

Master’s Degree

in Computer Science
Software Dependability and Cyber

Security

Final Thesis

Computational analysis

of NaV1.7 protein
variants and tool for 3D
visualization of protein

structures

Supervisor

Ch. Prof. Marta Simeoni

Graduand

Nikita Baldan
Matricolation number

857172

Academic Year

2019 / 2020

Contents

1 Introduction 5

2 Biological background 8

2.1 Proteins . 8

2.2 Protein synthesis . 15

2.2.1 Transcription . 15

2.2.2 Translation . 15

2.2.3 Non-covalent bonds . 17

2.2.4 Mutations . 17

2.3 PDB database and format . 19

2.4 Neuropathies . 19

2.5 Protein NaV1.7 . 21

3 Computational methods and tools 22

3.1 Protein structure determination 22

3.1.1 Homology modelling . 23

3.2 Residue Interaction Network . 24

3.3 Graph comparison through Graph Kernels 28

3.3.1 Graphs . 28

3.3.2 Kernel functions . 30

3.3.3 Kernel trick . 30

3.3.4 Support Vector Machines 31

2

3 Contents

3.4 Graph Kernels . 33

3.5 Computing Graph Kernel . 43

4 Case study: description and results 45

4.1 Description of the case study . 45

4.2 Results . 49

4.2.1 Vertex histogram . 49

4.2.2 Edge histogram . 51

4.2.3 Random walk . 53

4.2.4 Shortest path . 53

4.2.5 Graphlet-sampling . 55

4.2.6 Weisfeiler-Lehman . 57

4.2.7 SVM . 60

4.3 Conclusion . 61

5 SphereMole 63

5.1 Technological choices . 63

5.1.1 Unity scene structure . 65

5.2 Functional description of the application 66

5.3 Requirements . 68

5.3.1 Functional requirements 69

5.3.2 Non-functional requirements 72

5.3.3 Device requirements . 73

5.4 User interface . 73

5.5 Tests . 78

5.5.1 Comparison with Chimera 78

5.5.2 Rendering time tests . 79

6 Conclusion and future work 83

Abstract

This thesis is composed of two parts. The first part explores the pos-

sibility to use Graph Kernels to discriminate pathogenic versus non-

pathogenic variants of a specific protein. All variants are represented as

Residue Interaction Networks (RIN), where nodes are amino acids and

edges represent non-covalent bonds between atoms of the two involved

amino acids. This part is guided by a previous Master degree thesis that

considered protein NaV1.7, which is responsible for the transmission of

the pain signal from the peripheral nervous system to the brain. The

thesis considered 85 genetic variants of the human NaV1.7, among which

30 are known to cause neuropathic diseases and 55 are instead neutral.

The results of the first part highlight that some Graph Kernels are ac-

tually able to discriminate between pathogenic and neutral variants.

This prompted the idea of realizing a 3D viewer able to show the three-

dimensional structure of a protein and also its non-covalent bonds. The

second part of the thesis describes SphereMole, an application for the

visualization of the three-dimensional structure of a protein. In partic-

ular, SphereMole allows the visualization of two proteins structures and

their visual comparison, also based on their non-covalent bonds.

4

Chapter 1

Introduction

This thesis has been inspired by a previous Master thesis [5] whose aim was to

set up a computational pipeline to verify whether there is a relationship between

neuropathic painful diseases and genetic mutations in sodium channel proteins.

In the human body, peripheral nerve cells connect the brain to the rest of the

body, allowing it to decode signals coming from outside. The signal management

is essential for health because physico-chemical signals are converted into a

potential action that propagates along the axons to the brain. Neuropathies

are a category of disease which afflicts millions of people. Their mechanism is

still not clear; approximately the 40% of patients could not relive their pain

with currently available drugs. All these disorders share the same propagation

channel for the stimulus, NaV1.7, a sodium ion channel protein, that can be

afflicted by gain-of-function mutations along its primary sequence, that is, point

mutations causing the protein to modify its functionality with deleterious effects.

Those mutations have been directly connected to the onset of pain disorders

such as IEN (Inherited Erythromelalgia), PEPD (Paroxysmal Extreme Pain

Disorder) and SFN (Small Fibre Neuropathy). All these neurophaties share an

incorrect way to recognise and feel the pain signals coming from the outside.

The computational pipeline adopted in [5] included a graph-based represen-

tation of proteins and machine learning techniques to be able to discern between

5

6

pain mutations and neutral variants not related to neuropathies. In particular,

Residue Interaction Networks (RINs) were used to represent proteins as graphs

where nodes identify amino acids and edges represent non-covalent bonds be-

tween atoms of the two involved amino acids. Moreover, a pair of Graph Kernels

methods were used to compare RINs in order to find a feature that could dis-

cern pathological mutations from neutral ones. The Weisfeiler-Lehman Graph

Kernel turned out to be a promising means to discriminate between pain and

non-pain mutations.

Starting from that achievement, the first part of this thesis is devoted to

explore whether other Graph Kernel methods could be useful for the same case

of study and same goal. The input data are 85 mutations represented as RINs

whose nodes (i.e. amino acids) are labelled with their position in the amino

acid sequence. Among the 85 mutations, 30 are known to be related with neu-

ropathies and 55 are instead neutral variants. Beside Weisfeiler-Lehman, the

following kernel methods have been employed on the same input data: Ver-

tex histogram, Edge histogram, Random walk, Shortest path and Graphlet-

sampling. Among these, we show that three methods produce good results,

which are Vertex histogram, Shortest path and Weisfeiler-Lehman Graph Ker-

nels. The ability of these kernels to discern between mutations pain related

and neutral genetic variants and, more in general, the importance of the non-

covalent bonds for the three-dimensional protein shape, prompted the idea to

visualize the three-dimensional structure of a protein together with its non-

covalent bonds.

The second part of the thesis describes SphereMole, a standalone application

for the visualization of the three-dimensional structure of proteins that runs on

the main operating systems such as MacOS, Windows and Linux. SphereMole

gives the possibility to visualize the three-dimensional structure of a single pro-

tein or two proteins in a split-view, at the atomic level, allowing the user to vi-

sualize the single non-covalent bond by just selecting it in a set of toggles. The

split-view visualization also allows for evidentiating their non-covalent bonds

and to visually compare the two given proteins and highlights their differences.

7

The thesis is organized as follows: Chapter 2 introduces the biological back-

ground on proteins and protein representation. Chapter 3 illustrates all the

computational methods and tools employed in the first part of the thesis, such

as RINs and Graph Kernels. Chapter 4 describes the original case study in [5]

and the results of the application of the Graph Kernel methods to the same input

data. Chapter 5 describes SphereMole, the stand-alone application developed

for the visualization of the three-dimensional structure of proteins. Chapter 6

draws some conclusions and illustrates some possible future developments.

Chapter 2

Biological background

This chapter presents a general overview regarding the biological part that this

thesis includes. All the biological references are taken from [4] [8] [S1] [S3].

2.1 Proteins

Although different from each other, proteins are polymers built from the same

group of 20 amino acids. Polymers of amino acids are called polypeptides. A

protein is made up of one or more polypeptides, whose folds or wraps determine

a specific three-dimensional structure. Amino acids are organic molecules con-

taining both carboxylic and amino groups. Figure 1 shows the general formula

of an amino acid; at the center of the molecule there is an asymmetrical carbon

atom called alpha (α) carbon linked to four different groups: an amino group, a

carboxylic group, a hydrogen atom and a variable group indicated by the letter

R.

8

9 2.1. Proteins

Figure 1: Amino acid structure

Group R, also called side chain, differs from one amino acid to another. Fig-

ure 2 shows the formulas of the 20 amino acids used by cells to build thousands

of different protein molecules.

Figure 2: Amino acids that form a protein

10 2.1. Proteins

The group R can be a simple hydrogen atom, as in the amino acid Glycine

(the only one without asymmetric carbon atoms because two of the groups

linked to the carbon atom a are hydrogen atoms), or it can be constituted by a

chain containing different functional groups, as in the case of Glutamine.

The different physical and chemical proprieties of the side chain determine the

peculiar characteristics of a particular amino acid and influence its functional

role in a polypeptide molecule.

The specific activities of proteins are the result of their complex three-dimensional

architectures, the simplest level of which is given by the amino acid sequence.

Once determined, what information does the amino acid sequence of a protein

provide regarding the three-dimensional structure (often referred to simply as

“structure”) and the its function?

It is the particular amino acid sequence of each protein that determines its

three-dimensional structure. When a cell synthesizes a polypeptide chain, this

generally assumes the biologically active structure of the protein. This folding

process is determined and made more efficient by the formation of a variety of

bonds between different parts of the not yet folded polypeptide chain which, in

turn, depend on the amino acid sequence.

The specific conformation of a protein determines its mode of action. Almost al-

ways the function of a protein depends on its ability to recognize other molecules

to which it can bind. A particularly indicative example of association between

form and function, which shows the exact complementarity of form between

an antibody (a protein of the organism) and the particular foreign substance

present on a particle of the flu virus to which the antibody binds, signaling the

virus for destruction.

For a complete understanding of the function of a protein, information on its

structure is often needed. Despite the remarkable diversity, all proteins share

three levels of structure: primary, secondary and tertiary. A fourth structural

level, the quaternary structure, appears when the protein is made up of several

polypeptide chains.

11 2.1. Proteins

• Primary structure: the primary structure of a protein is its specific amino

acid sequence. The primary structure is analogous to the arrangement of

the letters of a very long word. The number of random combinations of

the 20 amino acids to form a polypeptide chain of 127 amino acids corre-

sponds to 20127. However, the precise primary structure of a protein is not

determined by the random binding of amino acids but by hereditary ge-

netic information, since the proteins are based on the RNA, consequently

the RNA is based on the DNA, so if there is a mutation on the DNA, it

could afflict the protein function.

Figure 3: Proteins primary structure

• Secondary structure: many proteins have segments of polypeptide chain

wound or folded in a repetitive way to form structures that contribute to

the overall shape of the protein. These configurations, called as a whole

secondary structure, are the result of the presence of hydrogen bonds at

regular intervals along the skeleton of the polypeptide chain (not of the

side chains of amino acids). Taken individually, these hydrogen bonds are

weak; however, since they are repeated many times in a relatively large

region of the polypeptide chain, they can stabilize the particular structure

of that part of the protein.

One of these secondary structures is the α-helix, a delicate helical structure

stabilized by hydrogen bonds present at intervals of three peptide bonds.

12 2.1. Proteins

The other main type of secondary structure is the folded β-sheet.

• Tertiary structure: beyond the secondary structure of a protein is the

tertiary structure. While the secondary structure implies interactions be-

tween the components of the peptide skeleton, the tertiary structure is the

overall shape resulting from the interactions between the side chains (R

groups) of the various amino acids, a type of interaction that contributes

to the increase of the stability of the tertiary structure is represented by

the so called hydrophobic interactions. When a polypeptide becomes func-

tional natively, amino acids with hydrophobe side chains (apolar) usually

associate in the inner nucleus of the protein, away from contact with water.

The so-called idrophobic interaction is caused by the action of the water

molecules which exclude the substances and the apolar groups when they

fold into it, they bind to each other and with the hydrophilic portions of

the protein, through hydrogen bonds. When the non-polar side chains of

amino acids come into close mutual contact, van der Waals forces help to

keep them close. The tertiary structure is also stabilized by the hydrogen

bonds that form between polar side chains, and by the ionic bonds between

side chains with positive and negative electric charge. In all these cases

these are weak interactions, however the overall effect of the stabilizes the

peculiar three-dimensional structure of a protein. The shape of a protein

can be further stabilized by the presence of strong covalent bonds called

disulfide bridges.

Other possible non-covalent bonds are the π-cation and π-π stacking inter-

actions. Those bonds can be described as strong non-covalent interactions

based on of aromatic rings. An aromatic ring is a property of cyclic (ring-

shaped), planar (flat) structures of atoms with a ring of resonance bonds

that gives increased stability.

13 2.1. Proteins

Figure 4: Non-covalent bond representation

• Quaternary structure: Certain proteins are made up of two or more

polypeptide chains aggregated into a functional macromolecule. The qua-

ternary structure is the protein as a whole resulting from the aggregation

of these polypeptide subunits. Each subunit contains a non-peptide com-

ponent, called heme, in which there is an iron atom which represents the

binding site for oxygen.

14 2.1. Proteins

Figure 5: Protein structure

15 2.2. Protein synthesis

2.2 Protein synthesis

The protein synthesis is the process by which a nucleotide sequence is converted

into the sequence of amino acids forming a protein. In the protein synthesis

take active part the m-RNA, t-RNA and r-RNA.

The m-RNA copies the information contained in the DNA and transports it

from the nucleus to the cytoplasm (this stage is called transcription); t-RNA

and r-RNA translate the message written on the m-RNA into a sequence of

amino acids (this stage is called translation). During protein synthesis therefore,

genetic information passes from DNA to RNA and from RNA to proteins.

2.2.1 Transcription

Transcription is the stage of protein synthesis in which information is trans-

ferred from DNA to RNA, according to the rules of pairing complementary

bases. Nitrogen bases need to protrude from the DNA double helix. Therefore

the stretch of DNA to be transcribed is opened at a specific point, characterized

by the “start reading” AUG triplet. An enzyme, RNA-polymerase, binds to one

of the two DNA strands that serves as a “template”, and proceeds from end 3

’to end 5’ by binding the complementary ribonucleotides present in the nucleus.

In this way, m-RNA is formed.

When the RNA polymerase reaches the “end of reading” triplet, the m-RNA

separates from the DNA chain, passes through the pores of the nuclear mem-

brane and enters the cytoplasm, where it binds to the ribosomes. The “model”

DNA rewinds to form the double helix, or binds to a new RNA-polymerase

molecule to synthesize a new strand of m-RNA.

2.2.2 Translation

Translation is the stage of protein synthesis in which the instructions carried by

the m-RNA are translated into the correct sequence of amino acids to form a

protein.

16 2.2. Protein synthesis

The translation (Figure 6) takes place in the ribosome (formed by r-RNA and

proteins), composed of two subunits: the small one contains a binding site for

the m-RNA; the large one has two binding sites for two t-RNA molecules and

a site that catalyzes the formation of the peptide bond between two adjacent

amino acids.

Figure 6: Translation phase

Each t-RNA molecule is specific for a single amino acid and is able to rec-

ognize both the amino acid that it has to carry, and the complementary codon

of m-RNA associated with the ribosome.

Translation begins when two codons of the m-RNA strand bind to the small

subunit of a ribosome. The first codon is the AUG “start reading” triplet,

which corresponds to the amino acid methionine; the second encodes the first

true amino acid of the protein. The two t-RNAs, which respectively have the

starting anticodon and the complementary anticodon to the second codon, bind

to the large subunit and a peptide bond is formed (i.e. the link between amino

acids that forms proteins) between the two amino acids transported .

The initial t-RNA detaches from the ribosome while the dipeptide (the two

amino acids joined by the peptide bond) remains bound to the second t-RNA.

The ribosome moves over another m-RNA codon and a new t-RNA molecule

with its amino acid is placed at the empty binding site of the ribosome. A new

peptide bond is created and the tripeptide welds to the last t-RNA. The process

17 2.2. Protein synthesis

of lengthening the polypeptide chain continues in this way until all the triplets

have been translated and the “end of reading” codon is reached. The complete

protein detaches from the ribosome and specific enzymes cleave the bond with

methionine.

2.2.3 Non-covalent bonds

A non-covalent bond is a type of chemical bond that typically bond between

macromolecules. Non-covalent bonds are used to bond large molecules such as

proteins and nucleic acids, those bonds are weaker than covalent bonds, but they

are crucial for biochemical processes such as the formation of double helix and

the folding that brings to the three-dimensional structure that assumes a protein

[3]. The non-covalent bonds analyzed in this thesis are the following: Hydrogen

bond, Van der Waals interaction, Ionic bond, π − π stacking and π−cation.

The first three bonds are the most numerous and significant in forming the

three-dimensional structure of the protein.

2.2.4 Mutations

Human genome is identical between cells of the same organism but it is almost

the same between people, it contains a number of nucleotide changes. The

genetic variation represents the 0.6% of different genomes.

Figure 7: Mutations in genetic code

The DNA mutations can be classified by their effects on the DNA module.

18 2.2. Protein synthesis

They can be:

• Substitution: base is replaced by one of the other three bases

• Deletion: block of one or more DNA pairs is lost

• Insertion: block of one or more DNA pairs is added

• Inversion: 180 degrees rotation of piece of DNA

• Reciprocal translocation: parts of non homologous chromosomes change

places

• Chromosomal rearrangements: affect many genes at one time.

The triplet nature of the genetic code means that base changes within coding

sequence can have several different outcomes.

• Missense mutation: changes an amino acid to another amino acid. This

may or may not affect protein function, depending on whether the change

is “conservative” or “nonconservative”, and what the amino acid actually

does

• Nonsense mutation: changes an amino acid to a STOP codon, resulting

in premature termination of translation

• “Silent” mutation: does not change an amino acid, but in some cases can

still have a phenotypic effect, e.g., by speeding up or slowing down protein

synthesis, or by affecting splicing.

• Frameshift mutation: Deletion or insertion of a number of bases that is not

a multiple of 3. Usually introduces premature STOP codons in addition

to lots of amino acid changes.

The presence of genetic variations is responsible for differences between one per-

son and another. Those variations can have different consequences.

They can have no effects on the person afflicted by that mutation; they can

cause non-pathogenic effect as, for example, inter-individual differences (eyes

19 2.3. PDB database and format

color, hair, etc) but they can cause also pathogenic effects, as disease-causing,

disease predisposition and drug responses.

Mutations are also classified by their impact on proteins function which can

be classified by loss-of-function and gain-of-function. The distinction between

those two effect on the protein is not always clear.

Loss-of-function usually means that the protein function has been compromised,

or in other words, the protein does not perform the function that used to per-

form. Gain-of-function can be linked to an erroneous increasing of the protein

activity increase in protein activity.

2.3 PDB database and format

The term PDB refers to the Protein Data Bank (http://www.rcsb.org/pdb/).

Since 1971, the Protein Data Bank archive (PDB) has served as the single

repository of information about the 3D structures of proteins, nucleic acids,

and complex assemblies. The Worldwide PDB (wwPDB) organization manages

the PDB archive and ensures that the PDB is freely and publicly available to

the global community [S9].

Proteins in the PDB database are represented using the PDB format, a text

format where all relevant information of the three-dimensional structure of the

protein are included. In particular, a PDB file include preliminary informa-

tion about the protein, such as name, the species and tissue from which is was

obtained, authorship, revision history, journal citation, references, amino acid

sequence, stoichiometry, secondary structure locations, crystal lattice and sym-

metry group, and more importantly, the 3D coordinates of all atoms of the

protein.

2.4 Neuropathies

The Peripheral neuropathies are a heterogeneous group of disorders that affect

the peripheral nerve fibers. The basic unit of the peripheral nervous system

20 2.4. Neuropathies

is the nerve cell or neuron. Each neuron consists of a cell body and a long

extension, called axon, leading pulses between the cell body and the periphery,

where it comes into contact with the receptors, specialized structures, present in

the muscles, in the skin and internal organs. Many axons are surrounded by a

membrane, the myelin sheath, which allows electrical impulses to be transmitted

more quickly and efficiently.

Figure 8: Interaction between axon and cell

The causes of neuropathy are varied. Depending on the origin, neuropathies

can be classified as:

• Hereditary: they are caused by genetic abnormalities

• Acquired: they constitute the majority of neuropathies and are due to

diseases acquired in the course of life, metabolic factors, oxidative stress

of nervous tissue, trauma, infection and inflammation.

• Idiopathic: the cause of the neuropathy is unknown. Depending of its

manifestations, also the idiopathic neuropathy can be sensory, motor, or

mixed.

Neuropathic pain is pathological as it is characterized by an amplification pro-

cess of nociceptive messages that can occur in both the peripheral and central

nervous system.

21 2.5. Protein NaV1.7

The neuropathies that have been taken into consideration are: primary eriythrome-

lalgia (IEM), parossistic extreme pain disorder (PEPD) and small fiber neuropa-

thy (SFN).

The primary eriythromelalgia can be diagnosed to people that has as conse-

quences vasodilatation (mainly on feet), burning pain and those are triggered

by warm temperatures (from 27◦C to 32◦C degrees).

The parossistic extreme pain disorder can be diagnosed on people that have as

consequences skin redness and warmth, attacks of severe pain in various parts

of the body. Those attacks can start in the infancy.

The congenital insensitivity to pain is a rare condition in which a person cannot

feel physical pain. It is an extremely dangerous condition (childhood death risk

for unnoticed serious injuries or infections).

2.5 Protein NaV1.7

NaV1.7 is a voltage-gated sodium channel protein, present in both eukaryotes

and prokaryotes, its role is the transmission of pain from the periphery to the

brain.

NaV1.7 is present at the endings of pain-sensing nerves, the nociceptors, close

to the region where the impulse is initiated. Stimulation of the nociceptor nerve

endings produces “generator potentials”, which are small changes in the voltage

across the neuronal membranes.

It is usually expressed at high levels in two types of neurons: the nocicep-

tive (pain) neurons at dorsal root ganglion (DRG) and trigeminal ganglion and

sympathetic ganglion neurons, which are part of the autonomic (involuntary)

nervous system.

Chapter 3

Computational methods

and tools

This chapter presents some essential methods and tools used in this thesis. In

particular, it introduces Residue Interaction Networks (RINs) as a means to

represent proteins and Graph Kernels as a method to compare them.

3.1 Protein structure determination

Computational methods for protein structure determination, such as homol-

ogy modeling, are thought to determine the third structure of a protein. The

main goal of those methods is, starting from a sequence, use existing structures

to determine the candidate three-dimensional structure of the given sequence,

more complex structure. Starting from a given protein sequence, whose three-

dimensional structure is not available, the main goal of the computational meth-

ods is to use homology modelling if the given sequence is more than the 30%

similar to a known structure, otherwise to use fold recognition and AB initio.

22

23 3.1. Protein structure determination

Figure 9: Flowchart for choosing the most suitable computational method

3.1.1 Homology modelling

The main idea behind homology modelling is that, if the sequence similarity is

high, then the structural similarity is high too.

Figure 10: Sequence/structural similarity

The steps followed by this method are the following:

1. Template selection (tertiary structure known) and alignment with the tar-

get sequence (tertiary structure unknown)

24 3.2. Residue Interaction Network

2. Alignment correction

3. Backbone generation

4. Loop modelling

5. Side chain modelling

6. Model optimization

7. Model validation

8. Iteration

This method produces good models if the sequence similarity is high enough.

3.2 Residue Interaction Network

Proteins are the eventual result of the flow of genetic information within a bi-

ological system via transcription and translation. A protein folds in order to

execute varied biological functions. Protein folding results from interactions

among the constituents of a protein’s amino acid residues. It provides informa-

tion for proteins to adopt the correct 3D structure. As concluded by Anfinsen

in [2], the primary structure of the proteins contains all the information for the

folding process. Thus, understanding proteins by means of residue interactions

serves as a rational and potent approach.

The challenge remains to map these structures onto simple yet effective rep-

resentations, which are capable of characterizing the essential and functional

properties of the analyzed structures [6].

The final solution was found by using a graph as representation of the residues

interactions in a protein.

A Residue Interaction Network is a graph where nodes represent amino acids

and edges represent non-covalent interactions. Figure 11 shows some RIN exam-

25 3.2. Residue Interaction Network

ples where, in the upper part, there are some three-dimensional representations

of various proteins and below them there are their corresponding RINs.

Figure 11: RIN examples

Starting from the three-dimensional protein structure, its RIN representation

can be computed by finding all non-covalent bonds between its composing atoms.

In order to perform this task it has been used RING 2.0.

RING 2.0 is a webserver that takes in input the PDB file representing the three-

dimensional structure of a protein, and, by setting some options, such as distance

thresholds, chain, model, sequence separation, network policy, interaction type,

gives in output the corresponding RIN of the given PDB file.

Figure 12: RING input option

26 3.2. Residue Interaction Network

The non-covalent bonds taken into consideration are: Hydrogen bond, Van

der Waals interactions, Ionic bonds, π − π stacking and π−cation. The output

format provided by RING2.0 is a XML file, which describes all the nodes present

in the RIN (amino acids) and all the edges involved as non-covalent bonds. An

example of node description is the following one:

1 <node id=”n1401”>

<data key=”v Residue ”>GLU</data>

3 <data key=”v Bfactor CA”>0</data>

<data key=”v Tap”>0</data>

5 <data key=”v Degree ”>3</data>

<data key=”v Chain”>A</data>

7 <data key=”v NodeId”>A:1757 : :GLU</data>

<data key=”v Rapdf”>−68.807</data>

9 <data key=”v pdbFileName”>A81S . pdb#1757 .A</data>

<data key=”v x”>128.522</data>

11 <data key=”v y”>158.343</data>

<data key=” v Pos i t i on ”>1757</data>

13 <data key=” v z ”>141.147</data>

<data key=”v Dssp”> </data>

15 <data key=”v name”>A:1757 : :GLU</data>

</node>

An example of edge description is the following one:

<edge source=”n0” ta r g e t=”n3”>

2 <data key=” e Di s tance ”>2.856</data>

<data key=” e I n t e r a c t i o n ”>HBOND:MCMC</data>

4 <data key=” e Angle ”>28.865</data>

<data key=” e Or i en ta t i on ”>None</data>

6 <data key=” e Po s i t i v e ”>None</data>

<data key=”e Energy ”>17</data>

8 <data key=”e Atom1”>O</data>

<data key=”e Atom2”>N</data>

10 <data key=” e Cat ion ”>None</data>

<data key=”e NodeId2”>A: 1 1 7 : :ARG</data>

12 <data key=”e NodeId1”>A: 1 1 4 : :PRO</data>

27 3.2. Residue Interaction Network

<data key=”e Donor”>A: 1 1 7 : :ARG</data>

14 </edge>

The XML file given in output by RING2.0, describes the protein as a graph,

where all the nodes represent amino acids and the edges represent the non-

covalent bonds present in that given protein. Figure 13 represents a visual

representation of a RIN where in red is highlighted a π− π stacking interaction

and in blue an ionic bond.

Figure 13: RIN visualization

28 3.3. Graph comparison through Graph Kernels

3.3 Graph comparison through Graph Kernels

This section first presents some basic definitions on graphs and then the formal

theory about graph kernel methods [10] [12].

3.3.1 Graphs

An undirected graph is a pair G = (V,E) consisting of a set of vertices V and

a set of edges E ⊆ V × V which connect pairs of vertices.

A graph may have labels on its nodes and edges (most graphs derived from

chemistry are annotated by categorical labels from a finite set) so it should be

given the definition of labeled graph.

A labeled graph is a graph G = (V,E) provided with a function l : V ∪ E → Σ

that assigns, from a discrete set of labels Σ, labels to the vertices and edges of

the graph. A node-labeled graph is a graph with labels on its vertices, similarly,

a graph with labels on edges is called edge-labeled. A fully-labeled graph is a

graph with labels on both the vertices and edges.

Two nodes are said to be adjacent if there is an edge that links directly those

two nodes. Let Aij be the element in the i− th column of matrix A. Then, the

adjacency matrix A of a graph G = (V,E), such that |V | = n, can be defined

as follows

Aij =







1 if{vi, vj} ∈ E

0 otherwise

Matrix A is of dimensionality n × n. The neighborhood N (vi) of vertex vi is

the set of all vertices adjacent to vi. Hence, N (vi) of vertex vi is the set of all

vertices adjacent to vi.

A concept closely related to the neighborhood of a vertex vi is its degree degG(vi)

Given an undirected graph G = (V,E) and a vertex vi ∈ V , the degree of vi in

G is the number of edges incident to vi, and is defined as

degG(vi) = |{vj : {vi, vj} ∈ E}| = |N (vi)|

29 3.3. Graph comparison through Graph Kernels

A path in a graph G = (V,E) is a sequence of vertices v1, v2, ..., vk where vi ∈

V ∀ 1 ≤ i ≤ k + 1 and {vi, vi+1} ∈ E ∀ 1 ≤ i ≤ k. The length of the walk is

equal to the number of edges in the sequence, i. e. k in the above case. A walk

in which vi 6= vj ⇔ i 6= j is called path.

A shortest path from vertex vi to vertex vj of a graph G is a path from vi to

vj such that there exist no other path between these two vertices with smaller

length, that could be the path that uses less edges, as shown in Figure 14.

Figure 14: Example of shortest path based on path with fewer edges

Since the project is about similarity between graphs, the graph isomorphism

must be introduced.

Let G1,G2 be two graphs and f : VG1
→ VG2

a mapping such that (x, y) is an

edge of G1 iff (f(x), f(y)) is an edge of G2. Then f is an isomorphism, and G1

and G2 are said to be isomorphic.

At the moment we do not know a polynomial time algorithm for graph isomor-

phism, but we also do not know whether the problem is NP-complete or not

[10].

On the other hand, we know that subgraph isomorphism is NP-complete [10].

Subgraph isomorphism checks whether there is a subset of edges and vertices of

30 3.3. Graph comparison through Graph Kernels

G1 that is isomorphic to a subgraph G2.

3.3.2 Kernel functions

Given a set of N inputs x1, ..., xN ∈ X and a function k : X × X → R, the

N × N matrix K defined as Kij = k(xi, xj) is called the kernel matrix with

respect to the inputs x1, ..., xN .

A real N ×N matrix K satisfying

N
∑

i=1

N
∑

j=1

cicjKij ≥ 0

∀ci ∈ R is called positive semidefined.

Informally, a kernel function measures the similarity between two objects. Fur-

thermore, kernel functions can be represented as inner products between the

vector representations of these objects. Specifically, if we define a kernel k on

X ×X, then there exists a mapping φ : X → H into a Hilbert space with inner

product such that:

∀xi, xj ∈ X : k(xi, xj) = 〈φ(xi), φ(xj)〉

A Hilbert space is an inner product space (that is a vector space or function space

with an operation for combining two vectors or functions) which also possesses

the completeness property that every Cauchy sequence of points taken from the

space converges to a point in the space itself [12]. 1

3.3.3 Kernel trick

Kernel methods exploit kernel functions to work on high-dimensional spaces,

implicit feature spaces without having to compute the coordinates of the data

in that space. This is achieved by performing inner products between the images

of all pairs of data in the feature space. This operation is called kernel trick. It

1A sequence {pn} in a metric space X is called a Cauchy sequence if for every ǫ > 0 there

exists N ∈ N such that for all m,n ≥ N we have d(pm, pn) < ǫ. Assuming that X is a compact

metric space, {pn} is a Cauchy sequence in X that converges to some point.

31 3.3. Graph comparison through Graph Kernels

is extremely useful in the case the dataset is not linearly separable, but can be

easily separated by an hyperplane in a higher-dimensional space.

Formally, a kernel maps two objects x and x′ via a mapping φ into the feature

space H, measuring their similarity in H as
〈

φ(x), φ(x′)
〉

. The kernel trick is

nothing but computing the inner product in H as kernel in the input space:

k(x, x′) =
〈

φ(x), φ(x′)
〉

. These methods implicitly represent data in a feature

space and compute inner products between them in that space using a kernel

function. These inner products can be interpreted as the similarities between

the corresponding objects. Machine learning tasks such as classification and

clustering can be carried out by using only the inner products computed in that

feature space. Kernel methods are very popular and have been successfully used

in a wide variety of applications.

3.3.4 Support Vector Machines

Support-vector machines (SVMs, also support-vector networks) are supervised

learning models with associated learning algorithms that analyze data used for

classification and regression analysis. Given a set of training examples, each

marked as belonging to one or the other of two categories, an SVM training al-

gorithm builds a model that assigns new examples to one category or the other,

making it a non-probabilistic binary linear classifier[1].

A SVM model is a representation of the examples as points in space, mapped so

that the examples of the separate categories are divided by a clear gap that is

as wide as possible. New examples are then mapped into that same space and

predicted to belong to a category based on the side of the gap on which they

fall.

The SVM’s are less effective when the data have noise and overlapping points,

there is a problem in drawing a clear hyperplane without misclassifying.

One problem of SVM could be overfitting. In statistics, overfitting is the pro-

duction of an analysis that corresponds too closely or exactly to a particular

32 3.3. Graph comparison through Graph Kernels

set of data, and may therefore fail to fit additional data or predict future ob-

servations reliably. Figure 15 gives an example of an overfitted model, since the

computation of the green line is computationally very hard.

Figure 15: The green line represents an overfitted model and the black line

represents a regularized model. While the green line best follows the training

data, it is too dependent on that data and it is likely to have a higher error rate

on new unseen data, compared to the black line.

Overfitting could happen when a model that would just repeat the labels

of the samples that it has just seen would have a perfect score but would fail

to predict anything useful on yet unseen data. To avoid it, it is a common

practice when performing a (supervised) machine learning experiment to hold

out part of the available data as a test set. Figure 13 shows the cross-validation

flowchart, that represents how the method is implemented: part of the data are

hold out as test set and a supervised machine learning algorithm is performed

on the other data.

33 3.4. Graph Kernels

Figure 16: Cross-validation flowchart

The optimization problem of several kernel methods such as the Support

Vector Machines is convex, that is possible to find a solution, only if the em-

ployed function is positive semidefinite [12].

3.4 Graph Kernels

Given two graphs G and G′ from the space of graphs G, the problem of graph

comparison is to find a mapping

s : G × G → R

such that s(G,G′) quantifies the similarity (or dissimilarity) of G and G′.

A graph kernel is a kernel function that computes an inner product on graphs.

Graph kernels can be intuitively understood as functions measuring the simi-

larity of pairs of graphs. They allow kernelized learning algorithms (that are

algorithms based on kernel trick) such as SVMs to work directly on graphs,

without having to do feature extraction to transform them to fixed-length, real-

valued feature vectors.

To better explain graph kernels, let us introduce R-convolution kernels, a fam-

ily graph kernels are instances of. These kernels compare decompositions of

two discrete, structured, compound objects. Most R-convolution kernels simply

count the number of isomorphic substructures in the two compared graphs and

34 3.4. Graph Kernels

differ mainly by the type of substructures used in the deconvolution and the

algorithms used to count them efficiently.

kconvolution(x, x
′) =

∑

(xd,x)∈R

∑

(x′

d
,x′)∈R

kparts(xd, x
′
d)

Graph kernels are nothing but convolution kernels on pairs of graphs. A new

decomposition relation R results in a new graph kernel. A graph kernel makes

the whole family of kernel methods applicable to graphs. Formally, once we

define a positive semi-definite kernel k : X × X → R on a set X, there exists a

map φ : X → H into a Hilbert space H such that k(x, y) = φ(x)Tφ(y) ∀x, y ∈

X. Also, the distance between φ(x) and φ(y) can be computed as

||φ(x), φ(y)||2 = φ(x)Tφ(x) + φ(y)Tφ(y)− 2φ(x)Tφ(y)

Concluding, the main challenge in applying kernel methods to graphs is to define

appropriate positive semidefinte kernel functions on the set of input graphs

which are able to reliably assess the similarity among them [10].

Figure 14 represents an example of feature space and map defined by graph

kernels. Any kernel on a space of graphs G can be represented as an inner

product after graphs are mapped into a Hilbert space H

Figure 17: Example of graph kernels mapping

35 3.4. Graph Kernels

Some of the well-known graph kernel methods are presented below.

Vertex histogram kernel

The vertex histogram kernel is a basic linear kernel on vertex label histograms.

The kernel assumes node-labeled graphs. Let G be a collection of graphs, and

assume that each of their vertices comes from an abstract vertex space V. Given

a set of node labels Σ, l : V → Σ is a function that assigns labels to the vertices

of the graphs. Without loss of generality, assume that Σ = {1, ..., d}, the vertex

label histogram of a graph G = (V,E) is a vector f = (f1, ..., fd)
T , such that

fi = |{v ∈ V : l(v) = i}| for each i ∈ Σ. Let f, f ′ be the vertex label histograms

of two graphs G,G′, respectively. The vertex histogram kernel is then defined

as the linear kernel between f and f ′, that is

k(G,G′) = 〈f, f ′〉

The complexity of the vertex histogram kernel is linear in the number of vertices

of the graphs [10].

Edge histogram kernel

The edge histogram kernel is a basic linear kernel on edge label histograms.

The kernel assumes edge-labeled graphs. Let G be a collection of graphs, and

assume that each of their edges comes from an abstract edge space ε. Given a

set of node labels Σ, l : ε → Σ is a function that assigns labels to the edges of

the graphs. Without loss of generality, assume that Σ = {1, ..., d}. The edge

label histogram of a graph G = (V,E) is a vector f = (f1, ..., fd)
T , such that

fi = |{(v, u) ∈ E : l(v, u) = i}|∀i ∈ Σ. Let f, f ′ be the edge label histograms

of two graphs G,G′, respectively. The edge histogram kernel is then defined as

the linear kernel between f and f ′, that is

k(G,G′) = 〈f, f ′〉

The complexity of the edge histogram kernel is linear in the number of edges of

the graphs [10].

36 3.4. Graph Kernels

The two kernels defined above are indeed positive semidefinite, but they both

correspond to rather naive concepts.

Random walk

The k-step random walk kernel compares random walks up to length k in the

two graphs. The most widely-used kernel from this family is the geometric

random walk kernel which compares walks up to infinity assigning a weight λk

(λ < 1) to walks of length k in order to ensure convergence of the corresponding

geometric series. We next give the formal definition of the geometric random

walk kernel. Given two node-labeled graphs Gi = (Vi, Ei) and Gj(Vj , Ej), their

direct product GX = (VX , EX) is a graph with vertex set:

VX = {(vi, vj) : vi ∈ Vi ∧ vj ∈ Vj ∧ l(vi) = l(vj)}

and edge set:

EX = {{(vi, vj), (ui, uj)} : {vi, ui} ∈ Ei ∧ {vj , uj} ∈ Ej}

Figure 18: Example of direct product graph

Performing a random walk on GX is equivalent to performing a simultaneous

random walk on Gi and Gj . Now Gi and Gj be two graphs, let AX denote the

37 3.4. Graph Kernels

adjacency matrix of their product graph GX , and let VX denote the vertex set

of the product graph GX .

Then, the geometric random walk kernel is defined as

K∞
X (Gi, Gj) =

|VX |
∑

p,q=1

[

∞
∑

l=0

λlAl
X

]

pq
= eT (I − λAX)−1e

where I is the identity matrix, e is the all-ones vector, and λ is a positive, real-

valued weight. The geometric random walk kernel converges only if λ < 1/λX

where λX is the largest eigenvalue of AX . Direct computation of the geometric

random walk kernel requires O(n6) time. The computational complexity of the

method severely limits its applicability to real-world applications. To account

for this, Vishwanathan proposed in [12] four efficient methods to compute ran-

dom walk graph kernels which generally reduce the computational complexity

from O(n6) to O(n3)[10].

Shortest path

The high computational complexity of the graph kernels based on walks, sub-

trees and cycles renders them impractical for most real-world scenarios. Com-

puting all the paths in a graph and computing the longest paths in a graph are

both NP-hard problems. Instead, shortest paths can be computed in polyno-

mial time.

The shortest-path kernel decomposes graphs into shortest paths and compares

pairs of shortest paths according to their lengths and the labels of their end-

points. The first step of the shortest-path kernel is to transform the input

graphs into shortest-paths graphs. Given an input graph G = (V,E), the al-

gorithm creates a new graph S = (V,ES). The shortest-path graph S contains

the same set of vertices as the graph from which it originates. The edge set of

the former is a superset of that of the latter, since in the shortest-path graph S,

there exists an edge between all vertices which are connected by a walk in the

original graph G. To complete the transformation, the algorithm assigns labels

38 3.4. Graph Kernels

to all the edges of the shortest-path graph S. The label of each edge is set equal

to the shortest distance between its endpoints in the original graph G. Given

the above procedure for transforming a graph into a shortest-path graph, the

shortest-path kernel is defined as follows.

Let G,G′ be two graphs, and S = (V,E), S′ = (V ′, E′) their corresponding

shortest-path graphs. The shortest-path kernel is then defined as

k(G,G′) =
∑

e∈E

∑

e′∈E′

k
(1)
walk(e, e

′)

where k
(1)
walk(e, e

′) is a positive semidefinite kernel on edge walks of length 1.

In labeled graphs, the k
(1)
walk(e, e

′) kernel is designed to compare both the lengths

of the shortest paths corresponding to edges e and e′, and the labels of their

endpoint vertices.

Let e = {v, u} and e′ = {v′, u′}. Then k
(1)
walk(e, e

′) is usually defined as

k
(1)
walk(e, e

′) = kv(l(v), l(v
′))ke(l(e), l(e

′))kv(l(u), l(u
′))

+kv(l(v), l(u
′))ke(l(e), l(e

′))kv(l(u), l(v
′))

where kv is a kernel comparing vertex labels, and ke a kernel comparing shortest

path lengths.

In terms of runtime complexity, the shortest-path kernel can be computed in

O(n4)[10].

Figure 19 shows an example of explicit computation of the shortest path Graph

Kernel. Note that each triple is a feature and corresponds to: (label of source

vertex; label of sink vertex; shortest path length between the two vertices)

39 3.4. Graph Kernels

Figure 19: Example of explicit computation of the shortest path kernel.

Graphlet sampling

The graphlet kernel decomposes graphs into graphlets (i.e. small subgraphs with

k nodes where k ∈ {3, 4, 5}) and counts matching graphlets in the input graphs.

The kernel was originally designed to address scalability issues experienced by

earlier approaches. In fact, the graphlet kernel was one of the first kernels that

could cope with very large graphs using a simple sampling scheme. However,

apart from the scalability issue, the graphlet kernel was also motivated by the

graph reconstruction conjecture which states that any graph of size n can be

reconstructed from the set of all its subgraphs of size n− 1.

Formally, let G = {graphlet1, ..., graphletd} be the set of size−k graphlets. Let

also fG ∈ N
d be a vector such that its i − th entry is equal to the frequency

of occurrence of graphleti in G, fG,i = #(graphleti ⊑ G). Then, the graphlet

kernel is defined as follows.

Let G,G′ be two graphs of size n ≥ k, and fG, f
′
G vectors that count the occur-

rence of each graphlet of size k(not necessarily connected) in the two graphs.

Then the graphlet kernel is defined as

k(G,G′) = fT
GfG′

As is evident from the above definition, the graphlet kernel is computed by

explicit feature maps. First, the representation of each graph in the feature

space is computed. And then, the kernel value is computed as the dot product

40 3.4. Graph Kernels

of the two feature vectors. The main problem of graphlet kernel is that an

exhaustive enumeration of graphlets is very expensive.

Since there are
(

n
k

)

size− k subgraphs in a graph, computing the feature vector

k for a graph of size n requires O(nk). To account for that, Shervashidze et al.

(2009) resorted to sampling. FollowingWeissman et al. (2003), they showed that

by sampling a fixed number of graphlets the empirical distribution of graphlets

will be sufficiently close to their actual distribution in the graph. An alternative

proposed strategy that reduces the expressivity of the kernel is to enumerate

only the connected graphlets of k vertices, and not all the possible graphlets[10].

Figure 20 shows all the possible graphlets, with graphlet size equals to four, that

are computed by the Graph Kernel.

Figure 20: All graphlets of size 4

Weisfeiler-Lehman

The key idea of the Weisfeiler-Lehman algorithm is to replace the label of each

vertex with a multiset label consisting of the original label of the vertex and the

sorted set of labels of its neighbors. The resultant multiset is then compressed

into a new, short label. This relabeling procedure is then repeated for h itera-

tions. Note that this procedure is performed simultaneously on all input graphs.

Therefore, two vertices from different graphs will get identical new labels if and

only if they have identical multiset labels.

More formally, given a graph G = (V,E) endowed with a labeling function

l = l0, the Weisfeiler-Lehman graph of G at height i is a graph Gi = (V,E)

41 3.4. Graph Kernels

endowed with a labeling function li which has emerged after i iterations of the

relabeling procedure described above. The Weisfeiler-Lehman sequence up to

height h of G consists of the Weisfeiler-Lehman graphs of G at heights from 0

to h, {G0, ..., Gh}.

Formally, let k be any kernel for graphs, that we will call the base kernel. Then

the Weisfeiler-Lehman kernel with h iterations with the base kernel k between

two graphs G and G′ is defined as

kwl(G,G′) = k(G0, G
′
0) + k(Gh, G

′
h)

where h is the number of Weisfeiler-Lehman iterations, and {G0, ..., Gh} and

{G′
0, ..., G

′
h} are the WL sequences of G and G′ respectively. From the above

definition, it is clear that any graph kernel that takes into account discrete node

labels can take advantage of the Weisfeiler-Lehman framework and compare

graphs based on the whole Weisfeiler-Lehman sequence.

When the base kernel compares subtrees extracted from two graphs, the com-

putation involves counting common original and compressed labels in the two

graphs. The emerging Weisfeiler-Lehman subtree kernel is a byproduct of the

Weisfeiler-Lehman test of isomorphism.

Let G,G′ be two graphs. Define Σi ⊆ Σ as the set of letters that occur as node

labels at least once in G or G′ at the end of the i− th iteration of the WL algo-

rithm. Let Σ0 be the set of original labels of G and G′. Assume all Σi are pair-

wise disjoint. Without loss of generality, assume that every Σi = {σi1, ..., σi|Σi|}

is ordered. Define a map ci : {G,G′} x Σi → N such that ci(G, σij) is the num-

ber of the occurrences of the letter σij in the graph G. The Weisfeiler-Lehman

subtree kernel on two graphs G and G′ with h iterations is defined as

k(G,G′) = 〈φ(G), φ(G′)〉

where

φ(G) = (c0(G, σ(01), ..., ch(G, σh|Σh|)))

and where

φ(G′) = (c0(G
′, σ(01), ..., ch(G

′, σh|Σh|)))

42 3.4. Graph Kernels

It can be shown that the above definition is equivalent to comparing the number

of shared subtrees between the two input graphs.

The Weisfeiler-Lehman subtree kernel considers all subtrees up to height h,

instead of subtrees of exactly height h. Furthermore, the Weisfeiler-Lehman

subtree kernel checks whether the neighborhoods of two vertices match exactly,

while the subtree kernel considers all pairs of matching subsets of the neighbor-

hoods of two vertices.

In Figure 21, right after the algorithm, it is shown the computation of the

Weisfeiler-Lehman subtree kernel with h = 1 for two graphs. Here {1, 2, ..., 12} ∈

Σ are considered as letters. Note that compressed labels denote subtree pat-

terns: for instance, if a node has label 8, this means that there is a subtree

pattern of height 1 rooted at this node, where the root has label 2 and its neigh-

bours have labels 3 and 5 [10].

Algorithm:

1. Multiset-label determination

• Assign a multiset-label Mi(v) to each node v in G which consist of

the multiset {li−1(u)|u ∈ N (v)}

2. Sorting each multiset

• Sort elements in Mi(v) in ascending order and concatenate them into

a string si(v)

• Add li−1(v) as a prefix to si(v)

3. Label compression

• Map each string si(v) to a compressed label using hash function

f : Σ∗ → Σ such that f(si(v) = f(si(w))) iff si(v) = si(w)

4. Relabeling

• Set li(v) := f(si(v)) ∀ nodes in G

43 3.5. Computing Graph Kernel

Figure 21: Computation example of Weisfeiler-Lehman Graph Kernel

Per pair of graphs the runtime takes O(mh).

For N graphs, the Weisfeiler-Lehman subtree kernel with h iterations on all pairs

of these graphs can be computed in O(Nhm+N2hn)

3.5 Computing Graph Kernel

In order to compare RINs through Graph Kernels methods some scripts have

been realized. In particular, Python3 [S10] has been used as programming lan-

guage and the GraKel[S4], matplotlib[S5], scikit-learn[S11] libraries.

Python is a multi-paradigm programming language. Object-oriented program-

ming and structured programming are fully supported, and many of its features

44 3.5. Computing Graph Kernel

support functional programming and aspect-oriented programming. Many other

paradigms are supported via extensions, including design by contract and logic

programming. Python uses dynamic typing and a combination of reference

counting and a cycle-detecting garbage collector for memory management. It

also features dynamic name resolution (late binding), which binds method and

variable names during program execution.

Matplotlib is a comprehensive library for creating static, animated, and inter-

active visualizations in Python.

Scikit-learn is an open source machine learning library that supports supervised

and unsupervised learning. It also provides various tools for model fitting, data

preprocessing, model selection and evaluation, and many other utilities.

Chapter 4

Case study: description and

results

In this chapter we illustrate the case study that inspired the first part of the

thesis and that was developed in a previous Master Thesis [5]. We moreover

show the results of applying some graph kernel methods to the case study itself.

4.1 Description of the case study

This thesis was inspired by a previous Master thesis [5] whose aim was to built a

computational pipeline for the NaV1.7 protein, a sodium channel protein that is

responsible for the transmission of the pain signals from the pheripheral nervous

system to the brain.

In particular, the main goal of the thesis was to set up a computational pipeline

able to discern between mutations of NaV1.7 that are known to be pain related

and genetic variants that are known to be neutral. As described in Figure 22,

the pipeline is divided in four parts:

• Protein structure: it starts with models generated from a given by

Homology modelling which produces as final result the PDB file that rep-

45

46 4.1. Description of the case study

resents the three-dimensional structure of the protein variant.

• RIN generation: the PDB file is given in input to RING2.0 [6] that

computes the corresponding RIN.

• Centrality metrics calculation: some metrics on the generated RINs

are computed to see if they can be useful to discriminate pathogenic vs

non pathogenic mutations.

• Graph Kernels and Dominant Set Clustering: the last part of

the pipeline is the application of Graph Kernels methods and Dominant

Set Clustering in order to find a feature that can discriminate between

pathogenic and neutral mutations.

Regarding Graph Kernels, the Weisfeiler-Lehman Graph Kernel showed to be

able to produce good results.

Figure 22: Computational pipeline proposed by [5]

The pipeline described in Figure 22 was applied to 85 mutations of the

NaV1.7 protein: 30 mutations are known to be related with pain disorders and

47 4.1. Description of the case study

55 are neutral variants, i.e, they do not affect the functionality of the protein.

All the considered mutations are listed in Table 1 : each mutation has its own

ID and name and is either neutral or related to one of the three considered

diseases: IEM, PEPD and SFN.

A mutation name has to be read in the following way: the first letter is the

amino acid that is mutated, the number in the middle is the position of that

amino acid in the protein sequence and the last letter is the amino acid that

has replaced the first one. For example, take into consideration the mutation

I136V:

• I represents the amino acid that is mutated;

• 136 is its position in the protein sequence;

• V represents the substituting amino acid.

In Table 1, the ids 0-29 are occupied by the pathogenic mutations, while the

other ids 30-84 are relative to the neutral ones.

48 4.1. Description of the case study

ID NAME PAT ID NAME PAT ID NAME PAT

0 I136V IEM 29 M1532I SFN 58 K1412I Neutral

1 S211P IEM 30 S126A Neutral 59 K1415I Neutral

2 F216S IEM 31 L127A Neutral 60 S1419N Neutral

3 I234T IEM 32 M145L Neutral 61 V1428I Neutral

4 S241T IEM 33 N146S Neutral 62 A1505V Neutral

5 N395K IEM 34 V194I Neutral 63 S1509A Neutral

6 V400M IEM 35 L201V Neutral 64 S1509T Neutral

7 L823R IEM 36 N206D Neutral 65 Q1530D Neutral

8 I848T IEM 37 T370M Neutral 66 Q1530K Neutral

9 L858H IEM 38 E759D Neutral 67 Q1530P Neutral

10 L858F IEM 39 A766T Neutral 68 H1531Y Neutral

11 A863P IEM 40 A766V Neutral 69 M1532V Neutral

12 V872G IEM 41 I767V Neutral 70 E1534D Neutral

13 P1308L IEM 42 T773S Neutral 71 Y1537N Neutral

14 V1316A IEM 43 V795I Neutral 72 T1548S Neutral

15 F1449V IEM 44 A815S Neutral 73 H1560C Neutral

16 W1538R IEM 45 D890E Neutral 74 H1560Y Neutral

17 A1746G IEM 46 D890V Neutral 75 V1565I Neutral

18 V1298D PEPD 47 T920N Neutral 76 I1577L Neutral

19 V1298F PEPD 48 K1176R Neutral 77 D1586E Neutral

20 V1299F PEPD 49 R1207K Neutral 78 T1590K Neutral

21 G1607R PEPD 50 T1210N Neutral 79 T1590R Neutral

22 M1627K PEPD 51 I1235V Neutral 80 T1596I Neutral

23 A1632E PEPD 52 N1245S Neutral 81 V1613I Neutral

24 R185H SFN 53 L1267V Neutral 82 D1662A Neutral

25 I228M SFN 54 T1398M Neutral 83 G1674A Neutral

26 I739V SFN 55 I1399D Neutral 84 K1700A Neutral

27 G856D SFN 56 D1411N Neutral

28 M932L SFN 57 K1412E Neutral

Table 1: List of all the mutations taken into account

49 4.2. Results

The first part of this thesis is a methodological part whose goal is to explore

other kernel methods, besides Weisfeiler-Lehmannm, to see if they are able to

discriminate between mutations related to pain disorders and mutations not

involved in alteration of functionality. The results of the exploration are shown

in the next section.

4.2 Results

This section shows the results of applying some kernel methods to the 85 RINs

of the case study. The results are shown by visualizing the similarity matrices

resulting from the graph kernels application to the input data.

Each depicted similarity matrix has rows and columns labeled according with

the mutation ids 0−84 of Table 1. Accordingly, 0−29 correspond to mutations

pain-related while 30−84 are neutral variants. Each cell (i, j) in a matrix shows

the similarity value between the i-th and j-th RINs color-coded so that lighter

colors correspond to RINs with high degree of similarity (from yellow to blue).

Clearly the main diagonal shows always the lightest color, being the result of

the comparison of a graph with itself.

4.2.1 Vertex histogram

The results of the Vertex histogram Graph Kernel are in Figure 23-28. The re-

sults denote that there is a clear pattern that distinguish the RINs of pathogenic

mutations (ids from 0 to 29 in the similarity matrices), and of the neutral ones

(ids from 30 to 84 in the similarity matrices).This pattern is evident for IONIC,

HBOND and VDW bonds, while it is unclear in π − π stacking and π−cation

interactions, since those type of non-covalent bonds are less numerous and sig-

nificant. In the ALL matrix (which represents all the non-covalent bonds), the

pattern can be easily seen. In conclusion, it can be understood by the follow-

ing matrices that the vertices, that represents the amino acids positions in the

protein sequence, are fundamental to distinguish the two classes of mutations

50 4.2. Results

taken into account.

Code:

de f computeKernelVH (graphs) :

2 pr in t (”−− computing ke rne l ”)

vh ke rne l = GraphKernel (k e rne l =[{”name” : ” v e r t ex

4 histogram” }] , normal ize=True)

re turn vh ke rne l . f i t t r a n s f o rm (graphs)

Figure 23: VH on π − π stacking Figure 24: VH on π-cation

Figure 25: VH on IONIC Figure 26: VH on HBOND

51 4.2. Results

Figure 27: VH on VDW Figure 28: VH on ALL

4.2.2 Edge histogram

The results provided by the Edge histogram Graph Kernel, represented by Fig-

ure 29-34, show that edges are not a feature that allows to discern pathogenic

mutations (ids from 0 to 29 in the similarity matrices) from the neutral ones

(ids from 30 to 84 in the similarity matrices).

Only in the Hydrogen bond similarity matrix (Figure 32) we can notice that all

the pathogenic mutations (ids 0-29) turn out to be very similar and to form a

separate cluster. Moreover, since the Hydrogen bonds are the most numerous

bonds, the cluster can be noticed also in the ALL matrix. Code:

1 de f computeKernelVH (graphs) :

p r i n t (”−− computing ke rne l ”)

3 vh ke rne l = GraphKernel (k e rne l =[{”name” : ” edge

histogram” }] , normal ize=True)

5 r e turn vh ke rne l . f i t t r a n s f o rm (graphs)

52 4.2. Results

Figure 29: EH on π − π stacking Figure 30: EH on π−cation

Figure 31: EH on IONIC Figure 32: EH on HBOND

Figure 33: EH on VDW Figure 34: EH on ALL

53 4.2. Results

4.2.3 Random walk

Due to the complexity of this graph kernel it has been possible to compute the

algorithm only in the two smallest bonds, π − π stacking and π−cation.

The results given by this graph kernel gives no interesting information.

Code:

1 de f computeKernelRW(graphs) :

p r i n t (”−− computing ke rne l ”)

3 rw kerne l=GraphKernel (k e rne l =[{”name” : ”random walk” ,

” w i t h l a b e l s ” : True , ”lamda” 0 . 1 }] , normal ize=True)

5 r e turn rw kerne l . f i t t r a n s f o rm (graphs)

Figure 35: RW on π − π stacking Figure 36: RW on π−cation

4.2.4 Shortest path

As reported for the vertex histogram kernel, the separate bonds giving good

results are IONIC, HBOND, VDW while π−cation and π − π stacking do not

show any relevant pattern.

The result provided by ALL 42 is good because IONIC, HBOND and VDW

bonds are the more numerous and significant for the mutation.

54 4.2. Results

Code:

1 de f computeKernelSP (graphs) :

p r i n t (”−− computing ke rne l ”)

3 s p k e rn e l = GraphKernel (k e rne l =[{”name” :

” sho r t e s t pa th ” }] , normal ize=True)

5 r e turn sp k e rn e l . f i t t r a n s f o rm (graphs)

Figure 37: SP on π − π stacking Figure 38: SP on π−cation

Figure 39: SP on IONIC Figure 40: SP on HBOND

55 4.2. Results

Figure 41: SP on VDW Figure 42: SP on ALL

4.2.5 Graphlet-sampling

The results obtained by this kernel method show that all the mutations taken

into consideration share a similar structure. The main problem is that all the

mutation are very similar, since they derive from the same protein, the feature

taken into consideration by this kernel cannot be distinguished the pathogenic

proteins from the not pathogenic ones.

Code:

1 de f computeKernelGS (graphs) :

p r i n t (”−− computing ke rne l ”)

3 g s k e r n e l = GraphKernel (k e rne l =[{”name” :

” g raph l e t sampl ing ” , ” sampling ” :{ ” n samples ” : 4 0 0}}] ,

5 normal ize=True)

re turn g s k e r n e l . f i t t r a n s f o rm (graphs)

The size of the graphlet is set by default at 5. The parameters that can be

customized are:

• random state: a random number generator instance or an int to initialize

a RandomState as a seed.

• k: the size of the graphlets

56 4.2. Results

Figure 43: GS on π − π stacking Figure 44: GS on π−cation

Figure 45: GS on IONIC Figure 46: GS on HBOND

Figure 47: GS on VDW Figure 48: GS on ALL

57 4.2. Results

4.2.6 Weisfeiler-Lehman

This approach has been performed with two different modalities: the first with

only one iteration of the WL algorithm the second one with five iterations.

The obtained results clarify that the desired pattern is evident already in the

first iteration and is maintained in the subsequent steps.

One iteration

Computing the WL graph kernel with only one iteration gives some important

hints. In fact, in the first iteration only the vertices and their direct neighbours

are taken into consideration. Hence, the results given by this kernel say that the

vertices and their positions in the protein sequences as well as their edges are

relevant for discriminating the pathogenic mutations. Note that vertices have

already shown to be relevant and edges too in the Hydrogen bond case.

Figure 49: WL on π − π stacking Figure 50: WL on π−cation

58 4.2. Results

Figure 51: WL on IONIC Figure 52: WL on HBOND

Figure 53: WL on VDW Figure 54: WL on ALL

Five iterations

The WL graph kernel with five iterations has been computed, this means: the

depth of the vertex neighbourhood that has been analyzed is equal to five.

The results are very similar to the one given by the same algorithm with only

one iteration, the graphs seems to be less similar because iterating it five times,

it takes 5 levels of neighbors.

59 4.2. Results

Code:

de f computeKernel (graphs) :

2 pr in t (”−− computing ke rne l ”)

w l k e rn e l = GraphKernel (k e rne l=

4 [{ ”name” : ” we i s f e i l e r l e hman ” , ” n i t e r ” : 1} ,

{”name” : ” subt r e e w l ” }] , normal ize=True)

6 r e turn w l k e rn e l . f i t t r a n s f o rm (graphs)

Where n iter is the variable that defines the number of iterations.

Figure 55: WL on π − π stacking Figure 56: WL on π−cation

Figure 57: WL on IONIC Figure 58: WL on HBOND

60 4.2. Results

Figure 59: WL on VDW Figure 60: WL on ALL

4.2.7 SVM

As said in 3.3.4, support vector machines so called as SVM is a supervised

learning algorithm which can be used for classification and regression problems.

We recall that SVM is based on the idea of finding a hyperplane that best

separates the features into different domains. When applied to Graph Kernels,

their effectiveness depends upon the type of kernel, the kernel parameters and

the soft margin.

Code:

de f runSVM(K, l a b e l s) :

2 pr in t (”−− computing s c o r e s with SVM”)

mod = svm .SVC(ke rne l=’ precomputed ’)

4 s c o r e s = c r o s s v a l s c o r e (mod , K, l ab e l s , cv=10)

re turn np .mean(s c o r e s)

In the code shown above the kernel used in the algorithm is by default the rbf

(Radial basis function). This kernel is used when the boundaries are hypothe-

sized to be curve-shaped.

RBF kernel uses two main parameters, gamma (Current default is ‘auto’ which

uses 1/n features) and C (set by default at 1.0) The gamma parameter de-

fines how far the influence of a single training example reaches, with low values

61 4.3. Conclusion

meaning ‘far’ and high values meaning ‘close’.The C parameter trades off cor-

rect classification of training examples against maximization of the decision

function’s margin. Here below we present the scores of the SVM on the dataset

take into consideration.

π − π stacking π−cation IONIC HBOND VDW ALL

VH 0.7875 0.7028 0.9889 0.9639 0.9889 0.7833

EH 0.6458 0.6458 0.6458 0.6458 0.6458 0.6458

RW / 0.6458 0.6458 / / /

SP 0.8111 0.6903 0.9889 0.9889 0.9889 1

GS 0.6458 0.6458 0.6458 0.6458 0.6458 0.6458

WL1 0.7764 0.7028 0.9889 0.9778 0.9889 0.9889

WL5 0.7875 0.6917 0.9889 0.9889 0.9889 0.9889

Table 2: SVM results

As already shown in the graph kernel results, the best results are given by

VH, SP and WL (with one or five iterations). It can be finally said that those

are the best kernel methods that should be applied for this case study.

4.3 Conclusion

Thanks to Graph Kernel results, we had the idea of developing an application

for the visualization of the three-dimensional structure of a protein that allows

the user to:

• display every single non-covalent bond separately (or in couple)

• visually compare two different proteins with the possibility to show and

give in output a file that represents the differences between of the two

proteins.

62 4.3. Conclusion

The application is called SphereMole and it requires in input the pdb file, rep-

resenting the three-dimensional structure of the protein and the XML file given

in output by RING 2.0, which represents the RINs for every single non-covalent

bond of the protein itself.

Chapter 5

SphereMole

In this chapter we illustrate SphereMole, a standalone application that provides

a three-dimensional visualization of proteins, with the possibility to highlight

or visualize the non-covalent bond. We start by motivating the technological

choices and then we provide a functional description, all the application require-

ment of the application and a detailed illustration of the user interface. Finally,

some tests and their results are presented.

5.1 Technological choices

In the literature there are many applications for the visualization of the three-

dimensional structure of the proteins, see [9] for a brief survey.

However, our applications requires some features that distinguish it from all the

other proposal such as:

• possibility to highlight the amino-acids involved in the considered non-

covalent bonds;

• possibility to visualize two proteins at the same time using separate win-

dows, allowing for separate zooming, rotation commands and show the

differences between those two considered proteins.

63

64 5.1. Technological choices

The main criteria driving the technological choices for the development of

SphereMole were the following:

• Graphical rendering: we needed a good quality graphical rendering for the

three-dimensional structure of the protein

• Portability: we wanted the application to be portable with respect to the

main operating system (macOs, Windows and Linux).

• Standalone vs web application: we preferred the stand-alone option.

Under this requirements, we chose the Unity [S7] platform to develop Sphere-

Mole. In fact Unity is mainly used for videogames developing and provides an

excellent quality also for little details. Unity allows to build the application in

various mode: stand-alone, webapp, mobile apps, etc. However, to the com-

plexity of the target objects to be visualized, we expected an heavy application

from the graphical/computational viewpoint. In this respect, we thought that

the stand-alone option was a good choice.

Unity is a cross-platform graphics engine developed by Unity Technologies that

allows the development of videogames and other interactive contents, such as

architectural visualizations or 3D animations in real time.

One of its main features is that a standalone application, can be built with a

unique project, consisting of scenes, objects and C# scripts, and can run on

Windows, macOs and Linux.

On the other side, one weak point of an application developed with Unity could

be its weight, since when it is compiled to be executed as standalone app, all

the architectural part of Unity is included in the application directory. More-

over, for Unity applications it is recommended to have a device with a dedicated

GPU, because the graphical quality guaranteed by Unity could require a lot of

computational resources on the graphical side.

65 5.1. Technological choices

5.1.1 Unity scene structure

Figure 61: Unity scene example

A scene in Unity contains all the objects that take part of that specific scene.

An object, more formally a GameObject, can assume different functionalities:

• Camera: it is the object that represents the user point of view.

• Directional light: it represents the position and direction of the light that

hits the 3D object visualized.

• User Interface: those are all the interactive objects, such as buttons, tog-

gles that allow the user to interact with the application. All objects must

be included (or child) of an object (parent) called Canvas, that includes

all those objects that belong to this category. Every Canvas is equipped

with an EventSystem that allows to handle all the events that occur.

• Other scopes: A GameObject can also act as a controller, that manages

all the other objects.

Every GameObject can have a script (or more than one) that describes its

activity.

66 5.2. Functional description of the application

5.2 Functional description of the application

The following flow-chart represents the application flow, with all the possible

scenarios.

Figure 62: Application flow-chart

67 5.2. Functional description of the application

The application can visualize every kind of proteins, it requires in input only

the PDB file and the XML file given in output by RING2.0.

The application first allows for choosing between single and double visualiza-

tion. When the protein or the proteins are selected, the application checks if

the files containing the RIN adjacency and the node list exist, if not, it parses

the file XML given in output by RING2.0 [6] and computes such information

creating those two files.

The node list file named mutationName nl bondName (e.i. Y1537N nl VDW),

contains all the amino acids belonging to that mutation in that bond, identi-

fied with their names and their labels. The adjacency file, named mutation-

Name adj bondName (e.i. Y1537N adj VDW), contains all the couple of amino

acids involved in that mutation belonging to that bond.

After having parsed the XML file given in output by RING2.0 and having cre-

ated the two files containing the adjacency and the node list, the application

checks if the file containing the coordinates of the selected mutation and bond

exists. If the file exists, it proceeds to render every single atom belonging to

every single amino acid present PDB file, otherwise, the applications automati-

cally creates it. In order to compute the file containing the coordinates, named

mutationName bondName coord (e.i. G1674A IONIC coord), the application

read the amino acid id from the node list file, and it searches for the id in the

PDB file that contains all the atoms present in that given mutation, and writes

all the coordinates belonging to that amino acid.

When the coordinates file is computed the visualization can start, the applica-

tion reads the coordinates and render a sphere for every triplet (coordinate x;

coordinate y; coordinate z).

The difference between two mutations is a feature present only in the double

visualization and allows the user to visualize the differences between the two

mutations. As for the other features, it requires a computational step if the file

containing the differences does not already exist. The computational step con-

sists in finding all the differences in the adjacency files of the two proteins that

the user is visualizing. In order to find the different amino acids, the adjacency

68 5.3. Requirements

files of the two proteins are analyzed for finding the differences. For instance, if

in the first file there are the following interactions: A → B; B → C and in the

second file there is only the interaction A → B, the differences file contains node

C (because it is not present in the second file) and also node B (because the

interaction B → C is not present). After computing the differences, the result

is displayed.

5.3 Requirements

Two types of requirements are presented in this section: functional and non-

functional. By functional requirement, we mean what the system must do, or, in

the case of an application, the service that the application provides; instead by

non-functional requirement, we mean a property of the system, such as safety or

efficiency. For the representation of these requirements, we use a table scheme

to make the explanation as clear and compact as possible. All the tables that

describe the requirements follow the format of the template shown in Table 3.

ID Identifier for the requirement

Service Name Representative name for the requirement

Definition Brief definition of the requirement

Reason Why the requirement has been identified

Influences Related and influenced requirement ID

Dependence Requirement ID on which it depends

Table 3: Example of requirement table

69 5.3. Requirements

5.3.1 Functional requirements

ID SD SELECTION

Service Name Single or double representation menu

Definition Selection of the single or double representation by the user.

Reason

Since there are two possible representation of the

three-dimensional protein structure, this menu enable the

user to choose between those two representation. This selection

can change the menu structure and the representation of the

protein. If the single representation is chosen, there is only one

protein to choose and there will be only one protein represented

otherwise there is a double choice for the proteins and the two

proteins chosen will be represented one next to the other.

Influences PROTEIN SELECTION

Dependence -

Table 4: Single or double representation selection

ID PROTEIN SELECTION

Service Name Protein selection

Definition Selection of the protein (or proteins) to be visualized

Reason

The selection of the protein is done in order to visualize the

selected protein or proteins, in order to visualize the three-

dimensional representation, since the one (or more) chosen

will be visualized in their shape.

Influences
MOVEMENT, ROTATION, BOND SELECTION,

DIFFERENCES, BACK TO SELECTION

Dependence SD SELECTION

Table 5: Protein selection

70 5.3. Requirements

ID BOND SELECTION

Service Name Non-covalent bond selection

Definition Selection of the non-covalent bond to be visualized

Reason

The bond selection is performed to visualize the

selected bond on proteins. In the single visualization

it is also possible to visualize two bonds at the same time,

in order to see how they interact

Influence MOVEMENT, ROTATION, DIFFERENCES

Dependence SD SELECTION, PROTEIN SELECTION

Table 6: Non-covalent bond selection

ID BACK TO SELECTION

Service Name Back to protein selection menu

Definition Button that allows to go back to the protein selection

Reason
Clicking this button allows the user to go back to the

protein selection

Influence MOVEMENT, ROTATION, DIFFERENCES

Dependence SD SELECTION, PROTEIN SELECTION

Table 7: Return to the protein selection button

71 5.3. Requirements

ID MOVEMENT

Service Name Movement commands in protein visualization

Definition
Movement commands that allows the user to explore

the protein structure

Reason

Using the buttons WASD or the arrows of the keyboard

the user is allowed to explore the whole protein structure

and to turn the camera dragging the mouse

Influence -

Dependence
SD SELECTION, PROTEIN SELECTION,

BOND SELECTION

Table 8: Set of commands for exploring the protein

ID ROTATION

Service Name Button set that allows the rotation of the protein

Definition
Button set that allows the user to rotate the protein in order

to visualize the proteins from all possible angles

Reason

Using this functionality the user can easily compare two

given proteins rotating them in all possible ways and it gives

a complete visualization of the protein or of the selected bond.

If the double visualization is chosen, there will be two button

sets for the rotation, one for each protein

Influence -

Dependence
SD SELECTION, PROTEIN SELECTION,

BOND SELECTION

Table 9: Protein rotation functionality

72 5.3. Requirements

ID DIFFERENCES

Service Name Differences between protein

Definition
Functionality that allows to visualize the differences between

two given proteins

Reason

Using this functionality the application highlights the difference

between two proteins selected in the proteins selection phase.

It is possible to highlight the single bond differences. This

functionality is available only for the double visualization.

Influence -

Dependence
SD SELECTION, PROTEIN SELECTION,

BOND SELECTION

Table 10: Difference between two proteins

5.3.2 Non-functional requirements

ID DIR ACC

Service Name Directory access permission

Definition

The user has to give the permission to access

the application directory, that contains the

essential files.

Reason
Without this permission, the application will not

work.

Influences Correct execution of the application

Dependence -

Table 11: User permission to access the application directory.

73 5.4. User interface

5.3.3 Device requirements

The recommended requirements for running SphereMole are the following:

• An operating system such as Windows, MacOs or Linux

• At least 8 GB of RAM (16 are recommended)

• A dedicated graphic card (optional)

• A modern processor, multi-core, that allows hyper-threading.

5.4 User interface

The application starts by allowing the user to choose the protein to visualize.

This part of the application is characterized by two toggles that allows to pass

from the single to the double choice, one dropdown menu which contains all the

proteins IDs and a button that starts the visualization; if the user chooses to

visualize and analyze two proteins together, there will be two dropdown menus

that will allow to choose the two proteins to be considered.

Figure 63: Protein selection phase

74 5.4. User interface

If the single protein visualization was chosen, the application passes to the

bond selection phase in which, the user chooses the non-covalent bond that

wants to visualize and analyze. The bonds that can be visualized are the fol-

lowing: hydrogen bond, Van der Waals interactions, ionic bond, π−π stacking,

π cation, all the non-covalent bonds together (under the name of ALL) and the

full protein.

This phase is mostly the same for the single or double visualization, with the

exception that in the double visualization and there will be the two proteins

IDs visualized instead of one ID in the single visualization.

Figure 64: Bond selection phase

The next phase, after the bond selection is the visualization of the selected

bond. Each bond has an assigned color in its three-dimensional visualization.

In this phase, the user can explore the bond that is shown using the movement

commands, that has been assigned to the arrows and the WASD keyboard

buttons; the user can also move its point of view by dragging the mouse. Another

action that can be performed by the user is turning the protein with the group

of buttons that are placed at the bottom left of the screen. Those buttons allow

to rotate the protein in the direction shown by every single button.

75 5.4. User interface

Figure 65: Single bond visualization

Starting from the bond visualization, the user can choose to see how two

bonds coexist in the same protein, or how that bond is placed with respect to

all the non-covalent bonds or with respect to the entire protein. This type of

visualization can be performed by just clicking one of the other possible toggles

present in the bond visualization phase.

All the actions previously described are possible also in this type of visualization.

Figure 66: Two bonds visualization

If the user had previously chosen the double visualization, the application

will display the bond selection phase for the two selected proteins.

76 5.4. User interface

Figure 67: Bond selection in double protein visualization

Once the bond is selected, the application provides its three-dimensional

representation, for the two selected proteins. In this phase, there are two distinct

group of buttons, one for each protein, that allows to rotate the single protein

as the user wants.

Figure 68: Double protein visualization

One additional functionality with respect to the single visualization, is the

possibility to show the difference between the two proteins that the user is

analyzing. By just clicking the difference toggle, the application provides the

visualization of the difference between the two proteins, highlighting it in a

77 5.4. User interface

different color.

Figure 69 shows a comparison between the Hydrogen bonds of the two visualized

proteins. On the left, the Hydrogen bonds of the protein that are not shared

with the protein on the right are shown in yellow. Similarly, on the right, the

Hydrogen bonds that are not shared with the protein on the left are shown in

yellow.

Figure 69: Double protein visualization with differences

78 5.5. Tests

5.5 Tests

Two types of tests have been performed on SphereMole, the first is a visual com-

parison with another well known program for three-dimensional protein viewer

called UCSF Chimera [S6] while the second one are some timing tests on two

different computer configurations.

5.5.1 Comparison with Chimera

We tested if SphereMole visualizes correctly the protein three-dimensional struc-

ture by visually comparing it with Chimera, a program that provides similar

functionalities.

UCSF Chimera is a well known and widely used program for the interactive

visualization and analysis of molecular structures and related data, including

density maps, trajectories, and sequence alignments [S6].

Several proteins have been tried with both applications and all the results were

visually almost identical. As shown in Figure 70, on the right it is represented

the result with SphereMole and on the left the result with Chimera and the two

images are clearly very similar.

Figure 70: Comparison between SphereMole and Chimera: the same protein is

visualized with the two tools

79 5.5. Tests

5.5.2 Rendering time tests

The other tests performed on SphereMole measures the rendering time of protein

structure. This test has been performed for all the proteins structure of the case

of study, with the following two computer configuration:

Computer configuration 1

O.S macOS Catalina

Processor Intel Core i7 (dual-core@3,3 GHz)

RAM 16 GB DDR4

GPU Intel Iris Graphics 550, 1536 MB (integrated)

Storage 512 GB SSD

Computer configuration 2

O.S Windows 10

Processor Intel Core i7 (quad-core@3,5 GHz)

RAM 16 GB DDR4

GPU Nvidia GeForce GTX 960, 4 GB (dedicated)

Storage 256 GB SSD + 1 TB HD

Table 12: Devices configuration

The obtained results by those tests are reported below with the average time

and the standard deviation, obtained by 50 tests.

The standard deviation, identified with the letter σ, is a measure of how spread

out numbers are. It can be calculated in with the following formula:

σ =

√

√

√

√

1

N

N
∑

i=1

(xi − µ)2

where N represents the number of samples, xi is the value of the sample and µ

represents the mean value.

80 5.5. Tests

Results configuration 1

Single visualization

BOND Mean (ms) Standard deviation (ms)

HBOND 1086 157

VDW 1016 166

IONIC 615 47

π − π stack 312 33

π−cation 279 31

ALL 1330 175

Full protein 1515 168

Double visualization

BOND Mean (ms) Standard deviation (ms)

HBOND 3418 178

VDW 2489 183

IONIC 720 50

π − π stack 390 29

π−cation 412 22

ALL 3476 199

Full protein 4523 153

Differences visualization

BOND Mean (ms) Standard deviation (ms)

HBOND 2627 112

VDW 2290 89

IONIC 673 45

π − π stack 276 40

π−cation 377 12

ALL 2899 88

Table 13: Rendering time results with the first configuration

81 5.5. Tests

Results configuration 2

Single visualization

BOND Mean (ms) Standard deviation (ms)

HBOND 989 112

VDW 947 137

IONIC 660 69

π − π stack 355 17

π−cation 283 36

ALL 1217 132

Full protein 1279 155

Double visualization

BOND Mean (ms) Standard deviation (ms)

HBOND 2889 182

VDW 2237 116

IONIC 733 27

π − π stack 333 15

π−cation 374 12

ALL 3122 128

Full protein 3456 89

Differences visualization

BOND Mean (ms) Standard deviation (ms)

HBOND 1745 97

VDW 1623 23

IONIC 559 37

π − π stack 222 15

π−cation 210 17

ALL 2773 91

Table 14: Rendering time results with the second configuration

82 5.5. Tests

The analyzed proteins of the case of study are very complex, and we can say

that the timing test analyzes the worst case, since the proteins have about 2000

amino acids and 30000 atoms.

In order to achieve better performances, it has been followed the guide provided

by [S8], that suggests to build scenes as light as possible, obtaining a project

that is fragmented in more subunits all linked together.

The different device configuration does not significantly influence the rendering

time, that seems to be more stable (with a smaller standard deviation) in the

second configuration.

Chapter 6

Conclusion and future work

This thesis, inspired by the pipeline built in [5], explores some Graph Kernels

in order to better define the feature that discern pathogenic mutations from

the neutral ones. The Graph Kernels have been tested over a set of 85 muta-

tion, represented as RINs, in which 30 of them were recognized to be related to

neuropathies, the other 55 to be neutral. Over this set of mutations we tested

the following Graph Kernels: Vertex histogram, Edge histogram, Shortest path,

Graphlet-sampling and Weisfeiler-Lehman. Among them, Vertex histogram,

Shortest path and Weisfeiler-Lehman Graph Kernel methods were able to dis-

tinguish pathogenic mutation from neutral ones. The ability of Graph Kernels

and, more in general, the importance of non-covalent bonds, suggested us the

idea of a visualization tool able to show the three-dimensional structure of the

protein and of its non-covalent bonds. Hence, we developed SphereMole, an

application that can highlight the nodes of the RIN (i.e. the amino acids in

non-covalent bonds) back to the three-dimensional protein structure.

SphereMole is a standalone application developed with Unity as development

platform, that runs in the main operating systems systems such as macOs, Win-

dows and Linux. The application allows the user to visualize the protein and

the following non-covalent bonds: Hydrogen bond, Van der Waals interactions,

Ionic bonds, π−π stacking, π−cation and all the previous bonds together. The

83

84

application allows also the split view, comparing two different proteins and also

to highlight the different amino acids between two visualized proteins.

Hence, the pipeline built in [5], can be now further extended with the protein

visualization and comparison with SphereMole. We conclude by delineating

some possible future developments of SphereMole. First of all, some graphical

features can be introduced to improve the user expericence. For instance, when

an user hovers an atom with the pointer, the application could show the infor-

mation about the atom.

Moreover, at the moment, the application is based on an atom view of the pro-

tein structure, but also the secondary structure view (in terms of α−helices,

β−sheets and loops) could be proposed. We belive that this kind of visualiza-

tion would greatly improve the application performance.

Finally, Unity allows for easily integrate the Virtual Reality of the visualized

object. It would be interesting, for a team of experts, to explore proteins using

the Virtual Reality.

Bibliography

[1] B.Anderson, Pattern Recognition: An introduction, ED-Tech Press,

Waltham Abbey 2019

[2] C. B. Anfinsen, Principles that govern the folding of protein chains, “Sci-

ence”, 181 ,1973, pp. 223-230.

[3] J. Berg, J. L. Tymoczko, L. Stryer, Biochemistry, W. H. Freeman, New

York 2006.

[4] N. A. Campbell, J. B. Reece, Principi di biologia, Pearson Benjmamin

Cummings, London 2010.

[5] A. Giacometti, M.Simeoni, A.Toffano, A network topology approach to the

relation between painful disorders and mutations in sodium channel pro-

teins, ECLT, Venice 2019.

[6] K. Grewal, S. Roy, Modeling Proteins as Residue Interaction Networks,

“Protein and Peptide Letters”, Number 10, 2015, pp. 923-933.

[7] Lodish H, et al., Molecular Cell Biology. 4th edition, W. H. Freeman, New

York 2000.

[8] M. Marchi, Genetic and pain, Seminar slides, Fondazione IRCCS Istituto

Neurologico “Carlo Besta”, Milan 2019.

[9] N. P. Matrignon, PDBjs, un tool per la visualizzaione 3D di proteine, Tesi

triennale in Informatica, Università Ca’ Foscari, Venezia 2020.

85

86 Bibliography

[10] G. Nikolentzos, G. Siglidis, M. Vazirgiannis, Graph Kernels: A Survey,

Cornell University, New York 2019.

[11] D. Piovesan, G. Minervini and S. C. E. Tosatto, The RING 2.0 web server

for high quality residue interaction networks, “Nucleic Acids Research”, 44,

2016, pp. 367-374.

[12] S.V.N. Vishwanathan, et al., Graph Kernels. “The Journal of Machine

Learning Research”, 11, 2010, pp. 1201–1242.

Sitography

[S1] Berkeley, University of California. Types of mutations and their impact on

protein function, 2019

http://mcb.berkeley.edu/courses/mcb142/lecture%20topics/

Dernburg/Lecture6 Chapter8 forprinting.pdf [02/07/2020]

[S2] R. Berwick, An Idiot’s guide to Support vector machines (SVMs), 2019

http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

[02/07/2020]

[S3] De Agostini, La sintesi proteica,

http://www.sapere.it/sapere/strumenti/studiafacile/biologia/La-cellula/

Il-linguaggio-della-cellula/La-sintesi-proteica.html

[02/07/2020]

[S4] G. Nikolentzos, G. Siglidis, M. Vazirgiannis, Grakel,

https://ysig.github.io/GraKeL/dev/index.html [02/07/2020]

[S5] J. Hunter, [et. al], Matplotplib,

https://matplotlib.org/ [02/07/2020]

[S6] University of California, Chimera,

https://www.cgl.ucsf.edu/chimera/ [02/07/2020]

[S7] Unity, Official Website,

https://unity.com/ [02/07/2020]

87

88 Sitography

[S8] Unity, Optimizing graphics performance,

https://docs.unity3d.com/Manual/OptimizingGraphicsPerformance.html

[02/07/2020]

[S9] wwPDB, PDB

http://www.wwpdb.org/ [02/07/2020]

[S10] G. van Rossum, Python,

https://www.python.org/ [02/07/2020]

[S11] D. Cournapeau, Scikit,

https://scikitlearn.org [02/07/2020]

[S12] D. Cournapeau, Scikit learn, Cross-validation: evaluating estimator

performance,

https://scikitlearn.org/stable/modules/cross validation.html

[02/07/2020]

	Introduction
	Biological background
	Proteins
	Protein synthesis
	Transcription
	Translation
	Non-covalent bonds
	Mutations

	PDB database and format
	Neuropathies
	Protein NaV1.7

	Computational methods and tools
	Protein structure determination
	Homology modelling

	Residue Interaction Network
	Graph comparison through Graph Kernels
	Graphs
	Kernel functions
	Kernel trick
	Support Vector Machines

	Graph Kernels
	Computing Graph Kernel

	Case study: description and results
	Description of the case study
	Results
	Vertex histogram
	Edge histogram
	Random walk
	Shortest path
	Graphlet-sampling
	Weisfeiler-Lehman
	SVM

	Conclusion

	SphereMole
	Technological choices
	Unity scene structure

	Functional description of the application
	Requirements
	Functional requirements
	Non-functional requirements
	Device requirements

	User interface
	Tests
	Comparison with Chimera
	Rendering time tests

	Conclusion and future work

