Figure 2.2, Decorator class has an attribute that is of the
same type as the class that extends. In this way Decorator, also appears as
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Figure 2.2: UML representation of Decorator pattern

an object of the same class of component, it contains an instance to use to
methods delegation in order not to change the behavior of real class.

Data Access Object: also called DAO, is a pattern used to split low
level data accessing API and high level services. DAO is designed according
to Data Access Object Interface that designs the operations to perform
over an object model, Data Access Object concrete class that imple-
ments the previous interface, writing the methods to effectively interact with
databases, and Model Object or Value Object that will be the simplest
POJO where storing fetched data.

In Figure 2.3 we can see that implemented interface allows to fetch target
object independently from its sublayer. In fact, we can implement a different
DAO for different purpose.

2.3 Multitier Architecture
In modern software engineering, a client-server architecture for distributed
system is called multitier architecture when application processing and data
processing are physically split.[6] All resulting layers are in communication.
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Figure 2.3: UML representation of DAO pattern

The most famous multitier architecture is the three-tier architecture, where
presentation, control and data are decoupled. Developing in a n-tier architec-
ture is a big advantage for a developer because it can exploit more flexibility
and scalability.

2.4 Queueing system
Queueing systems have a very important role in the assessment of software
and network performance. They allow modeling a theoretical system over
its possible calculate metrics to study the real system. A queueing system is
composed by three parts: an arrival process that describe how the jobs come
into the system, a waiting room that describes the area where jobs wait for
to be served, and a service room where jobs are served. The time spent into
service room is called service time.

A system adopts a scheduling discipline, a rule that aims to define how
to serve a job that is in waiting room. The discipline can be split in two
categories: preemptive, a job can be removed from the service room and
reput in the waiting room because of some events, or not-preemptive, when
a job cannot be removed from the service room before it has finished.

The most famous are:

• FCFS: First Came First Served is a not-preemptive policy. A system
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set with this rule will serve before the job, according to their arrival
order.

• LCFS: Last Came First Server is a preemptive policy. A system set
with this discipline will serve job on inverse arrival order.

• RR: Round Robin is a preemptive discipline. The system spends a
certain amount of time for each job.

• SJF: Short Job First discipline is a preemptive rule that aims to max-
imize throughput serving first shorter jobs.

• SRTP: Shortest Remaining Processing Time is a preemptive discipline
with resume that serves always the job that has the shortest comple-
tation time. It tries to minimize the response time.

• RAND: policy not-preemptive that chooses randomly a job whenever
the server is free.

Describing a queueing system can be very verbose. It is possible to avoid
this issue using Kendall’s notation. A system can be described using a string
as A/B/m/K/P/D where:

• A and B describe the inter-arrival times and the distribution of the
service times of jobs. A and B can be replaced with the following
letters to describe the distribution type:

– M denotes the exponential distribution. If M replaces A the rep-
resents the Poisson distribution.

– D describes the deterministic distribution.

– G denotes the general distribution. It is in most of the general
case.

– many others

• m is the number of identical servers in the system.

• K represents the capacity of the queue.

• P describes the population size.

• D is the scheduling discipline.

21



For example, M/M/1 is the Kendall’s notation to describe a system with
Poisson distribution at arrival process, exponential distribution at departure
process and one server, with infinite capacity and infinity population, and
the scheduling discipline is FCFS.

To study a queueing system it is necessary to introduce some performance
indices that describe some particular behavior of the case of study.

• N(t) is the number of jobs in the system in a certain epoch t.

• W is the random variable that describes the waiting time of a job into
the waiting room.

• S is the service time of a job.

• µ is the service rate. E[s] = µ−1.

• R is the amount of time that a job spends into the system. R = W +S.

• λ is the arrival rate of a job into the system.

• U is the utilization of a single system queue defined as U = λ
µ

2.4.1 Little’s Law

Little’s Law is one of the most important result in queueing system theory.
It requires very few constraints to be applied. In fact, it is independent
from arrival/departure distribution used to describe the system, but it allows
however to calculate the number of jobs in a system in a defined time t.

Little’s law: A queueing system without internal loss or generation of jobs
is given, then the following relation holds for any finite time t:

N(t) = R(t)X(t)

From the previous law we can deduce the next theorem setting t→∞.
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Little’s Theorem: A queueing system without internal loss or generation
of jobs is given, and the following limits exist:

• λ = limt→∞
A(t)
t

• N = limt→∞N(t)

• R = limt→∞
∑C(t)

i=1
ri
C(t)

with C(t) is the number of jobs served in [0, t] and ri is the response time
of the i− th service. Then

N = R(t)λ

If the previous limits are satisfied we will have a stable system for t→∞
and the system throughput will be balanced with the arrival rate into the
system. A system is stable when t → ∞ the expected number of jobs into
the system is finite.

2.4.2 PASTA Property

Poisson Arrivals See Time Averages property, also known as PASTA is a
property used to describe a queueing system.

Definition: A queueing system with a Poisson arrival process is given. A
job immediately before its arrival into the system will see the same distribu-
tion as the random observer’s one.

PASTA property is used to derive important results as the residual life
of a job, the amount of remaining service time in service from the point of
view of a random observer.

2.5 Queueing networks
In this chapter we talk about queueing network, a system where each sin-
gle queue is connected to the other by a routing network. This system is
necessary to describe and study complex systems.

Queueing networks are classified in two categories that depend from the
customers’ behavior, open networks and closed networks.
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2.5.1 Open Network

An open network is characterized by one or more input customers stream
and one or more output customers stream. We study steady-state behavior
of queueing network. To achieve this goal is necessary to understand and
test when a queueinq network is unstable.

Definition: An open queueing network is defined unstable when the num-
ber of jobs into the system go to infinity for t→∞ with higher probability.
Let N the expected number of user into the system. If exists the limit

N = limn→∞
N(t)

t

the the system will be stable. If a open queueing network is stable, then
all its stations will be stable.

In a stable open queueing network, the total input flow into a station
will be equal to its throughput. The trough, then, is independent from the
service rates of the stations.

2.5.2 Closed Network

A network can be defined closed if the number of user that interact with the
system is fixed. Then, there are not arrival and departure to the system.
The closed loop networks are classified in two categories: interactive systems
and batch systems. In the interactive system, a customer can pass from a
thinking state to a submitted state, and from a submitted state to a thinking
state. The time spent in thinking state is called thinking time (Z). Here the
customer consumes the obtained result. The time spent in submitted state
is called response time (R). The fixed number of users in the system is also
called level of multiprogramming of the system. The combination of thinking
time and response time allow defining the next definition of system time, so
the time spent from a customer for the entire processing into the system. To
perform it, it is necessary use the expected values.

T = R + Z

We define the response time for an interactive system, emphasizing over
the number of customer into the system, with the following result
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R(N) =
N

X(N)
− Z

We can observe that increasing N the response time will increase. This
because there will be more competition into the system. From that relation
we remove the thinking time Z because it does not depend from N but occurs
in parallel. The response time depends on both level of multiprogramming
and service rates.

We assume that for each station in the network the job service time
is independent from the number of visits for each of them. Then, we can
introduce the service demand. Service demand is a index that measures the
total amount of service that a customer needs to each station for each visit
done to a reference station

Di = Vi
1

µ

And, since 1
µ
is the expected service time for each visit, we can write the

next relation that represents the bottleneck law

pi =
Xi

µ
=
X1Vi
µ

= X1Di

That relates the service demand to the system throughput and the queues
load factors.

The system speed is bounded by the bottleneck. A bottleneck is the
slowest component in the system and the higher system bound are limited
from it. Finding the slowest component is possible thanks to the relations

X ≤ min(
N

D + Z
,

1

Db

)

and
R ≥ max(D,NDb − Z)

then

D =
K∑
j=2

Dj

where Db is the bottleneck of the system that is the max Di. So,

(if pb → 1 when N →∞)→ Xb → µb and ∀b Qb, Ub → 1
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The last metric that we see in this paragraph is the optimal number of
concurrent user that the system can accept without degrading its response
time.

Nopt =
D + Z

Db

2.6 Performance testing
In this section we talk about performance testing, an important aspect in
the life cycle of real hardware and software architecture. It allows to analyze
and study the system, describing it. Performance test are classified by goals
and architecture:

1. Performance regression testing : aims to check if system performance
has been degraded after some changes in the code.

2. Performance optimization testing : aims to find the best software con-
figuration that improves the performance.

3. Performance benchmarking testing : aims to give a performance de-
scription to end users.

4. Scalability testing : aims to find the maximum number of simultaneous
users into the system before performance degradation.

To measure automatically the performance of a system it is necessary
that the employed software simulates the user behavior. Here we distinct the
two main components: System under test (SUT) and the software that aims
to study its performance, the benchmark. We classify the benchmarks in two
categories:

• Competitive benchmark is a standardized test that aims to assess the
software and hardware performance. In this way we can perform con-
sistent tests to compare machines or applications.

• Research benchmark is a tool developed to measure the performance of
a certain system. Using this kind of application aims to improve the
software performance after and during development time.

We can also split the performance test in four categories:
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• Synthetic: aims to produce fictitious workload to simulate real cus-
tomer behavior.

• Micro: aims to test only one aspect of SUT, without considering the
rest of application.

• Kernel : aims to test performance from the most important part of the
entire application.

• Application: aims to test each single feature of the under analysis ap-
plication.

2.7 Statistical inference
In this section we talk about the background necessary to understand how
and why we have used statistical inference methods to assess the performance
[3]. Statistical inference is a process that aims to deduce properties using data
analysis of a probability distribution. Inferential statistical analysis infers
properties of a population, using a large sample from the population, for
example by testing hypotheses. In this document we decided to use statistical
inference methods to estimate the expected value of AdaORM execution and
simple JDBC execution, assessing the performance improvements in terms
of execution time. First of all, we introduce now for the next paragraph two
important contents, estimator and hypothesis testing.

Estimator: is an approximation Θ̂ of a distribution parameter Θ per-
formed using a sample of the total population. An estimator tries to approx-
imate the real value of a population parameter. It’s value is called estimate.

2.7.1 Hypothesis Testing

Hypothesis testing is statistical inference method used to verify statements,
claims, conjecture or in general, hypothesis. Hypothesis testing is wide dif-
fused in computer science to verify the efficiency of a new algorithm or a
hardware upgrade. First of all, we must define what we want to test. We
call them null hypothesis H0 and alternative hypothesis HA. H0 and HA are
mutually exclusive. The rejection of H0 means that we must accept HA. The
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not rejection of H0 means that we cannot accept HA. To reject H0 in favor
of HA is possible only with significant evidence provided by data.

We can describe three different cases for alternative hypothesis HA: two-
side alternative, left-side alternative and right-side alternative hypothesis.

two-side alternative H0 : Θ = Θ̂ HA : Θ 6= Θ̂

left-side alternative H0 : Θ < Θ̂ HA : Θ ≥ Θ̂

right-side alternative H0 : Θ > Θ̂ HA : Θ ≤ Θ̂

Table 2.2: Recap of different type of alternative hypothesis

Performing an hypothesis test could make some mistakes. Type I error
occurs when we reject the true null hypothesis, Type II error occurs when we
accept a false null hypothesis. The type I error is the most dangerous and
we want to avoid it absolutely. We assign a probability to commit this error,
called significance level α of a test.

α = P (reject H0 | H0 is true)

Hypothesis test is based on test statistic T. Then, to test our estimator
we must first of all normalize the value

TΘ̂ =
Θ̂−Θ0

SE(Θ̂)

Figure 2.4: Acceptance and rejection regions
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Using T statistic we are assessing that we are using null distribution.
Then, we split the distribution in two areas acceptance region with probability
(1 − α) when H0 is true and rejection region α when H0 is true. Rejection
regions are the tail (or the tails in two-side alternative) of the null distribution
(in Figure 2.41 we can see a right tail of the null distribution).

Supposing that the estimator Θ̂ is unbiased and normally distributed, the
null hypothesis can be tested usingZ-statistic

Z =
Θ̂−Θ0

SE(Θ̂)

that has a normal null distribution. When Θ̂ is consistent and asymptot-
ically normal, if the sample size is large enough Z has approximate standard
normal distribution under the null.

We interpret Z values in the following manner{
close to zero→ insufficient evidence against H0

far to zero→ evidence against H0

According to three alternative seen before, now we explain how interpret-
ing z − statistics

Right-tail alternative

H0 : Θ = θ0 vs HA : Θ > Θ0

The rejection region R consists of ’large values’ of Z:

R = [zα,+∞) and A = (−∞, zα)

Significance level:

Pr(Type we error) = Pr(Z ∈ R|H0)

= Pr(Z > zα)

= α

(2.1)

1Figure from [3]
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Left-tail alternative

H0 : Θ = θ0 vs HA : Θ < Θ0

The rejection region R consists of ’small values’ of Z:

R = (−∞,−zα) and A = [−zα,+∞)

Significance level:

Pr(Type we error) = Pr(Z ∈ R|H0)

= Pr(Z < −zα)

= α

(2.2)

Two-side alternative

H0 : Θ = θ0 vs HA : Θ 6= Θ0

The rejection region R consists of ’large’ and ’small’ values of Z:

R = (−∞,−zα/2) ∪ [zα/2,+∞) and A = (−z∞/2, zα/2)

Significance level:

Pr(Type we error) = Pr(Z ∈ R|H0)

= Pr(Z < −zα/2Pr(Z > zα/2)

=
α

2
+
α

2
= α

(2.3)

In this chapter we have covered the main topics to provide a sufficient
background for the complete understanding of the following chapters. We
explained what a database is and what a DBMS is. We have seen the differ-
ences between relational and non-relational DBMS. So, we have seen some
of the main patterns that we have implemented describing the problem they
aim and how they solve it. Then, we have given an introduction to the multi-
tier architecture of computer systems. We provided the knowledge necessary
to understand the theory of queues and we motivated the need to apply per-
formance tests. Finally, we have described the statistical method used to
affirm the improvement in response times. Now, we are ready to move on to
the next chapters.
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Chapter 3

Implementation of AdaORM

In this chapter, we explain what technologies we used to develop AdaORM and
why we chose them. We talk about the programming languages, frameworks,
libraries, patterns and their integration in the project. Then, we explain the
most interesting parts and we give an explanation of the three main cores of
the system.

3.1 Software

3.1.1 Programming language

AdaORM has been implemented using Java 8 programming language. We chose
this language with this version because it is enough evolved and diffused,
that it has given us the opportunity to have access to many libraries that
can improve my work. Also, some features as lambda functions aren’t
available in previous versions.

3.1.2 Database

Choosing the correct DBMS according to the case can improve the system
performance. In our case of study the choice of DBMS is fundamental. To
develop AdaORM we have chosen as host DBMS, the DBMS that stores infor-
mation that we want to fetch, IBM DB2[10] because, as we can see in next
chapter, it implements a mandatory feature that we exploited to achieve our
goals.
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However, AdaORM uses two DBMS, the first is the host database, IBM DB2,
the second is the system database, SQLitethat contains the collected execu-
tion statistics. We chose to use SQLitebecause the database is not shared
externally with any other process and using a database on the network would
have led to problems due to network latency. Furthermore, it is preferable
that the statistics are calculated in the application server in order not to load
the database server.

3.1.3 Frameworks

A framework is a platform to develop software application. A framework
provides an essential behavior that developers can exploit to build specific
software. We have used Spring-boot to create an efficient and convenient
web server to expose API. API is used from a client to start routines that
load data from database, according to specific behavior. In this way, we can
use Tsung tool to benchmark AdaORM .

3.1.4 Libraries

Using libraries to develop an application is the best solution. Using the
libraries allows to decrease the development time, it makes the system mod-
ular, debuggable and safe. Libraries can also provide essential functions for
the integration of some components such as a DBMS. These are the libraries
used in the project

1. sqlite-jdbc version 3.30.1 allows us to interact with SQLitedatabase,
our system database.

2. sqlparser version 3.1 implements methods to parse a SQL state-
ment. [20].

3. db2jcc version 4.0 allows connection among AdaORM and IBM DB2
database, our host database.

4. All mandatory libraries to allow Spring-Boot to work.

3.1.5 Patterns

A pattern is a standard solution to a recurrent problem. Pattern helps im-
proving application architecture. The application of these working methods
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avoids needless bugs and problems. To design a good application we decide
to use the following patterns.

Singleton: we made many singleton class. This pattern is very useful to
store data as personal user queries, or to develop some tool class that stores
status that must be shared uniquely. Also, using singleton instead of static
classes allow to implement interfaces. Implementing interfaces are a key
feature to improve code reusability and to decrease coupling.

DAO: Submitting database queries is possible thanks to the use of Data
Access Object (DAO). We made this choice to centralize requests for each
database. Also, we used a customized version of this pattern. In fact, we
exploits the fact that each class that wants to use the prediction features
must implement an interface. In this way, we are able to generalize object
creation, asking to the user only to override two particular methods:

• makeBean(ResultSet rs) → T

• getQuery() → String

Implementing these two functions the user teaches to the system how
to get the correct kind of object with the correct query. The DAO that we
implement exploits two main functionality: generalization and dynamic cast-
ing. Each POJO must be extended by a decorator that implements interface
DBPredicted. In this way, DAO is able to work with this type of object, call-
ing getParameters() → SmartMap a methods that return a Map that has
as key a string that represents the name of POJO property, and as value a
wrapper that contains all information about the loading and storing methods
to interact with the POJO property.

Strategy with lambdas: is a pattern used to split algorithm from data.
In this way, we can reach the aim to develop classes with single responsibility
and improve code reusability. However, for our purpose, it is not enough.
We decided to use this pattern combined with lambda functions to model
the getting procedures of a property in a class. When we load objects, it
could happen that to improve performance, the application doesn’t load all
properties values. Then, to get the next requested values but not loaded,
is necessary to develop a procedure that allows us to do it. This procedure
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follows always the same procedure, but changes the applied functions that get
and set object properties (in fact depend from which properties we want to
fetch). To solve this problem, we have a main algorithm inside the class, and
as parameters we pass getting and setting object methods. So, writing only a
general class we can define the properties fetching method for all parameters
that respect our constraints.

Factory: Factory pattern centralizes object creation. We exploit features
of factory and DAO patterns to generalize object instance. The factory
centralize methods to allow creation of collections of items. A method wraps
a generic abstract DAO that requires the implementation of two methods:

• makeBean() → DBPredicted

• getQuery() → QuerySmart

makeBean() requires to be implemented so that it returns the item type
that must be stored into the required collection. getQuery() requires to be
implemented so that it returns a QuerySmart, a wrapper that contains SQL
information to fetch collection from DB.

Decorator: Decorator plays a very important role in AdaORM design, be-
cause it allows to reduce inheritance explosion and adapt the functionality
and data of an existing POJO to a new object that contains methods to talk
with the system, without changing too many lines of the code in a (possible)
existing project.

3.1.6 Main functionalities

We can split AdaORM into three main cores:

1. Object mapping and recording

2. Statistic computation

3. Query prediction

Now we explain all the three parts.
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Figure 3.1: AdaORM architecture

Object mapping and recording

Object mapping and recording phase aims to favor mapping between data
layer and POJO objects to load dynamically and transparency values from
database. This phase isn’t necessary meant only to get data, but also to
trace client behavior and requests over the data. Making the mapping isn’t
a quick procedure, but it allows us to exploit the features that this mapping
produce. First of all, the developer must know the schema of the database
and the queries needed to interact with it. During application startup, a
setup method is launched, which starts AdaORM engine so that the application
can take advantage of the features available. The setup phase consists in two
steps:

1. Host DB init: Setting host database into SmartEngine

2. Host queries init: Setting host queries to allow interaction
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The first step accepts only a DBManager object, that implements the
method to get the host database connection. The second step is also divided
in two phases: phase one requires the definition of the main and complete
query to load a target object the phase, storing class type and SQL statement.
Phase two requires the definition of the objects that contain the information
to fetch a single column. This object, called QueryColumn is a generics that
require the column type and require as parameters reference table, column
name, generic interrogation to fetch column of a generic row and if the column
is a PK.

queries.add(
new QueryColumn<String>(

BookPlus.class.toString(),
"Book_Title",
"SELECT␣Books.title␣FROM␣Books␣WHERE␣Books.book_id␣=␣?"

));

Listing 3.1: An example how to store information to map links among POJO
and table

Then, the developer can decor a standard POJO object with a special ob-
ject that implements three methods from a mandatory interface DBPredicted:

• getParameters() → SmartMap;

• setIDCall(int index) → void;

• getIDCall() → int;

all three methods are necessary to interact with the ORM engine.

public class BookPlus extends Book implements DBPredicted {
...
}

Listing 3.2: An example of how to decor correctly a POJO

getParameters() returns a Map that contains as key the unique identifier
for the column, and as content, an object called DBColumn that contains the
previous key, the value type and lambda functions necessaries to get object
identifiers and handles the properties value. Using these information we
can generalize the execution flow, avoiding to ask developer to implements
methods to interact directly with the engine.
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The developer maps the methods to communicate with the object in a
wrapper that will be used by the engine.

parameters.put(
new ParameterRec<>(

engine.getQueryColumn(this.getClass().toString(), "
Book_Title"),

this::getIDCall,
item::getIndex,
item::getBookTitle,
item::setBookTitle,
String.class

));

Listing 3.3: An example of how to map object properties to table columns

We decided to avoid inclusion of Host queries init information into dec-
orated object to reduce coupling between classes and reduce the amount of
code for class.

Statistics recording

Statistics recording is the part that allows predictions in AdaORM . In the pre-
vious section, we explained how the class property of a POJO are mapped
with RDBMS columns. In this section, we explain when and how the statis-
tics are recorded exploiting the previous mapping procedure. At the end, we
talk about a possible bottleneck in the system.

The phases are the following:

• Object fetch

• Object column use

• Object column not used

• Query prediction

Object fetch: the client asks to fetch a result set from the database. Then,
the SmartEngine gets the interrogation key and saves into the system db a
new call, creating a new index. Also, SmartEngine saves into system db the
columns that the predictor decides to load, linking them to the current index
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query call. At the end, the query call index ia set into all fetched items. In
this way we can memorize the purpose of the query and then increment the
utilization of the right column.

Object column use: Recording is not applied only during loading phase.
To model future predictions, it is necessary to understand and memorize
how data is used. To achieve this results we exploited the previous mapping
system. Each time that we request a property value, a driver is called: it
checks if the property is set, if it is set returns the value, otherwise starts a
routine to load the value using mapped query to perform the right query with
object index to identify the right row. At the end, increments the utilization
of requested columns with the current call index.

Object column not used: when an object column isn’t used, its utiliza-
tion remains zero. This is a fundamental behavior because we must store
information that the columns do not use and so not useful for our execution.

Query prediction

This is the most important part. This is the part that allows us to really
improve our performance and decrease system load. In fact, without this pre-
diction core we could have a convenient behavior thanks to columns mapping,
getting transparent loading procedure, such as standard ORMs configured in
lazy loading strategies. But the records of the utilization are a waste of time
and space. Then, we go inside the prediction core.

Prediction of a query starts when a client performs a request of a certain
Result Set. Client asks to the SmartEngine to fetch the Result Set from a
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given goal query. The algorithm follows the next steps:
Algorithm 1: Prediction algorithm
Result: QR

1 if iteration_number mod cached == 0 then
2 C = Get columns from query Q;
3 R = ∅;
4 T = ∅;
5 Cs = getUsages(C);
6 while cs ∈ Cs do
7 if isPK(cs) || cs.prob ≥ System.load || cs.table ∈ T then
8 R = R ∪ c.name;
9 T = T ∪ c.table;

10 end
11 end
12 QR = new query with R as column set to query Q;
13 end
14 return QR;

In line 1. algorithm checks if the prediction needs to be refreshed. In
fact, to reduce computation time we can predict a new query after some
requests to have consistent and valuable changes. In lines 2., 3. and 4. it
creates, if the condition in previous line is true, the two sets that contain
columns and the set that contains table: C columns in the original query, R
columns predicted and to use in the query prediction and T that contains the
necessary tables to be scanned. Line 5. sets for each column the respective
frequency utilization, creating a new set, Cs. Then, in rows 6., 7., 8. and 9.
The algorithm performs for each column c ∈ Cs a check to decide if column
must be or not included in query to perform. If the column will be deemed
necessary, it is included in set R and its table is stored in a set to know
what tables we must use. In row 12. the column set R is the new column
set that our DBMS fetches. In the last row (14.), it returns the predicted
query. Remember that this value must be stored statically to allow caching,
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avoiding useless computation.
Algorithm 2: Algorithm to get frequencies
Result: Cs

1 Cs = ∅;
2 while c ∈ C do
3 frequency = getFrequency(c);
4 Cs = Cs ∪ (c, frequency);
5 end
6 return Cs;

In line 1. We create a new data structure where we store our result. In line
2. the while loop where for each column we want to get its frequency starts.
Line 3. performs a database call that fetches from view into the database the
already performed frequency. In the next step we save the column and its
frequency into the Cs map. In the last step returns the data structure filled.
We have used a view to maintain always updated the columns frequencies.
In this way, when we want to fetch the requested values we have not execute
a complex and expensive query, but we retrieve information faster because
they are already computed.

Complexity: the complexity of the prediction algorithm depends from the
number of columns that the submitted query has. In fact, to get column
frequencies the methods complexity is Θ(|C|) and to check which columns
load has a complexity always of Θ(|CS|) = Θ(|C|). Then we can conclude
that the asymptotic complexity of AdaORM prediction algorithm is

Θ(|C|+ |C|) = Θ(2|C|) = Θ(|C|)

3.1.7 Conclusion

In this chapter we have seen how AdaORM has been developed. We have talked
about databases, frameworks, libraries choice. We explained because we used
some pattern and how they are integrated in AdaORM . Then, we have seen
highlights code parts, for example how to write a POJO compatible with
AdaORM and how to perform communication among decorated POJOs and
system engine. At the end, we have shown prediction algorithm and we have
talked about its complexity.
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Chapter 4

Experiments and Analysis of
AdaORM

Performing there test is a common way to describe a system, hardware or
software. Exist four types of benchmark test: performance regression test-
ing, performance optimization testing, performance benchmarking testing and
scalability testing. Each of them has a different goal. We perform a perfor-
mance benchmarking testing over different cases of study, implemented with
AdaORM and with a static solution. The benchmarked solutions are described
in terms of response time, free memory, CPU load and concurrent users at
the system. In this chapter, we show how query execution time drastically
decreases in DBMS that implement join elimination optimization when
the statement has been written by pruning not useful tables. We assess
through statistical methods if there are performance improvements. We an-
alyze the queuing network system adopted using a theoretical model, finding
the slowest station, the bottleneck, and the optimal number of users into the
system. In the end, we give some prototype weaknesses.

4.1 Network architecture
In the following section, we describe the network architecture adopted and
the hardware component that we used to perform the development and the
test. This explaination allows the reader to better understand the results
obtained in the chapter.

In modern software engineering, a client-server architecture is called mul-
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titier architecture when the application processing layer and data processing
are physically split.

The developing and testing of AdaORM is based on this architecture that
is commonly adopted in a real systems. By this assumption, we are able to
perform some interestings test with Tsung benchmark tool that show us how
the system performance changes in a real architecture.

Figure 4.1: Two tier architecture implemented

In figure 4.1 we see how the system architecture has been developed. The
left-hand panel contains some clients that perform requests to the application
server to get results through the call of APIs. The right-hand side panel
contains the developed system: the web server that contains an application
that uses AdaORM and sends predicted queries (and column queries to fetch
missing values) to the DB server.

Using this kind of architecture we can study the performance of our sys-
tem. In fact, each application/db servers can be replicate many times for
reliability or performance reason. In this way, if a node fails, our system can
continue to work. However, in this thesis we did not focus over this aspect,
letting the implementation of the system to developer preference and cases.

4.1.1 Application Server

In the previous section, we saw how the system architecture has been devel-
oped. Below, we explain the hardware components of machine that host the
application.

42



Components Characteristic

Device Apple MacBook Pro 13"
CPU 2 GHz Dual-Core Intel Core i5 6th generation

Cache L1 32k/32k x2
Cache L2/L3 256k x2, 4 MB*

RAM 8 GB 1867 MHz LPDDR3
VRAM 1.5 GB
GPU -

Secondary memory 250 GB SSD
Operative System macOS Catalina 10.15.5 (19F101)

Table 4.1: Developing machine skills

4.1.2 Database Server

Components Characteristic

Device HP 630"
CPU 2,1 GHZ Dual-Core i3-2310M 2nd generation

Cache L1 -
Cache L3 3 MB*
RAM DDR3 SDRAM (1066 MHz)
VRAM -
GPU -

Secondary Memory 250 GB 7200 rpm
Operative System Ubuntu 19.10

Table 4.2: Test machine skills

Database server has been chosen to simulate a real system. In fact, often
the secondary memory is implemented using a hard drive that allows for
big storage capacity and high fault tolerance. However, in real systems, the
storage can be implemented with a RAID system to improve the throughput
of data fetch, but this consideration is out of our scope.
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4.2 Databases Benchmark
In this thesis database benchmark is not a way to assess wich is the fastest
DMBS, but a way to study how the presence of join elimination , the
feature that prunes unnecessary joins, can drastically improve performance.
First of all, we specify the three kinds of queries that we have performed.

1. Query type #1 (or Heavy query): is an optimized statement that calls
at least one parameter for each table that has been requested. This
query is the most expensive that we have decided to test.

2. Query type #2 (or Light query): is an optimized which requires to scan
only a table. This is the cheapest query that we have decided to test.

3. Query type #3 (or Critical query): is a statement that calls only
columns from the principal table inserted in FROM clause. This is a
critical interrogation because, although it calls only columns from a
single table without the needs to join or filter other tables, if the join
elimination optimization is not implemented in DBMS, the execu-
tion time is close to that of the heavy query. Instead, if the DBMS
implements this optimization, the execution time of the statement is
close to the light query.

All queries introduce the DISTINCT keyword because if we do not use it the
DBMS in any case scans and join all the tables specified in the query. In
the case of many-to-many relationships, to provide a consistent and correct
result, it will have to calculate the multiplicity relations of each row. Then, we
assess that if a DBMS implements the join elimination optimization, the
execution time for a critical query is closed to the execution time required by a
light query. Otherwise, the execution time is close to that of the heavy query
if the DBMS does not implement the optimization. The comparison has been
done among different queries over the same data set. We never compared
the execution time among databases because we are not interested in what
database is the fastest, but we want to test how execution times change
using the three types of queries described above, with or without the join
elimination optimization. Also, for the moment, we do not talk about
database size and the number of fetched queries because the experiment is
consistent also without these assumptions.
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In next sections, we analyze the DBMS benchmarks and EXPLAINED
PLANs, a sequence of operations that the DBMS performs to run a SE-
LECT, INSERT, UPDATE or DELETE statement, about three DBMS:
MySQL, Postgres and DB2. We want to study how the system responds with
different kind of queries, to prove that our handled query does not degrade
the system performance.

4.2.1 Join Elimination optimization

The implementation of AdaORM largely exploits the join elimination op-
timization. join elimination is an optimization implemented in some
DBMS that removes unnecessary JOINs to load the right required result
set. Avoiding operations on not mandatory tables can considerably decrease
the query execution time. AdaORM takes advantage of join elimination to
delegate the removal of unnecessary tables in the query that it sends to the
DBMS.

4.2.2 MySQL

MySQL is a relational DBMS developed by Oracle. It is a free software,
one of the most popular RDBMS. We choose this software as a case study
following some of its main features[11]:

• Client/Server architecture: one of the environments where it is neces-
sary to manage a high number of requests and therefore it is necessary
to optimize.

• Diffusion: given the strong diffusion, the experiment becomes interest-
ing for a large number of users.

Experiment explanation

We have used the following frameworks to perform the experiment:

• RDBMS: MySQL version 8.0.19

• Benchmark tool: mysqlslap [16]

• Dataset: Sample Employees database [17]
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mysqlslap: is a diagnostic command line application to simulate client load
to a MySQL server. It allows us to get and report the execution time for each
statement or stage. Using this technology we are able to get the execution
time of our queries to understand how the system manages the critical query.
mysqlslap has been customized with the following options:

• –concurrency=1 calculate service time of a query with one user.

• –iterations=50 set the number of experiment iteration.

Figure 4.2: Data set employees schema

Then, now we start with benchmark execution and explanation.

Heavy query: all tables and almost one column for table.

SELECT DISTINCT
employees.first_name,
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employees.last_name,
employees.birth_date,
titles.title,
salaries.from_date,
salaries.to_date,
salaries.salary,
departments.dept_name
FROM employees
LEFT JOIN titles on employees.emp_no = titles.emp_no
LEFT JOIN salaries on employees.emp_no = salaries.emp_no
LEFT JOIN dept_emp on employees.emp_no = dept_emp.emp_no
LEFT JOIN dept_manager on employees.emp_no = dept_manager.

emp_no
LEFT JOIN departments on dept_emp.dept_no = departments.

dept_no;

Listing 4.1: Example of heavy SQL query for MySQL. The format is the
same for each heavy query for each other DBMS into the test

Light query: only one table and request column over this table.

SELECT DISTINCT
employees.first_name,
employees.last_name,
employees.birth_date
FROM employees;

Listing 4.2: Example of light SQL query for MySQL. The format is the same
for each light query for each other DBMS into the test

Critical query: All tables are linked together but only the columns from
the main table, Employees, are required. The execution time of this query is
crucial to assess or reject the presence and the efficiency of join elimination
optimization. If the execution time is close to the lower bound, we can think
that the DBMS applies the optimization, if it is near to the upper bound,
probably not.

SELECT DISTINCT
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employees.first_name,
employees.last_name,
employees.birth_date
FROM employees
LEFT JOIN titles on employees.emp_no = titles.emp_no
LEFT JOIN salaries on employees.emp_no = salaries.emp_no
LEFT JOIN dept_emp on employees.emp_no = dept_emp.emp_no
LEFT JOIN dept_manager on employees.emp_no = dept_manager.

emp_no
LEFT JOIN departments on dept_emp.dept_no = departments.

dept_no;

Listing 4.3: Example of critical SQL query for MySQL. The format is the
same for each critical query for each other DBMS into the test

Results

In 4.3 we can see the benchmark results recap expressed in seconds.

Statistic Heavy Light Critical
Max 28.997 ms 0.528 ms 21.478 ms
Min 22.433 ms 0.169 ms 18.551 ms
AVG 23.754 ms 0.182 ms 19.068 ms

Table 4.3: MySQL benchmark with mysqlslap results

The table 4.3 tells us that probably join elimination feature is not
present. In fact, the critical query execution time is close to the heavy query
than the light. To assess this last statement we ask at MySQL to shows
the execution plan. Execution plan is a set of physical operations that
the DBMS must perform to fetch the correct request data set. We can get
the execution plan from MySQL preceding the statement with the reserved
keyword EXPLAIN. After this procedure, we assess that MySQL does not
implement join elimination feature because the execution plan does not
change between heavy query and critical.
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Figure 4.3: MySQL execution time between different queries

4.2.3 PostgreSQL

PostgreSQL, also called Postgres, is an open source object-relation oriented
DBMS. Postgres uses SQL dialect to specify queries. We decide to perform
an experiment with it because it is another widespread DBMS.

Experiment explanation

We want to assess if the current DBMS offers the join elimination feature
and how its presence improves performance. To test the presence of this
optimization, we use a demo database with demo queries such as in the
previous experiment. The three queries are structured as described above in
List 4.2.
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Results

Also in this experiment we do not see any significant improvement from join
elimination optimization. In fact, the time for a type 3 query is close to
that of a type 1 query. In the tables below there is a recap of the avarage
execution time. The results are expressed in milliseconds.

Statistics Heavy Light Critical
AVG 56.893 ms 3.219 ms 38.404 ms

Table 4.4: Postgres benchmark results

Also in this case, we can see how the execution time of a critical query
is close to the heavier. However, to assess our hypothesis, we can see the
execution plan. To see the execution plan in Postgres we must precede our
query with the reserved keyword EXPLAIN ANALYZE. As expected, Postgres
does not implement join elimination optimization because continue to
perform operation with critical query1.

4.2.4 DB2

IBM DB2 is a DBMS developed by IBM. DB2 offers a tool suite that uses
Artificial Intelligence technology to improve data management, structured
and unstructured. IBM DB2 was developed to meet the needs of data ware-
house. In this product, we find the functionality we want to exploit, the join
elimination optimization. With the following experiment, we assess how
join elimination improves the execution time getting the time of each
execution and watching the EXECUTION PLAN.

Experiment explanation

This is the most interesting experiment. In fact, here we can observe the
join elimination at works. To benchmark DB2 we used a sample Book
database [4]. Also in this case we write three queries, one for each previously
explained type.

1An article in jOOP blog [14], assesss that Postgres does not implement the searched
features only for OUTER JOIN. In fact, form normal JOIN the feature might be present.
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Figure 4.4: PostgreSQL execution time between different queries

IBM provides a command line tool to benchmark the database, db2batch.
db2batch can be ran from command line environment setting the follow op-
tions (to see the full list, you see the official documentation[8]):

• -d set the database over run the test

• -o set an options

– o set optimization level

– e set

• -q set the query visibility

• -f set the file that contains SQL code to execute

The experiment is performed with the statement db2batch -d demo -o o
9 -q del -o e yes -f query.sql
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The tool that the DB2 production company provides to see the EXECUTION
PLAN is db2expln. Also in this case we have some options to set before ran
the explanation (too read the full documentation see [9]):

• -d set the database over run the test

• -statement set the statement to explain

• -terminal set the terminal as standard output

The explanation is performed with the statement db2expln -d demo
-statement "<query>" -terminal

Results

As expected, we can safely concclude that DB2 offers the join elimination
optimization and that, removing not necessary queries, it provides a high
improvement to the execution time.

Statistic Heavy Light Critical
AVG 352 ms 19 ms 19 ms

Table 4.5: DB2 benchmark results

From Table 4.5 we can see that the blue bar that represents the heavy
query execution takes about 18 times more than the execution time that light
and critical queries take.

4.2.5 Conclusion

From the above experiments, we can assess that from the previous three
DBMS, MySQL, Postgres and DB2, only IBM DB2 offers join elimination
. Also, we can prove that by introducing this feature a DBMS can avoid
to perform not useful and expensive computation. As a consequence, we
can assure that the join elimination is a very powerful optimization but that
unfortunately is currently implemented only by the most important business-
oriented solutions. However, this is not a problem. Our solution is designed
for cases where the amount of data to be managed and the complexity of the
system is particularly large. So, the adoption of a more performing database
is already in itself a necessary condition.
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Figure 4.5: DB2 execution time between different queries

4.3 Application Benchmarks
In this section, we explain how we have performed the benchmarks over
AdaORM configured with DB2 database. In the first part, we talk about the
test configurations, then we describe the custom benchmark where we have
compared AdaORM with static JDBC solution. In the third part, we show
the plots and the results obtained through the use of Tsung [15] benchmark
tool, comparing a web server that uses AdaORM with a web server, with the
same network configuration, that implements a static solution with JDBC.
To perform the previous benchmark, we used Spring-Boot to build quickly an
efficient and reliable web server, where we write API to interact with DBMS.
In the last benchmark that we perform, we compare AdaORM vs Hibernate
ORM tool, showing some results and giving some observations. To assess the
convenience of use AdaORM against a static solution with JDBC or Hibernate
we have used statistic methods hypothesis testing explained in Chapter 2. In
the last two sections, we explain the queueing network model adopted using
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the metrics and model introduced in Chapter 2, to conclude giving the limits
of proposed prototype.

4.3.1 Configuration

We include a test package where we implement some demo cases. In the
demo, we write the class to link the host database, we design the POJO that
represents the main database item (in this case the Book class). In the end,
we write all the queries necessary to fetch the data from database. After we
perform this configuration phase, we develop a main class where we simulate
four different cases:

1. (AHQ) Adaptive heavy query

2. (ALQ) Adaptive light query

3. (JHQ) JDBC heavy query

4. (JLQ) JDBC light query

Each case takes its name from the type of query that is performed to
load the same goal result set and from the technology used. Then, in each
case, we want to fetch the same result set but using different strategies. AHQ
case applies AdaORM to exploit its features. The case uses a heavier and more
expensive query, but AdaORM understands, using collected statistics, that not
all the columns are useful. So, it predicts a new and lighter query, that
improves the performance. ALQ applies, also in this case, AdaORM features.
Now, it starts using a light query, that loads less data than required. So,
it must to fetch in lazy loading missing columns until AdaORM learns, using
collected statistics, what is the correct dataset to fetch. AHQ and ALQ after
the wrong prediction, they learn how to predict a faster query and, since
they want the same result, execution times converge to optimal.

JHQ applies a simple static JDBC connection to fetch a big result set
from database. Unfortunately, not all fetched columns are useful, but the
system it is not prepared to manage this case. Then, at each call we have
a waste of time and a higher system load. The last case is JLQ that applies
a lighter query, but after the execution, at run-time, it needs to fetch other
information, increasing the database requests, execution time and system
load. JHQ and JLQ never converge in analyzed case to optimal solution.
They are statically set to load always the same result sets, that are too big
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or too small. Also, JLQ has a much longer execution time, with the same
data set to be loaded. In fact, it will have to continuously connect to the
database to load a missing data.

4.3.2 Database

The IBM DB2 database used is hosted into a the Linux machine previously
described. The installation has been performed using a docker container,
whose image has been pulled from the official repository in the docker hub[5].
The database accepts connections over port 50000. We see the loaded schema
under exam is a book database [4] that contains the following tables with
their cardinality in table 4.6.

Name Cardinality
Books 1009

Publishers 193
Authors 1378
Genres 69

Books_Authors 1717
Book_Genres 3064

Table 4.6: Tables with their cardinality in Books database for IBM DB2

The figure 4.6 show us the UML[2] schema of the under test Book database.

Application

The application has been hosted in a machine with better performance than
the machine that hosts database. The application has been executed from its
jar wrapper. Using a wrapper configuration such as jar is a convenient way to
move the application in different contexts, because contains all dependencies
that the application needs.

Connection between DB and Application server

The connection between the two previous components, IBM DB2 database
and AdaORM is performed through JDBC driver. The application sets the
url that contains all information required to perform a well connection. The

55



Figure 4.6: Book database UML schema

database and the application are hosted in two different machines in the same
LAN. In this way we tried to simulate a real system configuration where we
can find a DB server and a Web application server.

4.3.3 Custom benchmark

The first benchmark that we do is performed through a custom tests. In
fact, we test different cases and measure the execution time of each case.
The cases have been compared due to execution time, according to the start
query to submit. For example, we match two configurations that want to
reach the same result starting with the same query (i.e. a heavier query),
one case uses AdaORM and the second static JDBC. Benchmark is started in
a command line environment. The database is always in a different device
and it is reached through the network. Timing has been recorded by the self
class that performs the benchmark, through an object called Chrono. Chrono
starts before the result set request (that will be returned as a list of object),
and it stops after result set use. The test has been performed about 30 times.

We decide to split the benchmark in two parts. In first part we want
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to understand how the execution time improves when AdaORM guesses the
correct query to execute for the current context. In second part, we want to
show how the excution time changs when the static choice is the right choice
and AdaORM does not guess the right result set. AdaORM might not guess the
correct query as soon as the behavior of the application changes. However,
AdaORM will learn how to predict the new query from the collected statistics.

NB: In custom benchmark we decide to perform tests using less data from
the result set (100 rows). In the light cases, the response times increase
too much both for the solution managed with AdaORM and for the version
implemented statically. In fact, the number of connections to be made sub-
sequently to load the missing data is a high number. The inclusion of the
test results on the whole result set would have made difficult to compare the
various cases.

First part - Right prediction

In Table 4.7 we can observe the expected response time from the custom
benchmarks when AdaORM guesses the right query, versus a static implemen-
tation, to retrive the same result set.

Type AdaORM JDBC
Light 80 ms 813 ms
Heavy 81 ms 280 ms

Table 4.7: Execution time when AdaORM guesses the query to execute

The response times in cases that use AdaORM are (about) equal because
they fetch the same dataset after that AdaORM understands what is the best
query to submit (we remember that the goal result set is the same for each
case). We can observe that when AdaORM guesses the right query the sys-
tem is 10 times faster in light mode and 3.5 times faster in heavy mode.
We can observe better the previous results in Figure 4.7. AdaORM provides
better expected response time. In the heavy case, AdaORM improves the start-
ing query by eliminating the inconvenient columns and exploiting the join
elimination to prune useless tables. In this way, the cost of the query will
be lower, and consequently also the size of the result set and the response
times of the system. Therefore, AdaORM can significantly lower the expected
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response time predicting the right query in the light case, which starts ap-
pling the lazy strategy. In fact, it will not need to make further connections
to the database.
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Figure 4.7: Home made benchmark comparison - guessed

It is interesting to see how the system works during the first executions.
So, in next two-line plot (Figure 4.8 and Figure 4.9), we can see the evolution
of the executions time before AdaORM predicts the right query and after its
prediction.

From Figure 4.8 and Figure 4.9 is evident that the first execution is more
expensive because the data set to be loaded is the largest, as in the static
choice. Furthermore, with AdaORM , it is also necessary to carry out operations
on the loaded data, which have a cost. However, after few iterations (if the
prediction calculation is made at each iteration) AdaORM understands what
is the best query to execute to fetch the right dataset according to the client
behavior. In the end, at the first execution it is better to run the heavier query
because, in case we need all the data, we should not make many connections
to the database. In fact, we can assess from ligh cases that too many database
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Figure 4.8: Execution time of queries in Heavy mode from custom benchmark
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Figure 4.9: Execution time of queries in Light mode from custom benchmark

connections worsen performance.
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Second part - Wrong prediction

Now, we analyze the expected response time before AdaORM guesses the right
query. The guess is wrong because the predictor compute a query with less
parameters and then AdaORMmust load missing data. Notice that, at a certain
point, the predictor will understand the new application behavior and will
compute the right query.

Type AdaORM JDBC
Light 933 ms 813 ms
Heavy 302 ms 280 ms

Table 4.8: Execution time when AdaORM does not guess the query to execute
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Figure 4.10: Home made benchmark comparison - not guessed

The static cases do not change because, by definition, the query that
we want to perform is always the same. The most interesting values in
the Table 4.8 are those obtained by AdaORM experiments. This is a very
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costly procedure, but if the system does not change too quickly its behavior,
AdaORM gives a good prediction. Also, we are sure that after some wrong
prediction, AdaORM understands which columns are needed and predict the
correct query.

4.3.4 Web Server benchmark with Tsung

Using a famous benchmark tool as Tsung, we want to assess that AdaORM
improves the web server performance with respect to static JDBC case. In
the following section, we will see some results obtained with the four con-
figurations seen before: AHQ, ALQ, JHQ and JLQ. We will show the plots that
describe service time, CPU load, free main memory and concurrent users,
obtained stressing the system. Tests AHQ, ALQ and JHQ have been done with
the following configuration:

• Queue system: Closed loop network

• Thinking time: 2 seconds

• Users: 300 u

• Duration: 600 seconds

while, test JLQ has been done with the next configuration:

• Queue system: Closed loop network

• Thinking time: 10 seconds

• Users: 60 u

• Duration: 600 seconds

the differentiation among the two tests is necessary to avoid system over-
loads in the JLQ case. In fact, it has a very long service time compared to
the other cases and it needs to be managed differently.

The development of an efficient web server has been possible thanks a
famous Java framework, Spring-boot[19], a convenient platform to develop
stand alone maven or gradle 2 application with embedded web server such

2Maven and Gradle are two powerful project management tools, that can be used for
building and managing any Java-based project
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as Tomcat, Jetty or Undertow. With Spring-boot we develop a controller
that, mapping get requests with methods, exposes callable API to activate
back end routines. Back-end routines are our standardized work that AdaORM
or the static solution perform.

Cases are slightly different from custom benchmark. We always request
a result set that is be returned as a list of objects, and always performs
operations over the result set. But now, methods start after a network request
and the used result set has increased to its real size. This last configuration
degrades the response time because we handle more data.

From Figure 4.11 and Table 4.9, we can see the service time performed
by Tsung benchmark tool for each case analyzed. From this plot is evident
that AdaORM responds fastest to requests than a static solution when guess
the right query. So, a web server configured with AdaORM improves its service
rate.

Cases Heavy Light
AdaORM 0.12 s 0.12 s
JDBC 0.38 s 7.02 s

Table 4.9: Service time recap in seconds

Looking the Table 4.9, it is clear that the static test of the light query on
the entire dataset becomes unmanageable given its enormous response times.
For this reason, we decided to not scale the graph in Figure 4.11 to improve
plot readability.

For this experiment we only show the case when AdaORM guess the right
query because, from the previous section we have seen how the system be-
haves in case the query is not guessed correctly.

Now we can see system behavior and response time of system under stress
with and without AdaORM .

In Figure 4.12 and in Figure 4.13 we can see how the response time is
lower in the case managed with AdaORM . Furthermore, it is interesting to
see time peaks in the responses, which may coincide with the moments when
AdaORM recalculates the statistics for the prediction. Even, in the static case
we find peaks in response times. Peaks in static implementation are probably
due to the presence of multiple customers within the system. Further, we
will see the graphs corresponding to the competing customers in the system.

Also in the lighter case the response time in Figure 4.14 for AdaORM con-
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Figure 4.11: Tsung benchmark service rate comparison

Figure 4.12: System response time in AHQ

tinues to be lower than response time in the light and not managed case. In
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Figure 4.13: System response time in JHQ

fact, predicting the right result set AdaORM avoids to perform other database
connections. Also in this case, peaks in response times are evident, probably
due to the time spent in recalculating the statistics. In Figure 4.15 the situ-
ation is slightly different. The peaks in this graph represent a distortion due
to the great expectation in response times.

Figure 4.14: System response time in ALQ
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Figure 4.15: System response time in JLQ

Now, to understand if we really managed to lighten the load on the sys-
tem, we check the CPU load. We can see that in the two heavy cases (Figure
4.16 and Figure 4.16), the load for the processor is similar. Probably, for the
moment, the statistics storage and computation cause a load that compensate
the reduction of the loaded data set.

Figure 4.16: AHQ CPU load
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Figure 4.17: JHQ CPU load

In the light case for AdaORM (Figure 4.18) we have moment in which the
system works intensively and moments when system is unloaded. Also, in
this case, the peaks may be due to the calculation of the new predictions. The
prediction of the right query allows us to avoid evident and not convenient
requests both to the application server and to the database server, avoiding
to make too many requests and thus obtaining high improvement in the
response time. In the static case (Figure 4.19) session starts with a high
load, then decrease, but subsequently it goes up again probably because of
the accumulated work.

After the CPU usage, we analyze how the memory management behaves.
In the heavy case for AdaORM (Figure 4.20), we see a slightly greater con-
sumption of memory than the static solution (Figure 4.21). The cost of
maintaining the managed solution has not yet been totally reduced by the
gain provided the advantage of maintaining a smaller data set.

Instead, in the light case, it is clear that predicting the correct result
(Figure 4.22) not only brings enormous advantages in terms of response times,
but also in the amount of memory saved with respect to the static solution
(Figure 4.23).

Finally, we analyze the graphs of competing customers within our system.
Its evident that with AdaORM (Figure 4.24) the number of customers into the
system is lower. The system serves customers faster, so they will have to
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Figure 4.18: ALQ CPU load

Figure 4.19: JLQ CPU load

spend less time within the system by Little’s law.
To conclude the plot explanation, we analyze the last test. In the light

cases, a system that uses AdaORM (Figure 4.26, guessing the right query,
reduces response times. Then the number of concurrent users into the system
decreases with respect to the static solution (Figure 4.27).
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Figure 4.20: AHQ memory free

Figure 4.21: JHQ memory free

Assessing results

To conclude this benchmark test we decide to apply a hypothesis test to assess
statistically that using AdaORM can improve the performance with respect
to the static solution that may be wrongly configured. We test the null
hypothesis H0 : TAdaORM ≥ TJDBC against a one-sided left-tail alternative
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Figure 4.22: ALQ memory free

Figure 4.23: JLQ memory free

HA : TAdaORM < TJDBC , because we are only interested to know if the response
time has decreased.

H0 : TAdaORM ≥ TJDBC , HA : TAdaORM < TJDBC

We have that TAdaORM = 0.12 seconds, SE(TAdaORM) = 0.042 seconds,
TJDBC = 0.38 seconds and a significance level α = 0.01.
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Figure 4.24: AHQ concurrent users

Figure 4.25: JHQ concurrent users

H0 : TAdaORM ≥ 0.38 s, HA : TAdaORM < 0.38 s

Then we compute the test statistic

Z =
TAdaORM − TJDBC
SE(TAdaORM)

=
0.12− 0.38

0.042
= −6.19
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Figure 4.26: ALQ concurrent users

Figure 4.27: JLQ concurrent users

Well, now we calculate the acceptance regions

zα = z0.01 = 2.33

With a left tail alternative we
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{
reject H0 if |Z| ≥ 2.33

cannot reject H0 if |Z| < 2.33

Then we assess that we can reject H0 because Z falls into a rejection area.
In fact

|Z| ≥ zα = 6.19 ≥ 2.33

Conclusion

In this section, we have seen a set of plots obtained with benchmarking
experiments that shows the system behavior when it implements a predictive
strategy with AdaORM or a static strategy with a simple JDBC connection. We
have seen how service time decreases with AdaORM although not all the metrics
in the system have improvements. To conclude our analysis between a Java
application implemented with AdaORM or with an static JDBC solution we
compared the obtained service time with hypothesis testing, that confirmed
the improvements.

At the end, in Table 4.10 we can see a recap of all expected response time
obtained from previous benchmark. We also include the expected response
times obtained when AdaORM misses the prediction. The values are expressed
in seconds.

Expected response time
Cases Heavy Light

AdaORM (Guesses) 0.12 s 0.12 s
AdaORM (Misses) 0.40 s 7.58 s

JDBC 0.38 s 7.02 s

Table 4.10: Expected response time recap

4.3.5 Comparison of AdaORM and Hibernate

In this section, we show how AdaORM obtains better results than Hibernate
in performance testing. To assess this statement, we get the service time
from the same tests in Hibernate and we compare them with those previous
obtained with AdaORM in the previous section.
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To improve readability of experiments and analysis, we introduce new
cases of study for Hibernate:

1. (PR) Prefetching

2. (LL) Light Lazy

3. (LLR) Light Lazy Request

4. (LE) Light Eager

5. (LER) Light Eager Request

Cases of study require the same result set but they apply different strate-
gies. Also, we decide to test the cases when we apply request() methods.
request() allows the program to load all properties of an object but, how
we will see, it affects performances.

PR: it applies prefetching submitting a heavy query to retrieve all values
from a database. It is equivalent to the static case JHQ seen previously, but
implemented with Hibernate.

LL: it does not apply prefetching and its loading strategy is lazy.

LLR: it does not apply prefetching, its loading strategy is lazy and it applies
the request() method.

LE: it does not apply prefetching and it uses eager loading strategy. This
strategy provides a waste in terms of time and resources if the extra data
fetched are not used.

LER: it does not apply prefetching and it uses eager loading strategy and
request() method to load all data. This strategy provides a large waste of
time and resource if the extra data fetched are not used.

In Table 4.11 we can see at the left-side panel the obtained results from
Hibernate benchmarking, at the right-side panel the previously obtained re-
sults with AdaORM benchmarking.

From the Figure 4.28 is easy to see that cases in which we ask Hibernate to
load all information about a result set, the response times grow exponentially.
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H8 Cases Expected exec time
PR 1263 ms
LL 558 ms
LLR 16017 ms
LE 1899 ms
LER 15896 ms

AdaORM Cases Expected exec time
AHQ 120 ms
ALQ 120 ms

Table 4.11: Hibernate and AdaORM expected response time
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Figure 4.28: Hibernate and AdaORM benchmark comparison
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Then is mandatory to apply a strategy to avoid this excessive waste of time3.
We assess that the standard configuration of Hibernate (LL) is the one that
comes closest to the results obtained by AdaORM for the cases tested.

Assessing the results

Finally, to conclude this last benchmark test we decide to perform a hypoth-
esis test to assess that using AdaORM can improve performance. We test the
null hypothesis H0 : TAdaORM ≥ TH8 against a one-sided left-tail alternative
HA : TAdaORM < TH8, because we are only interested to know if the response
time has decreased. The two case that we analyze are AHQ for AdaORM and
LL for Hibernate.

H0 : TAdaORM ≥ TH8, HA : TAdaORM < TH8

We have that TAdaORM = 0.12 seconds, SE(TAdaORM) = 0.042 seconds, TH8 =
0.558 seconds and a significance level α = 0.01.

H0 : TAdaORM = 0.558 s, HA : TAdaORM < 0.558 s

Then we compute the test statistic

Z =
TAdaORM − TH8

SE(TAdaORM)
=

0.12− 0.558

0.042
= −10.43

Well, now we calculate the acceptance regions

zα = z0.01 = 2.33

With a left tail alternative we{
reject H0 if |Z| ≥ 2.33

cannot reject H0 if |Z| < 2.33

Then we assess that we reject H0 because Z falls into a rejection area. In
fact

|Z| ≥ zα = 10.43 ≥ 2.33

3request() is a method that works only if the developer calls it. The default hibernate
strategy is lazy
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Conclusion

We can assess that AdaORM works better than Hibernate in the analyzed cases.
However, we must say that these results should be considered carefully. In
fact, Hibernate provides many features that we have not incorporated in
AdaORM and then an absolute comparison is unfair. However, the conclusion
that dynamic configuration of the fetching strategy can improve the perfor-
mance drastically emerge from the experiments in a clear way. Indeed, we
think that the inclusion of an adapting strategy can be a good improvement
in object relational mapping tools as Hibernate.

4.4 Queueing system analysis
According to the definitions in Chapter 2, now we analyze the theoretical
queueing model behind AdaORM [12]. In Figure 4.29 we can see the closed
network designed to perform the previous tests and now defining metrics.

4.4.1 Adaptive Heavy Query

First of all, we define the analysis context. The parameters used in this anal-
ysis are obtained from Adaptive Heavy Query (AHQ) service rate described
in the previous section. We assume that the service times are exponentially
distributed with FCFS scheduling discipline. Under these assumptions, we
can compute the expected response time and the throughput. Let the ser-
vice time of AHQ be Tservice = 0.12 seconds and thinking time Tthinking = 2
seconds. Tservice is the total time required by a customer to be served. Split-
ting this time in each station we obtain that the time spent over software
layer (AdaORM ) is Tsw = 0.1 seconds and time spent at the database is
Tdatabase = 0.02 seconds. According to those values we can start our analysis.

Variable Seconds
Tthinking 2.0 s
Tsw 0.1 s

Tdatabase 0.02 s

Table 4.12: Expected service time at each station
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Figure 4.29: Queueing network architecture

We start our analysis defining our traffic equations
e1 = e2

e2 = e3

e3 = e1

Figure 4.29 represent a closed loop, then to calculate the performance
indices we need to fix to 1 a station relative visit ratio. We choose the
station Q1, setting e1 = 1. Then we have

e1 = 1

e2 = 1

e3 = 1

According to the previous traffic equations, we calculate the service rate
for each station
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µ1 =
1

Tthinking
=

1

2.0
= 0.5 s−1

µ2 =
1

Tsw
=

1

0.1
= 10 s−1

µ3 =
1

Tdatabase
=

1

0.02
= 50 s−1

(4.1)

and solving the next equation we can retrieve the service demand for each
station to find the slowest component.

D1 =
e1

µ1

=
1

0.5
= 2.0 s

D2 =
e2

µ2

=
1

10
= 0.1 s

D3 =
e3

µ3

=
1

50
= 0.02 s

(4.2)

from previous results we have not take into account the thinking time as
possible bottleneck. Then the slowest component is the software layer, with
service time is Db = D2 = 0.1.

Now, we want to discover what could be our maximum level of multipro-
gramming. Using the theoretical results deriving from operational analysis
on the upper bounds of the throughput we can achieve our intent. We know
these bounds are given by

X ≤ min(
1

Db

,
N

D + Z
)

where D is the sum of each service demand, Db the service demand of the
bottleneck, N is the level of multiprogramming and Z is the thinking time.
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Let R̄ = 0.12 seconds the service time. We obtain the throughput as

X =
1

R̄
=

1

0.12
= 8.33

jobs

s

Let then T the system time

T̄ = R̄ + Z̄ = 0.12 + 2 = 2.12 s

Applying the bound X ≤ min( 1
Db
, N
D+Z

) we find that the optimal number of
customers in the network is

Nopt =
D̄ + Z̄

D̄b

=
0.12 + 2

0.1
= 21.2 ≈ 21 users
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Figure 4.30: Throughput: plot of the bounds and the expected behavior for
AHQ case

In Figure 4.30 and in Figure 4.31 we can see how we expect that the
throughput and response time behave when the number of customers in the
system increases. We see that the throughput is limited above by the max-
imum throughput X = 8.33 j/s calculated with the previous analysis, the
response time is limited by the response time R̄ = 0.12 s. By increasing
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Figure 4.31: Expected response time: plot of the bounds and the expected
behavior for AHQ case

the number of customers in the system, the throughput tends to the theo-
retical maximum in correspondence with the optimal number of customers
Nopt = 21 users, and then slowly grows up to the theoretical maximum limit.
The response time remains stable close to the service time until Nopt, then
begins to grow rapidly.

4.4.2 JDBC Heavy Query

Also, in JDBC Heavy Query we want perform a queueing network analysis.
We use the following result to compare the two cases AHQ and JHQ.
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Tthinking = 2 s

Tservice = 0.38 s

Tsw = 0.03 s

Tdatabase = 0.35 s

(4.3)

service times exponentially distributed with FCFS scheduling discipline
for JHQ cases. We define our traffic equations, that define a relation among
the relative visit ratios in closed queueing networks.

e1 = e2

e2 = e3

e3 = e1

And setting also in this case e1 = 1 we have
e1 = 1

e2 = 1

e3 = 1

So, we obtain the next results

µ1 =
1

Tthinking
=

1

2.0
= 0.5 s−1

µ2 =
1

Tsw
=

1

0.03
= 33.3 s−1

µ3 =
1

Tdatabase
=

1

0.35
= 2.86 s−1

(4.4)

and to get the bottleneck we must solve the follow equations, finding the
slowest component
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D1 =
e1

µ1

=
1

0.5
= 2.0 s

D2 =
e2

µ2

=
1

33.3
= 0.03 s

D3 =
e3

µ3

=
1

2.86
= 0.35 s

(4.5)

In this case the bottleneck is the database, then bottleneck service time
is Db = Q3 = 0.35.

Let R̄ = 0.38 seconds the service time. We define the throughput as

X =
1

R̄
=

1

0.38
= 2.63

jobs

s

Let then T the system time

T̄ = R̄ + Z̄ = 0.38 + 2 = 2.38 s

In the end, the optimal number of customers in the network is

Nopt =
D̄ + Z̄

D̄b

=
0.38 + 2

0.35
= 6.8 ≈ 7 users

In Figure 4.32 and in Figure 4.33 we can see how we expect that the
throughput and response time behave when the number of customers in the
system increases. Also in this case, we see that throughput is limited above
by the maximum throughput X = 2.63 j/s calculated with the previous
analysis, the response time is limited by the response time R̄ = 0.38 s.
By increasing the number of customers in the system, throughput tends to
the theoretical maximum in correspondence with the optimal number of cus-
tomers Nopt = 7 users, and then slowly grows up to the theoretical maximum
limit. The response time remains stable close to the service time until Nopt,
then begins to grow rapidly.

To conclude, in the following table, we can see a recap of calculated values.
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Figure 4.32: Throughput: plot of the bounds and the expected behavior for
JHQ case
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Figure 4.33: Expected response time: plot of the bounds and the expected
behavior for JHQ case
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Metrics AdaORM JDBC
Tservice 0.12 s 0.38 s
Tthinking 2 s 2 s
Tsw 0.1 s 0.03 s

Tdatabase 0.02 s 0.35 s
Db 0.1 s 0.35 s
R̄ 0.12 s 0.38 s
X 8.33 j/s 2.63 j/s
T 2.12 s 2.38 s
Nopt 21 u 7 u

Table 4.13: Queue analysis recap

4.4.3 Conclusion

From the two previous analysis we obtain that the optimal number of users
that the system can manages improves. So, we can assess that the proposed
solution improves the scalability of the system and the response time. From
the analysis it is clear that we have moved the bottleneck from the database
to the application layer, by sending a lighter query. Furthermore, by having
the bottleneck on the application layer, we have the possibility to improve
response times by improving the AdaORM code. That means that a java
application that exploits AdaORM increases the system scalability and reduce
the response time with respect to the static solution.

4.5 Prototype limits
Before analyzing the limits of the presented tool, we say that AdaORM is
a proof of concept and not a complete tool. Then, we are conscious that
AdaORM it could be developed better. However, this current version is enough
performing to increase the system response time. So, AdaORM fulfills our
purposes.

In previous sections we saw how the system has been developed: the
network architecture thought to simulate a real critical environment and
the most important and critical parts of the framework. Then, we saw the
behavior under stress with comparison among different configurations of the
cases of study. Now we are ready to understand what are the limits of this
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type of implementation.

4.5.1 Concurrency

AdaORM has been developed without considering big improvements given by
introduction of concurrency. The only threads introduced were used to record
statistics asynchronously into the system database. Introducing concurrency
at beans creation or prediction computation can improve response time.

4.5.2 System database

SQLiteis not a client-server database engine. It is though to be included into
a client program, but its application in this case can be enough performaning.
However, if we would implement concurrency parts, we should change DBMS
because SQLite does not suggest to manage high degree of parallelism[18].

4.5.3 Usability

Hibernate implements mapping using annotations. Also, we can find some
tools that, given the database schema generate the respective class with
annotations. AdaORM is a very young ORM project born to assess if is possible
trying to guess the best result set through the collected statistics.

Given this observations is "normal" that there are some imperfection and
its integration with an RDBMS and java application is slow. The mapping
between POJO object and database tables can be improved, but this im-
provement would not changes the goals of this project.

In this chapter, we have seen some cases where is convenient use AdaORM
and other where AdaORM perform worse than a static solution. We have
seen how a good prediction can boost our execution time, and we have also
seen how a wrong prediction can gives us a little or a big waste of time.
However, the algorithm guarantees us that in case the program’s "habits"
change by making us make a mistake, AdaORM will learn how to adapt to the
current behavior, offering us again high performance and avoiding long and
complicated code maintenance.
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Chapter 5

Conclusions and Future Works

In this thesis we have addressed the problem of the dynamic configuration of
ORM tools. We have proposed AdaORM, a prototype tool that decides policy
of data fetching at runtime, according to the user behavior. To assess the
convenience of the tool we have performed many experiments, performance
tests and we have compared the results with state of art solutions.

It is evident that, using AdaORM , the response time and the system per-
formance improve when the predictor guesses the right query to submit. The
great improvement is given in that by guessing the right result set, the sys-
tem will not need to make new connections to the database, or to retrieve
unnecessary data, reducing response times. Instead, when AdaORM misses the
query to execute, especially in the case in which it loads a smaller dataset, it
will have large delays, than the static solution, due to the multiple database
connections necessary to collect usage statistics. If it loads a larger dataset,
we will still have delays comparable to the static solution since the service
times are dominant by the application needs.

However, we know that is always do better. This development is only
a proof of concept to assess that is possible improve execution time and
system load handling the statement before its execution and exploiting join
elimination optimization.

Developing the project we realized that it is possible to introduce inter-
esting and convenient optimizations to improve the impact of the ORM in
the system and improve the data prediction.

In conclusion, the dynamic decision of the policy of fetching is very useful
in those cases in which the programmer cannot know which will be the usage
pattern of the application and hence the static decision may lead too poor
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performance. The overhead introduced by predictor is tolerable where the
application is data intensive while it may become heavy otherwise.

5.1 Data prediction
Proposed work 1: Collecting many information about execution and data
utilization, we can apply different data mining algorithm. For example, we
can find a pattern over the data using PaNDa+ algorithm [13]. The pattern
will be the set of columns called together most frequently. Balancing the
thresholds using the system load, we can shrink our prediction: with higher
system load we will allow less noyse, with lower system load we will allow
more noyse, then more columns.

Proposed work 2: An other possible prediction implementation could be
the use of a machine learning algorithm. We can use an algorithm that can
learn when we need a particular set of columns.

Proposed work 3: Another interesting feature that could be implemented
is the introduction of the clustering of statistics to make the predictor more
flexible to change. In fact, calculating the predictions on many values, if the
behavior of the system changes, the change in the predictions will not be as
fast.

Proposed work 4: In the end, the last possible future work that we want
to suggest changing the core of the prediction from columns to the tables. In
fact, after the prediction of a column, we require the fetching of all requested
columns that belongs to the same table because it is more convenient load
now the information. Changing the observed elements, the granularity of the
system changes but the predicted result set does not change. In this way, we
can store less data and the predictor will do less computation.

5.2 Cost impact
Proposed work 1: By introducing asynchronous calls and promises, we
can improve system performance. In fact, while AdaORM retrieves information
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from the database, it is possible to use another thread (or an asynchronous
call) to start composing an object.

Proposed work 2: In the current version, the prediction will be performed
after its request, caching the results for 10 requests before re computation.
However, computing the prediction after its request can decrease the speed
of the system. To avoid this issue, it is possible an offline prediction. An
offline prediction is a prediction performed not after its requests, but after
the fetching of the result set using the cached predicted query. Also, we can
plan the new query computation by keeping in mind the system load: when
the system is unloading we can perform the planned execution after a less
number of requests.

Proposed work 3: Applying the Data prediction proposed work 3 we can
reduce the cost to perform prediction. In fact, |tables| ≤ |columns|, then, the
asymptotically cost of the prediction function change in terms of cardinality
from columns to tables.
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