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Abstract 
 
Programmable Logic Controllers (PLC) play an important role in Industrial Control 

Systems, as they manage the actions of physical tools by collecting data from 

input devices and sending commands to output devices. 

In this thesis, we introduce a formal framework for software verification of the 

robustness of PLC programs. In particular, (i) we identify external vulnerabilities 

based on dynamic user interactions, (ii) we define the semantics of Structured 

Control Language (SCL) and the semantics of Timed Automata (TA), (iii) we 

provide a set of transformation rules to transform a program written in SCL to a 

Timed Automaton, and (iv) we show their correctness with respect to the 

corresponding semantics. By applying these transformation rules, we can apply 

Model Checking tools (namely UPPAAL) to verify robustness properties of PLC 

source code. 

 

Keywords Programmable Logic Controller (PLC), Structure Control Language 

(SCL), Timed Automata (TA), Robustness, UPPAAL, Industrial Control Systems 

(ICS).  
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Introduction 
 
In modern industries, attempts made to automate processes are increasingly 

frequent, and Programmable Logic Controllers (PLCs) are an enabling 

technology to achieve this.  

A Programmable Logic Controller is a device used to automate industrial 

processes, receiving inputs from physical devices, such as valves or sensors, 

processing them, making decisions based on the program installed on it, and 

sending commands to the output devices it controls, such as motors.  

These controllers can automate specific processes, machines, or production 

lines. The advantages of adopting PLC are the ability to reprogram, change 

sequences, extend lines, create replicas of machines and processes, all while we 

can collect and communicate vital data. 

Being a crucial device in an Industrial Control System (ICS) and being often highly 

user interactive and input dependent, PLCs are often threatened by cyber 

attacks; consequently, physical devices might become unsafe and not always 

reliable, and so we have to introduce the concept of robustness.  

Robustness is the ability of a program to operate even under abnormal or adverse 

conditions and events. Given an unexpected or erroneous input, a robust PLC 

should still give an “acceptable” output. So, it is very important to build a robust 

PLCs able to achieve a certain kind of tolerance for input values. 

The objective of this thesis is to design and evaluate a framework for the 

robustness verification of PLC systems, i.e. that the system results into an 

acceptable output even when external attacks compromise data provided by 

dynamic interaction. In particular, we formalize a semantics-based methodology 

to automatically derive Timed Automata (TA) based models from code written in 

SCL language, in order to model-check robustness conditions expressed by 

temporal logic formulas. 

The methodology used to reach our goal starts from a PLC program written in the 

Structure Control Language (SCL). We then transform it into a Domain Specific 

Language (DSL) using Xtext (open-source software framework for developing 

domain specific languages). Starting from this DSL code, we generate timed 
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automata based models, creating the .xta files, to feed UPPAAL (a toolbox for 

verification of real-time systems); such process can be executed with the help of 

Acceleo. Finally, to achieve our objective and so in order to verify the robustness 

of our system, using the automaton in UPPAAL we check if some properties are 

satisfied or not. 

 

 

Figure 1 – General view  

 

The thesis is structured in the following way. In the first chapter we will introduce 

PLCs, what they are, what they are used for, then we will present their 

vulnerabilities and possible attacks that can be made to them; we present the 

problem statement, that given a program P we want that it gives a correct output 

either with acceptable or unacceptable inputs. In the second chapter we introduce 

what the SCL language is, and how it is structured; we define the formal syntax 

of SCL and the concrete SCL semantics. In the third chapter we explain what 

Timed Automata (TA) are, we define their grammar and the concrete TA 

semantics. In chapter 4 we provide a set of transformation rules to pass from a 

SCL program to a timed automata-based model, and we give also theoretical 

proves of correctness for these translation rules. In chapter 5 we explain what is 

UPPAAL, how it is structured and what it permits us to do; we present the five 

robustness types of properties that can be checked with UPPAAL, we define the 

semantics of .xta files, and we list the transformation rules to pass from a program 
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written in the SCL language to a .xta file; in this chapter we provide also a simple 

example, where we show starting from a PLC program written in SCL how we 

transform it into a .xta file, and how an automaton is automatically created. In the 

last chapter we report the experimental results, giving insights of how our 

approach deals with some examples; our focus in this chapter is to transform a 

specific PLC program written in SCL to an .xta file, create automatically the timed 

automata, and demonstrate some properties on such automaton using UPPAAL 

in order to check the robustness of the system taken in consideration.  

 



4 
 

1 PLC – Programmable Logic Controller 
 
A Programmable Logic Controller is a computer, used in automatic engineering 

or industrial automation, to automate electromechanical processes, such as 

controlling factory machinery in assembly lines or mechanical attractions. PLCs 

use programmable memory to store instructions implementing certain functions, 

such as logical operations, action sequences, time specifications, counters, and 

calculations for control by analog or digital I/O modules on different types of 

machines and of processes. A PLC typically has three main components, namely, 

an embedded operating system, control system software, and analogical and 

digital inputs/outputs. The field of application of PLCs is very wide and includes 

various kinds of industries, such as automotive, aerospace, construction, etc.  

PLCs are commonly found in Supervisory Control and Data Acquisition (SCADA) 

systems as field devices. Because they contain a programmable memory, PLCs 

allow a customizable control of physical components through a user 

programmable interface [3]. 

One of the advantages of the PLCs is that, thanks to them, it is possible to carry 

out operations in real time (such as monitoring the productivity of a machine or 

the operating temperature, automatically starting or interrupting a process, 

generating alarms in case of malfunction, etc.), due to their reduced reaction time. 

In addition, they are devices that adapt easily to new tasks due to their flexibility 

when programming them, thus reducing additional costs when preparing projects. 

They also allow immediate communication with other types of controllers and 

computers and even allow network operations. They can be easily programmed 

through various programming languages. However, they have certain drawbacks 

such as the need to have qualified technicians to take care of their proper 

functioning. 

In modern industries, more and more attempts are made to automate processes, 

PLCs are a key mechanism to achieve this aim; in fact, they allow first of all to 

eliminate the presence of humans in certain jobs, perhaps even dangerous, and 

also to speed up certain processes. Today we are surrounded by such 

automation, as well as in industries, we also find them in traffic lights, lighting 
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management in parks, gardens and shop windows, automatic doors control and 

even in the control of household devices such as windows, air conditioning, etc. 

A PLC works by receiving information from sensors and input devices, processing 

the data and controlling actuators and output devices according to the logic of the 

installed programs. The flow of a PLC is illustrated, in a simplified way, in the 

following figure: 

 
Figure 2 – PLC functioning 

 
 
 

1.1 Vulnerabilities of PLC programs 
 
We have already said that PLCs are a crucial device in ICS and they are often 

input dependent and user interactive, then PLCs have to deal with cyber security 

attacks. In this section we will see the main vulnerabilities of PLC programs. 

Generally, the attacks on PLCs can be classified in: 

- Access Control Attacks: steal the user credentials, pretend to be the user 

to make passive attacks;   

- Firmware Modification: can provide an adversary with complete control 

over an industrial control device and any physical system components that 

come under its purview; 

- Control Flow Attacks: redirect the flow of execution of the statements, 

instructions and functionalities of a program; 

- Configuration Modification: change the default configuration of a device; 

- Communication Channel Attacks: intercept the communication between 
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two or more devices in order to be able to capture critical data. 

In [4], the authors proposed three different types of attacks on PLC registers: 

replay attack, man-in-the-middle attack and S7 Authentication Bypass Attack. 

They explored the Siemens PLC access control vulnerability by reading and 

writing the PLC’s intermediate register data to achieve the effect of abnormal 

communications. In the PLC architecture, the CPUs execute the results of the 

program into the intermediate registers. Thus rewriting the values of intermediate 

registers can affect the ongoing process in PLC. They attacked the Siemens S7 

series controllers, such as S7-200, S7-300, S7-400, S7-1200 and so on. 

In [3], authors carried out a security analysis of the most common PLC 

access control mechanism, namely, password-based access control. They 

showed how passwords are stored in PLC memory, how they can be intercepted 

in the network, how they can be cracked, etc. As a consequence of these 

vulnerabilities, they could carry out advanced attacks on ICS system setup, such 

as replay, PLC memory corruption, etc. 

Firmware alteration is another type of attack in PLC. In this domain, 

several works explained different methods of how to perform this type of attacks, 

and how disruptively it can affect PLC security. Authors of the [5] performed a 

version number update of the PLC by exploiting the firmware. First, they searched 

the firmware for locations that referenced the version number. Then using reverse 

engineering, they inspected the disassembled information and modified the 

version number bytes appropriately. They also calculated the correct checksum 

values for modified data and updated the new firmware binary file. The utility then 

revalidated the binary to confirm that the checksum values were correctly 

updated. 

Another work on firmware modification is reported in [6], where the authors 

implemented a stealthy attack on firmware, by manipulating the input and output 

lines. The firmware acts as an intermediate level between the main control 

section of the PLC and the outer world. The inputs towards PLC's control logic 

passes through the firmware layer, as well as the outputs from the PLC. Thus, 

the attackers gain the insight knowledge of these communications. In particular, 

the PLC’s control of input and output lines, and the connection between the 
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firmware and control logic programs, by using reverse engineering to the PLC, 

and provide fake information to the outer world. 

In [7], the authors performed another firmware modification attack by 

exploiting the shortcomings of ICS in PLC security that does not consider the 

dynamic changes of memory contents as well as control flow. They developed a 

rootkit on the CODESYS PLC runtime to intercept I/O operations of the payload 

program. When the payload wants to read or write a certain I/O pin, interrupt 

handler installed by the attacker is called first, within which the attacker can 

reconfigure the I/O pins or modify values to be read/written.  

Firmware attacks typically require detailed knowledge on target PLC’s 

hardware components and reverse-engineering of its firmware because PLCs are 

closed-source embedded devices [8]. An attacker needs to install the rootkit on 

PLCs either via the built-in remote firmware update mechanism or by loading it 

via the JTAG interface [6]. For firmware updates protected by cryptographic 

means (e.g., certificate in the X.509 standard), it is hard to install a modified 

version of the firmware on the PLC. Alternatively, an attacker can load modified 

PLC firmware via JTAG interface. However, such an approach will require 

physical access to the PLC and possibly to disassemble it. 

In a very recent work [9], authors proposed a runtime monitoring to 

develop runtime behaviour models from control system specifications to detect 

PLC payload attacks. Payload attacks are much easier to implement that 

firmware attack. It can be easily done if an attacker gain access to the PLC. The 

proposed solution in this paper can effectively detect the payload attacks. 

However, it suffers from memory overhead and execution time overhead. 

In [10], a bump-in-the-wire device, called PLC guard, is introduced to 

intercept the communication between an engineering workstation and a PLC, 

allowing engineers to review the code and compare it against previous versions. 

Features of the PLC guard include various levels of graphical abstraction and 

summarization, which makes it easier to detect malicious code snippets. 

In [11], an external runtime monitoring device (e.g., a computer or an 

Arduino microcontroller board) sits alongside the PLC, monitors its runtime 

behaviours (e.g., inputs, outputs, timers, counters), and verifies them against ICS 



8 
 

specifications converted from a trusted version of the PLC payload program and 

written in interval temporal logic. It is shown that functional properties of payload 

program can be verified against ICS specifications, but the types of payload 

attacks that can be detected by this approach remain to be explored. 

In [12] and [13], a trusted safety verifier is introduced as a bump-in-the-

wire device that automatically analyses payload program to be downloaded onto 

a PLC and verifies whether critical safety properties are met using linear temporal 

logic. However, linear temporal logic implicitly assumes that states of the systems 

are observed at the end of a set of time intervals. In the case of PLC payload 

program, snapshots of system states are taken at the end of each program scan 

cycle. As a result, real-time properties that do not span multiple program scan 

cycles cannot be checked by the trusted safety verifier. For example, a legitimate 

payload program is required to energize its output immediately when a certain 

input pin is energized. An attacker can inject malicious code and prolong the 

program scan cycle to cause real-time property violation while evading code 

analytics based on linear temporal logic. 

 

1.2 Model Checking and Verification in PLC programs 
 
With the recent advances in safety critical systems and the increasing complexity 

of safety parameters, researchers are compelled to pay more attention on the 

formalization and verification of PLC programs, so that they can verify the PLC 

programs against various safety parameters before execution. 

Authors of [16] and [17] presented a model transformation process for IEC 

61131-3 Function Block Diagrams (FBD) to timed automata in UPPAAL for 

automated verification of safety parameters. They took the PLC Open XML 

specification of FBD and transformed to the UPPAAL based XML format for timed 

automata. 

Authors of [18] have applied formal methods to perform the verification of 

PLC programs written in the IL (Instruction List) language. This method consists 

in applying symbolic model checking techniques in the framework of PLC 

programs. The specific elements of their approach are: 

- the choice of a significative fragment of the IL language, allowing to write 
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some simple programs; 

- a sharp transition system-based operational semantics of this fragment;  

- a coding of these transition systems into the input language of a model 

checker (like Cadence SMV);  

- the use of the LTL linear temporal logic to write behavioural properties. 

Although based on simple and well-known concepts, this approach allows to 

prove or reject, in a completely automated way, the correctness of IL programs 

of a non-trivial size. A similar study on the validation of PLC programs has already 

been presented for LD (Ladder Diagrams) programs in [19]. 

A specialized group in CERN laboratory has been working on PLC for the 

last 5-6 years. They have published quite a few papers on model checking and 

also built a tool (PLCVerif) for verifying PLC programs based on various model 

checking techniques [30]. 

Generally, every PLC program has a very simple life cycle, consisting of: 

1. Scan 

2. Input 

3. Process 

4. Output 

5. Reset 

 

As discussed in this section, the majority of these attacks in PLC are external, 

and target the process cycle of the PLC. However, PLC is often used in highly 

secure environment with several protective measures to secure it from outside 

world. Still, it can get affected from internal attacks, which may or may not be 

intentional. Besides, PLCs are widely used in automated safety critical systems, 

where a tiny failure can have disruptive effects. Thus, it is always better to check 

the robustness of a PLC program before executing.  

There exist some papers in the domain of static analysis, formal methods 

and model checking on PLC programs. Generating models from PLC code and 

then verify it using some model checking tools have been proposed in many 

papers. Still, PLC programs are not fully secure yet, specially from the internal 

attacks. Besides, analysing the dependability between the inputs, which may lead 
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to a cascading failure for an erroneous input is still an open research area. Also, 

PLC is often used in safety critical systems. Hence, to define and ensure the 

acceptable and unacceptable outputs for a given set of inputs is highly important. 

Hence, in this thesis, we introduce a framework to transform a PLC 

program written in SCL programming language to Timed Automata based format 

acceptable by UPPAAL. Then we verify the robustness of that model for every 

user given input value. 

 

1.3 Problem Statement 
 
Given a program P, where Σ is the set of all program states, the semantics of P 

can be expressed as: 

 ⋃{⟨δ0
𝑖 , … , δ𝑛

𝑖 , … ⟩ : i ∈ 𝐼, δℎ
𝑖 ∈ Σ} 

where, 𝐼 is the set of user dependent input values, and δℎ
𝑖  represents the ℎ𝑡ℎ 

program memory state depending on the input value 𝑖.  

We further assume that Σ𝐸 ⊆ Σ and ΣΔ ⊆ Σ, where ΣΔ is the set of acceptable final 

states and Σ𝐸 is the set of erroneous states that are properly catched. 

We also assume that 𝐼 = 𝐼𝐴 ∪ 𝐼𝑈, where 𝐼𝐴 is the set of acceptable inputs and 𝐼𝑈 

the set of unacceptable inputs, possibly due to an internal attack. 

Our objective is to check the robustness of P i.e., we want to make sure 

that if P runs with 𝑖 ∈ 𝐼𝑈 then considering the execution:  

𝑃(𝑖) = ⟨δ0
𝑖 , … , δ𝑛

𝑖 , … ⟩ 

1) either 𝑃(𝑖) gets into Σ𝐸, i.e., 

      or 

2) 𝑃(𝑖) is finite and its last element, belongs to ΣΔ and it yields to an output 

value τ which is anyway acceptable to the user, i.e., the presence of 

an erroneous input has effect on the overall compilation. 
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2 SCL – Structure Control Language 
 
Our work is based on SCL (Structured Control Language), which is a high-level 

textual programming language based on PASCAL [21]. A program in SCL can 

call programs in other PLC languages and programs in other PLC languages can 

call programs in SCL. SCL can be structured as a sequence of various blocks, 

such as: 

- Organization Blocks (OB): determine the structure of the program. The 

organization block for normal program execution on PLCs is determined 

in OB1. This block determines the cyclic semantics of the PLCs, and it 

represents the interface between main system and PLC. 

- Function Blocks (FB): are functions which can also store data between 

function calls; can be called by OB and other FBs. Has internal memory. 

- Functions (FC): correspond to functions we know from programming; can 

be called by OB and FB with its parameters and has no memory. 

- Data Blocks (DB): are used for storing and sharing data, helping to store 

user data. 

- User-defined Data Types (UDT): are used to define complex data types 

and used for storing user defined data types. 

In addition to high-level language elements, SCL also includes language 

elements typical of PLCs such as inputs, outputs, timers, bit memory, block calls, 

etc. In other words, SCL complements and extends the STEP 7 programming 

software and its programming languages Ladder Logic and Statement List [20]. 

The programs we use in the experiments start with a function block, to 

which we will refer as the main function block. These programs can have calls to 

other function blocks, functions, data blocks and data types. All functions and 

function blocks in SCL can have variables of different types. Input variables get 

values from the calling block. For the topmost function block, the input variables 

get values from the input ports. Output variables are used to return values to the 

calling block. For the topmost function block, the output variables contain the 

values that are sent to the output ports. In-output variables are a combination of 

input variables and output variables, these variables get values from the calling 
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block, or input ports, and return values to the calling block, or sent them to the 

output ports. Static variables can be used within the blocks. Function blocks have 

access to memory, therefore they can keep the values of static variables after the 

program has returned to the calling block. This also makes possible for these 

variables to have an initial value. A function has no memory, therefore static 

variables in a function have no initial values and do not keep their values after the 

program has returned to the calling block.  

SCL uses control statements to take care of selective instructions and 

repetition instructions. The control statements we use are: IF, ELSEIF, ELSE, and 

WHILE. SCL also supports case distinction, loops and jump statements. For 

conditional expressions the standard Boolean operators can be used. The 

predefined data types we use are: BOOL, INT, UINT, WORD, ARRAY, STRUCT, 

TIME, and REAL. Other predefined data types are dates, chars, timers and 

doubles. The data types ARRAY and STRUCT do not have a specified size, 

because the size varies per specification. 

 

A simple example of a SCL code is: 

 
Figure 3 - SCL program: square of the sum of first n numbers 
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2.1 Formal Syntax of SCL 
 
According to the IEC-61131-3 standard [23], every PLC program consists of one 

or many POU (Programming Organization Unit). These POUs are the smallest 

executable units of each PLC program and can be of several types (as termed by 

the SIEMENS Simatic-STEP7): Organization Block, Function Block, Function, 

Data Block and User-defined Data Type. 

A SCL program can be defined as a list of statements, and each statement 

can be defined as a collection of keywords and expressions, terminating by a ';'. 

While, statements are the basic elements of a SCL program, a block is a basic 

executable unit in a SCL program. In this thesis we generate a timed automata 

based model for each block of a SCL program. Now, we'll define the semantics 

of a simple block for a program written in SCL. 

Generally, the statements within a block can be roughly categorized in five 

sections, as: 

- Block start statements: the start statements are consisting of a unique 

keyword for each type of blocks following by the name of that block; 

- Block attribute statements: attribute statements can be of two types: Block 

attributes and System attributes for blocks; 

- Declaration statements: the declaration section must contain all 

specifications required to create the basis for the code section, for 

example, definition of constants and declaration of variables and 

parameters. 

- Code statements: the code section is introduced by the keyword BEGIN 

and terminated with END_*, where '*' represents the type of that particular 

block. 

- Block end statements: it is similar to the start statements, but it has only 

keywords for each block. 
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We can define the semantics of an SCL, according to IEC 61131-3, as: 

kwords ∈ Keywords 

Keywords = {BEGIN, FUNCTION, END_FUNCTION, FUNCTION_BLOCK, 

END_FUNCTION_BLOCK, ORGANIZATION_BLOCK, END_ORGANIZATION_BLOCK,  

DATA_BLOCK, END_DATA_BLOCK, VAR, VAR_TEMP, VAR_IN_OUT, VAR_INPUT, 

VAR_OUTPUT}  

 

x, y ∈ Var (variables) 

n ∈ Num (numbers) 

t ∈ Type (datatype of variables) 

l ∈ Lab (labels) 

a ∈ ExpA 

b ∈ ExpB 

S ∈ stat 

opA ∈ Aop Arithmetic operator 

Aop = { +, -, *, %, / } 

opB ∈ Bop Boolean operator 

Bop = {AND, OR, XOR, NOR} 

opR ∈ Rop Relational operator 

Rop = { ≤,   <,   >,   ≥,   =,   ≠ } 

a ::= 𝑥|𝑛|𝑎1   𝐴𝑜𝑝   𝑎2 

b ::= x|n|true|false|b1   Bop   𝑏2|𝑎1   𝑅𝑜𝑝   𝑎2 | not b 

S ::= x:=a | 

S1; S2| 

if  [b]  then  S1  else  S2  | 

while  [b]  do S 
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2.2 Concrete SCL Semantics 
 
The operational semantics of SCL can be described as: 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

 

(8) 

 

(9) 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

(14) 
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3 TA – Timed Automata 
 
A timed automaton [15] is essentially a finite automaton (that is a graph containing 

a finite set of nodes or locations and a finite set of labelled edges) extended with 

real-valued variables. Such an automaton may be considered as an abstract 

model of a timed system. The variables model the logical clocks in the system, 

that are initialized with zero when the system is started, and then increased 

synchronously with the same rate. Clock constraints (i.e., guards on edges) are 

used to restrict the behaviour of the automaton. A transition represented by an 

edge can be taken when the clocks values satisfy the guard labelled on the edge. 

Clocks may be reset to zero when a transition is taken. 

 

3.1 Formal Syntax of TA 
 
In order to define the syntax of TA, we first define: 

 xt, yt ∈ Var (timed variables) 

t ∈ Clk (clock) 

n ∈ Num (numbers) 

𝛤 is the environment mapping from variables to numbers. 

g ∈ G (set of guards or clock constraints) 

g ::= xt | true | false | xt    Rop    xt (guard) 

a, z ∈ Δ (set of actions) 

a ::= s:=y (assign) 

y ::= xt | n | xt    Aop    xt (assign) 

z ::= xt | n | ! | ? | true | false | xt    Rop    xt | xt    Rop    n (sync) 

 

Aop = { +, -, *, %, / } 

Rop = { ≤,   <,   >,   ≥,   =,   ≠ } 

 

Then, a timed automaton TA can be defined as a tuple (L, 𝑙0, E, S) where:  

- L is a finite set of locations (or nodes); 

- 𝑙0 ∈ L is the initial location; 

- 𝐸 ⊆ ⟨𝐿 × 𝐺 × Δ × 𝐿⟩ is the set of edges; 
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- 𝑆: 𝑉𝑎𝑟 → 𝐶𝑙𝑘 → 𝑁𝑢𝑚 is the set of states, that returns the values of variable at a 

particular time. 

 

3.2 Concrete TA Semantics 
 
The semantics of a timed automaton is defined as a transition system where a 

state or configuration is a pair of the current location and the current values of 

variables at that time, i.e., ⟨𝑙, 𝑆⟩.  

There are two types of transitions between states. The automaton may 

either delay for some time (a delay transition) or follow an enabled edge (an action 

transition). 

The transitions can be defined as: 

(15) 

 

(16) 

 

(17) 

 

(18) 

 

(19) 

 

(20) 

where ⟨𝑙, 𝑠, 𝑡⟩ is the current location and state of a TA at time t, and if the guard 

conditions are true, i.e., if 𝑔𝑡 = true at time t, then the transition will be made at 

⟨𝑙′, 𝑠′⟩. Also, for this transition, the action can be either a(assign) or z(sync), or 

both. 

 

(21) 

The value of 𝑠(𝑔𝑡) is true, if there exists an edge between l and l', at time t. 

Otherwise 𝑠(𝑔𝑡) is false. 
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(22) 

 

(23) 

 

(24) 

while the guard is not satisfied for an edge, the TA stays in the same location l. 

However, the state s will change from s to s', where 𝑠′(δ𝑡+1) = 𝑠(𝑠(δ𝑡), 𝑡 + 1). 
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4 Transformation Rules from SCL to TA 
 
The transformation function considers one statement of SCL program at a time 

and produces its corresponding transition in a timed automata model. As we 

already described earlier a timed automata can be described as a 4-tuple 

⟨𝐿, 𝑙0, 𝐸, 𝑆⟩. We can represent the transformation between SCL programs into TA 

models using the function Π: ⟨𝑖𝑛𝑠𝑡𝑆𝐶𝐿 , 𝐴, 𝑙𝑖𝑛⟩ → ⟨𝐴′, 𝑙𝑓𝑖𝑛⟩, where 𝑖𝑛𝑠𝑡𝑆𝐶𝐿 is a SCL 

program, and A is the timed automata corresponding to the SCL program, and 

𝑙𝑓𝑖𝑛 is the final location or ending node of the TA.  

The Π function considers change of states during the execution of SCL 

program and maps it to its corresponding equivalent transition in the TA model. 

Now, 𝐴 can be represented as a 4-tuple ⟨𝐿, 𝑙0, 𝐸, 𝑆⟩ where L is the set of 

nodes or locations in the TA, 𝑙0 ∈ 𝐿 denotes the starting node of the TA, 𝐸 is the 

set of edges, that can further be described as ⟨𝐿 × 𝐺 × Δ × 𝐿⟩, 𝑒 ∈ 𝐸 = (𝑙, 𝑔, δ, 𝑙′), 

where e is an edge or transition in TA from current location 𝑙 to next location 𝑙′, 

with guard 𝑔 and actions δ. 

Given a timed automata A, the transformation rules from a SCL statement 

to a corresponding TA transition can be described as, Π⟨𝑖𝑛𝑠𝑡𝑆𝐶𝐿 , 𝐴, 𝑙𝑖𝑛⟩ → ⟨𝐴′, 𝑙𝑓𝑖𝑛⟩. 

Now, the TA model will start at the receiving of 𝐵𝐸𝐺𝐼𝑁 keyword in the SCL 

program. The variable declaration parts will be added in the corresponding . 𝑥𝑡𝑎 

file. 

Hence, at the beginning, when the automata is empty, 𝐴 = (𝐿 = {∅}, 𝑙0 =

ε, 𝐸 = {∅}, 𝑆). The translation rules are describes here: 

 

Π⟨𝐵𝐸𝐺𝐼𝑁, ε, ε⟩ → ⟨𝐿 ∪ {𝑙𝑓𝑖𝑛 = 𝑛𝑒𝑤(𝑛𝑜𝑑𝑒)}, 𝑙0 = 𝑙𝑓𝑖𝑛, {∅}, 𝑆, 𝑙𝑓𝑖𝑛⟩   (25) 

 

Π⟨𝐸𝑁𝐷_𝐹𝑈𝑁𝐶𝑇𝐼𝑂𝑁_𝐵𝐿𝑂𝐶𝐾, 𝐴, 𝑙𝑓𝑖𝑛⟩ → ⟨𝐴, 𝑙𝑓𝑖𝑛⟩     (26) 

 

Π⟨𝐸𝑁𝐷_𝑂𝑅𝐺𝐴𝑁𝐼𝑍𝐴𝑇𝐼𝑂𝑁_𝐵𝐿𝑂𝐶𝐾, 𝐴, 𝑙𝑓𝑖𝑛⟩ → ⟨𝐴, 𝑙𝑓𝑖𝑛⟩    (27) 

  

Π⟨𝐸𝑁𝐷_𝐹𝑈𝑁𝐶𝑇𝐼𝑂𝑁, 𝐴, 𝑙𝑓𝑖𝑛⟩ → ⟨𝐴, 𝑙𝑓𝑖𝑛⟩      (28) 

 

Π⟨𝐸𝑁𝐷_𝐷𝐴𝑇𝐴_𝐵𝐿𝑂𝐶𝐾, 𝐴, 𝑙𝑓𝑖𝑛⟩ → ⟨𝐴, 𝑙𝑓𝑖𝑛⟩      (29) 
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Π⟨𝑥 ≔ 𝑎, 𝐴, 𝑙𝑖𝑛⟩ → ⟨𝐿 ∪ {𝑙𝑓𝑖𝑛 = 𝑛𝑒𝑤(𝑛𝑜𝑑𝑒)}, 𝑙0, 𝐸 ∪ {(𝑙𝑖𝑛, 𝑇𝑅𝑈𝐸, 𝑥 ≔ 𝑎, 𝑙𝑓𝑖𝑛)}, 𝑆, 𝑙𝑓𝑖𝑛⟩ 

(30) 
 

 
 

Π⟨𝑠𝑡𝑎𝑡1, 𝐴, 𝑙𝑖𝑛⟩ → ⟨𝐴′, 𝑙𝑓𝑖𝑛 = 𝑛𝑒𝑤(𝑛𝑜𝑑𝑒)⟩             Π⟨𝑠𝑡𝑎𝑡2, 𝐴′, 𝑙𝑖𝑛⟩ → ⟨𝐴′′, 𝑙𝑓𝑖𝑛
′ = 𝑛𝑒𝑤(𝑛𝑜𝑑𝑒)⟩

⟨𝑠𝑡𝑎𝑡1, 𝑠𝑡𝑎𝑡2, 𝐴, 𝑙𝑖𝑛⟩ → ⟨𝐿 ∪ {(𝑙𝑓𝑖𝑛, 𝑙𝑓𝑖𝑛
′ )}, 𝑙0, 𝐸 ∪ 𝐸′, 𝑆 ∪ 𝑆′, 𝑙𝑓𝑖𝑛

′ ⟩
 

(31) 
 

 
(32) 

 

 
 

 
(33) 
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4.1 Example 
 
Let’s consider the following small part of SCL code: 

 
Figure 4 – A simple SCL program 

 
the corresponding transformation to a timed automata is:  

 
Table 1 – TA model corresponding to the example of figure 4 
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4.2 Correctness 
 
In this section we prove the correctness of the transformation function Π 

introduced at the beginning of the chapter 4. The transformation function 

Π⟨𝑖nstSCL,  A,  lin⟩ → ⟨𝐴′,  lfin⟩ takes a SCL instruction instSCL and a timed automata 

model 𝐴, with the entry location point 𝑙𝑖𝑛 and produces a modified timed automata 

model 𝐴′, where 𝑙𝑓𝑖𝑛 is the exit location point. 

In a SCL program, a trace is a (possibly infinite) list of states and statements 

starting from an initial state 𝑆0 = ∅: ⟨𝑆0, 𝑠𝑡𝑚1, 𝑆1, … , 𝑆𝑛−1, 𝑠𝑡𝑚𝑛, 𝑆𝑛, … ⟩. 

In Timed Automata, a path is a sequence of nodes (with a corresponding state) 

and edges starting at the initial node 𝑙0: ⟨(𝑙0𝑆0
′ ), 𝑒1, (𝑙1𝑆1

′), 𝑒2, … , (𝑙𝑚𝑆𝑚
′ ), … ⟩; we go 

from one node to another by traversing an edge with associated constraints and 

actions. 

In SCL, variables are splitted into input and output variables. This corresponds in 

TA just to adding to the initial state all the variables. The state of the output of the 

program corresponds to the state of the corresponding variables in the final state 

at the end of execution in the automaton. So, when we get to the final node in the 

automaton, we just project the state over the output variables. 

We aim to prove that given any initial trace segment 

⟨𝑆0, 𝑠𝑡𝑚1, 𝑆1, … , 𝑆𝑛−1, 𝑠𝑡𝑚𝑛, 𝑆𝑛⟩ there is a corresponding path 

⟨(𝑙0𝑆0
′ ), 𝑒1, (𝑙1𝑆1

′), … , (𝑙𝑖𝑛𝑆𝑖𝑛
′ ), 𝑒′, (𝑙𝑓𝑖𝑛𝑆𝑓𝑖𝑛

′ )⟩ such that if we assume that after 

traversing the path ⟨(𝑙0𝑆0
′ ), 𝑒1, (𝑙1𝑆1

′), … , (𝑙𝑖𝑛𝑆𝑖𝑛
′ )⟩ we get to a state 𝑆𝑖𝑛

′ = 𝑆𝑛−1, then 

there is a path ⟨(𝑙𝑖𝑛𝑆𝑖𝑛
′ ), … , (𝑙𝑓𝑖𝑛𝑆𝑓𝑖𝑛

′ )⟩ such that the final state 𝑆𝑓𝑖𝑛
′ = 𝑆𝑛. 

The proof relies on structural induction, by considering the different type of 

statements and the corresponding transformation rules. 

 

Basic case: BEGIN. At the beginning of the SCL program, the BEGIN statement 

is executed, where the state of variables is empty. In correspondence to 

the trace ⟨𝑆0 = ∅, 𝐵𝐸𝐺𝐼𝑁, 𝑆0⟩ we can easily recognize in the automaton the 

empty path ⟨𝑙0 ∅⟩. 
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Assignment. If the last statement of the SLC trace is an assignment 𝑥 ≔ 𝑎, the 

SCL semantics rule (9) applies: 

 

By the transformation rule of the assignment (30), a node 𝑙𝑓𝑖𝑛 and an edge 

𝑒′  were introduced in the automaton, with an action on the edge 𝑒′ that 

corresponds to the assignment of value 𝑎 to 𝑥.  

Let us consider in the automaton the path ⟨(𝑙𝑖𝑛𝑆𝑖𝑛
′ ), 𝑒′, (𝑙𝑓𝑖𝑛𝑆𝑓𝑖𝑛

′ )⟩. By 

applying the rules (19), (20) and (23) of the TA semantics, in 𝑆𝑓𝑖𝑛
′  the values 

of the variables different from 𝑥 are the same as in 𝑆𝑖𝑛
′ , whereas the value 

of 𝑥 is 𝑆𝑖𝑛
′ (𝑎). Then, 𝑆𝑓𝑖𝑛

′ = 𝑆𝑛 as desired. 

 

Conditional Statement. If the statement is "IF b THEN 𝑠𝑡𝑎𝑡1 ELSE 𝑠𝑡𝑎𝑡2" and in 

𝑆𝑛−1 the condition b is true, by the SCL semantic rule (11) we have: 

 

and we know that 𝑆𝑛 is the result of the application of the statement 𝑠𝑡𝑎𝑡1. 

Recall from the translation rule (32) of the "if then else" statement, that 

three nodes and four edges were introduced in the automaton. As we 

assume that 𝑆𝑖𝑛
′  is equal to 𝑆𝑛−1, then in 𝑆𝑖𝑛

′  b is true. 

Consider in the automaton the following path: 

⟨(𝑙𝑖𝑛𝑆𝑖𝑛
′ ), 𝑒1

′ , (𝑙1𝑆𝑙1

′ ), 𝑒1
′′, (𝑙𝑓𝑖𝑛𝑆𝑓𝑖𝑛

′ )⟩ . By applying the rules (20) and (22) of 

the TA semantics, we have that 𝑆𝑙1

′  is equal to 𝑆𝑛 and as 𝑒1
′′ doesn't make 

any action, 𝑆𝑓𝑖𝑛
′  is equal to 𝑆𝑙1

′ . Thus, 𝑆𝑓𝑖𝑛
′ = 𝑆𝑛, as desired.  

The proof in the case of b being false is similar. 
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While-loop Statement. If the statement is "WHILE b DO stm", by the SCL 

semantics rules (13) and (14) we have:  

 

By the semantics of SCL, if the evaluation of b in 𝑆𝑛−1 is false, we know 

that we do not enter into the while-loop, and no change occurs in the 

variables state, so 𝑆𝑛 is equal to 𝑆𝑛−1. Otherwise, if b is true in 𝑆𝑛−1, then 

𝑆𝑛 is obtained by applying the statement 𝑠𝑡𝑚 and then calling the while 

statement again.  

By the transformation rule (33) of the while statement, two nodes and three 

edges were introduced in the automaton.  

If in the SCL trace b is false in state 𝑆𝑛−1,  by inductive hypothesis 𝑆𝑖𝑛
′  is 

equal to 𝑆𝑛−1 , and then in 𝑆𝑖𝑛
′  the condition b is false too. In the automaton 

we consider the path ⟨(𝑙𝑖𝑛𝑆𝑖𝑛
′ ), 𝑒′′, (𝑙𝑓𝑖𝑛𝑆𝑓𝑖𝑛

′ )⟩. In other words, on the SCL 

side when b is false we exit the while, and this corresponds in the TA to 

move to the final node 𝑙𝑓𝑖𝑛 by the edge 𝑒′′ that has no action. By applying 

the rule (24) of the TA semantics we have that 𝑆𝑓𝑖𝑛
′  is equal to 𝑆𝑖𝑛

′ , so 𝑆𝑓𝑖𝑛
′ =

𝑆𝑛−1 and we know that 𝑆𝑛−1 = 𝑆𝑛, so 𝑆𝑓𝑖𝑛
′ = 𝑆𝑛 as required. 

Consider now the other case, when in the SCL state 𝑆𝑛−1 b is true. By 

inductive hypothesis, 𝑆𝑖𝑛
′  is equal to 𝑆𝑛−1, where b is true too. Let assume 

that in the SCL program we iterate the while loop 𝑚 times, where 𝑚 can 

be finite or infinite, this correspond in the TA to cross the path: 

⟨(𝑙𝑖𝑛𝑆𝑘
′ ), 𝑒′, (𝑙1𝑆𝑘

′ ), 𝑒1
′ , (𝑙𝑖𝑛𝑆𝑘+1

′ ), 𝑒′, (𝑙1𝑆𝑘+1
′ ), 𝑒1

′ , (𝑙𝑖𝑛𝑆𝑘+2
′ ), … , (𝑙𝑖𝑛𝑆𝑘+𝑚−1

′ ), 𝑒𝑚−1
′ , (𝑙𝑖𝑛𝑆𝑘+𝑚

′ )⟩ 

At the 𝑚𝑡ℎ iteration, by inductive hypothesis the parallelism among what 

happens in the while loop in the SCL and what happens in the three states 

corresponding to the three nodes in the automaton is maintained. The path 

⟨(𝑙𝑖𝑛𝑆𝑘
′ ), 𝑒′, (𝑙1𝑆𝑘

′ ), 𝑒1
′ , (𝑙𝑖𝑛𝑆𝑘+1

′ ), 𝑒′, (𝑙1𝑆𝑘+1
′ ), 𝑒1

′ , (𝑙𝑖𝑛𝑆𝑘+2
′ ), . . . ⟩ corresponds to 

the iteration of the body of the while loop in the SCL program. 

Focusing on the last iteration of the while in the SCL program, in the TA 
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this corresponds to the path 

⟨(𝑙𝑖𝑛𝑆𝑚−1
′ ), 𝑒′, (𝑙1𝑆𝑚−1

′ ), 𝑒1
′ , (𝑙𝑖𝑛𝑆𝑚

′ ), 𝑒′′, (𝑙𝑓𝑖𝑛𝑆𝑓𝑖𝑛
′ )⟩. By applying the rules (20) 

and (22) of the TA semantics, 𝑆𝑖𝑛
′  is updated to 𝑆𝑚−1

′ , and  crossing the 

edge 𝑒1
′ , makes 𝑆𝑚

′  equal to the effect of applying 𝑠𝑡𝑚. Therefore, 𝑆𝑚
′  after 

the statement 𝑠𝑡𝑚 is equal to 𝑆𝑛. As 𝑆𝑓𝑖𝑛
′ = 𝑆𝑖𝑛

′ = 𝑆𝑚
′ , we get 𝑆𝑓𝑖𝑛

′ = 𝑆𝑛 as 

desired. 

 

Ending Statement. As the END statement does not have any impact on the 

variables state, it corresponds to an empty transition applied to the final 

state of the TA.  

      ∎ 
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5 UPPAAL 
 

UPPAAL is a tool for modelling, validating and verifying real-time systems, that 

can be represented with timed automata. It is developed by Uppsala University 

(Sweden) and Aalborg University (Denmark). 

In UPPAAL we can identify three main sections: 

 
Figure 5 – UPPAAL interface 

- Editor: in the editor we can create the system that we want to analyse. The 

system can be composed of one or more timed automata (Template), and 

we can synchronized them. The automaton of a template consists of 

locations and edges, a template may also have local declarations and 

parameters. In this section we have also to declare the variable that are 

used in the automata (the types of variables can be int, bool, clock, chan, 

array and record types can be defined over these and other types.). We 

can also define structure data types, functions and channels (in the 

subsection Declarations). Then in the System declaration part we list one 

or more processes to be composed into a system.  

The locations of timed automata are graphically represented as circles and 

are connected by edges. Each template must have one initial location that 

is marked by a double circle. We can also put a location as urgent or 

committed: urgent locations freeze time (time is not allowed to pass when 

a process is in an urgent location), committed locations, as the urgent 

ones, freeze time, but also if any process is in a committed location, the 

next transition must involve an edge from one of the committed locations. 

Edges, that connect locations, contain: selections, that non-

deterministically give to an identifier a value in a given range; guards, if 
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there is a guard in an edge then we can go from the initial location of this 

edge to the final one if and only if the evaluated guard gets to true; 

synchronization, processes can synchronize over channels, this is done 

by use synchronization labels that are of the form ready? in one 

automaton, that synchronized with ready! in another automata; updates, 

used to change a value of a variable. 

- Simulator: gives the possibility to examine all the possible dynamic 

executions of our automaton or of our system composed by more than one 

timed automaton. The simulator section is composed by 4 parts: the one 

on the left is called simulation control that allows us to perform step-by-

step the simulation of our system; the middle part is called variables 

because it shows the values of the data and clocks variables in a specific 

moment in the automaton; the upper right part is called processes, where 

are represented our automaton and we can see the progressing execution, 

where the current node and the next edge that will be traversed are 

coloured by red; the lower right panel is called message sequence chart 

and it shows the trace.  

- Verifier: allows to check safety and liveness properties, so that we can 

study the robustness of our system. First of all we have to insert a new 

query, we write the query (that represents a property) and we check it, and 

the verifier will say us if the property is satisfied (green circle beside the 

query will appear) or not (red circle will appear beside the property). We 

can have 5 types of properties that will be described later in another 

section. 

 

We choose UPPAAL because it is a simple tool that supports various features of 

model checkers. One of the limitations we met was that there is not the possibility 

to read input values in UPPAAL, then we tried to search for others tool that give 

us the possibility to do the same things or more than UPPAAL. Some of other 

tools are: DREAM, TAPAAL, BLAST, CPAchecker, ROMEO, etc.  

At the end, our choice remained UPPAAL because it is the simplest and most 

intuitive, and the overhead required to start using the tool is minimal. Moreover, 



28 
 

none of the other tools permit us to overcome the limitation problem that we have 

found with UPPAAL, that is that we are not able to read input values. We 

overcome this problem by using the select in the edges, that permits us to use 

non-deterministic values. 

 
 

5.1 Robustness Properties 
 
Given a Timed Automata that represents an SCL program, we want now to define 

some robustness properties and prove by using UPPAAL that these robustness 

properties are satisfied by the program. UPPAAL is used to validate and verify 

real-time systems. The idea is to represent a SCL program by an automaton, 

simulate and verify various properties on it through some queries. The query 

language consists of state formulas and path formulas. A state formula is an 

expression that can be evaluated for a particular state in order to check a property 

(e.g. a deadlock), without looking at the behaviour of the model. Path formula 

quantify over paths of execution and ask whether a given state formula p can be 

satisfied in any or all the states along any or all the paths [15]. 

We can identify three types of path formulas (path properties): 

- Reachability properties (𝐸 <> 𝑝): 

are the simplest ones; they ask whether a given state formula, p, possibly 

can be satisfied by any reachable state. 

𝐸 <> 𝑝 = "there exists a path where p eventually holds". 

- Safety properties (𝐸[ ]𝑝 and 𝐴[ ]𝑝): 

are of the form: something good is invariantly true. 

𝐸[ ]𝑝 = "there exists a path where p always holds";  

𝐴[ ]𝑝 = "for all paths, p always holds". 

- Liveness properties (𝐴 <> 𝑝 and 𝑝−→ 𝑞): 

are of the form: something will eventually happen.  

𝐴 <> 𝑝 = for all paths, p will eventually hold; 

𝑝−→ 𝑞 = whenever p holds, q will eventually hold. 
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In the following figure we depict the graphical representation of the 5 types of 

properties: 

 

We can express one property in terms of another one: 

 A[ ]𝑝 = 𝑛𝑜𝑡 𝐸 <> 𝑛𝑜𝑡 𝑝 

 𝐴 <> 𝑝 = 𝑛𝑜𝑡 𝐸[ ]𝑛𝑜𝑡 𝑝 

 𝑝−→ 𝑞 = 𝐴[ ](𝑝 𝑖𝑚𝑝𝑙𝑦 𝐴 <> 𝑞) 

As we already mentioned in the problem statement in chapter 1, let ΣΔ be the set 

of acceptable final states and Σ𝐸 be the set of erroneous states; and let 𝐼𝐴 be the 

set of acceptable inputs and 𝐼𝑈 be the set of unacceptable inputs. Then, as we 

trying to verify the robustness of our program, two things are most important: 

- The program will always lead to a correct output state for a valid input: 

𝐴[ ]ΣΔ(𝐼𝐴); 

- The program will never lead to a correct output state for an erroneous 

input, it means that the program will always lead to an erroneous output 

for an erroneous input: 𝐴[ ]Σ𝐸(𝐼𝑈). 

 

 

 

Figure 6 – Graphical representation of robustness properties 
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5.2 File .xta Syntax 
 
In this section, we'll define the formal syntax for .xta based files, using Xtext and 

Acceleo in Eclipse, which are used as an input file in UPPAAL, and SIEMENS 

SCL programming language. 

 

XTA. The BNF (Backus-Naur Form) syntax for .xta files, as described in the 

UPPAAL [22] reference manual is expressed here: 

XTA ::= <Declaration>* <Instantiation>* <System> 

 

Declaration ::= <FunctionDecl> | <VariableDecl> | <TypeDecl> | 

<ProcDecl> 

Instantiation ::= ID ASSIGNMENT ID '(' <ArgList> ')' ';' 

System ::= 'system' ID (',' ID)* ';' 

 

ParameterList ::= '(' [ <Parameter> ( ',' <Parameter> )* ] ')' 

Parameter ::= <Type> [ '&' ] ID <ArrayDecl>* 

 

FunctionDecl ::= <Type> ID <ParameterList> <Block> 

 

ProcDecl ::= 'process' ID <ParameterList> '{' <ProcBody> '}' 

ProcBody ::= (<FunctionDecl> | <VariableDecl> | <TypeDecl>)* 

<States> [<Commit>] [<Urgent>] <Init> [<Transitions>] 

 

States ::= 'state' <StateDecl> (',' <StateDecl>)* ';' 

StateDecl ::= ID [ '{' <Expression> '}' ] 

 

Commit ::= 'commit' StateList ';' 

Urgent ::= 'urgent' StateList ';' 

StateList ::= ID (',' ID)* 

Init ::= 'init' ID ';' 

 

Transitions ::= 'trans' <Transition> (',' <TransitionOpt>* ';' 

Transition ::= ID '->' ID <TransitionBody> 

TransitionOpt ::= Transition | '->' ID <TransitionBody> 

TransitionBody ::= '{' [<Guard>] [<Sync>] [<Assign>] '}' 

 

Guard ::= 'guard' <Expression> ';' 

Sync ::= 'sync' <Expression> ('!' | '?') ';' 

Assign ::= 'assign' <ExprList> ';' 

 

TypeDecl ::= 'typedef' <Type> <TypeIdList> (',' <TypeIdList>)* 

';' 
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TypeIdList ::= ID <ArrayDecl>* 

 

BNF for variable declarations: 

 VariableDecl ::= <Type> <DeclId> (',' <DeclId>)* ';' 

DeclId ::= ID <ArrayDecl>* [ ASSIGNMENT <Initialiser> ] 

Initialiser ::= <Expression> | '{' <FieldInit> ( ',' <FieldInit> 

)* '}' 

FieldInit ::= [ ID ':' ] <Initialiser> 

ArrayDecl ::= '[' <Expression> ']' 

Type ::= <Prefix> ID [ <Range> ] | <Prefix> 'struct' '{' 

<FieldDecl>+ '}' 

FieldDecl ::= <Type> <FieldDeclId> (',' <FieldDeclId>)* ';' 

FieldDeclId ::= ID <ArrayDecl>* 

Prefix ::= ( [ 'urgent' ] [ 'broadcast' ] | ['const'] ) 

Range ::= '[' <Expression> ',' <Expression> ']' 

 

BNF for statements: 

Block ::= '' ( <VariableDecl> | <TypeDecl> )* <Statement>* '' 

Statement ::= <Block> 

| ';' 

| <Expression> ';' 

| 'for' '(' <ExprList> ';' <ExprList> ';' 

<ExprList> ')' <Statement> 

| 'while' '(' <ExprList> ')' <Statement> 

| 'do' <Statement> 'while' '(' <ExprList> ')' ';' 

| 'if' '(' <ExprList> ')' <Statement> 

[ 'else' <Statement> ] 

| 'break' ';' 

| 'continue' ';' 

| 'switch' '(' <ExprList> ')' '{' <Case>+ '}' 

| 'return' ';' 

| 'return' <Expression> ';' 

 

Case ::= 'case' <Expression> ':' <Statement>* 

| 'default' ':' <Statement>* 

 

BNF for expressions: 

ExprList ::= <Expression> ( ',' <Expression> )* 

Expression ::= ID 
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| NAT 

| 'true' | 'false' 

| ID '(' <ArgList> ')' 

| <Expression> '[' <Expression> ']' 

| '(' <Expression> ')' 

| <Expression> '++' | '++' <Expression> 

| <Expression> '--' | '--' <Expression> 

| <Expression> <AssignOp> <Expression> 

| <UnaryOp> <Expression> 

| <Expression> <Rel> <Expression> 

| <Expression> <BinIntOp> <Expression> 

| <Expression> <BinBoolOp> <Expression> 

| <Expression> '?' <Expression> ':' <Expression> 

| <Expression> '.' ID> 

 

AssignOp ::= ASSIGNMENT | '+=' | '-=' | '*=' | '/=' | '%=' | 

'|=' | '&=' | '=̂' | '<<=' | '>>=' 

UnaryOp ::= '-' | '!' 

Rel ::= '<' | '<=' | '==' | '!=' | '>=' | '>' 

BinIntOp ::= '+' | '-' | '*' | '/' | '%' | '&' | '|' | '^' 

| '<<' | '>>' 

BinBoolOp ::= '&&' | '||' 

ArgList ::= [ <Expression> ( ',' <Expression> )* ] 

 

 

5.3 Transformation Rules from SCL to .xta File 
 
We use the grammar defined above to parse a SCL program using Xtext. After 

that, we have written a simple java code relying on Acceleo, which transforms the 

SCL program into a .xta file. 

The source code for a block consists of the following sections: 

- Block start with specification of the block (absolute or symbolic) 

- Block attributes (optional) 

- Declaration section (differs from block type to block type) 

- Code section in logic blocks or assignment of current values in data blocks 

(optional) 

- Block end. 
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Detailed transformation rules for the code section: the code section contains 

statements, which are executed when a code block is called. These statements 

are used for processing data or addresses, or for setting individual initialization 

values in data blocks. 

Each individual statement belongs to one of the following types: 

- Assignment Statement: used to assign the result of an expression or the 

value of another variable to a variable; 

- Control statement: used to repeat statements or groups of statements or 

to branch within a program; 

- Subroutine call: used to call functions or function blocks. 

The transformation rules to pass from a SCL code to a file .xta are listed in the 

following table:  

Table 2 – Transformation rules from SCL to .xta file 

Statement Type SCL .xta 

Initial Statement BEGIN 

States ::= 'state' <StateDecl> 

StateDecl ::= START 

Init ::= 'init' START ';' 

Transitions ::= 'trans' <Transition> 

Assignment Statement variable ':=' expression 
StateDecl ::= current_state [ '{' <Expression>'}' ] 

Expression ::= <Expression> AssignOp <Expression> 

Expression ::= ID(=variable) ':=' <expression> 

If Statement 

'IF' expression1 'THEN' 
statement_list1 
{'ELSEIF' expression2 
'THEN' statement_list2} 
['ELSE' statement_list3] 
'END_IF' 

States ::= (',' <StateDecl>) 

StateDecl ::= IF 

Transition ::= current_state '->' ID (ID = IF) 

 

States ::= (',' <StateDecl>) 

StateDecl ::= THEN 

Transition ::= IF '->' ID <TransitionBody>(ID = THEN) 

TransitionBody ::= '{' [<Guard>] [<Assign>] '}' 

Guard ::= 'guard' <expression1>';' 

Assign ::= 'assign' <statement_list1>';' 

 

States ::= (',' <StateDecl>) 

StateDecl ::= ELSEIF 

Transition ::= THEN '->' ID <TransitionBody>(ID = 

ELSEIF) 

TransitionBody ::= '{' [<Guard>] [<Assign>] '}' 

Guard ::= 'guard' <expression2>';' 

Assign ::= 'assign' <statement_list2>';' 

 

States ::= (',' <StateDecl>) 

StateDecl ::= ELSE 

Transition ::= IF '->' ID <TransitionBody>(ID = ELSE) 

TransitionBody ::= '{' [<Guard>] [<Assign>] '}' 

Guard ::= 'guard' <' !' expression1>';' 

Assign ::= 'assign' <statement_list3>';' 

For Statement 

'FOR' control_variable ':=' 
for_list 'DO' statement_list 
'END_FOR' 
control_variable ::= 
identifier 

States ::= <',' StateDecl> 

StateDecl ::= FOR 

Transition ::= current_state'->' ID <TransitionBody> 

(ID = FOR) 

TransitionBody ::= '{' [<Assign>] '}' 

Assign ::= 'assign'<control_variable = expression1>; 

 

States ::= (',' <StateDecl>) 
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for_list ::= expression1 

'TO' expression2 ['BY' 

expression3] 

StateDecl ::= DO_FOR 

Transition ::= FOR'->' ID <TransitionBody>(ID = 

DO_FOR) 

TransitionBody ::= '{' [<Guard>] [<Assign>] '}' 

Guard ::= 'guard' <control_variable <expression2>';' 

Assign ::= 'assign' <control_variable = 

control_variable <expression3>';' 

 

States ::= (',' <StateDecl>) 

StateDecl ::= END_FOR 

Transition ::= DO'->' ID <TransitionBody>(ID = 

END_FOR) 

TransitionBody ::= '{' [<Assign>] '}' 

Assign ::= 'assign' <statement_list1>';' 

 

Transition ::= END_FOR'->' FOR 

 

Transition ::= FOR'->' END_FOR<TransitionBody> 

TransitionBody ::= '{' [<Guard>] '}' 

Guard ::= 'guard' <control_variable >= 

expression2>';' 

While Statement 

while_statement 'WHILE' 

expression 'DO' 

statement_list 

'END_WHILE' 

States ::= <',' StateDecl> 

 

StateDecl ::= WHILE 

 

Transition ::= current_state'->' ID (ID = WHILE) 

 

States ::= (',' <StateDecl>) 

StateDecl ::= DO_WHILE 

Transition ::= WHILE'->' ID <TransitionBody>(ID = 

DO_WHILE) 

TransitionBody ::= '{' [<Guard>] '}' 

Guard ::= 'guard' <expression1>';' 

 

Transition ::= DO_WHILE'->' WHILE<TransitionBody> 

TransitionBody ::= '{' [<Guard><Assign>] '}' 

Guard ::= 'guard' <Rel><expression1>';' 

 

Assign ::= 'assign' <statement_list>';' 

 

States ::= (',' <StateDecl>) 

StateDecl ::= END_WHILE 

Transition ::= WHILE'->' ID <TransitionBody>(ID = 

END_WHILE) 

TransitionBody ::= '{' [<Guard>] '}' 

Guard ::= 'guard' <' !' expression1>';' 
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Now we represent the transformation of the SCL code example of figure 3 

presented in the second chapter, to a file .xta and also to the corresponding 

automata: 

Table 3 – From a simple example in SCL to the .xta file to the TA 

SCL program .xta input file UPPAAL model 

variable declaration 
(variable_name, 
variable_type) 
VAR_INPUT 
      n : INT; 
END_VAR 
 
VAR_OUTPUT 
      ADD : INT; 
      SQUARE : INT; 
END_VAR 
 
VAR 
      x:INT; 
END_VAR 

 

 
variable name : variable 
type 
vari: type_var ∀ i=1,..,m 

// Place global declarations 
here. 
int n; 
int add; 
int square; 
int x; 

 

 

 

 

 

 

 

 

type_var vari; 
∀ i=1,..,m 

// Place global declarations here. 
int n; 
int add; 
int square; 
int x; 

 

n:=5; 
x:=0; 
ADD:=0; 
SQUARE:=0; 
 
 
 
 
 
variable name := value; 
vari: val 
∀ i=1,..,m 

// Place global declarations 
here. 
const int n=5; 
int x=0; 
int add=0; 
int square=0; 

 

 
type_var vari = val; 
∀ i=1,..,m 

the variables initialization will be 

associated to the edge out of the start 

node 

BEGIN process Template(){ 
state 
      start; 
init 
      start; 
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while loop 
 
WHILE x<n DO 
      ADD:=ADD+x; 
      x:=x + 1; 
END_WHILE; 

 

 

 

 

 

 

 
WHILE expr1 DO 
      expr2 
END_WHILE 

State 
      while, 
      do, 
      end_while; 
trans 
      trans 
      start → while { }, 
      while → do { guard x<n; }, 
      do → while { assign add = 
add+x, x = x+1; }, 
while → end_while { guard 
x>=n; 
}; 

 

 

state{while, do, end_while}; 
trans{ 
Σwhile{prev}i → while{ }, 
while → do { guard expr1;}, 
do → while { assign expr2;}, 
while → end_while {! expr1} ; 

 

IF SUM <= 181 THEN 
      SQUARE := 
ADD*ADD; 
ELSE 
      SQUARE := 32767; 
END_IF; 

 

 

 

 

 
 
 
 

IF cond1 THEN expr1 
ELSE expr2 
END_IF 

State 
      then, 
      else, 
      end_if; 
trans 
      end_while → then { guard 
add < 181; assign square = 
add * add; 
}, 
      end_while → else { guard 
add >= 181; assign square = 
32767; } 
      then → end_if{} 
      else → end_if{}; 
 
 
 
state{ then, else, end_if }; 
trans{ 
      Σif(prev)i → then { guard 
cond1; 
assign expr1;}, 
      Σif(prev)i → else { guard ! 
cond1; 
assign expr2;} 
      then → end_if{} 
      else → end_if{}; 
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END_FUNCTION State 
      reset; 
trans 
      end_if → reset { assign 
add = 0, square = 0, x = 0,  
n = 0 }; 
 
 
 
 
state 
      reset; 
trans 
      Σreset{prev}i → reset 
{assign vari = 0; ∀ i=1,..., m} 
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6 Experimental Results 
 
In this final chapter we present the whole picture of the project. Starting from a 

PLC program written in the Structure Control Language, we transform it into a 

code written in the DSL language using Xtext. Then we create the .xta file, with 

the help of Acceleo, to automatically create the Timed Automata. Finally we verify 

some properties in order to check the robustness of our system with the UPPAAL 

tool. 

The example that we consider is inspired by a video published in YouTube [25]. 

It consists of an automated line for boxing of bolts and nuts, managed by a PLC. 

We have chosen this example because it is interactive and input dependent, and 

so we want to prove the robustness of this model either with correct inputs but 

also with unexpected inputs. 

The following image illustrates the physical ambient: 

 
Figure 7 – Physical ambient 

The Programmable Logic Controller allows a user to insert a key in order that the 

machine starts working. Until the key is not turned on, the machine cannot start. 

Then the user can select if he wants only nuts, only bolts or both nuts and bolts. 

If the choice is only nuts or only bolts then the box that is needed is a box with a 

single partition; instead if a user wants both bolts and nuts then the box has to be 
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bipartitioned, in order to separate the nuts from the bolts. The user has also to 

select the number of pieces that he desires. If he has selected only bolts he can 

choose a number of bolts between 3 and 30. Instead, if he has chosen only nuts 

the number should be between 3 and 60. Note that he maximum allowed number 

is quite bigger than the maximum number of bolts because the nuts have a 

smaller dimension with respect to the dimension of bolts and so there can be 

more pieces inside a box. If the choice was bolts and nuts then the number of 

bolts and nuts should be equal and can be between 3 and 20. 

A box is put on the main conveyor by another machine that coordinates with the 

main machine, for example by using another automaton that synchronized with 

the automaton of this machine. The system checks if the box is open or closed. 

In the second case, it is discarded. In addition, the box is discarded also if it is not 

correct for the choice selected by the user, so if a person wants only bolts or nuts, 

the desired box is the simplest one with no partitions, but if the machine receive 

a bipartitioned box (that one for the choice of both bolts and nuts together) then 

this box is discarded, and the process starts again remembering the choice 

already done by the user. The same happens in the opposite case, if the choice 

was both bolts and nuts and the box is that one with no partition then it is 

discarded because the desired box is that one bipartitioned.  

To recognise if there is the correct box and to see if the box is opened there is a 

camera that checks the conditions of the box and sends an input value to the 

PLC, and so the PLC is able to decide if the box can be used or has to be 

discarded.  

Once we have the correct box the main conveyor stops when the box is in the 

corrected position to be filled with nuts or bolts or both. There are some sensors 

that permit to understand when the main conveyor has to stop. So for example if 

the box has to be filled with only nuts then before the slide, where the pieces (nuts 

or bolts) will fall, there is a sensor that detects when there is the box in front of it 

and sends a message to the PLC saying that the main conveyor has to stop. This 

sensor (for nuts) is activated only when the choice is nuts or both nuts and bolts. 

Instead, if the choice is bolts the main conveyor will stop a little bit after, when 

another sensor (that one for bolts, that is placed after the slide) detects the box. 
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Once the box is stopped in the correct position the conveyor of nuts or the one of 

bolts is started until the correct number of pieces falls into the box.  

If the choice was of both bolts and nuts then the main conveyor stops when the 

box is in correspondence of the first sensor before the slide, the conveyor of nuts 

is activated and the pieces fall into the box, then the conveyor of nuts is stopped 

and the main conveyor is started but move only a little bit, because the sensor for 

bolts, placed after the slide, stops it again in order that the conveyor of bolts start 

moving and the bolts fall into the other part of the box.  

Once the box is filled with the correct number of pieces the main conveyor restarts 

and the box arrived in a point where there is another sensor that captures the 

presence of a box in front of it and the box is closed. The main conveyor starts 

again, the box arrives ahead of another sensor and there is a “mechanical arm” 

that pushed the box away. 

Our system checks also if in the two smaller conveyors, that have the bolts and 

nuts, there are still pieces or not; if there are no more pieces the system stops 

until the addition of new pieces. So, the system is synchronized with another 

machine that fill the conveyor with pieces when they are finished.  

 

The PLC program written in the SCL language corresponding to the system 

described above is: 

FUNCTION TEST : INT  

VAR_INPUT 

 key : INT; 

 choice : ARRAY [0 .. 2] OF INT; 

 box : ARRAY [1 .. 2] OF INT; 

 openBox : ARRAY [0 .. 1] OF INT; 

 numberBolts : ARRAY [3 .. 30] OF INT; 

 numberNuts : ARRAY [3 .. 60] OF INT; 

 numberPieces2 : ARRAY [3 .. 20] OF INT; 

END_VAR 

VAR_OUTPUT 

 counterBolts : INT; 

 counterNuts : INT; 

 close : BOOL; 

 positionPush : BOOL; 

END_VAR 

VAR 

 mainConveyor : BOOL; 

 conveyorB : BOOL; 

 conveyorN : BOOL; 

 piecesB : INT; 

 piecesN : INT; 

 rechargeB : BOOL; 

 rechargeN : BOOL; 

 position : BOOL; 



41 
 

 push : BOOL; 

 discard : BOOL; 

 i: INT; 

 j: INT; 

 k: INT; 

END_VAR 

WHILE TRUE DO 

 IF key=0 THEN 

  mainConveyor:=FALSE; 

 ELSEIF key=1 THEN 

  mainConveyor:=TRUE; 

  IF choice=0 THEN 

   IF box=2 OR openBox=0 THEN 

    discard:= TRUE;  

   ELSEIF box=1 AND openBox=1 THEN 

    i:=0; 

    mainConveyor:= FALSE; 

    IF piecesB=0 THEN 

     rechargeB:=TRUE; 

    ELSE 

      WHILE i<numberBolts DO 

      conveyorB:=TRUE; 

      counterBolts:=counterBolts + 1; 

      i:=i + 1; 

     END_WHILE; 

    END_IF; 

    conveyorB:=FALSE; 

    mainConveyor:=TRUE; 

   END_IF; 

  ELSEIF choice=1 THEN 

   IF box=2 OR openBox=0 THEN 

    discard:= TRUE; 

   ELSEIF box=1 AND openBox=1 THEN 

    j:=0; 

    mainConveyor:= FALSE; 

    IF piecesN=0 THEN 

     rechargeN:=TRUE; 

    ELSE 

     WHILE j<numberNuts DO 

      conveyorN:=TRUE; 

      counterNuts:= counterNuts + 1; 

      j:=j + 1; 

     END_WHILE; 

    END_IF; 

    conveyorN:=FALSE; 

    mainConveyor:=TRUE; 

   END_IF; 

  ELSEIF choice=2 THEN 

   IF box=1 OR openBox=0 THEN 

    discard:= TRUE; 

   ELSEIF box=2 AND openBox=1 THEN 

    k:=0; 

    numberBolts:= numberPieces2; 

    numberNuts:= numberBolts; 

    mainConveyor:= FALSE; 

    IF piecesN=0 THEN 

     rechargeN:=TRUE; 

    ELSE 

     WHILE k<numberNuts DO 

      conveyorN:=TRUE; 

                    counterNuts:=counterNuts + 1; 

      k:=k + 1; 

     END_WHILE; 

    END_IF; 

    conveyorN:=FALSE; 
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    mainConveyor:=TRUE; 

    k:=0; 

    mainConveyor:=FALSE; 

    IF piecesB=0 THEN 

     rechargeB:=TRUE; 

    ELSE 

     WHILE k<numberBolts DO 

      conveyorB:=TRUE; 

      counterBolts:=counterBolts + 1; 

      k:=k + 1; 

     END_WHILE; 

    END_IF; 

    conveyorB:=FALSE; 

    mainConveyor:=TRUE; 

   END_IF; 

  END_IF; 

  IF position=TRUE THEN 

   mainConveyor:=FALSE; 

   close:=TRUE; 

  END_IF; 

  close:=FALSE; 

  mainConveyor:=TRUE; 

  IF positionPush=TRUE THEN 

   push:=TRUE; 

   counterNuts:=0; 

   counterBolts:=0; 

  END_IF; 

 END_IF; 

END_WHILE; 

END_FUNCTION 

 

 
The corresponding .xta file is: 

// place global declarations here. 

int  key ; 

int [0,1,2] choice; 

int [1,2] box; 

int [0,1] openbox; 

int [3 ..30] numberbolts; 

int [3 .. 60] numbernuts; 

int [3 .. 20] numberpieces2; 

bool mainconveyor; 

bool conveyorb; 

bool conveyorn; 

int piecesb; 

int piecesn; 

bool rechargeb; 

bool rechargen; 

bool position; 

bool push; 

bool discard; 

int i; 

int j; 

int k; 

int counterbolts; 

int counternuts; 

bool close; 

bool positionpush; 

process test(){ 

state 

 s_0, 

 s_1, 

 s_2, 
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 s_3, 

 s_4, 

 s_5, 

 s_6, 

 s_7, 

 s_8, 

 s_9, 

 s_10, 

 s_11, 

 s_12, 

 s_13, 

 s_14, 

 s_15, 

 s_16, 

 s_17, 

 s_18, 

 s_19, 

 s_20, 

 s_21, 

 s_22, 

 s_23, 

 s_24, 

 s_25, 

 s_26, 

 s_27, 

 s_28, 

 s_29, 

 s_30, 

 s_31, 

 s_32, 

 s_33, 

 s_34, 

 s_35, 

 s_36, 

 s_37, 

 s_38, 

 s_39, 

 s_40, 

 s_41, 

 s_42, 

 s_43, 

 s_44, 

 s_45, 

 s_46, 

 s_47, 

 s_48, 

 s_49, 

 s_50, 

 s_51, 

 s_52, 

 s_53, 

 s_54, 

 s_55, 

 s_56, 

 s_57, 

 s_58, 

 s_59, 

 s_60, 

 s_61, 

 s_62, 

 s_63, 

 s_64, 

 s_65, 

 s_66, 

 s_67, 
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 s_68, 

 s_69, 

 s_70, 

 s_71, 

 s_72, 

 s_73, 

 s_74, 

 s_75, 

 s_76, 

 s_77, 

 s_78, 

 s_79, 

 s_80, 

 s_81, 

 s_82, 

 s_83; 

init  

 s_0; 

trans 

 

   s_0 -> s_1   {guard TRUE;}, 

   s_1 -> s_2   {guard key=0;}, 

  s_2 -> s_3   {assign mainConveyor:=FALSE;}, 

  s_1 -> s_4   {guard !key=0;}, 

   s_4 -> s_5   {guard key=1;}, 

  s_5 -> s_6   {assign mainConveyor:=TRUE;}, 

   s_6 -> s_7   {guard choice=0;}, 

   s_7 -> s_8   {guard box=2 OR openBox=0;}, 

  s_8 -> s_9   {assign discard:= TRUE;}, 

  s_7 -> s_10   {guard !box=2 OR openBox=0;}, 

   s_10 -> s_11   {guard box=1 AND openBox=1;}, 

  s_11 -> s_12   {assign i:=0;}, 

  s_12 -> s_13   {assign mainConveyor:= FALSE;}, 

   s_13 -> s_14   {guard piecesB=0;}, 

  s_14 -> s_15   {assign rechargeB:=TRUE;}, 

  s_15 -> s_16   {assign conveyorB:=TRUE;}, 

  s_16 -> s_17   {assign counterBolts:=counterBolts + 1;}, 

  s_17 -> s_18   {assign i:=i + 1;}, 

   s_18 -> s_15   {}, 

   s_15 -> s_19   {guard !();}, 

  s_19 -> s_20   {}, 

  s_20 -> s_21   {assign conveyorB:=FALSE;}, 

  s_21 -> s_22   {assign mainConveyor:=TRUE;}, 

  s_9 -> s_23   {}, 

  s_22 -> s_23   {}, 

  s_6 -> s_24   {guard !choice=0;}, 

   s_24 -> s_25   {guard choice=1;}, 

   s_25 -> s_26   {guard box=2 OR openBox=0;}, 

  s_26 -> s_27   {assign discard:= TRUE;}, 

  s_25 -> s_28   {guard !box=2 OR openBox=0;}, 

   s_28 -> s_29   {guard box=1 AND openBox=1;}, 

  s_29 -> s_30   {assign j:=0;;}, 

  s_30 -> s_31   {assign mainConveyor:= FALSE;}, 

   s_31 -> s_32   {guard piecesN=0;}, 

  s_32 -> s_33   {assign rechargeN:=TRUE;}, 

  s_33 -> s_34   {assign conveyorN:=TRUE;}, 

  s_34 -> s_35   {assign counterNuts:=counterNuts + 1;}, 

  s_35 -> s_36   {assign j:=j + 1;;}, 

   s_36 -> s_33   {}, 

   s_33 -> s_37   {guard !();}, 

  s_37 -> s_38   {}, 

  s_38 -> s_39   {assign conveyorN:=FALSE;}, 

  s_39 -> s_40   {assign mainConveyor:=TRUE;}, 

  s_27 -> s_41   {}, 

  s_40 -> s_41   {}, 
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  s_24 -> s_42   {guard !choice=1;}, 

   s_42 -> s_43   {guard choice=2;}, 

   s_43 -> s_44   {guard box=1 OR openBox=0;}, 

  s_44 -> s_45   {assign discard:= TRUE;}, 

  s_43 -> s_46   {guard !box=1 OR openBox=0;}, 

   s_46 -> s_47   {guard box=2 AND openBox=1;}, 

  s_47 -> s_48   {assign k:=0;;}, 

  s_48 -> s_49   {assign numberBolts:= numberPieces2;}, 

  s_49 -> s_50   {assign numberNuts:= numberBolts;}, 

  s_50 -> s_51   {assign mainConveyor:= FALSE;}, 

   s_51 -> s_52   {guard piecesN=0;}, 

  s_52 -> s_53   {assign rechargeN:=TRUE;}, 

  s_53 -> s_54   {assign conveyorN:=TRUE;}, 

  s_54 -> s_55   {assign counterNuts:=counterNuts + 1;}, 

  s_55 -> s_56   {assign k:=k + 1;}, 

   s_56 -> s_53   {}, 

   s_53 -> s_57   {guard !();}, 

  s_57 -> s_58   {}, 

  s_58 -> s_59   {assign conveyorN:=FALSE;}, 

  s_59 -> s_60   {assign mainConveyor:=TRUE;}, 

  s_60 -> s_61   {assign k:=0;}, 

  s_61 -> s_62   {assign mainConveyor:=FALSE;}, 

  s_62 -> s_63   {assign rechargeB:=TRUE;}, 

  s_63 -> s_64   {assign conveyorB:=TRUE;}, 

  s_64 -> s_65   {assign counterNuts:=counterNuts + 1;}, 

  s_65 -> s_66   {assign k:=k + 1;}, 

   s_66 -> s_63   {}, 

   s_63 -> s_67   {guard !();}, 

  s_67 -> s_68   {}, 

  s_68 -> s_69   {assign conveyorB:=FALSE;}, 

  s_69 -> s_70   {assign mainConveyor:=TRUE;}, 

  s_45 -> s_71   {}, 

  s_70 -> s_71   {}, 

  s_23 -> s_72   {}, 

  s_41 -> s_72   {}, 

  s_71 -> s_72   {}, 

  s_72 -> s_73   {assign mainConveyor:=FALSE;}, 

  s_73 -> s_74   {assign close:=TRUE;}, 

  s_74 -> s_75   {}, 

  s_75 -> s_76   {assign close:=FALSE;}, 

  s_76 -> s_77   {assign mainConveyor:=TRUE;}, 

  s_77 -> s_78   {assign push:=TRUE;}, 

  s_78 -> s_79   {assign counterNuts:=0;}, 

  s_79 -> s_80   {assign counterBolts:=0;}, 

  s_80 -> s_81   {}, 

  s_3 -> s_82   {}, 

  s_81 -> s_82   {}, 

   s_82 -> s_0   {}, 

   s_0 -> s_83   {guard !(TRUE);};  

 } 

// Place template instantiations here. 

 Process = test(); 

// List one or more processes to be composed into a system. 

system Process; 
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From the previous .xta file, the following timed automata is created: 

 
Figure 8 – Timed Automata in UPPAAL 
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Now that we have the timed automata in UPPAAL we can check some robustness 

properties. But we find out that as the system is very big then the verifier of 

UPPAAL is not able to check the true properties because it gives the following 

error: 

 
Figure 9 – Error: out of memory 

By the usage of the performance monitor we were able to see that there is a limit 

in the UPPAAL tool that allows the usage of memory until 2 GB, after using two 

gigabytes, it will give the out of memory error, also if there is still available 

memory. We were able to understand that there is this limitation by run the 

verification of a true property with the initial automaton in UPPAAL and check, in 

the performance monitor, how much memory is used by that process, and we 

have seen that after the usage of 2 GB, UPPAAL stops and gives the out of 

memory error.  
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In the following image we can see that the system gave the out of memory error when the memory used was almost of 2 GB 

(1.992.696 KB):  

 
Figure 10 – Memory usage 
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With the model represented in figure 8 we are able to verify only properties that 

do not hold: 

- A[ ] deadlock:    NOT SATISFIED 

this property is not satisfied, in fact in this system we never have deadlock, 

the system is always available to work. 

- A[ ] Process.start imply key==0:    NOT SATISFIED 

if we are in state start then the key cannot be turned off, because in order 

to start working the machine needs the key to allow a user to use it. This 

property is telling us that if we are in the state start then the key is equal 

to 0, it means that there is not the key, but this is not possible and so this 

property is not satisfied, because only if there is the key then we can reach 

the node start. 

- A[ ] Process.bolts imply choice==1:    NOT SATISFIED 

A[ ] Process.bolts imply choice==2:    NOT SATISFIED 

if we are in the node bolts then it means that the choice made by the user 

was bolts and cannot be equal to 1 (the user selected nuts) or equal to 2 

(both bolts and nuts). 

- A[ ] Process.nuts imply choice==0:    NOT SATISFIED 

A[ ] Process.nuts imply choice==2:    NOT SATISFIED 

similar to the previous two properties, if we reach the state nuts, it means 

that the choice done by the user was nuts (choice==1) and then cannot be 

choice==0 or choice==2. 

In a similar way we define these two properties: 

- A[ ] Process.boltsANDnuts imply choice==1:    NOT SATISFIED 

A[ ] Process.boltsANDnuts imply choice==0:    NOT SATISFIED 

it means that the node boltsANDnuts is reached only when the choice is 

equal to 2 (user wants both nuts and bolts), and so the choice cannot be 

equal to 1=only nuts or 0=only bolts. 

- A[ ] (Process.laststep and choice==0) imply (counterBolts!=numberBolts):    

NOT SATISFIED 

A[ ] (Process.laststep and choice==1) imply (counterNuts!=numberNuts):    

NOT SATISFIED 
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A[ ] (Process.laststep and choice==2) imply (counterNuts!=numberNuts 

and counterBolts!=numberBolts):    NOT SATISFIED 

once we reach the state laststep, if the choice was equal to 0 then the 

preselected number of bolts by the user has to be equal to the counterBolts 

that counts the number of bolts that are inserted into the box, this is done 

in order to assure that the correct number of pieces is inserted in the box. 

In a similar way we check the same thing for the case in which the user’s 

choice was only nuts, or both nuts and bolts. 

 

As we say that with the initial complex big Timed Automata in UPPAAL we are 

not able to demonstrate the properties that are satisfied then we consider smaller 

models that are subsets of the initial whole system. 

 

The first submodel that we use is: 

 
Figure 11 – First part of the automaton 

Some properties that we want to check to verify the robustness of our system can 

be verified over the smaller models; these properties are: 

- A[ ] Process.start imply key==1: SATISFIED 
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the physical system can be used only if the key is inserted, so only a 

person with the key can turn on the machine. If in the automaton the state 

start is reached it means that the key was inserted. If at a certain moment 

someone removes the key, the machine continues working until it finishes 

the current process. Once it has finished, the screen shows and alert 

stating that in order to start, the key is needed. 

- A[ ] Process.bolts imply choice==0:    SATISFIED 

the state bolts is reached only if the choice was 0, then only if the choice 

was bolts. This property ensures that once a user do a choice, so given a 

specific input (in this case bolts desired), the system will give always the 

correct output (the box will contain bolts). 

Obviously, we can check the same property when the choice is nuts: 

- A[ ] Process.nuts imply choice==1:    SATISFIED 

it means that if I am in the node nuts, the choice was equal to 1 (=nuts). 

And we can check the same properties also when the choice is both nuts 

and bolts: 

- A[ ] Process.boltsANDnuts imply choice==2:    SATISFIED 

if we reach the state boltsANDnuts it means that the user selection was 

both bolts and nuts. 

- A[ ] (Process.discarded imply (((choice==0 or choice==1) and 

(openBox==0 or box==2)) or (choice==2 and (openBox==0 or box==1))) ):    

SATISFIED 

when the system reaches node discarded, it means that or the box was closed or 

with respect to the choice the type of the box (with no partitions or bipartitioned) 

was not correct. The property in fact, said that if the choice is 0 or 1 (bolts or nuts) 

then we need the box of type 1 (with no partition) but if the box is of the other type 

(bipartitioned → box==2), then the box is discarded; if the choice was of both 

bolts and nuts (choice==2) then the type of box needed is the box bipartitioned 

(box==2), but if there is a box with no partition (box==1) then the box is discarded. 

Whatever the choice (0,1 or 2), if a box arrives that is closed (openBox==0), then 

it is discarded. 
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Considering instead this other submodel, for checking properties on the second part of the whole initial system: 

 
Figure 12 – Second part of the automaton 
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The difference with the initial model consists in the removal of the part where the 

box is discarded if it is closed or of the erroneous type (with no partition or 

bipartitioned). 

Other properties that we checked over this second submodel to verify the 

robustness of our system are: 

- A[ ] (Process.singleBox0 or Process.singleBox1) imply (openBox==1 and 

box==1):    SATISFIED 

if I am in the node singleBox0 or in the node singleBox1 it means that the 

choice was only bolts or only nuts respectively, and we reach these states 

only if the box is of the correct type. In this case, we need the box with no 

partition and also the box needs to be open, because if the box is closed, 

then it is discarded and there is a “restart” where the choice made by the 

user remain in memory. 

- A[ ] Process.doubleBox imply (openBox==1 and box==2):    SATISFIED 

If the choice is both bolts and nuts, then if the box is that one bipartitioned 

and it is open then we reach the state doubleBox. 

- A[ ] (Process.laststep and choice==0) imply (counterBolts==numberBolts):    

SATISFIED 

if we are in the state laststep and the choice was bolts, then the 

counterBolts (that is a counter used to count how many pieces are inserted 

in the box) should be equal to the desired number of bolts selected before 

by the user (numberBolts).  

The same we have in the case in which the choice is nuts, then the number 

of nuts selected by the user should be equal to the counterNuts that count 

how many nuts are inserted in the box: 

A[ ] (Process.laststep and choice==1) imply (counterNuts==numberNuts):    

SATISFIED 

- A[ ] (Process.laststep and choice==2) imply (counterNuts==numberNuts 

and counterBolts==numberBolts and numberBolts==numberNuts):    

SATISFIED 

if the choice was of both nuts and bolts, once we arrive in the state laststep 

the number of nuts desired by the user should be equal to the counterNuts, 
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the same for the desired number of bolts should be equal to the pieces of 

bolts inside the box (counterBolts); also we can demonstrate that as the 

number of bolts selected from the user is the same of the number of nuts, 

then in the box at the end we will have the same number of pieces of bolts 

and nuts. 

- A[ ] Process.singleBox0 imply (numberBolts>=3 and numberBolts<=30):    

SATISFIED 

in the node singleBox0 the number of bolts selected by the user can be 

between 3 and 30; another way to express the same property is: 

A[ ] Process.singleBox0 imply (!(numberBolts<3) and !(numberBolts>30)) 

- A[ ] Process.singleBox1 imply (!(numberNuts<3) and !(numberNuts>60)):    

SATISFIED 

the number of nuts instead would be between 3 and 60, we can have more 

pieces then bolts because the nuts have a smaller dimension and then in 

the box there can be more pieces of nuts. 

- A[ ] Process.doubleBox imply (!(numberNuts<3) and !(numberNuts>20) 

and !(numberBolts<3) and !(numberBolts>20)):    SATISFIED 

if we are in the state doubleBox then the both the number of bolts and the 

number of nuts are between 3 and 20. 

- A[ ]Process.doubleBox imply (choice==2 and numberBolts==numberNuts) 

SATISFIED 

when we reach the node doubleBox it means that the user selection was 

of both nuts and bolts and then the number of bolts should be equal to the 

number of nuts. 

- A[ ] (Process.refillBolts or Process.refillBolts2) imply rechargeB==true:    

SATISFIED 

when we reach the node refillBolts or refillBolts2 it means that the pieces 

of bolts in the smaller conveyor for bolts are finished, then we need to 

recharge the conveyor with new pieces, once there are again some pieces 

then the process continues. 

- A[ ] (Process.refillNuts or Process.refillNuts2) imply rechargeN==true:    

SATISFIED 
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the same as the previous property, once there are no more nuts then we 

reach the node refillNuts or refillNuts2 and we need to refill the conveyor 

for nuts with new pieces of nuts. 

- A[ ] Process.boxclosed imply close==true:    SATISFIED 

if we are in the state boxclosed then it means that the box has already 

been closed. 

- A[ ] Process.end imply push==true:    SATISFIED 

when we are in the node end it means that a new box has been fill with 

bolts or nuts or both, and then is pushed in order to be separated from the 

discarded boxes. 

 
Our model will always get to a state where the box is discarded or contains bolts 

and nuts, so the system never stops, because once the box is discarded the 

process “restart” and the model already have the choice of the user of bolts or 

nuts or both in the memory. 

We can get stuck when we remain in the loops that recharge the conveyors of 

nuts and bolts (from node singleBox0 to node refillBolts, or from node singleBox1 

to node refillNuts, or from node doubleBox to node refillNuts2, or from node 

hasNuts to node refillBolts2), because if no one recharges the conveyors with 

new pieces then the machine stops until it has new pieces to fill the boxes. Also 

in this case, we can say that our model is robust, because if there are no more 

pieces we want that the system stops until there are more pieces, because if the 

machine go on anyway when there no more pieces, at the end in the box there 

will not be the correct number of nuts or bolts. 

We get stuck also in the loop where we control if there is the key to turn on the 

machine or not, but the system is anyway robust because we do not want the 

system to start working until there is no key turned on. 

Then we can conclude that by verifying the previous properties we are able to 

say that our system is robust, because either when it receives correct inputs 

(given a choice there is the correct box opened) the machine works correctly, and 

also when it receives erroneous inputs (such as a closed box or given a user 

choice there is not the box of the corrected type: with no partition or bipartitioned), 

the machine does not stop working but simplicity discard the box and restart the 



56 
 

process keeping in memory the user’s choice. We get stuck in our model, only in 

the case that the pieces are finished and no one recharge the machine, but we 

can assume that if there are no more pieces it is correct that the process stops 

and restart when new pieces are inserted by another machine; we can conclude 

that our system works always correctly and so it is a robust system. 
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Conclusions 
 
Programmable Logic Controllers are increasingly used in Industrial Control 

Systems in order to automate the processes. As they are user interactive and 

input dependent, they are subject to cyber security attacks. Therefore, we want 

to obtain a system that is always reliable, and so we need to create a robust 

system. 

Our approach starts from a PLC program written in the SCL code applying some 

transformation rules we wanted to get an automaton. We did it by transforming 

the SCL code into a Domain Specific Language with Xtext, we create the .xta file 

with the help of Acceleo in Eclipse, the .xta file automatically creates the Timed 

Automata. Finally, we check the robustness of our system by using UPPAAL, 

where we check if some properties were satisfied or not, over our automaton. 

The main limitation of this approach is the fact that model checking suffers the 

state explosion problem. For industrial software which is simple enough to be 

represented by a limited number of states, then this approach might be useful; 

whereas with complex system, we have to either use other techniques or to 

provide huge amount of computational power. In our case, we have solved the 

problem by representing false properties with the initial whole timed automata, 

and the true properties have been checked by using two smaller automata that 

are submodels of our main system. 

We have chosen the bolts and nuts example because it is user interactive and 

input dependent, and so we wanted to prove the robustness of this model either 

with correct inputs but also with unexpected inputs; we have seen that also with 

unacceptable inputs our model does not stop working; we were able to guarantee 

that anyway the behaviour of the PLC program is not inconsistent and so we can 

conclude that our system is robust. 

Future work is focused towards applying our approach to more complex 

examples, also more user interactive examples; overcoming the state explosion 

problem by using other techniques or dividing a complex big timed automata in 

smaller automatons and synchronized them. 



58 
 

References 
 
1. Wen Chinn Yew, "PLC Device Security - Tailoring needs", SANS Institute 

Information Security Reading Room, February 15, 2017. 

2. R. Johnson, “Survey of scada security challenges and potential attack vectors”, 

in Proceedings of International Conference for Internet Technology and Secured 

Transactions (ICITST), IEEE, London, UK, Nov. 2010. 

3. H. Wardak, S. Zhioua and A. Almulhem, “PLC access control: a security 

analysis”, 2016 World Congress on Industrial Control Systems Security 

(WCICSS), London, 2016, pp. 1-6. doi: 10.1109/WCICSS.2016.7882935. 

4. Yong Wang, Jinyong Liu, Can Yang, Lin Zhou, Shuangfei Li, Zhaoyan Xu, 

“Access Control Attacks on PLC Vulnerabilities”, Journal of Computer and 

Communications, 6, 311 - 325, 2018. 

5. Z. Basnight, J. Butts, J. L. Jr., and T. Dube, “Firmware modification attacks on 

programmable logic controllers”, International Journal of Critical Infrastructure 

Protection, vol. 6, no. 2, pp. 76 - 84, 2013. 

6. L. Garcia and S. A. Zonouz, “Hey, My Malware Knows Physics! Attacking PLCs 

with Physical Model Aware Rootkit”, in Proceedings of the 2017 Network and 

Distributed System Security Symposium (NDSS '17), 2017. 

7. A. Abbasi and M. Hashemi, “Ghost in the PLC: Designing an Undetectable 

Programmable Logic Controller Rootkit via Pin Control Attack”, in Black Hat 

Europe '16, November 2016, pp. 1 - 35. 

8. L. Cojocar, K. Razavi, and H. Bos, “Off-the-Shelf Embedded Devices as 

Platforms for Security Research”, in Proceedings of the 10th European Workshop 

on Systems Security (EuroSec'17), April 2017, pp. 1:1 - 1:6. 

9. Shengqi Yang, Liang Chih Cheng, Mooi Choo Chuah, “Detecting Payload 

Attacks on Programmable Logic Controllers (PLCs)”, IEEE Conference on 

Communications and Network Security (CNS), pp. 1-9, 2018. 

DOI:10.1109/cns.2018.8433146. 

10. J. O. Malchow, D. Marzin, J. Klick, R. Kovacs, and V. Roth, “PLC Guard: A 

Practical Defense against Attacks on Cyber-Physical Systems”, in 2015 IEEE 

Conference on Communications and Network Security (CNS), September 2015, 

pp. 326 - 334. 



59 
 

11. H. Janicke, A. Nicholson, S.Webber, and A. Cau, “Runtime-Monitoring for 

Industrial Control Systems”, Electronics, vol. 4, no. 4, pp. 995 - 1017, December 

2015. 

12. S. E. McLaughlin, S. A. Zonouz, D. J. Pohly, and P. D. McDaniel, “A Trusted 

Safety Verifier for Process Controller Code”, in Proceedings of the 2014 Network 

and Distributed System Security Symposium (NDSS '14), 2014. 

13. S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting Industrial Control 

Malware Using Automated PLC Code Analytics”, IEEE Security Privacy, vol. 12, 

no. 6, pp. 40 - 47, November 2014. 

14. Jean-Claude Fernandez, Laurent Mounier, and Cyril Pachon, “A model-based 

approach for robustness testing”. 

15. Gerd Behrmann, Alexandre David, and Kim G Larsen, “A tutorial on uppaal”, 

In Formal methods for the design of real-time systems, pp. 200 - 236. Springer, 

2004. 

16. Doaa Soliman, Kleanthis Thramboulidis, Georg Frey, “Transformation of 

Function Block Diagrams to UPPAAL timed automata”, Annual Reviews in 

Control 36 (2012), 338 - 345. 

17. K. Thramboulidis, D. Soliman, G. Frey, “Towards an automated verification 

process for industrial safety applications”. In IEEE 7th International conference 

on Automation Science and Engineering (IEEE CASE 2011). August 24 - 27, 

Trieste, Italy. 

18. G. Canet, S. Couffin, J. -. Lesage, A. Petit and P. Schnoebelen, “Towards the 

automatic verification of PLC programs written in Instruction List”, Smc 2000 

conference proceedings. 2000 ieee international conference on systems, man 

and cybernetics. 'cybernetics evolving to systems, humans, organizations, and 

their complex interactions' (cat. no.0, Nashville, TN, 2000, pp. 2449 - 2454 vol.4. 

doi: 10.1109/ICSMC.2000.884359). 

19. O. Rossi, O. de Smet, S. Lampérière-Couffin, J.-J. Lesage, H. Papini, and H. 

Guennec. “Formal verification: a tool to improve the safety of control systems”. In 

4th Symposium on Fault Detection, Supervision and Safety for Technical 

Processes (IFAC Safeprocess 2000), Budapest, Hungary, 2000. to appear. 



60 
 

20. Siemens, “SIMATIC Programming with STEP7”, - Manual, 2010, 

A5E02789666-01. 

21. Siemens, “SIMATIC Structured Control Language (SCL) for S7-300/S7-400 

Programming Manual”, 6ES7811-1CA02-8BA0. 

22. G. Behrmann, A. David, K. G. Larsen, “A Tutorial on Uppaal”, Aalborg 

University, 2004. 

23. 61131-3. “Programmable controllers - Part 3: Programming languages. 

Norma Internacional, IEC (International Electrotechnical Comission)”, Reference 

number IEC 61131-3:2003(E), 2003. 

24. P. Ferrara, A. Cortesi, F. Spoto, “From CIL to Java bytecode: Semantics-

based translation for static analysis leveraging”. Science of Computer 

Programming. 102392. 10.1016/j.scico.2020.102392, 2020. 

25. Riccardo Gaboardi, “Progetto maturità 2018 elettrotecnica, linea 

automatizzata per l’inscatolamento gestita dal PLC”, available: 

https://www.youtube.com/watch?v=T-svOlnpYuU  

26. “List of model checking tools ”, available:  

https://en.wikipedia.org/wiki/List_of_model_checking_tools  

27. “UPPAAL”, available: http://www.uppaal.org/  

28. Kally Anton, “Siemens Intro to Structure Control Language (SCL) in TIA Portal 

with S7-1200/1500”, SCL - Professional Control Corporation, 2019, available: 

https://www.pccweb.com/wp-content/uploads/2019/11/S17-SCL.pdf  

29. Siemens, “Simatic SCL Totally Integrated Automation (TIA) Portal”, 2013, 

available: 

https://s4458523b90cc6aef.jimcontent.com/download/version/1491242329/mod

ule/6897624456/name/SCL_TIA_PORTAL_%201500.pdf  

30. D. Darvas, B. Fernández Adiego, E. Blanco Viñuela, “PLCverif: a tool to verify 

PLC programs based on model checking techniques”, CERN, Geneva, 

Switzerland. 

 

https://www.youtube.com/watch?v=T-svOlnpYuU
https://en.wikipedia.org/wiki/List_of_model_checking_tools
http://www.uppaal.org/
https://www.pccweb.com/wp-content/uploads/2019/11/S17-SCL.pdf
https://s4458523b90cc6aef.jimcontent.com/download/version/1491242329/module/6897624456/name/SCL_TIA_PORTAL_%201500.pdf
https://s4458523b90cc6aef.jimcontent.com/download/version/1491242329/module/6897624456/name/SCL_TIA_PORTAL_%201500.pdf

