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Introduction 

 

 The purpose of this thesis is to explore possible applications of complexity to the 

field of management. In order to narrow the broad range of topics within these two areas 

of studies, it was decided to focus specifically on the phenomenon of strategic group 

emergence, which was long debated in the academic literature by the likes of M. Porter 

and R. Caves. The objective is to analyze and observe this phenomenon from the point of 

view of complexity sciences and to determine how that can be beneficial in gaining a 

deeper understanding of the subject. 

 In order to set the necessary theoretical background to accomplish the objective of 

this work, the definition of complexity needs to be discussed first. That will be done in 

the opening chapter, where a general overview about genetic algorithms will be also 

provided. In fact, different GA-based models, whose concept is strictly linked to the 

research on complex systems, are going to be employed for describing the dynamics of 

interactions between firms over the entire work and therefore need to be thoroughly 

discussed. 

After having established the theoretical framework underlying this work, the 

phenomenon of strategic group emergence will be taken into consideration. The 

academic literature on the matter will be reviewed and the related lines of research, 

linked to different theoretical backgrounds, will be pointed out. In particular, the focus 

will be on the evolutionary framework developed among others by A. Alchian and G. 

Tintner, which distinguishes itself from the neoclassical one for its struggle to take into 

account uncertainty and adaptation when describing firms’ behavior. This alternative 

line of research represents the theoretical basis which inspired J. Lee, K. Ree, and S. Rho, 

three Korean researchers from the Seoul National University and the Korea Advanced 

Institute of Science and Technology, to develop a GA-based model describing strategic 
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interactions between firms. This model shows an interesting practical application of 

genetic algorithms and complexity in a management-related topic and it represents the 

starting point of this work.  

The assumptions underlying Lee et al’s model will be tested in the third chapter. 

In order to accomplish that, the model is going to be replicated in Netlogo, a multi-agent 

programming environment. The original code, developed entirely for the purposes of this 

work, is made available in the Appendix A. Many simulations will be run in order to 

validate Lee et al’s conclusions and to further understand the phenomenon at issue. The 

successful replication of the model represents the first important theoretical result of this 

thesis. 

In the fourth and last chapter, the flexibility of Netlogo will be taken advantage of 

to imagine alternative and equally coherent scenarios describing strategic group 

emergence. The new models developed in this way allow to further explore and 

understand the phenomenon of strategic group emergence. In addition to that, they 

intrinsically show the wide range of possibilities that this tool offers in describing 

different aspects of reality, according to different needs and premises. Possible future 

directions of research will be eventually pointed out. The successful results of the 

cooperation between these two fields of study open up new possibilities of re-interpreting 

management-related topics using complexity tools 
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1. Complexity and Genetic Algorithms 

 

In the first chapter of the present work, the notion of complexity and genetic 

algorithms will be presented. The topic of strategic group emergence will be temporarily 

abandoned in this part to undertake a slightly longer journey with objective of acquiring 

a full overview about complexity. This chapter is fundamental to understand the 

theoretical framework upon which this work is based.  

 

1.1 What is Complexity? 

 

Many attempts to define the notion of complexity have been tried during the brief 

history of this discipline. However, no definition has been proven to be definitive and 

stable over time. The reason for this can probably be found in the nature of complexity 

itself, which tends to elude every struggle to be fixed in a static definition. Such an 

endeavor is not the objective of the present work. It is nonetheless worthy and necessary 

to clarify some of its main characteristics and to provide some historical background 

about the topic, with no presumption of completeness, in order to set the necessary 

theoretical background characterizing the next chapters. 

 

Complexity arises in any system in which many agents interact and adapt to one another 

and their environments. […] As individual agents interact and adapt within these systems, 

evolutionary processes and often surprising "emergent" behaviors arise at the macro level. 

Complexity science attempts to find common mechanisms that lead to complexity in nominally 

distinct physical, biological, social, and technological systems.1 

 

 
1 Santa Fe Institute, viewed 5 January 2020, <https://www.santafe.edu/about> 

https://www.santafe.edu/about
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This definition can currently be found on the website of the Santa Fe Institute, which 

represents one of the most important research centers on complexity in the world. It was 

founded by a group of twenty-four scientists and mathematicians in 1984, who 

understood how the modern challenges in each of their fields of study could not be faced 

through a static isolation of each discipline. In fact, the objective of the institute is to 

discuss the “emerging syntheses in science” and “to pursue research on a large number 

of highly complex and interactive systems which can be properly studied only in an 

interdisciplinary environment” (Mitchell 2009, p. X).  

In the above attempted definition, it is possible to distinguish many keys and 

recurring features characterizing complex systems, i.e.:  

 

● Multiplicity of agents 

● Adaptation, both as a whole system and as a single agent 

● Self-organization and emergence, meant as absence of any types of central 

control and predetermined paths of evolution 

● Non-linearity 

 

In order to better understand what these characteristics really mean in practice, let 

us take a simple and yet profound real-life example of complex systems: ant colonies 

(Mitchell 2009, p. 4). These large groups gather thousands of little insects, which are 

among the biologically simplest animals on earth. Yet, ants are able to perform extremely 

complicated tasks, considering their size and their intelligence as a species. They are, for 

example, able to build huge and stable nests and other structures, fight enemies jointly, 

and seek out food. How is that possible? 
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 Let us analyze the case of the research for food.2 Of course, no single ant has any 

clear perception about the surrounding environment nor any idea about where the food 

could be. How are ant colonies able to find food and to survive then? It is hardly possible 

to understand it, if a reductionist approach is employed, in which the actions of every ant 

are considered separately. Analyzing the system as a whole from the perspective of 

complexity is the key to reach a deeper comprehension of this phenomenon. If we try to 

model the ants’ behavior when looking out for food, it would be possible to summarize 

it through two simple rules:  

 

1. Move around randomly in the outside environment (“explore”) 

2. If food is found, release a chemical signal and bring the food back to the nest 

(“exploit and communicate”) 

 

These simple premises trigger a specific response from the system which leads to complex 

behavior. In fact, the thousands of ants start to move randomly in the outside 

environment, without having any idea about where the food could be. At this stage, two 

characteristics of the complex systems are already observable: multiplicity of agents and 

absence of central control (there is no one telling anybody where to go). When some lucky 

ant eventually finds some source of food, it spontaneously releases a chemical trace and 

takes the food back to the nest. What does this chemical accomplish? Every surrounding 

ant is naturally attracted by this signal and directed to its source (the food). The process 

is not so smooth and simple, though. In fact, at the beginning the trace may not be strong 

enough and just a few ants (or none at all) might be attracted to it. It takes a bit of time 

until a significant intensity is reached and a considerable number of ants start exploiting 

 
2 Many models have been created to simulate ant colonies behavior. For the ants’ model, see Wilensky 

(1997). 
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the food source. The effect is exponential. In fact, every ant which manages to find the 

food source will release this chemical trace as well, therefore attracting an exponentially 

higher number of ants. That is a clear expression of the non-linearity of the process. 

Because of the higher intensity of the trail itself, it will be easier for every ant in the colony 

to find the food. In this way, the source is going to be exploited until its exhaustion. The 

process is then repeated again for another food source. The ants managed to cooperate in 

a fairly efficient way in order to perpetrate the species, despite the fact that none of them 

knew exactly what was going on. 

Notice that the final outcome of this process, its timing and its dynamic cannot be 

exactly predicted in advance. It is a gradual result, which depends on many factors that 

are not entirely controllable or even recognizable (e.g. the probability of one ant to end 

up finding one food source instead of another, the density of ants in each portion of space, 

the distance of the food from the nest, etc.). This explains at best what “emergence 

means”: the outcome is generated step by step, without following any type of 

predetermined path. The colony managed to adapt to the external environment (to find 

the food and survive), both as a whole and as a single entity.  

Complexity is much about an inter- and multi-disciplinary approach. The 

fascination that comes from this way of seeing things stems from its ability to connect 

very different types of disciplines. We just used the point of view of complexity to better 

understand a biological phenomenon. However, complexity is employed to gain deeper 

insights about other extremely complicated phenomena and “wicked” problems in many 

fields of study, such as physics (e.g. kinetics), chemistry (e.g. chemical reactions) social 

sciences (e.g. segregation), finance (e.g. artificial financial markets) and many others (e.g. 



14 

 

climate change). In the present work, the benefits of the employment of complexity tools 

also in the field of management will be shown.3 

 

1.2 What are Genetic Algorithms?  

 

Many GA-based models are going to be employed in the present work as a tool 

for describing the firms’ behavior. For this reason, the concept of genetic algorithm is 

crucial and it deserves to be treated separately. What distinguishes a genetic algorithm 

from a simple algorithm? 

An algorithm is defined as “a set of mathematical instructions or rules that [...] will 

help to calculate an answer to a problem”.4 It refers to the instructions (the “recipe”) to 

follow in order to find a solution to a specific issue. The adjective genetic refers to its 

intrinsic possibility to generate increasingly better solutions to an optimization problem. 

The term “genetic algorithms” mixes two very different disciplines together: genetics and 

mathematics/computer science. This is no chance, since the inspiration for conceiving 

these types of algorithms came exactly from the studies on the DNA, the natural selection 

and, in general, the mysteries of adaptation.  

John Henry Holland, professor of computer science at the University of Michigan, 

was the first one to introduce this term. He was extremely interested in the phenomenon 

of evolution. In particular, he was trying to find an answer to the question: “How does 

evolution produce increasingly fit organisms in environments which are highly uncertain for 

individual organisms?” (Holland 1992, p.2). In fact, it is observed that living organisms in 

nature have the capability to increasingly adapt to the external environment and to 

 
3 Recently, there have already been some attempts to do it - see Allen, Maguire, McKelvey (2011) for the 

main reference book about the topic. Nonetheless, management studies were not, so far, one of the 

disciplines where complexity was employed the most. That was probably due to the difficulty to model in 

an effective manner this field of study.  
4 Cambridge Dictionary, viewed 5 January 2020,<https://dictionary.cambridge.org/dictionary/english/algorithm> 

https://dictionary.cambridge.org/dictionary/english/algorithm
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survive. This fitness with the external environment is made of virtuous behaviors and 

routines, which intrinsically assume the environment as something static and immutable. 

However, in reality, the nature of the surrounding environment is not stable at all. 

Changes can be observed over time and sometimes even in a very sudden way. The 

organisms in nature cannot predict those changes. They have to adapt quickly to the new 

conditions, which could also make their previously virtuous behaviors and routines 

detrimental. There are clearly two conflicting needs coming into play here. On the one 

hand, there is the need to fix some determined and day-to-day rules to live in the 

environment and, on the other hand, the opposite demand to be responsive to fast 

changes of the outside conditions. How is adaptation possible? Biology and genetics are 

very helpful in finding an answer to this question. In fact, in nature, the fittest organisms 

are more likely to survive and, therefore, more likely to give birth to a new generation of 

individuals. This new generation will include the genetic legacy of the parents, 

conveniently mixed through crossing over of the DNA. For this reason, a solid fitness 

with the external environment is preserved throughout the generations. That is not all. 

During this process, some random mutations can occur. This fact is very important, since 

it leaves room for improvement in case of change in the external environment. This 

explains how living organisms can respond to these two conflicting demands and how 

adaptation is possible. 

Holland was inspired by the natural selection process and realized that the same 

procedure could be fruitfully employed in the field of computer science and mathematics. 

It is not a chance that the structure of the genetic algorithms clearly retraces these 

intuitions. In fact, the complete formal structure of a genetic algorithm generally 

comprises the following phases: 

 

1. Creation of an initial population of random candidate solutions to a problem  

2. Test of the performance of each candidate solution thanks to a fitness function 
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3. Selection of the best-performing solutions to generate a new population of 

candidates through crossover 

4. Mutation of some genes in the new generation with a low random probability 

 

In other words, a genetic algorithm, as any other type of algorithm, is geared towards 

finding a solution to a determined problem. In this specific case, it is often employed to 

solve an optimization problem. In order to accomplish that, it creates random answers to 

that problem and selects the best among them to generate new solutions. The selection is 

possible thanks to a “fitness function”, which represents an indicator of the candidate 

ability to solve the problem or, more in general, to “fit” with the external environment 

(as the name suggests). The higher the value of this indicator, or fitness score, the better 

the proposed solution to the problem. The best performers, ranked according to their 

score, have the highest chance to generate new solutions. The newly-born solutions 

comprise a mix of characteristics of the “parents” and some random mutations. Thanks 

to these simple operations, the fitness score increases generation after generation, until it 

reaches optimal results. In the next paragraph, a practical example of genetic algorithm 

will be discussed. 

 

A genetic algorithm – “Robby the Robot” 

 

“Robby the Robot” represents an interesting practical example of genetic 

algorithm. It was introduced first by Melanie Mitchell and it gained popularity over time 

(Mitchell 2009, p.130)5 Robby is a robot-janitor, whose purpose is to collect the highest 

quantity of trash (in the simplified form of scattered cans) spread on the ground. The 

“ground” is simplified as a 10x10 square environment, in which Robby can freely move. 

 
5 The popularity is testified by many different versions of this model. See for example: Pattis (1981) and 

Mcleod & Nasrinpour (2018) 
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Every time Robby picks up a can, it gains 10 points. If it crashes into a wall, it loses 5 

points. Finally, if Robby decides to pick up a can in a site where there is none, it loses 1 

point. A determined number of moves are available to the robot to achieve the best score. 

After that, the game resets and new trash cans are created and thrown randomly into the 

new environment. The score also starts over from zero.  

Robby’s possible moves are: move-north, move-south, move-east, move-west, 

move-random, stay-put and collect-a-can. In deciding its next move, Robby takes into 

consideration its surrounding environment. It is able to perceive just the square it is in at 

that moment and the five adjacent ones (north, south, west and east).6 Each of these sites 

can either contain a can, be a wall, or be empty. This means that the different possible 

scenarios in which Robby can find itself are 243. In fact, there are three different states 

combined with 5 different sites. (= 35). For each of these 243 circumstances, Robby has a 

determined response, which is present in his “genetic code”. Of course, some decisions 

will determine a higher score than others. For example, if Robby systematically crashes 

into walls, its score will most likely be worse than if it decided to avoid them. We define 

“strategy” here as the sum of every action taken by Robby in response to each of the 243 

different states of the world. It would be possible for a human to write down a good 

strategy for Robby to be a decently efficient janitor. However, let us give a chance to a 

genetic algorithm and see how it performs.  

As formally described in the previous paragraph, a GA will initially generate 

different random solutions and assign them to a given population of “Robbys”, 

comprised by a determined number of robots. After each run, the algorithm will calculate 

the performance of each individual using the fitness function described above.7 After that, 

 
6 In the model, it is not possible for Robby to sense the other 4 sites located North-West, North-East, South-

West and South-East. It could be interesting to modify the code by adding also this possibility and observe 

the change in the performance. 
7 Fitness score = (10 points * cans collected) – (5 points * crashes on the wall) – (1 point * times that Robby 

tried to collect a can in an empty site) 
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it will rank them accordingly. The best-performing individuals are going to have better 

chances of being selected as parents and, therefore, to transmit their strategy. As a final 

step, random mutations modifying the final “gene” of the offspring can occur with a 

certain probability. In this way, a stochastic component adds some volatility to the model. 

This grants diversity to the population and avoids an early convergence to a specific 

chromosome structure. In the model, the original number of individuals are kept 

unaltered (the population size does not grow or diminish). The different types of parent 

combinations create a brand-new set of candidate strategies that will be assigned to each 

individual in the population of robots. The same operations described above are then 

repeated again and again for every new generation.  

 The described model was replicated successfully in Netlogo by Mitchell, Tisue, & 

Wilensky (2012). That makes it possible to easily run some simulations and to discuss the 

outcomes. In this way, it will be easier to fully grasp the functioning of a genetic 

algorithm.  

 

Computational results 

 

The Netlogo version of the Robby the Robot model replicates almost exactly the 

one described above. Few aspects have to be clarified, though. Each Robby has 100 moves 

available to score the highest number of points. That can be considered its life duration. 

After that, the game resets and a new generation is created. The selection operator has 

been modeled to take into account both performance and randomness. To select two 

parents, 15 potential candidates are first selected randomly over the entire population. 

The top performer between them is then selected as first parent and will provide the first 

sequence of “genes” characterizing the child’s strategy. The same operation is then 

repeated to select the second parent to complete the full chromosome. The parent 

strategies are mixed through crossover: a mix of the two different parent genes occur by 
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exchanging the separate parts of each parents. The mutation operator sets first a 

determined likelihood for a change in the agent’s behavior to take place. When mutation 

occurs, an action related to a specific state of the world is changed to a random one.  

For the current simulation, the population of robots has been set to 100 individuals. 

That means that every generation, 100 robots are competing for the best result. The 

mutation rate has been established to 1%. Each single individual action in response to a 

determined state of the world has 1% of probability to randomly change each generation. 

Having clarified these premises, it possible to analyze now the computational results, 

shown in the graph below: 

 

 

 

As it clearly emerges, the genetic algorithm managed to develop an increasingly better 

strategy, generation after generation. The trend of this improvement is nonetheless 

volatile. Until about the 400th generation, the best score among the population of robots 

was around 50 points. Suddenly, the performance dramatically improves in a very fast 

way, until it reaches a value of ca. 250 points. That represents a 500% improvement in a 

bunch of generations. What happened there? Most likely, a favorable random mutation 
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in a new offspring gene occurred. This has determined the sudden increase in the 

performance. Thanks to the selection operator and the quality bias, the favorable 

mutation, generated initially at random, was inherited by the individuals in the following 

generations and became stably part of the genetic legacy of the robots. That played a 

crucial role in increasing the average score durably over time. The following increase in 

the performance, from the ca. the 400th generation to the 600th is way smoother than the 

previous one. Most likely, this improvement was due to the small and constant progress 

in the candidate performance thanks to the selection operator. From the 600th generation, 

the fitness score gets steady again. There is not much room for improvements anymore. 

However, it is to be underlined that even if the top performer’s score does not change 

much, the average score among the population of robots increases and a convergence 

between the top scorer and the worst scorer can be observed. The analyzed simulation is 

very explanatory because it makes it possible to analyze two different types of 

improvements, equally possible in the model: huge, sudden, and random on the one 

hand, and slow, planned and constant on the other. If more simulations were run, the 

average trend would most likely be steadier and more linear, but these aspects would not 

be observed. 

The maximum score reached in this simulation was 355 points. Is it a good result? 

To answer this question, it must be determined first what the maximum score possible is 

and compare it to the one obtained here. It is possible to calculate it considering the total 

number of cans present in the environment each run. Looking at the code of the Netlogo 

model, it is possible to see that the can’s density is about 50%. Given that the environment 

is a 10x10 board for a total of 100 squares, the total number of cans is 50.8 The highest 

score possible is therefore 500 points (=50*10), assuming that Robby never hits a wall or 

tries to pick up a can where there is none (both actions determine a point penalty). This 

 
8 The actual number varies a little (from 48 to 52) according to some random variables. 
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score is just theoretical though, as it does not take into consideration other important 

factors. Robby’s maximum moves per run are 100. In the model, the action “pick a can” 

is considered a move. If Robby were to pick up all 50 cans, there will be just 50 remaining 

moves to find the remaining cans. Therefore, for each of the 50 remaining moves Robby 

should end up on a square that contains a can it can collect. This means that every square 

with a can should border one another with another square containing a can as well. 

Assuming that the distribution of cans is random, this would be possible in just few 

scenarios among the millions of combinations. The reason why the fitness score improves 

up to a certain point and then remains steady is related to the fact that, generation after 

generation, the best performers reach a close to optimal score which is increasingly 

difficult to overcome. For these reasons, Robby’s performance of 355 out of 500 

(theoretical maximum) is a pretty good result, considering that the original strategy was 

generated at random. Actually, this strategy is very often better than what a human 

would rationally conceive in the first place (Mitchell 2009, p.135).9 In fact, the evolution 

of the strategies brought to behaviors that might even seem counter-intuitive and that 

instead revealed themselves to be extremely successful. For example, in some situations 

Robby deliberately decides not to pick up some cans, even if it could, in order to use them 

as a marker to guide it in the collection of more cans present in the neighboring cells. 

Emergence of hardly predictable behavior, typical of complexity and complex systems, 

is again clearly observable here. 

The necessary context for the understanding of genetic algorithms has been now 

set. It was previously said that genetic algorithms are often used to find a solution to an 

optimization problem. Interestingly, the use of a GA-based model for the purposes of the 

present work will completely transcend that. In fact, genetic algorithms can also represent 

an extremely useful tool in describing the behavior of agents embedded in complex 

 
9 In this case, the GA beats the human strategy by more than 100 points. 
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systems. Thanks to them, it is possible to instruct agents to follow simple rules and to 

observe the outcomes of their interactions, both as a single entity and as a whole. In such 

an acceptation, GAs are a tool that allows the possibility to observe and study particular 

types of complex systems from a privileged point of view, as it will be clearly shown in 

the next chapters. Holland understood that, as he claimed in the preface of the 1992 

edition of Adaptation in Natural and Artificial Systems: 

 

“Genetic algorithms began to be seen as a theoretical tool for investigating the phenomena 

generated by complex adaptive systems - a collective designation for nonlinear systems defined by 

the interaction of large numbers of adaptive agents (economies, political systems, ecologies, 

immune systems, developing embryos, brains, and the like)” (Holland 1992, p. IX) 
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2. Strategic Group Emergence, Complexified 

 

 In the first part of this chapter, strategic groups will be shortly defined and the 

background academic literature on the matter will be discussed. In the second part, a GA-

based model outlining the phenomenon of strategic group emergence, developed by Lee, 

Lee & Rho (2002) and inspired by Alchian’s and G. Tintner’s evolutionary framework, 

will be thoroughly described. After that, the computational results of the related 

simulation runs will be presented and analyzed. 

 

2.1 Strategic groups in the academic literature 

 

The term “strategic groups” was coined first by Hunt (1972) to define different 

clusters of companies within the same industry, whose survival strategy varies on one or 

more key dimensions. The strategic choices of firms within the same strategic group 

regarding key activities, key resources, products, etc. are instead very similar. The 

concept of strategic groups started to gain popularity in the strategic management field 

over time, since it provided an effective tool to interpret different industries.  

Caves & Porter (1977) further deepened the research on the subject.10 According to 

them, the origin of strategic groups can be attributed to random initial differences in the 

firms’ resources, competences and preferences, which eventually leads to the formation 

of groups of firms adopting the same strategy. However, one of the most important 

contributions to the discussion pertains the differences in performance between the 

groups. They introduced the concept of mobility barriers, which negatively affects the 

 
10 See also Porter (1980) 
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success probability for a firm to enter a strategic group.11 They represent different types 

of structural obstacles (capital costs, economies of scale, legal barriers, learning curve, 

etc.). In addition to that, Caves & Porter (1977) discussed the tendency to collude in order 

to hinder the possibility for other companies to enter another strategic group. In this way, 

firms within the same strategic cluster prevent profits’ degradation due to increased 

competition.  

Another line of research about the topic focused specifically on the empirical 

research. Its purpose was to analyze different industries in order to determine whether 

commonalities or differences about the emergence of strategic groups were recognizable 

or not. The empirical research showed different and mixed findings.12 In some industries, 

two or more different strategic groups were clearly identifiable, while in others they 

seemed apparently missing. This fact started to draw criticisms (Barney & Hoskisson, 

p.1990). The issue was that the research on strategic groups never expressly defined any 

conditions under which they were more likely to emerge or not. It did not take into 

consideration the specific case of the absence of strategic groups in certain industries and 

therefore it fell in the non-falsifiability fallacy.  

 

A different theoretical framework 

 

Lee, Lee, Rho (2002) have exactly the objective to respond to these criticisms. To 

accomplish that, the authors employ a GA-based model through which they are able to 

analyze and simulate the dynamics of competition between different firms, while 

interpreting industries as a complex systems of interactions. It is possible to observe here 

a successful use-case of a tool employed in the study of complex systems in order to solve 

 
11 Mobility barriers are comparable to another famous concept introduced by M. Porter: entry barriers. The 

latter apply to the new potential entrants into an industry, while the first to new potential entrants into a 

determined strategic group. 
12 See for example: Zajac & Jones (1989) and Comanor (1964).  
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a problem related the strategic management field. Before describing the model, it is 

important to take a step back and underline the important mutation in the conceptual 

framework underlying the authors’ assumptions. Strategic groups were traditionally 

thought as being structural and static features of each industry. In the seventh chapter of 

the successful book Competitive Strategy, M. Porter refers to competition between strategic 

groups as a structural feature characterizing an industry, which are statically present. The 

strategies employed by the companies are the result of an equation which takes into 

account Porter’s famous 5 forces. (Porter 1980, p.4). Lee, Lee & Rho (2002) recognize the 

historical contribution of this line of research, yet they try to propose a different point of 

view in which the competition between strategic groups is seen from a process view 

point. That view was inspired by an “evolutionary” line of research, which recognized 

how “competition, in the everyday sense of the term, is an active process, not a structural 

state” (Nelson & Winter 1978, p. 524).13 This evolutionary perspective, which has much 

in common with the later developed concept of complexity, will be discussed in the next 

paragraph. 

The evolutionary perspective represents a radically new line of research, which 

distinguishes itself from the neoclassical economic theory. In fact, it struggles to take into 

account different factors neglected in the traditional literature on the matter, such as 

uncertainty, incompleteness of information, and agents’ bounded rationality. It proposes 

a new way of describing the dynamics of interactions between firms through imitation, 

evolution, and adaptation. The multiplicity of firms is conceived as a complex system of 

interaction ante litteram. 

Under the neo-classical hypothesis of perfect competition, the market is assumed 

to be endowed with perfect information. The supply and demand curve and the prices 

are known to each agent in the market. The price of the goods itself is set by the market: 

 
13 See also Nelson & Winter (1982) 
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firms are price-takers. The firm’s only purpose and guide of action is to maximize profits. 

How can it do that, without being able to set the prices? The only actual firm’s choice 

concerns the optimal quantity to produce in order to maximize profits. The firm knows 

exactly the supply and demand curve, as well as the marginal costs and marginal 

revenues (i.e. the cost/revenues generated by the production of an additional unit). In 

order to maximize profits, the firm will produce additional units until the marginal 

revenue equals the marginal cost. The quantity produced under these premises is called 

profit-maximizing quantity. The described model is still nowadays taught at school and 

constitutes the foundation of microeconomics. Nonetheless, many of its underlying 

assumptions have been challenged over time. Some of the criticisms drawn by the 

neoclassical perspective will be discussed, as they contributed to determine a sharp shift 

in the theoretical background underlying this work. 

Tintner (1942) objections to the assumption of complete information are worth 

being taken into consideration.14 According to the neoclassical view, firms are conceived 

as extremely rational agents, which are able to know precisely and in advance the market 

conditions and the outcome of their actions. However, this premise is rather unrealistic, 

as Tintner points out (1942, p. 275). Firms, like human beings, are often incapable of 

solving complex problems involving different interdependent variables. In addition, 

their foresight is limited and imperfect. Finally, the behavior of the agents themselves can 

determine hard-to-predict changes in the outside environment and in the industry 

conditions. With such constant and unpredictable modifications, it is conceptually very 

difficult to frame a determined state of things. This aspect of reality is not taken into 

consideration under the neoclassical premises. It is closer to reality, then, to conceive 

economic agents as acting according to some estimates and forecasts about the different 

parameters influencing their decisions outcomes (e.g. supply, demand, competition, etc.). 

 
14 See also Tintner (1941) 
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As accurate as these estimates may be, they are to some extent uncertain. Introducing 

uncertainty radically changes the way of conceiving the industry dynamic among firms. 

In fact, does it still make sense to talk about profit maximization under uncertain 

conditions? A firm is able to properly “maximize profits”, in the classical sense, just when 

the underlying conditions under which it acts are certain. In this case, the neoclassical 

model is valid. The firm knows precisely the supply and demand curve, the costs and the 

prices set by the market: it has just to solve a simple equation determining how many 

product units to produce. However, if the factors influencing the firm’s profits are not 

certain, the firm will act according to uncertain estimates. Each choice won’t be 

deterministically characterized by just one specific outcome, but rather by a distribution 

of potential outcomes, depending on the different possible scenarios. Each distribution 

has a mean (μ) and a standard deviation (σ). The outcomes distribution comprises all the 

possible “realized profits” (or any proxy to measure the performance) under all the 

possible scenarios that could occur. By looking at this in such a way, the problem shifts 

from “profit maximization” to rather choosing the “optimal distribution”. The optimal 

distribution depends heavily on the subjective utility function of each agent. It could be 

for example the distribution of outcomes with the highest mean. At the same time, 

though, there could be riskier options with a lower mean but a higher standard deviation, 

which could guarantee (in the best-case scenarios) higher profits. Finding the optimal 

distribution depends on a subjective risk preference function, “which indicates how the 

individual in question evaluates his probability distributions of utility under conditions 

of subjective risk” (Tintner 1942, p. 279). Under the neoclassical premises of perfect 

competition, profit-maximization was the only guide for action and it was the same for 

every firm, whereas in Tintner’s view that depends on a subjective utility function which 

allows the economic agents to rank the preferred choices according to their individual 

preferences. The shift in the perspective is clear and sharp. 
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Tintner’s spark was picked up by A. Alchian, which borrowed his criticism and 

thoughts about uncertainty and developed them further. The author describes the 

economic system as the arena where a process of natural selection takes place. According 

to Alchian, the economist’s work resembles the biologist’s: 

 

“Like the biologist, the economist predicts the effects of environmental changes on the 

surviving class of living organisms” (Alchian 1950, pp. 220-221). 

 

 Firms are conceived as living organisms with a limited capability to understand 

the environment surrounding them. They fight for limited resources and struggle to 

survive. The economist observes this process of natural selection and attempts to forecast 

a firm’s behavior. The key factor which determines a firm’s survival is the realized profit 

(Alchian 1950, p. 213). It is meaningless to refer to a theoretical concept like profit 

maximization. For Alchian, it does not matter whether firms apply a hyper-sophisticated 

and complex survival strategy or they just act blindly at random and are successful out 

of pure luck. The outcome is the same: positive realized profits determine a firm’s 

survival likelihood. The author expresses this concept clearly by stating that firms do not 

always adapt to the environment to survive; the environment often just adopts some of 

them as survivors with some random favorable mutations (Alchian 1950, p.214). The role 

of luck and chance is clearly recognized by the author.15 Under this perspective, firms are 

not conceived anymore as perfectly rational agents, acting according to perfect 

information. Their rationality is highly bounded. This does not undermine in any way 

 
15 The author points out that the acknowledgment of the importance of luck and chance does not undermine 

the value of individual motivation and foresight. Alchian describes an unrealistic random-behavior model 

at the beginning of his paper just to show the perfect coherence of an economic system even under these 

extreme conditions, whose consistency is an indirect confutation of the neoclassical assumption regarding 

the hyper-rationality of the economic agents. In conclusion, Alchian’s objective is not to nihilistically deny 

the role and the will of the agents in taking decisions, but to recognize the existence of the variable “luck”, 

which plays an important role and therefore must be taken into account 
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the existence of markets: “Even in a world of stupid men, there would still be profits” (Alchian 

1950, p.213)  

In the economic arena, a process of natural selection, similar to the one described 

by C. Darwin, is in play. The fittest individuals are selected as survivors and are more 

likely to procreate. In this way, the new generations inherit key characteristics for the 

survival from their parents’ genes. Some random mutations can stochastically change 

some genes of the new-born agents. It is the process of adaptation described in the 

previous chapter. How does this biological framework translate in the language of 

economic theory?  

As already outlined above, the fittest individuals are the ones that realize the 

highest positive profits, regardless of how and why they managed to. The worst-

performing firms are going to be selected for extinction. Between these two groups 

(worst- and best-performing firms), it is possible to observe a set of companies in the 

middle, whose performance is not as bad as the extinguished “species” (they managed 

somehow to survive) but neither as good as the best ones. What are these firms going to 

do? Most probably, Alchian says, they will start imitating the firms with a superior 

performance by replicating their actions. In this way, they try to level down the difference 

with the competitors and to achieve comparable results. In the pragmatic world shaped 

by A. Alchian, a good economic performance is not an absolute concept, like in the case 

of profit maximization. It rather depends on the average performance of the other peers.  

The dynamics of interactions between firms change further when the increasing 

number of imitators determines a performance degradation due to high competition and 

profit-sharing. At this point, some firms have enough incentives to try changing their 

“survival strategy” vis-a-vis the external environment. Translated in the business jargon: 

to innovate. Innovation can be extremely successful in terms of realized payoff. In this 

case, it will likely trigger a positive feedback mechanism, enacted by chasing imitators. 

At the same time, if unsuccessful, it can have disastrous effects and determine the 
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extinction of a firm. It is important to notice that innovation is not always something 

intentional; it can occur even by chance, as a result, for example, of an imperfect or partial 

imitation of a peer by a firm (Alchian 1950, p. 219)  

The just-described view challenges different assumptions underlying the 

neoclassical economic theory, such as rationality of agents, complete information, 

determinism, etc. The theoretical background of the described perspective is 

characterized by many characteristics which can be found also in the study of complex 

systems. In fact, it is possible to observe a multiplicity of agents (the firms) interacting 

with each other according to simple rules of behavior (imitation and innovation). In 

addition, there is no central control and the outcomes of the system are not easy to predict 

due to uncertainty (will innovative behaviors emerge? how many firms will survive? 

etc.). These above-described intuitions will constitute the conceptual basis of the GA-

based model by Lee et al., as it will be shown in the next paragraph. 

 

2.2 A GA-based model on strategic group emergence 

 

In describing the model, the authors state immediately the propositions whose 

validity is going to be tested throughout the simulations. These propositions challenge 

different problems and incontinences of the literature on the phenomenon at issue. Lee et 

al’s objective is to expressly circumscribe the area of the research and to find an answer 

to these problematic questions, using the perspective of complexity. The below 

statements concern four different aspects that will be shortly analyzed: Mobility Barriers, 

Strategic Interactions, Dynamic Capabilities and Boundary of Rivalry. 

Let us consider first the mobility barriers. As mentioned above, this concept had 

already been formulated and described thoroughly by Caves & Porter (1980). They “deter 

the movement of firms from one strategic position to another” (Caves & Porter 1980, pp. 

133-134). There can be many different types of mobility barriers: switching costs, capital 
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requirements, access to distribution, etc. In this paper, J. Lee, K. Ree, and S. Rho choose 

to define them as the difficulty for a company to develop a high-end product. As it will 

be later explained, the authors distinguish in their model two different strategic groups: 

the first targeting the low-end segment (less profitable, less risky) and the second 

targeting the high-end (more profitable, riskier). The industry paradigm employed in the 

model is represented by the pharmaceutical industry, where traditionally two different 

strategic groups can be found: generic drug-maker (low-end) and companies investing 

heavily in R&D to develop new and exclusive drugs (high-end). This difference will be 

thoroughly explained in the next paragraphs. It is important to notice now that mobility 

barriers, however they may be conceived, are structurally present in each industry due to 

some inherent conditions (that can be both generic and industry-specific). That is why 

they are also called structural barriers by the authors. They should not be confused with 

the barriers voluntarily erected by incumbents to protect their competitive positioning, 

which will be taken into consideration later. The authors formulate two different 

propositions related to the structural barriers, which are going to be tested throughout 

the simulations: 

 

“Proposition 1a: The higher the structural barriers, the larger the performance difference 

between strategic groups.” (Lee, Lee & Rho 2002, p. 732). 

 

The above proposition can be explained in the following way: if the mobility barriers 

within an industry are high, the success probability for a company trying to enter the 

high-end segment are going to be low. Mobility barriers and success probability are 

inversely correlated. Because of the smaller number of firms in the high-end segment, the 

performance differences between strategic groups will be indirectly higher, since the 

degree of competition within the same strategic groups will be lower, resulting in a lower 
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degree of performance degradation. The direct consequence of this leads to another 

statement:  

 

“Proposition 1b: The higher the structural barriers, the less likely a group structure will 

emerge and persist.” (Lee, Lee & Rho 2002, p. 733). 

 

With high mobility barriers, it is difficult for a company within a determined industry to 

pursue an entirely new strategy with respect to the competitors. For example, if there was 

no law or regulation protecting intellectual properties and patents, firms in the 

pharmaceutical industry will hardly choose to invest in the research of new drugs, since 

they would not have any economic incentive to do so. The group of firms pursuing the 

strategy of developing new drugs would most likely disappear. That is a clear example 

of structural barriers preventing strategic groups to emerge. 

The second proposition is related to the barriers erected by incumbents in a 

determined strategic group. The authors call them generically “Strategic interactions”. 

Traditionally, they represent the explicit or implicit collusion among companies which 

are part of the same group.16 Their objective is to reduce the success possibility of new 

entrants to enter the most-profitable high-end segment. By enacting preemptive actions, 

incumbents manage to increase their performance jointly to the detriment of other firms 

outside the group: 

 

 “Proposition 2: The stronger the preemptive strategic interactions within a high-end 

group, the larger the performance difference between strategic groups.” (Lee, Lee & Rho 2002, 

p. 734). 

 

 
16 See for example: Dranove, Peteraf & Shanley (1998) and Besanko, Dranove & Shanley (2000)  
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The third premise to be validated by the model takes into consideration the 

“dynamic capabilities” of the company. They represent an important factor whose 

purpose is to take into account modifications in the outside environment and in the 

industry structure. This term was introduced for the first time by Teece, Pisano & Shuen 

(1997), but the general ability to renew its own competitive advantage had been already 

generally discussed by M. Porter and R. Cooper in the above-mentioned works. Teece et 

al. define dynamic capabilities as “the firm’s ability to integrate, build, reconfigure 

internal and external competences to address rapidly changing environments” (Teece, 

Pisano & Shuen 1997, p. 516). This term was inspired mostly by the observation of the 

dynamics of interactions, evolution and adaptation in high-technology industries, in 

which the pace of change and the intensity of competition was extremely high (Teece, 

Pisano & Shuen 1997, p. 515). The dynamic capabilities approach borrows from the 

resource-based view and its theoretical framework and adaptation to “a world of 

Schumpeterian competition” (Teece, Pisano & Shuen 1997, p. 515), in which disruptive 

innovation constantly changes the rules of the game. To be successful, a firm’s resources 

have to be not only valuable, rare, and difficult to imitate, they have also to be modular. 

The most important capability for a company in a fast-changing industry is being able to 

reconfigure its own resources in order to align to modification in the outside 

environment. Dynamic capabilities are the key of sustainable advantage especially in 

extremely fast-changing and hyper-competitive industries. Lee et al. recognize the 

importance of this factor: 

  

“Proposition 3: Given instability of payoff in the high-end segment, the weaker the dynamic 

capabilities a high-end segment has, the less likely a group structure will emerge and persist.” 

(Lee, Lee & Rho 2002, p. 734). 
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If a firm does not have a satisfactory level of dynamic capabilities, it will not be able to 

keep up with the changes in the industry and will eventually be thrown out from the 

market. In this scenario, it is less likely for different group structure to emerge. 

The “Boundary of rivalry” represents the last parameter to be considered in the 

GA-based model and it clarifies how rivalry and competition are operationalized. For the 

sake of simplicity, the authors just consider rivalry between horizontal strategic groups, 

i.e. between firms targeting similar market segments. Do different strategic groups within 

the same industry compete with each other? The answer is not simple, since it is heavily 

dependent on the categorization of strategic clusters and on the theoretical framework 

employed. According to the authors, if companies in different strategic groups were 

serving similar clients, their strategy would probably gradually converge until it reaches 

a point where it is not possible to distinguish the two different groups anymore. 

Therefore, strategic groups would cease to exist. Rivalry is assumed to be limited to 

companies within the same strategic group. The fourth proposition stems from this 

assumption: 

 

“Proposition 4: Strategic groups are not likely to emerge and persist if rivalry is extended 

over firms of dissimilar strategies” (Lee, Lee & Rho 2002, p. 735). 

 

After having defined the propositions that are going to be tested, the model will 

be discussed first and then the computational results of the simulations will be discussed. 

 

The model - Description and results 

 

 Lee et al. define precisely the assumptions underlying the model. In doing that, the 

authors intend to solve the issue of hidden premises, often present in the research about 
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strategic groups, responsible according to them for many inconsistencies and fallacies 

(Lee, Lee & Rho 2002, p. 728).  

In the model, some simplifications have been necessarily made. As mentioned 

before, Lee et al. limits the possible strategic groups to just two types: low-end and high-

end. In reality, it would be possible to distinguish many more strategic groups within the 

same industry (Porter 1980, p. 131). In addition, the firm’s strategy is characterized just 

by the dimension of the product quality: in the model, the only strategic choice for a firm 

is to select the quality of its products within a determined range. In reality, the 

dimensions of strategy cannot be entirely attributed to just one dimension. However, 

these heavy simplifications make it possible to give the model a wide generality. In 

addition to that, the dynamics of the interaction between companies is the object of the 

study. This phenomenon can be coherently recreated under these circumstances, 

however simplified, and its result can be relevant and valid also for more complicated 

scenarios.  

In the next paragraphs, it will be thoroughly explained how mobility barriers, 

strategic interactions, dynamic capabilities and boundaries of rivalry have been 

translated in the mathematical language of a model? 

 

The payoff function 

 

As mentioned above, the two strategic groups have different characteristics: the 

first one (low-end) has a relatively low performance but its overall profits are safe, while 

the second (high-end) is characterized by higher volatility in economic performance, 

which is rewarded by a higher payoff. The authors assume furthermore that: 
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1. At the birth of each industry (when the first interactions between competing firms 

start), there is no strategic group in the “high-end market”17  

2. This group can emerge later if some companies find successful ways of entering 

the high-end market and constitute a higher-performing group (Lee, Lee & Rho 

2002, p. 732).  

 

The “if” is not casual. Not in every industry is it possible for some companies to 

constitute a high-end strategic group. If structural barriers are too high, for example, the 

success probability for a different strategic group to emerge will be lower. In this scenario, 

all the companies would be part of the same strategic group, applying similar strategies. 

It would be meaningless in this case to talk about different strategic groups. In this way, 

the authors attempt to address the criticisms of the non-falsifiability of the strategic group 

theory. The circumstances under which no strategic group emerge are now defined and 

the assumptions beneath them are clearly stated.  

It has already been mentioned that the payoffs between the two groups differ. That 

means that a particular payoff function is in play, which distinguishes the two groups. 

The authors employ the following one:  

 

 
17 Therefore, each company is assumed to serve just the low-end segment at the beginning of each industry. 

(Lee, Lee & Rho 2002, p. 732) 
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18 

 

To evaluate the performance of the different strategic groups, the authors design a multi-

peaked function defining the payoff correlated to the selected quality. As mentioned, the 

two possible groups are distinguishable just because of the quality of their products. 

From the above image, the payoff curve of the two different strategic groups is clearly 

visible. Firms with a product quality from 0 to 0.5 (excluded) are considered being part 

of the low-end strategic group. On the contrary, firms with a product quality from 0.5 

(included) to 1 join the high-end strategic group.  

The payoff (y) corresponding to a choice of product quality (x) is given by the 

following formula:  

𝑦 =  𝑠𝑖𝑛𝑒 (3𝜋𝑥)  +  3𝑥  

 
18 See Lee, Lee & Rho (2002, p. 732) 
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The payoff related to the first group appears to be lower in comparison to the second. 

However, the payoff in the high-end segment is riskier. The above-mentioned concepts 

come into play. In fact, for both incumbents and new entrants, mobility (or structural) 

barriers can diminish the success likelihood. Preemptive strategic interactions by 

incumbents, then, can further obstacle new entrants to take advantage of the higher 

payoffs. Eventually, incumbents need to possess a high degree of dynamic capabilities to 

keep up with industry mutation and evolution. Therefore, the realization of payoff 

related to a product quality higher than or equal to 0.5 is not as safe as in the case of the 

low-end segment19. This is expressed in the model as follows: 

 

              𝑦 =  𝑠𝑖𝑛𝑒 (3𝜋𝑥) +  3𝑥  if 0.5 ≤ 𝑥 ≤ 1 and 𝑟 ≤ 𝑝  

            𝑦 =  0    if 0.5 ≤ 𝑥 ≤ 1 and 𝑟 ≥ 𝑝 

 

This formula basically states that if the firm’s strategic choice regarding the product 

quality is higher than 0.5, it will realize the related payoff just under some circumstances, 

i.e. 𝑟 ≤ 𝑝, otherwise the realized payoff will be null (0). What do r and p represent? r 

represents a random number between 0 and 1, while p represents the success probability 

of a firm to enter the high-end segment.  

 The probability of success (p) is determined by the different factors that come into 

play depending on the different case: mobility barriers (MB), strategic interactions (SI) 

and dynamic capabilities (DC). The authors operationalize them in this way: 

 

   p =  𝑀𝐵    if age =  0 and n ≤ S 

 
19 For the sake of simplicity, the authors assume that the payoff related to a product quality from 0 to 0.5 

(excluded) is certain (Lee, Lee & Rho 2002, p. 736) 
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   𝑝 = 𝑆𝐼    if age =  0 and n ≥ S 

   𝑝 = 𝐷𝐶   if age >  0 

 

The above-mentioned formulas are consistent with the premises. The parameter age 

determines whether the firm is a new entrant20 (age = 0) or an incumbent (age > 0). If a 

firm is a new entrant, two different scenarios can happen. If the number of firms in the 

high-end segment (n) is lower than S (a threshold for strategic interactions21), then the 

success probability will stem from the mobility barriers (MB). On the contrary, if n is 

higher than S, p will be the stem from the result of strategic interactions (SI). Notice that 

SI will be always lower or equal to MB, since it is the result of the mobility barriers itself 

minus the preemptive effect of strategic interactions. If the firm is an incumbent (age > 0), 

its success probability22 stems from the dynamic capabilities (DC), previously defined as 

the ability for a firm to respond to mutations in the underlying industry structure. The 

firms act under extremely uncertain conditions. Tintner’s influence is clearly recognizable 

here. 

 By designing the payoff function in this way, Lee et al. managed to take into 

account all the above-mentioned parameters affecting the agents’ behavior and to include 

them in the model. MB, SI and DC’s values can be arbitrarily set on the basis of a 

qualitative and quantitative industry analysis. These parameters are going to change and 

 
20 The term “new entrant” is here used not in the traditional sense of a firm entering a new industry, but 

rather a new strategic group. The same applies to “incumbent” 
21 S can be thought as the minimum number of firms needed to inflate preemptive effects vis-a-vis new 

entrants. Intuitively, this threshold establishes that if there are not enough firms already in the high-end 

segment, no collusion will be enacted and no barriers will be erected by high-end firms. In this scenario, 

new entrants would be obstructed just by mobility barriers, which are structural to an industry. If the 

number of firms in the high-end segment is higher than the threshold S, then, in addition to the mobility 

barriers, some preemptive interactions can further diminish the success probability for new entrants. 

Therefore, MB will be always higher than SI. 
22 It would be more appropriate to talk about the probability to maintain its competitive positioning, since 

the incumbent firm is already present in the high-end segment by definition. 
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influence the industry landscape. In fact, the firms are going to adapt and “play” 

according to these rules. This fact is crucial since it allows the outcomes to be the closest 

possible to reality (or, at least, to be a close-enough simplification of it).  

There is still a factor that needs to be taken into consideration: boundary of rivalry. 

It has been previously said that rivalry just pertains companies within the same strategic 

group. How is that operationalized? It is introduced in the model an arbitrary range of 

neighbors, called 𝜎rivalry, which share the focal firm’s payoff (Lee, Lee & Rho 2002, p. 738). 

The higher this parameter, the higher the number of firms sharing the payoff (and the 

lower the individual profits). Given that rivalry is confined to firms within the same 

strategic group, this parameter should be set accordingly. The individual payoff function 

of the firm i is given by the following formula: 

 

fi = yi / mi  

 

yi is the payoff related to the product quality xi. mi represents the density of neighboring 

firms. This value is determined by 𝜎rivalry . mi is formally defined as follows: 

 

 

N represents the total number of firms; dij is the distance between firm xi and xj. sh is the 

sharing function: 

 

    sh (d) = 1 - (d/𝜎rivalry)α  if d < 𝜎rivalry  

    sh (d) = 0   otherwise 

 

𝛼 determines the power law sharing function. In the model it has been set to 0.5. The 

below image shows graphically the above-mentioned formula. 
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It is important to notice that the above described payoff structure represents at the same 

time the fitness function, which is crucial for the functioning of the selection operator and 

ultimately of the GA itself. A. Alchian’s influence is clearly recognizable here: positive 

realized profits eventually are the indicator that determines whether a firm is going to be 

selected for survival or for extinction  

 

Selection, mutation and adaptation 

 

All the propositions expressed in the previous chapter (MB, SI, DC, BR) have been 

operationalized in the model. It is now time to understand its functioning. The general 

mechanism for change in the model works in the following way: 

 
23 See Lee, Lee & Rho (2002, p. 738). 
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1. The first generation of 50 firms is generated. Due to information 

incompleteness, the first generation is assumed to start operating randomly 

within the low-end segment (0 ≤ 𝑥 < 0.5).24 

2. The firms’ performance and fitness are ranked according to the above-

described payoff function.  

3. The five worst performing firms are selected for extinction and have the 

possibility to reshuffle their strategic choice (product quality x)  

4. The five new strategic choices are generated through variation mechanisms, 

such as crossover and mutation, and substitute the previous ones 

5. The steps 2-4 are repeated up to the 2000th generation. 

 

A few words must be spent on the variation mechanisms. As said, the five worst 

performing firms will change their strategic choice each generation, while the remaining 

will keep their product quality unaltered (due to information uncertainty). It is possible 

to assimilate that to unsuccessful companies trying to imitate more successful peers, or 

new entrants substituting firms that went bankrupt. In fact, in the language of genetics 

and GA, imitation is the perfect equivalent of reproduction, as already pointed out by 

Alchian. As per the Robby the Robot model, the performance of a determined agent is 

positively correlated with the probability of being chosen as a “parent” for the next 

generations. In this model, the same applies: top performers are most likely to be selected 

as targets for imitation.25 Two different parents are chosen and their “genes”, represented 

by the combination of their strategic choice (product quality x) are crossed over. The way 

 
24 This assumption stems from the consideration that at the beginning firms do not know the industry 

payoff function. They are going to discover it through trial-and-error and the imitation of the more 

successful peers. This expedient is also useful to show more clearly the dynamics of the emergence of 

different strategic groups. 
25 Lee et al. do not expressly mention how performance and probability to be selected are correlated. 
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Lee et al. conceive the product quality (x) is a 10-bit string, such as 1000100010. The 

combination between the two 10-bit strings happens by inheriting one bit from parent 1 

and one bit from parent 2, until the end of the string (Lee, Lee & Rho 2002, p. 736).26 The 

resulting gene will constitute a new strategic choice. 

GA algorithms typically take into consideration also a stochastic component to 

operationalize random genetic changes that often occur in genetics. Again, like in the 

Robby the Robot model, this random variation is translated by introducing a mutation 

probability of the bits in the string representing product quality. In the model, it is 

assumed to be 0.005% per bit, for a total of 0.05% for a 10-bit string. In the business jargon, 

this random mutation could be represented by innovation, intended in every form (both 

intentional or unintentional). Alchian’s influence is still very much recognizable. 

All the instructions needed for a GA to operate are now defined. The authors 

proceed in running some simulations accordingly and analyze the related results, with 

the objective of validating the above-mentioned propositions (1-4). 

 

Computational results 

 

 Let us see consider first the result of a standard scenario, in which the parameters’ 

values are set as follows: 

 

● MB: 0.10 

● SI: 0.10 

● DC: 0.96 

● 𝜎rivalry: 0.50 

 
26 As it will be seen later, this represents a huge difference from the way product quality is operationalized 

in the replication of this model in Netlogo, where a real encoding has been used. 
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27 

 

The above figure shows the distribution of firms between the low- and the high-

end segment. The dots along the function represent each firm’s individual strategic 

choice. The cross symbol represents the payoff related to each firm. It is lower than the 

function would suggest because of the boundary of rivalry.28 

 
27 See Lee, Lee & Rho (2002, p. 739) 
28 In fact, A should have a higher payoff than B. On the contrary, given the lower degree of competition of 

substitutive products, B has the highest payoff within its industry.  
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29 

 

The above image shows the dynamic of group emergence along all the 2000 generations. 

The dotted line represents the actual appearance/disappearance of groups in the high-

end. The first high-end strategic group emerged ca. at the 280th generation. The solid line 

represents the average of 50 simulation runs. The line is smoother but the percentage of 

firms in the high-end appears to be consistently close to 20% of the total. The standard 

scenario appears to be coherent with the literature con strategic groups.  

After that, Lee et al. attempts to validate the propositions mentioned in the 

previous chapter. In order to accomplish that, the values of the parameters MB, SI, DC 

and BR are modified to observe the effect on the firms’ behavior and on the strategic 

group emergence. That is repeated for 50 simulation runs for each value, in order to 

 
29 See Lee, Lee & Rho (2002, p. 740). 
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provide the model outcomes with a high confidence level. By modifying those values, it 

is possible to see how the final outcomes change and to gain important insights. 

 

30 

 

The above table shows clearly that by increasing the value of the mobility barriers, 

the likelihood for strategic groups to emerge is higher.31 MB represents the success 

probability for a firm to enter the high-end segment. The lower the success probability 

due to structural barrier, the less likely for strategic groups to emerge (if MB is equal to 

0.01, strategic groups do not emerge in over 50 simulation runs). This fact validates the 

proposition 1b. At the same time, the table shows that the lower the MB value, the higher 

the performance difference between the groups. That happens due to the sharing 

function. With a lower probability of success, a lower number of firms will join the high-

end group, as shown in the table. If less firms enter the high-end, it indirectly beneficially 

 
30 See Lee, Lee & Rho (2002, p. 741) 
31 The “% of SG emergence” has been defined by the authors as “the percentage of simulation runs that 

produce a group structure at period 2000” (Lee, Lee & Rho 2002, p. 746) 
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affects the individual payoff of each firm in that segment. The results validate the 

proposition 1a. 

 

32 

 

The above table shows the change in outcomes related to the different intensity in 

preemptive effects of strategic interactions. The higher the difference between MB and SI, 

the lower the percentage of firms in the high-end group. This is intuitively clear: when 

strategic interactions between firms are ignited, the entry probability of new firms in the 

group is hindered. Therefore, less firms are going to successfully manage to enter the 

best-performing group. If a lower number of firms is present in this group, the 

performance difference between the two groups will be higher for the same reasons of 

the previous case (less firms to share the payoff with). These results validate proposition 

2. 

 
32 See Lee, Lee & Rho 2002, p. 741 
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33 

 Dynamic capabilities affect the likelihood of strategic group emergence and the 

overall number of firms in the high-end segment, as shown in the above table. If the DC 

are low, it is impossible for companies to keep up with changes in the industry and they 

will eventually lose their favorable competitive positioning. Not surprisingly, the 

outcomes in the model are very sensitive to modifications of this parameter. The 

outcomes shown in the above table testify the proposition 3. Interestingly, if DC 

capabilities were 1.00, strategic groups would theoretically cease to exist. Each firm 

entering the high-end group will have 100% likelihood to persist operating there. This 

would imply a high-performance degradation due to the sharing function. The 

performance difference between the two groups would be under these circumstances 

close to 0.  

 

 
33 See Lee, Lee & Rho (2002, p. 742). 
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34 

 Finally, the boundary of rivalry is taken into consideration. If the parameter 𝜎rivalry 

is increased, the percentage of strategic group emergence falls dramatically. Due to the 

sharing function, the high-end firms become less attractive and less targeted for imitation. 

In fact, they are heavily subject to a performance degradation. When the parameter 

reaches values close to one, it becomes almost meaningless to talk about strategic groups, 

since every company competes with each other regardless of their strategic choice. This 

is well reflected also by the performance difference, which becomes increasingly 

irrelevant. 

 Lee et al.’s GA-based model on strategic interactions has been thoroughly 

analyzed. The parameters and factors affecting the relationship between firms and 

strategic group have been first qualitatively discussed by taking into account the most 

meaningful contributions to the strategic group research in the past years. After that, it 

has been described and explained how these parameters have been operationalized in 

the model presented in the paper. The results of the simulations have validated the 

author’s premises. In this model, G. Tinter’s and A. Alchian’s evolutionary framework 

has been successfully translated into a consistent model. Realized profits under uncertain 

conditions determine winners and losers in the economic arena, while imitation (the 

 
34 See Lee, Lee & Rho (2002, p. 743) 
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quality bias in the selection operator) and innovation (mutation) guide the evolutive 

behavior of the firms, struggling to adapt to the external environment. In the next chapter, 

the present model will be replicated using Netlogo. 
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3. Replicating the Model in Netlogo 

 

Premise to the model - Netlogo 

 

In the present chapter, the GA-based model by Lee et al. will be replicated using 

Netlogo (Wilensky 1999). Netlogo is a multi-agent modeling environment employed to 

simulate natural, social and economic phenomena. It was created by Uri Wilensky, 

professor of Computer Science at Northwestern University, and further developed 

thanks to the support of the Center for Connected Learning and Computer-Based 

Modeling of the same university. It employs as programming language, mostly Scala and 

secondarily Java. Netlogo is an extremely useful tool to simulate the dynamics of complex 

systems. In fact, it makes it possible to create an environment where a multiplicity of 

agents acts and interacts according to established rules. In this way, the emergence of 

complex behavior can be observed and its outcomes can be analyzed. In addition to that, 

modifications of all the variables in play can be easily performed and the related changes 

in the agents’ behavior can be detected and studied. Thanks to that, it is possible, for 

example, to test the assumptions of a specific model, to perform sensitivity analyses, to 

run what-if scenarios under different circumstances, etc. Netlogo can be interestingly 

employed also in the managerial studies. Its pragmatism and simplicity make the 

programming of agent-based models (ABM) very handy. Management-related issues often 

pertain decision-making under uncertain conditions and bounded rationality. In 

Netlogo, both these limitations can be taken into consideration when defining the 

interacting agents in the model. Thanks to this approach, firms can be described in a more 

realistic way than in other theoretical frameworks, such as the neoclassical one. In 

conclusion, it is believed that Netlogo represents potentially an extremely useful tool both 

for the understanding of complex systems and for the research about strategic group 

emergence.  
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3.1 Description of the model 

 

 Replicating Lee et al.’s model using Netlogo serves the purpose of testing the 

consistency of the aforementioned theoretical assumptions, observing the similarities and 

discussing the differences with the current model. Replicating successfully a model is an 

important theoretical achievement, since it provides great validity to the findings. The 

program is available in Appendix A. The way in which the features of Lee’s model have 

been translated in Netlogo will be shortly analyzed. 

In Netlogo, it is necessary to first define the agents at issue (which are called here 

“turtles”) and their attributes. The first attribute of the turtles (the firms in this case) is 

the product quality35, which has been defined as the variable x linked to the following 

payoff function: 

 

𝑦 =  𝑠𝑖𝑛𝑒 (3𝜋𝑥)  +  3𝑥 

 

The product quality of the first generation of agents is randomly generated. It is assumed, 

as Lee et al. does, that all the firms start operating in the low-end segment (x < 0.5).  

In addition to that, each firm owns a probability (p), which represents the 

probability to either access or maintain the competitive positioning in the high-end 

segment, depending on the case: 

 

   p = MB  if age = 0 and n < S  

    p = SI  if age = 0 and n ≥ S 

    p = DC  if age > 0 

 

 
35 The product quality represents here the only strategic choice of the firm, as in Lee et al’s view. 
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As in Lee et al., if the firm is a potential new entrant in the high-end, then the success 

probability is either going to be provided by the mobility barriers (MB), if the number of 

incumbents is less than S (a threshold value for strategic interactions), or by the strategic 

interactions (SI) otherwise. Dynamic Capabilities (DC) are going to apply just for 

incumbents. It is possible to distinguish incumbents by new entrants in Netlogo by 

introducing another feature characterizing the firms: their age. For every generation in 

which a firm manages to survive in the high-end segment, the age value is increased by 

one. Therefore, each firm with an age higher than 0 is going to be incumbent, while new 

entrants’ age is going to be 0. 

 In addition to p, the turtles own r, a casual number from 0 to 1, drawn at the 

beginning of each new period. This number is necessary to randomly determine whether 

the firm is going to be successful or not in joining the high-end segment, according to the 

related probability. In fact, as seen in the previous chapter: 

 

𝑦 =  𝑠𝑖𝑛𝑒 (3𝜋𝑥) +  3𝑥  if 0 ≤ 𝑥 < 0.5 

𝑦 =  𝑠𝑖𝑛𝑒 (3𝜋𝑥) +  3𝑥  if 0.5 ≤ 𝑥 ≤ 1 and 𝑟 ≤ 𝑝  

            𝑦 =  0    if 0.5 ≤ 𝑥 ≤ 1 and 𝑟 > 𝑝 

 

By substituting p respectively with MB, SI and DC, depending on the case, Lee et al.’s 

payoff function is exactly replicated. The sharing function is similarly replicated by 

dividing the payoff y by m, a parameter that takes into account the neighboring firms to 

share the payoff with. To summarize, the firms (“turtles”) own the following 

characteristics: 

 

• Product quality (x). It represents a number from 0 to 1, related to the determination 

of the payoff (y) 
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• Payoff (y). It represents the payoff related to a determined choice in product 

quality. The final payoff is affected by the presence of neighboring firms (m) 

• p. It represents the probability for a firm to be successful in joining the high-end 

segment. It is described alternatively by the mobility barriers, strategic interactions 

or dynamic capabilities, depending on the case.  

• r. It represents a random number drawn each turn for each firm. It determines 

whether the firm is going to be successful (r ≤ p) or not (r > p) 

• age. It represents the age of a firm, conceived as the number of consecutive 

generations in the high-end segment. It distinguishes incumbents and potential 

new entrants (in the high-end segment) 

 

To function in Netlogo, some changes to the original model had to be done. An 

important modification pertains the way the numbers representing the product quality 

have been encoded. In fact, as mentioned above, Lee et al. conceived a number as a 10-bit 

string representative of a value between 0 and 1 (Lee, Lee & Rho 2002, p. 736). To perform 

the crossover, the offspring string was composed by one bit coming alternatively from 

parent 1 and one bit from parent 2, until the tenth and last bit of the string. Mutation was 

translated in the model language by setting a determined likelihood for each bit to 

change, as thoroughly described in the previous chapter. Encoding a real number as a 

binary string was really popular some decades ago, because of the limited technical 

possibilities available. Nowadays, thanks to innovation in the computer systems and in 

the softwares, it is possible to instruct the model using a simple real encoding.  

For the present model, a simple real number from 0 to 1 has been employed to 

describe x. Crossover is just a weighted average of the two parents’ product quality: 

 

xab = 𝜆 xa + (1 – 𝜆) xb 
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λ is generated randomly each generation. xa and xb represent respectively the product 

quality of parent 1 and parent 2. In this way, it is possible to determine in a much easier 

way the offspring product quality by calculating the weighted average between the 

selected parents. In addition to that, the fact that 𝜆 floats between a random value range 

(from 0 to 1) adds a stochastic component which makes crossover more dynamic. 

Mutation is operationalized similarly by adding a random value, which is a normally 

distributed floating-point number (z). The mean (μ) of the related distribution is 0 and 

the standard deviation (σ) is 0.2: 

 

      𝑥1 = 𝑥0 + 𝑧 

 

In Lee’s model, only the 5 new firms mutate each period.36 This assumption has been kept 

unaltered also in our model in order to be the closest to the original. 

The selection operator requires to be further discussed as well. In fact, in the 

original model the potential parent candidates’ payoff was positively correlated with 

their chances to be selected for reproduction. Lee et al. does not specifically mention the 

function determining the relation between probability to be selected and the 

performance.37 In order to translate the selection process in our model, a mechanism 

similar to the one described previously in “Robby the Robot” was employed. Five parent 

candidates are selected at random. Among them, the top performer is selected to be the 

first parent. The same operation is repeated to select the second one. In this way, both a 

stochastic and a performance-based way for capturing natural selection in the model is 

granted.  

 
36 “In our model, the 45 highest performers will not change their choices, given incomplete information”, 

(Lee, Lee & Rho 2002, p. 736). 
37 The authors just generically state that “In the language of GAs, this intuition is captured in the following 

selection rule: a probability for any firm to become a target of crossover in the next generation is 

proportional to its performance.” (Lee, Lee & Rho 2002, p. 736) 
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The most important features of the model have been analyzed. Further 

information is going to be provided when necessary in explaining the computational 

results of the simulation runs, which will be presented in the next paragraph.  

 

3.2 Computational results 

 

In order to make the comparability between the two models easier, the same 

structure in presenting the results will be kept. Therefore, the outcomes related to a 

“standard” scenario will be presented first. Lee et al. defines as standard the scenario with 

the following parameters: 

 

● MB: 0.10 

● SI: 0.10 

● DC: 0.96 

● 𝜎rivalry: 0.50 

 

The here reported graph represents the emergence of strategic groups in terms of 

percentage of firms in the high-end segment: 
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The green line represents a typical single realization. The volatility is high and strategic 

groups appear and disappear at a fast pace. The solid line shows the mean of 50 

simulation runs. Here it is easier to observe the overall trend. The percentage of firms in 

the high-end segments steadily increases until it reaches a value of ca. 30%. The below 

table recaps the most important parameters values: 

 

Measures Lee et al’s model Netlogo replication  

% of strategic group emergence 94% 88% 

% of firms in the high-end segment 18,5% 28,96% 
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The percentage of firms in the high-end segment is slightly higher than the one 

obtained by Lee et al. This happens most likely because of the difference in the selection 

operator and in the real encoding. This matter will be further discussed in the next 

paragraphs. Nonetheless, it is clearly observable how the outcomes of the current model 

over 50 simulation runs are consistent and comparable to the one reported in the previous 

chapter.  

In the following paragraphs, the key parameter of the model (MB, SI, DC, σ) will 

be modified to measure on which extent the final results are affected by this variation. 

Before doing that, some premises about the measures for detecting strategic groups are 

believed to be necessary.  

 

Measuring strategic group emergence 

 

The measures considered in the present chapter will be mostly these: 

 

• Percentage of Strategic Group emergence 

• Percentage of Firms in the high-end segment 

 

The first one had been conceived by Lee, Lee & Rho (2002, p. 746). as the percentage of 

the simulation runs that produced a strategic group at period 2000 (the last one). The 

second one, strictly related to the first, reports the average number of firms in the high-

end segment when the afore-mentioned strategic group existed at period 2000. For the 

sake of simplicity, the measures of “Duration” and “Difference” (Lee, Lee & Rho 2002, p. 

746) are not going to be taken into consideration here unless necessary to further explain 

the results or validate Lee et al’s propositions, since they did not offer useful insights in 

most of the cases and provided redundant results. 
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 Some modifications to the way group structures are detected have been attempted 

in the present work. In fact, according to current view, strategic groups are considered as 

existing if and only if they are present at the 2000th period. That arguably fails to fully 

represent the phenomenon of strategic group emergence and poses a serious threat of 

invalidating the computational results. In fact, the period number in which a strategic 

group randomly appears or disappears should not affect the results on such a high extent. 

According to the current definition, for example, if a high-end strategic group emerged 

at period 2 and disappeared at period 1999, it would not be reported. The program would 

just consider the 2000th period, in which the group structure was not present anymore. 

The percentage of strategic group emergence would be 0 for that simulation run. To take 

similar cases into account, an alternative definition to the two measures have been 

proposed: 

 

• Percentage of Strategic Group Emergence: It represents the percentage of periods, 

within the entire simulation run, in which a group structure was present 

• Percentage of Firms in the high-end segment: It represents the percentage of firms in 

the high-end segment over all the periods, within the entire simulation run 

 

When many simulation runs are analyzed, these two measures will be represented by the 

mean of the above values. According to this new way of measuring strategic groups, the 

“Percentage of Strategic Group Emergence” in the above-mentioned example would be 

99.9%, instead of 0% as in the previous case. Of course, that was an extreme example and 

the difference is usually not so high. However, it is believed that these definitions can 

better capture the considered phenomenon. In the following part of this chapter, both the 

two definitions are kept in order to make the model comparable with Lee et al’s.  

After having clarified these premises, the computational results related to the 

variation of each one of the key parameters (MB, SI, DC, σ) will be now reported. To 
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accomplish that, the Netlogo functionality “Behavior Space” has been employed. 

Behavior Space is an extremely useful tool for such a purpose. In fact, it allows the user 

to run a model many times, systematically varying the model’s settings and recording 

the results of each model run. In this way, it is possible to explore the model further and 

observe which combination of parameters causes the behaviors of interest.  

 

Mobility Barriers 

 

In the below table the computational results of 10 simulation runs for each MB 

value from 0.01 to 0.10 are reported, while the other parameters are kept unaltered as in 

the standard scenario.38 

 

 

The table presents the percentage of strategic group emergence and firms in the high-end 

segment in two alternative ways: the first one (*) as conceived by Lee et al. and the second 

one (**) according to the new definition provided in the previous paragraph. The two 

values reported are similar, but the second way of detecting strategic emergence seems 

to capture better the phenomenon and to exclude outliers. That is clearly visible for 

 
38 I.e. MB-SI = 0, σ = 0, DC = 96 
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example for low MB values. The percentage of strategic group emergence is equal to 60% 

for MB = 0.03 and to 20% for MB = 0.04. This result is not consistent with the general Lee 

et al’s proposition stating that the emergence of a group structure is positively correlated 

with the increase in MB. In this case, instead, a higher MB value presents a lower 

percentage of group emergence. That was most probably just due to pure chance. It is 

possible to prove that by analyzing all the 2000 periods of the simulation run and not just 

the last one. As shown in the table, the results of MB 0.04, according to the new definition 

of group emergence, are perfectly consistent with Lee’s own proposition and in line with 

the overall trend. That proves that the units of measures, as defined in the previous 

paragraph, are more effective in describing the phenomenon. However, both of them are 

going to be kept in order to keep consistency and comparability with Lee et al’s results. 

 The below line graph sums up the results of the simulation runs in a clearer way: 

 

 

The trend describing the emergence of a group structure is consistent with Lee et 

al’s findings (Lee, Lee & Rho 2002, p. 741). It is clearly positively correlated with MB. A 

slight difference in the results can be observed in percentage of group appearance for low 
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MB values. In fact, despite the similar trend, the emergence of strategic groups is in that 

case higher. Two possible reasons can explain that difference. The first one is the already 

thoroughly discussed difference in conceiving the measures, which can be observed 

thanks to the above table. The second one is probably attributable to the mutation 

operator. In the present model, as said above, the newly-born firm mutates according a 

normally distributed random floating number. The mean of that distribution is 0 and the 

standard deviation is 0.20. These values were necessary in order for the model to work. 

In fact, with the assumption of all the firms beginning operating in the low-end segment, 

a sizeable mutation was necessary to let some firms enter the high-end and trigger the 

strategic interactions. As mentioned in the previous chapter, the authors conceive the 

strategic choice (the product quality) as a 10-bit string, whose percentage to mutate is 

0.005% per bit (for a total of 0.05% for the entire string). In the current model, which 

employs a real encoding, such a low degree of mutation was not sufficient for igniting 

interaction dynamics between firms.39 Therefore, a higher range and likelihood of 

mutation has been provided to the agents. Firms, by mutating more and more often, have 

more chances to reach the high-end segment. However, it must be noticed that this fact 

does not undermine the consistency of the model. In fact, the percentage of firms in the 

high-end segment for low MB values is perfectly consistent with Lee’s results. Even if 

lucky firms manage to enter the high-end segment thanks to mutation, they are too few 

to grant a long-lasting survival due to the adverse circumstances (high mobility barriers). 

The high-end group is likely extinguished after few generations. That is why the 

percentages of firms in the high-end segment for low MB values is around 2%, which is 

very similar to Lee et al’s findings for the same scenario.  

 

 
39 Using a binary encoding, it is possible to obtain huge mutations if the initial bits change. The potential 

mutation range is way higher, even though the likelihood for mutation is lower than in the Netlogo 

replication  
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The overall trend of the percentage of firms in the high-end segment is, again, 

comparable to results of the previous model. The only difference can here be observed 

with high MB values. The percentage of firms in the high-end segment for MB = 10 is 

higher than the one reported by Lee, Lee & Rho (2002, p. 741), which was 18,5%. This 

difference has already been underlined when presenting the results of the standard 

scenario above. As mentioned before, the reason for that can be attributed to the selection 

operator. The authors do not explicitly explain how the parents are selected. It is just said 

that the higher the performance, the higher the probability to be selected as a parent. The 

function describing this probability is not reported. The selection process in the present 

model, described above, was conceived to take into account both chance (the selection of 

the 5 candidates is done randomly) and performance (the best one among them is picked), 

in absence of more precise information about the way in which was done in the model by 

Lee et al. By comparing the results, it can be concluded that the top performer’s likelihood 

to be selected as a parent must be higher in the current model than in the previous one. 
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In fact, the percentage of firms in the high-end ends up being slightly higher, even if the 

overall results are comparable anyway. 

The proposition 1b stated that the higher the mobility barriers, the higher the 

performance difference between the two groups (Lee, Lee & Rho 2002, p. 732). The 

performance difference is strictly linked with the percentage of firms in each of the two 

groups. In fact, the final payoff is dependent on the sharing function, which in turn is 

dependent on the number of neighboring firms. After it has been proved that the number 

of firms in the high-end is higher for low mobility barriers, it may be redundant to state 

that the performance is higher for high mobility barriers, since they are inversely 

correlated. However, in order to provide a full overview and comparison between the 

two models, the performance difference between the two groups was tested also here. 

That was done by analyzing the performance of sample groups representing each of the 

two strategic choices for different MB values: 
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As shown in the line graph, the values of the two different payoffs tend to converge as 

MB increases. This data further confirms Lee et al’s proposition 1b. 

In conclusion, it can be said that the above results corroborate overall Lee et al’s. 

findings about mobility barriers: the higher the success probability for firms trying to join 

the high-end segment (MB), the more likely for a strategic group to emerge and, at the 

same time, the lower the performance difference between the two groups. 
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Strategic Interactions 

 

In the below table, the computational results of 10 simulation runs are reported for 

each PSI value from 0.00 to 0.10, with all the other parameters being equal to the standard 

scenario above described: 

 

  

 

PSI is a variable conceived for modeling purposes, which represents the preemptive effect 

of strategic interactions. Strategic interactions (SI) are equal to MB – PSI. Given that SI 

must be always higher or equal to MB, PSI value has to be comprised between 0 and MB. 

When PSI is 0, SI and MB have the same value. That means that no preemptive effects 

from firms in the high-end segment come into play. As before, the two different units of 

measures are both reported (* for the original one and ** for the other). 

Let us analyze now the computational results and compare them with the ones 

presented in the previous chapter: 
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The line graph shows a net increase in the percentage of strategic group emergence from 

PSI 0.09 to PSI 0.00. The trend nonetheless is not easy to identify and is surprisingly 

fragmented: the likelihood of a strategic group structure increases from PSI 0.09 to PSI 

0.06, but then a deflection is observable in PSI 0.05, PSI 0.03 and PSI 0.01, with some peaks 

reached at PSI 0.04, PSI 0.02 and finally PSI 0.0. These results are similar to the ones 

obtained by Lee, Lee & Rho (2002, p. 741). A possible explanation to this interesting 

phenomenon may be found in the asymmetrical effect of SI, which affects just potential 

new entrants when a threshold for triggering strategic interactions (S) is reached. Before 

that threshold value is reached (in the current model 5 firms are needed), the probability 

to join the high-end segment is equal to MB. SI is therefore irrelevant. That is why results 

oscillate in this way and a lower SI run might end up reporting a higher percentage of 

strategic emergence. This is confirmed also by the percentage of firms in the high-end 

segment, which is almost the same regardless of the SI values, except for high PSI values, 

as shown in the graph below: 
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The above graph shows how the percentage of firms in the high-end segment is 

positively correlated to the increase in SI. The difference with Lee’s et al’s results is yet 

again related to the lower PSI values (SI = 10), similar to the previously described 

scenario, which represents its equivalent. The reasons for that are most likely attributable 

to the same causes as the one described above: real encoding and selection operator. 

The performance difference between the two segments has been analyzed also in 

this case, in order to corroborate Lee, Lee & Rho’s proposition 2, which stated that the 

higher the preemptive effects of incumbents in the high-end, the higher the performance 

difference (2002, p. 734): 
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The above graph shows clearly that the payoff of the high-end segment increases as the 

preemptive effects increases.40 The difference between the performance of the two groups 

is higher for high PSI values as well. 

From the above data, it is possible to conclude that our model is able to replicate 

closely Lee et al’s also with respect to strategic interactions and validates their related 

proposition. In the next paragraph, the dynamic capabilities will be taken into 

consideration. 

  

 
40 PSI is equal to MB-SI. When PSI is 10, it means that the preemptive effect is at is maximum (PSI = MB). 
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Dynamic Capabilities 

 

The below table reports the results over 10 simulation runs for each DC value from 

0.8 to 1, with 0.02 intervals:  

 

 

 

The data confirms Lee et al’s proposition 3 about dynamic capabilities: the higher the 

firm’s ability to adapt to changes in the environment, the more likely it is going to survive 

in the high-end segment. The percentage of strategic group emergence and percentage of 

firms in the high-end segment steadily grow as DC increases.  

Let us analyze in more depth the data related to strategic group emergence: 
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The results in this case are almost the same as the ones obtained by Lee et al’. Strategic 

group emergence is positively correlated with the increase in DC. The data about the 

firms with a high product quality are worth discussing in more depth: 
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A small minority of firms is present in the high-end segment for low DC. In fact, the 

absence of the ability to adapt to changes in the outside environment do not let them 

exploit their competitive positioning for a long time. The high-end strategic group starts 

increasing until it reaches a value of about 70% when DC is equal to 1. It is worth 

considering why the high-end group stops at that percentage and does not grow until 

including every firm in the industry. In fact, if every firm that manages to enter the high-

end segment has a 100% probability to maintain its competitive positioning (DC = 1), 

shouldn’t all the firms, reshuffling their strategic choice, eventually end up there? The 

answer is negative. In fact, a firm’s objective is not to enter the high-end segment per se, 

but rather to have the highest payoff possible. Because of the sharing function, the more 

firms are present in a determined group, the lower the individual profits are going to be. 

When about 70% of the firms are in the high-end strategic group, the payoff related to the 

high-end group starts to be balanced with the one provided by joining the low-end 

segment, until the last ends up being more profitable than the other. At this point, the 

new entrants are likely to start imitating firms in the low-end, until the high-end will be 

again the most profitable between the two. That will trigger again the imitation of high-

end firms, and so on. The market reaches a dynamic equilibrium, regardless of the 

number of generations. Hereby is reported a graph, which replicates the exact same 

scenario (DC = 1), but the length of the run is 4000 periods (instead of 2000): 
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The results oscillate between the same values potentially forever. Firms enter and exit the 

high-end depending on which one is the most profitable between the two. The payoff 

difference between the two strategic groups clearly reflects these dynamics: 
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The payoff reaches an equilibrium around the 250th period, which lasts until the end of 

the simulation. Similar results on the matter are achieved also by Lee, Lee & Rho (2002, 

p. 742).  

 In conclusion, it can be stated that the dynamics generated by the variation of DC 

values replicate satisfactorily Lee et al’s once again. 

 

Boundary of Rivalry 

 

The data shows that the higher the boundary of rivalry, the lower the probability 

for a strategic group to emerge: 

 

 

Strategic emergence diminishes as σ increases, because the payoff degradation of the 

high-end firms makes them a less appealing target for imitation. In fact, the sharing 

function, applied to all the firms in the industry (σ = 1), determines an overall worse 

performance. That is clearly shown by the below table, which compares the performance 

between the two groups over all the σ values considered: 
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The difference between the two payoff tends to 0 as σ tends to 1. That is why the 

percentage of strategic group emergence diminishes for higher boundaries of rivalry: 
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However, the results slightly differ from the one by Lee et al. in that the percentage of 

strategic group emergence is higher in our model for high σ values.41 This is probably 

attributable once again to the higher degree of mutation. In fact, the percentage of firms 

in the high-end segment for σ = 1 is exactly the same as in Lee et al’s findings (8.17% vs 

8.15%): 

 

 

 
41 The authors report a 36% percentage of strategic emergence for σ = 1 (Lee, Lee & Rho 2002, p. 743).  
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In conclusion, it can be said that the above data validates Lee, Lee & Rho’s 

proposition 4 (2002, p. 735), which states the negative relation between σ and strategic 

group emergence. 

 

Conclusions 

 

 In the present chapter, the model by Lee, Lee and Rho has been replicated from 

scratch. From the above data, it is possible to conclude that the current Netlogo model is 

able to replicate closely Lee et al. This represents the first important result of the present 

work. The slight differences with the past model can be attributed to modeling 

differences and incomplete information, such as the different way of encoding product 

quality (binary, in the case of the original model, real in our case) and in the way the 

selection and mutation of the agents are operationalized. Nonetheless, Lee et al’s 

propositions, delineated in the previous chapter, have been validated by the data 

reported. 

In the following chapter, some of the assumptions underlying the current model 

are going to be challenged and some attempts to modify the model accordingly will be 

tried. Comparing the related changes in the firms’ behavior is believed to be extremely 

useful in gaining a deeper understanding about the phenomenon of strategic group 

emergence. 
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4. Rethinking Strategic Group Emergence 

 

In the previous paragraphs, J. Lee, K. Ree, S. Rho’s GA-based model on strategic 

group emergence was thoroughly discussed and then successfully replicated using 

Netlogo. In the last chapter of the present research, some of the assumptions underlying 

that model will be challenged and the code will be modified accordingly. Thanks to that, 

it will be possible to observe and study how the related changes affect the behavior of the 

firms and draw some more general conclusions about the phenomenon of strategic group 

emergence. Moreover, modifying the context of interactions without compromising the 

overall consistency of the results further validates the significance of the strategic group 

theory. In the following paragraphs, the magnitude of the modifications to the model will 

gradually increase. At the beginning, just slight changes and fine-tuning alterations will 

be enacted. Later on, the underlying assumptions will be radically challenged, with a 

dramatic impact on the model itself. 

 

4.1 Population 

 

The first modification to the original model pertains the size of the firms’ 

population. In fact, one of the unaltered assumptions throughout all the analyzed 

scenarios so far was that the number of firms within the considered industry was always 

50. This number was believed by Lee et al. to make it possible to observe the agents’ 

behavior and draw some consistent conclusions, while at the same time preventing the 

dataset to grow to a difficult-to-handle size. However, it is not clear in which way, if any, 

the number of firms in an industry affects the final outcomes of the system. Theoretically, 

the results should be the same in percentage regardless of the size. In the current 

paragraph, this proposition is going to be tested. 



79 

 

From a modeling point of view, finding an answer to this issue is more difficult 

than it may seem at a first glance. In fact, it is not sufficient to just vary the number of 

firms and observe what the outcomes are. If it were the case, Lee et al. would have 

probably already done that. In the code there are actually many parameters whose values 

are strictly linked to a determined quantity of firms. For example, it has been assumed 

that the original number of individuals is always stable: the number of agents “dying” 

each period is the equal to the one of the new-entrants. With the current setup, 5 new 

firms, or 10% of the firms (with a population of 50 agents), are replaced each generation. 

If the firms were 200, that number would represent just the 2.5% of the total. How does 

that affect the final outcomes? Consider also the selection operator. To generate the new 

individuals, 5 firms are selected at random42 over the entire population and the best 

performer among them is selected to be the first parent. What would change if the firms 

were 200?  

The answer to these questions highly depends on the way the parameters related 

to the population size are conceived. In fact, the way these parameters change with the 

population size has to be established first. To perform the first simulation, the following 

assumptions have been made: 

 

• S (the threshold for strategic interactions) has been set to 5 regardless of the 

number of firms. In fact, there is no reason why the number of firms triggering 

cooperation among incumbents should depend on the total number of firms 

within an industry 

• The new-entrants every period represent the 10% of the total population 

• The number of potential parent candidates (the “tournament-size”) represents 

the 10% of the population 

 
42 In the model, this 5-firms sample has been operationalized with a parameter called “tournament size”. 
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50 simulations were respectively run for a population size of 50, 100, 150 and 200 firms. 

The parameters were set to the values used in the standard scenario, i.e.: 

 

MB: 0.10 

SI: 0.10 

DC: 0.96 

𝜎rivalry: 0.50 

 

The results are depicted in the following graph: 

 

 

 

From the above graph, it seems that the population size is positively correlated with the 

percentage of firms in the high-end segment. At a closer look, though, it seems that the 

most evident gap is between the 50-firms size and the others. In fact, it is possible to 

observe a more than ten percentage points gap with the other scenarios. However, the 
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correlation between number of firms and strategic group emergence is not so 

straightforward. In fact, the highest percentage of high-end firms has been reported by 

the 100-firms scenario, followed by the 150 one and then by the 200. This result is 

surprising and unexpected. It is unlikely to be the result of pure luck, since 50 simulations 

are enough to soften volatility. In the following table, it is possible to examine the 

difference in the average percentage of high-end firms for every scenario: 

 

Notice that in the current scenario there is no collusion operated by incumbents: 

the preemptive effect of strategic interactions was 0. The parameter S was therefore 

irrelevant. This premise was modified in order to observe how firms’ reactions differ 

depending on the industry population, when strategic interactions come into play. In this 

scenario, PSI (the preemptive effects of strategic interactions) was therefore set to 0.05 (SI 

is therefore 0.05 as well). The other values have been kept unaltered. The below graph 

shows the related results: 
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Under these circumstances, the population size seems to be actually a factor in 

determining the percentage of firms in the high-end segment. The trend can be now 

recognized easily: 

 

With the performed modifications to the model, it can be concluded that the number of 

individuals is positively correlated with the emergence of more numerous strategic 

groups. These results can be most likely attributed to the increasingly higher 

“tournament-size” and to the higher number of new-entrants for each generation. In fact, 

even if those numbers are equal in relative terms (the percentage on the total is the same), 

in absolute terms it is of course higher. That contributes in triggering a faster, positive 
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feedback from the system and in diluting the stochastic component, given the higher 

number of interacting agents. 

 To test this proposition, a final experiment was conducted. In the last scenario, the 

code has been kept unaltered with respect to the previous setup. The number of firms 

drawn during the selection process (“tournament-size”) is always 5, regardless of the 

number of individuals in the population. The same applies as well to the number of new 

entrants every period (always 5). The parameters have been set again to the values of the 

standard scenario. The below graph shows the related results: 

 

 

 

In this case, it seems that the number of firms is negatively correlated to the percentage 

of strategic group emergence. That can be explained because of the higher relative weight 

of the stochastic component. In fact, if a firm manages to enter the high-end segment 

successfully, it will be hardly selected as possible parent if the population of agents is too 

numerous. The parent candidates are just 5, which, in the 200-firms case, represents only 
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2.5% of likelihood (5% for both the parents). The best performer is going to be selected 

just 1 time out of 20. In the 50-firms scenario, instead, the probability is 20% considering 

both the parents. These findings are further validated in the table below, representing the 

average number of firms in the high-end over the entire simulation periods: 

 

 Modifying the population of firms brought to inconclusive results: depending on 

the cases and on the way the code was modified, the model reported different and often 

conflicting outcomes. Probably, that shows only that the model in question must be 

interpreted as a mere testing environment or a proof of concept which allows the 

researcher to observe the dynamics of strategic groups from a privileged point of view. 

However, its nature should not be misinterpreted by pushing this mock-up too far and 

by trying to operationalize overcomplicated aspects typical of the real-world conditions, 

among which the number of firms in a determined industry.  

 

4.2 Selection 

 

Excluding organicist biases 

 

 Another necessary modification to the original assumption pertains the selection 

operator. J. Lee, K. Ree, and S. Rho translated in their model A. Alchian’s intuitions on 

strategic interactions between economic agents. The organicist theoretical framework 

influenced the way in which the different operators in the model have been conceived. 

As seen in the previous chapters, innovation and entrepreneurial activity, for example, 

were associated with the random mutations which living organisms are subject to. The 
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generation of new firms, then, was considered as the equivalent of the generation of new 

individuals from two different parents in nature and modeled through the selection 

operator. 

 Such an evolutionary approach contributed fruitfully in gaining a different 

perspective and a deeper understanding of firms’ behavior, freeing the economic doctrine 

by an excessive mechanism and determinism. Nonetheless, it is necessary to be cautious 

when using metaphors in a scientific field like this one. In fact, interpreting the firm 

literally as a living being might contribute to deceptive results. One of the possible 

misunderstandings has been identified in the selection operator. In fact, why should a 

new firm need two “parents” to be generated and enter the market? It could be rather the 

case in which the target for imitation is just a single successful firm. The rational 

motivation behind the generation of two firms by exactly two parents is not clear and Lee 

et al. does not expressly explain the reason for this choice (besides the fact that it replicates 

the natural reproduction). The consistency of the selection operator is not called into 

question here. In fact, thanks to the numerous simulations done in the previous chapters, 

the fact that the model works is beyond any doubts. Nonetheless, it must be proved that 

also different and equally coherent ways of conceiving the selection operator provide 

similar results. Otherwise, the model would highly depend on an entirely conjectural 

hypothesis, based not on rational assumptions but rather on a specific human tendency 

to interpret reality using metaphors. The overall results of the previous simulations 

would be deeply biased. 

 In order to prove that the model works also with a different selection operator, this 

last one was modified. The procedure replicates closely the previous one: the only 

difference consists in the fact that just one “parent” is selected now: 

 

xb = 𝜆xa  
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λ has been modified as well. In the previous versions of the model, it represented a 

random number between 0 and 1, which changed each period. Thanks to it, it was 

possible to randomly calculate a weighted average between the two parents. At the 

present state, with just one parent, it did not make sense to keep the previous definition 

for λ. Therefore, in the present model λ represent a random number, drawn following a 

normal distribution of probability having mean (μ) = 1 and standard deviation (σ) = 0.5. 

The model requires no further modifications and everything else in the code has been 

kept unaltered. 

To prove the consistency of the results also under these circumstances, 50 

simulations have been run, setting the parameters to the standard scenario values. The 

results for these simulations are the following: 

 

 

 

As shown by the graph, the data is clearly comparable to the ones obtained in the 

previous model under the same circumstances. In fact, the final percentage of high-end 

firms is almost equal (26,28% vs 28,96%). Thanks to this data, it is possible to conclude 

that the model results do not depend on biased assumptions guided by an organicist 
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approach and is perfectly coherent also with different hypothesis about the selection 

operator.  

 

The role of randomness  

 

One of Lee et al’s fundamental assumptions originally was that the best 

performing firms had a higher probability to be selected as targets for imitation. In our 

previous model, that was taken into account by adding a stochastic component: the top 

performer was chosen among 5 parent candidates that were selected at random. Both 

performance and chance were involved in the process.  

However, it could be argued that this partially contradicts the premise of 

information incompleteness, set by A. Alchian and in principle followed by Lee et al. 

themselves. Economic agents cannot precisely know which firm is performing better 

according to the specific payoff function in play (which they do not know either). The 

question therefore is: what would it happen if the assumption of information 

incompleteness were brought to its extreme consequences and firms would choose the 

target for imitation completely at random? Would strategic groups still emerge? Such 

questions may seem to refer to a scenario which is very far from reality, since it is 

dominated by randomness. Yet, finding an answer could help in gaining a deeper 

understanding about the role of chance in the strategic groups’ dynamics. In fact, 

comparing the results under these new conditions with the previous ones could help in 

understanding to which extent the quality bias in the selection operator contributes to the 

development of specific strategic groups dynamics.  

Moreover, finding reasonable motives to challenge the fact that firms are selected 

according to their economic performance is not too difficult. It could be even argued that 

a world dominated by randomness is closer to reality than Lee et al’s scenario. In fact, the 

motivation to imitate a specific target may be highly subjective and not necessarily related 
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to economic performance per se. Moreover, the motivations of each economic agent may 

vary: one firm could favor the economic performance, another the simplicity of imitation, 

and another one again the fitness with future forecasts or expectations. Theoretically, it 

would be possible to determine for each agent the weights assigned to each dimension of 

value and program the model to take that into account in the choice. However, that would 

be almost equal, in terms of results, of establishing that every firm selects its targets at 

random. In conclusion, a strictly performance-based guide of action for economic agents 

may even oversimplify the reality more than a totally random choice of targets for 

imitation.  

To take those considerations into account, the selection operator has been 

modified in the Netlogo model so that the 5 new firms choose their parents completely at 

random. The new offspring now just selects by chance one among the 45 surviving firms 

each period as first parent and then it does the same for the second one. The resulting 

strategic choice of the new firm is again the weighted average of the two parents: 

 

xab = 𝜆 * xa + (1 – 𝜆) xb 

 

The procedure replicates exactly the one proposed in the previous chapter. The difference 

pertains just the way the parents (xa, xb) are selected. 

 In order to be able to observe the firms’ behavior under these new conditions, 50 

simulations have been run. The parameters values are the same of the aforementioned 

standard scenario, with all the firms starting in the low-end segment (x < 0.5): 
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 From the above graph, it can be concluded that no strategic group emerges in the 

long term if targets for imitation are selected completely at random. No clear trend is 

identifiable, the firms in the high-end group oscillate between a range of 2-4%, which 

means 1-2 firms on average. This number is steady over all the 2000 periods. The few 

firms that manage to enter the high-end segment are the ones subjected to extremely 

favorable mutation. That does not trigger any response by the other firms, though: targets 

are randomly selected. Because of the limited dynamic capabilities, those lucky firms are 

not able to maintain their competitive positioning long enough to trigger high-end 

strategic interactions. 

 In the present model, it has been assumed that firms start operating in the low-end 

segment. It is interesting to modify this assumption, in order to verify whether that affects 

the dynamic of emergence of strategic groups. In the below graph, the firms start initially 

with a random x value (product quality) comprised between the entire product space (0-

1). 50 simulation runs under the same circumstances have reported the following data: 
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The firms operating in the high-end segment rapidly disappear throughout the periods 

because of the limited dynamic capabilities. The firms are not able to keep their 

competitive positioning on the long run because of the random selection of the firms to 

imitate. The final results are equal to the ones of the previous graph, where all the agents 

started operating in the low-end. The data clearly show that the initial strategic choice 

does not affect at all the dynamics of strategic group emergence under these 

circumstances. 

 One last simple modification to the model, which could be useful in better 

understanding the role of chance, consists in the complete removal of randomness in the 

parents’ selection process. What would it happen if just the best firms among all the firms’ 

population are picked to generate the new offspring? To implement that in Netlogo, the 

code has been changed so that the new entrants pick up the top performers among all the 

firms (and not anymore among a random sample of 5 firms). In this way, the stochastic 

component of the selection operator is completely removed. 50 simulation runs, with all 

the parameters equal to the standard scenario, have reported the following data: 
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As shown in the graph, if the new entrants select only the best performers, the system 

reaches soon (in about 300 periods), a situation of dynamic equilibrium between the 

payoff of the high- and low-end segment, with the percentage of firms in the high-end 

slightly below than 70%. This condition is similar to the one described in the previous 

chapter, when the dynamic capabilities were equal to 1. Despite being a quite unrealistic 

scenario, it helps in further understanding the role of chance. It can be concluded that 

mobility barriers, preemptive interactions by incumbents and limited dynamic 

capabilities do not explain alone the fact that usually just a minority of firms operate in 

the high-end segment. In fact, if firms were able to imitate successfully the best 

performers every time, the strategic group dynamics would be described by the above 

graph, even for low success probabilities to enter the most profitable segment. In the real 

world, though, it is never possible to imitate another firm so easily and exactly as in the 

current model. That is why the strategic group dynamic emerging in the original model 

seems to be much more familiar than these ones.  
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4.3 Mutation 

 

In this paragraph, the mutation operator is going to be deeply analyzed and 

modified according to different assumptions. In the original model, mutation affected 

just the 5 new firms that were created each generation, substituting the worst performers. 

This premise will be challenged here. In fact, it is indeed believed to be very unrealistic. 

Lee et al. refer to “mutation” as the correlative of an “exploratory or entrepreneurial-type 

activity” or “innovative search” (Lee, Lee & Rho 2002, p. 736). Why should incumbents 

not be affected by that and why should that possibility be prerogative just of the new 

entrants? In reality, incumbents in a determined industry are hardly willing to give up 

the opportunity to innovate and explore new possible and profitable strategies. The R&D 

departments of firms can be as innovative as entirely new ventures. It is rather unrealistic 

not to take into account innovation for incumbents, be it intentional or the mere product 

of chance.  

Therefore, the model was modified in order to observe the impact of a wider 

concept of mutation on the behavior of the agents. It was assumed that each firm has a 

5% probability to mutate. When a firm undergoes such a change, a random number is 

added (or subtracted) to the original value representing the strategic choice of the firm 

(in our case, x, the product quality). A normal probability distribution with mean (μ) = 0 

and standard deviation (σ) = 0.15 determines the likelihood of a determined number to 

be picked and, therefore, establishes the magnitude of the mutation. A firm may both 

increase and diminish its product quality (x) when it mutates. Notice that the increase in 

the product quality does not automatically represent an increase in performance (and the 

other way around), because of the sharing function. 

With the standard parameters’ values, 50 different simulation runs gave back the 

following results: 
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The line graph shows a dynamic of strategic interactions which is similar to the one 

replicating Lee et al. The percentage of firms in the high-end segment after 2000 periods 

is very similar to the previous one (28.88% vs 25.88%). The percentage of strategic 

emergence is, instead, lower:  

 

Measures Current model Previous model 

Percentage of strategic group emergence 56,36% 88% 

Percentage firms in the high-end segment 25,88% 28,96% 

 

That is probably explainable with the relatively lower magnitude and likelihood of 

mutation. Previously, just the 5 new firms were assumed to mutate every period, 

following Lee et al’s assumptions. In the present scenario, it has been assumed that, on 

average, just 5% of firms mutate. That means that on average 2,5 firms mutate each time 

(and with a lower standard deviation). Strategic groups are therefore slightly less likely 

to emerge.  
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Despite that difference, the dynamic of interaction is entirely comparable, 

especially in the cases in which strategic groups do emerge. It is interesting to notice how 

mutation - which, as defined above, is here meant to be innovative and entrepreneurial 

research, is fundamental to unlock new and profitable opportunities. In fact, if firms were 

not able to innovate, it would not be possible in any way to access the high-end segment, 

assuming that no firm starts operating there from the beginning:  

 

This statement is completely consistent with the original premises: firms have no chance 

of radically changing their strategic choice without innovation. They are just going to 

keep imitating each other continuously, remaining in the low-end segment forever.  

However, would the results change assuming that the firms started operating 

within the entire product space? The code has been modified to answer to this question: 
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Interestingly, even in this case the line describing the high-end firms’ population would 

be static and stable, with no particular identifiable trend. This outcome is quite surprising. 

In fact, one would expect the firms to reach a dynamic equilibrium, where the low-end 

and the high-end firms’ payoffs are equal. With the selection operator still biased towards 

economic performance, the top firms in the most profitable segment should be targeted 

for imitation by the new ones, triggering a positive feedback in the system which would 

stop just when the payoffs of the two groups are equal. That case was already analyzed 

previously and the percentage of firms in the high-end should reach about 70% of the 

total. Here the mean over 50 simulations is about 50%.  

To understand the reasons for this phenomenon, the individual realizations have 

been analyzed one by one. Taking a closer look to the reported data, it has been noticed 

that the above graph represents the theoretical mean of two very different and opposite 

scenarios. Below these two typical individual realizations are graphically described: 
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These two lines constitute the most representative cases that can be observed among the 

entirety of the simulation runs. The blue line represents the most straightforward and 

corresponds to the one described above: thanks to imitation (the selection operator), the 

percentage of the firms in the high-end increases until the payoff between the two 

strategic groups is equal. The second scenario is very interesting and unexpected. 

However, by now it should be clear that emergence of hard-to predict behaviors is one of 

the main characteristics of complex systems. In the cases described by the orange line, the 

high-end segment disappears in few generations, probably because of bad luck in 

selecting the parent candidates (notice that the selection operator keeps here its stochastic 

component, described previously) and due to the limited dynamic capabilities. This can 

lead ultimately to the extinction of the most profitable strategic group. Once no strategic 

group is present anymore, there is no possibility for it to emerge again. As in the scenario 
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in which every firm started in the low-end segment, firms just stick there without any 

chance to innovate (there is no mutation) and to reveal new profitable opportunities. The 

second case described here does not represent a unique exception: it actually realizes in 

the 24% of the cases.43 

In conclusion, innovation (mutation) can be recognized as the key for unlocking 

new potential market opportunities and favorable competitive positioning. In the model 

the state of the world is oversimplified through both the payoff function, representing 

the ultimate horizon of possibility and decision-making for firms, and product quality, 

representing the only possible strategic choice. Reality is of course much more complex 

and the role of entrepreneurial innovation is even more crucial. In fact, multiple possible 

payoff functions coexist on multiple dimensions. Innovators have the possibility to 

unlock this potential on multiple levels and capture value out of innovative strategic 

positioning. 

 

4.4 The payoff function44 

 

 In the conclusive part of their work, Lee et al. pointed the way of possible future 

lines of research on strategic group theory:  

 

 “Our model is a kind of idealization and thus leaves many caveats and limitations […] In 

reality, changes in payoff structure are possible with environmental change such as regulatory and 

technological changes.” (Lee, Lee & Rho 2002, p. 744) 

 

The payoff function represents in the simplification of the model the entire horizon of 

possibilities within which the firms act. Modifying it allows to observe the firms’ 

 
43 In fact, it happened 12 times out of a total of 50 simulation runs. 
44 The code related to this scenario is attached in Appendix B 
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adaptation to the new context and the impact on the phenomenon of strategic 

interactions, when the “rules of the game” change. Finally, this modification represents a 

significant proof of concept, which shows clearly the extreme flexibility and adaptability 

of the model to different circumstances. That makes it possible to study different 

scenarios according to entirely different original assumptions. 

For these reasons, the authors’ challenge was accepted in the present research. 

Changing the payoff function means at the same time modifying deeply the code 

underlying the model. In fact, many mechanisms in play in the program are dependent 

on the payoff of each individual agent. Parents, for example, are more likely to be selected 

when they have a high economic performance, for example. Each period, then, the worst 

performers are substituted, and so on. When the payoff function is modified, all the 

related parameters are affected, as will be shown later. 

 The new chosen payoff function is the following: 

 

     y = sine (5.5π x) + 5.5 x 

 

This function describes three strategic groups, instead of three, since it presents now three 

different peaks. The below graph shows it more clearly: 
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This specific payoff function was chosen because it makes it possible to observe an 

entirely new and more complex dynamic of interactions. The three identifiable strategic 

groups are: 

 

• Low-end strategic group (0 ≤ x < 0.25) 

• Middle-end strategic group (0.25 ≤ x < 0.62) 

• High-end strategic group (0.62 ≤ x ≤ 1) 

 

x can refer to whatever dimension related to strategic choice. For simplicity and 

consistency with the previous simulations, it has been assumed that this variable 

represents again the product quality. If a good proxy for a real industry with just two 

strategic groups was the pharmaceutical, a good one in this case may be represented by 

the smartphone industry. In fact, three different types of manufacturers operating there 

could be recognized. Some offer a very cheap product, with less functionality and 

durability; some others position themselves in the middle, selling average phones, and 

eventually very high-end producers emerge, manufacturing products with the best 

technical qualities and captivating design.  

With the new proposed payoff function, the most important difference in the code 

pertains the parameter p, which originally represented the probability for a firm to enter 

or maintain its competitive positioning in the high-end segment. However, now both a 

middle- and a high-end segment are identifiable. Should the probability to join one of 

them be the same? The proposed answer here is here negative. In fact, the mobility 

barriers between different strategic groups may highly vary. It could be, for example, 

much easier to enter the middle-end strategic group from the low-end one, than going 

from the middle-one to the top one. At the same time, the preemptive effect of strategic 

interactions, operated by incumbents, could be higher for the most profitable competitive 
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positioning. To render this aspect in Netlogo, p has been set up as the results of different 

parameters, which come into play depending on the cases. 

 In the current model, two different types of thresholds regarding mobility barriers, 

strategic interactions and dynamic capabilities were created: one for the middle-end 

segment, establishing the probability for a low-end firm to enter it, and one for the high-

end segment, determining instead the probability for a middle-end firm to join the most 

profitable group. To operationalize that, the parameter representing the age had to be 

split in two as well. In fact, the age was a determining factor in distinguishing whether a 

determined firm was a new entrant or an incumbent in a specific strategic group. Given 

that the strategic groups are three now, a firm could potentially be an incumbent in the 

middle-end segment and a potential new-entrant in the high-end. That is why, under the 

current circumstances, an age for the middle- and one for the high-end segment had to 

be created, determining respectively the number of consecutive periods in which a firm 

manages to keep its competitive positioning in a determined group. Hence, the p in the 

present model is represented by the following equations: 

 

   p = MB-m  if age-m = 0 and n < S  

    p = SI-m  if age-m = 0 and n ≥ S 

    p = DC-m  if age-m > 0 

   p = MB-h  if age-h = 0 and n < S  

    p = SI-h  if age-h = 0 and n ≥ S 

    p = DC-h  if age-h > 0 

 

The -m suffix means that the parameter belongs to the middle-end segment, while -h to 

the high-end. Notice that S, the threshold for igniting strategic interactions, was assumed 

to be the same for both the cases (= 5 firms). In fact, there is no convincing reasons for the 

preemptive effect of strategic interactions to be triggered by a different number of firms 
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depending on the different strategic group. The final payoff of each firm is given by the 

following equations, which replicate the original ones, appropriately fine-tuned: 

 

y = sine (5.5π x) + 5.5 x if 0 ≤ 𝑥 < 0.25 

y = sine (5.5π x) + 5.5 x if 0.25 ≤ 𝑥 ≤ 0.62 and 𝑟 ≤ 𝑝  

𝑦 =  0    if 0.25 ≤ 𝑥 ≤ 0.62 and 𝑟 > 𝑝  

y = sine (5.5π x) + 5.5 x if 0.62 ≤ 𝑥 ≤ 1 and 𝑟 ≤ 𝑝  

𝑦 =  0    if 0.62 ≤ 𝑥 ≤ 1 and 𝑟 > 𝑝  

 

Notice that r remains unaltered, representing just a random number drawn each 

period to determine the payoff realization according to the above formulas. The 

assumption that firms start operating in the low-end segment has been kept as well. Of 

course, given that the low-end segment represents turtles with a x value smaller than 

0.25, all the agents will start with values representing just that initial product range. In 

the current model, mutation was operationalized as in the previous paragraph: every 

firm has a 5% likelihood of mutating. The only slight change refers to the normal 

probability distribution describing the magnitude of the mutation, whose mean (μ) is in 

the current model 0, with a standard deviation (σ) of 0.10. The selection operator is 

unaltered too (the “tournament size” is equal to 5), as well as the boundary of rivalry. 

 

Computational results 

 

 The first 50 simulations have been run under the circumstances typical of the 

standard scenario, introducing the difference between the two types of parameters (-m 

and -h): 
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   MB-m  = 0.10    

    SI-m = 0.10  

    DC-m = 0.96 

   MB-h = 0.10  

    SI-h = 0.10 

    DC-h = 0.96 

   σ = 0.50 

 

Notice that with the above set-up, there is virtually no difference in the probability to 

access either of the two strategic groups. The difference lies only in the dissimilar payoffs 

generated by each group. In fact, the purpose of these first simulations was to understand 

how the firms react to a different payoff structure, regardless of differences in the success 

probability in joining either of the two. The related results are the following: 
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The behavior of the agents is quite interesting. The firms, thanks to mutation and 

selection operators, start entering the middle-segment. That triggers a positive feedback 

by the system: the number of firms in that group starts increasing (it can be observed up 

to around the 250th period). This group starts nonetheless to be rapidly substituted by the 

high-end one, which starts emerging with a similar dynamic. At this point, the percentage 

of middle-end firms (the orange line) is rather stable until the end, while the high-end 

group starts increasing constantly at the low-end group expenses. Nonetheless, this last 

group is still the most numerous after 2000 periods, as shown also in the below table, 

representing the average percentage over the entire generation sample: 

 

 This behavior is consistent with our premises. In fact, with the likelihood of 

entering the middle- and high-end segment being equal, the firms continue their 

imaginary journey to reach the best competitive positioning in a relatively steady way. 

The middle-end group under these circumstances represents almost just a buffer between 

the two extremities. If the number of periods were higher, the market would eventually 

reach a dynamic equilibrium where the payoffs of each group is equal. In the next 

paragraph, the parameters related to p will be modified according to different 

assumptions. 

 

The interactions between three strategic groups under asymmetrical conditions 

 

 In the previous scenario, the probability for a firm to enter the middle- and high-

end segment was the same. In fact, the two different values for mobility barriers, strategic 

interactions and dynamic capabilities had been set at the same values. However, there 

are many reasons to believe that the actual obstacles to enter one group or the other may 
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vary dramatically. In fact, firms in the high-end segment may have higher mobility 

barriers, because of more structural difficulties in developing high-end products with 

respect to both the low and middle-end ones. At the same time, the higher profitability 

of incumbents in that segment may result in an increase of collusive activities, in order to 

protect their most favorable and hard-earned competitive positioning. This scenario 

seems to be arguably closer to reality. 

 Therefore, it has been assumed under the new circumstances that the two different 

strategic groups have a different MB, SI and DC values. The parameters that have been 

chosen are the following: 

 

   MB-m  = 0.10    

    SI-m = 0.10  

    DC-m = 0.96 

   MB-h = 0.05 

    SI-h = 0.04 

    DC-h = 0.88 

   σ = 0.50 

 

The firms trying to enter the middle-end from the low-end segment have a 10% success 

probability due to structural barriers. There are no preemptive effects from incumbents 

here (SI = MB = 10). The dynamic capabilities of incumbents are 0.96. These values 

replicate exactly the original standard scenario. The situation changes for firms trying to 

enter the high-end segment. It has been assumed here that the success probability is equal 

to just 5%, due to higher mobility barriers. They could be attributed to an increased 

difficulty in developing a high-end product with a superior technology. When the 

threshold for strategic interactions (S = 5) is reached, the success probability further 

decreases by 1 percentage point, for a total of 4%. It has been assumed that incumbents 
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try to actively obstacle new entrants in order to protect their favorable competitive 

positioning. Notice that, in theory, a firm could jump from a low-end segment directly to 

the high-end thanks to mutation. However, the likelihood for it to happen is close to 0. In 

fact, mutation probability distribution has a mean of 0 and a standard deviation of 0.10. 

For a firm in the low-end (i.e. with a product quality less than 0.25) to reach the high-end 

(which requires a product quality higher than 0.62), the magnitude of the mutation 

should comprise (at least) slightly less than 4 standard deviations. The probability for it 

to happen is close to 0 (ca. 0.03%). That could represent a limit to the truthfulness of the 

model, since in reality it would be possible to depict a scenario, albeit rare, in which a 

firm selling a low-end product switched to premium one. However, for modeling 

purposes, it was not possible to operationalize mutation differently. In fact, if the 

magnitude of mutation in terms of standard deviation were higher, the end results would 

have been dramatically compromised. 

 The results of the 50 simulations under the above circumstances are the following: 
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The below table represents the average percentage of firms in the respective strategic 

groups over all the periods: 

 

The data show very different outcomes with respect to the previous scenario. In both the 

cases, the middle-end segment is the first to emerge. It is almost impossible for a high-

end strategic group to emerge before a middle-end one is present, as explained above. 

Nonetheless, after the appearance of the middle-end segment, the dynamic of interaction 

differs. In the first case, analyzed before, it was easier for the agents to discover a better 

payoff in the high-end segment, since the success probability was the same as in the 

middle-end. Things change when the success probabilities for the two groups differ, as 

in the second case. In fact, the emergence of firms with a product quality higher than 0.62 

is much slower and more difficult. The average percentage of firms in the middle-end is 

comparable to the one obtained previously, as expected since the parameters’ values are 

the same. However, in this case the percentage of high-end firms is significantly lower on 

a total of 2000 runs. That shows the increased difficulty in reaching the most profitable 

competitive positioning. 

 The results are overall consistent with the literature on strategic groups. The 

results related to the percentage of strategic group emergence, considering the total of 

middle- and high-end, is similar to the one obtained originally by Lee et al. The 

modification of the payoff function with the introduction of a third strategic group 

represents an important result of the present research. In fact, it makes it possible to 

observe the dynamic of strategic interactions under different and more complex 

conditions. The firm’s ability to adapt to external changes was so far measured by the 

dynamic capabilities. However, it must be noticed that this parameter did not determine 

a real change in the context of interactions. In fact, the payoff function and, in general, 
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the “rules of the game” were exactly the same for each generation. The true systemic 

response to change can be just analyzed actually modifying the external environment. 

The modification of the payoff function, representing the ultimate guide of actions for the 

firms, points out the direction of future research.  
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Conclusions 

 

The main purpose of this thesis was to show, at a very high-level, how complexity 

could be employed in the field of management where until recently it was neglected in 

favor of a reductionist paradigm. Reductionism is the belief that the whole consists in the 

simple sum of its parts. According to this view, analyzing these single parts separately is 

the key to understand the whole as well. This perspective characterized the western 

approach to science at least until the 19th century and its roots can even be traced back to 

the very beginning of western philosophy.45 The reductionist dream was dramatically 

disappointed in the last century by a countless number of failures or inadequacies in the 

explanation of “wicked” problems, such as climate change, pandemics, global financial 

crises, to poverty and uneven development. In recent decades, many scientists started to 

feel the need for an alternative approach to face these challenges, leading eventually to 

the birth of the concept of complexity.  Finally, it was recognized that the whole can be 

more than the sum of its parts. Analyzing each single part separately does not help in 

understanding and explaining complex systems where the interactions between simple 

agents can cause unpredictable outcomes, slight changes in the outside environment can 

trigger unexpected response at a macro-level, and where the system as whole exhibits 

self-organizing and adapting behaviors. All these characteristics apply to a wide range of 

cases and fields of study such as ant colonies, immune systems, genetic structures, and, 

as it will be clear by now, to strategic group emergence. 

The present research was focused on this specific subject in order to provide the 

work with a higher degree of consistency and conceptual depth. However, this case 

might well represent a virtuous example of the application of complexity tools to 

 
45 Thales, considered the first western philosopher, had concluded that the ἀρχή (the “principle”) had to 

be the water using a reductionist approach ante litteram. In fact, since everything, if broke up into its 

original parts, contains some water, then water must be the beginning of everything. 
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management-related topics still much characterized by reductionism (especially in the 

form of the neoclassical approach). In the academic literature, the phenomenon of 

strategic group emergence brought different and often conflicting results. The 

misunderstanding was mostly related to the fact that strategic groups were considered 

as static features of an industry; as a single part of this particular whole. The empirical 

research partially contradicted this statement: in some industries group structure seemed 

to emerge and in in others they did not. J. Lee, K. Lee and S. Rho addressed the non-

falsifiability fallacy of the strategic groups theory by employing a complexity perspective. 

Inspired by Alchian’s and Tintner’s evolutionary framework, they conceived the firms 

within an industry as agents endowed with bounded rationality that act under uncertain 

conditions. In this view, strategic groups represent the result of the firm’s complex 

behavior under certain conditions, specifically dependent on structural barriers, 

preemptive actions by incumbents, dynamic capabilities, and boundary of rivalry. These 

different parameters combined made it possible to understand which aspects influence 

the likelihood for a group structure to emerge and therefore respond satisfyingly to the 

non-falsifiability fallacy.  

The first theoretical contribution of this thesis consists in the successful replication 

of Lee et al’s model, which provided an important external proof of its validity. In 

addition to that, the program, implemented in Netlogo, has the possibility to be modified 

easily according to new assumptions. This versatility can be fruitfully employed in order 

to explore totally different scenarios, be it the result of entirely different theoretical 

premises or just fine-tuning alterations to take into account industry-specific conditions. 

In the last chapter of this work, this possibility was taken advantage of in order to redefine 

the most important operators (selection and mutation) to exclude organicist biases and to 

further explore the role of randomness, uncertainty and innovation. The most relevant 

modification pertained the payoff function, which led to the emergence of more than just 

two strategic groups. The development of different versions of the program shows the 
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inherent possibilities provided by such a tool and represents the second important 

theoretical contribution to the research about strategic groups. It is believed here that the 

future directions of research on the matter should focus indeed on the payoff function, 

which represents the ultimate horizon of possibilities for the agents in the model. In 

addition, it is believed that complexity tools can be fruitfully employed in many different 

management related subjects, notably organizational theory and innovation to change 

and knowledge management, just to mention the most promising. 

A final thought is still needed to conclude the present work. Throughout the 

chapters, the focus has often been about models, codes, algorithms, agents, variables, etc. 

This was believed to be necessary, considering that one of the most important objectives 

of this research was first to test and then to create a tool for investigating the phenomenon 

of strategic group emergence. However, it must be kept in mind that every model is 

fundamentally wrong, inasmuch as its condition for functioning relies on heavy 

simplifications of the reality, excluding different and vital aspects. It must be reminded 

that a model is just a tool to deepen the understanding of a determined phenomenon. The 

ultimate objective of the research is not the model itself, but rather what it is hidden 

behind it. Its purpose is to shed light on the most obscure angles of the reality, the ones 

that are not possible to fully grasp initially. Wittgenstein’s proposition 6.54 of the 

Tractatus Logico-Philosophicus really comes in handy in this case: 

 

“My propositions serve as elucidations in the following way: anyone who understands me 

eventually recognize them as nonsensical, when he has used them – as steps – to climb beyond 

them. (He must, so to speak, throw away the ladder after he has climbed up it). He must transcend 

these propositions, and then he will see the word aright.” 
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Appendix A – Netlogo Program (Lee, Lee & Rho’s Replication) 

 

Lee, Lee & Rho (2002), v0.5 - 14 feb 2020 - Andrea Gallucci 

 

globals [ 

  S    ; threshold for strategic interactions 

  Alpha   ; parameter related to sigma-rivalry 

  tournament-size  ; stochastic component for the selection operator 

] 

 

; the “globals” are the general variables that are going to be heavily used in the program and that 

do not pertain the agent per se 

 

turtles-own [ 

  x     ; product-quality (the strategic choice of the firm) 

  age  ; parameter used to determine whether the firm is an incumbent or  

; a new-entrant 

  r     ; random uniform number to assign payoff,  

; to be drawn again every generation 

  p     ; probability to get the high payoff if the high-end segment 

  pay     ; single firm's last payoff 
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  wr     ; working register 

] 

 

; turtles-own describe the characteristic owned by the agents and determine their rule of behavior 

 

to setup 

  clear-all 

  reset-ticks 

  set S 10 

  set alpha 0.5 

  set tournament-size 5 

  crt firms [ 

    set x random-float 0.5; firms start operating in the low-end segment (x < 0.5) 

    set r random-float 1  

    set age 0 

  ] 

end 
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; to setup represents a command that sets the initial conditions of each parameters for generation 

1 

 

to go 

  if ticks > 2000 [stop] 

  ask turtles [ 

    set r random-float 1 

    update-p 

    ifelse x < 0.5 

    [set pay payoff x]     ; following Lee et al's assumptions, the payoff  

; in the low-end segment is always safe 

 

    [ifelse r <= p     ; instead, the payoff in the high-end is risky can lead 

; to a payoff equal to 0 

      [set pay payoff x] 

      [set pay 0] 

    ] 

        ; the following lines of code are the 

; operationalization of the sharing function 
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    let neigh turtles with [abs (x - [x] of myself) < sigma-rivalry] 

    let mx x 

    ask neigh [set wr 1 - (abs (x - mx) / sigma-rivalry) ^ alpha] 

    let m sum [wr] of neigh 

    set pay pay / m 

    ifelse x >= 0.5 [set age age + 1] [set age 0]      

; the age of the firms in the high-end segment 

; is increased by one each generation. In this  

; way, the difference between incumbents and  

          ; new-entrants can be kept 

    set ycor age     

  ] 

selection 

tick 

end 

 

;; to go determines all the rules of behavior for the agents 

 

to update-p 
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  let n count turtles with [x >= 0.5]    ; number of firms in the high end 

  if age = 0 and n < S [set p mb] 

  if age = 0 and n >= S [set p mb - psi]   ; psi represents the preemptive effect  

; of strategic interactions 

  if age > 0 [set p dc] 

  let si mb - psi  

end 

 

; to update-p represent a procedure create to determine which one of the three success probability 

should be applied to the single firms (MB, SI or DC) 

 

to selection 

let survived max-n-of 45 turtles [pay] 

let dead min-n-of 5 turtles [pay]   ; each generation, 5 firms have  

; the possibility to reshuffle their  

        ; strategic choice 

  ask dead [die] 

  repeat 5 [ 

    let t1 max-one-of (n-of tournament-size turtles) [pay] 
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    let t2 max-one-of (n-of tournament-size turtles) [pay] 

    let lambda random-float 1 

    crt 1 [ 

      set x lambda * ([x] of t1) + (1 - lambda) * [x] of t2 

      set age 0 

      set x x + random-normal 0 0.2 

      if x > 1 [set x 1] 

      if x < 0 [set x 0] 

    ] 

  ]        ; 5 new firms with new strategies  

; replace the old ones.  

; the population is kept unaltered (50) 

end 

; this procedure replicates and operationalize selection  

 

to-report payoff [number] 

  let y number * 180 / pi 

  report sin (3 * pi * y) + 3 * number 

end 
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to-report average [a b] 

  report (a + b) / 2 

end 
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Appendix B – Netlogo Program (Payoff function) 

 

Modified payoff function. v0.6 - 14 feb 2020 - Andrea Gallucci 

 

globals [ 

  S               ; threshold for strategic interactions 

  Alpha           ; parameter related to sigma-rivalry 

  tournament-size   ; stochastic component for the selection operator 

] 

 

turtles-own [ 

  x                     ; product-quality (the strategic choice of the firm) 

  age-m                ; parameter used to determine whether the firm is an 

; incumbent or 

                       ; a new-entrant in the middle-end segment 

  age-h                ; parameter used to determine whether the firm is an 

; incumbent or 

                        ; a new-entrant in the high-end segment 

  r              ; random uniform number to assign payoff, 

                        ; to be drawn again every generation 

  mutation             ; random number to determine whether the agent 

; mutates or not 

  p                     ; probability to get the payoff in the high-  
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; and middle-end segment 

  pay              ; single firm's last payof 

  wr                    ; working register 

] 

 

to setup 

  clear-all 

  reset-ticks 

  set S 5 

  set alpha 0.50 

  crt firms [ 

    set x random-float 0.25 

    set r random-float 1    ; firms start operating in the low-end segment (x < 0.5) 

    set age-m 0 

    set age-h 0 

  ] 

  set tournament-size 5 

end 

 

to go 

  if ticks > 2000 [stop] 

  ask turtles[ 

    set r random-float 1 
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    set mutation random-float 1 

    update-p 

    ifelse x < 0.25 

    [set pay payoff x]     ; following Lee et al's assumptions, the payoff 

                                  ; in the low-end segment is always safe 

    [ifelse r < p     ; instead, the payoff in the high-end is risky can  

                                  ; lead to a payoff equal to 0 

      [set pay payoff x] 

      [set pay 0] 

    ] 

                ; the following lines of code are the 

                                  ; operationalization of the sharing function 

    let neigh turtles with [abs (x - [x] of myself) < sigma-rivalry] 

    let mx x 

    ask neigh [set wr 1 - (abs (x - mx) / sigma-rivalry) ^ alpha] 

    let m sum [wr] of neigh 

    set pay pay / m 

    ifelse x >= 0.25 and x < 0.62 [set age-m age-m + 1] [set age-m 0]  

    ifelse x >= 0.62 and x <= 1 [set age-h age-h + 1] [set age-h 0] 

; age of the firms in the high- and middle-end segment 

; is increased by one each generation. In this 

; way, the difference between incumbents and 

; new-entrants can be kept 
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    set ycor age-m 

    set ycor age-h 

  ] 

  selection 

  variation 

  tick 

end 

 

to-report sh [d] 

  ifelse d < sigma-rivalry [report (1 - d / sigma-rivalry) ^ alpha] 

  [report 0] 

end 

 

to update-p 

  let m count turtles with [x >= 0.25 and x < 0.62] ; number of firms in the middle-end 

  let h count turtles with [x > 0.62 and x <= 1]   ; number of firms in the high-end 

  if age-m = 0 and m <= S and x >= 0.25 and x < 0.62 [set p mb-m] 

  if age-m = 0 and m > S  and x >= 0.25 and x < 0.62 [set p mb-m - psi-m] 

  if age-m > 0 and x >= 0.25 and x < 0.62 and x <= 1[set p dc-m] 

  if age-h = 0 and h <= S and x >= 0.62 and x <= 1 [set p mb-h] 

  if age-h = 0 and h > S and x >= 0.62 and x <= 1 [set p mb-h - psi-h] 

  if age-h > 0 and x >= 0.62 and x <= 1 [set p dc-h] 

end 



122 

 

to selection 

  let survived max-n-of 45 turtles [pay] 

  let dead min-n-of 5 turtles [pay]  ; each generation, 5 firms have 

                                               ; the possibility to reshuffle their 

; strategic choice 

  ask dead [die] 

  repeat 5 [ 

    let t1 max-one-of (n-of tournament-size turtles) [pay] 

    let t2 max-one-of (n-of tournament-size turtles) [pay] 

    let lambda random-float 1 

 

    crt 1 [ 

      set x lambda * ([x] of t1) + (1 - lambda) * [x] of t2 

      set age-m 0 

      set age-h 0 

      if x > 1 [set x 1] 

      if x < 0 [set x 0] 

    ] 

 

  ]                                      ; 5 new firms with new strategies 

                                               ; replace the old ones. 

                                               ; the population is kept unaltered (50) 
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end 

 

to variation 

  ask turtles [ 

    ifelse mutation <= 0.05 [set x x + random-normal 0 0.10] [set x x] 

    if x > 1 [set x 1] 

    if x < 0 [set x 0] 

  ] 

end 

 

to-report payoff [number] 

  let y number * 180 / pi 

  report sin (5.5 * pi * y) + 5.5 * number 

end 

 

to-report average [a b] 

  report (a + b) / 2 

end  
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