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All things are good

when carried to excess.



Abstract

Users on the Internet unknowingly rely on HTTPS, a protocol whose goal is to

cryptographically secure the communication between users and websites by pro-

viding confidentiality and integrity. HTTPS relies on the SSL/TLS protocols, but

many versions and implementations of these protocols exist and some of them

have been proven to be vulnerable to malign attackers. Furthermore, the commu-

nication’s security depends on other key factors related to a wider application of

security best-practices on the web pages: restrictions on the entities that can run

code or access cookies, enforcement of the usage of HTTPS, and many more.

In this thesis we analyze the state and security of the HTTPS deployment of the

most visited websites for different categories, considering the overall quality of the

deployment by evaluating many key aspects.

We carry out an analysis that takes into account the usage of HTTPS itself, the

quality of HTTPS certificates, the security of the SSL/TLS implementation used,

the presence of server-side cryptographic vulnerabilities, and the adoption of other

modern techniques to enforce security.

Finally, we analyze the obtained results and draw some conclusions on the overall

state of the HTTPS deployments analyzed. One of the main goals of this work

is to raise awareness on the importance of a careful deployment of HTTPS, thus

encouraging site operators to keep cryptographic stacks updated and enforce strict

security guidelines.
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Chapter 1

Introduction

1.1 Is HTTPS actually secure?

The HyperText Transfer Protocol (HTTP) is the workhorse protocol of the Web,

which has been allowing users to surf the Internet for decades. As we will shortly

see, however, this protocol does not provide any security guarantee by default.

To tackle this fundamental problem, some additional protocols, namely SSL and

TLS, have been developed throughout the years with the goal of securing HTTP

traffic. When HTTP is run over either of the two, the connection is supposedly

secure, hence giving birth to HTTPS.

Figure 1.1: HTTP vs. HTTPS, taken from [1]

Excluding SSLv1, which was never published, we can count six versions of these

protocols. In chronological order: SSLv2, SSLv3, TLS1.0, TLS1.1, TLS1.2,
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TLS1.3. Each one of these protocols aims at improving the previous one under

different points of view, including security. Indeed, most of them are deprecated

as of 2020 [2, 3, 4]. In particular, the French national agency for the security

of information systems (ANSSI) has recently published the latest version of its

TLS recommendations, officially discouraging the usage of TLS1.0 and TLS1.1 [5].

Many other security concerns arise while deploying HTTPS: for instance, certifi-

cates should follow strict best practices, specific HTTP headers should be used to

guarantee a higher degree of security, and the usage of cookies should be regulated.

In other words, the correct deployment of HTTPS is far from straightforward and

requires paying attention to many different key aspects: the adoption of HTTPS is

not just a binary checkbox, but rather multiple factors must be taken into account

for a realistic security assessment.

This thesis aims at performing a quantitative analysis of the security of each host’s

HTTPS deployment. The analysis is based on a tool, Discovery1, on which the

author has worked during his internship at Cryptosense. Discovery implements

many different security checks on TLS hosts and the logic to compute Attack Trees:

both are fundamental for our analysis as they allow us to combine different pieces

of information in order to understand whether or not hosts may be vulnerable

to attacks. The tool can (and will) be improved further, making it even more

complete and fault tolerant.

We hope the results of this work will encourage site operators to take actions to

improve the current state of protection of the respective hosts, if needed.

1https://discovery.cryptosense.com
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1.2 Problem statement

In this thesis, we will analyze the quality of the HTTPS deployments of the most

visited websites belonging to different categories. The main aspects we will take

into account can de divided into different, complementary logical areas.

Adoption and activation of HTTPS at the web application layer

In this thesis we will study the adoption and activation of HTTPS at the (web)

application layer. The lack of HTTPS support and the use of unsafe practices

in the HTTPS activation can entirely void security against network attackers,

since communication might run unencrypted. We will thus check whether hosts

perform HTTP-to-HTTPS redirects and whether they deploy HSTS, which is a

modern technique to enforce the usage of HTTPS for all communication.

Enforcement of the usage of HTTPS

Deploying a website over HTTPS is often not enough to achieve a sufficient level

of security: in particular, some resources may still be loaded via plain HTTP

and other requests may also be sent unencrypted. This behavior could void se-

curity and is thus highly discouraged. In order to enforce the usage of HTTPS,

other techniques together with HSTS are available: in particular, Content Secu-

rity Policy (CSP) is a standard which allows for the usage of two directives with

the precise goal of avoiding unsafe communication. These directives are called

block-all-mixed-content and upgrade-insecure-requests. We will

therefore check how many websites deploy these security mechanisms.

Security of cookies

Strictly related to the state of the HTTPS adoption is the usage of best practices

when using cookies. Cookies are small pieces of information that browsers and

websites use for many different purposes, including identification: it is therefore

imperative to keep them safe. In order to keep them safe, we want the communica-

tion to take place via HTTPS and the cookies to be only sent via HTTPS. We will
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hence study whether the current best practices for cookie security are adopted.

Safe resource inclusion

Loading resources over HTTPS does not necessarily mean that they are safe to

be used: in particular, an attacker who has gained access to the host from which

resources are included may provide malign files without anyone noticing. In order

to be sure that the included resources are actually safe, Subresource Integrity (SRI)

can be used. SRI allows for specifying hashes of sensitive included resources such

as scripts. When a resource is included, its hash is computed; if it does not match

with the specified one, the resource is discarded. This makes it basically impossible

to load tampered resources. A similar result can be achieved using CSP. We will

thus check whether hosts enforce the safe inclusion of resources.

Correct cryptographic implementation of the TLS protocol

Keeping an updated cryptographic protocol is fundamental in order to avoid the

possibility of being vulnerable to well-known security problems that affect old

deployments. The presence of server-side vulnerabilities, which is usually related

to the support of either SSLv2 or SSLv3, represents an urgent problem to be

solved as cryptographic flaws in the TLS deployment can reveal cryptographic

keys to network attackers, leading to various confidentiality and integrity breaches.

SSLv2 and SSLv3 have both been deprecated for years and should absolutely be

avoided. We will check for the presence of these well-known vulnerabilities.

Adoption of best practices in HTTPS certificates

HTTPS could not exist without certificates, objects whose goal is to authenti-

cate entities. The adoption of best practices in HTTPS certificates is hence of

uttermost importance, as the incorrect management of HTTPS certificates might

unduly expose users to phishing attempts or even lead to the disclosure of the

cryptographic keys used to protect communication, thus voiding security. We will

thus verify the proper usage of HTTPS certificates.

4



Adoption of modern standards and headers

Although some aspects of HTTPS deployments are not fundamental for security,

they are still strong indicators of active maintenance of the deployments and care

taken towards their security. We will therefore check whether some websites al-

ready support TLS1.3, which has been around for around a year now, and the usage

of the Expect-CT header, which enforces a quality check on a host’s certificate

by verifying it against public logs known as Certificate Transparency logs.

1.3 Threat model

As per [6], we assume an active network attacker who is able to add, remove or

modify messages sent between a client and a server. The attacker also controls

a malicious website, which is navigated by the attacked client. By means of the

website, the attacker can inject scripts in the client from an attacker-controlled

origin, which is relevant for a subset of the considered attacks. However, the

attacker can neither break the Same Origin Policy (SOP), nor exploit any bug in

the browser. We assume the attacker cannot exploit timing side-channels, since

the feasibility of such attacks is generally hard to assess.

In our security analysis, we also occasionally make considerations about passive

network attackers, who just sniff the network traffic and do not take actions to

avoid detection. These attackers are particularly interesting because they only

require very limited skill.

1.4 Thesis outline

This thesis begins with an introduction of all the preliminary concepts required

to understand this work. In the next chapters we hence present the theoretical

knowledge behind the analysis we performed. Namely, we explain concepts related

to HTTP and HTTPS (Chapter 2), moving on to client-side security mechanisms

(Chapter 3), HTTPS certificates (Chapter 4), and vulnerabilities at the cryp-

tographic implementation level (Chapter 5). Afterwards, we focus on the main
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characteristics sought while analyzing a host, describing the setup used to carry

out the analysis and the scanning procedure (Chapter 6). Later on, we carry out

an analysis of the top websites (according to SimilarWeb2) for different categories.

In Chapter 7 we present the obtained results and we propose our analysis of them,

focusing on what should be improved. In particular, we show that the current state

of many HTTPS deployments is not satisfactory, as many modern techniques for

security such as Subresource Integrity and Content Security Policy aren’t nearly

as widespread as one might hope. Furthermore, even basic security practices such

as the usage of secure cookies are not as commonly used as they should. In our

analysis, we also discovered hosts which are vulnerable to attacks on cryptography

that have been known for years: these vulnerabilities can have disruptive effects on

security and rely on outdated protocols, therefore it is absolutely safe to fix them

and they should be mitigated as soon as possible via upgrades. Finally, we explain

what could be addressed by future work to obtain more complete analyses and

insights. The thesis ends with an overall recap of the work done and our closing

remarks.

2https://www.similarweb.com/top-websites
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Chapter 2

HTTP, HTTPS and TLS

In this chapter we will present the most important concepts needed for understand-

ing how HTTP, HTTPS and TLS work. We will first define three fundamental

security properties that we will mention throughout this thesis (Section 2.1). Af-

terwards, we will present how the HTTP protocol works and its main shortcomings

(Section 2.2). Finally, we will explain how TLS can help in securing HTTP and

what are some common problems faced while deploying HTTPS (Section 2.3).

2.1 Security properties: definition

Throughout this thesis we will often refer to certain security properties. Their

definitions are the following:

• Confidentiality: “protecting information from being accessed by unautho-

rized parties” [7];

• Integrity: “ensuring that information is not altered, and that the source of

the information is genuine” [7];

• Authenticity: “an entity should be correctly identified” [8].
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2.2 The HTTP protocol

2.2.1 Main characteristics

The HyperText Transfer Protocol (HTTP) is the most commonly used protocol

of the Web. It works at the application layer. Its main usage is the transmission

of HTML documents and related resources (media files, ...). Some of its main

characteristics are: [9]

• it is stateless. In other words, no state is kept across requests;

• it is a client-server protocol. Usually, a web browser communicates with a

web server;

• it mostly runs over TCP/IP. It is fundamental that the transport layer pro-

tocol is reliable.

2.2.2 Basic functioning

The core functioning of HTTP can be explained as a sequence of requests that the

client sends to the server and responses from the server to the client. Both requests

and responses are HTTP messages [10]. Messages are composed by standard

ASCII plaintext. An HTTP message includes three fundamental components

• a start line which contains:

– the request type and endpoint in case of a request

– the HTTP status code in case of a response

• a set of headers (optional)

• a body containing data to be transferred (optional)

In this thesis we will focus on some specific headers, as they can be used to enforce

strict security measures if deployed correctly.
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Figure 2.1: An HTTP request, from [11]

Figure 2.2: An HTTP response, from [11]

2.2.3 Security concerns

HTTP was designed in the early ’90s. As one can imagine, the security of com-

munication was not taken into account at the time. As a matter of fact, HTTP

does not provide any confidentiality, integrity or authenticity guarantee by de-

fault. Standard HTTP traffic is simple unauthenticated plaintext, which can be

read, modified and forged by attackers who are in control of the network, e.g.,

rogue access points and malicious Internet service providers. TLS aims at solving

this problem.

Figure 2.3: Structure of the modern web. Taken from [9]
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2.3 Securing HTTP: HTTPS and TLS

2.3.1 Rationale, intuition and limitations

As we have seen, HTTP does not provide any security guarantee by default. This

is, of course, not ideal when dealing with sensitive information such as personal

data, passwords or credit card numbers.

Luckily, this shortcoming of HTTP can be overcome by the adoption of its secure

counterpart HTTPS, which runs HTTP on top of cryptographic protocols like

TLS.

HTTPS is an encrypted variant of HTTP based on the Secure Socket Layer (SSL)

and Transport Layer Security (TLS) protocols. HTTPS is designed to guarantee

integrity and confidentiality. It also provides authentication using X.509 certifi-

cates, which we will describe in further detail later on. The idea behind HTTPS is

fairly simple: certificates are signed by some trusted parties known as Certification

Authorities (CAs), and entities prove to be who they say they are during an initial

phase commonly known as TLS handshake (see Section 2.3.4).

HTTPS is phenomenally popular nowadays: as a matter of fact, the amount of

HTTPS traffic has recently surpassed the amount of HTTP traffic [12]. Nonethe-

less, previous research showed that the correct deployment of HTTPS is particu-

larly tricky and things can go wrong at many different levels [13, 14, 15, 16, 17]. As

previously said, multiple factors must be taken into account when trying to assess

a host’s security overall. One of the key takeaways is that the usage of HTTPS

alone is a necessary, yet not sufficient condition in order to secure a host, and that

the usage of HTTPS itself must be analyzed under many different points of view

to assess its quality.

2.3.2 SSL and TLS

In the Introduction, we mentioned that six versions of the SSL and TLS protocols

exist, namely SSLv2, SSLv3, TLS1.0, TLS1.1, TLS1.2, TLS1.3.
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Figure 2.4: Timeline of SSL and TLS, from [18]

Each version improves the previous one under many different key aspects, security

included, as per Figure . As of now, only TLS1.2 and TLS1.3 are recommended:

as a matter of fact, SSLv2 and SSLv3 have been known to be vulnerable to many

different attacks [14, 13, 17] for years, and have been deprecated since 2011 [2]

and 2015 [3] respectively. TLS1.0 and TLS1.1 are also being deprecated as of

early 2020 [4, 5]. Nevertheless, all these protocols are still being used on many

hosts, and although modern browsers now reject connections to hosts using SSLv2

and SSLv3, the confirmed presence of vulnerabilities on such hosts represents a

significant security concern.

2.3.3 The TLS protocol: overview

The TLS protocol’s most renowned components are the Record Protocol and the

Handshake Protocol [19]. The former is responsible for the negotiation of cryp-

tographic keys and authentication, while the latter is responsible for securing the

channel that carries the data. Two other protocols are the Change Cipher Spec

Protocol, used to assert that the communication starting from a point in time

will be encrypted and authenticated, and the Alert Protocol, which emits alerts if

problems (e.g. in decryption) arise [20].
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Before explaining the TLS handshake and cipher suites, it is useful to remind

the reader about symmetric and asymmetric key cryptography.

Asymmetric key cryptography relies on a public-private key pair and is usually

less efficient than symmetric key cryptography. Symmetric key cryptography,

conversely, is usually more efficient. There is only one key, used for both

encryption and decryption, that must therefore be kept secret. This key is

usually smaller than the ones used in asymmetric key cryptography.

Finally, the concept of forward secrecy refers to a scenario in which session

keys are not compromised even if the private key of the server is leaked. This

is a very desirable condition -for instance, because old sessions could not be

decrypted even if a server were to be compromised- that is enforced in TLS1.3.

2.3.4 The TLS handshake

The TLS handshake is implemented slightly differently depending on the specific

TLS version. At a high level, however, it can be described as follows [20, 19]:

1. The client initiates a handshake by sending a ClientHello message to the

server. This proposes a TLS version and a list of supported cipher suites,

together with a random nonce used for generating keys and an identifier for

the session. Some other extensions can be proposed (e.g. for compression,

which is usually avoided for security reasons);

2. The server chooses the lower between its highest supported TLS version and

the TLS version proposed by the client. It responds with a ServerHello

message including the chosen TLS version, a random nonce and the session

identifier. It then sends a Certificate message containing an X.509 cer-

tificate to the client. The certificate contains information about the server’s

identity, the server’s public key and the issuing certification authority;

3. The client confirms the validity of (validates) the X.509 certificate by check-

ing that it was issued by a trusted certification authority to the hostname it
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is trying to connect to, thus getting a proof of authenticity. Further checks

may be run, for instance on the revocation status of the certificate;

4. The client and the server take appropriate actions to generate a fresh session

key, which is used to protect the communication by means of symmetric

encryption, thus ensuring its confidentiality and integrity. Generating the

session key may require the server to send a ServerKeyExchange message

and the client to send a ClientKeyExchange. These messages compose

the Premaster Secret (PMS), which is used with the nonces exchanged in

the previous steps to compute the Master Secret. Finally, the Master Secret

is used to generate session keys for the Record Protocol. At this point, the

Change Cipher Spec step happens and the subsequent communication will

be encrypted and authenticated;

5. The Finished message, containing a transcript of the handshake, is ex-

changed. Different transcripts may indicate some form of tampering during

the process.

The session key establishment can be implemented in different ways and takes

advantage of the server’s public key. The handshake in further detail can be seen

in Figure 2.5. As we will see, the way a server manages the TLS handshake

is extremely important in assessing its security. As a matter of fact, most of

the attacks on cryptography we will see are padding-oracle attacks that rely on

different answers to different messages from the server.

2.3.5 TLS cipher suites

A TLS cipher suite is a ordered set of cryptographic algorithms. In particular, a

cipher suite specifies [22]:

1. the algorithm used for key exchange between the client and the server. It

is common to use asymmetric algorithms based on Elliptic Curve cryptogra-

phy such as ECDHE (Elliptic Curve Diffie Hellman Ephemeral), which also

provides forward secrecy ;
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Figure 2.5: TLS handshake, taken from [21]

2. the algorithm used to sign the HTTPS certificate of the server. This algo-

rithm is also asymmetric;

3. the algorithm used for bulk encryption, i.e. to encrypt and decrypt messages

between the client and the server. This algorithm is symmetric and needs to

provide high performance for large amounts of data;

4. the algorithm used for message authentication: this algorithm’s purpose is

guaranteeing integrity of the session data through cryptographic signatures

and hashes.

For instance, given the cipher suite TLS ECDHE RSA WITH AES 256 GCM SHA384,

we can understand that the key exchange (KE) algorithm is ECDHE, the certifi-
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cate signature algorithm is RSA, the bulk encryption is handled using AES 256

in GCM mode and message authentication is obtained via SHA384. We may also

find the Elliptic Curve’s name after the message authentication algorithm.

It is also important to notice that the latest version of TLS, TLS 1.3, uses the

same cipher suite names as the previous versions but with a different meaning,

making them non-interchangeable with previous versions. Indeed, TLS 1.3 ci-

pher suites only specify the symmetric cipher for bulk encryption and the mes-

sage authentication algorithm: for instance, a TLS 1.3 cipher suite would look like

TLS AES 256 GCM SHA384, and as we can see it does not list the key exchange al-

gorithm. In TLS 1.3 all the cipher suites are forward secret and authenticated [23].

Export-grade cipher suites

We refer to export-grade cryptography when talking about encryption whose se-

curity is purposedly reduced, mainly by adopting smaller key sizes. The main

goal of this process, mostly enforced by the USA, was to limit the availability

of non-decryptable cryptography to foreign nations (especially) and the general

public [24].

2.3.6 TLS 1.3

TLS 1.2 was introduced in 2008; its successor, TLS 1.3, was published in 2018, ten

years and 28 drafts later. Its many advantages include:

• better security : as mentioned, TLS 1.3 supports forward secrecy by default.

It also disables export-grade and other obsolete ciphers such as MD5, DES,

RC4 and CBC-mode ones. It disables RSA key transport too, as it does not

provide forward secrecy [25].

• better performance: a TLS 1.3 handshake requires one round trip instead of

two, hence reducing the time required by the handshake. Also, in case the

client has already visited the website, the round trips drop to zero [26].
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Figure 2.6: Comparison between TLS 1.2 and TLS 1.3 handshakes, from [27]

2.3.7 HTTP Strict Transport Security (HSTS)

The Strict-Transport-Security header is used to force a browser to access

a website only through HTTPS, telling the browser that all HTTP requests should

be converted to HTTPS ones [28]. This behavior is strongly encouraged as an

attacker may otherwise set up a Man-in-the-Middle attack in case a user connected

to the HTTP version of a website, redirecting the user to another website controlled

by the attacker. It is also strongly suggested to use the includeSubDomains

attribute to also force an HTTPS upgrade on subdomains.

It is important to notice that HSTS is a response header. This means that by

default we must have visited the “benign” website at least once in order for our

browser to know that all the connections have to be done through HTTPS. Since

this is not always the case, most modern browsers include a list of websites for

which HSTS is enabled by default, thus preventing SSL stripping attacks. This list

is called preload list. Notice, however, that HSTS is orthogonal towards attacks

on cryptography such as the ones we will see later on. Finally, it is worth noticing

that an ideal HSTS deployment should have the includeSubDomains header

and impose that each subdomain (e.g. https://www.example.com) send a request
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via HTTPS to the parent domain to enforce the setting of HSTS and protecting

the user from possible cookie injection attacks set up by a MITM.

SSL stripping is a man-in-the-middle attack in which an attacker forces a

HTTPS to HTTP downgrade in the communication between the client and

the server, thus becoming able to steal the user’s secrets such as login details,

since they are sent as plaintext.

To analyze the practices used to activate HTTPS, we have to check for the presence

of redirects. Since redirects can be performed using JavaScript, we cannot just

check for the use of Location headers and we rather use Puppeteer to access

the websites over HTTP using Chromium. We then check the protocol used in

the final landing page to see whether HTTPS was activated in some way since

the original HTTP request. We also log the presence of HSTS headers in order

to understand whether and how it is deployed: in particular, a “basic” HSTS

deployment, is not entirely sufficient, because HSTS activation can (and should)

be forced on the TLD+1 using the includeSubDomains option.

We can, therefore, perform an analysis by placing each host in one of the following

categories:

• No redirection to HTTPS. This means that the navigation is performed over

HTTP by default, which makes network attacks trivial to carry out;

• Redirection from HTTP to HTTPS, but lack of HSTS adoption. The website

is vulnerable to SSL stripping, yet it is normally served over HTTPS and

careful users might notice when the site is unexpectedly served over HTTP;

• Redirection from HTTP to HTTPS + HSTS. The website is protected against

SSL stripping, but other applications served on sub-domains might be vul-

nerable to this attack and domain cookies might be leaked or set over HTTP;

• Redirection from HTTP to HTTPS + HSTS with the includeSubDomains

option on TLD+1. This ensures that all the applications on the domain are

always accessed over HTTPS, as well as granting the confidentiality and

integrity of domain cookies.
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In case a subdomain’s policy depends on an HSTS deployment with the

includeSubDomains option at a higher level, it should also send a request to

that higher-level domain in order to be sure that the

Strict-Transport-Security header is received and therefore active on the

subdomain.

2.3.8 Mixed Content

As we have seen, HTTPS adoption is far from straightforward. Many websites are

still not entirely deployed over HTTPS: this means that while some fundamental

components of the pages (e.g. the HTML document itself) are loaded via HTTPS,

some other “minor” resources such as images may still be loaded using plain HTTP.

We define this intermediate condition with the notion of mixed content, which we

can also divide into two categories: [29]

• passive mixed content: resources that are seen as stand-alone, i.e. do not

interact with other elements in the same page. In this category we find

images, videos, etc.

• active mixed content: conversely to its passive counterpart, this is a more

sensitive category as these resources interact with the page, resulting in much

higher security concerns. The most relevant members of this category are

scripts.

While passive mixed content may still be allowed, it is extremely important not

to allow any active resource to be loaded over plain HTTP. Anyway, not relying

on mixed content is definitely recommended both for security and user experience,

since browsers have recently started to block mixed content entirely [30].
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Chapter 3

Client-side security mechanisms

In this chapter we will present some fundamental client-side security mechanisms.

We will first define Same-Origin Policy (Section 3.1). We will then move on to

Subresource Integrity, one of the most efficient ways to safely include resources

(Section 3.2). Later on, we will present the concept of cookies and the correct way

to manage them in order to enforce the security properties of interest (Section

3.3). Finally, we will explain what Content Security Policy is and how it can help

in securing communication (Section 3.4)

3.1 Same-Origin Policy (SOP)

3.1.1 Domains and Sub-Domains

Before talking about Same Origin Policy, it is fundamental to understand the

concepts of domain and subdomain. On the Web, servers are typically identified

by a fully qualified domain name (FQDN), i.e., a dot-separated sequence of labels

terminated by a top-level domain (TLD) from a fixed list. For instance, www.

unive.it is a FQDN under the TLD .it. Domain registration typically operates

at the granularity of TLD+1: this means that an organization can register a

domain name like unive.it and then create arbitrary sub-domains like www.

unive.it and idp.unive.it. It is common practice to create different sub-

domains for different services, e.g., www.unive.it to serve the university website
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and idp.unive.it for authentication.

3.1.2 Rationale

Same-origin policy (SOP) is one of the most important and widespread security

mechanisms in modern web browsers. It manages how resources loaded from one

origin interact with resources from other origins, isolating data and preventing

unwanted read/write attempts [31, 32].

3.1.3 Origin: definition

As per [31], we define an origin as a “(protocol, host, port) tuple”. In

other words, two URLs must match in those three fields in order to belong to the

same origin. This is a fundamental aspect to understand, as HTTP and HTTPS

are two different protocols with two different default ports: the “same” resource

-accessed through HTTP and HTTPS- maps to two different origins.

Figure 3.1: Same-Origin and Cross-Origin requests, from [33]
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3.1.4 How SOP works

The idea behind SOP is fairly simple: data belonging to each origin must not be

read or written by data belonging to other origins. On the other hand, interconnec-

tion is one of the cornerstones of the web, and forbidding the inclusion of external

content would give the web no sense. Hence, SOP allows for script inclusion using

the <script> tag, running the included script in the page’s origin. Being careful

when including external scripts is therefore imperative [32].

3.2 Subresource Integrity (SRI)

3.2.1 Rationale and relationship with SOP

As we have seen, SOP allows for including resources from origins different from the

page’s. It would thus be useful to have some degree of confidence on the resources

being included. In particular, being able to cryptographically verify that those

resources have not been tampered with would be a significant guarantee when

including external scripts. Subresource Integrity is created with this precise goal

in mind.

3.2.2 Definition

Subresource Integrity (SRI) is a recent security mechanism that allows for verifying

that content included in the webpage has not been manipulated. This condition is

enforced throughout the check of a cryptographic digest stored in the integrity

HTML tag. If the computed hash is not equal to the one found in the integrity

attribute, the browser returns a network error and the resource is discarded [34].

SRI is used with <link> and <script> tags, which import sensitive resources

such as CSS and JavaScript files.
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3.2.3 Example

SRI requires the developer to specify a base64-encoded hash of a file. The allowed

hashes are SHA256, SHA384 and SHA512. An example integrity string is the

following [34]:

<script src="https://example.com/example-framework.js"

integrity="sha384-oqVuAfXRKap7fdgcCY5uykM...">

</script>

While parsing the tag, the browser checks that the SHA384 digest of the included

resource produces an output which is equal to the given string in base64 represen-

tation: if this is not the case, the resource is discarded.

3.3 Cookies

3.3.1 Definition and usage

HTTP cookies, also known as browser cookies, represent data chunks that a server

sends and the client stores and sends back in later requests: their main goal is to

maintain stateful information.

They serve many purposes, mainly [35]:

• Session management: keeping users logged in, remembering scores in online

games, . . .

• Personalization: maintaining content personalized, e.g. themes

• Tracking: storing the user’s behavior and model the experience throughout

analyses of the recorded data

Many attributes can be set in each cookie to achieve the desired goal. Well known

goals and attributes are:

• setting an expiration date and time, which is obtained using the Expires

and Max-Age attributes
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• defining the cookie’s scope, which is obtained using the Domain and Path

attributes

• enforcing security, which is obtained using the HttpOnly and Secure at-

tributes (flags)

3.3.2 Cookie attributes for security

Usually, the same cookie is shared throughout HTTP and HTTPS connections

to the same host. This heavily undermines confidentiality, as insecure (HTTP)

requests may include cookies set via HTTPS, and integrity, since cookies set via

the insecure HTTP protocol may be included in requests sent via HTTPS [36].

As previously said, cookies allow for session management and carry personal in-

formation regarding the user. Thus, keeping them secure from attackers is of

uttermost importance. Many attributes have been introduced with this goal in

mind. In particular:

• the Secure attribute imposes that a cookie can only be sent through HTTPS

and accessed by scripts that run on HTTPS pages [37]. This guarantees con-

fidentiality, but not integrity: indeed, if the same cookies are sent via HTTP,

an attacker may be able to modify them, thus undermining integrity. This

is known as Weak Integrity and modern browsers tackle the issue by not

allowing HTTP sites to create Secure cookies. Also, a cookie whose prefix

is Secure- can be used, as it must have the Secure attribute and must

be set from an HTTPS URL.

• the HttpOnly attribute forbids the browser from exposing the cookie to

scripts run on the client. This partially1 prevents the cookie from possibly

being accessed through client-side attacks such as Cross-Site Scripting (XSS),

although other techniques such as Cross-Site Request Forgery (CSRF) may

still succeed in leaking the cookie.

1see [38] for a demo on replacing HttpOnly cookies by overflowing the cookie jar from

JavaScript
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• the SameSite attribute allows for specifying whether a cookie should or

not be sent cross-site. In particular, it is possible to specify that the cookie

should be sent: only in same-site requests (Strict); in same-site requests

and in cross-site top-level requests (Lax); in all contexts (None, requires

Secure). This attribute provides protection against CSRF attacks when

set in Strict mode. [39, 40]

3.3.3 Cookies, SOP and subdomains

The security of sub-domains plays an important role on web application secu-

rity, most notably because sub-domains can share cookies. For example, www.

unive.it and idp.unive.it can both set cookies with the Domain attribute

set to .unive.it: such cookies, called domain cookies, are sent to both services.

Though this practice is useful and popular, e.g., to implement authentication across

different sub-domains, it also means that attacking www.unive.it might break

the confidentiality and integrity of cookies at idp.unive.it and vice-versa [41].

A possible solution consists of avoiding the usage of the Domain attribute alto-

gether, hence allowing the cookie to be only sent to the origin host [42].

As we can see, cookies do not implement SOP as per the specification. In par-

ticular, as previously explained, they do not provide isolation by scheme (not by

default): HTTP and HTTPS cookies related to the same domain may be shared.

The same holds for ports. The previous paragraph also shows how cookies may be

shared across different sub-domains (i.e. different origins) thanks to the Domain

attribute [32].

3.3.4 When is a cookie secure?

As we have seen, correctly identifying secure cookies is a tricky process. Con-

sidering as “secure” only cookies that are sent via HTTPS, we can define three

conditions for checking whether a cookie is secure or not:

1. the cookie is flagged as secure;
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2. the cookie is not flagged as secure, but it is set on a domain that uses

HSTS;

3. the cookie is not flagged as secure, but it is set on a domain such that at

least one of its ancestors uses HSTS with the includeSubDomains option.

3.4 Content Security Policy (CSP)

3.4.1 Rationale

CSP is a client-side defensive layer that mitigates (and reports) attacks such as

XSS. Being client-side, it is enforced by the user’s web browser. All the most

common web browsers are CSP-compatible. In order to enable CSP, either the

Content-Security-Policy HTTP response header or the relative <meta>

tag must be used [43]. As other security mechanisms we have seen, the core idea

is to only allow some specific domains to be able to include scripts, hence reducing

the attack surface of the webpage. If a script is loaded from a domain that is not

whitelisted, the script is not executed. It is also possible to disable the execution

of scripts entirely.

3.4.2 Cross-Site Scripting (XSS)

Cross-Site Scripting has steadily been one of the most common attacks on the

web for years [44, 45]. It is a quite nasty attack, as it bypasses SOP by running

malicious code in the target’s origin [46]. XSS usually happens when user input

is not properly sanitized or escaped, and can therefore be run in the page. At

that point, an attacker may send a malicious URL to the victim, that would leak

sensitive data just by clicking on it without even realizing something wrong has

happened [47].
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Figure 3.2: A classic XSS attack, taken from [47]

XSS is one of the reasons why having HttpOnly cookies is important: if protects

them from possibly being leaked from such an attack.

3.4.3 Directives

CSP relies on its own small declarative language. In a page, a developer would

usually configure at least a default-src fallback directive, a script-src

directive for scripts, and a report-uri directive for reporting attempted vio-

lations of the policy. Other important directives are style-src for stylesheets

and connect-src for the targets of XMLHttpRequests.

3.4.4 Enforcing security

Whenever either script-src or default-src is defined, CSP enforces other

restrictions: it forbids the execution of inline scripts, inline event handlers and

javascript: URLs. It also blocks the execution of eval() and limits other

functions such as setTimeout [48]. Hence, if we want to deploy CSP, we should

not use any of these in our code. Since inline scripts may often be useful, we can

whitelist them using a random nonce for each incoming request, which helps in

protecting from script injection. However, this implementation is susceptible to

“recursive” script inclusion and does not provide any guarantee on which script is
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actually being run. It is usually safer (but also more complex) to whitelist scripts

based on their hashes, following SRI’s principle. This also holds for inline scripts,

whose hash is automatically computed.

Finally, CSP can also be used together with many of the mechanisms presented so

far (HSTS, SOP, SRI, ...) to enforce the exclusive usage of HTTPS. In particular,

two headers can be used to achieve the goal:

• the upgrade-insecure-requests header updates all HTTP requests

to HTTPS before sending them. This directive is especially useful when mi-

grating from HTTP to HTTPS, as it takes care of upgrading all the possibly

insecure requests. In case a resource is not available via HTTPS, the browser

avoids loading it overall to enforce security;

• the block-all-mixed-content header forbids the usage of any type

of mixed content in the page [49]. This directive is also propagated into

<iframe> resources, with the desirable side effect of the page not loading

mixed content at all levels [29].

An interesting property is that upgrade-insecure-requests is evaluated

before block-all-mixed-content. Since the first one already avoids possi-

bly loading resources via HTTP, the second directive does not serve any use if

combined with the former [43].

It is easy to notice that correctly configuring CSP is far from straightforward and

existing research [50] shows that many websites deploy it in a way that basically

voids its most promising security guarantees.
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Chapter 4

HTTPS certificates

In this chapter we will explain what X.509 certificates are and their fundamental

role in securing HTTPS communication. We will define the key properties of

X.509 certificates (Section 4.1) and explain how they are validated (Section 4.2),

also presenting the different forms in which certificates come (Section 4.2.2) and

the concept of Certificate Transparency (Section 4.2.3).

4.1 X.509 certificates

4.1.1 Public key infrastructure

Understanding public key infrastructures (PKIs) is fundamental in order to un-

derstand the rationale and the behavior of X.509 certificates. PKIs can be seen

as a set of tools (both hardware and software) and processes which are needed for

creating, managing, using and revoking certificates and public keys. We could say

their main goal is establishing identities of entities such as people and services [51].

In layman terms, a PKI is something we rely on to authenticate users and their

devices. The core idea is that a trusted entity can certify that a cryptographic key

belongs to user u, then that key can identify u.
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4.1.2 Introduction to certificates

Certificates used in SSL/TLS follow the X.509 standard. Each certificate includes

many different fields. Some of the most notable ones are the validity period,

the subject (identity) of the certificate and the public key. A certificate may

be self-signed, but certificates are usually considered “good” if they are signed by

Certificate Authorities (CAs), trusted entities that issue certificates and guarantee

the identity of users. A certificate also contains a serial number, which is useful for

revocation, and a signature of its body with private key of the issuer (the CA in

most cases). Certificates are commonly used in HTTPS communication and email

signing and encryption [52].

4.1.3 Certificate policies

Certificate policies are “fields” inside a certificate that describe its properties.

Generally speaking, certificate policies are documents whose goal is to describe the

roles of different entities in public-key infrastructures. When a X.509 certificate

is issued, it is possible to specify in which cases it can (and can not) be used.

Some fields are mandatory: for instance, each certificate must be identifiable via

its Serial Number. All these properties of certificates are expressed in the form of

extension policies, characterized by OIDs (object identifiers).

4.2 Certificate validation

4.2.1 Steps

Certificate validation is usually performed using already existing APIs provided

by common tools in the industry such as OpenSSL.

The process can be summarized in three steps [53].
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Step 1: build the certificate chain and validate signatures

Before trusting the contents of a certificate we want to verify the certificate’s

signature. This requires locating the authority that signed the certificate: this is

achieved by traversing the intermediate certificates and certificate store looking for

a certificate whose subject is the issuer of the certificate to be validated. In case

of multiple matches for the subject alone, it is also possible to match the Subject

Key Identifier and Issuer Key Identifier extensions. In case there are still multiple

matches, the most recently issued certificate is generally used. It is now possible

to check the signature on the target certificate using the authority certificate’s

public key. If this step fails, the validation process can already be stopped, with

the target certificate considered invalid. Building the certificate chain requires the

validator to have all the certificates in the chain; the Server Certificate Validation

Protocol (SCVP) is more commonly used for requesting a certificate chain from a

server.

Step 2: check validity dates, policy and key usage

After having verified the certificate’s signature it is fundamental to check differ-

ent fields to see if it is currently valid. Each certificate’s [valid not before,

valid not after] range must contain the current date. Some X.509 extension

fields must also be verified.

In particular:

• the BasicConstraint extension is required for CAs and limits the depth

of the chains starting from specific certificate;

• the NameConstraints extension limits the namespace of identities certi-

fied underneath the given CA certificate;

• the KeyUsage and ExtendedKeyUsage excensions set limits on what a

certified key can be used for.
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Step 3: consult revocation authorities

Now that the certificate chain is known to have valid dates and correct extensions

usage, it is a good practice to check whether a certificate has been revocated by

contacting the revocation authorities specified in each certificate. Some extensions

in the certificates may contain extensions that point to Certificate Revocation Lists

or to Online Certificate Status Protocol (OCSP) responders.

4.2.2 Security practices

It is well-known that certificates should only be signed by a trusted certification

authority and should only be considered valid up to a given expiration date. What

is likely less known is that certificates come in different forms. In particular, by

increasing level of security guarantees:

1. Domain Validated (DV) certificates are issued after proving some form of

control over a given domain name, but do not provide any form of binding

between the domain name and the organization which claims ownership of

the domain;

• we can recognize Domain Validated certificates as they contain the

2.23.140.1.2.1 policy identifier [54].

2. Organization Validated (OV) certificates are only issued after proving that a

domain name is actually controlled by a given physical organization. This re-

quires the presentation of appropriate documentation about the organization

asking for the certificate;

• these certificates lack fields such as Business Category;

• we can recognize Organization Validated certificates with the

2.23.140.1.2.2 policy identifier [54].

3. Extended Validated (EV) certificates are similar to OV certificates, but are

subject to even stricter security checks. Browsers often rely on custom secu-

rity indicators for EV certificates and show the name of the owning organi-

zation directly in the address bar.
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• these certificates are characterized by some fields in the Certificate Poli-

cies extension field.

In particular, the fields jurisdictionOfIncorporationCountryName,

businessCategory and serialNumber are mandatory,

while jurisdictionOfIncorporationStateOrProvinceName

and jurisdictionLocalityName are optional [54].

Major organizations like universities or banks should only use OV or EV certifi-

cates, since DV certificates provide no protection against phishing attempts. For

example, an attacker could get a valid DV certificate for www.unvie.it and host

a website which pretends to be the legitimate website of the Ca’ Foscari University

of Venice (www.unive.it).

Moreover, security-conscious administrators should avoid the use of wildcard cer-

tificates. Wildcard certificates apply to arbitrary sub-domains like *.unive.it,

hence are typically reused on a multitude of different hosts. This simplifies the

HTTPS deployment, but also implies that all such hosts have access to the same

cryptographic keys, hence the compromise of any host would suffice to get read

and write access to all the HTTPS traffic exchanged with any sub-domain of

unive.it. Wildcards cannot be used in EV certificates, but it is worth noticing

that even certificates which do not make use of wildcards might be unduly issued

for a large number of domains by specifying multiple Subject Alternative Names

(SANs) in them.

4.2.3 Certificate Transparency (CT)

Rationale

Certificate Transparency is an open source standard for assessing the security of

certificates. It consists of an append-only public log of certificates released by

CAs. This allows for checking if and what certificates have been issued for a

domain name, and alerts a domain’s owner if another certificate for that domain

name is issued. The Expect-CT HTTP header forces a browser to verify that

the website’s certificate is in the Certificate Transparency logs [55, 49]. Certificate
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Transparency introduces three new components in the current HTTPS certificate

system: certificate logs, certificate monitors and certificate auditors [56].

Certificate logs

Certificate logs are services that keep records of SSL certificates. They are append-

only, cryptographically assured using Merkle Tree Hashes, and publicly auditable,

meaning that any entity can query a log to verify that a certificate has been

appended.

Although any entity can submit a certificate to a log, most certificates are sub-

mitted by certificate authorities and server operators. The log sends a Signed

Certificate Timestamp (SCT) -a simple promise to add the certificate to the log

within a certain time frame (MMD, Maximum Merge Delay)- in response. A TLS

server must deliver the SCT with the certificate during the TLS handshake.

Delivering an SCT with a certificate

There are three methods for delivering an SCT with a certificate, namely [56]:

• X.509v3 extension: the CA submits a precertificate to the log, who

returns an SCT. The CA then attaches the SCT to the precertificate as an

X.509v3 extension, signs the certificate, and delivers the certificate to the

server operator;

• TLS extension: a special TLS extension can be used by server operators

to deliver SCTs. The CA issues the certificate to the server operator, who

submits the certificate to the log. The log sends the SCT to the server

operator, who uses the signed certificate timestamp TLS extension

to deliver the SCT;

• OCSP stapling: SCTs can be delivered by server operators via the On-

line Certificate Status Protocol (OCSP) stapling. Here the CA issues the

certificate to the log server and the server operator at the same time. The

server operator then makes an OCSP query to the CA, that responds with
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the SCT. The server then includes the SCT in an OCSP extension during

the TLS handshake.

Figure 4.1: Certificate issuance with CT, from [57].

Monitors and auditors

A monitor’s goal is to look for suspicious certificates in the logs, for instance

illegitimate ones, and to verify that all the logged certificates are visible in the

log. Monitors usually keep complete copies of the logs they monitor. Monitors can

even behave as backup, read-only logs while logs are offline.

Auditors, on the other hand, verify the overall integrity of logs using log proofs –

signed cryptographic hashes that certify a log is reliable. Every log must provide

its proofs if asked. Log proofs also allow for checking whether a given certificate

appears in a log. Finally, auditors can use log proofs to check that new entries

have been added to the log and the log has not been corrupted.
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Chapter 5

Cryptographic implementation

In this chapter we will present how (server-side) vulnerabilities at the crypto-

graphic implementation level (SSL/TLS) can have disruptive effects on the secu-

rity of HTTPS deployments. We will present protocol version downgrade attacks

(Section 5.1.1), the highly renowned Bleichenbacher padding-oracle attack (Sec-

tion 5.1.2), and three other famous attacks: DROWN (5.1.3), ROBOT (Section

5.1.4) and Heartbleed (Section 5.1.5). Afterwards, we will define insecure chan-

nels (Section 5.2) and present attack trees, which are the tool we used to perform

inferences and understand whether hosts may be subject to attacks (Section 5.3).

5.1 Attacks on TLS

5.1.1 Protocol version downgrade attacks

As we have seen in Section 2.3.4, a TLS server should respond to a ClientHello

message with either the proposed version of the protocol, or with its highest sup-

ported version (if lower than the proposed one). For instance, if a client proposed

TLS1.2 but the server only supported TLS1.1, it would respond with TLS1.1.

Conversely, if a client proposed TLS1.2 and the server supported all TLS versions

up to TLS1.3, it would respond with TLS1.2. Since some web servers simply

drop connections if there is no match in the TLS versions, browser might repeat

the handshake procedure with lower protocol versions. An active attacker could,
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therefore, drop messages to downgrade the communication to vulnerable protocol

versions.

POODLE

POODLE (Padding Oracle On Downgraded Legacy Encryption) is a vulnerabil-

ity found in servers that support SSLv3 with cipher-block chaining (CBC) mode

ciphers. In POODLE, an attacker which has already successfully set up a Man-in-

the-middle attack forces connection failures to downgrade the communication to

SSLv3 and then decrypt part of the SSL communication [59]. While the vulnera-

bility in SSLv3 itself is not fixable, it is strongly suggested to avoid using SSLv3

entirely. A fix for the broken downgrade procedure, conversely, can be found in

the TLS FALLBACK SCSV protocol extension [17]. This consists of a fictitious ci-

phersuite appended to handshake attempts subsequent to the first one [60]. If this

ciphersuite is present and the TLS version in the message is lower than the highest

supported from the server, then there may have been an attempt of attack. The

great advantage in this extension is that, while some old servers may crash when

receiving unknown or unsupported TLS versions in the ClientHello message,

the extension does not cause any fails.

5.1.2 Bleichenbacher 1998: let padding oracles in

In 1998 Bleichenbacher, whom at the time worked at Bell Labs, noticed the fol-

lowing. Let be given: an RSA public key with base n and exponent e; the relative

private key d; an oracle that discerns whether any ciphertext c, once decrypted as cd

mod n, is correctly padded as per the PKCS#1 standard. Then, this oracle can be

used to decrypt or sign a message using an adaptive chosen-ciphertext attack [61].

In the more than twenty years that have passed since Bleichenbacher’s discovery,

many other attacks have been developed, often relying on the same padding or-

acle concept. Some well-known examples are the OpenSSL CBC padding oracle

CVE-2016-2107 [62], POODLE [17], DROWN [13], and ROBOT [14].

More details on the exploitation of the attacks presented in the following sections

will be given in the Attack Trees section (Sec. 5.3). We will now quickly present
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three famous attacks, of which two are variants of Bleichenbacher’s, in order to

give the reader some insight on how they work; see the original papers for more

information.

Finally, it is essential to understand that if a server is or was vulnerable to such

attacks, changing keys and certificate and revocating the old certificate would go

a long way in ensuring users’ security.

5.1.3 DROWN: Decrypting RSA with Obsolete and Weak-

ened eNcryption

Attack intuition and description

DROWN [13] is a cross-protocol attack that exploits SSLv2 in order to decrypt

TLS connections. DROWNS allows for breaking a single host which supports both

SSLv2 and TLS by exploiting vulnerabilities in SSLv2 and, in the special case, bugs

in OpenSSL. The most interesting aspect of DROWN, however, is that it allows

the attacker to break a perfectly configured host by means of another, vulnerable

host which uses the same RSA public key in its certificate and supports SSLv2.

Figure 5.1: DROWN on a single host. Taken from [13]
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Figure 5.2: DROWN on two hosts sharing the same key. Taken from [13]

Attacker capabilities

Two variants of DROWN are defined: general and special. The general variant can

be used with any SSLv2 implementation, with the only requirement that it must

accept export-grade cipher suites. The special variant relies on the Extra Clear

and Leaky Export OpenSSL bugs (with the latter relying, again, on information

leaks due to export ciphers) and allows the attacker to break TLS ciphertext in

less than a minute on a standard consumer PC, allowing for a Man-In-The-Middle

attack.

5.1.4 ROBOT: the Return Of Bleichenbacher’s Oracle Threat

Attack intuition and description

As the name of the attack suggests, ROBOT is an updated variant of the at-

tack originally developed by Bleichenbacher in 1998 rather than a completely new

attack.

In 2017, Böck et al. [14] realized that the vulnerabilities reported by Bleichen-

bacher were still present in most major TLS implementations. The test sends five

differently formatted PKCS #1 v1.5 messages as ClientKeyExchange [63]:
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1. Correctly formatted TLS message: 0x00 at the correct position, correct TLS

version in the premaster secret. M1 = 0x0002 || pad() || 0x00 ||

version || rnd[46]

2. Incorrect PKCS #1 v1.5 padding: the first byte in the padding is invalid.

M2 = 0x4117 || pad()

3. 0x00 at the wrong position: results in wrong length in the unpadded pre-

master secret. M3 = 0x0002 || pad() || 0x0011

4. No 0x00 after the padding. M4 = 0x0002 || pad()

5. Wrong TLS version. M5 = 0x0002 || pad() || 0x00 || 0x0202

|| rnd[46]. As a matter of fact, SSL/TLS versions in hex are described

as follows: TLS 1.2=0x303, TLS1.1=0x302, TLS1.0=0x301,

SSLv3=0x300 [64]

The only way for a server not to be vulnerable to a chosen-ciphertext attack is

to respond with the same alert message to all the five presented messages. If any

response is different from the others, then it is possible to perform a Bleichenbacher

attack on the server. We can also discern between strong and weak oracles, with

the oracle being strong if and only if we get at least two different responses from

messages M2, M3 and M4.

Attacker capabilities

As shown in [20], an attacker who is able to exploit a Strong Bleichenbacher oracle

on a server could be able to learn the session keys, which allows for decryption,

and may even be able to set up a Man-In-The-Middle attack, which also allows

for modification of the messages.
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5.1.5 Heartbleed

Rationale

Heartbleed is a somehow different attack from the other ones mentioned in this

chapter as it is specific to some versions of OpenSSL. In particular, Heartbleed

allows the attacker to leak the server’s memory, including the keys used for cer-

tificates [65].

The core idea behind Heartbleed is to exploit vulnerable OpenSSL versions that

do not perform a fundamental sanity check on heartbeat requests.1 In particular,

the response’s body size is only dependent on the length parameter in the request,

regardless of the real size of the request’s payload. This allows attackers to leak

data in memory by simply sending small payloads and asking for much more data.

Figure 5.3: An exemplified Heartbleed attack, from [67].

1Heartbeat requests are simple requests in which one entity asks the other entity to echo back

some bytes as a keep-alive feature [66].
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Attacker capabilities

As mentioned, an attacker who is able to exploit Heartbleed on a server could

be able to steal keys, certificates, and even dump unrelated data such as instant

messages, documents, and emails [65]. Extracting a server’s private key using

Heartbleed is surprisingly simple, as the attack’s implementation is open-source2.

5.2 Insecure channels

5.2.1 Taxonomy

We define insecure channels as follows [6]:

• Leaky channels : established with servers vulnerable to confidentiality at-

tacks, which give the attacker the ability to decrypt the network traffic;

• Tainted channels : susceptible to man-in-the-middle attacks, which give the

attacker the ability to decrypt and arbitrarily modify the network traffic.

Observe that tainted channels are also leaky by definition;

• Partially leaky channels : suffering from side-channels, which give the at-

tacker the ability to disclose selected “small” secrets (like cookies) over time.

Observe that leaky and tainted channels also qualify as partially leaky.

5.3 Attack trees

5.3.1 Definition and rationale

In Section 5.2 we introduced the notions of (partially) leaky and tainted channels.

In order to evaluate these properties, we rely on the Attack Trees defined in [20].

Attack trees are simple diagrams which evaluate whether an entity is vulnerable to

a certain attack by returning a Boolean true/false value. These trees are often a few

levels deep and can be used as nodes in more complex trees. Nodes are combined

2https://github.com/indutny/heartbleed
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using either the logical conjunction AND or the logical disjunction OR, and can

be negated using the NOT operator. Using attack trees is a very suitable way to

represent possible attacks on hosts, as attacks frequently require many different

conditions to be present at once and are often feasible via different combination

of these conditions.

5.3.2 Our implementation

In our analysis, we will check for possible leaky and tainted channels. The two

“high-level” trees we are interested in are, therefore, the following (from [20]):

Figure 5.4: Attack trees for leaky and tainted channels, from [20].

In the tree for tainted channels (Potential MITM) we can notice that condition

2.1 corresponds to the success of the tree for leaky channels (Learn the session

keys), proving that nesting trees representing subgoals is a useful and common
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practice. In this notation, a pipe (‘|’) represents a logical OR, while an ampersand

(‘&’) represents a logical AND.

Leaky channels

A successful tree for leaky channels means that an attacker may be able to decrypt

an RSA key exchange offline, thus obtaining read access to a previous communi-

cation. As we can notice in the second branch, an RSA decryption oracle may be

exploited on a host which is not the target one, but shares the same certificate or

key with the target. This empirically proves both that the highly interconnected

and complex nature of the modern web poses serious security threats, and that

correctly managing (especially not sharing among many hosts) certificates and

public keys is of uttermost importance to achieve a sufficient level of security.

Tainted channels

A successful tree for tainted channels means that an attack may set up a MITM

attack, thus being able not only to decrypt and read, but also to modify the

communication in real time. There are four different ways to carry out this attack,

and all of them rely on the vulnerabilities at the cryptographic level presented in

Section 5.1. Notice that the Heartbleed vulnerability is so disruptive that it alone

my allow an attacker to run the attack.
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Chapter 6

Analysis setup

In this chapter, we will explain how we carried out our analysis from a technical

point of view. We will start by defining the overall structure of the tool we used

(Section 6.1), presenting the tests we performed for each of the topics of interest

of our analysis (Section 6.1.2). We then report the pseudocode for our complete

analysis (Section 6.2) and explain the computation of attack trees in further detail

(Section 6.3).

In this chapter, the reader will also understand the integration between Discovery,

the tool on which the author has worked during his internship at Cryptosense,

and the additional tests we implemented in order to gather more information.

This integration allows us to perform thorough tests and show that many HTTPS

deployments are still not satisfactory and often lack even basic security practices.

The results in further detail are reported in Chapter 7.

6.1 Overall structure

Our analysis mostly relies on Discovery, a tool developed by Cryptosense for ana-

lyzing SSL/TLS and SSH deployments on given hosts. The goal is to report known

vulnerabilities and misconfigurations and how to fix them.1 The three main steps

composing the analysis pipeline will be presented in the following subsections.

1https://discovery.cryptosense.com
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6.1.1 Step 1: Discovering related hosts

In this phase our tool tries to discover as many hostnames related to the given

one as possible. This is done by trying to resolve some default subdomains of

the main host (e.g. www., idp., vpn., . . . ) and checking the Certificate Trans-

parency logs. We also use Puppeteer to catch the URLs of all the outgoing requests

and check those hosts too. This is fundamental because including resources from

tainted channels may compromise pages and the vulnerable hosts from which re-

sources are included may not be found by checking subdomains and the Certificate

Transparency logs (e.g. if the host is included from a generic external host).

6.1.2 Step 2: Analyzing hosts

After having discovered as many hostnames as possible, we proceed with an analy-

sis of the discovered names in an attempt to gather all the information we need for

our inferences. This is where some limitations of Discovery arose. In particular,

Discovery’s nature is to discover a host, perform a given set of tests on the discov-

ered hosts and then format the results. However, we needed some more tests with

respect to the standard ones computed by Discovery: for instance, Discovery does

not check CSP headers nor SRI. Luckily, given Discovery’s code structure, we could

add the tests we needed with no significant issues. Although some features were

missing, relying on Discovery allowed us to have a solid base to begin with and

to avoid writing most of the logic needed, especially the one for checking vulnera-

bilities to attacks and computing attack trees. This greatly reduced development

and testing times and allowed us to rely on an industrial-quality codebase for the

most part. We will now discuss the tests we integrated and the way we integrated

them, by reflecting the different categories we presented in the Introduction of this

thesis.

Adoption and activation of HTTPS at the web application layer

In order to check whether HTTPS is activated, a redirect takes place and HSTS

is used, we rely on Python’s requests library and on Puppeteer. Puppeteer is

45



used for checking whether a redirect from the HTTP to the HTTPS version of

a website takes place; the requests library is then used to check whether the

Strict-Transport-Security header is present, and if it is, whether

includeSubDomains is also used.

Enforcement of the usage of HTTPS

As we have mentioned, the usage of HTTPS can also be enforced using CSP.

Content-Security-Policy is a header, so we can check it while also checking for

the presence of Strict-Transport-Security in Section 6.1.2 using the re-

quests library. In particular, we parse the CSP header (if present) looking for

the upgrade-insecure-requests and block-all-mixed-content di-

rectives. We also used our modified version of an open source tool2 to check

for the presence (and type) of mixed content. This is not perfect, as it does not

perform thorough, recursive checks the same way a browser does; unfortunately,

Puppeteer does not include Chrome’s checks on mixed content as of now. The tool

has proved to be quite useful (and its usage is even suggested on Google’s Devel-

opers blog at [29]), although modern browsers may perform additional checks on

dynamically loaded resources that this tool does not provide.

Security of cookies

The security of cookies is not taken into account in the publicly available version

of Discovery: luckily, cookies too can be read from the request sent in Section

6.1.2 using the requests library. In order to perform the checks on the security of

cookies, we rely on the conditions presented in Section 3.3.4. This step requires

already having the results for the deployment of HSTS, and is therefore executed

later.

2Available at https://github.com/bramus/mixed-content-scan
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Safe resource inclusion

We check for the safe inclusion of resources by verifying whether SRI is deployed.

This is done by gathering all the <link> and <script> tags from the page with

Puppeteer and checking whether they use the integrity attribute. Here it is

important to notice that integrity does not work for inline scripts, thus they

should not be considered in this analysis. We also check, using the request from

Section 6.1.2, whether CSP uses SHA in order to whitelist scripts.

Correct cryptographic implementation of the TLS protocol

This is the section in which Discovery becomes particularly useful: as a matter of

fact, while working at Cryptosense the author has implemented the logic for evalu-

ating Attack Trees, which we use to determine whether hosts might be vulnerable

to attacks. All the logic needed is already present in the publicly available version

of Discovery and relies on tests performed via Nmap3 and testssl.sh4 to compute

whether hosts could be vulnerable to attacks with a decent degree of confidence.

This analysis is fundamental to understand whether there are leaky or tainted

channels on either the considered hosts’ subdomains, main pages or related hosts.

In particular, our analysis tests hosts for the following vulnerabilities, needed to

compute the attack trees:

• Strong Bleichenbacher (ROBOT): needed for tainted and leaky channels. We

do not consider the weak version as it is hardly exploitable.

• (Special) DROWN: needed for tainted and leaky channels

• Heartbleed: needed for tainted channels

Adoption of best practices in HTTPS certificates

In this analysis we are interested in understanding which kind of certificates are

used: Domain Validated, Organization Validated and Extended Validated. We

3https://nmap.org/, used for DROWN, POODLE and Heartbleed
4https://testssl.sh/, used for ROBOT
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implemented the logic to discern between the different types presented in Section

4.2.2, extending Discovery’s logic to parse certificates.

Adoption of modern standards and headers

In order to check the presence of the Expect-CT header we rely on the request

sent in Section 6.1.2. On the other hand, in order to check whether TLS 1.3 is sup-

ported, we used OpenSSL. Discovery has only recently started to support TLS1.35

and unfortunately we had already applied many modifications and extensions to

the previous version when the new one came out, hence we implemented the TLS

1.3 check using OpenSSL.

6.1.3 Step 3: Formatting the results

Once all the tests have been run, our tool parses the result of the analysis and

formats it by performing some inferences and further interpreting the obtained

data. This step merges the information obtained by the many different tests run

and returns a representation of each host’s security condition; it also includes

information on the security of its related hosts.

6.2 Complete analysis

The analysis of a single host is used as a subroutine in our code, and is used for each

host in each category. The whole pipeline can be summarized as per Algorithm 1,

where discover and analyze host performs all the steps explained above.

5https://cryptosense.com/blog/anssi-tls-recommendations-v1-2-in-

cryptosense-discovery/
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Algorithm 1 Run tests

function run tests(categories)

all results← dictionary()

for all category in categories do

category results← dictionary()

hostnames← hosts in category(category)

for all hostname in hostnames do

host results← discover and analyze host(hostname)

category results[hostname]← host results

end for

all results[category]← category results

end for

aggregate results← compute aggregate results(all results)

return aggregate results

end function

6.3 Attack trees in Discovery

6.3.1 Understanding attack trees

The presence of vulnerabilities is checked by performing non-intrusive scans using

open source tools such as Nmap and testssl.sh. It is fundamental to realize that a

positive attack tree does not guarantee the feasibility of an attack. As a matter of

fact, the computation of attack trees relies on assumptions (presented in Section

6.3.2) which may not hold. An attack may fail because of rate limiters, anomaly

detection systems, etc.; still, a successful attack tree it is a strong indicator that a

vulnerability is present, implying that the HTTPS deployment needs to be fixed

and updated. As a matter of fact, the attack trees used in our analysis exploit

vulnerabilities which have been known for years and often rely on old versions of

SSL/TLS, usually SSLv2 and SSLv3. Hence, a successful tree suggests that no

security updates have been applied on the host for a long time and that signifi-

cant misconfiguration problems will likely be found on the host. In other words,
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although the host may not actually be vulnerable (e.g. thanks to firewalls or rate

limiters), the success of the attack tree indicates that the host’s HTTPS deploy-

ment is poorly done and should be fixed and updated anyway. Discovery also

includes a “remediation” mechanism that tells the user how to fix their outdated

Nginx/Apache deployment by disabling old versions of SSL.

6.3.2 Attack trees computation

Assumptions

When evaluating attack trees, some assumptions have to be made. For instance,

we will never know which browser each user is using and we do not know the

attacker’s capabilities. When computing attack trees, realistic assumptions are

being used.

The most relevant assumptions used are:

• the user’s browser is modern, i.e. it does not support either SSLv2 or SSLv3;

• the user’s browser does not support export ciphers and other weak algorithms

such as RC4 and MD5;

• the vulnerable server can handle many parallel connections;

• the attacker can capture messages (e.g. the key exchange) in the required

format to set up an attack.

Inference mechanism

The evaluation of attack trees can be seen as a simple recursive algorithm.

Starting from the root of the tree, we move deeper and deeper towards the leaves.

Leaves are atomic conditions which can either be trivially evaluated, or fallback to

pre-determined assumptions. Once all the leaves have been assigned a truth value

(either true or false), it is possible to traverse the tree one level upwards. We

thus move one level up and evaluate the intermediate nodes, whose value is com-

puted as the result of a logical conjunction or disjunction among each intermediate

node’s children.
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Finally, the root is computed as if it was an intermediate node and its value

determines whether the attack tree is successful.
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Chapter 7

Results and considerations

In this section we will present the results of our analysis. First of all, we will give

some additional information regarding the scanning procedure and how we dealt

with uncertainty (Section 7.1); we will then present the results for the main hosts

analyzed (Section 7.2) and their related hosts (Section 7.3).

The results clearly indicate that many security techniques are not being used as

widely as they should. They also prove that some websites lack even the most basic

security techniques we might expect in 2020, such as a default redirect from HTTP

to HTTPS, the usage of secure cookies or the lack of server-side cryptographic

vulnerabilities.

7.1 Running the analysis

7.1.1 Target websites and time frame

We analyzed the top 50 websites per each of the 24 categories defined by Similar-

Web1. This amounts to running the tests on 24 × 50 = 1200 main hosts, plus all

the ones discovered using our tool. The tests were run in batches using different

virtual machines in order to speed up the analysis process. Analyses began on the

3rd of July 2020 and finished on the 5th of July 2020.

1See https://www.similarweb.com/top-websites/
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7.1.2 Dealing with uncertainty

When running such widespread analyses many problems may arise: some hosts

might be ill-configured, some others may be offline, and further ones may refuse

connections or use self-signed certificates. Furthermore, the many changes we made

to Discovery in order to collect all the data we needed drastically incremented the

number of tests in which something could go wrong. In case nothing about a host

could be analyzed, we simply did not consider the host; conversely, in case only

some tests could not be performed, we adopted a reasonable fall-back strategy.

For instance, in case a host performed more than 30 redirects without settling on

a page nor giving useful information on its headers, we just assumed that the host

did not deploy either CSP or the headers we were testing for. Analogously, in

case connections were refused either on the server’s end (or on our end because

of a self-signed certificate) we just assumed that the headers we were looking for

were not present, which in our opinion makes sense as there would be no point in

deploying HSTS or the Expect-CT header while using a self-signed certificate.

Another important aspect of this analysis is that reproducibility is pretty hard to

achieve while working on the web. Because of its ever more dynamic nature, many

factors make analyses tough to reproduce: IP addresses are constantly changing

because of distributed and replicated environments; HTTPS deployments may

change at any given time because of choices taken from developers or site operators;

hosts may go on- and off-line randomly because of network outages. We expect

the general results to hold in case the analysis we carry out were to be repeated,

but 100% accurate reproducibility simply cannot be achieved, unfortunately.

7.2 Main hosts

7.2.1 Secure redirect, HTTPS and HSTS

We will start presenting our results from the state of the HTTPS activation

with respect to HTTP-to-HTTPS redirects and the presence of HSTS. In par-

ticular, here we evaluate whether a redirect from HTTP to HTTPS takes place,
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whether HTTPS is deployed with HSTS and whether HSTS is deployed with the

includeSubDomains option. The results for the different categories can be seen

in Table 7.1.

Of 1092 websites analyzed, 102 (9.3%) do not force an HTTPS redirect when trying

to connect to the http:// prefixed URL. Unfortunately, this is most browsers’

default behavior, which can be avoided only by using browser extensions such

as DuckDuckGo Privacy Essentials or HTTPS Everywhere. This means that the

casual user may surf the website not even realizing it is not secure. Some modern

browsers warn the user with an alert when he submits forms (e.g. login ones) via

HTTP, but we believe serving websites over HTTPS should be the bare minimum

as of 2020. This result is quite unsatisfying since avoiding plain HTTP connections

has been a best practice for years.

On the bright side, 990 websites perform at least a basic HTTPS redirect. In

particular, more than half of the analyzed websites (582 out of 1092, i.e. 53.3%)

performs a basic HTTPS redirect, with 408 hosts (37.4%) also adopting HSTS (238

standard deployments, 170 with includeSubDomains). This is an interesting

result, showing that site operators are slowly adopting these best practices. We

were also glad to notice that the number of websites which deploy HSTS is higher

than the number of websites that do not perform any form of redirect.

On a side note, none of the tested websites supports TLS1.3. Although this is

understandable because TLS1.3 is fairly recent, it has been around for around

a year now: browsers and web servers are mature enough to support it without

major problems, hence we would expect site operators to start deploying TLS1.3

accordingly.
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Figure 7.1: Distribution of the HTTPS activation.

7.2.2 Mixed content

In this section, we analyze the presence of passive and active mixed content in the

web pages analyzed. We consider the following distinction:

• passive mixed content : <img>, <audio>, <video>, <source> tags;

• active mixed content : <embed>, <iframe>, <link>, <object>, <script>

tags.

The results for the different categories can be seen in Table 7.2.

The good news related to mixed content is that it is not as widespread as it may

have been years ago. We believe this might be due to the fact that browsers have

been filtering out mixed content (and possibly marking the page as insecure) for a

while now. In particular, 33 out of 1092 hosts (3.0%) included some form of passive

mixed content, while 67 hosts (6.1%) included active mixed content. Although this

is not a strong indicator of security problems per-se, it is generally recommended

to avoid mixed content overall.

7.2.3 CSP

In this section, we analyze the usage of the block-all-mixed-content and

upgrade-insecure-requests directives presented in Section 3.4.4. These

directives are somewhat complementary to the deployment of HSTS, meaning that
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they enforce the adoption of HTTPS and reject the usage of mixed content. The

results for the different categories can be seen in Table 7.3.

Of all the main hosts analyzed, only very few use CSP. A very small number of

related hosts also does, but we could find very few usages of the

upgrade-insecure-requests and block-all-mixed-content directives.

Also, only one of the main hosts uses CSP to perform script whitelisting. This,

combined with the rare usage of SRI that will be presented in the next section, is

probably one of the most significant discoveries from our analysis. There is still a

long way to go in this area and we hope site operators will start deploying CSP

more consistently and widely soon.

7.2.4 SRI

In this section, we report whether hosts use script and link tags with the

integrity attribute. The integrity attribute, presented in Section 3.2, is

extremely powerful in avoiding that an attacker tampers with included resources

such as scripts. Nevertheless, it is extremely rare to find usages of this property

in the wild. The results for the different categories can be seen in Table 7.4.

As per CSP, SRI is almost impossible to be found. Only 3 of the 1092 hosts

analyzed include all the scripts by using the integrity attribute. Out of 23548

included scripts, only 75 are included using SRI. Analogously, out of 23941 link

tags, only 26 use SRI. This result, together with the one for CSP, empirically proves

that some modern techniques for additional security are extremely rare to be found

in the wild. In particular, we believe that using a form of script whitelisting -be

it via CSP or SRI- is fundamental to avoid the inclusion of possibly tainted files.

7.2.5 Cookies

In this section, we analyze the usage of cookies. In particular, we try to understand

how many cookies are secure by means of the definition given in Section 3.3.4. We

also report how many cookies are not flagged as secure, but still are because

of an HSTS deployment. These cookies should be flagged as secure because
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in case HSTS were to be removed, they would become insecure. The results for

the different categories can be seen in Table 7.5, and a visual representation is

available in Figure 7.2.

We found a total of 1967 cookies distributed among 615 hosts, while the remaining

477 do not use cookies. Of the 1967 cookies, 1127 are insecure while 838 are

secure. Of these 838, 71 are secure only thanks to the HSTS deployments, i.e. do

not have the explicit secure attribute set to true. We believe this result is also

unsatisfactory, as more than 57% of the cookies is not secure and another 3.6%

would become insecure if the HSTS deployment were to be removed. Also, only 189

out of the 615 hosts using cookies adopt secure cookies only, while the remaining

426 use a mixture of secure and insecure cookies. We believe secure cookies are one

of the fundamental pillars of the modern web and care when developing websites

and web applications should be taken accordingly.

Figure 7.2: Results on the security of cookies.
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7.2.6 Cryptographic implementation

In this section, we analyze the presence of vulnerabilities at the cryptographic

implementation level. In particular, we look for the presence of tainted and leaky

channels as presented in Section 5.1. The results for the different categories can

be seen in Table 7.6.

As we mentioned in Section 5.1, the modern web tends to propagate the effect of

vulnerabilities because of the interconnection of hosts and the sharing of certifi-

cates and keys. For instance, one of the hosts in the News and media category is

vulnerable to DROWN on the 143 port (IMAP protocol), thus also making the

main host insecure. In our analysis, we found 23 tainted subdomains, 29 leaky

subdomains (of which 23 are leaky as a consequence of being tainted), 2 website

whose homepage is tainted (and thus leaky) and 3 websites whose homepages are

leaky (including the 2 tainted ones). These problems are all due to the vulner-

abilities presented in Section 5.1, and can therefore be fixed by simply updating

the software in the web server and its configuration, rejecting connections via dep-

recated protocols such as SSLv2. On the bright side, it seems like the ROBOT

vulnerability is not nearly as widespread as it was just three years ago, when the

authors of [63] discovered that one-third of the top 100 Alexa websites were vul-

nerable to the attack. Although different websites are considered, we also found

that the results are better than the ones in [6] and [20] – hopefully they will keep

getting better as time passes.

7.2.7 Certificates

In this section, we analyze the distribution of certificates, counting how many are

Domain Validated, Organization Validated and Extended Validated. The results

for the different categories can be seen in Table 7.7 and Figures 7.3 and 7.4. We

also report how many hosts use the Expect-CT header.

Our analysis shows that 90 hosts (8.2%) use Extended Validated certificates, 625

hosts (57.2%) use Organization Validated certificates and the remaining 377 hosts

(34.5%) use Domain Validated certificates. The situation is quite satisfying overall,
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although many websites could still seek an upgrade from OV to EV or from DV

to OV. Still, this result is one of the most promising of our analysis and it shows

how significant the impact of Let’s Encrypt and CloudFlare is in the modern web.

Furthermore, 153 out of 1092 hosts (14%) use the Expect-CT header, which we

presented in Section 4.2.3 and believe is an important feature to have considering

the ever more complex management of certificates in the HTTPS ecosystem.

Figure 7.3: Distribution of the certificates’ types.
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Figure 7.4: Percentages of certificates per category.
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7.2.8 Summary

Overall, the state of the HTTPS deployments of the analyzed websites can not be

considered fully satisfactory. In particular:

• more than 9% of the analyzed websites do not perform any redirection from

HTTP to HTTPS;

• some hosts still rely on mixed content;

• the Content Security Policy headers which would be useful to enforce the

usage of HTTPS and script whitelisting are not used;

• Subresource Integrity is used on too few hosts;

• more than half of the analyzed cookies are not secure;

• some hosts still support SSLv2 and are vulnerable to attacks at the crypto-

graphic implementation level.

Although some other aspects look promising, in particular the usage of HSTS and

of OV/EV certificates, we strongly believe more work could and should be put

into making the analyzed hosts more secure.

7.2.9 What about categories?

One of the research questions we wanted to answer with this work was: is there a

significant difference in the quality of HTTPS deployments across different cate-

gories of websites? In hindsight, finding significant differences is not an easy task;

however, we can still learn some takeaways:

• there is a significant difference on the activation of HTTPS across certain

different categories: for instance, 12 out of 45 hosts do not force an HTTPS

redirect in the gambling category, yet all websites in the vehicles category

perform at least a basic HTTPS redirect;
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• only one category, computers electronics and technology, has a significantly

higher number of secure cookies rather than insecure ones: the secure cookies

here are more than double the insecure ones. Conversely, many categories

(adult, news and media, travel and tourism, ...) have far more insecure cook-

ies than secure ones (71-34, 52-14, 120-70);

• websites in the finance category are by far the ones in which we find more EV

certificates (21 out of 48, i.e. 43.7%): the second highest scoring category in

this ranking is home and garden with 8 out of 42 (19%) EV certificates.

Although noticing some particular aspects of the analysis such as these ones is

interesting, they hardly carry much information regarding the overall security of

the websites on their own. By comparing the results in the different tables, we

can notice that there is no significant trend implying that a category is generally

“more secure” than another. All in all, belonging to a specific category does not

imply a higher or lower likelihood of overall security.
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Category No

redirect

Redirect Basic HSTS include SubDomains

Adult 7/47 25/47 10/47 5/47

Arts and Entertainment 6/42 20/42 9/42 7/42

Business and Consumer

Services

9/48 23/48 7/48 9/48

Community and Society 1/48 27/48 7/48 13/48

Computers Electronics

and Technology

4/47 20/47 17/47 6/47

Ecommerce and Shopping 1/50 24/50 12/50 13/50

Finance 4/48 19/48 18/48 7/48

Food and Drink 2/49 30/49 6/49 11/49

Gambling 12/45 20/45 7/45 6/45

Games 7/46 21/46 11/46 7/46

Health 3/45 22/45 9/45 11/45

Heavy Industry and

Engineering

4/45 27/45 12/45 2/45

Hobbies and Leisure 4/48 32/48 7/48 5/48

Home and Garden 3/42 21/42 9/42 9/42

Jobs and Career 7/44 31/44 3/44 3/44

Law and Government 7/40 14/40 14/40 5/40

Lifestyle 2/46 25/46 10/46 9/46

News and Media 1/46 29/46 11/46 5/46

Pets and Animals 4/41 28/41 6/41 3/41

Reference Materials 5/50 28/50 6/50 11/50

Science and Education 5/46 20/46 11/46 10/47

Sports 1/41 27/41 9/41 4/41

Travel and Tourism 3/46 20/46 17/46 6/46

Vehicles 0/42 29/42 10/42 3/42

Table 7.1: Results of the tests on HTTPS redirect and HSTS deployment.
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Category Passive mixed content Active mixed content

Adult 0/47 4/47

Arts and Entertainment 2/42 2/42

Business and Consumer

Services

0/48 4/48

Community and Society 0/48 2/48

Computers Electronics

and Technology

2/47 3/47

Ecommerce and Shopping 0/50 0/50

Finance 1/48 5/48

Food and Drink 0/49 2/49

Gambling 1/45 4/45

Games 3/46 3/46

Health 3/45 3/45

Heavy Industry and

Engineering

1/45 2/45

Hobbies and Leisure 1/48 5/48

Home and Garden 2/42 0/42

Jobs and Career 1/44 0/44

Law and Government 1/40 9/40

Lifestyle 2/46 0/46

News and Media 3/46 3/46

Pets and Animals 1/41 3/41

Reference Materials 0/50 3/50

Science and Education 0/46 5/46

Sports 7/41 4/41

Travel and Tourism 2/46 1/46

Vehicles 0/42 0/42

Table 7.2: Results of the tests on the usage of mixed content.
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Category upgrade-

insecure-

requests

block-all-mixed-

content

script

whitelisting

Adult 1/47 0/47 0/47

Arts and Entertainment 3/42 1/42 0/42

Business and Consumer

Services

1/48 0/48 0/48

Community and Society 1/48 0/48 0/48

Computers Electronics and

Technology

2/47 1/47 0/47

Ecommerce and Shopping 0/50 1/50 0/50

Finance 2/48 1/48 0/48

Food and Drink 0/49 0/49 0/49

Gambling 2/45 0/45 0/45

Games 2/46 0/46 0/46

Health 2/45 0/45 0/45

Heavy Industry and

Engineering

3/45 0/45 0/45

Hobbies and Leisure 0/48 0/48 0/48

Home and Garden 3/42 0/42 0/42

Jobs and Career 0/44 6/44 0/44

Law and Government 2/40 0/40 0/40

Lifestyle 4/46 0/46 0/46

News and Media 3/46 5/46 0/46

Pets and Animals 1/41 0/41 0/41

Reference Materials 4/50 0/50 0/50

Science and Education 0/46 0/46 0/46

Sports 4/41 1/41 0/41

Travel and Tourism 1/46 0/46 3/46

Vehicles 1/42 0/42 0/42

Table 7.3: Results of the tests on the usage of CSP.
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Category Scripts & links not using SRI Scripts & links using SRI

Adult 500 scripts, 1056 links 0 scripts, 0 links

Arts and Entertainment 624 scripts, 514 links 0 scripts, 0 links

Business and Consumer

Services

1020 scripts, 856 links 3 scripts, 1 link

Community and Society 796 scripts, 1869 links 0 scripts, 0 links

Computers Electronics

and Technology

662 scripts, 1107 links 15 scripts, 6 links

Ecommerce and

Shopping

840 scripts, 973 links 0 scripts, 0 links

Finance 1118 scripts, 1072 links 3 scripts, 0 links

Food and Drink 1371 scripts, 856 links 2 scripts, 2 links

Gambling 661 scripts, 565 links 1 script, 3 links

Games 827 scripts, 749 links 3 scripts, 1 link

Health 888 scripts, 934 links 2 scripts, 0 links

Heavy Industry and

Engineering

1090 scripts, 661 links 2 scripts, 1 link

Hobbies and Leisure 853 scripts, 840 links 3 scripts, 2 links

Home and Garden 1278 scripts, 734 links 5 scripts, 0 links

Jobs and Career 757 scripts, 998 links 0 scripts, 0 links

Law and Government 588 scripts, 480 links 1 script, 1 link

Lifestyle 1033 scripts, 1845 links 4 scripts, 5 links

News and Media 1388 scripts, 1181 links 4 scripts, 0 links

Pets and Animals 903 scripts, 739 links 4 scripts, 1 link

Reference Materials 984 scripts, 975 links 11 scripts, 1 link

Science and Education 832 scripts, 770 links 4 scripts, 0 links

Sports 1148 scripts, 1196 links 4 scripts, 0 links

Travel and Tourism 2266 scripts, 2244 links 0 scripts, 0 links

Vehicles 1044 scripts, 701 links 4 scripts, 2 links

Table 7.4: Results of the tests on the usage of SRI.
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Category Insecure

cookies

Cookies secure thanks to

HSTS

Total secure

cookies

Adult 71 1 34

Arts and Entertainment 29 2 34

Business and Consumer

Services

56 0 49

Community and Society 49 11 35

Computers Electronics

and Technology

31 2 73

Ecommerce and

Shopping

51 22 59

Finance 33 1 35

Food and Drink 68 1 31

Gambling 33 0 29

Games 35 0 25

Health 21 1 15

Heavy Industry and

Engineering

28 0 26

Hobbies and Leisure 70 1 35

Home and Garden 50 2 40

Jobs and Career 84 0 28

Law and Government 18 2 17

Lifestyle 55 7 59

News and Media 52 0 14

Pets and Animals 40 1 22

Reference Materials 32 8 26

Science and Education 30 6 40

Sports 19 3 24

Travel and Tourism 120 0 70

Vehicles 52 0 20

Table 7.5: Results of the tests on the usage of cookies.
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Category Leaky main

or related

Tainted

main or

related

Leaky

subdomain

Tainted

subdomain

Adult 0/47 0/47 2/47 1/47

Arts and Entertainment 0/42 0/42 1/42 1/42

Business and Consumer

Services

0/48 0/48 0/48 0/48

Community and Society 0/48 0/48 1/48 0/48

Computers Electronics

and Technology

0/47 0/47 1/47 1/47

Ecommerce and Shopping 0/50 0/50 0/50 0/50

Finance 0/48 0/48 2/48 1/48

Food and Drink 0/49 0/49 0/49 0/49

Gambling 0/45 0/45 1/45 1/45

Games 1/46 0/46 1/46 1/46

Health 0/45 0/45 1/45 1/45

Heavy Industry and

Engineering

0/45 0/45 4/45 2/45

Hobbies and Leisure 0/48 0/48 0/48 0/48

Home and Garden 0/42 0/42 1/42 1/42

Jobs and Career 0/44 0/44 1/44 1/44

Law and Government 1/40 0/40 1/40 0/40

Lifestyle 0/46 0/46 1/46 1/46

News and Media 1/46 1/46 5/46 5/46

Pets and Animals 0/41 0/41 0/41 0/41

Reference Materials 0/50 0/50 2/50 2/50

Science and Education 0/46 0/46 0/46 0/46

Sports 0/41 0/41 0/41 0/41

Travel and Tourism 0/46 0/46 1/46 1/46

Vehicles 0/42 0/42 2/42 2/42

Table 7.6: Results of the tests on HTTPS redirect and HSTS deployment.
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Category Domain Validated Organization

Validated

Extended

Validated

Adult 17/47 30/47 0/47

Arts and Entertainment 16/42 26/42 0/42

Business and Consumer

Services

16/48 26/48 6/48

Community and Society 17/48 26/48 5/48

Computers Electronics

and Technology

4/47 40/47 3/47

Ecommerce and Shopping 14/50 33/50 3/50

Finance 9/48 18/48 21/48

Food and Drink 21/49 25/49 3/49

Gambling 17/45 24/45 4/45

Games 21/46 22/46 3/46

Health 22/45 20/45 3/45

Heavy Industry and

Engineering

9/45 31/45 5/45

Hobbies and Leisure 20/48 25/48 3/48

Home and Garden 11/42 23/42 8/42

Jobs and Career 14/44 25/44 5/44

Law and Government 6/40 31/40 3/40

Lifestyle 11/46 31/46 4/46

News and Media 15/46 30/46 1/46

Pets and Animals 23/41 16/41 2/41

Reference Materials 30/50 19/50 1/50

Science and Education 24/46 22/46 0/46

Sports 15/41 24/41 2/41

Travel and Tourism 7/46 35/46 4/46

Vehicles 18/42 23/42 1/42

Table 7.7: Results of the tests on the usage of CSP.
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7.3 Related hosts and subdomains

7.3.1 A wider analysis

After having analyzed the main hosts (i.e. the 50 hosts reported in each list), we

can move on to analyzing their related hosts. In this category we include their

subdomains, hostnames discovered by checking the certificate transparency logs,

and hosts from which the main hosts include resources such as images, stylesheets

and scripts. As the reader can easily imagine, there might be tens -if not hundreds-

of related hosts for each main host considered. While this is great because it leads

to a much wider statistical analysis, we have to reckon that the “quality” of the

discovered hosts is often lower than their “main” counterparts’, thus resulting in

some troubles while performing the analyses. This is a point that will need to be

addressed in the future (as per Chapter 8) by making our tool more fault-tolerant.

Still, the vast majority of the hosts is fine to be analyzed and we believe the results

to be interesting, although the real numbers may slightly differ from the ones here

presented. Unfortunately, recognizing “problematic” web pages – for instance,

pages in which access is forbidden, whose content has been moved, which perform

endless redirects or who never really respond to requests is not trivial at all and

would require a thesis on its own. This is also the reason why we do not report as

many metrics here as we did in Section 7.2.

Figure 7.5: A website (central circle) can become vulnerable because of vulnerable dependencies (white striped

circles) and vulnerable subdomains (gray striped circles). Taken from [20].
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7.3.2 Two families

When analyzing related hosts, it is important to distinguish between HTTPS and

non-HTTPS ones. As we have seen, some vulnerabilities can be found at the

SSL/TLS level: this implies that they can be exploited against protocols different

than HTTPS which also rely on SSL/TLS, for instance IMAPS. Also, we analyzed

related hosts altogether since a significant fraction of them are shared among many

different categories. In total, we discovered 62093 related hosts starting from the

original 1092, of which 56933 (91.7%) are HTTPS hosts and 5160 are TLS hosts

that run secure protocols different from HTTPS (IMAP, LDAP, ...).

7.3.3 Mixed content

The usage of mixed content in related hosts mostly reflects our discoveries in the

main hosts case: 810 out of 56933 (1.4%) use passive mixed content and 1514

(2.7%) use active mixed content. The slightly lower percentages might be due

to the fact that, empirically, many subdomains and/or related hosts consist of

pages which have far less content than their respective homepages: for instance,

a login page at idp.example.com is likely to include fewer images and scripts

with respect to www.example.com. Further investigation in this area would be

extremely interesting to be carried out.

7.3.4 CSP

The deployment of CSP, as per the “main hosts” case, is unfortunately far from

common. Out of 56933 HTTPS websites we could only find 85 websites using the

block-all-mixed-content directive, 448 hosts using the

upgrade-insecure-requests directive and 32 websites using SHA script

whitelisting. This implies that less than 1% of the considered websites use CSP –

a result we cannot avoid to be unsatisfied of. Although deploying CSP is not the

easiest task for site operators, we believe that some more work should be done in

this direction.
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7.3.5 SRI

The results for SRI too confirm that Subresource Integrity is not as widespread

as it should be. Out of 341029 non-inline scripts analyzed, only 2854 had the

integrity attribute – less than 1% of the total number. Only 199 hosts only

use scripts imported with integrity.

Similar results are found when considering link tags, with 1125 links using

the integrity attribute and 326205 links not using it on a total of 327330

tags analyzed, resulting in a quite unsatisfying 0.3% of links being protected

with SRI. Although we reckon that some resources may not be really sensitive,

we still believe that SRI’s usage should be more common, especially consider-

ing it comes for free with some very common JavaScript frameworks: for in-

stance, Angular.JS can build the web application with SRI by simply adding the

--subresource-integrity flag at the build step [68].

7.3.6 Cookies

The way cookies are managed in the related hosts is fundamentally the same as

that of main hosts. Out of 29371 cookies distributed among 13789 hosts, 15392

(52.4%) are not secure, with the remaining 13979 cookies being secure - 1000 of

which only thanks to HSTS. A total of 4561 websites out of the 56933 analyzed

ones only uses secure cookies, implying that the remaining 9228 hosts using cookies

(66.9%) either uses insecure cookies, or a mixture of secure and insecure ones.

These results, which can be seen in Figure 7.6, confirm the unsafe trend of not

marking cookies as secure.

7.3.7 Cryptographic implementation and vulnerabilities

One of the main aspects we are interested in when analyzing related hosts is the

presence of exploitable cryptographic vulnerabilities: as we have seen, vulnerabil-

ities can see their effects amplified because of the numerous relationships between

hosts. Here we should notice that as per the analysis carried out on main hosts, we
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Figure 7.6: The usage of cookies in related hosts reflects their usage in the main ones.

are only considering vulnerabilities that lead to a successful attack tree; however,

some non-exploitable vulnerabilities can still be found in the wild and should be

fixed regardless of their “non-exploitability”.

Out of 62093 hosts analyzed, we found that 3 were vulnerable to ROBOT, 109 were

vulnerable to DROWN, 25 were vulnerable to POODLE and 18 were vulnerable to

Heartbleed. As per Section 7.2.6, this poses serious threats on the overall security

of the hosts considered. Since these vulnerabilities rely on SSLv2 and SSLv3, there

should be no problem in updating the cryptographic stack, thus protecting hosts

from them.

It is interesting to notice that most of the vulnerabilities are found in subdomains:

92 out of the 109 DROWN vulnerabilities, 18 out of the 25 POODLE vulnera-

bilities and all of the 18 Heartbleed and 3 ROBOT vulnerabilities are found on

subdomains. A possible explanation may be that site operators and developers

often update and improve the homepages of their hosts, but understandably do

not pay the same level of attention to subdomains whose usage may be limited or

only restricted to specific employees or clients.

Finally, if we collapse different vulnerable IPs and ports for the same hostnames

(e.g. https://example.com may be vulnerable at 1.2.3.4 and 1.2.3.5,

or the same hostname may be vulnerable at different protocols), the number of

vulnerable hosts becomes 95, meaning that some hosts are vulnerable at different

IPs/protocols. Classic situations in which this could happen are load balancers

distributing traffic between many vulnerable hosts or old setups running different

services at the same vulnerable endpoint.
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7.3.8 Certificates

The usage of certificates presents a situation which is not as good as the one for

main hosts as far as the usage of Extended Validated certificates is concerned. This

may be possibly due to the fact that site operators and developers invest more on

their websites’ main pages rather than less used and less visible subdomains. 1.9%

of the discovered certificates is Extended Validated, compared to the 8.2% we

found while analyzing the main hosts; 31.9% of the hosts use Domain Validated

certificates, and the remaining 66.2% of certificates is Organization Validated.

Figure 7.7: Usage of certificates in the main hosts vs. usage in their related hosts and subdomains.

7.3.9 Additional tests

We also tested related hosts for the Expect-CT header, discovering that 2858 out

of 56933 (5%) deploy it. None of the tested websites supports TLS 1.3 yet.
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Chapter 8

Future work

Many ideas for possible future development came up while working on this thesis.

Here is a non-comprehensive list of them:

• extend the analysis to further HTTPS vulnerabilities. Discovery only tests

hosts for a subset of the many existing vulnerabilities at the SSL/TLS pro-

tocol and implementation levels. It would definitely be interesting to check

for the presence of more vulnerabilities.

• create new attack trees. This point is strongly related to the previous one:

testing for more vulnerabilities would allow us to create even more attack

trees and thus perform more thorough analyses.

• make the analysis more fault tolerant. The current toolchain is prone to

errors and suffers problematic hosts. We had to exclude some hosts from our

analysis because they were intractable. It is fundamental to make our tool

more robust and stable in the future. Unfortunately, some of the problems

we encountered were due to bugs on the severs’ side or in some of the tools we

used (e.g. Puppeteer). Still, we believe it is possible to improve the current

levels of both stability and efficiency by adopting some smart heuristics and

reviewing the way the tools interact with each other.

• add checks related to client-side security. Although this is a bit off-topic

with respect to this thesis, it would be great to also include checks on the
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overall quality of the CSP deployment or on the possible presence of XSS

vulnerabilities in web pages. The tool used would then become a all-in-one

Swiss Army knife usable for different analyses.

• improve checks for mixed content. Ideally, it would be best to be able to use

the mixed content detector used in modern browsers such as Google Chrome

and Mozilla Firefox. In particular, we hope the functionality will be added

to Puppeteer. If this is not an option, it would still be useful to improve the

checks on mixed content by recursively navigating inline code and included

CSS/JS files.

In the last few years, the fundamental importance of security has become tangible

and highly renowned by means of many breaches and outages due to poor config-

uration. We hope to find more and more ideas to improve our analyses in future

literature.
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Chapter 9

Conclusions and final remarks

In this work, we have performed an analysis of the security the of HTTPS deploy-

ments of many different hosts. This analysis has taken into account many different

factors that can (and should) be used to achieve satisfying levels of security while

deploying HTTPS websites. When analyzed on their own, these factors provide

interesting insights on specific possible problems of the deployments; when ana-

lyzed in combination, they provide a sufficiently accurate general picture of those

same deployments’ quality.

With our analysis we have discovered that, on average, websites are less prone to

vulnerabilities than they were years ago, but we also found some critical problems

that should have been fixed long ago and we noticed a certain reluctance towards

more modern security techniques that would provide high degrees of security if

used.

Correctly configuring HTTPS is, unfortunately, not easy. Many different tech-

niques should be used and not all the available security mechanisms can always

be deployed. Furthermore, as more and more security mechanisms and counter-

measures become available, it is challenging to assess which ones to prioritize.

However, we believe that problems such as being vulnerable to attacks which have

been known for years is a problem on its own, as it indicates a lack of updates and

willingness to keep a well-deployed cryptographic stack.

In conclusion, we hope that our analysis and the issues we have highlighted will

77



encourage site operators to improve their current HTTPS deployments. While this

work is not to be considered a 100% complete analysis, the trends it presents are

strong indicators that there is still much room for improvement as far as security

is concerned. We hope to be able to give even more significant insights on this

topic in the future.
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