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Abstract 

The growing importance of big data and the increased environment complexity have led to an 
increase in the implementation of machine learning algorithms, given their ability to efficiently 
deal with entangled situations. This study contributes to the framework regarding the application 
of random forests and other machine learning algorithms. Specifically, the topic of research is 
company failure and probability of default. The major impact that the firm’s default has on 
businesses, markets, and societies, underlines the importance of developing models which predict 
the probability of default. This research attempts to address this topic with two purposes: create an 
accurate binary model to classify companies in Defaulted and Non-Defaulted; identify the most 
important predictors in order to understand the links between the financial ratios considered and 
the companies’ status. 

Random forests’ ability to deal with big data sets and with various and diverse predictors have 
led to choosing this algorithm to analyze the topic of research. Building on a literature review of 
decision trees, random forests, company failure, and the models which predict the probability of 
default, this study’s analysis is constructed through several experiments which permit to tune the 
model appropriately and construct the final model which provide the highest accuracy. Through 
its cross-sectional analysis, this research confirms random forests’ strong stability and its 
consistent performance. The final model generated performs well, and identifies in the coverage 
of fixed assets, gross profit, net working capital, cost of debt, debt to equity ratio, leverage, 
solvency ratio, and return on assets, the most important default predictors. 

Finally, the results and methods applied have been jointly used to extend the purpose of this 
research. In order to permit further development of this study and of research on random forest 
and machine learning, an R programming code which permits to reproduce the computations 
carried out is provided. Importantly, the designed function is applicable to any data set to permit 
the analysis of different topics as well and provides a visual representation of the results through 
a Shiny App, permitting an easier interpretation of results. 
 
Keywords: Random Forests, Machine Learning, Bankruptcy Predictions, R programming 
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Introduction 
 

In a globalised and complex environment, the role that big datasets play, and the techniques 

trough which such data are analysed, have been growing in importance. Specifically, in the case 

of financial and private equity investments, the complexity of the decision-making process has 

increased, making it difficult for analyst and investors to obtain a clear picture of an investment. 

Companies’ successes and failures depend on many internal and external factors which increase 

the difficulty faced by analysists looking for the identification of all the elements that may have 

an impact on a company or institution. Moreover, one of the main difficulties has been to create 

an adaptable model, since diverse situations are affected differently by the various factors. To some 

extent, machine learning algorithms have helped in improving and dealing with such processes by 

reducing the possibility of errors, making them less time and resource consuming, and by creating 

models which do not overfit the data (Breiman, 2001), and, therefore, are not data-specific 

methods. 

This study aims to use random forests to predict the probability of a company’s default. Useful 

methodological references can be found in the context of univariate discriminant analysis (Beaver, 

1967), multiple discriminant analysis (Altman, 1968), the Black-Scholes-Merton model (Black 

and Scholes, 1973; Merton, 1974) and the KVM model (Kealhofer, 2003).  

Predicting default with certainty is not possible. Nevertheless, it is possible to obtain a 

quantification of default risk. From a business point of view, then, such methodologies permit to 

guide management in the decision-making process. From an investor’s point of view (e.g. banks, 

financial institutions, investment funds), it can be assumed that investment decisions are done by 

assigning scores to the companies according to specific parameters. Such scores, of course, 

incorporate the probability of default. Predicting a company’s default and quantifying the 

probability of failure is very relevant for financial investors. For instance, it can be noted how such 

predictions may influence the market for loans and the real estate market. 

In the case of start-ups and young ventures, applying machine learning techniques may permit 

findings that through classical methods are not possible. Uncertainty and unpredictability 



 

 12 

involving new ventures complicates the decision-making process regarding both start-up 

management (from the firm’s point of view) and deciding which start-ups should be considered 

for investments (from investors’ point of view, e.g. business angels and venture capitalists). 

Although the accuracy and reliability of machine learning applications to start-ups will likely be 

lower, models could be trained to deal specifically with start-ups, permitting to obtain information 

that would be useful to all parties dealing with new ventures. 

Finally, from a macroeconomic point of view, company’s bankruptcy has major direct and indirect 

impacts on societies; among others, for example, it increases unemployment. By identifying which 

variables are of greater importance in the prediction of a company’s default, this would permit to 

underline where the focus of public policies should be placed to avoid such issue. This, in turn, 

would permit to run simulations incorporating changes in the identified variables, and therefore 

evaluate outcomes by trial and error, and, finally, clarifying the best policy measure possible.  

This research is a part of a great ensemble of studies that could be carried regarding, for 

example, the interaction of private equity and financial investments and machine learning. Such 

investment in fact depends on a much greater number of variables than only credit risk, therefore 

expanding such research to other variables can provide a clearer view of a company’s situation. 

The main purpose of this study, though, is to prepare the basis which can be used for further 

research; one important feature of machine learning algorithms is, in fact, their adaptation 

capabilities. In other words, this study begins as the basis for a greater project. By developing 

prediction models for all aspects that influence such decisions, unifying such models could provide 

one strong predictor which will be able to maintain a wider perspective than the single models 

alone. 

This research will mainly focus on random forests. Nevertheless, an application of the decision 

tree algorithm (Breiman et al., 1984) will be designed to permit comparison across models. 

Moreover, further machine learning algorithms, such as AdaBoost (Freund and Schapire, 1996a; 

1996b), could provide useful insights to compare the model’s predictive capabilities. The aim of 

this research is to use such algorithms with a classification purpose and, therefore, to create a 

model that permits to answer the question “Has the company defaulted?”. By doing so, the goal is 

to create a model which identifies the patterns within data without overfitting. In fact, this will 
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generate a model which, given as input the predictors’ values, provides useful insights regarding 

a company’s legal status. Finally, the models will be evaluated to identify the most accurate one.  

This study is organized as follows. Following this brief introduction, the first chapter will 

provide a literature review underlining the main features and characteristics of random forests. In 

this chapter, the focus will be placed on both the theoretical as well as the practical programming 

aspects using R. The second chapter will provide a literature review on credit risk and company 

default, in order to permit the reader to obtain an understanding of the topic and begin to 

comprehend how the models available in the literature apply to the topic of company default. This 

chapter will present the main models that are being used, and the factors that are believed to 

describe the wellbeing of a company. The third chapter will show the actual implementation of the 

first two chapter combined; this can be considered as the data analysis part of the research. This 

chapter is divided in 1) presentation of the data used in this research, 2) development and 

construction of the model, 3) implementation of the model in R programming to predict company 

default.  

The final chapter will summarize the procedure, findings, limitations of the research and possible 

further developments. 
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CHAPTER I 

MACHINE LEARNING ALGORITHMS 
 

This chapter focuses on machine learning algorithms, and, specifically, on decision trees and 

random forests, which are the approaches used in this research. The aim of the following sections 

is to present the main features and characteristics of the two methods, by presenting both 

theoretical and practical concepts. For continuity and simplicity, across both sections 1.2 and 1.3, 

an example will be carried using the iris data set available in R. 

 

1.1. MACHINE LEARNING ALGORITHMS APPLICATIONS 

In the recent decades, technological, economic, and social changes have enormously increased 

the complexity of our society (Burgartz et al., 2016). Moreover, Burgartz et al. (2016) show that 

volatility, uncertainty, and ambiguity, significantly characterize all processes, representing the 

difficulty of dealing with a globalized environment. The complexity of such society is, among 

other factors, given by the increasing quantity of data available. While the latter provide great 

opportunities to exploit, managing and analyzing big data sets efficiently is challenging. The 

adoption of computational techniques has, therefore, become necessary in order to obtain better 

performances, and to reduce the misuse of resources. Machine learning algorithms, specifically, 

permit the creation of models which are efficient and, importantly, adaptable to complex data 

structures, big and small data sets, and to many fields such as engineering, business and finance, 

medicine, and many other (Papacharalampous and Tyralis, 2017). Given that machine learning 

algorithms’ performance and accuracy vary according to the situation in which they are applied, it 

is useful to compare the result provided by the different algorithms (Armitage et al., 2006). This 

study aims to contribute to the existing literature regarding random forest’s performance, and 

specifically, in the following chapters, on credit risk and company default. 
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1.2. DECISION TREES 

1.2.1. Introduction 

With respect to the other machine learnings algorithms, decision trees are relatively simple. 

The purpose of this study is not to analyze and comprehend the mathematics and deep functioning 

of the algorithm; for this, refer to studies by Breiman et al. (1984) and by Maimon and Rokach 

(2005), among others. Nevertheless, this section will provide the necessary information to 

implement decision trees and, most importantly, it will show the basis for understanding and 

applying random forests.  

While this study will focus on classification problems, it should be noted that the algorithms 

considered can be used for regression problems as well. Classification of a data set involves, as 

the following sections will show, a recursive process whose aim is to split the data in order to 

extract information and obtain a prediction. Consider, for example, a doctor that has to evaluate 

the medical condition of a patient (the medical example is often used in the literature to obtain an 

initial understanding of the problem). Once admitted, several measurements regarding the patient’s 

health conditions are made in order to obtain the necessary data. In order to extract information 

from the data, and therefore identify the patient’s conditions, the doctor evaluates different 

possibilities according to the recorded values regarding the patient. Therefore, considering the 

various variables such as, for example, blood pressure, fever, family medical history, and so on, 

the doctor can identify the appropriate diagnosis. A classification problem, then, involves training 

an algorithm to interact with specific variables in order to obtain an output class. The reason for 

using a decision tree is that the algorithm can compute the tasks of the decision maker rather 

straightforwardly. In the previous example, given the values regarding the patient’s health, and 

given a trained decision tree, the algorithm generated can predict the diagnosis. 

Decision trees are classifiers which are expressed as recursive partitions of the instance space. 

(Breiman et al. 1984). In other words, such algorithms permit the classification of data by 

recursively splitting them accordingly with specific criteria. 

To put it simply, the decision tree process can be imagined as an upside-down tree: starting from 

its root, the algorithm splits downwards, creating branches and leaves (see Figure 1.1). 
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The initial node, which comprehends the entire learning sample, is called the root node. Being the 

first node, it does not have incoming edges. From this point onwards, the data are split into new 

test nodes recursively, until a class output is obtained. In other words, each new node is either 

assigned to a class that represents the target value (Maimon and Rokach, 2005), and in such a 

circumstance it is a terminal node of the tree, also called leaf, or it is further split. Figure 1.1 shows 

an example of such process; a simple decisional tree has been designed using the iris dataset 

available in the R library datasets. Such data set has been collected by Ronald Fisher in 1936, and 

contains 150 cases, classified considering 5 variables named Sepal.Lenght, Sepal.Width, 

Petal.Lenght, Petal.Width and Species. Species, specifically, contains the values which are 

being predicted: setosa, versicolor, and virginica.  

 

     Figure 1.1: Decision tree, iris example 

 
        Data Source: iris data set available in the R library “datasets” 
 

The R function rpart.plot() permits to obtain a useful representation of the decision tree, as 

shown by the information provided inside the node (full code reported in the Appendix B). 
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Specifically, from the top down, each node contains the class predicted, the predicted probability 

of each class, and the percentage of data within the node. As shown in the root node in Figure 1.1., 

intuitively 100% of the observations are present in such node. While the predicted class and the 

predicted probabilities are less important in the root node, they are useful in understanding the 

results of the decision tree’s classification. Specifically, consider the leaf nodes at the bottom of 

Figure 1.1.; the node on the left shows that the predicted class is setosa and, importantly, it shows 

that the split decision “Petal.Lenght < 2.5” permits to obtain a pure node. In fact, the predicted 

probability of the class setosa is equal to 100%, while the ones of versicolor and virginica 

are zero. The other two leaf nodes, instead, still account for some level of impurity, given that both 

versicolor and virginica‘s predicted probabilities are greater than zero in both nodes. 

Intuitively, the sum of the portion of data present in each leaf node sums to the totality of the data 

initially available in the root node.  

 

    Figure 1.2: Decision tree division and characteristics, iris example 

 
      Data Source: iris data set available in the R library “datasets” 
 

(1) 

(2) 

(3) 

V1
 

V2
 



 

 19 

The iris dataset contains variables regarding the length and width of the sepal and the petal, 

and one variable which contains the species of the flower. The decision tree has been constructed 

in order to predict the Species variable, therefore the algorithm has three possibilities of 

classification: virginica, setosa, and versicolor. Figure 1.1 and 1.2 show the main features 

of the tree, which permits to clearly identify the three parts previously mentioned: the root node, 

the decisional nodes, and the class output (predictions).  While this case is relatively simple, this 

division is helpful in deeper (with more decisional nodes) trees.  

 

A decision tree analysis is divided in two parts: training and testing. While the training part 

involves the creation of the model by providing the algorithm with the information required so that 

it can find patterns, within the data, between the independent (Sepal.Lenght, Sepal.Width, 

Petal.Lenght, Petal.Width) and the dependent variable (Species), testing the model means 

using new data for which values regarding Species are not available. The initial dataset is, 

therefore, divided in two sub-data sets. There is no general rule regarding the size of the training 

set, given that it depends on the size of the data set and on the quality of the data (Maimon and 

Rokach, 2005). For the construction of this case, the guidance provided by Breiman (1996; 2001) 

and Breiman et al. (1984) has been followed, and 90% of the data set has been used for training; 

in the following chapters, further developments will be provided in order to choose the appropriate 

size. 

The root node in Figure 1.2 is, therefore, the training set used to construct the model that will 

predict the class Species. Directly connected to the first phase is the beginning of the splitting 

process, in this case labeled V1. A feature of the decision tree algorithm, and classification machine 

learning algorithms in general, is that it will select V1 as the decision point that will decrease, as 

much as possible, the data entropy (Breiman et al., 2001; Maimon and Rokach, 2005), which 

expresses the amount of disorder and non-homogeneity within the data. This, then, is valid for all 

nodes throughout the decision tree, as shown in the TreeGrowing (S, A, y) algorithm (Figure 1.3) 

provided by Maimon and Rokach (p. 169, 2005). The specific terms and steps shown in the 

algorithm will be addressed throughout the chapter. 

While this example is relatively simple and therefore contains only one internal node, decision 

trees generally have many. As stated above, the choice of V2 is computed by the algorithm with 
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the aim of obtaining the most information as possible from the data, once V1 has been used to 

reduce the entropy of the dataset. While internal nodes can lead to leaf nodes, they also lead to 

new internal nodes which will continue to split the data, by binary recursive partitioning (Moises, 

2008). The final part that includes the leaves nodes, meaning the nodes that provide an output 

class. The tree trained on a data set can be used to predict data not included in the training set. 

Consider two random units, presented in Table 1.1, which were not included in the training set; 

therefore, these units represent unseen data for the model. Let’s suppose that the species of the two 

units is not known. 

 

        Table 1.1: Random units to test the model, iris example 

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species 

Unit 35 4.9 3.1 1.5 0.2 setosa 

Unit 102 5.8 2.7 5.1 1.9 virginica 
          Data Source: iris data set available in the R library “datasets” 
 

Figure 1.4 provides a visual representation of the steps through which the two units have been 

assigned to a class.  

The decision tree identified Petal.Lenght as the predictor variable which reduces, as much as 

possible, the noise present in the data set. Specifically, it does so by recursively splitting the data 

in smaller samples. The possibilities of metrics used to do so are various (Maimon and Rokach, 

2005). In the case shown in Figure 1.1, a univariate splitting approach is used. The procedure is 

quite straightforward. During the training process it has been found that the Species of units with 

Petal.Lenght less than 2.5 is always Setosa. Considering the data recorded in Table 1.1, Unit 

35 reports Petal.Lenght equal 1.5 and, therefore, is predicted as Setosa. Regarding Unit 102, 

instead, the initial split is not enough to make an accurate prediction. The disorder of the data set 

made of units with Petal.Lenght greater than 2.5 can be further reduced. The split which 

minimizes such disorder is provided by Petal.Width. Units with Petal.Width less than 1.8 are 

predicted to belong to the versicolor class, otherwise virginica. Given Unit 102 reports 

Petal.Width equal to 1.9, it is predicted as virginica. The decision tree’s accuracy can be 

evaluated by comparing the predictions made for Unit 35 and 102 with their actual Species class.  
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            Figure 1.3: Algorithm for growing a decision tree 

 
               Source: Maimon and Rokach (2005, p. 169) 
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Figure 1.4: Prediction of Unit 35 and Unit 102’s class, iris example 

 
         Data Source: iris data set available in the R library “datasets” 
 

From this process, the importance of the variables as predictors can be assessed. The variable 

which is most important in the predictive process is the one that reduces at most the noise within 

the data (Breiman et al., 1984). Therefore, in this example, the most important predictor is 

Petal.Lenght, followed by Petal.Width. Sepal.Lenght and Sepal.Width, instead, while still 

being considered in the splitting process, were not actually used to split the data. These predictors, 

then, are considered less important, meaning that, once the data are split through Petal.Lenght 

and Petal.Width, they do not significantly reduce the data set’s entropy. Further on in this chapter 

further considerations regarding the variable importance will be provided, underlying that focusing 

solely on the importance as measured above is not enough. Further analysis through methods 

which permit to infer causality among variables may provide useful insights. 

 

 

35                                     102 
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1.2.2. Construction of decision trees 

While the previous section of this chapter was designed to provide an initial understanding of 

decision trees and their functioning, this one will present a more technical approach for decision 

tree construction. A review of Breiman et al. (1984) CART algorithm permits to unravel the 

process operated by decision trees. Followingly, based on Breiman et al. (1984) and on the survey 

of Moisen (2008), the fitting process will be analyzed, focusing on the main activities involved, 

such as choosing the appropriate variables, and splitting and pruning, while providing notions of 

other issues such as costs, missing data, overfitting, and others. 

As previously discussed, the design of decision trees involves two steps, training and testing. 

Being a supervised machine learner, such algorithm requires inputs in order to create an output. 

Training the model, therefore, is the initial step in which the algorithm familiarizes and learns from 

the data, drawing connections and identifying patterns. In order to do so, the tree needs to be 

appropriately fitted and constructed (Breiman et al., 1984). In other words, then, the performance 

and correctness of a decision tree depends on the type of data, on the size and depth of the tree, 

and other elements. 

 

1.2.2.1. CART algorithm 

The most important algorithm which provides the functioning of classification and regression 

trees is the CART algorithm (Breiman et al., 1984). The main differences between classification 

and regression trees are the structure of the dependent variables and the error measurements. 

Classification trees are used when the response variable is categorical (e.g. Species in the previous 

example). In this case the error is measured in terms of misclassified units. Regression trees differ 

from classification trees since they are used with continuous dependent variables, and the error is 

computed as the squared difference between actual and predicted values (Breiman et al., 1984; 

Loh, 2011). This distinction is relevant for the determination of the decision tree’s output, and the 

random forests’ output which will be analyzed in section 1.3. In this section, for simplicity, the 

notation is defined as in Breiman et al. (1984).  

Breiman et al. (1984) underline two purposes of classification analysis. The most straightforward 

is to create a classifier which accurately assigns a unit to its class. An additional use of 
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classification trees is linked to the objective of understanding the underlying reasons for which a 

unit belongs to a specific class. Often, studies have both purposes. In both cases, the analysis 

involves the determination of a function which given an input x provides an output y. 

Suppose a case (in the iris example, a flower unit recorded) is described by a vector x, which 

groups m measurements defined as x1, x2, …, xm; in the classification analysis process, such 

variables are called predictor variables (in the iris example, m = 4: Petal.Lenght, Petal.Width, 

Sepal.Lenght, and Sepal.Width). Define, then, X the measurement space including all m cases 

(in the iris example, X is 4-dimensional). Suppose, finally, that the dependent variable Y assumes 

1, 2, …, J values. With classification trees, for instance, j1, j2, …, jJ classes (in the iris example, J 

= 3: setosa, versicolor, and virginica), and let C be the set of classes. Finally, Breiman et al. 

(1984) define a classifier as “a function d(x) defined on X so that for every x, d(x) is equal to one 

of the numbers 1, 2, …, J.” (p. 4). Readapting the definition to the classification purpose of this 

paper, d(x) must be equal to one of the classes j1, j2, …, jJ. 

As previously stated, the decision tree algorithm involves two steps, training and testing. It 

should be noted that in both the training and testing process information regarding X and Y is 

available. The predictive model created, though, will be able to predict Y given only information 

regarding X. 

Through training, the algorithm searches for patterns within the data. Being predictive algorithms, 

the models constructed find such patterns by using past experience (Breiman et al., 1984). 

Specifically, the training data works as a learning sample, meaning it provides the information 

(through X and Y) required so that the model can make predictions on unseen data. 

The second step involves testing the model and evaluating its performance. A measure of the 

accuracy of the CART algorithm is provided by the true misclassification rate R*(d). Specifically, 

given the predictive function d(x) trained on a fixed learning sample L, R*(d) represents the 

proportion of cases that are wrongly classified by d(x) when it is used on a new sample. Given a 

new sample (X, Y), R*(d) is defined as (Breiman et al., 1984) 

 

 𝑅∗(𝑑) = 𝑃(𝑑(𝑿) ≠ 𝑌|𝐿) (1.1) 
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The right side of the equation represents the theoretical probability of misclassification on the new 

sample (X, Y) given L. Breiman et al. (1984) estimate R*(d) through three internal estimates: 

- resubstitution estimate: defining an indicator function I(·) which returns 1 if the argument 

within the brackets is true and 0 if it is false, the estimate R(d) with N cases is given by  

 
 

𝑅(𝑑) =
1
𝑁/ 𝐼(𝑑(𝒙𝒏) ≠ 𝑦4)

5

467
 (1.2) 

 
In other words, for every time the predictive function d(x) misclassifies the case, the 
function I returns 1. For all N cases, (1.2) averages the misclassified cases by dividing the 
count of misclassified cases by N. 

- test sample estimate: by dividing the learning sample L in L1 and L2; L1 is used for training 

and the N2 cases in L2 are used to estimate R*(d).   

 
 𝑅89(𝑑) =

1
𝑁:
/ 𝐼(𝑑(𝒙𝒏) ≠ 𝑦4)

(;<,><)∈@A
 

 
(1.3) 

 
 

- v-fold cross-validation estimate: the test sample estimate may lead to limitations due to the 

reduction of data (i.e. split in training and testing sets) available to train the function d(x) 

(intuitively, a higher amount of data contains more information; having more information 

available, the model can find more reliable and truthful patterns within the data). The v-

fold cross-validation methods permits, instead, to use all data. Suppose to divide L in V 

subsamples of the same size L1, L2, …, LV. For v = 1, 2, …, V, the vth sub sample is set 

aside and used for testing, while L\Lv is used for training. 

Suppose to train V functions by using L\Lv as learning sample. A test estimate, then, can 

be computed 

 
 

𝑅BC =
1
𝑉/

1
𝑁E

E

C67

/ 𝐼F𝑑(C)(𝒙𝒏) ≠ 𝑦4G
(;<,H<)∈@I

 (1.4) 

 
with Nv = N/V. Intuitively, this approach permits to use all the information available within 

the data. 
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An important feature of the CART algorithms, and machine learning in general, is the ability 

to deal with diverse data. In 1984 Breiman et al. (1984) observe that “many of the presently 

available statistical techniques were designed for small data sets having standard structure with 

all variables of the same type, [with] the underlying assumption [that] the phenomenon is 

homogeneous.” (p. 7), recognising that new statistical models needed to be adaptable and could 

not lack to deal with high dimensionality, mixture of data types, non-standard data structures, and 

non-homogeneity. The recent availability increase of big and complex data underlines the 

importance of both this insight and the advancement of research on machine learning algorithms. 

 

1.2.2.2. Choosing the appropriate variables and variable importance 

The construction of a decision tree mainly revolves around its splitting process; through 

programming (R, Python, and so on), the best split possible is automatically identified by the 

algorithm, as shown in Figure 1.1 (Breiman et al., 2001; Maimon and Rokach, 2005). 

Variable selection refers to the task of providing the algorithm with the best choice of variables 

possible. Three methods have been determined and are supposed to be effective in determining 

such explanatory variables: 

- a review analysis regarding past data and the environment of research: while this method 

does not provide statistically significant results, it does provide a deep understanding of the 

case study, leading to determining which group of variables to focus on; 

- creation of a regression model: by constructing a regression, an analysis trough R or other 

programming language can easily lead to identifying the significant variables and the 

variability accounted by each variable. The functioning of such process may be hard to 

achieve for two reasons. Firstly, variables cannot be correlated, and finding similar variables 

to use instead of correlated ones is not always easy to obtain. Secondly, with a high number 

of variables, the size of the dataset needs to be big enough so that the regression doesn’t 

overfit; 

- trial and error approach: in the case of data sets described by a great number of variables 

this method may be long and costly; moreover, in the case of decision trees and random 

forest, the relevance of this approach is undermined given the algorithms ability to asses 

and quantify variable importance (Breiman et al., 1984; Breiman, 2001). Suppose m 
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possible variables can be initially used to describe a specific dependent variable. By 

recursively removing variables, or changing the combination of variables considered, a 

predictive model can be created for each test. This permits to obtain measurements of 

variable importance, errors, and accuracy. Comparing the results obtained for each trial, 

supposing accuracy is the sole indicator used to evaluate the model’s performance, the 

combination of variables that provides the best accuracy can be used for the analysis. 

Moreover, this approach permits to obtain some information to evaluate the possibility of 

discarding those variables which are repeatedly assessed as not important. It should be 

noted, though, that each test will provide a list of variables ordered by importance based on 

the variable considered by that test. When addressing the concept of variable importance, 

then, it should be kept in mind that the importance is relative to the decisions made in the 

creation of the test, specifically which and how many variables are considered. Assumptions 

regarding true variable importance are possible, then, only if the model contains a great 

number of predictor variables. 

During the analysis presented in Chapter 3, a literature review has been implemented in order 

to choose the variables on which to construct the predictive model. A trial and error approach, 

instead, has been used to assess the variable importance and construct a predictive model with 

fewer variables. Specifically, to reduce the possibility of misjudgments regarding variable 

importance as explained above, rather than using the results of a single test, a score has been 

attributed to each variable according to importance provided by the algorithm. By summing the 

scores of each variable across various tests, a final variable importance measurement has been 

recorded (see Table 3.12 in Chapter 3).  

 

1.2.2.3. The splitting process 

The splitting process assumes great importance in the development of the model; given that all 

splits - from the root node until the leaf nodes - are required to create two new groups with the 

lowest entropy (Breiman et al., 2001; Maimon and Rokach, 2005), measuring the impurity of the 

splits gains relevance to improve the model. A node is said to be impure when it contains more 

than one class of the response variable (Breiman et al., 1984). The reason for which the algorithm 
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is expected to reduce impurity is that pure nodes, with only one class, provide no prediction errors. 

In other words, creating dataset with a homogeneous composition with respect to the dependent 

variable permits to make more accurate classifications and predictions. Nevertheless, the aim is to 

reduce the noise within the data, and not to obtain perfectly pure nodes, which would lead to 

overfitting. 

Breiman et al. (1984) initially describe structured classification tress and observe four elements 

which permit to construct a decision tree through splitting: a set of binary questions on which to 

split the data, a goodness of split criterion, a stop-splitting rule, and a rule for assigning every 

terminal node to a class.  

Overall, given a node t, for each variable, the best binary questions that split the data are 

identified. By comparing the various splits, then, the best one is selected according to specific 

impurity measurements. 

 
“An impurity function φ defined on the set of all J-tuples of numbers (p1, …, pJ) 

satisfying pj > 0, j = 1, …, J, ∑ 𝑝> = 1>  with the properties 

-  φ is a maximum only at the point L7
>
, 7
M
, … , 7

>
O	 

- φ is a minimum only at the points (1, 0, …, 0), (0, 1, 0, …, 0), …, (0, 0, …, 0, 1) 

- φ is a symmetric function of p1, …, pj” (Breiman et al., 1984, p. 32) 

 
Consider the node t in Figure 1.5; a split s leads to two outcomes: the proportion pL of cases that 

meet the criteria defined by the binary question are moved in the left node tL, otherwise the 

proportion pR is sent to the right node tR.   

 

                                                    Figure 1.5: Split of node t in tL and tR 

 
                                                               Source: Breiman et al. (1984) 
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Through the impurity function φ, Given the impurity measure i(t) 

 
 𝑖(𝑡) = 𝜑F𝑝(1|𝑡), 𝑝(2|𝑡),… , 𝑝(𝐽|𝑡)G (1.5) 

 
Breiman et al. (1984) provide a measurement of the goodness of split s through the decrease in 

impurity given by 

 
 ∆𝑖(𝑠, 𝑡) = 𝑖(𝑡) − 𝑝Y𝑖(𝑡Y) − 𝑝@𝑖(𝑡@) (1.6) 

 
meaning the impurity provided by a split is given by the difference of impurity between the node 

t and the sum of impurity provided by the nodes tR and tL weighted by the corresponding 

proportions. Given a series of splits along a binary tree T, and give M terminal nodes 1, …, M, the 

tree impurity is provided by I(T) 

 
 𝐼(𝑇) =/ 𝐼(𝑡)

867,…,[
= / 𝑖(𝑡)𝑝(𝑡)

867,…,[
 (1.7) 

 
 in which p(t) is the estimated probability that any case will be moved to node t. Finally, by 

maximizing the decrease in impurity across the nodes, the tree impurity is minimized. In fact, 

given a tree T, for any node t = 1, 2, …, M, by splitting the node t into tR and tL, a new tree T’ is 

obtained. The difference between I(T) and I(T’) provides the decrease in impurity in the tree as 

shown in Breiman et al. (1984) 

 

 𝐼(𝑇) − 𝐼(𝑇\) = −𝐼(𝑡) − 𝐼(𝑡@) − 𝐼(𝑡Y) (1.8) 
 

Funally, as (1.8) depends solely on the node t and on the split s, in order to obtain the maximum 

impurity reduction, it is sufficient to maximize 

  
 ∆𝐼(𝑠, 𝑡) = 𝐼(𝑇) − 𝐼(𝑡Y) − 𝐼(𝑡@) = ∆𝑖(𝑠, 𝑡)𝑝(𝑡) (1.9) 

 
These procedures obtained by Breiman et al. (1984) permit to grow a decision tree. Initially, the 

splitting process is set to stop when the maximum ∆𝐼(𝑠, 𝑡) is less than a set threshold 𝛽 > 0. 
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The limitations of such tree, though, are linked to the threshold set, since this provides the depth 

of the trees. Intuitively, identifying stopping points a priori highly influences a decision tree’s 

growth. 

Finally, the class attributed to a node is linked to the resubstitution estimate, meaning that the class 

with the highest proportion in a terminal node is assigned to the node. 

The previous paragraphs explain the generating steps that lead to the growth of structured 

classification tress. Although several limitations are linked to this process, it provides a useful 

introduction to right sized tree found by Breiman et al. (1984). They show, in fact, that better 

results are obtained by pruning fully grown trees rather than finding the most suitable stopping 

point for splitting.  

 

Practically, the tree is grown by taking into consideration the Gini Index in the splitting process 

as the measure for node impurity (Breiman et al., 1984) and  

 
 𝑖(𝑡) =/ 𝑝(𝑖|𝑡)𝑝(𝑗|𝑡)

ab>
 (1.10) 

 
provides a measure of the impurity of node t. Moisen (2008) underlines that the Gini Index is 

widely used in practice, and it is also presented as  

 
 

𝑖(𝑡) =/ 𝑝8>(1 − 𝑝8>)
M

>67
 (1.11) 

 
with J classes and ptj the proportion of class j in the node t.  

A Gini index equal to 0 reflects perfection; higher values of the Gini index mean a higher 

misallocation of classes within the node. The code used to compute the Gini Index is shown in 

Appendix B.  

Recall the decision tree in Figure 1.1. The first binary question chosen by the algorithm to split the 

data is “Is Petal.Length < 2.5?”. If the answer is yes, then the units move to the node on the left, 

otherwise to the one on the right. Similarly, the second binary question to split the data is “Is 

Petal.Width < 1.8?”. The results of computing the Gini Index of the root node and of the 

following splits are shown in Table 1.2. 
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                              Table 1.2: Gini index for splits in Figure 1.1, iris example 

 Gini Index 
Root node 0.6666667 
Split: “Is Petal.Length < 2.5?” 0.3333333 
Split: “Is Petal.Width < 1.8?” 0.3906076 

                                     Data Source: iris data set available in the R library “datasets” 
 

Intuitively, the Gini Index for the root node is the highest. Moreover, given that splits are chosen 

in a decreasing order in terms of amount of impurity reduction, the first split reports the lowest 

Gini Index (i.e. it accounts for the highest impurity reduction). 

While other methods for splitting are available, Breiman et al. (1984) found that 

misclassification rate is not linked to the splitting rule chosen (p. 94). Therefore, given the frequent 

use of the Gini Index in practice, the algorithm used in this research will also use the Gini Index. 

The reader is referred to Breiman et al. (1984, p. 93-129) for additional methods and specifics. 

 

 

1.2.2.4. The pruning process 

In the previous section important results by Breiman et al. (1984) have been introduced. They 

found that the tree structured classifiers do not always provide acceptable results due to several 

limitations. Specifically, the main concern is linked to finding right tree size by searching for the 

best stop-splitting point. By shifting the focus from finding the best stop-splitting rule to pruning, 

more efficient classifiers were obtained. In fact, the main issue with setting a threshold 𝛽 (and 

choosing a stopping criteria, see Figure 1.3) is that often the tree’s growth is stopped too early, 

therefore the impurity of nodes remains high, or too late, and the trees result being too deep, leading 

to an problem called overfitting. It should be noted that having pure leaf nodes is not the objective 

of the splitting process, as will be discussed followingly. 

With tree’s depth and the splitting process an additional consideration relevant to pruning arises, 

involving bias and variance. Suppose a model provides a predictive function d(x), and suppose the 

sample (X, Y) is given. Two extreme scenarios can be observed (Geurts, 2002): 
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- Too simple model: suppose the model is linear. As Figure 1.6 (a) shows, such model would 

not be able to extract significant data patterns from the learning sample. It is, in fact, too 

simplistic. Such model leads to underfitting; 

- Too complex model: suppose the model is highly complex and is able to identify accurately 

both data patterns and the noise within the data. In other words, the model is so complex 

that it is suitable for the sole learning set on which it is trained (Figure 1.6 (b)). Such model 

overfits the data. 

Considering the data points and model lines in Figure 1.6, it is intuitive that the application of these 

two models on new data will not provide accurate results. The reason for which Geurts (2002) 

considers these models is because they permit to shed some light on prediction errors. In the simple 

linear model, the error is mainly attributable to the lack of complexity in the model; such error is 

called bias. In the complex model, instead, the error is linked to the variability that the model 

manifests when the data is changed; such error is defined variance (Geurts, 2002). Intuitively, there 

is a trade-off relationship between the two errors, given that they vary in opposite directions 

according to the complexity of the model. Finally, the pruning process attempts to solve these 

issues by permitting to avoid the choice of setting a threshold 𝛽 and using stopping criteria for the 

tree’s growth. Moreover, by finding the best bias-variance trade-off, through pruning an 

appropriate tree size is found. 

 

   Figure 1.6: Too simple and too complex models, examples 

 
                                          (a)                                                                        (b) 
         Source: Geurts (2002) 
 

Pruning begins from the terminal leaf nodes of a fully-grown tree, and it reduces the tree’s 

complexity upwards by eliminating branches (Breiman et al., 1984). Let TMAX be a fully-grown 
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tree, who’s terminal nodes are as pure as possible (i.e. no stop-splitting rule is used). Let t1 be the 

root node. Let a branch Tt of T be the sub-tree with root node t and its descendants. Pruning a 

branch provides a pruned tree defined as T - Tt (Breiman et al., 1984). Figure 1.7 provides an 

example of this process. 

 

                Figure 1.7: Branch 𝑇8Apruning  

 
                   Source: Breiman et al. (1984) 
 

The pruned tree 𝑇\	in Figure 1.7 (c) is the result of 𝑇 − 𝑇8A,	removing the branch 𝑇8A, comprising 

nodes t2, t4 and t5, and t8 to t11 (Figure 1.7 (b)), from the TMAX tree in Figure 1.7 (a). As it can be 

noted, when a branch is removed, only branch’s root node (i.e. t2) is not removed. 𝑇\is defined a 

pruned subtree of TMAX. 

While Figure 1.7 provides a simple example, consider TMAX to be a fully-grown tree, with many 

branches and several terminal nodes. In order to choose the best pruned tree, it is necessary to be 

able to compare the subtrees. Breiman et al. (1984) find that the most appropriate measurement 

for comparing subtrees is the tree misclassification cost R(T). It can be observed that stating from 

the terminal nodes, as pruning moves upwards across the branches, R(T) decreases until it reaches 

a minimum, before increasing and finally reaching the root node. This is linked to the bias-variance 

trade-off previously described. The best depth for the decision tree is the size which provides the 

minimum R(T) (i.e. the best trade-off bias-variance). 

Breiman et al. (1984) define the minimal cost-complexity pruning. 
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“For any subtree T < TMAX, define its complexity as |𝑇c|, the number of terminal nodes 

in T. Let	α ≥ 0 be a real number called complexity parameter and define the cost-

complexity measure 𝑅f(𝑇) as  

 
 𝑅f(𝑇) = 𝑅(𝑇) + α|𝑇c| ” (p. 66) (1.12) 

 
Therefore, for any α, the tree 𝑇(α) that minimizes Rα(T) can be found.  

 
 𝑅f(𝑇(α)) = 𝑚𝑖𝑛jkjlmn	𝑅f(𝑇) (1.13) 

 
Given equation (1.13) three scenarios can be observed with varying α: 

- Small α	 = 0: TMAX minimizes 𝑅o(𝑇) assuming that terminal nodes are pure; 

- Increasing α: 𝑇(α), subtree of TMAX, minimizes 𝑅α(𝑇); 

- Large α: TMAX is completely pruned and 𝑇(α) corresponds to the root node. 

Finally, in order to estimate 𝑅α(𝑇(α)) Breiman et al. (1984) find both methods the independent test 

set and v-fold cross-validation appropriate.  

 

Several R packages provide functions which deal with pruning. In this study, rpart has been used 

to generate and prune decision trees. Specifically, considering the iris example, once a decision 

tree model is constructed through the rpart() function 

 
DT -> rpart(Species~., data= training_data, method= “class”) 

 
the function prune() permits to effectively prune the decision tree by setting the argument cp, 

which represents complexity parameter. By using the table provided by rpart() which contains 

various complexity parameters associated with error measurements (i.e. the cptable) the 

complexity parameter that minimizes the cross-validation error can be found. 

 
prune(DT_model, cp = DT$cptable[which.min(DT$cptable[“xerror”]), “CP”]) 
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The code above is set to search, among the various cp values grouped in cptable, for the one that 

minimizes the cross-validation error (i.e. xerror). 

 

1.2.3. Performance evaluation 

1.2.3.1. Overfitting and underfitting 

As previously stated, an analysis trough machine learning aims to make predictions based on 

a previous learning steps. In fact, two steps are identified, training and testing. Reconsider the 

example of Figure 1.1; readapting Dietterich’s (1995) considerations to this example, training 

means providing the model with the information required regarding Sepal.Length, Sepal.Width, 

Petal.Length, Petal.Width (i.e. the predictors), and Species, so that connections can be made 

between the explanatory variables and the dependent one (Species). The objective is to create a 

model which, when provided with new data and no Species information, can make accurate 

classifications. 

Importantly, one should focus on the prediction accuracy measured on the test set, and not on 

the training set. Machine learning algorithms are highly adaptable and generalizable, and such 

feature should be preserved throughout the test. Recall the “too simple” and “too complex” models 

presented in the previous section in order to introduce the bias and variance error (Figure 1.6). 

When a model learns specific features of a dataset, it is said to be overfitted since it tends to work 

only for the specific data (Dietterich, 1995). In other words, the model is too complex and fixed to 

a situation (see Figure 1.6 (b)) and will result in non-appropriate predictions when the study 

involves new data.  

Overfitting can generally be identified by observing the training error, which will be low, and the 

test error, which will be high. On the other hand, similar considerations are true for underfitting, 

meaning the circumstances in which the model created does not account for enough traits of the 

training sample (see Figure 1.6 (a)), is of low complexity, and therefore is not able to draw 

appropriate connections and conclusions on new data (Crowley and Ghojogh, 2019).  

A model which overfits (or underfits) the data will provide poor accuracy once used with unseen 

data. Therefore, these issue lead to a model which underperforms and is used below its potential. 

The most successful method for avoiding such limitation is pruning the decision tree appropriately. 
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The overfitting issue leads to one last consideration. The complexity of a model should be 

included in its evaluation. The application of the Occam Razor principle to machine learning has 

gained importance when dealing with overfitting (Kelly, 2007).  

 

1.2.3.2. Performance 

Machine learning algorithms, with appropriate tuning, can be powerful tools; it is not possible, 

though, to establish which is the best algorithm (Armitage et al., 2006). The evaluation of the 

performances of different algorithms, applied to various situations, permits to create a network, 

connecting the algorithms to the scenarios in which they operate better. Considering decision trees, 

within such category many different algorithms can be found. While in this research CART types 

trees are studied, for instance, Quinlan (1996) presents other two different algorithms and their 

characteristics, the ID3 (Iterative Dichotomiser 3) and the C4.5 algorithms.  

 

1.2.3.2.1. Testing: accuracy and errors 

A first approach to identifying how well a model is performing is to run it on a test data set. 

Returning to the iris example, in Figure 1.3 a first simple application of prediction has been 

presented. To perform the true test, the function predict() has been used in order to generate 

predictions. Such predictions have then been compared with the actual values of the Species 

variable. Below, the confusion matrix of a cross-sectional analysis with a testing set containing 15 

cases is provided. 

 

                  Table 1.3: Confusion matrix, testing iris - 90% training 10% testing, iris example 

 setosa versicolor virginica 

setosa 7 0 0 

versicolor 0 0 0 

virginica 0 0 8 
                       Source: iris data set 
 

The confusion matrix permits to display the results of the predictions (columns) against the actual 

values of the dependent variable (rows). This information is then used to compute the accuracy 
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and the error of the tree. A confusion matrix presents the correct predictions on the diagonal and 

the wrong predictions elsewhere.  

Considering for instance a classification example in which the set of classes C1 contains two 

classes j1 and j2. Moreover, consider a classification test in which the set of classes C2 contains m 

j1, j2, …, jm classes. The confusion matrix for these tests are provided, respectively, by Table 1.4 

and 1.5. 

 

                                          Table 1.4: Confusion matrix with two classes 
 Predicted j1 Predicted j2 

Actual j1 a b 
Actual j2 c d 

 

                  Table 1.5: Confusion matrix with m classes 
 Predicted j1 Predicted j2 … Predicted jm 

Actual j1 n1,1 n1,2 … n1,m 
Actual j2 n2,1 n2,1 … n2,m 

… … … … … 
Actual jm nm,1 nm,2 … nm,m 

 

Considering the binary classification algorithm (Table 1.4), for example, the confusion matrix 

counts true positives (i.e. predicted positive and actually positive), true negatives (i.e. predicted 

negative and actually negative), false negatives (i.e. predicted negative, but actually positive), and 

false positives (i.e. predicted positives but actually negative). 

Having these figures, it is possible to compute the error and accuracy levels for binary 

classification (Ralescu et al., 2011) as follows: 

 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑 (1.14) 

 
 𝐸𝑟𝑟𝑜𝑟 = 	

𝑏 + 𝑐
𝑎 + 𝑏 + 𝑐 + 𝑑 (1.15) 
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To generalize, given Table 1.4, let S be the sum of the elements in the confusion matrix. (1.14) 

and (1.15) can be written as 

 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
∑ 𝑛a,ax
a67

𝑆  (1.16) 

 
 

𝐸𝑟𝑟𝑜𝑟 = 	
∑ ∑ 𝑛a,>>ba
x
a67

𝑆  (1.17) 

 
The predictions of a 15-sample testing set provided no errors. This example shows the importance 

of considering the size of the dataset. Having used 90% of the data for training, only 15 units are 

available for testing. 

In order to comprehend the difference, an additional test has been carried. The data set has been 

divided in order to use 70% for training, and 30% for testing.  
 

                 Table 1.6: Confusion matrix, testing iris - 70% training 30% testing, iris example 

 setosa versicolor virginica 

setosa 17 0 0 

versicolor 0 14 4 

virginica 0 0 15 
                     Data Source: iris data set available in the R library “datasets” 
 

These results are more useful to present the classification error. Four times out of 50 units (size of 

the new testing data set) the decision tree predicted the wrong Species. While this method is 

useful, its results change every time a new random sample is created, highlighting one of the the 

limitations of such method. A solution to this issue is provided by more integrated and 

sophisticated algorithms, such as, for example, random forests.  
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1.3. RANDOM FORESTS 

Having understood the functioning and main characteristics of decision trees, the following 

sections expand the machine learning analysis to random forests. The latter have been an important 

advancement in the development of regression and classification predictors, overcoming, among 

other things, the overfitting issue (Breiman, 2001). While the trademark for “Random Forest” has 

been registered by Leo Breiman and Adele Cutler in 2006, a similar approach to random forest has 

been developed in Ho (1995). 

This section is divided as follows: first, a technical part will provide the definition and the 

functioning of random forests and will continue the classification of Species example started in 

section 1.2; secondly, the main characteristics and features necessary to construct a random forest 

will be analyzed, with specific attention to programming using R; thirdly, the main techniques to 

evaluate the performance of random forests are presented. 

 

1.3.1. Introduction 

A random forest algorithm integrates several decision trees, and, opposingly to the use of single 

decision trees, aims to create many random situations which all provide their own prediction. Many 

studies in the literature prove that ensemble classifiers have greater accuracy than weak learners. 

Specifics regarding the methods used to create ensemble models are provided in section 1.3.1.2. 

Random forests, by constructing a high number of trees, are able to include a much wider array of 

combination of variables split points, making such algorithm more accurate and reliable than 

singular decision trees. Importantly, its adaptability and versatility have led to the application of 

the random forest algorithm developed by Breiman (2001) in various fields, such as engineering 

(Dixon et al., 2015), environmental sciences (Artemenko et al., 2009), financial studies (Kumar 

and Thenmozhi, 2006), medicine (Kane et al., 2014), 3D object recognition (Criminisi et al., 2013), 

and many other.  

 

1.3.1.1. Definition 

Decision trees, as previously discussed, by splitting recursively each decision node according 

to certain parameters, permit to predict a class or a number, given a learning set L = (X, Y). 



 

 40 

Random forests provide the same outcome by integrating the results of all the trees it comprehends. 

Breiman (2001) provides the following definition of random forest:  

 
Definition 1.1 

 
 
Random forests, like decision trees, are used for both regressions and classifications. For the 

purpose of this research, only classification will be considered. Classification random forests, 

expanding Definition 1.1, are ensembles of classification decision trees which, given an input 

dataset, get one vote. In other words, given a case (x, y), and given 1, 2, …, J classes, each tree 

classifies the case by predicting one class j. Each tree expresses a vote for the class it predicts. The 

algorithm, then, proceeds to group all votes and outputs the class with the greatest number of votes. 

An advantage of the random forest algorithm is that for any sequence of decision tree classifiers it 

does not overfit the data, because of the randomness injected into the model (Breiman, 2001). 

The reason for which random forests, and ensemble models in general, have been developed is to 

create strong complex learners by integrating several weak learners (Breiman, 1996; Freund and 

Schapire, 1996). Specifically, weak learners are those models that do not perform well on their 

own, and that are not able to generalize their results. Moreover, ensemble classifiers permit to 

address the bias-variance trade-off issue introduced in section 1.2. Finally, ensemble models’ 

functioning, and adaptability, provide better results and greater accuracy (Breiman, 1996; 

Breiman, 2001; Freund and Schapire, 1996). 

 

1.3.1.2. Ensemble methods: bagging 

There are several ways in which machine learning algorithms operate and train their models in 

order to create ensemble models. Specifically, Dietterich (1999) provides a review of bagging 

(Breiman, 1996) and boosting (Freund and Schapire, 1996), the two main methods for constructing 

ensemble classifiers, explaining similarities, differences, and the procedures through which 

ensemble models are created from the union of many weak learners. Weak learners are defined as 
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classifiers whose performance is slightly better than sampling randomly among j classes. Ensemble 

methodologies’ objective is to create strong learners from the interaction of weak classifiers, 

therefore obtaining models with higher accuracy (Freund and Schapire, 1995). Moreover, 

Dietterich (1999) provides a third method, randomization, which has shown performance 

comparable with those of bagging and boosting.  

The purpose of this section is to obtain an understanding of the bagging procedure, relevant to 

comprehend the random forest approach used in this research. In order to comprehend the wide 

variety of possible approaches to prediction methods, the reader is referred to Breiman (1996), 

Freund and Schapire (1996), and Dietterich (1999). The choice of method, in fact, may be linked 

to various factors; this provides that algorithms using these three methods (e.g. random forests, 

AdaBoost) perform differently according to the situation or data to which they are applied. For 

instance, Dietterich (1999) stresses that the three methods considered in this section perform 

differently according to the stability of the data set (i.e. the noise present in the data). Given a 

learning set which is unstable, bagging proved to perform better than randomization, and much 

better than boosting, given its ability of exploiting such noise to create more diverse classifiers. 

On the other hand, with low noise scenarios, boosting performs favourably to bagging and 

randomization, which, instead, work similarly (Dietterich, 1999). Algorithms implementing such 

methods are often compared in the literature (Breiman, 2001; Freund and Schapire, 1996, 1999; 

Dietterich, 2000; Cheung-Wai Chan and Paelinckx, 2008). Often the performance of algorithms 

such as AdaBoost, developed by Freund and Schapire (1996), which implements boosting, and 

random forest, which applies bagging, are observed simultaneously. Moreover, randomization 

should be considered given that the random forest algorithm used in this research implements 

bagging and a revised randomization procedure. 

 

1.3.1.2.1. Bagging 

Developed by Breiman (1996), bagging is a procedure that consists in bootstrap aggregating. 

In other words, bagging permits, by using the same learning sample, to obtain various classifiers. 

In turn, aggregating the results provided by such classifiers, provides an aggregated strong learner. 

The ensemble of weak learners consists of two distinct phases: 
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- Bootstrap: Given a dataset of size N, it involves the random selection, with replacement, of a 

sub-datasets of size N. These, in turn, will be used as the starting root node for the decision 

trees. By recursively repeating this step, numerous tree classifiers are generated (Breiman, 

1996). While Figure 1.8 provides a single decision tree for each sub set, Breiman (1996) 

provides that 50 trees are grown on each sub sample.  

- Aggregating: the second and final step involves grouping the n independent learners and 

averaging its results. In fact, by putting together the n classifiers, and counting each one’s 

vote, the class which obtained the most votes is selected (Breiman, 1996).  

Figure 1.8 has been designed to show a simple visualization of such procedure. For a more detailed 

list explaining the bagging procedure, see Breiman (p.125, 1996). 

 

     Figure 1.8: Bagging procedure 

 
 

Let N be the number of cases, let Y be the dependent variable, let x be the set of m variables x1, 

x2, …, xm used to predict Y. Given a learning set L = {(yn, xn), n = 1, 2, …, N}, suppose a function 

𝜑 is available such that (Breiman, 1996) 

 
 𝑦 = 	𝜑(𝒙, 𝐿) (1.18) 

 
meaning the function 𝜑, given x and L, predicts y. 
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As in Breiman (1996), during the bootstrap step, a sequence of learning sets {Lk} is sampled with 

replacement from the learning sample L. Each learning sample in {Lk} contains N cases (yn, xn). 

In the aggregating step, instead, the procedure provides for an aggregation of the single classifiers’ 

output.  

Suppose Y consists of j =1, 2, …, J classes; suppose that K learning set are computed and suppose 

a classifier is constructed on each learning set. Then, every classifier will provide a class j among 

the available J classes. Finally, let 𝜑z be the procedure that provides the aggregation of all votes. 

 

 𝜑z(𝒙) = 𝑎𝑟𝑔𝑚𝑎𝑥>𝑁> (1.19) 
 

with 𝑁> = 𝑛𝑟{𝑘; 	𝜑(𝒙, 𝐿) = 𝑗}, meaning that for each leaning set k, Nj records the output class j. 

Then, the function argmax() provides the class j for which Nj is maximum (Breiman, 1996). While 

this study focuses on classification, the same is true for regression, in which the average of 

predictions provides the model output (Breiman, 1996). 

 

 𝜑z(𝒙) = 𝑎𝑣	𝜑(𝒙, 𝐿�) (1.20) 
 

While boosting trains its learning samples in a sequential way, as shown in Figure 1.8, a distinctive 

feature of bagging is that it involves training the decision trees independently, and only averaging 

the outputs in the final step. Breiman (1996) shows how adopting the bagging method permits to 

obtain higher accuracy, greater model stability, and lower variance. Moreover, bagging has proven 

to be mostly useful with unstable learning samples. Simply, if changes in L do not generate great 

changes in the aggregation of the votes, then the learning sample’s stability is high (Breiman, 

1996). While the difference in the resulting aggregation of votes may not be very different with 

stable data, in case of unstable data the improvement in accuracy resulting from the addition of 

bagging is significant. 
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1.3.1.3. Functioning of random forests 

Intuitively, the functioning of random forests is in line with that of decision trees. In fact, 

suppose 100 trees are constructed separately and grown with the characteristics described in the 

section 1.2. This situation provides 100 class predictions but may be limited in terms of model 

accuracy and adaptability. Definition 1.1 may lead to believe that a random forest is simply a 

collection of trees. The methods which compose the random forest algorithm, though, make a 

significant difference in the efficiency of this machine learning technique.  

As previously discussed, tree predictors (i.e. weak learners) are generated in order to create an 

ensemble classifier (i.e. strong learner). Definition 1.1 states that random vectors 𝛩� provide for 

the growth of such trees (Breiman, 2001). Random forests adopt a bagging approach to create the 

ensemble model but integrate this through random input selection and linear combination of inputs 

are analyzed by Breiman (2001). In fact, while bagging provides the random subsets on which the 

decision trees are grown, in order to differentiate such trees and to reduce the correlation among 

them, the algorithm does not simply choose the best split (see Decision Tree - Splitting). Instead, 

at each node the algorithm randomly selects the best split among a predefined number of splits 

(Breiman, 2001; Dietterich, 1990). For example, suppose n predictor variables are available; at 

each node k variables will be selected randomly. Finally, once the Gini Indexes are computed for 

each variable, the best one is used to split the node. Breiman (2001) found that such procedure 

permits to obtain higher accuracy. Moreover, this method permits to construct independent poorly-

correlated trees. The importance of this aspect is related to the fact that correlated trees would tend 

to provide the same predictions, impacting the strength of the ensemble model. 

Let k be the number of variables to be selected for each node split. Building on Figure 1.8, Figure 

1.19 provides a visual representation of the procedure described. assuming k splits are given to 

choose from. For simplicity, one split per tree is shown; this does not provide a limitation to 

understanding the functioning of the random forest algorithm.  
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           Figure 1.9: Random forests functioning and split randomization 

 
 

 

1.3.1.3.1. Out-of-bag estimates 

Breiman (2001) identifies two reasons for adopting a bagging approach when growing random 

forests: 

1) when random features are used, bagging improves accuracy. In Breiman (2001) the random 

features tested are: random input selection and linear combination of inputs. Regarding the 

random selection of features, Breiman (2001) study has been influenced by Ho (1995) and 

Amit and Geman (1996); 

2) bagging permits to acquire continuous estimates of the generalization error PE* of the 

ensemble method by computing the out-of-bag estimates. 

 

Suppose K classifiers are trained on the training space (Y, X). Given an indicator function 𝐼(∙), 

define the margin function 𝑚𝑟(𝑿, 𝑌) as the “extent to which the average number of votes for the 

right class exceeds the average votes for any class” (Breiman, 2001, p.7).  

Class prediction 
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 𝑚𝑔(𝑿,𝑌) = 𝑎𝑣�𝐼(ℎ�(𝑿) = 𝑌) −max

>b�
𝑎𝑣�𝐼(ℎ�(𝑿) = 𝑗) (1.21) 

 
The generalization error PE* of the ensemble method, then, is the probability that the margin 

function over the space (X, Y) is negative (Breiman, 2001). The generalization error, also known 

as out-of-bag error (OOB error) is a measurement of the model’s accuracy when tested on unseen 

data. 

 
 𝑃𝐸∗ = 𝑃𝑿,�(𝑚𝑔(𝑿, 𝑌) < 0) (1.22) 

 
As previously introduced, one of the advantages of using random forest is that they do not tend to 

overfit the data when the number of trees in the forest increases. This is linked to an important 

finding by Breiman (2001) regarding the generalization error’s convergence to  

 
 𝑃𝑿,� �𝑃�(ℎ(𝑿,Θ) = 𝑌) − max

>b�
𝑃�(ℎ(𝑿,Θ) = 𝑗) < 0� (1.23) 

 
for any set of classifiers Θ (see Definition 1.1). Generalizing (1.22), the margin function over Θ is 

defined as 

 
 𝑚𝑟(𝑿, 𝑌) = 𝑃�(ℎ(𝑿,Θ) = 𝑌) − max

>b�
𝑃�(ℎ(𝑿,Θ) = 𝑗) (1.24) 

 
The result obtained in (1.23), then, represents the probability over the X, Y space of the margin 

function for the random forest (Breiman, 2001). In other words, the generalization error PE* has 

an upper bound. Beside the mathematical reasoning behind (1.23), such finding is relevant to 

comprehend random forests’ behavior.  

Having defined PE* and (1.23), an important characteristic of random forest can be analyzed. 

The trees in random forests are fully grown (Breiman, 2001). Generally, fully grown trees overfit 

the data and are characterized by high variance (Image 1.6 (b)). Decision trees, in fact, require 

proper tuning in order to find a proper trade-off between bias and variance. The same is not true 

for random forests. Creating fully grown trees, together with random selection of features and 

training on different samples, permits to reduce the variance and maintain the low association 

among classifiers. While including a great number of fully-grown trees would lead to believe that 
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the random forest’s error should be increasing with the size of the forest, (1.23) provides stability 

to the model. In practice, with big data sets, in order to reduce the computation cost, the depth of 

the trees is slightly reduced. This permits to reduce the time needed to generate the forests, while 

not impacting significantly the result. 

Moreover, (1.23) permits to understand the second reason for which bagging is used in random 

forests. Suppose k bootstrap samples are extracted from the learning sample L = {(X, Y), xi ∈ X , 

y ∈ Y}. Let k classifiers hk(x, Lk) grow on the Lk samples. Given that the Lk samples are created 

by randomly selecting with replacement inputs from L, not all classifiers hk are trained using all 

the inputs. It is therefore possible to select, for each (y, x), the final votes provided by the classifiers 

which were not trained on (y, x). In other words, to these classifiers, (y, x) is unseen data and can 

therefore be used to obtain an error measurement. Given that such classifiers are called out-of-bag 

classifiers, the generalization error PE* is also called out-of-bag error. 

An alternative approach to bagging and out of bag samples is provided by k-fold cross 

validation. Recall from section 1.2 that such method is used by CART decision trees to evaluate 

the misclassification rate through (1.4). Similar to bagging, the training set is divided in K sub 

samples of equal (or approximately equal) size. For k = 1, 2, …, K, the kth sub sample is set aside 

and used for testing, while the other are used for training. By repeating this step K times, cross-

validation permits obtain ongoing error measurements similar to out-of-bag estimates.  

The main difference between bagging and cross-validation is the size used for testing the 

classifiers. Nevertheless, some studies suggest that with a high number of trees, the use of the out-

of-bag error or the error computed through the cross-validation procedure are very similar (Kim, 

2009). Overall, both methods permit to reduce the variance of model prediction. 

Building on (1.23), Breiman (2001) introduces the concept of random forest’s strength and 

correlation. Moreover, his finding shows that the generalization error decreases, and therefore the 

model’s accuracy improves, when correlation decreases, and strength increases.  

Provided that the margin function is a measure of how well the classifier predicts a class (i.e. higher 

margin provides better classification), Breiman (2001) introduces the concept of strength s as the 

expected value of the margin function; given (1.21), 

 
 𝑠 = 𝐸𝑿,�(𝑚𝑟(𝑿, 𝑌)) (1.25) 
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Intuitively, the value of s is proportional to the value of the margin function, as with an increase 

in correctly classified classes, the strength of the random forest increases. Finally, the strength 

provides a measurement of the tree’s accuracy. 

In order to define the correlation 𝜌, it is necessary to introduce the raw margin function. Differently 

from the margin function in (1.21), the raw margin function is the difference between the number 

of votes for the right class and the number of votes for the most probable voted class other than Y 

𝚥̂(𝑿, 𝑌). 

 
 𝑚𝑟𝑔(Θ,𝑿, 𝑌) = 𝐼(ℎ(𝑿,Θ) = 𝑌) − 𝐼(ℎ(𝑿,Θ) = 𝚥̂(𝑿, 𝑌)) (1.26) 

 
By considering two independents Θ and Θ′, once the correlation 𝜌(Θ,Θ\) is computed, Breiman 

(2001) provides for a mean value �̅� 

 
 

�̅� =
𝐸�,��(𝜌(Θ, Θ\)sd(Θ)sd(Θ\))

𝐸�,��(sd(Θ)sd(Θ\))
 (1.27) 

 
and, adjusting (1.23), for the upper bound for the generalization error PE*  

 
 

𝑃𝐸∗ ≤
�̅�(1 − 𝑠:)

𝑠:  (1.28) 

 
The result above permits to consider generalization error, strength, and correlation jointly. 

Moreover, such relationship will be useful in the analysis of random feaature selection. 

 

 

1.3.1.3.2. Example: iris 

Let’s reconsider the iris example, expanding it to random forest. Several packages have been 

developed in R and are available to conduct such analysis and predictions; the mostly used are 

randomForest and caret. In this research’s analysis, the caret package has been used. While the 

forest will be constructed, and an initial analysis and evaluation will be presented in this section, 

the tuning of its parameters to train the forest and the final testing will be displayed in sections 

1.3.2 and 1.3.3 respectively (the full code is presented in Appendix B). 



 

 49 

The data set is divided into a training set and a testing set. According to the size of the data set, 

different sizes of training and testing sets may be used. In general, it is suggested to adopt a ratio 

between 70%-30% and 90%-10% for training and testing respectively (Breiman, 1996; Breiman, 

2001).  

 
iris_RFModel <- randomForest(Species ~., data = trainingDataset) 

 

The command1 above permits to grow a forest using default parameters. The defaulted parameters 

computed as provided by the randomForest package generally provide a good degree of accuracy. 

In this study, in order to find the best accuracy, the main parameters have been tuned. The main 

parameters used to tune random forests are: mtry, ntree, maxnodes, and nodesize. These will be 

thoroughly explained in the following sections. 

Figure 1.10 and Table 1.7 report the results obtained by training the model. 

 

 

           Table 1. 7: Confusion matrix iris and class error, iris example 

 setosa versicolor virginica  Class Error 

setosa 48 0 0  0.00000000 

versicolor 0 37 4  0.09756098 

virginica 0 3 40  0.06976744 
             Data Source: iris data set available in the R library “datasets” 

 

 

 

 

 

 

 

                                                
1 Specifics regardin the randomForest() function and its parameters can be found in the RDocumentataion, available 
at: https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest  



 

 50 

 

                     Figure 1.10: Random Forest Error Plot, iris example 

 
                         Data Source: iris data set available in the R library “datasets” 

 

Figure 1.10 shows, along the classification errors for each class, the out-of-bag error estimate. This 

result is interesting since it confirms that as the number of trees increases the generalization error 

PE* converges (see 1.23). As shown by the orange line in Figure 1.10, in fact, the out-of-bag error 

is higher between 1 and 25 trees, until it decreases and stabilizes from 25 trees onwards. Moreover, 

the reported average out-of-bag error is 5.3%. This result shows the high accuracy obtained by the 

random forest created, underlining the efficiency of using weak learners in order to create a strong 

classifier. 

The confusion matrix in Table 1.7 shows the misclassified and the correctly classified cases. 

Specifically, it can be noted that the model is showing no difficulties in identifying the setosa 

cases. On the other hand, 7 misclassifications have been done regarding versicolor and virginica. 

While these results are promising, final evaluations should be conducted once the model is tested 

on the testing set.  
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1.3.2. Construction of random forests 

1.3.2.1. Variables selection and splits 

The way in which trees are grown and the randomization of features are key elements for the 

proper functioning of the random forest algorithm. Regarding the size of the dataset, random 

forests have proven good performance both with small and big data sets. Some debate, though, 

occurred in the literature regarding the use of datasets with p > n, with p predictor variable and n 

cases. Nevertheless, in general, with the proper number of cases, random forests are able to deal 

with many variables.  

Additionally, through the importance() function in R, the algorithm provides the variables in 

order of importance. In the prediction analysis, this function permits to observe which variables 

account for most impurity reduction, and, therefore, are most reliable for the final prediction. While 

it is debated whether it is possible or not to obtain information regarding causal relationships 

between the predictor variables X and the response variable Y, the information provided by this 

function is useful for an initial understanding of the correlation between X and Y (Gregorutti and 

Saint-Pierre, 2013). An interesting paper by Hastie and Zhao (2019), on the other hand, suggests 

relevant information regarding causal relationship can be obtained by observing the partial 

dependence plot (PDP) and the Individual Conditional Expectation (ICE) plot. This possibility will 

be analyzed in section 1.3.3. 

In order to obtain trees that are independent, Breiman (2001) adopted a random feature 

selection approach to split the decision trees. Simply, given m predictor variables, the algorithm 

selects randomly k variables, and finds the best split among the k variables by computing the Gini 

Index. Practically, in R, such parameter is called mtry. By default, matry is set equal to √𝑚 for 

classification analysis and m/3 for regression analysis. Nevertheless, through the caret package 

the parameter can be tuned. 
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trControl <- trainControl(method = "cv", 
                                               number = 10, 
                                               search = "grid") 
 
set.seed(1234) 
tuneGrid <- expand.grid(.mtry = c(1:4)) # select range 
_mtry <- train(Species ~., 
                           data = trainingDataset, 
                           method = "rf", 
                           metric = "Accuracy", 
                           tuneGrid = tuneGrid, 
                           trControl = trControl, 
                           importance = TRUE, 
                           nodesize = 1, 
                           ntree = 300) 
 
print(Sample1_RF_mtry) 

 

The function trControl() permits to choose the method to use between bootstrapping, cross 

validation, among others. The tuneGrid() function permits to create custom grids in order to test 

the model on different values for the parameter to be tested. Therefore, by changing the range of 

values required (considering the default value is √𝑚, in order to save computing time, the range 

should be chosen according to m), R outputs all models generated through the tuneGrid() 

function. By visualizing such output, the mtry value that provides the best accuracy can be 

identified.  

Recalling (1.28) and relationship between generalization error, strength and correlation, 

Breimam (2001) provides the reason for which mtry should be tuned. For simplicity consider the 

result obtained by Breiman in Figure 1.11. Specifically, it can be observed that as the number of 

variables chosen for the split increases, the random forest’s strength remains approximately 

constant, while the correlation increases, showing that an optimal mtry exists, given that as mtry 

increases the generalization error increases (Breiman, 2001).  
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                Figure 1.11: Correlation and strength 

 
                   Source: Breiman (2001, p.17) 
 

Importantly, Breiman’s (2001) results have been confirmed in a series of experiments on small 

and large datasets by Papacharalampous and Tyralis’ (2017), in which the variable selection 

question is directly assesed, and by Adam et al. (2010) which focuses specifically on the concept 

of strength and correlation and finds that (1.28) holds for both small and big datasets, and with 

both a small and big number of trees. 

 

1.3.2.2. Trees’ depth 

As described in section 1.2, the parameters which permit to tune a tree’s depth are maxnodes 

and nodesize. Respectively, they represent the maximum number of terminal nodes a tree should 

have and the minimum size of terminal nodes. While decision trees require pruning to avoid 

overfitting, random forests are strong learners which do not overfit the data. Breiman (2001), in 

fact, writes that trees in random forests should be fully grown. While this remains a possibility 

which still leads to good performances, these parameters can be tuned in order to select the best 
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accuracy. Given random forest’s ability to deal with overfitting, the nodesize parameter can be set 

at the default value 1. In order to tune maxnodes, though, the code below can be used. 

 
store_maxnode <- list() 
tuneGrid <- expand.grid(.mtry = 9) # the result obtained previously must be used 
for (maxnodes in c(1:10)) { # change range 
   set.seed(1234) 
   RF_maxnode <- train(Species ~., 
                                       data = trainingDataset, 
                                       method = "rf", 
                                       metric = "Accuracy", 
                                       tuneGrid = tuneGrid, 
                                       trControl = trControl, 
                                       importance = TRUE, 
                                       nodesize = 1, 
                                       maxnodes = maxnodes, 
                                       ntree = 300) 
   key <- toString(maxnodes) 
   store_maxnode[[key]] <- RF_maxnode 
} 
results_node <- resamples(store_maxnode) 
summary(results_node) 

 

Similar to mtry, the output generated through the code above permits to visualize and select the 

number of nodes that provides the highest accuracy.  

An interesting insight to the random forest is shown in the minimal depth graph (Figure 1.12). 

Such graph permits to observe which variables were used to split the data closest to the root node.  

In the iris example, Figure 1.12 shows that the variables which were mostly used in the first two 

splits are Petal.Width and Petal.Lenght. This information is linked to the results of the variable 

importance analysis which will be presented in the final section. While Sepal.Length was used 

on average on the third split, Figure 1.12 shows that Sepal.Width was used very few times to split 

the data, and, on average, for the last split. 
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                    Figure 1.12: Tree depth, iris example 

 
                         Data Source: iris data set available in the R library “datasets” 

 

1.3.2.3. Number of trees 

Breiman’s (2001) research provides important findings regarding the number of trees issue. 

Expanding on section 1.2.2.4, an hypothesis may be that an increase in the number of trees could 

result in a model which is overly dependent on a specific dataset. As shown in Breiman (2001), 

random forests generally do not overfit when more trees are added. In fact, as the number of trees 

grown tends to infinite, the generalization error for a random forest is limited by an upper bound. 

Therefore, the number of trees used does not have a major impact on the accuracy of the model, 

as long as a sufficient large value is provided. Some studies have tried to suggest appropriate values 

for the ntree parameter: Oshiro et. al. (cited in Papacharalampous and Tyralis, 2017) identified 

the required number of trees in the range [64, 128], while Kuhn and Johnson (cited in 

Papacharalampous and Tyralis, 2017), instead, suggests using at least 1000 trees.  

Having obtained a value for mtry and maxnodes, the code for tuning ntree is provided below. 
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tuneGrid <- expand.grid(.mtry = 2) 
store_maxtrees <- list() 
for (ntree in c(500, 1000, 1500, 2000)) { 
   set.seed(1234) 
   RF__ntrees <- train(Species ~., 
                                       data = trainingDataset, 
                                       method = "rf", 
                                       metric = "Accuracy", 
                                       tuneGrid = tuneGrid, 
                                       trControl = trControl, 
                                       importance = TRUE, 
                                       nodesize = 1, 
                                       maxnodes = 4, 
                                       ntree = ntree) 
   key <- toString(ntree) 
   store_maxtrees[[key]] <- RF__ntrees 
} 
results_tree <- resamples(store_maxtrees) 
summary(results_tree) 

 

 

1.3.3. Performance and evaluation of random forests 

Several possibilities are available to evaluate the performance and structure of random forests. 

While from a theoretical point of view, Breiman (2001) focuses on the generalization error and on 

the relationship between strength and correlation with the number of variables used, from a 

practical point of view testing the model on unexplored data and using the confusion matrix to 

analyze correct and wrongful predictions remain the most used approaches. While Breiman’s 

(2001) theoretical view has been already presented previously, the following sections will focus 

on testing and on analyzing the relationship between predictor variables and the dependent 

variable. 

 

1.3.3.1. Testing 

Relying solely on the results based on the training set is not appropriate. With decision trees, 

in fact, it is possible to obtain a model that seems to perform well, but that when applied to unseen 

data shows its limitations (e.g. overfitting). The same is not true for random forests, given that they 
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do not overfit and they allow to find a trade-off between bias and variance. Nevertheless, providing 

a model through unseen data is the best possibility for testing it. 

 
tuneGrid <- expand.grid(.mtry = 2) # insert best mtry 
FinalRF <- train(Species ~., 
                              data = trainingDataset, 
                              method = "rf", 
                              metric = "Accuracy", 
                              tuneGrid = tuneGrid, 
                              trControl = trControl, 
                              importance = T, 
                              nodesize = 1, # insert best nodesize 
                              ntree = 500, # insert best ntree 
                              maxnodes = 4) # insert best maxnodes 
 
# Prediction on new data (testing dataset) 
irisPrediction <- predict(FinalRF, newdata = testingDataset, type = "prob") 
irisConfusionMatrix <- confusionMatrix(irisPrediction, testingDataset$Species) 
irisConfusionMatrix # confront prediction with actual values 

 
The code presented above constructs the final random forest and tests it on unseen data provided 

by the testing data set that has been extracted from the data set initially. Results are provided in 

Table 1.8 and 1.9. It should be noted that by using 90% of the data for training, very little data is 

left for testing (17 cases). While studies have shown that the random forest algorithm performs 

well with small datasets as well, this suggested to test the model to change the proportion of 

training/testing data. 

 

 

                              Table 1.8: Final testing confusion matrix, iris example, iris example 

 setosa versicolor virginica 

setosa 3 0 0 

versicolor 0 5 1 

virginica  0 1 7 
                                    Data Source: iris data set available in the R library “datasets” 
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                                 Table 1.9: Main statistics, iris example 

Accuracy 88.24% 

No Information Rate 36.36% 

p-value (Acc > NIR) 6.292e-14 
                                         Data Source: iris data set available in the R library “datasets” 

 

The no information rate, as defined by the description of the confusionMatrix() function of the 

caret package in R, represents the largest class percentage in the data. Intuitively, a model with 

accuracy below the no information rate should not be considered. Overall 88.24% accuracy 

indicates the model’s good performance.  

Throughout this chapter, for simplicity and continuity, the iris example has been carried. The 

purpose of this example was to provide a practical view, sustaining the theoretical background 

analysed. Such a small dataset, though, could bring limitations. The latter are not related to the fact 

that random forests are not an appropriate method for small datasets; Breiman (2001), 

Papacharalampous and Tyralis (2017), and other studies have shown this is not the case. Rather, it 

raises the issue of deciding the appropriate size of the training and testing set, specifically with 

small data sets. To prove this, the code has been run with 70% of the dataset being used for training, 

and 30% for testing. The results confirm such theory, since the accuracy increased to 93.18%. 

 

1.3.3.2. Variable importance and predictor’s impact on the model 

One of the main criticisms to machine learning is that it generally behaves like a “black box”, 

meaning it is not easy to comprehend the underlying functioning of the model (Hastie and Zhao, 

2019). In other words, given a trained model, given a new input I(x), the model provides a 

prediction Y based on a predictive function g(x), but it is not simple to extract information 

regarding the relationship between I(x) and Y. This argument has often been used to state that it is 

not generally possible to identify causal relationship between predictor variables and the dependent 

variable through machine learning algorithms. While the purpose of this study and the depth of the 

topic do not permit to fully address such analysis, an introduction will be provided by drawing the 

partial dependence plots, introduced in Friedman (2001), and the individual conditional 

expectation. Further researching this topic could be interesting; by analyzing the methods which 
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test causal relationship in machine learning models, a possible research question may be “Can 

causality be inferred through random forests?”. 

Firstly, an important tool available in R permits to start this analysis by identifying the most 

important variables for the classification of the dependent variable. Figure 1.13 depicts the results 

obtained for the iris example. The importance of a predictor is measured as its ability to reduce 

the tree impurity, and, in random forests, is measured through the Gini Index. Therefore, Figure 

1.13 shows the mean decrease of the Gini Index for each predictor (i.e. a greater decrease in the 

Gini Index indicates the high importance of the predictor.  

 

                                    Figure 1.13: Variable Importance, iris example 

 
                                             Data Source: iris data set available in the R library “datasets” 
 

While Petal.Width and Petal.Length account for most of the decrease of the nodes’ impurity, 

Sepal.Length and Sepal.Width do not account for much importance. Figure 1.13 confirms that 

the results provided by the variable importance plot are in line with those of the distribution of 
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minimal depth plot (Figure 1.12). While Figure 1.13 permits to observe some degree of correlation 

between the predictor variables and Species, it is not possible with this information to infer 

causality and to view how the single classes setosa, versicolor, and virginica are affected by 

the variables. The importance of variable, though, permits to begin to draw conclusions regarding 

the fact that some variables may not be considered in the construction of the random forest given 

their little influence on the predicted variable. In the iris example, for instance, Figure 1.13 

suggests that the variable Sepal.Width could be excluded from the set of predictors. 

An additional approach to evaluating the removal of variables is provided by the partial 

dependence plots (hereafter PDP) and the individual conditional expectation (hereafter ICE) plots, 

which show how much the predicted variable is dependent from the predictor variables. Moreover, 

by plotting PDP and ICE plot as logit contribution of the variables to the model, it’s possible to 

deduct the likeliness of positive influence of a specific predictor variable to the predictive model. 

Following a brief introduction to the PDP, the latter will be used to conduct two tests. First, the 

PDP will be used to observe the relationship between the predictor variables and the classes within 

the dependent variable. Then, the PDP and the ICE plots will be used to observe the relationship 

between the predictive model and the predictor variables.  

Given the previously defined output g(x) = Y, “the partial dependence of g on a subset of 

variables Xs is defined as (let XC be all the subsets of variables minus Xs ) 

 
 𝑔�(𝑥�) = 𝐸;�[𝑔(𝑥�, 𝑋�)] = �𝑔(𝑥�, 𝑥�)𝑑𝑃(𝑥�) (1.29) 

 
[meaning] gS is the expectation of g over the marginal distribution of all variables other than XS.” 

(Hastie and Zhao, 2019, p. 2-3). Finally, (1.29) provides a prediction of Y based on Xs. 

For the purpose of this study, it’s sufficient to understand that PDP show the extent to which a 

model partially depends on a predictor variable. For classification analysis, the PDP shows the 

average logit contribution of x on the class k. In the iris example this permits to answer questions 

such as “How does the prediction for setosa change if Petal.Lenght is increased?” and so on. 

Given our classification example, the PDP for each class have been graphed and are shown in 

Figures 1.14, 1.15, and 1.16, in relation to the four predictors Petal.Width, Petal.Length, 

Sepal.Length and Sepal.Width. The blue curve has been added to show a smoother version of 
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the line to simplify interpretation. The following list provides the key for interpreting Figures 1.14, 

1.15, and 1.16 by observing the log odds: 

- log odds > 0 means the class considered is more likely to be predicted correctly; 

- log odds < 0 means the class considered is less likely to be predicted correctly;  

- log odds = 0 indicates that the class prediction is not impacted, on average. 

Moreover, values of x which provide positive log odds influence positively the classification 

process. 

 

Figure 1.14: Dependence plots k = setosa, iris example 

 
Data Source: iris data set available in the R library “datasets” 
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Figure 1.14 provides some useful insights. Comparing Figures 1.14 and 1.16, it is shown that the 

influence that the predictor variables have on the predicted class has opposite trends in the case of 

setosa and virginica; versicolor behaves differently. Moreover, the PDP for Sepal.Lenght 

shows that it is the variable which has less influence in classifying setosa. 

 

Figure 1.15: Dependence plots k = versicolor, iris example 

 
Data Source: iris data set available in the R library “datasets” 
 

The relationship between the versicolor class and the variables Petal.Length, Petal.Width, 

and Sepal.Length seems constant. For Petal.Length values above ~1.5, for Petal.Width above 

~ 0.3, for Sepal.Length above ~ 4.75, values begin to have a positive influence for classification. 
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This influence, then, increases until a specific point before showing a positive but decreasing 

influence on the versicolor prediction. 

The PDP for Sepal.Width, instead, indicated a continuously decreasing influence on the class 

prediction. 

 

Figure 1.16: Dependence plots k = virginica, iris example 

 
Data Source: iris data set available in the R library “datasets” 

 

The PDP for the class virginica provides interesting results. Specifically, Sepal.Width does not 

have any influence in the classification process. Moreover, considering Petal.Length and 

Petal.Width, a strong positive relationship is shown in Figure1.16.  
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While the limitations of using PDP should be further analyzed to draw conclusions, Figures 

1.14, 1.15, and 1.16 permit to extend the objective of obtaining a model with high accuracy. In 

fact, they provide useful insights regarding the influence that the predictor variables have on each 

class, permitting to understand the underlying reason for which a specific case is classified, for 

example, as virginica and not as setosa. 

While the PDP shows the average influence of a variable on the model, the ICE plot permits 

to visualize the single influence of each case. 

 

Figure 1.17: Individual conditional expectations, iris example 

 
Data Source: iris data set available in the R library “datasets” 
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Differently from the previous individual analysis on the classes in Species, in this case the 

influence on the model overall is observed, and the units are colored in Figure 1.17 according to 

the class. The PDP in Figure 1.17 is provided by the highlighted black line.  

Figure 1.17 provides useful results in line with those of variable importance of Figure 1.13. While 

the messiness of the ICE curves for Sepal.Length and Sepal.Width suggest that it is difficult to 

identify relationships with the three classes in Species, the PDP in black shows the little relevance 

these two variables have in relation to the random forest constructed. In fact, while Sepal.Length 

may have a slightly positive influence on the model approximately between [5.5;6], Sepal.Width 

never has a positive influence on the random forest. This may suggest that Sepal.Width could be 

removed from the predictor variables. A new random forest has therefore been constructed in order 

considering as predictors only Petal.Length, Petal.Width and Sepal.Length. This forest 

performed favourably (95.56% accuracy) compared to the results shown in the previous section 

(93.18% accuracy). 

 

1.4. CONCLUSIONS 

The purpose of this chapter is to provide the knowledge and understanding of decision trees 

and random forest in order to prepare the basis for the comprehension of the analysis conducted in 

Chapter 3. Such chapter could be widely extended to other machine learning algorithms in order 

to compare the performances of various algorithms. 

Both decision trees and random forests perform well. Nevertheless, the fact that random forests 

do not overfit provides a great advantage compared to decision trees. Through random feature 

selection and bagging, it has been shown that random forests are a powerful tool for creating an 

accurate and stable model. Moreover, an attempt to analyze the underlying functioning of the 

random forest algorithm has been done by observing each predictor variable’s influence on the 

classification model through partial dependence plots and individual conditional expectation plots. 

These provide a useful tool since they permit to extend the conclusions drawn from variable 

importance measurements. 

Throughout the chapter an analysis on the iris data set has been carried. This allowed to 

confront decision trees and random forest. Moreover, its simplicity permitted to implement the 
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methods explained and, most importantly, to focus on understanding the algorithms used. Further 

analysis and clarifications will be provided in Chapter 3. The latter will implement the knowledge 

and methods used in this chapter to conduct a binary classification analysis in order to predict a 

company’s probability of default. The iris example will be introduced again following the main 

analysis of Chapter 3, where the code providing the function to repeat the analysis is provided. 
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CHAPTER II 

2 COMPANY FAILURE AND PROBABILITY OF DEFAULT 
 

In the literature numerous studies and empirical researches (Altman, 1968; Balcaen and Ooghe, 

2006; Beaver, 1967; Ciampi and Gordini, 2008; Edmister, 1972; Hazak and Mannasoo, 2007; 

Kealhofer, 2003; Kliestik et al., 2014) address credit risk and firm default. The determination of 

correlation and causation between financial statement figures and default has triggered the 

development of methodologies and models with the objective of predicting company’s failure and 

quantifying the probability of default. Regardless of the complexity of the argument, many 

advancements have been achieved. The latter have been led by the importance of identifying 

relationships between company’s credit risk and probability of default, and the various internal 

and external factors. The value that relies in such discoveries is linked, among others, to 

businesses, markets, and to public policy. 

The following paragraphs will provide a literature summary and review, aiming to lay out the 

topic and the main characteristics of the models developed. Furthermore, an attempt to finding 

connections and possible complementarities between such models and random forests, which this 

paper will focus on, is presented. 

 

2.1. MODELS FOR QUANTIFICATION OF PROBABILITY OF DEFAULT 

2.1.1. Introduction and definitions 

Bankruptcies have a great impact on modern societies (Hazak and Mannasoo, 2007). In fact, 

besides the cost and losses faced by shareholders, the network generated through relationships with 

stakeholders extends the repercussions at a macroeconomic level. Such enlargement has increased 

the popularity of both researches on the impact of business’ bankruptcy on societies, and on the 

prediction of company failures. Reasonably, the importance of the two fields of study is 

interconnectedly strong.  

Specifically, regarding the methods developed to identify and quantify the probability of 

default and company failure, several are available. Within such group, two approaches can be 
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noted. While some models mainly use the firms’ financial information, accounting ratios, and 

company structural figures, for example the Z-score model (Altman, 1968), the univariate and 

multivariate discriminant analysis (Beaver, 1967), the logit regressions (cited in Ciampi and 

Gordini, 2013), other methods have a more finance and market based approach, such as Merton’s 

theory of the risk structure of interest rate (1974) and the KMV model (cited in Kealhofer, 2003). 

See Balcaen and Ooghe (2004; 2006) for a detailed summary of the classical and alternative 

methods developed on the topic.  

For the purpose of this paper and for simplicity, bankruptcy, business and corporate failure, 

liquidation, and default, are assumed to describe the same situations: a company who, by any 

reason, is forced to terminate its operation and its lifecycle. Therefore, the methods mentioned 

above, are grouped together since they all have the same objective of predicting, classifying, and 

finding correlation or causal relationship that describe company’s default. This may entail some 

limitations. While the methods do aim to predict company’s default, the assumptions and situations 

underlying some of the methods’ application may not permit comparison across the two groups. 

 

2.1.2. Models predicting company’s failure and probability of default 

The complexity of the environments and societies have, in turn, increased the difficulty of 

analyzing business. Such complicatedness is related to the fact that much more interconnected 

networks make businesses, among others, highly dependable on a wide variety of factors. Burgartz 

et al. (2016) discuss this by describing today’s operations as influenced by volatility, uncertainty, 

complexity, and ambiguity. Extrapolating from this information, the ability to be able to deal with 

numerous situations simultaneously required to managers is fundamental for the survival and 

success of a business. Moreover, the latter’s ability to adapt and take advantage of new possibilities 

has become the mean to obtain competitive advantages. Finally, this underlines the complexity of 

creating static models which consider limited influences and poor variables. As will be discussed 

further on in the chapter, this complicates the prediction process of a company’s default, making 

it impossible to know with certainty, based solely on the companies figures, whether a company 

will default or not. Moreover, given that not all businesses operate in the same environment, and 

therefore are not influenced by the various factors to the same extent, the possibility to create an 

adaptable method, applicable to all business, is demanding to achieve. Consider, for example, that 
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some industries require specific costly investments, which are possible by creating debt. Such 

firms are affected in different ways and by different factors (e.g. financial crisis) than enterprises 

which do not incur in such situations. Examples of this type are abundant and diverse. This 

highlights a limitation of researches in such topic. Nevertheless, the numerous studies that have 

been conducted have tried to identify which variables should be considered in the analysis of this 

topic. Such studies, as will be presented subsequently, contribute in identifying a framework for 

predicting credit risk. The study provided in the Chapter 3  will try to integrate such framework in 

order to consider all most relevant variables. By consistently improving such framework, the 

possibility of creating accurate models and predictions has increased over time (Breiman, 2001; 

Papacharalampous and Tyralis, 2017). 

 

2.1.2.1. Univariate and multivariate discriminant analysis 

Methodologies such as univariate and multivariate analysis, in this field of study, use financial 

ratios to predict corporate failure, assuming that such ratios are appropriate to express a firms’ 

health. While such methods are advantageous for their simplicity, they often are too subjective 

(Balcaen and Ooghe, 2006). For specifics regarding such methods, refer to Balcaen and Ooghe 

(2006), Altman (1968), and Beaver (1967). Specifically, Beaver (1967) used cash-flow ratios, net-

income ratios, debt to total-asset ratios, liquid-asset to total-asset ratios, liquid-asset to current debt 

ratios, and turnover ratios. Beaver (1967) underlines both the limitations and the strengths of such 

approach. While he conducted an analysis on the ratio’s prediction power individually (therefore 

univariate analysis), he suggests that a multi-ratio analysis may be more useful and provide better 

results. Moreover, he clarifies that given the different nature of financial ratios and, especially, the 

different ways (if any) in which companies use such ratios, the results are affected by external 

factors which are complex to quantify. Moreover, analysis conducted on financial ratios often do 

not consider other external relevant factors (Hazak and Mannasoo, 2007). Nevertheless, the results 

obtained are promising. 

Beaver (1967) has contributed significantly in developing the univariate discriminant analysis 

model and has shown that financial ratios may have a predictive power up to five years before the 

failure event. His model, in fact, attempted to make predictions over five years. Table 2.1 
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summarizes some of Beaver (1967) analysis’ results, showing the percentage of misclassified 

defaulted companies. Moreover, regardless of the fact that they are considered individually, Table 

2.1 still permits to identify which ratios are most effective in predicting company failure, and 

which are consistent through time. Other studies have studied the relationship between financial 

ratios and company default and found similar results (Altman, 1968; Ciampi and Gordini, 2008; 

Edmister, 1972). 

The functioning of the univariate analysis mainly revolves around its classification procedure.  

Specifically, the firms considered in the study are classified as failing or non-failing for every ratio 

individually, by finding a level of ratio (i.e. decision point) which minimizes the classification 

error (Beaver, 1967). 

 

          Table 2.1: Findings of Univariate Analysis2: % error  

Ratio Years before Failure 
1 2 3 4 5 

𝐶𝑎𝑠ℎ	𝐹𝑙𝑜𝑤
𝑇𝑜𝑡𝑎𝑙	𝐴𝑠𝑠𝑒𝑡𝑠 

.10 
(.10) 

.20 
(.17) 

.24 
(.20) 

.28 
(.26) 

.28 
(.25) 

𝐶𝑎𝑠ℎ	𝐹𝑙𝑜𝑤
𝑇𝑜𝑡𝑎𝑙	𝐷𝑒𝑏𝑡 

.13 
(.10) 

.21 
(.18) 

.23 
(.21) 

.24 
(.24) 

.22 
(.22) 

𝑁𝑒𝑡	𝐼𝑛𝑐𝑜𝑚𝑒
𝑆𝑎𝑙𝑒𝑠  

.13 
(.09) 

.22 
(.16) 

.28 
(.24) 

.35 
(.28) 

.31 
(.27) 

𝑁𝑒𝑡	𝐼𝑛𝑐𝑜𝑚𝑒
𝑇𝑜𝑡𝑎𝑙	𝐴𝑠𝑠𝑒𝑡𝑠 

.13 
(.12) 

.21 
(.15) 

.23 
(.22) 

.29 
(.28) 

.28 
(.25) 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐿𝑜𝑛𝑔	𝑇𝑒𝑟𝑚	𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
𝑇𝑜𝑡𝑎𝑙	𝐴𝑠𝑠𝑒𝑡𝑠  

.23 
(.19) 

.30 
(.26) 

.36 
(.29) 

.39 
(.31) 

.38 
(.33) 

                                     Source: Beaver (1967), see p.106-107 for full results 
 

One of the main disadvantages of such model is the fact that it only considers the ratios individually 

(Balcaen and Ooghe, 2006). In other words, it cannot make an appropriate prediction since it is 

impossible to find a scenario in which a company’s situation can be described with one single 

ratio. Nevertheless, it behaves well as a guidance to understand which ratios (i.e. which figures 

                                                
2 Beaver’s (1967) analysis consisted in two test runs. The results of the first test are presented in the second 
row in brackets, while the second test’s results are provided by the first row.  
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from the balance sheet) have a greater impact. Such aspect, though, is limited due to the correlation 

among the variables composing the ratios; in fact, no causation relationship can be derived. 

Realizing that the disadvantages of the univariate method lays in the use of the ratios 

individually, other methods appeared to solve such inefficiencies. While the Risk index model 

does so by providing each ratio with a score, therefore providing a final evaluation of a firm’s 

score including all ratios, the multiple discriminant analysis has been the most successful in solving 

such issue. 

The multiple discriminant analysis has been introduced by Altman (1968), with the development 

of the Z-score model. Later, such procedures have been further researched and has been 

accustomed as the standard method for identifying company default (Balcaen and Ooghe, 2006). 

This method consists in finding a linear relationship which provides a score Z Î [-∞; +∞] to the 

firm. Such score represents a firm’s health (Altman, 1968). Such discriminant function is provided 

by (2.1) derived by Altman (1968, p.592, p.594). 

 
 𝑍 =	𝑣7𝑥7 + 𝑣:𝑥: + ⋯+ 𝑣4𝑥4 (2.1) 

 
where x1, …, xn are the independent variables and v1, …, vn are the discriminant coefficients. (2.1) 

permits to visualize the overcome the main limitations of the univariate analysis previously 

discussed, in which the variables are observed individually. Moreover, an optimal discriminant 

function (2.2) has been obtained in Altman (1968). 

 
 𝑍 = 	 .012𝑋7 + .014𝑋: + .033𝑋« + .006𝑋 + .999𝑋¯ (2.2) 

 
where  X1 = Working Capital/Total Assets 

X2 = Retained Earnings/Total Assets 

X3 = Earnings Before Interest and Taxes/Total Assets 

X4 = Market Value Equity/Book Value of Total Debt 

X5 = Sales/Total Assets 

 

Finally, Altman’s (1968) Z-score model has proven great accuracy, correctly classifying 95% of 

the firms analyzed. Nevertheless, Balcaen and Ooghe (2006) highlight its disadvantages, such as 



 

 72 

that the linearity of the discriminant function is in contrast with the fact that not all variables are 

linear with respect to a company’s financial health, and that although the method resembles a 

regression analysis, it differs in its computations and it does not permit to assess the relative 

importance of the variables. It should also be noted that merely using accounting increases the risk 

and uncertainty of the study: regulations may differ across countries, a certain level of subjectivity, 

and the fact that ratios often differ according to industry may lead such measurements to impact 

the final results. This issue can be contained, to some extent, by creating a sample of firms which 

belong to the same industry in countries which adhere to the same accounting regulation. 

Nevertheless, this leads to poor adaptability of the model, requiring the creation of a new study for 

every industry analyzed.  

 

2.1.2.2. Survival Analysis Model 

While Hazak and Mannasoo’s (2007) paper analyzes the predictability of financial ratios, 

classifying them as “Company financial indicators”, it also expands the research to “Company 

structural indicators” and “Macroeconomic indicators”. For the purpose of this research, the 

survival analysis model will not be presented, since its relevance is provided by the variables it 

uses. In fact, such model goes beyond financial ratios, underlying the importance of other figures. 

Table 2.2 briefly summarizes such variables. 

 

       Table 2.2: Variables to Include in an Analysis 

Variable Description 
EMPL Employees 
TYPE Binary variable: A for large businesses and B for small ones. 

QUOTE Binary variable: 1 for quoted, 0 for non-quoted 
GDP GROWTH Real GDP growth 

LEND RATE Real domestic lending rate 
CREDIT GDP Private credit share of GDP 
EXP IMP GDP Exports + Imports (as % of GDP) 

REER Real effective exchange rate 

               Source: Hazak and Mannasoo, 2007, p.9-10 
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2.1.2.3. Black-Scholes, Merton, and the KVM Model 

The Black-Scholes-Merton and the KVM model take a different approach to quantifying credit 

risk, and such theories have gained a lot of importance in modern finance. While the aim remains 

to quantify the probability of default, these methods are mostly used in the financial analysis sector. 

For instance, one of their application relates to bank’s loan approval (Bandyopadhyay, 2007). In 

other words, they aim to improve the capacity of making good investments and obtaining the 

knowledge necessary to hedge and protect a position in case adversities. In addition to the previous 

definition of bankruptcy provided, in this section the explanation for bankruptcy mainly relies in 

fall of asset value and/or liquidity shortages (Bandyopadhyay, 2007). Therefore, in the calculation 

of the probability of default, three main elements are considered: value of assets, uncertainty or 

risk of the asset value, and leverage, meaning the extent of a firm’s liabilities (Bandyopadhyay, 

2007; Kealhofer, 2003). The methods analyzed in this section differ from the previous ones 

because the basis for their computations is provided by valuing debt and equity as call options. 

Such procedure has been developed by Black and Scholes in 1973. Building on these findings, the 

Black-Scholes-Merton developed a model which led to winning the Noble Prize for Economics in 

19973. Elaborating on their model, the KVM model has been developed.  

The underlying importance of Black and Scholes’ results is given by the fact that the equity of a 

company can be viewed as a call option on the company’s underlying assets (Kealhofer, 2003). 

Consider the following example, extracted and modified from Kealhofer (2003) for simplicity al 

illustrated by Figure 2.1.  

 

“Suppose a company has a single asset consisting of 1 million shares of Microsoft 

stock. Furthermore, it has a single fixed liability—a one-year discount note with a par 

amount of $100 million—and is otherwise funded by equity. In one year’s time, the 

market value of the company’s business will either be sufficient to pay off the note or 

it will not, in which case the company will default. One can observe that the equity of 

                                                
3 The Noble Prize has been awarded to Robert Merton and to Myron Scholes. Fisher Black died in 1995, 
therefore not being eligible for the prize. 
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the company is logically equivalent to 1 million call options on Microsoft stock, each 

with an exercise price of $100 and a maturity of one year.” (p.30) 

 
As shown in Figure 2.1, in 1 year there is a wide range of values which the asset can obtain. Simply, 

if such future value will be lower than the liability, the firm will fail. As the Gauss curve provides, 

there is a greater possibility that the asset’s future value will be close to the starting value, but 

extreme outcomes are possible and depend on the volatility of asset (Kealhofer, 2003). 

 

Figure 2.1: Frequency distribution of asset value at horizon and 

probability of default 

                               

                             Note: The distance from the expected asset value to default is three standard deviations 
                             Source: Kealhofer, 2003, p.31 
 

Figure 2.1 permits to visualize how three main elements influence default: the asset, the volatility 

of such asset, and the liability. 

The application of Black-Scholes-Merton’s model goes beyond the possibilities of 

development of this research. The reader may refer to Black and Scholes (1973), Merton (1974), 
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and Young and Tudela (2003). On the other hand, the KVM model, developed in 1974 by 

Kealhofer, McQuown, and Vasicek (Kliestik et al., 2014), and the distance to default, provide 

interesting insights. Firstly, the KVM model attempts to find the probability of default of the 

company as a whole. Secondly, it introduces the concept of distance to default. In line with Figure 

2.1, such model involves three steps: computation of an estimate of the market value, finding the 

distance to default, and scaling such distance to an actual probability. 

The distance to default is defined as the “distance between the expected value of assets of the 

company and the default point and then splits this difference by an estimation of the volatility of 

the company in a time horizon. At that time, the distance to default is replaced into a cumulative 

density function to compute the likelihood that the value of the company will be fewer than the face 

value of debt at the maturity of the debt” (Ammann, cited in Kliestik et al., 2014, p.239). In other 

words, it provides an assessment of the business’ default risk, measuring the distance between the 

expected value of the asset and the default point d* (i.e. value of debt). As Kliestik et al. (2014) 

provide 

 
 

𝑑∗ = 𝑑𝑒𝑏𝑡9°±²8	8³²x +
1
2𝑑𝑒𝑏𝑡´±4µ	8³²x  (2.3) 

 
and the distance to default DD 

 

 
𝐷𝐷 =

𝐸F𝐹(𝑡)G − 𝑑∗

𝜎·
=
ln L𝐹(𝑡) 𝐷º O + L𝑟 − 12𝜎·

:O (𝑇 − 𝑡)

𝜎·√𝑇 − 𝑡
 (2.4) 

 
where  r = risk-free rate 

F(t) = current asset value 

D = face value of debt 

 𝜎· = annualized company value volatility 

 

Finally, the probability of default can be quantified as the probability that the current value of the 

asset F(t) falls below the face value of the debt D. 
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 𝑃𝐷(𝑡) = 𝑃[𝐹(𝑡) ≤ 𝐷] (2.5) 
 

 
2.2. RANDOM FOREST AND APPLICATIONS 

Machine learning applications can be viewed as a powerful tool in the credit and default risk 

prediction. While the adaptability of random forest could provide models, which are alternatives 

to the two different approaches previously described, likely a more appropriate comparison can be 

done with methods of the first group. In fact, random forest permit to use numerous variables and 

provides the relative variables’ importance, therefore avoiding some of the limitations of the other 

methods. 

Identifying with certainty, at the time of the research, whether a company will default or not 

in the future is not possible. The number of variables that influences a company’s lifecycle are 

numerous; therefore, not having information regarding future decisions taken by the management 

of a firm, and not knowing the impact and effects that external factors will have on the company, 

the only possibility is to estimate, based on the on the data available at the time of the analysis, 

the company’s probability of default and its distance to default. As the previous sections present, 

this has been the objective of KVM’s model. 

Random forests are able to address the default topic with a wider perspective. Consider the 

machine learning application given by classification random forests (refer to Chapter 1 for 

specifics regarding random forests along with decision trees). Simply, given a dataset, given two 

outcome classes ‘default’ and ‘no default’, the process through which a decision tree predicts a 

class is provided by several decision points. At each decision point, the data is split; such process 

occurs until final leaves nodes are reached. Figure 2.2 provides a visualization of a decision trees’ 

prediction-making process readapted to the topic discussed. The decision tree, then, based on the 

input data provided, votes one class. 

Classification decision trees treat company’s default as a binary variable, assigning the sample 

companies either to the defaulting class or to the non-defaulting class. A random forest is an 

ensemble of decision trees in which each tree votes a class and, therefore, the prediction output is 

most voted class (Breiman, 2001). 
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Random forests base their prediction on the input data provided. In other words, the number of 

variables through which predictions can be made regarding a company’s default vary according to 

the researcher’s discretion. Therefore, this shows the possibility of analyzing the topic without 

disregarding any factors4. Finally, this permits the creation of an adaptable model. 

 

                       Figure 2.2: Decision Tree 

      
 

 

 

2.3. CONCLUSIONS 

The purpose of this research is to evaluate how well random forests predict if a company 

defaulted or is still active. In other words, once properly trained, the model will be used with new 

data, and its accuracy will be quantified based on the correctly and wrongly classified data. In line 

with this objective, this chapter summarizes and highlights the main concepts concerning 

companies’ default prediction, by providing building blocks which will help the reader throughout 

the paper. Besides providing a general view of the literature on company default prediction, this 

chapter has been helpful in starting to develop the main analysis that will be presented in Chapter 

                                                
4 It should be noted that this does not mean that an infinite number of variables can be used. As provided 
in Chapter 2, the choice of variables is related to their importance. Nevertheless, by using a trial and error 
approach the analyst can be sure to not misjudge, and not include, variables whose importance is relevant. 

yes 

yes 

yes 

no 

no 

no 
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3. Specifically, the elements described in this section were thoroughly used to select the variables 

used as predictors.  

Random forests can be seen as an expansion and improvement to the univariate models’ 

classification procedure. A possible further development could be, in fact, to repeat Beaver’s 

(1967) study by creating a random forest using as variables the same financial ratios used by 

Beaver and by using the same data. This, in fact, would provide a great opportunity for comparison 

between the two methods. With respect to multiple discriminant analysis, random forests also do 

not have an equivalent to regression analysis’ beta. Nevertheless, as provided in the previous 

chapter, a powerful tool in random forest is the computation of variable importance through the 

Gini index. Moreover, one of random forests advantages is its adaptability and its ability to discern, 

through its algorithms, the variables that have greater importance.  

Finally, random forest, through machine learning, provides a method which seems to be 

reliable for the analysis of a complex topic such as company default prediction, given it masters a 

fundamental characteristic which is adaptability. In fact, random forests permit to consider many 

variables, therefore obtaining a model with a wide perspective and which describes the default 

topic as well as possible. One of the main disadvantages of random forest, as reported by Balcaen 

and Ooghe (2006), is that machine learning decision trees cannot measure causation relationships. 

A paper by Hastie and Zhao (2019), confirming Friedman (1996) findings, though, found that, in 

contrast with the conventional view, causal information can be extracted by drawing partial 

dependence plots and individual conditional expectation plots. 
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CHAPTER III 

CLASSIFICATION OF COMPANY DEFAULT THROUGH 
RANDOM FORESTS 

 

This chapter presents the development of the main study of this research. As previously 

discussed, companies’ default has great relevance in many fields. The importance and 

applications of company failure prediction, then, has increased in order to improve both 

monitoring of indicators that have an impact, and the efficiency of actions taken to prevent 

company default.  

The data, the methodology, and the tests used to obtain a clear view of the application of 

random forests to company default prediction are introduced and explained, so result and 

finding can be finally displayed and comprehended. Additionally, an R code has been 

developed in order to permit the reproduction of this analysis on other topics. The aim of the 

function created is to permit an easier and quicker process for the application of the random 

forest algorithm. 

 

3.1. RESEARCH QUESTION 

The possible perspectives from which to analyze such topic are numerous. Such variety 

permits to identify many reasons for doing such research and several ways in which the study 

can be assessed, as provided in Chapter 2. 

With the aim of extending the literature on such topic, in this study random forests are 

used to address the research question “Can the random forest algorithm predict correctly 

company default?”. Within this question, several others will be addressed by consequence, 

regarding both firm failure and Breiman’s (2001) algorithm: “What are the main predictors 

of company default?”, “How does missing data imputation affect the analysis?”, “Does the 

random forest overfit?” are some of them. 

Company’s failure and probability of default depend on macroeconomic factors as well as 

specific financial indicators (Hazak and Mannasoo, 2007). For this reason, firm failure is 

linked to a great number of factors which vary from across countries (e.g. investments in 
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company development and innovation, competition between companies, and so on). In order 

to address the research question considered, this study will focus on Italian based companies.  

 

3.2. DATA AND METHODOLOGY 

3.2.1. Data 

3.2.1.1. The AIDA data set 

The AIDA database is part of the Bureau van Dijk, founded in 1991, and acquired by 

Moody’s in 2017. Such organization provides consultation and help to clients in addressing 

a great array of issues and situations. For example, it provides assistance and coverage in 

strategy and business developments, managerial decision-making processes, mergers and 

acquisitions, financial investments, and many others. It does so thanks to the big data 

available (covering, worldwide, 365 million companies) 5.  

Specifically, regarding the Italian market, the AIDA - Analisi Informatizzata 

dell’Azienda - data set contains information regarding both Italian public and private 

companies. Overall, it covers over 2 million companies, reporting information, among 

others, related to companies’ structure, balance sheet, and financial ratios. The following 

paragraph will extend the understanding of variable selection. To obtain an initial 

comprehension of the data, Table 3.1 summarizes the predictors main statistics. 

The data downloaded from the AIDA Database required some preparation before it could 

be used on R6. Firstly, Legal Status, the variable to be predicted, shows the company’s status, 

distinguishing active companies form inactive ones. It has 10 values: Active, Active (default 

of payments), Active (receivership), Dissolved (merger), In Liquidation, Bankruptcy, 

Dissolved (bankruptcy), Dissolved, and Dissolved (liquidation). These have been changed 

to binary for simplicity; in section 2.1.1 of Chapter 2 it has been assumed that bankruptcies, 

company failures, and defaults, are considered equal, beyond the reasons for such events. 

While this assumption carries strong limitations, it is to some extent in line with the 

classification made in the AIDA database. In fact, in AIDA the data is grouped in two 

secgions, which in this research will be used as follows:  

- 1 has been assigned to Active, Active (default of payments), Active (receivership); 

                                                
5 AIDA Database https://www.bvdinfo.com/it-it/chi-siamo#secondaryMenuAnchor2  
6 See Appendix 2.2 for the codes. 
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- 0 has been assigned to Dissolved (merger), In Liquidation, Bankruptcy, Dissolved 

(bankruptcy), Dissolved, and Dissolved (liquidation). 

This provides both a limitation to the research and some useful insights. In fact, this 

underlines the complexity of predicting company default. The latter is an event which may 

happen in many different forms and is linked to various factors. Intuitively, any model trying 

to predict the probability of default will incur in a certain level of error due to this 

complexity. 

Secondly, missing values were recorded as n.a. and n.s., which is not readable by R. These 

have all been transformed to NA. Thirdly, except for Legal Status which has been 

transformed to factor, all other variables have been assumed to be numeric (with the 

exception of the ATECO code, which has been solely used to classify the data in section 

3.2.2.1.5). 

 

3.2.1.2. Variable selection 

The AIDA Database provides a numerous array of financial, structural, and strategical 

indicators, which permitted an initial approach with numerous variables. According to 

Breiman (2001), and confirmed by Papacharalampous and Tyralis (2017), one of the random 

forest algorithm’s strength is that it performs well with many variables. In the recursive 

splitting process, the random feature selection provides that a random group of n variables 

is taken at each node; followingly, each variable is analyzed in order to find the split that 

reduces at most the impurity of the data (i.e. Gini Index and Information Gain). According 

to the mean reduction of the Gini Index that each variable provides, the predictors are 

assigned a level of importance. The randomForest and the caret packages in R both 

provide useful functions that asses such importance. Linked to this, importantly, random 

forests do not overfit (Breiman, 2001; Moisen, 2005). If properly tuned, in fact, the model 

will focus on finding patterns within the data, but it will not be strictly connected solely on 

the training data. The methodology section will provide a proof that the number of variables 

does not influence significantly the results in a random forest analysis. 

The characteristics of the random forest algorithm, therefore, theoretically permit to 

include in this analysis all the indicators and figures present in the AIDA dataset. 

Nevertheless, some considerations are required. Firstly, the nature of the data and missing 
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values do not permit to include all indicators. Secondly, increasing the number of variables 

of the model significantly increases the time required for computations. Such additional 

time, as will be presented, does not provide an equivalent trade-off in terms of accuracy. 

Thirdly, in order to permit future comparison of predictive models, this study will consider 

variables in line with, among others, Beaver (1967), Altman (1968), Ciampi and Gordini 

(2008) and Edmister’s (1972) studies. In other words, this study will mainly focus on 

financial ratios, assuming these describe appropriately a company’s health situation. Finally, 

while the intent was to consider macroeconomic indicators as well (e.g. employees), due to 

missing data such variables could not be considered; moreover, imputing such data did not 

seem appropriate 

Followingly, the lists containing the variables that were initially considered for this 

analysis is provided7. In the end, some we not included in the analysis. 

 
 Profitability ratio 
 Earnings Before Inter. Tax Depr. Amm. 
Financial Indicators EBITDA/Sales 
Liquidity Ratio Return on Asset 
Current Ratio Return on Investment 
Current Liabilities/Tot Assets Return on Sales 
Leverage Return on Equity 
Coverage of Fixed Assets NetP&L/Operating P&L 
Cost of Debt  
Interest/Turnover Productivity Ratio 
Solvency Ratio8 Number of employees 
Share Funds/Liabilities Turnover per employee 
Net Financial Position Added value per employee 
Debt to equity  
Debt /EBITDA ratio Other significant data 
Banks/turnover Net working capital 
Management Ratios Gross profit 
Tot assets turnover (times) Net short-term assets 
Working cap turnover (times) Share funds - Fixed Assets 
 Cash Flow 
  

 

                                                
7 The ratios are listed and defined as reported in the AIDA database. 
8 By solvency ratio, the AIDA dataset provides the ratio between shareholder funds and total assets in 
percentage. Such ratio may also be known as the Shareholder Equity Ratio. 
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Banks/Turnover and has then been eliminated from the variables list due to a too high 

number of missing values. Productivity ratios, similarly, have not been included (see 

Appendix A for specifics regarding how these ratios and indicators have been computed). 

 

Overall the ratios and figures considered express the way in which a company uses its 

assets (efficiency ratios), its ability to meet short term obligations (liquidity ratios), its ability 

to not miss debt commitments (solvency ratios), and its profitability (profitability ratios). 

While other figures may be useful, they may not be appropriate given the variety of size and 

industry the companies are sampled from; the ratios, instead, permit comparisons. This is 

not due to scaling reasons, since random forests deal appropriately with mixed variables and 

different scales (Breiman, 2001). Rather, it is linked to the nature of the data (i.e. if a more 

homogeneous sample of companies were taken, likely, more variables could be included in 

the analysis). Nevertheless, increasing the number of variables does not mean a certain 

increase in accuracy. 

 

 

3.2.2. Methodology 

In order to increase the generality of the model, this study’s main dataset is made of 

552,500 companies, which have been selected randomly from the AIDA dataset. Given the 

aim of testing the random forests algorithm’s ability in predicting company default, the latter 

permitted to choose a sample of companies which covers, assumingly, the greatest number 

of company characteristics available in the AIDA dataset. These are, for instance, as many 

variations in the ATECO 2007 classification, both private and public companies, and a 

representation in the data of both small, medium, and large companies. It would be 

interesting to try the model on a more limited homogeneous dataset as well. 

While the model has been developed and trained using the main dataset, an addition of 

103,446 companies’ information and figures have been downloaded for the final testing of 

the model. 

The following segments will focus on the methodology of the research, results will be 

provided later on in the chapter. The quantitative part of this research has been developed in 

two sections. Firstly, a study of the random forest applied to the data permitted to identify 
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the best scenario for its application. Secondly, the model has been used on new data in order 

to verify the consistency of the model and test its accuracy. 

 

 

3.2.2.1. Development of the model 

The following section will present the steps which were followed throughout the analysis 

in order to identify the best characteristics to increase the model’s accuracy. While the main 

analysis is limited to the first two steps, the other ones have been implemented in order to 

sustain the previous ones and provide helpful insights. In fact, step 3 and step 4 strengthen 

the methodology and approaches taken in the main analysis. Step 5, finally, shows an 

analysis a homogeneous dataset. 

 
3.2.2.1.1. Step 1: preparation of data and samples 

At first, rather than fixing the missing values issue, the latter have been eliminated from 

the data set and the algorithm has been run. The reason for which this has not been considered 

as an acceptable result is presented in the section 3.2.3. For computational reasons, a dataset 

of 552,500 companies was not feasible for analysis. Therefore, it has been divided in 9 

smaller datasets sampled randomly with replacement from the main data set. This permitted 

to extend the research to various opportunities of analysis. Finally, a collection of companies 

has been created, which are all classified with similar ATECO 2007 descriptions (for 

simplicity, this will be referred to as Sample 10). Table 3.1 groups the size information and 

the purpose for which the sub-datasets were used.  

For each data set an imputation of the missing data has been implemented. This was a 

required step given that, in relation to random forests, R requires the data clean of NA. 

Specifics will be provided in the section 3.2.3, covering both missing values and additional 

computation time. 
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Table 3.1: Data information: size, predictors, purpose 

Dataset Name nrows               
(companies) 

ncol                     
(variables/predictors) Purpose 

Main Dataset 55,250 26   
Sample 1 55,250 26 

Sample 1 to 5 have been used to test 
random forest with 80% training and 

20% testing data sets. 

Sample 2 55,250 26 
Sample 3 55,250 26 
Sample 4 55,250 26 
Sample 5 55,250 26 

Sample 6 55,250 26 Used to test random forest with 
increased imputation parameters. 

Sample 7 55,250 26 Used to test random forest with 70% 
training and 30% testing data sets. 

Sample 8 55,250 26 Used to test random forest with 90% 
training and 10% testing data sets. 

Sample 9 55,250 26 Used to test random forest with 
fewer predictors. 

Sample 10 55,250 26 Used to test random forest on a 
homogeneous data set. 

Data Source: AIDA database 
 

3.2.2.1.2. Step 2: analysis across five samples 

This step involves the analysis on the first five samples. While Breiman (1996; 2001) 

and Breiman et al. (1994) suggests 90% of the data should be used in training, such a big 

dataset permits to reduce such value. In fact, Breiman (2001) advises the use of high 

percentages of data for training so thata as much as possible of the information available 

within the data is used to improve the model. Nevertheless, a random forest computation has 

been run with training and testing set at, respectively, 90% and 10%; the results show no 

significant improvement. 

For each random forest created, the parameters have been tuned, so that each parameter 

would lead to the greatest accuracy possible. Specifically, this involved finding the best mtry, 

the best maxnodes, and the best ntree. No significant difference occurs by changing the 

nodesize, which has been kept constant at 27. While Breiman (2001) states the trees in 

random forests can be fully grown, identifying the best values for the parameters regarding 

the trees’ depth permitted to maintain the model’s accuracy while reducing the computation 
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time. Finally, the random forest with the appropriate parameters have been generated, and 

its results and time of computation have been recorded. 

 
3.2.2.1.3. Step 3: change of training and testing data set size 

As previously mentioned, Breiman (1996; 2001) and Breiman et al. (1994) advocate for 

a training set which amounts to 90% of the data. This section has been carried through in 

order to explore the possibilities that better accuracy can be achieved changing these 

parameters. For this reason, both an increase and a decrease of the percentage of data used 

for training has been considered. 

The equivalent steps taken in step 2 have been repeated, adapting accordingly the training 

and testing data sets. 

 
3.2.2.1.4. Step 4: reduction of number of variables and predictors 

An important feature of random forests is its assessment of variable importance. By 

recursively generating trees, the variables used which accounted for the greatest impurity 

reduction, on average. By constructing n trees, the variable importance is quantified n times 

and average by the random forest algorithm. This information has been used to construct this 

step. 

The variable importance has been assessed from Sample 1 to Sample 5, and a score from 1 

to 26 has been awarded to the predictors. By summing the results of each run, a list of 

variables has been obtained, in which the ones with the lowest score are the most important 

predictors. This creates a limitation given that the difference in importance across variables 

is not equal for all variables. Nevertheless, assumedly, by averaging over five different 

samples this limitation is lessened. Finally, a random forest is generated following the 

procedures of step 2 considering only the first 15 predictors in order of importance. 

 

3.2.2.1.5. Step 5: a homogeneous dataset 

This step has been mainly designed to provide an initial view of the application of 

random forests in homogeneous scenarios. Therefore, this should be view as incentive and 

basis to try to prove if such algorithm is able to predict default more precisely in some sectors 

rather than others. 
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Table 3.2. summarizes the composition of the dataset. Choosing one single ATECO 2007 

code seemed reductive. Therefore, all companies belonging to the hotels and renting 

industries have been included. 

 

        Table 3.2: Composition of data of Sample 10 

ATECO 2007 
code 

ATECO 2007 description       
(Italian) 

ATECO 2007 description      
(English) 

550000 Alloggi Accomodation/Housing 

551000 Alberghi Hotels 

552000 Alloggi per vacanze e altre strutture 
per brevi soggiorni 

Holiday accommodation and other 
facilities for short stays 

552010 Villaggi turistici Resorts 

552020 Ostelli della gioventù Youth Hostels 

552030 Rifugi di montagna Mountain Huts 

552040 Colonie marine e montane Marine and Mountain Colonies 

552050 Affittacamere per brevi soggiorni, 
case ed appartamenti per vacanze, 
bed and breakfast, residence 

Guest houses for short stays, holiday 
homes and apartments, bed and 
breakfasts, residences 552051 

         Data Source: AIDA database 
 

The equivalent steps taken in step 2 have been repeated, using the same 80% of the data for 

training and 20% for testing. 

 

3.2.2.2. Training and testing of the final model 

Having identified the main characteristics and the parameters which provide the highest 

accuracy, these have been used to test the algorithm. A training set made of companies 

extracted in the previous analyses has been prepared, selecting 110,533 companies, and it 

has been used to train the model. The parameters used are those that, by observing all steps 

of the “Development of Model” phase, provide greater accuracy. Finally, rather than diving 

the data in two sets for training and testing, a new dataset has been prepared, composed of 

103,446 companies which have never been used in the previous steps. The algorithm has 

followingly been used to make a prediction of the status of such companies. 
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3.2.3. Main issues  

3.2.3.1. Missing values 

While random forests can handle, in theory, missing data (Breiman, 2001; Biau & 

Scornet, 2010), from a practical point of view in R programming considerations are required 

given that assumptions and adjustments need to be done.  

In theory, an estimation of the missing values is implemented by the algorithms by 

constructing a proximity matrix, which groups the proximity of pairs of observations 

computed (Biau & Scornet, 2010). In other words, the algorithm will search for similar ones 

and replace the respective missing value.  

From a practical point of view, it should be noted that both the R packages that provide 

functions for this analysis, caret and randomForest, require either a dataset with no 

missing values or specifications regarding how to deal with eventual NA encountered. Given 

the unmissable presence of missing data, this issue has been addressed as follows. 

Firstly, a trial has been done specifying that all companies with at least one missing value 

should not be considered in the analysis. This, of course, led to reduce the dataset (64,631 

companies). The results obtained are displayed in Table 3.3. 

 

                                        Table 3.3: Eliminating NAs 

  Value 

Er
ro

rs
 Type I 91.02% 

Type II 0.56% 
OOB Estimate 11.48% 

Accuracy 89.06% 
NIR 88.44% 

p-value 0.0215 
                                                Data Source: AIDA database 
 

With the caret and the randomForest packages in r, several figures are shown when the 

model’s results are printed. Specifically, among others, two sections are relevant: one 

provides information regarding the model errors, quantifying the out of bag error and 

providing measurements of the Type I error, or falsely predicted positives, (i.e. a company 

is predicted defaulted when it is active) and the Type II error, or falsely predicted negatives 

(i.e. a company is predicted active when it is defaulted). The other is linked to the model’s 
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accuracy and significance. In this case, as described in the caret package description 

available through the help() function in R, a 95 percent confidence interval is used when 

computing the accuracy of the model, and a one-sided test is run to see if the model performs 

better than the no information rate prediction. Therefore, by observing the p-value, it is 

possible to verify, or not, the correctness of the hypothesis. 

An 89.06% accuracy and a relatively low OOB error estimate may lead to believe the model 

performed well. Firstly, the p-value is not small enough to guarantee statistical significance 

of the result. Secondly, the No Information Rate is really high, and not much lower than the 

accuracy. This underlines the likelihood that the elimination of the companies led to 

considering mostly companies which are still active (i.e. defaulted companies are more 

incline to having missing data). Consequently, confirming this theory, the errors underline 

where the model does not predict well. Almost the totality of the error is done on predicting, 

as defaulted, active companies. This should lead to raise the attention regardless of the 

relatively low OOB error. Therefore, these considerations show how in such conditions the 

model does not identify properly the patterns regarding the defaulted companies, leading, in 

fact, to many firms classifies as defaulted but actually still active. It should be noted that 

these results are not linked to the size of the dataset used, as will be shown in the results 

section, rather on the composition and nature of the dataset. 

The purpose of this study is to test random forests and their performance, and to find a model 

which is appropriate and applicable with various and diversified conditions, rather than 

showcasing high accuracy measurements which do not have statistical significance. To do 

so, trials have been carried out in different situations. Such experiments will be presented 

throughout the chapter.  

In order to maintain as much data information possible, an imputation approach has been 

implemented. Specifically, the missing values have been imputed using random forest 

iterations, therefore predicting recursively the missing figures. Such algorithm stops its 

process either when the maximum number of iterations is reached, or when the model senses 

that no improvement in the prediction is reached by computing the differences in the data 

across the iterations (Stekhoven, 2011; Stekhoven and Buhlmann, 2012) The imputation 

with the smallest differences generates the dataset to be used. 
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Imputated_SampleData <- missForest(Sample, maxiter = 10, ntree = 100,  

                                   variablewise = T, verbose = T) 

 
Specifically, maxiter refers to the maximum number of iterations the code should 

implement, and ntree reports the number of trees the forest constructed is made of. As 

provided in Stekhoven (2011) with a big data set less iterations and trees are required. For 

computation reasons, these parameters have been set to 3 and 20 respectively. In order to 

prove this, a trial has been done (Sample 6) with 5 iterations and 50 trees. The results, 

displayed in Table 3.4, are in line with those of the study’s main tests on Samples from 1 to 

5 which will be displayed in the following sections. Therefore, there is not a useful trade-

off, in this case, between the accuracy of the model and the additional computation time 

required (about 3 hours above the average). 
An important aspect that should be underlined is that the imputation of the data does not 

increase the information of the data. On the other hand, it should be noted that imputation of 

data may influence negatively the result of the analysis by increasing the error. For this 

reason, in order to verify the correctness of using missForest with this type of data, a test 

has been run by comparing a complete dataset (Sample 2) and the imputed dataset, 

quantifying the error present between the two. Such error result to be quite high; in a five-

iteration run it falls within the range of [0.46; 0.53]. This will have an impact on the final 

results of the study. 

 

    Table 3.4: Imputation of data with maxiter=5 and ntree=50 
   Time (s) Time (h/m/s)     

Sa
m

pl
e 

6  

Im
pu

ta
tio

n 
of

 
N

A
s 

Iteration 1 9778.683 2:42:59     
Iteration 2 8681.916 2:24:42    Value 
Iteration 3 8518.775 2:21:59  

Er
ro

rs
 Type I 51.85% 

Iteration 4 6988.686 1:56:29  Type II 8.55% 
Iteration 5 6756.202 1:52:36  OOB Estimate 22.40% 

Total 40724.262 11:18:44  Accuracy 78.01% 
Best mtry 5281.858 1:28:02  NIR 67.66% 

Best maxnodes 22824 6:20:24  p-value < 2.2e-16 
Best ntrees 6608.394 1:50:08     

Final Random Forest 1115.472 0:18:35     
      Data Source: AIDA database 
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As provided by Mukherjee et al. (2013) missForest tends to provide better results than 

other imputation methods. To gain a deeper insight, another imputation method has been 

implemented, through the R package mice, which the objective of finding a lower error and 

a better imputed dataset. While such function generally seems to work appropriately, its 

results are not acceptable in this case, given that the data is not missing randomly, which is 

an important assumption for the package mice. Moreover, given the type of data, collinearity 

and possible linear dependencies prevent the use of such method, which provides high errors 

and inaccurate predictions. This provides possibilities for further research and development 

of this study, trying to find more suitable imputation methods. 

Given the previous assumption that most NAs are linked to defaulted companies, such 

error will likely result in an increase in the type I error (i.e. companies predicted defaulted 

but actually active). The reason for this assumption is linked to the fact that by imputing 

many values for defaulted companies and given the fact that the imputation process generates 

high errors, the difficulty in identifying patters which permit default prediction increases. 

Unfortunately, the nature of the data, and its analysis through the random forest algorithm, 

encounter such issue. An additional complication due to the imputation of the data of such a 

large dataset is linked to the high computation time it required. Such topic will be addressed 

in the following section. In evaluating the final models, then, these should be taken into 

consideration.  

The following Table 3.5 reports the differences computed in the imputation of the first five 

samples. Highlighted are, in fact, the smallest differences, and, therefore, the imputed data 

sets which were used. As shown, some samples (i.e. Sample 1, 4, and 5) did not require more 

than three iterations to detect the best imputation, confirming the assumptions previously 

made regarding the imputation of large data sets. 
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        Tables 3.5: Differences and imputation parameters 

  

Differences 
(predictor variables) 

Differences      
(dependent variable) 

Characteristics              
(max n. iterations, n. trees) 

Sa
m

pl
e 

1 Iteration 1 0.001155294 0 maxiter = 3 , ntree = 20 
Iteration 2 0.000289698 0 maxiter = 3 , ntree = 20 
Iteration 3 0.000296456 0 maxiter = 3 , ntree = 20      

Sa
m

pl
e 

2 Iteration 1 0.01837136 0 maxiter = 3 , ntree = 20 
Iteration 2 0.01270615 0 maxiter = 3 , ntree = 20 
Iteration 3 0.00141429 0 maxiter = 3 , ntree = 20      

Sa
m

pl
e 

3 Iteration 1 0.006264864 0 maxiter = 3 , ntree = 20 
Iteration 2 0.003706305 0 maxiter = 3 , ntree = 20 
Iteration 3 0.002901615 0 maxiter = 3 , ntree = 20      

Sa
m

pl
e 

4  Iteration 1 0.01743522 0 maxiter = 3 , ntree = 20 
Iteration 2 0.002134286 0 maxiter = 3 , ntree = 20 
Iteration 3 0.002766341 0 maxiter = 3 , ntree = 20      

Sa
m

pl
e 

5  Iteration 1 0.001288294 0 maxiter = 3 , ntree = 20 
Iteration 2 0.000169625 0 maxiter = 3 , ntree = 20 
Iteration 3 0.000364519 0 maxiter = 3 , ntree = 20 

           Data Source: AIDA database 
 

It can be noted that the differences for the dependent variable are always equal to 0, meaning 

that the dataset does not have any missing values regarding the Legal Status of the 

companies. 

 

 

3.2.3.2. Computing time  

One important issue related to this research is the time required to run computations. 

While this does not influence the results, this should be regarded as a limitation rather than 

an issue impacting the final result. The timing has been registered by the R package tictoc. 

The time required to prepare the data (without considering the time to download the data) 

is not significant. 
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   Table 3.6: Computation times for imputation, tuning, and random forest 

 
 

 

 
   Data Source: AIDA database 
 

For these calculations a machine with the following characteristics has been used: Dual 

Core Intel Core i5, with a processor speed of 2.3 GHz, and 8GB of RAM. 

The topic should be divided in two parts. Firstly, the random forest algorithm itself does 

not require much time for computation. As Table 3.7 reports, on average, in the main 

analysis, it took 23 minutes to generate the forest. The result differs considering the tuning 

process. Specifically, finding the best number of trees to be constructed required almost 2 

hours. A dispute in the literature is ongoing in relation to the number of trees to be 

constructed. For instance, Oshiro et. al. (cited in Papacharalampous and Tyralis, 2017) 

believes only 64 to 128 trees are necessary, while Kuhn and Johnson (cited in 

Papacharalampous and Tyralis, 2017) suggests using at least 1000 trees. In this research, not 

being able to detect and value which approach is the most suitable, the number of trees has 

been computed for every case; this, of course, led to an increase in computational cost. 

Secondly, the imputation of the data accounts itself for 3 hours of computation, on average.  
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        Table 3.7: Sample 1 to 5 average times and total average times 
    Average Time (h/m/s) 
 Time (h/m/s)  Average Time per Sample 8:00:48 

Sample 1 7:17:27  Tot Iterations 3:38:29 
Sample 2 8:21:24  Best mtry 1:17:11 
Sample 3 8:02:03  Best maxnodes 0:47:51 
Sample 4 7:36:21  Best ntrees 1:53:41 
Sample 5 8:46:44  Total Tuning 3:58:43 

   Final Random Forest 0:23:36 
          Data Source: AIDA database 
 

On average, the entire process for each sample required 8 hours of computations. The timing 

for steps 3, 4, and 5 are equivalent. 

While a stronger calculator would likely reduce the average time, the time required for these 

computations are high. As previously stated, this does not affect the results. In comparing 

different models, though, for the same accuracy and error estimate the computational cost of 

running a model may be a key factor in the choice between two models.  

In general, considering that the imputation of the data was necessary for the nature of the 

data in this case, but may not be required in every study, and assuming a fixed number of 

trees as provided by various studies, generating a random forest with a dataset of about 55 

thousand units would require approximately 2 hours and a half. 

 

3.2.3.3. Correlation among predictors 

The final considerations required before presenting the results of this study concern the 

correlation among predictors. Constructing a great number of trees, each on its own data 

random forests are able to obviate significantly such issue. Nevertheless, the correlation 

among predictors may still have an impact. For this reason, the correlation between the 

variables has been computed and graphed for all five samples used in the main analysis in 

order to consider all possibilities. Figure 3.1 shows the results for Sample 19.  Given that the 

financial indicators and ratios are computed on figures from the company’s balance sheet, a 

certain level of collinearity occurs.  

                                                
9 The correlation graphs for the other samples did not show significant differences from Figure 3.1, therefore 
have not been presented. 
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                  Figure 3.1: Correlation among predictors in Sample 1  

 
                      Data Source: AIDA database 
 

The reason for which this information is observed is to detect how many variables are 

correlated and the extent to which they are correlated. Consider the splitting process in the 

decision trees. Once a predictor is used to decrease the impurity of a node, it directly means 

that all variables which positively correlated to it will be less likely to be used given that two 

correlated predictors both reduce the same impurity. 

As it can be observed in Figure 3.1, not many variables are highly correlated (e.g. Gross 

Profit with Cash Flow, Gross Profit with Net Working Capital, Share Funds - Fixed Assets 

with Net Financial Position). Given the small number of such group, it is reasonable to 

assume that with its randomization procedures the algorithm will obviate entirely such issue. 

 

 

3.3.RESULTS AND FINDINGS 

3.3.1. Results: development of the model 

3.3.1.1. Step 2 results: analysis across five samples 

This part of the analysis concerns five sub-data sets, sampled randomly with replacement 

from the main data set. The reason for repeating the analysis over various samples is to test 

the consistency of the model. Table 3.8 summarizes the results obtained for each sample. 
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       Table 3.8: Accuracy and other results, Sample 1 to 5, Step 2 

 
          Data Source: AIDA database 
 

In order to evaluate a predictive model, the accuracy measurement itself is not sufficient. 

By introducing the No Information Rate (NIR), though, the assessment of the model’s 

predictive power can be contextualized. The NIR represents the prediction accuracy based 

exclusively on the dependent variable’s distribution. In other words, it represents the best 

guess at predicting, in this case, companies’ status (Active or Defaulted) in the five samples 

considered. The NIR, then, is equivalent at the percentage of the majority’s class (i.e. in this 

case, Active). Intuitively, a model with accuracy below the NIR level shouldn’t be 

considered. The model trained in this analysis, on average, performed 11.13% above the 

NIR. 

The Out-Of-Bag error (i.e. the error computed during the bagging process on the data 

not sampled for training) resulted from these analysis amounts to about 21% on average. 

Building on this, the OOB score (i.e. OOB accuracy) can be easily derived and quantified at 

about 79%. Such results underline the consistency of the model. In fact, the predictive 

accuracy on both the non-sampled training set, and on the testing dataset, are approximately 
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equal. This result is promising. Regarding the OBB error, it should be noted that its 

importance in a binary classification test may be limited (Hornung and Janitza, 2018). The 

authors, in fact, state that in some tests, and in binary classification predictions specifically, 

the OOB error may be overestimated. This result suggests that the accuracy of this model 

may be greater than those provided in Table 3.9, averaging the results of the five samples. 

  

                                              Table 3.9: Average results, Step 2 

 
                                                        Data Source: AIDA database 
 

As previously assumed, type I errors result to be quite high. Given the premises regarding 

the nature of the data and the imputation errors, the relevance of such measurement in this 

analysis should be carefully weighted. The promising results in terms of model consistency 

and accuracy, in fact, should not be run down by this error. Nevertheless, further analysis 

should be carried in order to quantify the true value of the wrongly predicted defaulted 

companies. 

A representation of the errors can be found in Figures 3.2 to 3.6. In terms of error 

quantification, the consistency of the model still holds. 

 

Overall, these performances provide promising results in generating a random forest with 

the following parameters10: mtry = 10, maxnodes = 34, nodesize = 27, and ntree = 1000.  

 

 

 

 

                                                
10 Such values have been obtained averaging the parameters of the five samples. Specifically, the 
results obtained are mtry = 9.6, maxnodes = 33.6, nodesize = 27, and ntree = 1000. 



 

 98 

 

Figures 3.2 to 3.6 
3.2 Sample 1: class errors and OOB errors  

 

3.3 Sample 2: class errors and OOB errors 

 
3.4 Sample 3: class errors and OOB errors 

 

3.5 Sample 4: class errors and OOB errors 

 
3.6 Sample 5: class errors and OOB errors 

 

 

     Data Source: AIDA database 
 

Finally, the importance of the variable has been assessed and graphed (Figures 3.7 to 

3.11). This result is helpful in understanding which variables the algorithm considers more 

relevant as predictors. Moreover, this result has been used in Step 4 to test the model with a 

lower number of variables. The results shown in Figures 3.7 to 3.11, though, may suggest 
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the inconsistency of random forest across samples. Nevertheless, by taking into 

consideration the limitations of the datasets and the adjustments made in this research, it can 

be observed that often the position of a predictor variable in one figure with respect to the 

others figures changes of approximately 2 to 5 positions (e.g. observe Coverage of Fixed 

Assets, Gross Profit and Current Ratio). Those whose position varies significantly across 

Figures 3.7 to 3.11 may be heavily impacted by the complexity and diversity of the data.  

 

Figures 3.7 to 3.11: variable importance, Sample 1 to 5 
3.7 Sample 1: variable importance 

 

3.8 Sample 2: variable importance 

3.9 Sample 3: variable importance 

     

3.10 Sample 4: variable importance 

 
3.11 Sample 5: variable importance 

     

 

Data Source: AIDA database 
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Table 3.12 presents these results averaged across the five samples. Specifically, the variables 

which are considered most important in predicting the company’s default are Share 

Funds/Liabilities, Coverage of Fixed Assets, Gross Profit, Cost of Debit, Return on Assets 

and the Solvency Ratio. Nevertheless, as Figures 3.7 to 3.11 show, few variables have very 

low importance. Surprisingly, the Current Ratio, Liquidity Ratio, and the Return on Sales, 

in some samples, tend to account for low importance.  

 
3.3.1.2. Step 3 results: change of training and testing data set size 

Given the extensive amount of data, no significant differences emerge from changing the 

percentage of data used for training and testing the model. As Table 3.10 and 3.11 show, 

results are very similar to those of Table 3.9. 

 

                                               Table 3.10: Results 70% train 30% test, Step 3 

 
                                                        Data Source: AIDA database 
 

                                              Table 3.11: Results 90% train 10% test, Step 3 

 
                                                        Data Source: AIDA database 
 

In the application of this algorithm in relation to company default, with this dataset, then, 

this parameter is not relevant in the ranges analyzed.  
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3.3.1.3. Step 4 results: reduction of number variables and predictors 

Step 4 has been designed to confirm random forests’ strength of not being influenced 

significantly by a high number of predictors. Ideally, the experiment should be run several 

times and with a different number of variables. Nevertheless, as Table 3.14 shows, the results 

are in line with the other obtained previously. 

As represented in Figures from 3.7 to 3.11, the difference, in term of importance, from one 

predictor to the other is not equal. By recursively considering the importance across five 

samples though, we may assume that assigning a score from 1 to 26 does not alter the 

analysis. Specifically, it is safe to assume the first 15 variables highlighted in table 3.12 are 

truly the most important variables. Table 3.12 reports the order of importance for each 

sample and provides a final list in which the predictors are ordered from the most important 

to the least important. 

 

                  Table 3.12: Variable Importance 

 
                      Data Source: AIDA database 
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Then, variables from position 16 onwards have not been included in the code. Finally, the 

output for this run are provided in Table 3.13. 

 

                                        Table 3.13: Results, Step 4 

 
                                                Data Source: AIDA database 
 

As it can be observed, the results of this experiment are in conformity with those 

averaged in Table 3.9. Importantly, these results confirm the theory that Breiman’s (2001) 

algorithm handles correctly both runs with many of fewer predictors. 

 
3.3.1.4. Step 5 results: a homogeneous data set 

One of the main purposes of this research is to provide a model which is generally 

applicable. In other words, a method which delivers good performance across different 

industries and sectors. This experiment presents a starting point for evaluating the possibility 

of developing specified sectors’ random forest and compare performances with the model 

established in Step 2. 

While this test could be run on any sector, here the focus is placed on the hotels and renting 

sector. With the purpose of comparison with the results of Table 3.10, 80% of the data has 

been used for training and 20% for testing. 

By observing results in Table 3.14, some considerations are required. Firstly, regardless 

of the reduction of data (30,349 companies), the results show that the accuracy is statistically 

lower than the no information rate. Secondly, the model provides for a great accuracy (4.16% 

higher than that of Table 3.9). Nevertheless, the No Information Rate increased by 11.06%, 

meaning that the chances of predicting correctly based solely on Legal Status’ distribution 

has increased greatly. Thirdly, regarding the error, the OOB estimate decreased significantly.  
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                                         Table 3.14: Results, Step 5 

 
                                                  Data Source: AIDA database 
 

Considering these observations, in this case, the increase in accuracy does not provide for a 

better model, given it generates a higher error in defaulted companies’ prediction (see type 

I error). This may be linked to the fact that in Sample 10 24,034 companies are Active, and 

only 6,315 are Defaulted. Moreover, in relation to the no information rate, it is shown that 

this experiments provides a smaller difference between the accuracy and the NIR, compared 

to the main analysis. 

 

3.3.2. Results: training and testing of final model 

Building on the results and considerations obtained from the previously explained steps, 

a final model has been implemented. The results of this test, together with those of the 

analysis across five samples, provide a clearer picture of the application of Breiman’s (2001) 

algorithm to predicting company’s default. 

This final implementation of the algorithm has been done to obtain both further proof of 

the consistency of the model. For these reasons, a training and testing data sets have been 

designed. Moreover, a different approach has been developed for this section: 

- Given that the purpose of the analysis of this section is to develop a model built on the 

information and features obtained in the previous steps, the random forest has been 

trained using a sample of 110,533 companies obtained from the main dataset. 

- In addition to the first dataset of 552,500 companies, a new test set of 103,446 firms has 

been downloaded. This permits to remove the chance that the model is familiarized with 

the data. 
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The results of the main analysis shown in step 2 show that the parameters which provide 

greater accuracy are: mtry = 10, maxnodes = 34, nodesize = 27, and ntree = 1000. Therefore, 

these have been used to tune the random forest. Table 3.15 reports the results obtained. As 

it can be observed, the results do not differ much from those of Table 3.10, providing 

promising results both in terms of consistency and accuracy. It should be kept in mind the 

data used for training and testing still required data imputation, given that not enough 

companies with no missing data were available to perform an analysis without imputation. 

Likely, by improving the imputation process, and by finding alternatives to the use of the 

missForest approach, both type I error and the OOB error should decrease, and the 

accuracy should increase. Nevertheless, the accuracy of 78.13% obtained is 12.01 

percentage points higher than the no information rate.  

Most prediction errors, though, are done in predicting as defaulted active companies (e.g. 

type I error). Given the model seems to perform appropriately, this requires further research 

in order to identify the reason for such high value. For instance, some possible hypotheses 

are: 

- Such increase is generated by the imputation process; 

- The complexity of the topic will likely be characterized by a relatively high type I error. 

 
                                        Table 3.15: Random Forest Final Results 

  Value 

Er
ro

rs
 Type I 50.02% 

Type II 8.72% 
OOB Estimate 21.96% 

Accuracy 78.13% 
NIR 66.12% 

p-value <2.2e-16 
                                         Data Source: AIDA database 

 
In addition to the results shown in Table 3.15, Figure 3.12 provides a visual representation 

of the errors. 
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              Figure 3.12: Type 1, Type II, and OOB error of Final Model 

 
          Data Source: AIDA Database 

 

As Figure 3.12 shows, the error on defaulted predictions is much higher than the out-of-bag error 

and the error on active company’s prediction. As described in Chapter 1, the results obtained by 

Breiman (2001) regarding the upper bound limit for the generalization error PE* is confirmed by 

Figure 3.12: by growing a forest with more than approximately 250 tress the out-of-bag error remains 

constant. 

 

3.3.3. Variable importance and causality interpretation 

Figure 3.13 provides useful results to compare this model with those of Table 3.13. 

Within the first fifteen predictors found in the previous analysis, 13 out of 15 have obtained 

a position in the list of the fifteen most important predictors. 

Considering the totality of tests run, all predictors used in this study are attributed some level 

of importance in at least one test. This underlines that no variables selected was wrongly 

introduced in the analysis. Further analyses are required in order to confirm this assumption. 

Finally, Figures 3.13, and 3.7 to 3.11 show some level of consistency among the attribution 

of importance to predictor variables across the tests. 
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              Figure 3.13: Variable Importance of Final Model 

 
                   Data Source: AIDA database 
 

The following list presents the variables which appear to be most important in the description 

of company failure and a brief description in order to observe the reason for which they are 

considered important: 

- Coverage of Fixed Assets: it’s a measurement of a company’s ability to repay its debts 

by selling or liquidating its assets. It is not a surprise that this variable was among the 

best six predictors in all five samples considered initially and in the final test. This 

indicator provides an indication of how risky a company is; 

- Gross Profit: this underlines the relevance of both revenues and costs of goods sold, 

fundamental for a company’s success; 

- Net Working Capital: this measurement includes both current assets and current 

liabilities. While surprisingly Cash Flow was not considered as one of the most 

important variables, through net working capital we can observe that it is taken into 

consideration. Moreover, the same is true for the Liquidity Ratio variable. A high 

liquidity level manifests its potential to grow; on the other hand, a low liquidity 

availability leads to default; 
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- Cost of Debt: it is linked to a company’s capital structure and provides an indication of 

a company’s ability to obtain debt appropriately. Likely, the importance of this variable 

is connected to riskiness of funding with debt; 

- Debt to Equity Ratio, Leverage, and Solvency Ratio: these figures are all linked to a 

company’s financial leverage. In fact, they move together. By providing an indication 

of the proportion of equity and debt funding, therefore revealing a company’s level of 

risk, given that equity funding is safer than debt funding; 

- Return on Asset: a measure of efficiency; by observing a company’ ROA, an evaluation 

of the firm’s management can be done. 

 

In order to further evaluate the importance of these variables listed above, the individual 

conditional expectation plot have been graphed (Figure 3.14). Analyzing these results, 

though, it should be considered that some variables are correlated (see Figure 3.1). This 

presents a limitation to using such approach (Friedman, 2001; Hastie and Zhao, 2019) While 

the correlation is significant only for some of the variables, further considerations should be 

done in order to obtain significant results.  

Figure 3.14 provides some useful insights regarding the predictors which were most 

important in decreasing the impurity of the final random forest generated in this study. First, 

all variables have a positive impact on the model’s classification of default. This, to some 

extent, confirms the validity of the process that led to choosing these variables. Secondly, 

Coverage of Fixed Assets, the variable which often provided the highest reduction of the 

Gini Index, appears to have the highest positive influence on the model, compared to the 

other variables.  
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Figure 3.14: ICE plots Coverage of Fixed Assets, Gross Profit, Net Working Capital, Cost 
of Debt, Debt to Equity Ratio, Leverage, Solvency Ratio, and Return on Asset 

 
Data Source: AIDA database 
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The always positive influence of the predictors considered in Figure 3.14 suggested to extend 

the causality analysis to other variables which were not deemed important by the variable 

importance measurements. The result provided in Figure 3.15 indicate that Return on 

Investment, Cash Flow, Interest Turnover, and Return on Equity, regardless of the poor 

importance in the reduction of the nodes impurity, have a positive influence on the model. 

This suggests that variable importance shown in Figures 3.7 to 3.11 and Figure 3.13 should 

be addressed as “relative importance”. In other words, the fact that a variable may be less 

important in the classification process does not mean that such variable may not have a 

positive influence on the prediction of company failure.  

 

Figure 3.15: ICE plot Return on Investment, Cash Flow, Interest Turnover, and Return on 

Equity 

 
Data Source: AIDA database 
 

Figure 3.15 (a) and (b) provide useful information regarding the relationship between 

defaulted companies and Cash Flow and Return on Equity, respectively. Specifically, it is 
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shown the difference between positive and negative values. The steep increase in Figure 3.15 

(a), likely, is linked to the assumption that the increases in Cash Flow permit easier 

classification of Active companies. As a reminder, an increase in the y-axis is not equal to 

an increase in the classification accuracy, rather it shows the change in partial influence that 

a variable has on the model. Return on Equity has the same behavior. Similar relationship is 

shown by Gross Profit (Figure 3.14 (b)) and Net Working Capital (3.14 (c)). On the other 

hand, Interest Turnover in Figure 3.15 (c) manifests a decreasing influence in the model as 

the value of x increases. 

 

3.4. COMPARISON: DECISION TREE 

This section will provide a brief application of an alternative methods Decision trees are 

closely related to random forests, but often incur in overfitting issues. As for random forests, 

the software used to run the algorithm is R. In order to compare the different algorithms’ 

performances, the imputed datasets used for the random forest analysis have been used for 

decision trees as well. 

 

3.4.1. Decision Tree 

As described in the first chapter, decision trees and random forests are very similar. 

Specifically, decision trees are the foundation of random forests. With its algorithm, 

Breiman (2001) was able to use decision trees to implement a model which does not overfit, 

and, therefore, can be used in more generalized cases. The reason for creation of random 

forest was mainly provided by the fact than decision trees tend to overfit. By focusing on the 

data and their patters, trees memorize the data and obtain good performances only on that 

dataset. This is mainly linked to the depth of trees.  

Figure 3.17 plots a tree which was generated, trained, and tested using Sample 1. Such 

tree has been pruned in order to find the best situation possible, meaning the tree model 

resulted is neither too simple (with very few splits, resembling the model shown in Figure 

1.6 (a) in Chapter 1) and a tree which would certainly overfit (see Figure 1.6 (b)). In order 

to do so, at first, the tree was fully grown. Subsequently, following the theory presented in 

Chapter 1, the complexity parameter α ha been computed and used for pruning. Figure 1.17 
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is provided since it permits to observe the different splits and, together with Figure 3.16, 

draw conclusions regarding variable importance, by comparing it with the variable 

importance shown in Figure 3.7. 

 

                Figure 3.16: Variable importance, decision tree 

 
                       Data Source: AIDA database 
 

As Figure 3.17 shows, the root node has been split by using Coverage of Fixed Assets. 

Moreover, similarly to Figure 3.7, Coverage of Fixed Assets accounts for a great reduction 

in the data impurity. Followingly, the difference in importance between the remaining 

variables is not as strong as Coverage of Fixed Assets. Regardless of the similarities, there 

are several differences between the results shown in Figure 3.16 and those of Figure 3.7. In 

fact, beyond the first two variables in order of importance, the importance of the other 

predictor variables is measured equally by the two algorithms.   
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Figure 3.17: Decision Tree on Sample 1 

 
Data Source: AIDA Database 
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Finally, the model was tested on the testing set. 

 

                                       Table 3.16: Decision Tree on Sample 1 
 

 Predicted 
 

 Default Active 
A

ct
ua

l Default 3123 1187 
Active 2157 10176 

                                               Data Source: AIDA database 
 

Table 3.16 reports the confusion matrix generated by testing the decision tree on the testing dataset 

put aside in Sample 1. Formula (1.14) and (1.15) in Chapter 1 permit to compute the accuracy and 

the error rate of the model. The accuracy of this first test amounts to 79.91% and the error rate 

20.09%. These results, as expected, are in line, and slightly better, with those of Table 3.15. 

Nevertheless, further tests were run similarly to the analysis done with the final model of random 

forests (see Training and testing of final model). The pruned decision tree has been used with 

unseen data. The data set used were Sample 2 and Sample 3. The results reported in Tables 3.17 

and 3.18 show the difficulty encountered by the model. The reason for the decrease in performance 

is, assumedly, due to the complexity of the company default scenario. 

 

                Table 3.17: Decision tree on Sample 2 
 

 Predicted    

 

 Default Active  Accuracy Error Rate 

A
ct

ua
l Default 10174 7674  72.39% 27.61% 

Active 7528 29678    

                    Data Source: AIDA database 
 

                Table 3.18: Decision tree on Sample 3 
  Predicted    
  Default Active  Accuracy Error Rate 

A
ct

ua
l Default 1037 7537  67.15% 32.85% 

Active 7755 30221    

                    Data Source: AIDAdDatabase 
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The accuracy decreases significantly and the error increase for both tests. This should not lead to 

the conclusion that the decision tree algorithm does not perform well, but it underlines the 

difficulty of predicting company default with only one tree.   

 

3.5. R CODE: A REPRODUCIBLE FUNCTION 

Once the analysis has been concluded, the single codes used have been integrated in one 

function. The aim of this is to provide the reader with a function which permits to reproduce such 

analysis. Moreover, this function has been written in order to contribute to the framework in the 

literature regarding the application of machine learning algorithms and, specifically, random 

forests. By continuously improving such function, then, it would be possible to compare several 

machine learning algorithms with one command, and on a great variety of research questions and 

study fields. 

 The function, named RandomForestAnalysisDT(), can be found at the following link. 

 
https://drive.google.com/file/d/1m80ZESGlIxKHJwF04vDwrS2VGWQPqWg1/view?usp=sharin

g 

 
Specifically, the function in R, once the code is launched, can be used as 

 
RandomForestAnalysisDT(dataset, classvariable) 

 
Notes:  

- The variables in dataset must correspond to the columns and should be expessed as numeric 

or factors; 

- The response variable (classvariable) should be a factor; 

- classvariable must be a character object. Example: suppose the variable to classify is Species, 

then: classvariable = "Species". 
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Simply, this function will: 

- Impute missing data by predictions through random forests (uses missForest()); 

- Create random forest with training and testing dataset respectively 

         (70% , 30%) ,  (80% , 20%) ,  (90% , 10%)  

and it will tune each random forest; 

- Create a Decision Tree model; 

- Create an AdaBoost model; 

- Create a shiny app presenting a useful dashboard to visualize and compare results. 

Moreover, all results (e.g. tuning parameters) and plots11 are shown. Further information regarding 

the function’s functioning and the R packages required to run the function are provided in the 

introduction to the function.  

Finally, by considering the iris example introduced in Chapter 1, the function has been used to 

present a visualization of the output once the function is used. In order to fully use the features of 

the function, missing values are introduced in the data set. 

 

irisNA <- prodNA(iris, noNA = 0.20) # insert randomly NA in iris 

aRandomForestAnalysisDT(dataset= irisNA, classvariable= "Species") 

 

Once the computations are concluded, a new page (i.e. a shiny app) is generated showing the 

results obtained. The page will contain six different sections:  

1) Data Summary & Preparation; 

2) Random Forest 70% train and 30% test; 

3) Random Forest 80% train and 20% test; 

4) Random Forest 90% train and 10% test; 

5) Decision Tree (80%/20%); 

6) AdaBoost. 

 

                                                
11 By choosing the directory, all plots will be saved and named in the directory chosen. 
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While the decision tree and AdaBoost’s section provide an introduction the two approaches, the 

main use of visualizing through a shiny app is that it permits to compare different methods easily. 

Consider, for instance, it is needed to compare the error plot across the three random forest 

constructed with different training and testing sizes. Figure 3.18 provides a screen image of the 

output generated.  

 

                                   Figure 3.18: function’s output 

 

 
                                          Data Source: iris data set available in the R library “datasets” 

 

As the menu list in Figure 3.18 shows, the random forest models are thoroughly analyzed, and 

each result is printed in the shiny app. Other examples are shown in Figure 3.19 and 3.20. 
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                               Figure 3.19: irisNA missing values 

 
                                     Data Source: iris data set available in the R library “datasets” 
 

                     3.20: Main statistics, decision trees and AdaBoost 

 
                         Data Source: iris data set available in the R library “datasets” 
 

The possibilities for improving such function are numerous. Possibly, by expanding the number 

of methods and by further developing the ones already included, aRandomForestAnalysisDT()can 

provide a wide and detailed analysis into one single function. 
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4.  CONCLUSIONS AND FINDINGS 
 

4.1. CONCLUSIONS 

4.1.1. Discussion  

This research has been conducted in order to analyze the topic of credit risk and company 

default through an application of machine learning algorithms. Specifically, this analysis focused 

on firm failure classification and prediction through financial indicators (i.e. ratios). The reasons 

for this study are numerous and many research questions which were addressed. The main 

objective of this paper has been to construct a random forest model to verify its ability to predict 

whether a company failed or is still active. Within this area of study, attention has been placed on 

the importance of predicting company failure for business, investors, and governments.  

Given that random forests require proper tuning in order to perform well and given that 

machine learning methods can perform differently across various fields, the way this study has 

been structured provides to cover as many situations as possible. As provided in chapter 3, the 

analysis has been divided in different steps, which vary for size and type of data considered and 

for tuning parameters. By doing so, a wider array of scenarios was analyzed. Once the data had 

been downloaded, the dataset required preparation and cleaning. Both companies and predictors 

which presented too many missing data were not considered. Followingly, the remaining missing 

values have been imputed by predicting the data through random forests. This provided for the 

main limitation of this study, increasing the out-of-bag error. Regardless of the latter, the results 

are promising. 

One of the main achievements of this study is linked to the stability of the application of random 

forests with the data. As the results in chapter 3 present, the model shows high level of consistency 

with the data. This can be noted not only in terms of accuracy and performance on the validation 

test, but also by the fact that the accuracy on the validation test (i.e. accuracy on testing phase) out-

of-bag score obtained (i.e. accuracy on training phase). In the final model construction, an accuracy 

of 78.13% has been obtained, which is 12.01 percentage points above the no information rate, with 

a 21.96% out-of-bag error estimate (see Table 3.16). Likely, given how well random forest operate 

in terms of consistency, the accuracy of the final model could be increased. Nevertheless, given 
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the complexity of the topic, and given the fact that a company’s default is linked to many factors, 

achieving an accuracy that ranges between 77.85% and 80.03% (see Table 3.9) is a positive result. 

Also, it should be noted that this outcome is given solely by internal financial indicators. It is 

reasonable that a certain level of error is present given the impact of external factor (e.g. a 

recession) and of events which the model cannot consider (e.g. wrong business decisions). 

Overall all predictors used in this study are attributed some level of importance. This underlines 

that no variables selected was wrongly introduced in the analysis. The variables which appear to 

be most important in the description of company failure are Coverage of Fixed Assets, Gross 

Profit, Net Working Capital, Cost of Debt, Debt to Equity Ratio, Leverage, and Solvency Ratio, 

Return on Asset. The fact that many of the variables which are considered to be the most important 

predictors are linked to assets, their utilization, and leverage, is in line with financial methods such 

as the BSM model and the KVM model, which quantify a company’s probability of default based 

on assets, volatility of the assets, and leverage.  

As presented in the introduction to this study, studying company default has implications for 

three different parties. In fact, it can be noted that the variables listed above cover some 

fundamentals which should be considered in developing a firm strategy and organization. These 

are: profitability and potential to grow, efficiency, risk, and financial leverage. Businesses’ 

management, financial and private equity investors, and national and local governments should, 

therefore, focus on these variables. 

 

4.1.2. Limitations of the Research 

Overall the random forest algorithm seems an appropriate methodology to classify company 

default, but some considerations are required in order to comprehend the reasons for stating this 

theory. In fact, some error values, mainly obtained during the training phase of the models, in this 

study fairly raise the concerns in favor of the opposite. Some limitations impact the analysis and 

therefore some clarifications are required. Through this section an explanation of the factors that 

influenced the research will be carried, focusing briefly, at first, on the minor ones, to then 

conclude with the major limitation of the study. 
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This study aimed to provide additional elements to evaluate the performance of machine 

learning in predicting and classifying company default. Moreover, random forests, and the 

approach used in this research, permit the comparison with methods such as Beaver (1967) or 

Altman’s (1968). Nevertheless, the initial development of the model aimed to consider both 

internal and external factors influencing the company’s lifecycle (i.e. macroeconomic variables). 

Given that very few companies have values reported regarding employment, added values per 

employer, and similar, the research is limited to internal factors (i.e. financial ratios).  

It would be interesting to seek for causal relationship between the predictor independent 

variables and the dependent classes Active and Defaulted. This, though, is not possible with 

classification random forests since they only quantify correlation relationships.  

Finally, a higher computational power would have permitted to increase the correctness of the 

research and to reduce the computational cost. Specifically, greater datasets, therefore carrying 

more information, could have been analyzed. Nevertheless, in terms of computing time, this should 

be addressed as a complication rather than a limitation. 

Given the error of the imputation of missing data, it is reasonable to assume that the main 

limitation of this study is given by the nature of the data. The latter, in fact, has played a great role 

in the results obtained, impacting the study both directly and indirectly. Not being able to use 

randomForest or caret’s functions if missing value were present, an imputation approach has 

been used to complete the dataset. Imputation of missing data is an appropriate method since it 

permits to carry on the analysis, but it does not increase the information present in the data, 

therefore it does not lead to overestimation of positive results. On the other hand, though, the high 

imputation error may have an effect on the results. Given that the purpose of this study is to test 

random forest’s predicting capability in relation to company default, the random forest algorithm 

was also used for the imputation of data, by creating, on each sample, random forests which 

predicted the missing values. As provided, the error generated by this step is high. Likely, the 

complexity of the data considered in this study impacted this process, increasing the difficulty of 

identifying patterns among the data. Given each company has its own structure, history, and 

characteristics, among others, one assumption may be that the imputing missing data, with such 

data, is a complex task. Moreover, by observing the data, it was noted that most missing data 
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recorded are attributable to defaulted companies. Therefore, likely, a high error in the imputation 

of missing data followingly increased the errors in predicting defaulted companies.  

Likely, in this case, random forests are not the best choice for imputing the data; therefore, trying 

alternative imputation methods may help improve the results obtained. This may also be linked to 

the fact that the missing values are not randomly distributed across the dataset. Some variables, in 

fact, account for most of the missing data. 

Another limitation, which is still linked to the nature of the data, is the way which company 

build their financial statements and report their figures. By observing the data, some companies 

reported zeros for some variables. In this moment, and given the high number of observations and 

variables, it cannot be determined whether those numbers carry information regarding the 

company or should instead be considered as missing values. For this reason, no action has been 

taken and the zeros were not substituted. While this may have an impact on the analysis, likely the 

great number of companies included in the dataset outsets such limitation. 

 

4.2. RESEARCH DEVELOPMENTS 

When dealing with complex and such widely spread topics difficulties may arise in finding the 

focus on the research. On the other hand, this provides opportunities to expand and continuously 

build on the study. This research is innovative in two ways: firstly, it focuses on machine learning 

and the random forest algorithms, methodologies which are increasingly being used since they 

provide a good asset to deal with big data and complex scenarios; secondly, it applies such 

approaches buy modernizing models on credit risk and company default which were often static 

and challenging to use. 

The main development would be to replicate the study on new data or by applying different 

methods for the imputation of missing values. This would provide a clarification regarding the 

errors and limitations encountered in this study, assessing whether the errors are due to the data, 

to the imputation process, or other. Moreover, two extensions could be added replicative studies. 

Firstly, the replication of this study could include tests with other machine learning methods and 

classifiers, such as eXtreme Gradient Boosting, Neural Network, Linear Discriminant Analysis, 
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and glmnet, among others. Secondly, a test including external factors as predictors could try to 

confirm the theory that the accuracy achieved in this study can be increased. 

As presented in the second chapter, two main groups have been identified regarding methods 

for identifying credit risk and company default. The first group (e.g. Altman Z-score) assumes a 

company-based approach, focusing on company figures and macroeconomic factors to predict 

company default. The second group (e.g. Black-Scholes-Merton model, KVM model), instead, 

focus on the financial character of firms and markets. In fact, they assume credit default as 

impacted by the value of assets, the volatility of such assets, and liabilities. The possibility or not 

to compare the models of the two groups goes beyond this research. Nevertheless, the elements 

provided by both groups could be used in the development of random forests. As conducted in this 

study, the random forest has been built on the guidelines provided by the first group. In fact, the 

variables used as predictors are in line with those used in studies by Breiman (1967), Altman 

(1968), Edmister (1972), Ciampi and Gordini (2008).  

Connecting to the second group, the chance to quantify the probability of default and find causal 

relationship arises. Therefore, a study in which random forests and methods such as the KVM 

model are used in parallel could provide interesting results.  

Finally, a relevant development would be to introduce the concept of time in the analysis. Firstly, 

as shown by papers such as Beaver’s (1967), quantifying the risk of default across a certain range 

of years in the future could provide crucial information for a company’s management. Secondly, 

the analysis could be tried with time series. Random forests, though, view predictor variables as 

independent and do not distinguish the various years. Likely, this would improve the research, 

providing more information within the data for the training process.  
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DATA SOURCES 
 

AIDA: Access provided by Ca’ Foscari University of Venice. Database available online at 
https://www.bvdinfo.com/en-gb/our-products/data/national/aida  
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Appendix B: codes 
# packages installed, and libraries used throughout this research 
install.packages("missForest") 
devtools::install_github("collectivemedia/tictoc") 
install.packages("randomForest") 
install.packages("caret") 
install.packages("e1071") 
install.packages("ggRandomForests") 
install.packages("randomForestExplainer") 
install.packages("dplyr") 
 
library(caret) 
library(e1071) 
library(ggplot2) 
library(ggRandomForests) 
library(randomForestExplainer) 
library(randomForest) 
library(missForest) 
library(tictoc) 
library(dplyr) 
 
B.1 Chapter 1: 
1.1. Decision trees 
attach(iris) 
# Creation of train (90%) and test (10%) dataset 
iris_sample <- sample(2, nrow(iris), replace = T, prob = c(0.9, 0.1)  
iris_training <- iris[iris_sample,] 
iris_test <- iris[-iris_sample,] 
 
decisionaltree_model <- rpart(Species~., iris_training, method = "class") # Create decision tree model 
decisionaltree_model 
 
# To obtain a graphical representation of the tree (Image 2.1) 
rpart.plot(decisionaltree_model) 
 
# Gini Index12 
gini_process <- function(classes, splitvar = NULL){ 
  #Assumes Splitvar is a logical vector 
  if (is.null(splitvar)){ 
    base_prob <- table(classes)/length(classes) 
    return(1-sum(base_prob**2)) 
  } 
  base_prob <- table(splitvar)/length(splitvar) 
  crosstab <- table(classes, splitvar) 
  crossprob <- prop.table(crosstab, 2) 
  No_Node_Gini <- 1-sum(crossprob[,1]**2) 
  Yes_Node_Gini <- 1-sum(crossprob[,2]**2) 
  return(sum(base_prob * c(No_Node_Gini,Y es_Node_Gini))) 
} 
 
gini_process(iris$Species) # Obtain values of the Gini index 
gini_process(iris$Species, iris$Petal.Length < 2.5) 
gini_process(iris$Species, iris$Petal.Width < 1.8) 
 
Testing Predictions 
pred <- predict(decisionaltree_model, iris_test, type = "class") 

                                                
12 The following code has been provided by the publication on Learn by Marketing on February 27, 2016, available 
at http://www.learnbymarketing.com/481/decision-tree-flavors-gini-info-gain/ 
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table(iris_test, pred) # provides output 
 
# predictions with training 70% and testing 30% 
iris_sample <- sample(2, nrow(iris), replace = T, prob = c(0.7, 0.3)  
iris_training <- iris[iris_sample,] 
iris_test <- iris[-iris_sample,] 
 
decisionaltree_model <- rpart(Species~., iris_training, method = "class") 
 
new_prediction <- predict(decisionaltree_model, iris_test, type = "class") 
table(iris_test, new_prediction) 
 

1.2 Random forests  
# use ?randomForest for specifics 
# Creation and OOB error 
ind <- sample(2, nrow(iris), replace = T, prob = c(0.9,0.1)) 
trainingDataset <- iris[ind==1,] 
testingDataset <- iris[ind==2,] 
 
iris_RFModel <- randomForest(Species ~., data = trainingDataset, ntree = 100,    
                             proximity = T, importance = T) 
 
# to obtian a grapgh of the error (Graph 1.1) 
plot(gg_error(iris_RFModel)) 
 
# Variable Importance, Graph 1.2 
varImpPlot(iris_RFModel) 
 
# Tree Depth 
MinimalDepthFrame <- min_depth_distribution(iris_RFModel) 
plot_min_depth_distribution(MinimalDepthFrame, mean_sample = "relevant_trees") # Graph 1.3 
 
# Testing with RF (with caret package) 
# Training with parameters tuning 
trControl <- trainControl(method = "cv", number = 10, search = "grid") 
tuneGrid <- expand.grid(.mtry = 3) 
iris_FinalRF <- train(Species~., 
                      trainingDataset, 
                      method = "rf", 
                      metric = "Accuracy", 
                      tuneGrid = tuneGrid, 
                      trControl = trControl, 
                      importance = T, 
                      nodesize = NULL, 
                      ntree = 1000, 
                      maxnodes = NULL) 
 
# Predictions and Confusion Matrix 
prediction <- predict(iris_FinalRF, newdata = testingDataset) 
confusionMatrix(prediction, testingDataset$Species) 
 
# Repeat for Example with training 70% and testing 30% 
 
B.2. Chapter 3 
2.1 Step 1: preparation of data and samples 
attach(CompanyData) 
 
# Transformation of legal status  
CompanyData$LegalStatus[CompanyData$LegalStatus == "Active" ] <- 1 
CompanyData$LegalStatus[CompanyData$LegalStatus == "Dissolved (merger)" ] <- 1 
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CompanyData$LegalStatus[CompanyData$LegalStatus == "Active (default of payments)" ] <- 1 
CompanyData$LegalStatus[CompanyData$LegalStatus == "Active (receivership)" ] <- 1 
CompanyData$LegalStatus[CompanyData$LegalStatus == "Dissolved (demerger)" ] <- 0 
CompanyData$LegalStatus[CompanyData$LegalStatus == "In liquidation" ] <- 0 
CompanyData$LegalStatus[CompanyData$LegalStatus == "Bankruptcy" ] <- 0 
CompanyData$LegalStatus[CompanyData$LegalStatus == "Dissolved (bankruptcy)" ] <- 0 
CompanyData$LegalStatus[CompanyData$LegalStatus == "Dissolved" ] <- 0 
CompanyData$LegalStatus[CompanyData$LegalStatus == "Dissolved (liquidation)" ] <- 0 
 
# Conversion to NA: repeat for all variables 
CompanyData$LegalStatus[CompanyData$LegalStatus == "n.s." ] <- NA 
CompanyData$LegalStatus[CompanyData$LegalStatus == "n.a." ] <- NA 
 
CompanyData$LiquidityRatio[CompanyData$LiquidityRatio == "n.s." ] <- NA 
CompanyData$LiquidityRatio[CompanyData$LiquidityRatio == "n.a." ] <- NA 
 
CompanyData$CurrentRatio[CompanyData$CurrentRatio == "n.s." ] <- NA 
CompanyData$CurrentRatio[CompanyData$CurrentRatio == "n.a." ] <- NA 
 
CompanyData$`CurrentLiabilities/TotAssets`[CompanyData$`CurrentLiabilities/TotAssets` == "n.s." ] <- NA 
CompanyData$`CurrentLiabilities/TotAssets`[CompanyData$`CurrentLiabilities/TotAssets` == "n.a." ] <- NA 
# … 
 
# Transformation of variables to numeric, or factor as needed 
sapply(NewCompanyData, class) # check class 
NewCompanyData <- transform( 
    NewCompanyData, 
    LegalStatus = as.factor(LegalStatus), 
    LiquidityRatio = as.numeric(LiquidityRatio), 
    CurrentRatio = as.numeric(CurrentRatio), 
    `CurrentLiabilities/TotAssets` = as.numeric(`CurrentLiabilities/TotAssets`), 
    Leverage = as.numeric(Leverage), 
    CoverageOfFixedAssets = as.numeric(CoverageOfFixedAssets), 
    `Banks/Turnover_%` = as.numeric(`Banks/Turnover_%`), 
    `CostOfDebit_%` = as.numeric(`CostOfDebit_%`), 
    `Interest/Turnover_%` = as.numeric(`Interest/Turnover_%`), 
    `SolvencyRatio_%` = as.numeric(`SolvencyRatio_%`), 
    `ShareFunds/Liabilities_%` = as.numeric(`ShareFunds/Liabilities_%`), 
    NetFinancialPosition = as.numeric(NetFinancialPosition), 
    `Debt/Equity ratio_%` = as.numeric(`Debt/Equity ratio_%`), 
    `Debt/EBITDA_%` = as.numeric(`Debt/EBITDA_%`), 
    TotalAssetsTurnover_times = as.numeric(TotalAssetsTurnover_times), 
    WorkingCapTurnover_times = as.numeric(WorkingCapTurnover_times), 
    EBITDA = as.numeric(EBITDA), 
    `EBITDA/Vendite_%` = as.numeric(`EBITDA/Vendite_%`), 
    `ROA_%` = as.numeric(`ROA_%`), 
    `ROI_%` = as.numeric(`ROI_%`), 
    `ROS_%` = as.numeric(`ROS_%`), 
    `ROE_%` = as.numeric(`ROE_%`), 
    `NetP&L / OperatingP&L_%` = as.numeric(`NetP&L / OperatingP&L_%`), 
    NetWorkingCapital = as.numeric(NetWorkingCapital), 
    GrossProfit = as.numeric(GrossProfit), 
    NetShortTermAssets = as.numeric(NetShortTermAssets), 
    `ShareFunds-FixedAssets` = as.numeric(`ShareFunds-FixedAssets`), 
    CashFlow = as.numeric(CashFlow) 
) 
 
 

2.3 Table 3.4: eliminating NA 
# Repeat code Appendix 2.2 for the entire dataset. Then 
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AdjustedCompanyData <- na.omit(NewCompanyData) 
dim(AdjustedCompanyData) 
 
# continue with creation and tuning of forest as in Appendix 2.6. 
 
2.4 Table 3.4: imputation of data with maxiter=5, ntree=50 
Imp_Sample6 <- missForest(Sample6, maxiter = 5, ntree = 50,  
                          variablewise = T, verbose = T) 
 
# continue with creation and tuning of forest as in Appendix 2.6. 
 
2.5 Step 2 results: main analysis across five samples 
# Repeat for each sample from 1 to 5. The code requires adjustments for each sample. The  
# structure remains the same, the names of the objects created and called by the functions need  
# to change. 
 
# Sample 1 
# Imputation of missing values 
Imp_Sample1 <- missForest(Sample1, maxiter = 3, ntree = 20,  
                          variablewise = T, verbose = T) 
write.csv(Imp_Sample1$ximp, "Data_Sample1.csv", row.names = FALSE) # save dataset 
 
DataSample1 <- read_csv("Data_Sample1.csv") 
NewSample1 <- as.data.frame(DataSample1) 
attach(NewSample1) 
sapply(NewSample1, class) 
 
NewSample1 <- transform( 
  NewSample1, 
  LegalStatus = as.factor(LegalStatus)) 
 
colSums(is.na(NewSample1)) # no NA 
 
# Tuning and Random Forest generation 
# Creating of training and testing dataset, respectively 80% and 20% of the data 
Sample1_trainingDataset <- sample_n(NewSample1, size = 0.8*nrow(NewSample1)) 
Sample1_testingDataset <- sample_n(NewSample1, size = 0.2*nrow(NewSample1)) 
 
tic("Best mtry") # start recording time 
# Tuning of mtry (nodesize set constant at 27) 
trControl <- trainControl(method = "cv", number = 10, search = "grid") 
 
set.seed(1234) 
tuneGrid <- expand.grid(.mtry = c(2: 13)) 
Sample1_RF_mtry <- train(LegalStatus ~., 
                         data = Sample1_trainingDataset, 
                         method = "rf", 
                         metric = "Accuracy", 
                         tuneGrid = tuneGrid, 
                         trControl = trControl, 
                         importance = TRUE, 
                         nodesize = 27, 
                         ntree = 300) 
print(Sample1_RF_mtry) 
toc() # stop recording time 
 
# Output 

Random Forest  
 
44043 samples 
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   26 predictor 
    2 classes: '0', '1'  
 
No pre-processing 
Resampling: Cross-Validated (10 fold)  
Summary of sample sizes: 39639, 39639, 39639, 39638, 39639, 39638, ...  
Resampling results across tuning parameters: 
 
  mtry  Accuracy 
   2    0.7974545 
   3    0.7974543 
   4    0.7982452 
   5    0.7983217 
   6    0.7993163 
   7    0.7985766 
   8    0.7993416 
   9    0.7993418 
  10    0.7987432 
  11    0.7987432 
  12    0.7987011 
  13    0.7987120 
 
Accuracy was used to select the optimal model using the largest value. 
The final value used for the model was mtry = 9. 

# best mtry = 9 
 
tic("Best maxnodes") 
# Tuning of maxnodes 
store_maxnode <- list() 
tuneGrid <- expand.grid(.mtry = 9) # the result obtained previously must be used 
for (maxnodes in c(10:36)) { 
  set.seed(1234) 
  Sample1_RF_maxnode <- train(LegalStatus ~., 
                              data = Sample1_trainingDataset, 
                              method = "rf", 
                              metric = "Accuracy", 
                              tuneGrid = tuneGrid, 
                              trControl = trControl, 
                              importance = TRUE, 
                              nodesize = 27, 
                              maxnodes = maxnodes, 
                              ntree = 300) 
  key <- toString(maxnodes) 
  store_maxnode[[key]] <- Sample1_RF_maxnode 
} 
results_node <- resamples(store_maxnode) 
summary(results_node) 
toc() 
 
# Output 

Call: 
summary.resamples(object = results_node) 
 
Models: 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 31, 
32, 33, 34, 35, 36 
Number of resamples: 10  
 
Accuracy  
        Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's 
10 0.7522959 0.7578597 0.7683967 0.7655713 0.7732084 0.7760204    0 
11 0.7564397 0.7598367 0.7676317 0.7674334 0.7742285 0.7809232    0 
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12 0.7595001 0.7636294 0.7692896 0.7689892 0.7741218 0.7804132    0 
13 0.7600102 0.7629280 0.7701824 0.7702646 0.7762688 0.7827085    0 
14 0.7604592 0.7633744 0.7723504 0.7706216 0.7768639 0.7819434    0 
15 0.7602041 0.7636630 0.7710751 0.7697544 0.7736115 0.7811783    0 
16 0.7617347 0.7644283 0.7733705 0.7718204 0.7783307 0.7811783    0 
17 0.7602652 0.7640121 0.7740083 0.7719224 0.7777210 0.7850038    0 
18 0.7596939 0.7632165 0.7729884 0.7713613 0.7776929 0.7847488    0 
19 0.7612245 0.7653847 0.7746460 0.7722284 0.7767009 0.7832186    0 
20 0.7617955 0.7656399 0.7714578 0.7718460 0.7785220 0.7824535    0 
21 0.7610303 0.7663414 0.7732432 0.7723306 0.7783091 0.7824535    0 
22 0.7625606 0.7660862 0.7720956 0.7729682 0.7812005 0.7839837    0 
23 0.7622449 0.7665965 0.7760204 0.7741668 0.7796480 0.7855139    0 
24 0.7646009 0.7696575 0.7750284 0.7750342 0.7793152 0.7852589    0 
25 0.7630706 0.7666601 0.7763040 0.7746515 0.7814830 0.7865340    0 
26 0.7640306 0.7672639 0.7746459 0.7747791 0.7822845 0.7867891    0 
27 0.7651109 0.7710604 0.7766866 0.7758504 0.7792870 0.7885743    0 
28 0.7663861 0.7700401 0.7743911 0.7758249 0.7804987 0.7878092    0 
29 0.7656210 0.7693045 0.7750287 0.7758250 0.7819017 0.7865340    0 
30 0.7674063 0.7698980 0.7766867 0.7767431 0.7814830 0.7883193    0 
31 0.7666412 0.7699126 0.7749011 0.7763605 0.7826945 0.7870441    0 
32 0.7661311 0.7710604 0.7766865 0.7761819 0.7798890 0.7870441    0 
33 0.7668962 0.7692110 0.7751562 0.7761309 0.7817104 0.7875542    0 
34 0.7660714 0.7690836 0.7763041 0.7760545 0.7836236 0.7867891    0 
35 0.7656210 0.7710605 0.7777069 0.7770748 0.7829859 0.7890844    0 
36 0.7653660 0.7700893 0.7741360 0.7757994 0.7808814 0.7865340    0 

# best accuracy for maxnode = 35 
 
tic("Best ntrees") 
# Tuning of ntree (use best mtry and best maxnodes results) 
tuneGrid <- expand.grid(.mtry = 9) 
store_maxtrees <- list() 
for (ntree in c(500, 1000, 1500, 2000)) { 
  set.seed(1234) 
  Sample1_RF__ntrees <- train(LegalStatus ~., 
                              data = Sample1_trainingDataset, 
                              method = "rf", 
                              metric = "Accuracy", 
                              tuneGrid = tuneGrid, 
                              trControl = trControl, 
                              importance = TRUE, 
                              nodesize = 27, 
                              maxnodes = 35, 
                              ntree = ntree) 
  key <- toString(ntree) 
  store_maxtrees[[key]] <- Sample1_RF__ntrees 
} 
results_tree <- resamples(store_maxtrees) 
summary(results_tree) 
toc() 
 
# Output 

Call: 
summary.resamples(object = results_tree) 

 
Models: 500, 1000, 1500, 2000  
Number of resamples: 10  
 
Accuracy  
          Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's 
500  0.7658761 0.7699126 0.7760490 0.7764371 0.7816467 0.7880643    0 
1000 0.7663861 0.7695937 0.7750287 0.7763095 0.7820292 0.7875542    0 
1500 0.7666412 0.7699763 0.7756664 0.7766666 0.7816106 0.7885743    0 
2000 0.7666412 0.7704866 0.7755388 0.7765901 0.7814831 0.7880643    0 
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# Best ntrees = 1500 
 
tic("Final Random Forest") 
# Final tree training post parameter tuning 
tuneGrid <- expand.grid(.mtry = 9) 
Sample1_FinalRF <- train(LegalStatus ~., 
                         data = Sample1_trainingDataset, 
                         method = "rf", 
                         metric = "Accuracy", 
                         tuneGrid = tuneGrid, 
                         trControl = trControl, 
                         importance = T, 
                         nodesize = 27, 
                         ntree = 1500, 
                         maxnodes = 35) 
 
# Prediction on new data (testing dataset) 
Sample1_prediction <- predict(Sample1_FinalRF, newdata = Sample1_testingDataset, type = "raw") 
Sample1_ConfusionMatrix <- confusionMatrix(Sample1_prediction, Sample1_testingDataset$LegalStatus) 
Sample1_ConfusionMatrix # confront prediction with actual values 
toc() 
 
print(Sample1_FinalRF$finalModel) # for class error and OOB error 
 
plot(Sample1_FinalRF$finalModel, main = "Errors Sample3") # plot errors (Graphs 3.2 to 3.6) 
legend(800,0.4, legend=c("Default", "OOB Error", "Active"),  
           col=c("red", "black","green"), lty=c(3,1,3), cex=1,  
           title="Line types", text.font=2) 
title( ylab = "OOB Error Rate") 
 
rquery.cormat(NewSample3[,-1]) # plot correlation (Graph 3.1) 
 
# Computation and plot of variable importance (Graphs 3.7 to 3.11) 
impSample3 <- varImp(Sample3_FinalRF) 
plot(impSample3, main = "Variable Importance Sample 3" , cex = 1.15) 
 
 

2.6 Step 3 results: change of training and testing dataset size 
# Table 3.11: 70%/30% 
Sample7_trainingDataset <- sample_n(NewSample7, size = 0.7*nrow(NewSample7)) 
Sample7_testingDataset <- sample_n(NewSample7, size = 0.3*nrow(NewSample7)) 
 
# Table 3.12: 90%/10% 
Sample8_trainingDataset <- sample_n(NewSample8, size = 0.9*nrow(NewSample8)) 
Sample8_testingDataset <- sample_n(NewSample8, size = 0.1*nrow(NewSample8)) 
 
 

2.7 Step 4 results: reduction of number of variables and predictors 
# Table 3.14 
# Apply Appendix 2.2 then in tuning and random forest modify the number of predictors to be considered 
 
Sample9_FinalRF <- train(LegalStatus ~ ShareFunds.Liabilities_. + CoverageOfFixedAssets + GrossProfit +   
                         CostOfDebit_. + ROA_.+ SolvencyRatio_.+ Leverage + NetWorkingCapital +  
                         Debt.Equity.ratio_. + EBITDA.Vendite_. + ROE_. + ROI_. + Interest.Turnover_. +  
                         CashFlow + NetP.L...OperatingP.L_., 
                         data = Sample9_trainingDataset, 
                         method = "rf", 
                         metric = "Accuracy", 
                         tuneGrid = tuneGrid, 
                         trControl = trControl, 
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                         importance = T, 
                         nodesize = 27, 
                         ntree = 1000, 
                         maxnodes = 33.2) 
 
 

2.8 Training and testing of the final model 
# Testing data: test1, test2, and test3, are datasets downloaded from AIDA Database 
Imp_Test1 <- missForest(test1, maxiter = 1, ntree = 20, variablewise = T, verbose = T) 
write.csv(Imp_Test1$ximp, "Data_Test1.csv", row.names = FALSE) 
 
Imp_Test2 <- missForest(test2, maxiter = 1, ntree = 20, variablewise = T, verbose = T) 
write.csv(Imp_Test2$ximp, "Data_Test2.csv", row.names = FALSE) 
 
Imp_Test3 <- missForest(test3, maxiter = 1, ntree = 20, = T, verbose = T) 
write.csv(Imp_Test3$ximp, "Data_Test3.csv", row.names = FALSE) 
 
data1 <- as.data.frame(Data_Test1) 
data2 <- as.data.frame(Data_Test2) 
data3 <- as.data.frame(Data_Test3) 
write.csv(rbind(data1, data2, data3), "Data_Testing.csv", row.names = FALSE)  
 
Datatest <- read_csv("Data_Testing.csv") 
NewDataTest <- as.data.frame(Datatest) # data containing all data in test1, test2, and test3 
 
NewDataTest <- transform( 
  NewDataTest, 
  LegalStatus = as.factor(LegalStatus)) 
 
sapply(NewDataTest, class) 
colSums(is.na(NewDataTest)) # no NA 
 
 
# Trqining data: data from Sample 1 and Sample 2 
data4 <- as.data.frame(Data_Sample1) 
data5 <- as.data.frame(Data_Sample2) 
write.csv(rbind(data4, data5), "Data_Training.csv", row.names = FALSE) 
 
Datatrain <- read_csv("Data_Training.csv") 
NewDataTrain <- as.data.frame(Datatrain) 
 
NewDataTrain <- transform( 
  NewDataTrain, 
  LegalStatus = as.factor(LegalStatus)) 
 
sapply(NewDataTrain, class) 
colSums(is.na(NewDataTrain)) # no NA 
 
# Random Forest with parameters obtained from the “Development of the model” steps 
trControl <- trainControl(method = "cv", number = 10, search = "grid") 
tuneGrid <- expand.grid(.mtry = 10) 
Test1_FinalRF <- train(LegalStatus ~., 
                       data = NewDataTrain, 
                       method = "rf", 
                       metric = "Accuracy", 
                       tuneGrid = tuneGrid, 
                       trControl = trControl, 
                       importance = T, 
                       nodesize = 27, 
                       ntree = 1000, 
                       maxnodes = 34) 
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FinalTest_prediction <- predict(Test1_FinalRF, newdata = NewDataTest, type = "raw") 
FinalTest_ConfusionMatrix <- confusionMatrix(FinalTest_prediction, NewDataTest$LegalStatus) 
FinalTest_ConfusionMatrix 
 

2.19 Comparison, decision trees 
data1 <- as.data.frame(Data_Sample1) 
data2 <- as.data.frame(Data_Sample2) 
data3 <- as.data.frame(Data_Sample3) 
attach(data1) 
attach(data2) 
attach(data3) 
 
Tree_train <-  sample_n(data1, size = 0.8*nrow(data1)) 
Tree_test <- sample_n(data1, size = 0.2*nrow(data1)) 
 
?rpart 
modelTree <- rpart(LegalStatus~., data = Tree_train, method = "class", minsplit = 20, maxdepth = 30, cp 
= 0.0006) 
 
modelTree <- prune(modelTree) 
 
print(modelTree) 
rpart.plot(modelTree) 
 
# prediction on Sample 1  
a <- predict(modelTree,Tree_test, type = "class") 
summary(a) 
table(a,Tree_test[,1]) 
 
# prediction on Sample 2 
b <- predict(modelTree,testingprova, type = "class") 
summary(b) 
table(b,testingprova[,1]) 
 
# prediction on Sample 3 
c <- predict(modelTree,data3, type = "class") 
summary(c) 
table(c,data3[,1]) 
 
 

2.10 Comparison, Adaboost 
# train on data1 
model_adaboost <- boosting(LegalStatus~.,data = data1, mfinal = 100, trees = 500) 
 
# prediction on Sample 2 
prediction2 = predict(model_adaboost, data2) 
print(prediction2$confusion) 
print(prediction2$error) 
 
# prediction on Sample 3 
Prediction3 = predict(model_adaboost, data3) 
print(prediction3$confusion) 
print(prediction3$error) 
 
 


