
Università Ca’ Foscari Venezia
Department of Environmental Sciences, Informatics and Statistics

Master’s Degree
in Computer science

Robust Tree Ensemble
against Adversarial Examples

Supervisor
Ch. Prof. Claudio Lucchese

Graduand
Federico Marcuzzi
Matricolation number
853770

Academic Year
2018/2019



Contents

Introduction 3

1 Machine learning 7
1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Ensemble Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Gradient Boosted Decision Tree . . . . . . . . . . . . . . . . 13

2 Adversarial Machine Learning 18
2.1 Attack taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Adversary’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Adversary’s Goal . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Adversary’s Knowledge . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Adversary’s Capability . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Attack Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Type of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Evasion attacks . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Poisoning attacks . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Model inversion attacks . . . . . . . . . . . . . . . . . . . . 27
2.3.4 Transferability attacks . . . . . . . . . . . . . . . . . . . . . 27

2.4 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Countering Evasion . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 Countering Poisoning . . . . . . . . . . . . . . . . . . . . . . 33

3 State of the art 37
3.1 Countermeasures for SVM, NN . . . . . . . . . . . . . . . . . . . . 37
3.2 Boosted Decision Tree - Robust . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Optimal evasion . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Approximate Evasion . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 BDT-R model . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



3.3 Random Subspace Method . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Robust Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.2 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Training Evasion-Aware Decision Trees . . . . . . . . . . . . . . . . 54
3.5.1 Attacker Model . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Model Defintion . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Feature Partitioned Forest 62
4.1 Adversary’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Feature Partitioning . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Robust Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Certificates of robustness . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.1 Fast lower-bound: FLB . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Accurate lower-bound: ALB . . . . . . . . . . . . . . . . . . 69

4.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Evaluation Methodology 73
5.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.3 Attacker’s strength . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.1 Evaluation algorithm . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Parameters analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.1 Features subset size analysis . . . . . . . . . . . . . . . . . . 80
5.3.2 Maximum number of leaves analysis . . . . . . . . . . . . . . 81
5.3.3 Forest size analysis . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.4 Rounds analysis . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.5 Model robustness parameter analysis . . . . . . . . . . . . . 83

5.4 Certificates analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Models comparison settings . . . . . . . . . . . . . . . . . . . . . . 85

6 Experimental results 87
6.1 Parameters analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 FPF analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.2 RSM-DT analysis . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1.3 RF analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Algorithms comparison . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Certificates analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2



6.3.1 Lower-bounds performance . . . . . . . . . . . . . . . . . . . 97
6.3.2 Fast lower-bound utility . . . . . . . . . . . . . . . . . . . . 99

7 Conclusion 104

8 Future Works 107



Notations

x variable

x vector

D input dataset

n, d dataset dimension

X input spaces

Y output spaces

H hypothesis space

h hypothesis (learner)

g unknown target function

t decision tree

T ensemble

f feature

v threshold

A attacker

L learning algorithm

p(·) probability density function

p(·|·) contitional probability density function

| · | size of the set
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Abstract

Machine learning models are subject to attacks that undermine security and
can generate unexpected behaviors. To the detriment of other machine learning
algorithms, little has been done so far to create models based on decision trees
that are robust to these attacks. The present thesis proposes a new method to
train a model based on an ensemble of decision trees, robust to specific attacks.
In particular, we developed a precise way of splitting the features of the dataset
between the base-learners within the ensemble. This split guarantees a robustness
by construction against evasion attack. The threat model we defined limits the
attacker’s strength to a maximum number of modifiable features. The constraint
forces the attacker to generate adversarial example that differ from the original
instance at most b features. Also together with the model we proposed two
approximation algorithms to certify a lower bound robustness of the model. These
approximation algorithms have significantly less computational complexity than
testing the robustness of the model with brute-force attacks. We have compared
the robustness of our model with Random Forest ensemble method and with some
robust tree ensemble models taken from the state of the art of adversarial example.
The experiments led to two important results. First, the comparison showed
that the robustness of our model is higher than that of the other models tested.
Secondly, the two robustness certification algorithms do not differ much from the
real robustness of the model.

2



Introduction
In recent years machine learning (ML) has had an increase of its employment
in many scenarios. Among these there are scenarios concerning the security of
systems such as: intrusion detection, spam detection, fraud detection, self-driving
cars, etc. Machine learning models applied in these scenarios must guarantee
greater reliability than models applied in other contexts, sice they have to deal
with critical situations. Unfortunately it has been realized that traditional ML
models can be fooled by a malicious user (called attacker or adversary) who is able
to subjugate the model for his own personal interests. This type of phenomenon is
called adversarial machine learning (or adversarial learning).

The appearance of adversarial learning has brought to light vulnerabilities
in existing machine learning models. These vulnerabilities can be more or less
serious and can compromise the security, privacy and integrity of the system
[1]. Normal ML models are subject to this type of attack because they are not
designed to be robust to manipulations perpetrated by an intelligent entity. The
perturbation generated by the attacker is different from a normal noise, so even
models trained to manage noise may not guarantee safety against these attacks.
Standard classification algorithms assume that the data generating process is
independent from the classifier, but this is not true in the context of adversarial
attack. The behavior of classical ML models under attack suggests that in the
learning phase, they are not learning the semantics of data. As reported by Ian J.
Goodfellow et al. in [25], the learning algorithm creates its own ”Potëmkin village”,
a model that works well on instances that occur naturally, but very badly when it
encounters instances that have a low probability in the distribution.

In general, the most common attacks on ML models are evasion attacks and
poisoning attacks. With an evasion attack (carefully-perturbed input samples),
the adversary modifies instances to force the model to commit misclassification
at test time [3, 38]. While with a poisoning attack, he contaminates the training
set to create model malfunctions when it is used [8, 39]. The examples of system
security mentioned above can be fooled by possible evasion, poisoning attacks
in the following way: As reported in [18], a very simple example of adversarial
learning is that applied to spam detection. Näıve Bayes has always been one of
the best models to classify spam/ham emails. However, it has been shown that
it’s very easy to fool the model. If the attacker inserts so called good words (ham)
in a spam email, or if he inserts typo or interruptions in spam words in order to
camouflage them, the model is deceived and misclassifies the spam email as ham.
In [41] it’s shown how is possible to create glasses that allow the attacker to be
misclassified as a different user in the system. For example, this type of attack
allows a malicious user to circumvent a video surveillance system by impersonating
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a legitimate person. Furthermore, in [21, 8] it is shown how it is possible to edit a
road signs (without precluding human recognition) in order to create a malfunction
in a self-driving system. Finally, a customer of a bank can alter some information
of his own state to get a loan even if he does not have the necessary conditions to
obtain it.

Each of these attacks can have more or less serious consequences. It is therefore
necessary to design models that are robust to these types of attacks. To counter
this problem, some learning strategies have been developed which take into account
the existence of an attacker during the training phase, in order to generate robust
models. Several works have been proposed in literature to train robust linear
classifiers [36], or deep neural networks [25, 45]. The latter are nowadays widely
used in pattern recognition, computer vision, classification of images, etc. On
the contrary, decision trees and tree ensemble have received very little attention
so far. This is a serious lack sice decision trees are among the best methods
for dealing with non-perceptual problems and their predictions and structure are
human-understandable in terms of syntactic checks over domain features, which is
particularly appealing in the security setting. Furthermore, the use of weak-learners
like DT together with ensemble method techniques does not necessarily increase
their robustness [27].

Contributions of this work

The main contribution of this thesis is the development of an ensemble learning
algorithm, based on decision trees, robust to evasion attack. The algorithm we
proposed is called Feature Partitioned Forest and the resulting ensemble is a
binary classifier, robust by construction to attacks up to a certain strength. Given
an opponent who transforms a sample x in an evading instance x ′ such that
‖ x − x ′ ‖0≤ k, our algorithm guarantees the majority of the forest is not affected
by the attack. In an adversarial learning scenario it is fundamental to define
the attacker in a threat model that limits his strength. In L0-norm, k represents
the maximum number of features the attacker can modify. Through this value
we have defined and limited the strength of the attacker. The robustness by
construction of FPF is based on a particular sampling of the features, where it
randomly equi-partition the set of features, and train each tree on a distinct feature
partition. The number of partitions is closely related to the strength of the attacker
and ensure that the attacked features appear in less than half of the forest. This
way the attacker cannot attack the majority of the trees. To show the advantage
obtained with our algorithm,we have compared FPF with Random Forest [10] and
Random Subspace Method [29, 5] and we showed empirically that our strategy is
more robust than its competitors. Specifically, we showed that on Breast Cancer
dataset, the difference between the accuracy under attack of FPF with respect
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to RF and RSM was 0.072 and 0.021 respectively, with attacks on two features.
For the Spam Base dataset, the difference between the FPF’s accuracy under
attack and the one obtained by RF and RSM was 0.254 and 0.004 respectively,
attacking one features. Instead with attacks on two features, the difference was
0.591 and 0.081 respectively. Finally in the Binary Wine dataset the difference
between FPF’s accuracy under attack and the one of RF and RSM was 0.607
and 0.099 respectively, attacking two features. In all datasets, our model has
achieved greater robustness than its competitors. In addition, we have provided
two certificates called accurate lower-bound and fast lower-bound that efficiently
assesses the minimal accuracy of a forest on a given dataset, avoiding the costly
computation of evasion attacks. For both lower bounds we have shown empirically
how the estimated accuracy is very close to the real one. For example, we showed
empirically that for an attacker with budget k = 1, both ALB and FLB lower
bounds made an relative error compared to the real accuracy under attack of 1.6%
on Breast Cancer, 1.7% on Binary Wine and 8% on Spam Base. All the code
developed to conduct the experiments of this thesis can be found at the following
link: github.com/FedericoMarcuzzi/Feature-Partitioned-Forest.

Thesis structure

• Chapter 1: Machine Learning. This chapter deals with the basic elements
of machine learning. The definitions of supervided learning, Decision Tree
and ensemble methods are given. Among the latter, particular importance is
given to Random Forest, Bagging, and Gradient Boosted Decision Tree.

• Chapter 2: Adversarial Machine Learning. In this chapter we defined
the taxonomy of possible adversarial machine learning attacks. It is defined
what an attacker is and his properties (goal, knowledge, capability and strat-
egy). Finally, the most common attacks and some of their countermeasures
are given.

• Chapter 3: State of the art. In this chapter we reported the state of the
art of robust training algorithms. In particular, we focused on the algorithms
related to decision trees.

• Chapter 4: Feature Partitioned Forest. In the fourth chapter of the
thesis we illustrated our ensemble learning algorithm FPF. We also defined
the attacker model, the FPF properties and the two lower bounds to certify
the minimum performance of the model.

• Chapter 5: Evaluation methodology. The fifth chapter collects the
experimental setting used to compare the robustness of FPF with other algo-
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rithms. In the experiments we also took into account the training parameters
of each algorithm, such as: number of trees, maximum number of leaves,
number of features to be protected (for FPF) and other specific parameters.
Experiments are also conducted to empirically demonstrate that the proposed
certificates are indeed very accurate.

• Chapter 6: Experimental results. In this chapter we summarized the re-
sults obtained from the experiments conducted on the models and certificates.
For each model and certificate, we discussed its strengths and weaknesses.

• Chapter 7: Conclusions. We briefly summarized the work done in this
thesis and the contribution we made with the design of the FPF algorithm
and its certificates of robustness.

• Chapter 8: Future Works. In the last chapter we reported some possible
ideas to continue the development of the FPF algorithm and make it even
more effective.
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Chapter 1

Machine learning

This chapter introduces the basic concept of machine learning, the notation used
in this thesis, and some fundamental algorithm for this work such as Decision Tree,
Random Forest, Bagging and Gradient Boosted Decision Tree.

1.1 Supervised Learning

Supervised learning is a machine learning technique that maps an instance to a
label. Informally, we can say that supervised learning is a technique that through
some correctly labeled objects, finds a function (also known as learner) that best
discriminates them. Later through this function it is possible to assign the correct
labels to new objects never seen before. Let X ⊆ Rd be a d-dimensional vector
space of real-valued features and the elements x ∈ X the so called instances, with
x = (x(1), . . . , x(d)). Each instance x is associated with a label y ∈ Y, with Y
the output space. The mapping between the instances in X and the labels in
Y is done by an unkown function g : X → Y, called the target function. The
function g is called target because is the function that the learning algorithm tries
to approximate. Given the hypothesis set H, the supervised learning algorithm
finds the best function h ∈ H that best approximates the function g. The learning
algorithm exploits a training set, D = {(x 1, g(x 1)), . . . , (xn, g(xn)}, with n = |D|,
which is a set of (instance,correct label) pairs. In accordance with statistical
learning theory, the function ĥ that best approximates g, can be found by means
of empirical risk minimization [47]. Given D and H, the empirical risk is defined
as a loss function L : H× (Y × X )n → R+. L is a loss function that measures the
cost of an erroneous prediction performed by ĥ(x ) with respect to g. To find the
hypothesis that minimizes the empirical risk the following optimization problem
must be solved:

ĥ = arg min
h∈H

L(Y , h(X )) (1.1)
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with ĥ the hypothesis with the lowest erroreous prediction cost. Finally, the L
function can also be obtained by aggregating the instance-level loss, ` : Y×Y → R+,
then L can be defined as

∑
(x ,y)∈D `(y, h(x )).

1.2 Decision Trees

A Decision Tree (DT) is one of the most classic machine learning models, which
takes its name from its tree structure. A DT has two main components: the internal
nodes and leaves. Each node in the tree performs a features test (or split) on the
input data. In particular, each node is associated with a certain features f on
which to perform the test and a v value that is the condition. The data that crosses
a node will be subdivided into subsets according to the response of the test. Each
leaf of the tree is associated with a label (in case of classification) or a numerical
value (in case of regression). During the prediction phase, the instances will be
assigned to the label/value of the leaf they reach. The split can be performed on
both categorical and numerical features. In the case of a categorical feature, chosen
the category with which to discriminate the elements (test category), the set is
divided according to whether or not an element belong to it. In the case of numeric
features, the set will be divided into elements whose value of the tested feature is
lower than the threshold and those in which it is not. In Figure 1.1 there is an
example of a tree with both categorial split (n1) and numeric split (n2). The above

Figure 1.1: Decision tree example, with both numeric and categorical features.

is more about the prediction phase of the decision tree, but another key aspect of
the model is how it is created. The creation of a DT is usually done recursively,
and at each step of the recursion, the best split point is chosen. The split divides
the input set into sub-sets, which will be the input for subsequent recursions. With
each recursion the size of the input set decreases. The recursion continues until
the base case is reached (stop criteria). To stop the growth of the tree there are
several stop criteria such as: max depth stops the growth when the tree reaches
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a certain height, max leaves stops the growth when the maximum number of
leaves is reached or purity which ends the growth when the majority class in one
leaf is greater than a certain threshold compared to the others. The core of the
learning phase is how to choose the best split. The best split can be defined as a
pair (f ∗, v∗), that represent the feature and the value that best divide the set D.
As reported in [48], different criteria have been used to find the best split. Below
are the definitions of the most common criteria:

Information Gain The information gain criterion can be used to select a split
using the concept of entropy. Let D be the input to a node, its entropy is defined
as:

H(D) = −
∑
y∈Y

P (y|D) logP (y|D). (1.2)

If D is divided into subsets D1, . . . ,Dk, its entropy could be reduced. The amount
of reduced entropy is called information gain and is defined as follows:

IG(D;D1, . . . ,Dk) = H(D)−
k∑
i=1

|Di|
|D|H(Di). (1.3)

At this point, to find the best split (f ∗, v∗), which generates the highest entropy, it
is sufficient to solve the following maximization problem:

(f ∗, v∗) = arg max
f∈F ,v∈Vf

IG(D; split(D, f, v)), (1.4)

where the split function divides D in k different subsets D1, . . . ,Dk = split(D, f, v),
according to the feature f ∈ F , with F the set of possible features in D and the
value v ∈ Vf , with Vf the set of possible value for v with respect to the features f .
However the information gain has the problem of favouring features that have many
values, to the detriment of the final generalization of the model. Considering to
dealing with categorical variables, if a feature has a different value for each instance
of the training set, taking it as split leads to a high information gain, since it is
possible to perfectly divide all the training instances. But the choice of this feature
causes a bad generalization of the model and would be useless in predicting unseen
instances. By choosing this feature, each test node divides the training set into
smaller and more pure subsets (belonging to the same class). As a consequence
there will be a large number of leaves, each with one instance. In this case the fact
that the leaves have a high purity is not relevant, the model overfitted on training
instances.
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Gain Ratio To prevent features with many values from being privileged, another
selection criterion called gain ration can be used:

P (D;D1, . . . ,Dk) = IG(D;D1, . . . ,Dk) ·
(
−

k∑
i=1

|Di|
|D| log

|Di|
|D|

)−1
, (1.5)

The gain ratio is a variant of the information gain, which taking normalization on
the number of feature values and childern/partitions of the dataset. The feature that
has the highest gain ratio, among features with better-than-average information
gains, is chosen for the split. In this way features with many values have the same
importance as features with few values. So to find the pair (f ∗, v∗), just solve the
maximization 1.4 but on gain ratio P instead of information gain IG.

Gini Index Finally, the definition of Gini index is given, another criterion that
can be used to find the best split:

IGgini(D;D1, . . . ,Dk) = I(D)−
k∑
i=1

|Di|
|D| I(Di), (1.6)

where
I(D) = 1−

∑
y∈Y

P (y|D)2. (1.7)

Again, to find the best split (f ∗, v∗), just solve the maximization problem 1.4 on
Ggini instead of IG.

Using only the search for the best split does not guarantee to create a decision
tree that generalizes well. In particular, if two decision trees are compared, one with
perfect performance on the training set and another with lower performance, it can
often be observed that the first has lower performance on data never seen before.
This phenomenon is called overfitting, that is when the model adapts too much
to the training set, also learning from the noise that are exchanged as underlying
truth. As a consequence it produces a model that generalizes badly. To reduce
this problem, a technique called pruning can be applied. Pruning consists in
removing some branches that are not necessary and is divided into pre-pruning and
post-pruning. Pre-pruning tries to remove the branches while the tree is growing.
This can be done by using a validation set. The tree branch is not expanded if its
growth would result in an increase in validation-error. Post-pruning is applied
after the whole tree is created. The entire tree is inspected to see which branches
can be removed. Also in this case with the use of a validation set one branch can
be cut if the validation-error decreases after its removal.
This thesis is focused on binary decision trees, that handles only numeric features
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and performs binary classification tasks. As defined in [12], a inductively definition
of tree is given. A DT t is either a leaf or a non-leaf (internal node). A leaf is defined
as λ(ŷ) for some labels ŷ ∈ {0, 1}. Instead a non-leaf is defined as σ(f, v, tl, tr),
where f ∈ [1, d] is a feature of the dataset, v ∈ R is the threshold for the features f
and tl,tr are rispectively the decision trees to the left and right branch of t. During
the classification phase, an instance x traverses the tree t from the root to a leaf
λ(ŷ), which returns the predicion ŷ = t(x ). The traversal from the root to a leaf is
made trought the internal node. Each instance x at the node σ(f, v, tl, tr) performs
the feature test x(f) ≤ v. If the answer is positive the instance will go into the left
branch, otherwise in the right branch. So at each feature test, the instance goes
through a single branch at a time and ends in a single leaf.

1.3 Ensemble Methods

This section gives an overview of what an ensemble method is, its potential and
it is focused on Random Forest and Gradient Boosting Decision Tree. Usually
the learning approach involves only a single learner to solve a given problem.
Ensemble methods, on the other hand, combine several learners to carry out the
same task. This type of learing is called ensemble learning. The learners inside
the enemble are called base-learners (or weak-learners) and are trained through
a base-learning algorithm. In general, the creation of an ensemble takes place
in two steps. In the first step the base-learners are created, while in the second
they are combined through a combination strategy. It is possible to use the same
base-learning algorithm to create base-learners of the same type and obtain a
homogeneous ensemble. Or is possible to use a multiple base-learning algorithms
which generate heterogeneous ensembles. To get a good ensemble, learners must
be as accurate as possible and as different as possible from each other. Once
the learning algorithm is defined, there are two paradigms on how to create the
ensemble, which are sequential and parallel ensemble methods. With the sequential
ensemble methods the base-learners are created sequentially. In this way it is
possible to exploit the dependence between the learners and try to increase the
performance of the model by adding a new learner (Gradient Boosting). The parallel
ensemble methods, on the other hand, imply that the base-learners are created in
parallel and their independence can be exploited, since the ensemble’s error can be
reduced by combining independent learners (Bagging). Unfortunately, in practice
it is not possible to create good independent learners, due to the finite size of the
training dataset. However it is possible to create less dependent base-learners by
introducing randomness in the learning algorithms. The computational complexity
of generating an ensemble is not greater than generating a single base-learner, as it
is sufficient to train more base-learners and usually the cost of combining them
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toghether is very low.
The power of the ensembles lies in two main facts. First, combining weak-learners
usually leads to a better generalization than an indivudual learner. Second, creating
many weak-learners and combining them together is much simpler than creating a
very strong one.

1.3.1 Random Forest

Random Forest [10] is one of the most famous ensemble method, and is based on
decision trees. The training algorithm does not differ much from Bagging 1.3.1,
except for a random component in the trees construction. In particular, in the DT
construction phase, the choice of the best split is not made on all the features of
the dataset D, but on a randomly chosen subset of features, of cardinality k. This
random part helps generalization because each node of each tree has a different
subset of features on which to split the data. It is possible that each base-learner
will experience a decrease in performance since it has a smaller search space, but
it is mitigated when inserted into the ensemble. The complete Random Forest
algorithm is given at 1.

Bagging

To better understand the functioning of the random forest it is also necessary to
explain what Bagging is and how it works. The full name Bootstrap AGGregat-
ING [9], suggests that the main components of the algorithm are boostrap and
aggregation. Boostrap: From the above, the basic combination of independent
learners generates a more efficient model. Model independence can be achieved by
simply training each base-learner on a disjointed subset of the trainig set. But since
the size of the training set is not infinite, each base-learner will only have a small
portion of datasets to learn from and this will lead to bad performance. Boostrap
sampling [20], allows to have a trade-off between different instances for learner
and quantity. Specifically with n instances in the dataset, boostrap sampling can
generate samples of size n by performing a sampling with replacement. In this way
the original instances will never be all included in the same sample, but there will
be some repetitions and some exclusions of instances. Boostrap samplig can be
repeated r times and then get r sample of size n. For each sample a base-learner
can be trained.
More in detail, as reported in [48], the boostrap sampling gives Bagging an addi-
tional advantage. With n training instances the probability that the i-th instance
will be extracted 0, 1, 2 . . . is approximately a distribution of Poisson with λ = 1.
Thus the probability i-th example will occur at least once is 1 − (1/e) ≈ 0.632.
Therefore each sample will not have about 36.8% of instances of the orignal dataset.
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Algorithm 1 RandomForest

Require: A training set D = {(x 1, y1), . . . , (xn, yn)}, features set F and base-
learning algorithm L

1: function RandomForest(D,F)
2: return Bagging(D,F ,RandomForestTree)
3: end function

4: function Bagging(D,F ,L)
5: T ← ∅
6: for i = 1 to r do
7: S(i) ← a boostrap sample from D
8: ti ← L(S(i),F)
9: T ← T ∪ ti

10: end for
11: return T
12: end function

13: function RandomForestTree(D,F)
14: if all instances in the same class ∨ F = ∅ then
15: return λ(ŷ(D))
16: end if
17: t← σ(f, v, tl, tr)
18: F̂ ⊆ F : |F̂ | = k ∧ k � |F|
19: (t.f, t.v)← split(D, F̂)
20: t.tl ← RandomForestTree(Dt.f ≤ t.v,F)
21: t.tr ← RandomForestTree(Dt.f > t.v,F)
22: end function

This 1/3 of unseen instances for each base-learner allows the creation of a surrogate
model independence by training each base-learner on different subset of the trainig
instances. Aggregation: Very simply Bagging uses voting for classification and
averaging for regression. Voting means taking the most frequent label returned by
learners. Instead with averaging the result is calculated by performing the average
of the predictions of all learners.

1.3.2 Gradient Boosted Decision Tree

The Gradient Boosting Decision Tree (GBDT) is an ensemble methods based on
the Gradient Boosting construction algorithm (GB) where the decison tree learning
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algorithm is used as a base-learner. Jerome H. Friedman in [23, 24] has formalized
the GB and GBDT algorithms in a generalized way, without binding too much to
the loss function used.

Gradient Boosting The GB is an iterative meta-algorithm that indicates how
to combine the weak-learners to create a strong learner. In particular, each iteration,
it creates a new base-learner on the errors generated by the strong learner (the
esemble). The base-learner is added to the ensemble to improve its performance.
Learners are functions and by adding them together it is possible to create a
stronger function that better fit the data. GB is a supervised learning algorithm
and as explained in 1.1, given a training set D = {(x 1, y1), . . . , (xn, yn)}, its goal
is to find the function ĥ(x ), that best approximates the target function g. This
means searching for the ĥ(x ) function that commits the lowest number of errors.
This can be expressed as a minimization of the expected value E(x ,y)∈DL(y, h(x ))
as follows:

ĥ(x ) = arg min
h(x )

E(x ,y)∈DL(y, h(x )). (1.8)

Solving the optimization problem 1.8, can be proebitive, so to overcome this
problem, boosting approximates the ĥ(x ) function through additive expansion
defined as follows:

h(x ) =
M∑
m=0

βmL(x ;am), (1.9)

where L(x ;am) is the weak-learner, am = {a(1)m , a
(2)
m , . . . } is the vector of the model

parameters and bm is the expansion coefficient. At each iteration m = 0, . . . ,M of
the algorithm, {bm}M0 and {am}M0 are calculated and used in the m-th weak-learner
training. Boosting algorithm uses a strong learner initial guess h0(x ) from which
to start the expansion of the ensemble:

(βm,am) = arg min
β,a

N∑
i=1

L(yi, hm−1(x i) + βL(x i;a)). (1.10)

The evolution of the strong learner occurs by adding to hm−1(x ) the weak-learner
βmL(x ;am), created at the m-th iteration, generating the new strong learner
hm(x ):

hm(x ) = hm−1(x ) + βmL(x ;am). (1.11)

To solve the optimization problem 1.10, for a differentiable albitrary loss function
L(y, h(x )), a two-step procedure is proposed in [23]. The first step involves fitting
L(x ;a) with the least-squares am of the current preudo-residual ỹim.

am = arg min
a ,ρ

N∑
i=1

[ỹim − ρL(x i;a)]2, (1.12)

14



where ỹim are the current pseudo residual defined as the derivative of the loss
funtion:

ỹim = −
[
∂L(yi, h(x i))

∂F (x i)

]
h(x )=hm−1(x )

(1.13)

In 1.13 gradient boosting minimizes pseudo-residuals, which are the gradient of the
loss function to be minimized. This means that the algorithm applies the gradient
descent to solve the minimization problem. The second step is to calculate the
optimal coefficient βm for the model L(x ;am) as follows:

βm = arg min
β

N∑
i=1

L(yi, hm−1(x i) + βL(x i;am)). (1.14)

This approximation based on the least-squares 1.12 trains a strong learner through
the GB, avoiding an onerous problem of function optimization 1.10, performing a
single parameter optimization (βm) 1.14 with respect to the loss function L.

Gradient Boosting Decision Tree What has been shown above is a general
approach for creating an ensemble based on gradient boosting. If L is a decision
tree, then the algorithm is called Gradient Boosting Decision Tree. The GBDT
is competitive, interpretable, both for classification and regression, especially for
mining less than clean data. Friedman [24] has also proposed a generalized version
of GBDT on a generic loss function L. Let L(x ;a) be a regression tree with L
leaves, called L-leaves learner. At each iteration of gradient boosting, L-leaves learner
divides the instance space x into L disjoint regions denoted as {Rlm}Ll=1 and predicts
a constant for each region.

L(x ; {Rlm}L1 ) =
L∑
l=1

ȳlm1(x ∈ Rlm), (1.15)

where

ȳlm =

∑
x i∈Rlm ỹim

|Rlm|
. (1.16)

The values ȳlm is the mean of the pseudo-residual ỹim computed with 1.13, of
the instances fallen in the region Rlm. Since L is a tree, the parameters of L-
leave learner are the splitting variables and the splitting points for each variable.
For each iteration m, these parameters define how the instances will be divided into
the regions {Rlm}Li=1. Furthermore the use of the decision tree allows to reduce the
minimization problem 1.14 to a simple locate estimate based on the loss function
L, through the predictions ȳlm of the model produced by 1.15.

γlm = arg min
γ

∑
x i∈Rlm

L(yi, hm−1(x i) + γ). (1.17)

15



Thanks to this, to create the next strong learner hm, it is enough to update the
result of each leaf (region) of the learner hm−1 with the new values estimated at
the iteration m.

hm(x ) = hm−1(x ) + ν · γlm1(x ∈ Rlm), (1.18)

where 0 < ν ≤ 1 is the shrinkage parameter. GB is subject to overfitting, so
to avoid this problem the incremental shrinkage is used. Incremental shrinkage
consists of adding a multiplicative constant ν at each adjustment of the regions of
hm−1(x ). In [23] it is empirically shown that a value of ν ≤ 0.1 leads to a better
generalization. In fact, it is a known best practice to try to start with a value of
ν = 0.1 and to gradually lower it during the learning phase. Finally in [23] it is
possible to find specific algorithms based on this GBDT template for different loss
criteria, including, least-squares: L(y, F ) = (y − F )2 and least-absolute-deviation:
L(y, F ) = |y − F | for y ∈ R1 (regression) and negative binomial log-likelihood:
log(1 + e−2yF ), with y ∈ {−1, 1} (classification). The following is the pseudo-code
2 of the Generalized GBDT reported in [24].

Algorithm 2 GeneralizedGBDT

Require: A set of the training instances x = {x 1, . . . ,xn}, the corresponding
outputs y = {y1, . . . , yn} and loss function L

1: function GeneralizedGBDT(x ,L)
2: h0(x )← arg minγ

∑N
i=1 L(yi, γ)

3: for m = 1 to M do
4: ỹim ← −

[
∂L(yi,F (x i))
∂F (x i)

]
h(x )=hm−1(x )

, i = 1, . . . , N

5: {Rlm}Ll=1 ← L− leaves learner({ỹim,x i}Ni=1)
6: γlm ← arg minγ

∑
x i∈Rlm L(yi, hm−1(x i) + γ)

7: hm(x ) = hm−1(x ) + ν · γlm1(x ∈ Rlm)
8: end for
9: return hm(x )

10: end function
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Summary

In this first chapter we have introduced some basic machine learning concepts,
fundamental for understanding the work we have carried out in this thesis. Below
we have summarized the main concepts covered in this chapter.

• Supervived learning. The first part of the chapter focused on supervised
learning, the learning technique on which the models used in this thesis are
based. As we have seen, given the training dataset, supervised learning uses
empirical risk minimization to find the hypothesis ĥ that best approximates
the target function g.

• Decision Trees. Then we gave the definition of Decision Trees learning
algorithm. We analyzed the various strategies for choosing the best spliting
point: Information Gain, Gain Ratio and Gini Index. We have seen
some cases of stop criteria such as: max depth, max leaves and purity
and finally the pruning strategies and their usefulness.

• Ensemble methods. In this section we have given a general introduction
to the ensemble methods and the base-learners that compose them. Each
ensemble is built in two steps, the creation of the base-learners through a
base-learning algorithm and the combination of their predictions through
a combination strategy. We have explained how it is possible to exploit
the dependence and independence between learners respectively through a
sequential and parallel construction. Finally we gave the difference between
homogeneous and heterogeneous ensembles.

• Random Forest. The section of the ensemble method Random Forest is the
most important of the chapter because RF is one of the learning algorithm
used to compare our algorithm. In this section we have explained Bagging
and boostrap samplig algorithms, useful concepts also in the following
chapters. Knowledge of the structure of RF has been fundamental to conduct
the experiments and motivate the results.

• Gradient Boosted Decision Tree. Finally in the last section of this chap-
ter we defined the Gradient Boosting ensemble method and its adaptation
to decision trees, the Gradient Boosted Decision Tree (GBDT). We have
given a generalized version of the GBDT applied to a generic loss function.
GBDT has become the state-of-the-art of models based on decision trees
thanks to the high performance it can achieve. Intuitively in a GBDT each
tree is trained to correct the error committed by the previous one.
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Chapter 2

Adversarial Machine Learning

In this section it exposes the main themes of adversarial machine learning, fun-
damental for understanding the work done in this thesis. Adversarial machine
learning is a technique that is used in the context of machine learning to subjugate a
model to behave incorrectly. Nowadays, machine learning is widely used in different
contexts, ranging from intrusion detection, spam detection, fraud detection, etc..
The first reference to adversarial machine learning in [18] dates back to 2004 . The
appearance of adversarial learning has brought to light vulnerabilities in existing
machine learning models. These vulnerabilities can be more or less serious and
can compromise the security, privacy and integrity of the system. Because of
these vulnerabilities in machine learning models, an arms race has arisen for the
development of robust models for different types of attacks and adversary’s models.
This section is organized as follows:

• Section 2.1 collects a taxonomy of attacks and their meaning.

• Section 2.2 defines the attacker’s model (goals, knowledge of the model to
attack, capability and strategy).

• Section 2.3 introduces the main types of attacks with particular attention to
evasion attacks 2.3.1.

• Section 2.4 exposes some general countermeasures used nowadays against
these attacks.

2.1 Attack taxonomy

In the literature [30, 4, 7] a taxonomy of potential attacks against pattern recognition
systems has been provided. The attack consists of three fundamental features that
are: the influence that the attack has on the classifier, the type of security violation
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that the attack causes and finally the specificity of the attack.
The feature influence is divided into two types of attack, the causative and the
exploratory.

• causative: In a causative attack the adversary interferes with the learning
phase by altering the training set. For example, the attacker can inject
malicious instances to reduce the performance of the final model.

• exploratory: In an exploratory attacks the adversary tries to extract in-
formation from an already trained model. Through this information it is
possible to create instances that fools the model without modifying the
learning algorithm.

The second features, security violation, is divided into three types of violation:
integrity, availability and privacy violation.

• integrity violation: A violation of integrity means that an attacker tries
to classify as good malicious instances.

• availability violation: An availability violation occurs when the attack
prevents legitimate users from accessing the service. It is a denial-of-service
(DoS) attack, the attacker forces the model to make a large number of errors,
so that the normal service is compromised.

• privacy violation: With a privacy violation attacks the adversary can infer
confidential user information (e.g., example biometric information).

Finally the feature specificity can be targeted or indiscriminate.

• targeted: The effect of a targeted attack is aimed only at one instance (or a
restricted set of instances).

• indiscriminate: In an indiscriminate attack, the attacker only wants to
create a false negative, without focusing on a specific class of points.

2.2 Adversary’s Model

In [8, 7] they proposed an attacker model divided into four basic points. First, the
attacker goal’s: what he wants to attack and what he wants to achieve. Second, the
knowledge he has abount the target system. Third, his capability to generate the
attack and fourth, his strategy. Having a definition of the attacker is fundamental
for the development of a robust model. Often the robustness of a model is tied to
the model of the attacker for which it was designed.
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2.2.1 Adversary’s Goal

The attacker’s goal is defined on the two features security violation and specifity.
Respectively, the first identifies the type of violation that the attacker wants to
apply against the system (integrity, availability or privacy). The second instead
identifies the portion of the dataset on which to perform the attack (a restricted
subset or the whole dataset). The attacker’s goal is to maximize the damage,
and therefore it can be formulated as an optimization problem (optima attack
strategy). Table 2.1 highlights the relationship between features specifity and
security violation.

Table 2.1: Adversary’s goals, relationship between features specifity and security
violation. T and I are rispectively Targeted and Indiscriminate attack. Part of the
information in the table was taken from [1]

Integrity Availability Privacy

C
au

sa
ti

ve T
Permit a specific in-
trusion

Create sufficient errors to
make system unusable for
one person or service

Sign into the system as a
specific person

I
Permit at least one
intrusion

Create sufficient errors to
make learner unusable

Sign into the system as an
arbitrary person

E
x
p

lo
ra

to
ry T

Find a permitted in-
trusion from a small
set of possibilities

Find a set of points mis-
classified by the learner

Access information about
a specific person

I
Find a permitted in-
trusion

Access information of an
arbitrary person

2.2.2 Adversary’s Knowledge

The adversary’s knowledge about the model is defined on the amount of information
he has on how the model was trained. This information is: the dataset used to
perform the training, how instances are represented in features, which learning
algorithm is used, which decision function is used, the model parameters and finally
the output (or feedback) returned by model in the test phase. Based on the amount
of information the attacker has on the system, it is possible to define three main
attack scenarios as reported by Biggio and Roli in [8]:

White Box Attack It is said that an attack is white-box or that the attacker
has a perfect-kowledge, when he knows all the information used for training the
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model, including its parameters. This scenario allows the adversary to perform the
strongest attack. In this context, creating attacks is easier.

Grey Box Attack In a gray box attack (also known as limited-knowledge) the
information known to the attacker is only the learning algorithm used to build the
model and the features representation. In this case the attacker does not know
the training dataset or even the parameters of the model he wants to attack, but
he can still use a surrogate dataset. In a surrogate dataset instances ideally come
from the same underlying data distribution, and by querying the model with these
instances, the attacker can extrapolate useful information. The model returns
feedback that is used to label surrogate data. In this way the attacker can modify
a surrogate instance in input to the model until the returned label is the one
desired (or different form the original). Alternatively, the attacker can query the
target model by sending surrogate data, and with the returned labels create a
surrogate model on which to generate attacks. This attack is discussed in detail in
the transferability section 2.3.4

Black Box Attack Finally, there is the zero-knowledge scenario or black box
attack in which the attacker has no knowledge of the learning algorithm, the
training dataset and even the features representation of the system. Despite this
scenario it is still possible to perform an attack if the adversary can interrogate the
model and get feedback. The attacker can also find further information by simply
reasoning about the purpose of the model. If the task of the model is to classify
road signs, he can assume that the training set concerns this type of object (road
signs, traffic lights, pedestrian strips, etc.). If the attacker infers how the training
set is made, he can perform an attack similar to the gray box attack (surrogate
dataset, surrogate model, ect.). It is important to point out that it is possible to
base security on secrets for the adversary, but it is never recommended to base
the entire security of the model only on this. Indeed, security through obscurity is
a false security, it is a risk to entrust the robustness of the model to secrets that
are not reasonable or that can be inferred. Therefore the use of the adversary’s
ignorance must necessarily be accompanied by a solid design of the model and
always assume that the attacker knows at least the features representation and
learning algorithm.

2.2.3 Adversary’s Capability

The adversary’s capability specifies how much and which dataset it can modify.
For example, the attacker can perform a causative attack that affects both training
and the test set (poisoning attack) or an evasion attack that only affect the test
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set. The capability also includes, how many instances per dataset can be injected
or modified, which instance classes, which features for each instance and how much.
The ability can be expressed in terms of constraints, for example the maximum
amount of changes that the attacker can make to an instance to prevent the attack
from being perceived by the human eye.

2.2.4 Attack Strategy

The attack strategy identifies how the attacker should behave to maximize his goal,
manipulating the instances of the training and/or test set, without violating the
constraints of capability and knowledge. To obtain the optimal attack strategy,
the attacker must solve an optimization problem, whose objective function is the
adversary’s goal and its constraints are given by the attacker’s capability and his
knowledge of the system.

2.3 Type of attack

This section summarizes the most common adversarial learning attacks and explains
how they work. In [8] they introduced the Table 2.1 which collects the attacks
that an adversary can do in relation to his capability and goal. Two very common

forms of attack are Evasion Attack and Poisoning Attack. The Evasion Attack
is based on changing instances of the test set to cheat the target model and the
adversary’s capability is constrained by how much an instance can be changed.
Instead a Poisoning Attack focuses on the training set instances with the aim
of generating the highest prediction error. In this type of attack the adversary’s
capability is constrained by the maximum number of samples that can be added to
the training set. Another type of attack is the Model Inversion Attacks, which try
to extrapolate information from the training set by modifying an input instance
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of the model. These three types of attack are explained in detail in the following
sections. Particular attention is given to evasion attacks as the robustness of the
model proposed in this thesis is based on them.

2.3.1 Evasion attacks

An evasion attack occurs during the testing phase. Given an already trained model,
the attacker alters the input instances to get an incorrect prediction from the
model. These instances are called adversarial examples (or evading instances). In
this type of attack the adversary can have a constraint on the number of features
to attack (attackable features) and on how much he can perturb each feature.
Each perturbation performed on an instance has a cost. The constraint of evasion
attacks is modeled through a variable b called a budget. The attacker can modify
the instance as long as he has enough budget. The adversary’s goal is to find the
perturbation that generates the highest prediction error while remaining within
the contraints. Constraints are important in making a possible attack reasonable.
In general a perturbation should not be perceptible to the human eye. This type of
attacks works both on linear classifiers (NB, SVM linear, etc.) and on more complex
models (NN, DT, etc.). For example given a linear model h and an instance x ∈ Rd

with output y ∈ R. If h(x ) < 0 then to create an adversarial example x ′ such that
h(x ′) > 0, it is sufficient to modify the feature values x ′ along the direction of
the decision boundary until the value of h(x ′) increases. The differences between
x and x ′ must be subject to the budget constraint (the adversary’s capability).
The search for x ′ is solved through an optimization problem, both for linear and
non linear models. In the case of a nonlinear model, the search for an adversarial
example can be difficult as the decision boundary can be much more complex and
not have a direct relationship between the features in x and the model parameters.
In Figure 2.2 two adversarial examples are depicted in the context of a linear
and a nonlinear model rispectively. To find an adversarial example in a nonlinear
model, an attacker can use approximation techniques such as Projected gradient
descent [37] which seeks an approximate solution for smooth functions. Evasion
attacks can also be divided into binary evasion attack and multiclass evasion
attack.

Binary evasion attack

In a binary evasion attacks, the attacker tries to push an instance as far as possible
beyond the decision boundary that divides the instances. More formally, it is
possible to generalize the research for an adversarial example for the model h
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(a) Linear model (b) Non-linear model

Figure 2.2: The regions around the point x represent the constraint imposed by
‖ x − x ′ ‖∞≤ b.

through the following optimization problem:

min
x ′∈Rd

h(x ′)y

s.t. ‖ x − x ′ ‖ρ≤ b

x lb � x ′ � x ub

(2.1)

where u � v means that each element of u has to be less or equal to the corresponding
element in v. The smaller the h(x ′)y value, the larger the error produced by h in
predicting x ′. The two constraints ensure consistency between x ′ and the capability
of the adversary. The constraint ‖ x − x ′ ‖ρ≤ b implies that the distance between
x and x ′, with respect to the distance function Lρ must be less than budget. The
box constraint x lb � x ′ � x ub has two roles. For example, the first ensures that if
the instance space x is bounded in [0, 1]d then the instance x ′ will remain within
this range by setting x lb = 0 and x ub = 1. Second, it can model the constraint
on non-attackable features. If the features f is not attackable, it is sufficient set
x
(f)
lb = x

(f)
ub = x(f) in the optimization problem.

Multiclass evasion attack

In a multiclass problem the model must discriminate an instance belonging to a
specific class among many others. This brings errors on different classes. The
attacker can take advantage of it and perform two types of attack [38]:

• Error-generic evasion attacks which attempt to misclassify an instance
into any of the other classes.
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• Error-specific evasion attacks which attempt to misclassify an instance
into a specific class.

In particular in the error-generic scenario, the adversary has an interest in attacking
the model, regardless of the class in which the adversarial example is misclassified.
It is sufficient that the ending class is different from the original. To give a concrete
example, a well-known criminal has an interest in not being recognized by a video
surveillance system, but is not interested in the identity with which he is mistakenly
associated. Instead in the error-specific scenario, the attacker wants to get a specific
class as a model response. This can be seen as a person trying to authenticate
himself as a specific user inside a system. In this case the attacker is interested in
being misclassified as that person.
The search for an adversarial example for each of the two scenarios is formally
defined below in the respective sections.

Error-generic evasion attack To generate an error-generic evasion instance,
the attacker must solve the following optimization problem:

min
x ′∈Rd

∆(x ′)

s.t. ‖ x − x ′ ‖ρ≤ b

x lb � x ′ � x ub

(2.2)

with ∆(x ′) defined as:

∆(x ′) = hk(x
′)−max

k 6=l
hl(x

′). (2.3)

The k index represents the original class of the instance x . Instead l represents any
class, different from the original one, in which the attacker tries to misclassify the
evading instance x ′. The maximization problem maxk 6=l hl(x

′) looks for the wrong
class l 6= k, that has the highest score. The minimization of ∆(x ′) represents the
search for the perturbed instance x ′ such that the difference between the score in
the class k and the highest one in another class l is the minimum. This means
finding x ′ misclassified as the closest class. In Figure 2.3a it is possible to see an
example of generic-evasion attack.

Error-specific evasion attack To generate an error-specific evasion instance,
the attacker must solve the following optimization problem:

max
x ′∈Rd

∆(x ′)

s.t. ‖ x − x ′ ‖ρ≤ b

x lb � x ′ � x ub

(2.4)
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(a) Error-generic evasion attack (b) Error-specific evasion attack

Figure 2.3: In figure (a), the adversary looks for the closest class to the perturbations
of x . Instead in figure (b) the adversary looks for the perturbation of x which has the
highest score in the target class.

The difference with the error-generic scenario lies only in the change of the minimiza-
tion problem into a maximization problem. The k index represents the adversary’s
target class, the one in which he wants his evading instance to be misclassified.
The l index, on the other hand, represents the starting class of the instance x . In
this case the attacker looks for the perturbation of x which generates the highest
score difference between the target class k and the original class l. The bigger the
difference (maximization problem), the bigger the model error when misclassify x ′

as k instead of l. In Figure 2.3b it is possible to see an example of specific-evasion
attack.

2.3.2 Poisoning attacks

In a poisoning attack the adversary’s goal is to maximize the classification error
through the injection of poisoning samples into training set. In this type of attacks
the adversary’s capability is given by the maximum number of samples it can add
to the training set (a small part). To perform this type of attack, the adversary
must have perfect knowledge of the model (white box attack). The maximization
of the classification error is done by finding an optimal attack point x c through
the following optimization problem [39]:

max
x c∈Rd

Lval(Dval, ĥ)

s.t. ĥ = arg min
h∈H

Ltr(Dtr ∪ {(x c, yc)}, h).
(2.5)
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The attacker looks for the instance x c that force the generation of a model that has
the lowest loss in the training set Dtr ∪ {(x c, yc)} and the highest loss (maximize
generalization error) in classification of untainted data (validation set Dval). The
attacker somehow infects the training set with malicious instances, with the aim
of training the model incorrectly, so as to compromise its performance during the
test phase. If you wonder how the attacker can infect a model’s training set, just
think of the fact that machine learning algorithms are often re-trained on data
that they collect over time. This is done to adapt the models to the changes in
the underlying data distribution. This happens in intrusion detection systems,
which can be re-trained on a sample of data collected during system execution.
An attacker can take advantage of this re-training technique to injecting carefully
designed samples to eventually compromise the whole learning process. Below we
give a definition of a specific poisoning attack, the backdoor attack (also known as
poisoning integrity attack).

Backdoor attacks / Poisoning integrity attacks In a backdoor attack, the
adversary manipulates a pre-trained network models to create specific backdoor
vulnerabilities. The attacker injects mislabeled samples into a feature space region
far from the original training instances. In this way the learning algorithm labels
such region as desired and generates vulnerable points leading to intrusions or
misclassifications at test time. Subsequently, he publicly releases the corrupt model
so that it can be used in most proprietary systems. Once the attacker encounters
one of these systems, he can activate the backdoot using specific input samples that
are misclassified as desired [8]. Figure 2.4 gives an example of a possible poisoning
attack applied to the recognition of traffic signs.

2.3.3 Model inversion attacks

Model inversion attack is an attack that undermines the privacy of information used
by the model to make predictions. In this type of attack, the adversary interrogates
the model with a fictitious instance. He repeatedly interrogates the model and
modifies the input instance in order to maximize the model’s output score. In
this way the attacker can reconstruct a sample used during the training of the
model quite accurately. For example, in [22] they show how in a context of facial
recognition, given the name of a user in the system, the attacker can extrapolate
the image of the user’s face used during his registration in the system.

2.3.4 Transferability attacks

A reason why a gray/black box context does not guarantee adversarial attack
robustness can be found from one of the properties that adversarial examples have.
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(a) Normal training data (b) Poisoned training data (c) Backdoor in test data

Figure 2.4: Figure (a) shows the decision boundary of a model trained with legitimate
instances. In figure (b) the attacker has poisoned the training set by inserting some
images of a perturbed stop sign with a yellow square labeled as a speed limit. In figure
(c) it can be seen how a real word image of a stop signal perturbed in a similar way
to poisoning instances activates the backdoor inserted by the attacker. The perturbed
stop signal is misclassified as a speed limit with great confidence. This simple example
highlights the possible disastrous consequences of this type of attack in a context of
self-driving cars. This example was taken from [8].

(a) Origninal training sample (b) Retrieved training sample

Figure 2.5: In figure (a) you can see the original image used in the training set. Instead
figure (b) is the image retrieved by the attacker using a model inversion attack. In
this experiment, the attacker only knew the user’s name and had the opportunity to
interrogate the facial recognition system to obtain a class confidence score. Images taken
from [22].
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(a) Surrogate model train (b) Transferability attack

Figure 2.6: Figure (a) shows the process of creating the surrogate model, by interrogating
the target model. While in figure (b) it is shown how a transferability attack is performed
on the target model through adversarial examples generated on the surrogate model.

It has been noticed that different models trained on the same (or similar) trainig
set are attackable by the same perturbations to the input instances. From this
discovery attacks by transferability were born. This type of attack is generated on
a surrogate model and then used to attack the target model. This type of attack
is widely used where the generation of attacks for a given model is difficult, due
to the complexity of the model, or in a context of gray/black box attack, where
there is a lack of knowledge of the target model. For example, suppose a limited-
knowledge context, where the attacker has some surrogate data sampled from the
same data distribution of the training set, he knows the features representation
and the learninig algorithm, and he has the possibility to interrogate the target
model. With this information the attacker can build a model close to the one
to attack and generate attacks from it. To build this model, the attacker first
interrogates the target model with the surrogate instances and assigns to them the
its prediction. In this way the attacker creates a dataset similar to the one used
for training the target model. Once the surrogate training dataset is obtained, the
attacker trains a surrogate model with the same learning algorithm used by the
model to attack. Once the model is created, the attacker generates attacks on it
and then uses transferability to attack the target model. This type of attack is
also called substitute models and black-box attack. The procedure for creating a
substitute models attack is shown in Figure 2.6.

29



2.4 Countermeasures

This section briefly summarizes the use practices and strategies used to improve
the robustness against the attacks exposed in the previous sections. More specific
and detailed cases are reported in the following chapter of the state of the art of
robust models 3.
In [1] they propose the Table 2.2 which summarizes the techniques: regularization,
randomization and information hiding, to defend a model against the attacks
collected in the Table 2.1.

Table 2.2: Countermeasures against adversarial machine learning. T and I are rispectively
Targeted and Indiscriminate attack. Part of the information in this table was taken from
[1]

Integrity Availability Privacy

C
au

sa
ti

ve T
• Regularization

• Randomization

• Regularization

• Randomization

• Regularization

• Randomization

I • Regularization • Regularization • Regularization

E
x
p

lo
ra

to
ry T

• Information hiding

• Randomization • Information hiding

• Information hiding

• Randomization

I • Information hiding • Information hiding

Regularization The technique called regularization allows to increase the ro-
bustness against causative attacks by adding a constraint in the search for the
best hypothesis ĥ during training. The problem 1.1 of finding the best learner ĥ
proposed in the supervided learning section 1.1 is modified in the following way:

ĥ = arg min
h∈H

∑
(x ,y)∈D

`(y, h(x )) + λΩ(h) (2.6)

where the loss function L of 1.1 is replaced with the aggregation of the instance-level
losses. The value Ω(h) is the penalty term and the parameter λ is the regularization
term used to manage the trade-off between precision of the model and robustness
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introduced by the penalty term. Regularization is used to restrict or bias the choice
of h when there is a low amount of data or the data has noise. Regularization can
also be interpreted as prior encoding of the parameters, penalizing the choice of
those that are less likely a priori. It is important to note that there is a strong
relationship between constraint and expressivity. The more a model includes prior
information, the more it loses flexibility in adapting to data, but it becomes more
robust. Instead the more expressive the model becomes, the more it includes
information extrapolated from the data and the more vulnerable it becomes to
attacks. In other words, the use of prior information (or constraints) generates a
model that depends less on the fit on the data and therefore less attack opportunities
are possible for the adversary. The λ parameter managed the trade-off between
the two cases.

Randomization Randomization generates a more robust model against targeted
attacks. In fact, unlike indiscriminative attacks, targeted attacks are more sensitive
to changes in the decision boundary. Even a small movement of the decision
boundary can change the classification of the relevant points. For this reason, the
randomization technique introduces randomness in the placement of the decision
boundary. In this way the adversary receives imperfect feedback from the learner
and is forced to make a greater effort to reach the target class. The disadvantage
of randomization is that increase the error-rate at test time.

Information hiding The information hiding is a practice that tries to keep the
model information hidden to the attacker in order to put it in front of a black-box
scenario. However even if the adversary does not have knowledge of the learning
algorithm, it cannot be excluded that he may somehow infer some information on
the training set. The Kerckhoffs’ principle states that the security of a system
should not rely on unrealistic expectations of secrecy. In designing a robust model,
only minimal assumptions should be made about what must realistically remain a
secret. In general it is better to assume that the atacker always knows which is the
learning algorithm and he can obtain information about the training set.

2.4.1 Countering Evasion

To defend against evasion attacks there are generally two strategies. The first is
called robust optimization, which reduces the sensitivity of the robust model in
input changes (small perturbations do not change the prediction of the model). The
second one is called rejection/detection, which limits the input space considered as
admissible.
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(a) Normal training (b) Model under attack (c) Adversarial training

Figure 2.7: The example shows the effects of adversarial learning on the robustness
of the trained model. Figure (a) shows a possible decision boundary that perfectly
divides the traing data. In figure (b) it can be seen that an attacker can generate three
adversarial examples. Figure (c) shows how adversarial treaning finds a more robust
decision boundary with less errors under attack.

Robust optimization

Robust optimization is further divided into regularization (described above) and
adversarial training. Adversarial training is the practice of training a robust
model using perturbed instances based on the adversary’s capability together with
the normal training set.

ĥ = arg min
h∈H

∑
(x ,y)∈D

max
‖δ‖ρ≤b

`(y, h(x + δ)) (2.7)

where ‖ δ ‖ρ≤ b is the perturbation generated with respect to the distance function
Lρ and x + δ is the evading instance used in the training of h. In this way the

learning algorithm does not find ĥ which minimizes the loss on normal instances as
in 1.1 but looks for the hypothesis ĥ which minimizes the maximum loss generated
by possible attacks with respect to the adversary’s capablity. An example of
adversarial training is shown in Figure 2.7. The possible attacks for the model
in Figure 2.7b are used to train the robust model in Figure 2.7c. The perturbed
instances used in the train are not present in the normal data distribution, therefore
the attacker cannot generate a new attack starting from those, but can only generate
attacks starting from the instances in the normal distribution.

Detecting / Rejecting

Very often, the adversarial examples tend to occur in blind spots, regions of space
far from the training points. In this type of attack, adversarial examples do not
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(a) Normal training (b) Detection / Rejection training

Figure 2.8: The samples of the circle class which were previously classified as diamonds,
figure (a), are now rejected by the mode, figure (b).

need to resemble instances in the target class. It is enough that they are beyond
the decision boundary of the original class. As can be seen from the example in
Figure 2.8a, many points of the circle class can be pushed out of the region and
be misclassified as diamond. Through the use of detection/rejection technique it
is possible to enclose the training points of each class in a class region and not to
consider admissible all the instances that are predicted outside a region. As shown
in Figure 2.8b, all circles classified as diamonds are now rejected (and vice-versa).

2.4.2 Countering Poisoning

As explained above, in a poisoning attack, the adversary inserts one or more outliers
into the training set in order to make the learning algorithm produce a model with
poor performance at test time. To defend against this type of attack it is possible
to use two strategies, data sanitization and robust learning.

Bagging To perform data sanitization it is possible to use Bagging 1.3.1 on
training instances to remove poisoning samples. As explained in [2] the poisoning
samples are often outliers and Bagging in fact equalizes the influence of training
samples, reducing the influence of the outlier in training data [26]. There is
also a weighted Bagging alternative that resample the training set by assigning
a probability distribution over training samples, in particular, lower probability
weights to the most outlying observations.
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Reject-On-Negative-Impact (RONI) Reject-On-Negative-Impact defense is
another data sanitization strategy that identifies posoning attacks. For each samples
in the training, the algorithm measures the pefromances of the model trained with
or without the sample [40]. Through the average change in performance between
the two models, the algorithm measures the impact that each sample has. Samples
with negative influence on model performance are eliminated from the training set.

TRIM TRIM [31] is an iterative robust learning algorithm that trains a robust
linear regression model that has poisoned training set. A linear regression model
is defined as h(x ) = wT + b, with y being the prediction for the sample x . The
model h is parameterized by the vector θ = (w , b) ∈ Rd+1. Where w ∈ Rd is
the vector of the feature weights and the parameter b ∈ R is the bias. For each
iteration i, the TRIM algorithm uses a trimmed loss function to sample a new
subset Di ⊂ D of size n (number of sample safe in the dataset) which minimizes the
loss L(Di, θi−1). The subset Di have the points with lowest residuals and therefore
poisoned instances are excluded from the training. To find the subset of size n
with lowest residuals, the algorithm solves the following optimization problem:

Di = arg min
D′⊂D

L(D′, θi−1)

s.t. |D′| = n
(2.8)

Initially D0 is generated by randomly taking n samples from D. The samples in
Di are the training points with lowest residuals for the regression model h with
parameters θi−1. Obviously this subset of point can also contain poisoned samples,
but they are similar to legitimate samples and do not contribute much to poisoning
the model. From this subset the new parameters θi are calculated through the
following minimization problem:

θi = arg min
θ∈Rd+1

L(Di, θ) (2.9)

where L(Di, θ) is:

L(Di, θ) =
1

n

∑
(x ,y)∈Di−1

(h(x , θ)− y)2︸ ︷︷ ︸
MSE(Di,θ)

−λΩ(w) (2.10)

where the Mean Squared Error MSE(Di, θ) measures the error in predictions made
by h(Di, θ). Ω(w) is a regularization term which penalizes large weight values, and
λ is called regularization parameter, as for regularization 2.6. The algorithm ends
when the estimation of the parameters θ converges and the loss function reaches
the minimum. Figure 2.9 shows the effect of the TRIM algorithm at each iteration.
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(a) Before TRIM (b) TRIM iteration 1

(c) TRIM iteration 2 (d) TRIM iteration 3

Figure 2.9: The blue points are those belonging to the training set. At each iteration,
the poisoning samples (the outliers) are excluded from the training set (red points). The
example was taken from [31].
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Summary

In this chapter we have addressed one of the main themes of this thesis, the
adversarial machine learning. We have given the definition of attack and adversary,
and we have shown various types of attacks and countermeasures. We have
summarized the contents of each section of the chapter below:

• Attack taxonomy. In short, we gave the definition of attack based on three
fundamental features: influence which specifies the intention of the attack
to cause damage or extract information from the model, security violation
that states the type of violation performed (integrity, availability or privacy)
and specifity that identifies whether the attack is targeted or indiscriminate.

• Adversary’s Model. We have given the definition of adversary (attacker),
modeled on four fundamental points: the adversary’s goal that specifies
the purpose of the attack, the adversary’s knowledge with respect to the
target model (white, gray, black box), the adversary’s capability which
defines what the attacker can modify (training and/or test sets) and how
much it can perturb each sample, and finally the attack strategy that
identifies how the attacker must behave to achieve his goal while maintaining
all the constraints.

• Type of attack. In this section we have summarized the most common
types of attacks for supervised learning models with particular attention to
evasion attacks (error-generic evasion attacks and error-specific evasion
attacks), poisoning attack (backdoor attacks), model inversion attacks
and transefability attacks. We have given an example for each attack.

• Countermeasures. Finally in the last section of this chapter we gave
a general introduction on the countermeasures to be adopted to design a
robust model such as detecting/rejectiong, robust optimization (adversarial
training) for evasion attacks and RONI, TRIM and Bagging for poisoning
attacks.
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Chapter 3

State of the art

This chapter deals with the current state of the art of finding robust models against
adversarial machine learning attacks. The first part of this section briefly summa-
rizes some works on the state of the art on countermeasures against adversarial
machine learning attacks of the most common models. Given the nature of this
thesis, in the second part particular attention is given to research relating to deci-
sion trees. Furthermore, this chapter is important for understanding the difference
between the proposed work and what has already been done.

3.1 Countermeasures for SVM, NN

Since it was discovered that machine learning models are vulnerable to various
types of attacks, researchers in the field of machine learning have started to design
robust models, both for linear and non-linear models. For example, SVM is one
of the best known machine learning models and in [4] they have shown how it is
subject to evasion, poisoning and privacy attacks. In the same article they show for
each of these attacks a possible countermeasure through an adversary-aware design
of SVMs. In [15] instead they developed a version of SVM called Randomized-SVM
robust against generalized adversarial attacks under uncertanty. R-SVM trains a
distribution of classifier instead of one like the classic SVM. In [25] they investigate
the vulnerability of neural networks to adversarial examples, stating that the cause
of this vulnerability lies in the linear nature of the NN. Successively they created a
fast method for generating adversarial examples against NN, which were used to
train a robust maxout network with adversarial training. In [34] they proposed a
way to scale adversarial training efficiently to large models and datasets and showed
how to solve the label leaking effect that leads adversarially trained models to be
more robust on perturbed instances than on original instances. In [37] they studied
the robustness of a neural network using robust optimization through a natural
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saddle point formulation to capture the notion of security against adversarial
attacks. In [11] they extend the work proposed by [37] on adverarial training.
They say that a robust model must be created gradually with increasingly stronger
attacks and not immediately with the stronger attack. To do this they presented
the Curriculum adversarial training an optimized adversarial training approach.
In addition, to prevent the model from forgetting the weakest attacks (catastrophic
forgetting), during the training phase they use the batch mixing technique which
introduces lower intensity attacks during the training of stronger attacks. Finally,
to counter the attack generalization problem, they use the quantization technique
that reduces the space of adversarial examples. This is just a small overview
of research in adversarial machine learning. New attacks are continually being
developed to evade robust models and new models are designed to be robust against
these attacks.

3.2 Boosted Decision Tree - Robust

In [32] two new algorithms are proposed to create evasion attack for tree ensembles
such as boosted trees and random forests. In addition they presented a new robust
model based on Boosted Decision Tree (BDT).
The first algorithm is based on Mixed Integer Linear Program (MILP), which
finds the optimal solution at a high computational cost. The second algorithm
is called symbolic prediction and sacrifices optimality in favor of speed, but still
generating good evading instances. Through these algorithms, they empirically
demonstrated that both Random Forest and Boosted Trees are weak compared to
evasion attacks. These two algorithms are covered in more detail in the sections
Optimal evasion 3.2.1 and Approximate evasion 3.2.2.
The robust model they proposed is called BDT-R, and is based on boosted tree. At
each boosting iteration, the model is trained with the evading instances produced by
symbolic prediction. This learning technique has been called adversarial boosting.
The creation of this model is explained in detail in the BDT-R model 3.2.3
section.

The concept behind an evasion instance can be summarized in the following lines.
Let X ⊆ Rd be the set of all possible instances, Y = {−1, 1} the label set and
h : X → Y a classifier. For an instance x ∈ X and given a distance function
dst : X × X → R+, the optimal evasion problem is defined as:

min
x ′∈X

dst(x ,x ′) subject to h(x ) 6= h(x ′). (3.1)

This means finding the instance x ′ with the minimum distance dst(x ,x ′), which is
classified differently from x . The optimal evasion algorithm was modeled to work
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Table 3.1: Useful definitions to understand the reduction of the optimization problem.
3.1

Notation Definition
T trees ensemble
t a tree inside the ensemble: t ∈ T
t.nodes the set of tree nodes
t.leaves the set of tree leaves
σ a generic node or leaf

with the distance functions L0, L1, L2 and L∞, while the approximate version only
for L0. These distances are defined as follows (the figure show the geometric shape
of the most common norms). The evasion attack algorithms proposed in [32] have

• The L0 distance:
∑d

f=1 Ix(f) 6=x′(f)

• The L1 distance:
∑d

f=1 |x(f) − x′(f)|

• The L2 distance:
√∑d

i=1(x
(f) − x′(f))2

• The L∞ distance: maxf |x(f) − x′(f)|

been modeled on an ensemble T : Rd → R, whose weak-learners are regression
trees t ∈ T . Each t is a binary regression tree, whose prediction is given by the
value of the leaves. The ensemble’s prediction T (x ) is given by the sum of the
predictions of the individual trees. If the threshold is zero, the label assigned to x
will be h(x ) = 1 ⇐⇒ T (x ) > 0. For a tree ensemble T , find an instance x ∈ Rd

such that T (x ) > 0 (or T (x ) < 0) is NP-Hard, regardless of the choice of dst.

3.2.1 Optimal evasion

The first algorithm is called optimal evasion and solves the 3.1 problem by reducing
it to a MILP. The algorithm solves the problem in an optimal way finding the
best evading instace. The shortcoming of this algorithm is that for very complex
models, the computational complexity of finding the best solution is NP-Hard.
The reduction occurs through the introduction of three groups of MILP variables
(predicate variables, leaf variables and objective variable) and three fam-
ilies of constraints (predicates consistency constraints, leaves consistency
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constraints and model mislabel constraint). To complete the reduction it
is necessary to transform the objective function of 3.1 in order to relate the
predicate variables to the value of dst(x ,x ′).

Variables The MILP variables are defined as follows:

• The predicate variables are binary variables pi ∈ {0, 1}, of number at
most

∑
t∈T |t.nodes|. Given a instance x to be perturbed, each variable pi

represents the state of a predicate of a node with (f, v) as spliting point, such
that pi = 1 ⇐⇒ x(f) ≤ v, otherwise pi = 0.

• The leaf variables are continuous variables 0 ≤ li ≤ 1, of number at most∑
t∈T |t.leaves|. The MILP constraints force exactly one non-zero li per tree,

with li = 1. The leaf variables indicate which prediction leaf is active in each
tree.

• The objective variable is a non-negative continuous variable denoted as b
(bound). This variable is used to express the distance dst(x ,x ′) of 3.1, when
the distance function L∞ is used.

Constraints The family of constraints is divided into three parts, each of which
maintains consistency between the variables defined above. Following, the three
types of constraints are introduced.

Predicates consistency constraints The predicates consistency constraints
are used to ensure that the predicate variables are logically consistent with each
other. Each predicate variable pi is associated with a predicate state x(f) ≤ vi. If
pi and pj are predicate variables on the same feature f such that x(f) ≤ vi and
x(f) ≤ vj, it is possible that pi and pj take on inconsistent values without the aid
of further constraints. For example, if vi ≤ vj, it is not possible to have pi = 1
and pj = 0. For each feature variable x′(f), the consistency of its predicates pi is
ensured by introducing K− 1 inequalities, with K the number of predicates on x(f).
In particular for x′(f), let v1 < · · · < vK be the ordered thresholds of its predicates
and p1, . . . , pK be its predicate variables such that x′(f) < v1, . . . , x

′(f) < vK , a
valuation of (pi)i=1,...,K is consistent if and only if p1 = 1⇒ · · · ⇒ pK = 1. In the
MILP reduction, the predicates consistency constraints are represented as:

p1 ≤ · · · ≤ pK (3.2)

Leaves consistency constraints Each tree has its own set of leaves consis-
tency constraints between p and l. These constraints guarantee the following three
properties, which are fundamental for maintaining the semantics between p and l.
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1 If there is a leaf lk = 1, then all other leaves li 6=k must be equal to zero.

2 If a leaf lk = 1, then all predicate variables pi in the path from root to leaf lk
must be 0 or 1 according to the semantics of the prediction path of lk.

3 A single leaf variable lk per tree can be equal to 1.

Property 1 can be easily guaranteed through the following constraint:

l1 + · · ·+ lK = 1 (3.3)

with K the number of leaves in the tree. To guarantee property 2, two constraints
are needed for each node. There are two cases, one for the root node and one for
the internal nodes. The root predicate variable proot is true if and only if the active
prediction leaf belongs to the leaf variables of the left branch of the root, lT1 , . . . , l

T
i ,

while it is false if the active prediction leaf belongs to the leaf variables in the right
branch, lF1 , . . . , l

F
j . Since only one leaf variable can be non-zero, constraints are

written as:
1− (lF1 + . . . ,+lFj ) = proot = lT1 + . . . ,+lTi (3.4)

For internal nodes, the predicate variable pnode may never be active. This can
happen if the active prediction leaf is not in any of the leaf variables below the
node. These constraints are written as.

1− (lF1 + . . . ,+lFj ) ≥ pnode ≥ lT1 + . . . ,+lTi (3.5)

Property 3 is automatically guaranteed through the two previous constraints.

Model mislabel constraint The model mislabel constraint is used to force
the class difference between x and x ′. Let x be an original dataset instance, such
that T (x ) < 0, then to get an evasion instance, the perturbed instance x ′ must
produce T (x ′) ≥ 0. To encode the output of T (x ′) given the leaf variables l for
each tree, the following weighted sum must be performed.∑

t∈T

∑
i

otil
t
i ≥ 0, (3.6)

where oti is the prediction value of the leaf i with respect to the regression tree t.

Objective function To complete the reduction of 3.1 in a MILP, the objective
function dst(x ,x ′) must be translated as a function of p. For any distance Lρ
with ρ ∈ N, there are a set of weights wi and a constant C, such that the MILP
objective function can be written as:∑

i

wipi + C. (3.7)
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This is possible because predicates discretize feature values and therefore the
optimal distance dst(x ,x ′) can only take a finite number of values. If the distance
L∞ is used, then the objective function is represented by the variable b with d
bounding constraints, each of which verifies that |x(f) − x′(f)| ≤ b,∀f ∈ [1, d].

At this point, having defined all the variables and all the constraints, the
complete reduction of 3.1 to MILP is denoted as:

min
p,l

objective function

s.t. predicates consistency constraints

leaves consistency constraints

model mislabel constraint

objective variable (bounding constraints when dst = L∞)

(3.8)

3.2.2 Approximate Evasion

The reduction of 3.1 in a MILP proposed in 3.2.1 can have a very significant solving
time for difficult models. For this reason, the authors of [32] proposed an approx-
imation of the evasion algorithm which allows to generate good quality evading
instances with exponentially lower computational complexity. The approximation
is based on the minimization of the distance function L0. Given the instance x
with T (x ) < 0, the algorithm proposed looks for the x ′ instance that maximizes:

x ′ = arg max
x̃ :‖x−x̃‖0=1

T (x̃ ). (3.9)

The instances x ′ and x differ by one feature. The approximation is called symbolic
prediction, a dynamic programming approach that visits each node of the tree at
most once. The symbolic instance x̃ is moved from the root to the leaves of the tree
taking into account the constraints imposed on it. if the instance cannot continue
its descent since it would require the modification of two or more features then the
exploration is terminated. At the moment a leaf is reached, if the instance x̃ is
different from x , the dimension-interval-prediciton tuple is created. In algorithm 3
the symbolic prediction pseudocode proposed in [32] is reported. The Symbolic

Instance s is a data structure to track constraints on x̃ , that it is defined with
the following four methods:

• isFeasible(p): return true if and only if there is an instance x̃ such that
‖ x̃ − x ‖0≤ 1. This means that x ′ differs from x at most one feature, and
all constraints including p hold.

• Update(p): update the constraints on x̃ by adding the predicate p.
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Algorithm 3 SymbolicPrediction

Require: node σ (either internal or leaf), the SymbolicInstace s and the in-
put/output set u.

1: function SymbolicPrediction(σ, s, u)
2: if σ is a leaf then
3: if s.isChanged() then
4: u← u ∪ {s.getPerturbation(), σ.prediction}
5: end if
6: else
7: if s.isFeasible(σ.predicate) then
8: sT ← copy(s)
9: sT .Update(σ.predicate)

10: SymbolicPrediction(σ.true, sT , u)
11: end if
12: if s.isFeasible(¬σ.predicate) then
13: s.Update(¬σ.predicate)
14: SymbolicPrediction(σ.false, s, u)
15: end if
16: end if
17: end function

• isChanged(): returns true if and only if the current set of constraints imply
x 6= x̃ .

• getPerturbation(): return the tuple dimension-interval, with dimension
be the feature f such that x(f) 6= x̃(f) and interval is the allowable interval of
the values of x̃ .

The complexity of the algorithm 3 is O(|t.nodes| log |t.nodes|). Once the list of
tuple u has been calculated for each tree, the leaf prediction of x is subtracted
to have the score variation between x̃ and x . Next, the tuple dimension-interval-
variation that generates the largest variation T (x̃ )− T (x ) is calculated. The final
search costs O(|U | log |U |), with U = {u1, . . . , u|T |}. By construction |U | is at most∑

t∈T |t.leaves|. The computational complexity of the whole approximated method
is O(|T | log |T |), much less than that of the optimal evasion.

3.2.3 BDT-R model

In [32] they showed empirically how training a BDT, without loss of predictive
accuracy, increasing the training set with evasion instances produced with symbolic
prediction 3.2.2 at each boosting round. This training technique has been called
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adversarial boosting and the generated model is called Boosted Decision Tree -
Robust. In particular given an instance x with label y and a modification budget
b ≥ 1, a budgeted adversarial training instance x ′, it is such that ‖ x − x ′ ‖0≤ b,
and the margin yT (x ′) is as small as possible. Since the model uses the BDT
ensemble learning algorithm, at each iteration the created base-learner tries to
correct the ensemble errors. For each iteration, the base-learner is trained with the
normal training dataset combined with the evading instances created by attacking
the ensemble. Consequently, the base-learner corrects the errors made by the
ensemble on both normal and evading instances. It is important to report, as
mentioned in [32], the BDT-R model trained with L0 evading instances, has less
robustness against attacks based on the distances L1, L2 and L∞, than that of a
normal trained BDT. Figure 3.1 shows the results of the experiments conducted
in [32] to evaluate the performance of BDT-R compered to other models. The
performances of the various models are measured with respect to attacks generated
with the distance functions: L0 in 3.1a, L1 in 3.1b, L2 in 3.1c and L∞ in 3.1d. The
boxes represent evasion bounds for different metrics, the white boxes represent the
optimal attacks, while the gray boxes the best-effort attacks (how much effort an
attacker must make to break the model). The smallest bounds, 25-50% and 50-75%
quartiles and largest bounds are shown. The red line represents the average of the
score. The higher the average, the more perturbations are needed to evade the
model. As can be seen from the results and as explained above, the BDT-R model
trained to be robust to attacks generated with distance function L0 has very low
performances when it classifies attacks generated with different norms.

3.3 Random Subspace Method

The latest learning algorithm proposed in this chapter is the Random Subspace
Method (RSM) [29], an ensemble methods to train a robust model against evasion
attack [6]. RSM is very similar to Bagging, but unlike the latter, it performs the
boostrap sampling on the feature space and not on the instances. Thanks to the
use of a subset of features for each base-learner, RSM performs well in contexts
of datasets with a high dimensionality. The large number of possible subspaces
of features allow to overcome the problem of the curse of dimensionality present
in many models [29]. Originally RSM was born to improve the base-learner’s
performance from a point of view of accuracy in operation phase, not considering
an attack context. In fact, there are several articles that show how RSM improves
the performance of base-learners. For example, in [43] it is used for linear models,
in [46] for support vector machine [17], while in the articles [28, 29] it is used with
decision trees. In particular, in [28] it is empirically shown that RSM works well
on binary trees. In the context of the decision trees, it was shown how randomly
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(a) Evasion attacks with L0-norm. (b) Evasion attacks with L1-norm.

(c) Evasion attacks with L2-norm. (d) Evasion attacks with L∞-norm.

Figure 3.1: Comparison between BDRT-R and other learning algorithms against evasion
attacks generated with: L0-norm, L1-norm, L2-norm and L∞-norm. The images of the
results were taken from [32].

choosing a subset of features leads to an improvement in generalization accuracy,
while maintaining the performance on training data unchanged. With RSM, each
tree within the ensemble generalizes differently from the others.
In literature there are references to the fact that improving the robustness of a
model through the use of an ensemble does not always lead to good results. The
reason why in [5, 6] they investigate the robustness produced by RSM against
adversarial examples is the following. In [33] they assume that to increase the
robustness of a linear model it is necessary to distribute the features according
to weight (the discriminative importance) in the most uniform way. So doing the
adversary is forced to attack a greater number of features to evade the model.
If the attacker knows what the most important features are within the training
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set, he can try to perform the attack only on those. If, as reported in [33], the
learning algorithm does not over-emphasize (under-emphasise) features which are
highly (slightly) discriminant on training samples, the attacker has no way to use
this strategy. On the other hand, the distribution of the weight of the features
in a uniform way can lead to a decrease in the model’s performance on normal
instances. One property of the RSM is that thanks to the randomness of the
boostrap sampling, very discriminative features end up in different base-learners
compared to the less discriminative ones. This separation allows less representative
features not to be excluded (or considered less) in the training phase due to more
important features. This leads to the creation of new ways to discriminate training
instances. From what has been said above, RSM is suitable for reaching the trade-
off between acuracy in operation phase and for producing the robustness strategy
proposed in [33] mentioned above. In [5] they confirmed empirically how RSM
distributes the weights of the features in a more uniform way than the other models
compared and this has led to an improvement in the robustness under attack. This
effect is highly dependent on the size of the feature set and the size of the ensemble.
The pseudocode of the RSM algorithm is reported in 4. Finally below, we reported

Algorithm 4 RandomSubspaceMethod

Require: A training set D = {(x 1, y1), . . . , (xn, yn)}, the features space F , the
learning algorithm L, the ensemble size r and the percentage of features
p ∈ [0, 1].

1: function RandomSubspaceMethod(D,F ,L,r,p)
2: T ← ∅
3: for i = 1 to r do
4: Fi ⊂ F ∧ |Fi| = b|F|pc
5: ti ← L(D,Fi)
6: T ← T ∪ ti
7: end for
8: return T
9: end function

some of the results of the analyses conducted in [5]. Figures in 3.2 compare the
robustness of the RSM ensemble learning algorithm with other strategies, as the
attacker’s strength increases. The experiments performed concern a spam filtering
task on the TREC 2007 email corpus [5]. Plots in the figure 3.2a represent the
performance of text classifiers in which features correspond to words in emails.
while plots in figure 3.2b shows the performance of the SpamAssassin filter whose
decision function weights have been set by each of the learning algorithm analyzed.
For each figure, the weak-learners used are LR (top) and SVM (bottom). while the
ensemble methods used are RSM and Bagging. The performances of the ensemble
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methods were also compared with the single weak-learner to see if the ensembling
improves the strength of the weak-leaner. The three plots for each weak-learner
represent, left: worst-case attack; middle: non-worst-case attack; right: random
attack. The evaluation metric is AUC10% and for each model it is represented by a
solid line, while the standard deviation for each curve is represented through two
dashed lines (± std).

(a) Comparison between text classifiers in which features correspond to words in emails.

(b) Comparison of SpamAssassin filter results with the decision function weights set with
the analyzed learning algorithms.

Figure 3.2: Plots of RSM performances compared to other learning algorithms. The
images were taken from [5].
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3.4 Robust Split

This section report another training algorithm for robust decision trees taken
from the state of the art of aversarial machine learning. The algorithm is called
Robust Split [13], which obtains reliable models robust against adversarial attacks,
through the formulation of the decision tree training process as an optimization
problem over finding best splitting point. Robust Split take the distance between
data points into accounts and try to optimize the worst case performance under
adversarial perturbations. In Figure 3.3 we have given an example taken from [13].
The example is very simple but perfectly explains the concept behind the robust
split algorithm.

Figure 3.3: Given 10 points as in figure, in a two-dimensional space a model trained
with a classic DT algorithm obtains inferior performance under attack, compared to the
Robust Split model. Upper: The classical learning algorithm separates the 10 points
simply with a horizontal line on the feature x(2). The accuracy produced by this split
without attack is 0.8. Middle: The split that generates the best accuracy on safe data
is not able to separate the `∞ balls, norm bounded noise (square boxes), around the
instances. Therefore an attacker can push instances beyond the decision boundary
through a perturbation within `∞. The minimum accuracy under attack is 0. Lower:
The Robust Split finds a differente splitting point, on the feature x(1). The attacker can
no longer push an instance beyond the decision boundary. Robust Split gets 0.7 on both
safe and attacked input [13].

3.4.1 Attacker Model

The attacker model performs adversarial example attacks whose perturbations are
not perceptible to the human eye, in a white box context. The model is defined on
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a budget ε which limits the strength of the attacker and specifies how much each
feature of an instance can be perturbed. More formally, let A be the attacker, the
attack is defined on the `∞ ball of radius ε around an instance x ∈ X . So, given
an instance x , the attacker A can generate any perturbed instance x ′ ∈ A∞ε (x ),
where A∞ε (x ) = [x(1) − ε, x(1) + ε]× · · · × [x(d) − ε, x(d) + ε].

3.4.2 Model Definition

To understand the Robust Split algorithm it is fundamental to view the Table 3.3,
containing the definitions given in [13], of the sets used during the explanation. Let

Table 3.3: Definition of the notions of the robust learning algorithm proposed in [13].
The variables f and v are respectively the feature and the threshold on which the split is
being performed.

Notation Definition

I set of instances on the current node, I ⊆ D
I0 I ∩ {(x i, yi)|yi = 0} (for classification)
I1 I ∩ {(x i, yi)|yi = 1} (for classification)

IL I ∩ {(x i, yi)|x(f)i < v}
IR I ∩ {(x i, yi)|x(f)i ≥ v}
∆I I ∩ {(x i, yi)|v − ε ≤ x(f)i ≤ v + ε}
∆IL ∆I ∩ IL
∆IR ∆I ∩ IR
IoL IL \∆I
IoR IR \∆I

D = {(x i, yi)}Ni=0 be the dataset, with yi ∈ R (or yi ∈ {0, 1} for binary classification)
and x i ∈ Rd, with the feature values normalized into [0, 1]. Let f ∈ [1, d] and v ∈ R
be the splitting point of the node. The Robust Split algorithm wants to maximize
the minimum performance of the tree under attack. Through the following max-min
optimization problem 3.10 it is possible to find the best parameters f ∗ and v∗ that
divide the dataset and maximize the lowest performances under attack:

f ∗, v∗ = arg max
f,v

min
I′

score(f, v, I ′)︸ ︷︷ ︸
robust score(f,v,I)

s.t. I ′ = {(x ′, y)|∀(x , y) ∈ I ∧ x ′ ∈ A∞ε (x )}
with respect to f and v

(3.10)

For every possible pair of (f, v), the worst case perturbation set I ′ is calculated.
Robust score represents the worst case of the score function obtained by the
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model under attack, with splitting point (f, v). The optimization problem 3.10
calculates I ′ for all instances of I, even on those that are too far away to pass the
decision boundary. In fact, given f and v, only instances with x

(f)
i ∈ [v−ε, v+ε] can

be efficiently attacked. Thus I can be divided into three subsets: IoL and IoR are the

sets of instances that go left if x
(f)
i < v and right if x

(f)
i ≥ v respectively, regardless

of the attacker A. While ∆I is the ambiguity set, and contains the instances that
can cross the threshold v if perturbed by A. Thanks to this division and the
introduction of the variables si ∈ {0, 1} they have transformed robust score of
the problem 3.10 into a 0-1 integer optimization problem with |∆I| variables:

f ∗, v∗ = arg max
f,v

min
si∈{0,1}

score(I ′L, I ′R)︸ ︷︷ ︸
robust score(f,v,I)

s.t. I ′L = IoL ∪ {(x i, yi) ∈ ∆I|si = 0},
and I ′R = IoR ∪ {(x i, yi) ∈ ∆I|si = 1}.

(3.11)

Even if the search for the best split is done only on instances in ∆I a 0-1 integer
optimization problem is NP-Hard in general. In [13] two approximations are given
to this problem, one based on information gain 1.2 and one on GBDT 1.3.2.

Robust Splitting with Information Gain Score

The first approximation proposed is based on a decision tree for binary classification
y ∈ {0, 1}, whose node split is based on the informaiton gain. The score function
in 3.10 is defined as follows:

score(f, v, I) = IG(f, v) = H(y)−H(y|x(f) < v), (3.12)

where

H(y) = −|I0||I| log

( |I0|
|I|

)
− |I1||I| log

( |I1|
|I|

)
, (3.13)

and

H(y|x(f) < v) =

− |IL||I|

[ |IL ∩ I0|
|IL|

log

( |IL ∩ I0|
|IL|

)
− |IL ∩ I1||IL|

log

( |IL ∩ I1|
|IL|

)]
− |IR||I|

[ |IR ∩ I0|
|IR|

log

( |IR ∩ I0|
|IR|

)
− |IR ∩ I1||IR|

log

( |IR ∩ I1|
|IR|

)]
.

(3.14)

In [13] they showed that if |IL∩I0||I0| < |IL∩I1|
|I1| and |IL∩I0|+1

|I0| ≤ |IL∩I1|
|I1| , perturb an

instance from ∆IR with label 0 to ∆IL, information gain decreases. Through this
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theorem it is possible to find the adversary’s perturbation direction to minimize
the information gain. To minimize information gain, the attacker must perturb
the instances in ∆I, so that |IL∩I0||I0| ≈

|IL∩I1|
|I1| . The solution they have proposed

minimizes
∣∣∣ |IL∩I0||I0| −

|IL∩I1|
|I1|

∣∣∣ as an approximation and upper bound to the optimal

solution, with a time complexity of O(dN2).

Robust Splitting with GBDT models

Subsequently they employed their robust splitting strategy in the tree boosting
setting. In this case multiple robust decision trees are created to increase the
strength of the ensemble. In particular, they used their robust splitting technique
in the split procedure of the nodes of the GBDT ensemble learning algorithm. The
changes only influenced the calculation of the score for the choice of the best split.
The score function in 3.10 is defined as:

score(f, v, I) = S(IR, IL) (3.15)

where S(IR, IL) is the score function used for training a normal GBDT. Also in
this case to minimize S(IR, IL) it is necessary to try all the permutations of the
instances in ∆I between the two sets IR amd IL. Finding the permutation that
minimizes the score is like solving the 0-1 integer optimization problem 3.11, for
every possible pair of (f, v) which is actually NP-Hard. Therefore they decided to
approximate this problem through four representative cases:

robust score(f, v, I) ≈ min{S(IL, IR), S(IoL ∪∆I, IoR),

S(IoL, IoR ∪∆I), S(IoL ∪∆IR, IoR ∪∆IL)}. (3.16)

For each f and v, the four scores are defined as: The first, S(IL, IR) represents the
score of non-perturbed instances. The second, S(IoL ∪∆I, IoR) is the score when
the attacker moves all the instances of ∆I to the left. The third, S(IoL, IoR ∪∆I)
is the score when the attacker moves all the instances of ∆I to the right. The
fourth: S(IoL ∪∆IR, IoR ∪∆IL)} is the score when the attacker moves all instances
of ∆IR to the left and all the instances of ∆IL to the right. The approximation
takes place by taking the minimum of the four scores as a solution.
Below we given a figurative explanation of the effects of the four partitions to
approximate the worst attack in the case of GBDT.

The figures in 3.4 show the possible effects of the four partitions used in the
approximation. The points inside the figure represent two types of objects, circles
from the green class and diamonds from the blue class. Figure 3.4a represents
the points inside I ⊆ D as input to the current node. In Figure 3.4b the model
chooses to test the data with respect to f = 2 and then to divide the data with a
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(a) I (b) IL and IR (c) IoL ∪∆I, IoR

(d) IoL, IoR ∪∆I (e) IL, IR (f) IoL ∪∆IR, IoR ∪∆IL

Figure 3.4: robust score for boosted tree - approximation of the worst attack.

threshold v with respect to the values of x(2). The data are divided into sets: IoL
which contains all the instances to the left of the split and which cannot cross it, IoR
contains the objects to the right of the split and which cannot cross it and finally
∆I which contains instances that can cross the split because they have the value
v − ε ≤ x(2) ≤ v + ε. The partition IoL ∪∆I, IoR in Figure 3.4c produces a division
with two errors, two diamonds are classified as greens. The partition IoL, IoR ∪∆I
in Figure 3.4d also produces two errors since two circles are classified as blue. The
partition IL, IR in Figure 3.4e leads to an error because one diamond is classified
as green. Finally the partition IoL ∪∆IR, IoR ∪∆IL in Figure 3.4f causes tree errors
because two circles are classified as green and one diamond is classified as blue.
The model is trained by choosing the partition that generates the highest number
of mistakes and therefore generates the lowest score.
In algorithm 5, the best split pseudocode proposed in [13] for the GDBT-based
approximation is given. The pseudocode only shows how to best split instances in I.
In a complete implementation, the rest of the algorithm is the same used in a normal
GBDT. Finally in Figures 3.5 and 3.6 we reported some results of the experiments
performed in [13], which show how to train a GBDT with robust score increases
the robustness to L∞-norm evasion attack compared to a normal GBDT.
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Algorithm 5 Robust Split for Boosted Tree

Require: The instances set I of the current node and the radius ε of the `∞ ball.
1: function Robust Split for Boosted Tree(I, ε)
2: for f ← 1 to d do
3: for m in sorted(I, ascending order by x

(f)
m ) do

4: v ← 1
2
(x

(f)
m + x

(f)
m+1)

5: IoL ← {(x i, yi)|x(f) < v − ε},∆IL ← I ∩ {(x i, yi)|v − ε ≤ x(f) < v}
6: IoR ← {(x i, yi)|x(f) > v + ε},∆IR ← I ∩ {(x i, yi)|v ≤ x(f) < v + ε}
7: S1 = S(IL, IR)
8: S2 = S(IoL ∪∆I, IoR)
9: S3 = S(IoL, IoR ∪∆I)

10: S4 = S(IoL ∪∆IR, IoR ∪∆IL)
11: robust score(f, v)← min{S1, S2, S3, S4}
12: end for
13: end for
14: f ∗, v∗ ← arg maxf,v robust score(f, v)
15: return split on feature f ∗ with a threshold v∗

16: end function

(a) robustness vs. classification accuracy (b) distortion vs. classification accuracy

Figure 3.5: In the figure we have reported some of the results of the experiments
conducted [13] on dataset MNIST to compare the performance of natural GBDT and
robust GBDT (with robust training parameter ε = 0.3) against adversarial examples
found by Cheng’s L∞ attack [16]. Figure (a) show robustness vs. classification accuracy
plot of GBDT models with different depth and different numbers of trees. Figure (b)
shows distortion vs. classification accuracy plot of GBDT models with different numbers
of trees. In both plots it can be seen that the robust version of GBDT maintains a higher
accuracy under attack compared to the normal version. The images of the experiments
were taken from [13].
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Figure 3.6: In figure we reported some of the results of the experiments conducted in [13]
on MNIST and Fashion-MNIST dataset. The experiments compared the performance of
a natural GBDT and robust GBDT (with robust training parameter ε = 0.3) against
adversarial examples found by Cheng’s L∞ attack [16]. Both models consist of 200-tree
gradient boosted decision tree. The experiment shows that robust GBDT requires a very
strong attack to be fooled, such as to be evident to the human eye. Instead for normal
GBDT imperceptible perturbations are enough to completely fool the model. The images
of the experiments were taken from [13].

3.5 Training Evasion-Aware Decision Trees

In [12] a new method has been proposed for learning a decision tree that is at
the same time accurate and nearly insensitive to evasion attacks. The learnering
algorithm is called the Treant (Training Evasion-Aware Decision Trees) and is used
as a base-learning algorithm to train the base-learners of a random forest. Before
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going into the definition of the learning algorithm it is important to define the
attacker model for which the model wants to be robust.

3.5.1 Attacker Model

Let A be the attacker, he has complete knowledge of the model (white box attacks)
and generates evasion attacks that are not perceptible to the human eye. From
the definition given in [12], the model of the attacker A is defined with a pair of
(R,K) where R is the set of rewriting rules and K is the available budget. The
rules in R define how the instances can be modified and K ∈ R+ is the amount
of the budget that the attacker can spend on performing the attack. The budget
limits the corruptions that the attacker can perform on an instance. Each rule
r ∈ R has the following form:

[a, b]
f−→k [δl, δu], (3.17)

with [a, b] and [δl, δu] ∈ R ∪ {−∞,+∞}. The interval [a, b] indicates the condition
for applying the rule. If the value x(f) ∈ [a, b] and the attackers has enough budget
to pay the cost k of the rule, then he can alter the instance x by adding to x(f)

a value v ∈ [δl, δu]. The attacker can use all the rewriting rules he wants, as long
as he has available budgets. Through the definition of the attacker model, let
A(x ) be the set of all possible perturbations x ′ ∈ A(x ) of x that the attacker can
perform with the rewriting rules R and budget K. Let D′ = A(D) be the set of all
instances of D perturbed by the attacker. In other words, for each pair (x , y) ∈ D
all pairs (x ′, y), with x ′ ∈ A(x ), are in D′. This rule-based attacker definition,
allows a simple generalization to categorical variables, to model also asymmetric
perturbations and to cover or approximate the standard distanced-based models.

3.5.2 Model Defintion

In general the Treant algorithm does not differ much from the learning algorithm
of a normal DT. What guarantees the robustness of the model is the way in which
the dataset is divided during the growth phase of the tree When the dataset is
divided, the algorithm ensures that the loss generated by the division is the lowest
compared to the maximum loss generated by all possible attacks. In particular the
model is defined on the following optimization problem [37]:

ĥ = arg min
h∈H

max
D′∈A(D)

L(h,D′)︸ ︷︷ ︸
LA(h,D)

. (3.18)

The loss LA(h,D) is called loss under attack, which represents the maximum loss
generated by A through corruption of D with respect to the model h. The purpose
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of the training algorithm is to find the model h which minimizes the loss under
attack. In other words, minimizing the strongest attack the adversary can make
against any possible h. The double optimization problem finds the model h, whose
maximum loss generated by the attacker, is the lowest. The external part of the
problem refers to the principle of empirical risk minimizaton 1.1, which tries to find
the hypothesis that minimizes the LA of the training set. They proposed a way to
improve tree construction compared to the traditional greedy method, based on
node splitting. The method involves minimizing the LA during each growth step of
the tree, in this way the tree grows as long as the maximum error that the model
commits under attack decreases. The algorithm proposed in [12], guarantees the
robustness of the model using two mechanisms, the robust splitting and the attack
invariance.

Robust splitting

The robust splitting strategy optimizes the LA at each growth step of the tree. The
creation of the robust tree is made recursively, and the search for the hypothesis ĥ
of 3.18 corresponds to the node σ(f, v, λ(ŷl), λ(ŷr)) which generates the lower LA.
So for every possible pair of (f, v) the problem of 3.18 must find the value of the
leaves ŷl and ŷr that minimizes the LA. The search for the best σ(f, v, λ(ŷl), λ(ŷr))
is done through the ternary partitioning. The ternary partitioning divide the
dataset D into three subset. The subset Dl(f, v, A) represents the instances of
D which always fall in the left branch, regardless of the attacks produced by A.
The correspondent for the right branch is Dr(f, v, A). The third subset Du(f, v, A),
where x ∈ Du(f, v, A) ⇐⇒ ∃x ′,x ′′ ∈ A(x )|x′(f) ≤ v ∧ x′′(f)l > v. Thus, Du

contains instances that can change direction due to the attack. The search for the
LA should be done only on Du(f, v, A), since they are the only instances for which
the attacker has the intention to modify. For Dl(f, v, A) and Dr(f, v, A) the loss
LA = L. Problem 3.18 can be rewritten as:

(ŷl, ŷr) = arg min
yl,yr

LA(σ(f, v, λ(yl), λ(yr)),D), (3.19)

where LA is decomposed via the ternary partitioning as:

LA(σ(f, v, λ(yl), λ(yr)),D) =

= L(λ(yl),Dl(f, v, A))+

+ L(λ(yr),Dr(f, v, A))+

+
∑

(x ,y)∈Dl(f,v,A)

max{`(yl, y), `(yr, y)}.
(3.20)

Inside the sum in 3.20, for the calculation of the loss under attack, the highest loss
is taken between `(yl, y) and `(yr, y). This is because the attacker always chooses
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to send the instance in the direction that causes the greatest loss. It is important
to note that if the instance-level loss ` is convex, then also LA will be convex and
therefore can be efficiently optimized. Let N be the set of nodes generated for each
pair (f, v), defined as follow:

N ← {σ(f, v, λ(ŷl), λ(ŷr))|f ∈ [1, d] ∧ ∃(x , y) ∈ D : x(f) = v ∧
∧ ŷl, ŷr = arg min

yl,yr

LA(σ(f, v, λ(yl), λ(yr)),D)}. (3.21)

Given 3.19, to calculate the node t̂ = σ(f, v, λ(ŷl), λ(ŷr)) which produces the lowest
LA, the following optimization problem must be solved:

t̂ = arg min
t∈N

LA(t,D) = σ(f, v, λ(ŷl), λ(ŷr)). (3.22)

Through the node t̂, it is possible to calculate the robust split D = DL(t̂, A) ∪
DR(t̂, A) with respect to A. The instances in DL(t̂, A) and DR(t̂, A) go to the left
and right branch respectively. The robust split is calculated as follows:

• DL(t̂, A) contains all the instances of Dl(f, v, A).

• DR(t̂, A) contains all the instances of Dr(f, v, A).

• for each (x , y) ∈ Du(f, v, A), the following rules apply:

- if `(ŷl, y) > (ŷr, y), then (x , y) goes to DL(t̂, A)

- if `(ŷl, y) < (ŷr, y), then (x , y) goes to DR(t̂, A)

- if `(ŷl, y) = (ŷr, y), then (x , y) goes to DL(t̂, A) if x(f) ≤ v and to DR(t̂, A)
otherwise.

The robust split strategy is the heart of the Treant algorithm. The division of D in
DL(t̂, A) and DR(t̂, A), guarantees LA to be as low as possible with respect to A.

Attack invariance

The attack invariance property preserves the correctness of the robust splitting
strategy, each time a node is added to the tree. As explained in 3.5.2 the robust
splitting strategy assumes that the attacker is greedy, but it is possible that by
adding a new node, new attack points can be created for the attacker. The attacker
can choose to alter an instance differently as the leaves of the new node cause a lower
loss than a leaf in which it did not fall before. To provide a sound optimization of
LA on the full dataset D, the attack invariance must be introduced. Let Dλ ⊂ D, be
the set of instances in D falling in the leaf λ along the tree construction by applying
the robust splitting strategy. The security property called attack invariance ensures
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that the growth step of the tree preserves the correctness of greedy assumptions
made on the adversary. Let ΛA(t, (x , y)) be the set of the leaves of t that are
reachable by some attacked instance x ′ ∈ A(x ). The attacker has no advantage
in changing the leaves of the set, since they generate the highest loss. The attack
invariance ensures that during the construction phase, the set ΛA contains the
leaves of the new split. If this doesn’t happen, it means that for the instances in
Dλ that reach λ, the attacker found another leaf, outside of ΛA, that generates a
greater loss. This would break the soundness up to the previous step guaranteed by
the optimization problem 3.19. Let t′ the generated tree by changing a leaf λ of t
with a new splitting point σ(f, v, λl, λr). The tree t′ satisfies the attack invariance
if and only if:

∀(x , y) ∈ Dλ : ΛA(t′, (x , y) ∩ {λl, λr} 6= ∅. (3.23)

To guarantee the attack invariance, a set constraints are inserted into the optimiza-
tion problem 3.19. To better understand the concept of constraints, following there
is an example taken from [12]. Let σ(f, v, λ(ŷl), λ(ŷr)) be a new growing node from
leaf λ and Dλ. Suppose the instance (x , y) ∈ Dλ is sent to the right branch of
the node by the robust split, as one of its perturbations x ′ ∈ A(x ) traverses the
threshold v and `(ŷr, y) ≥ `(ŷl, y). The attack invariance is guaranteed when the
leaves λ(ŷl) and λ(ŷr) are respectively replaced with the sub-trees tl and tr and
there exists an instance x ′ ∈ A(x ) such that the higher loss is generated in a leaf of
the sub-tree tr. If the higher loss for x ′ is in tl it means that the growth of the tree
has introduced a new point of attack. At this point the attacker can choose to send
the instance in the left branch instead in to the right one. To force the attacker
to send the instance to the right, the requirement `(ŷr, y) ≥ `(ŷl) is transformed
into a pair of constraints `(ŷr, y) ≥ γ and γ ≤ `(ŷl) where γ = min{`(ŷr, y), `(ŷl)}.
The two constraints are then recursively propagated respectively in the left and
right child. As long as the two constraints are not violated, the attacker has no
advantage in changing his strategy, so attack invariance is enforced. To implement
this constraint mechanism, each leaf λ is extended with a set of constraints C, which
is initially empty for the root of the tree. When a leaf λ is split to grow the tree,
the constraints are included in the optimization problem 3.19 to determine the best
pair ŷl, ŷr that preserve the greedy choices made by the attacker so far. Finally the
constraints are (partially) propagated to the new leaves and new constraints are
generated based on the new split. The constraints guarantee the attack invariably
at the price of reducing the space of the possible tree-growing solutions. This
property does not prevent the construction of robust decision trees that are also
accurate in absence of attacks.

Through these two strategies the Treant algorithm is able to generate a decision
tree robust against attacks generated by the attacker’s model proposed in 3.5.1, by
minimizing the highest loss at each step. Algorithm 6 shows the Treant pseudocode
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proposed in [12]. Finally in Figures 3.7 we have reported some of the results of the
experiments conducted in [12] to compare the performance of a Random Forest of
Treant robust trees with Adversarial Boosting (a GBDT trained with adversarial
examples) and Robust Tree [13] defined in section 3.4. The experiments were
performed on Census, Wine and Credit datasets with Accuracy, F1 Macro
and ROC AUC evaluation metrics [12]. Figure 3.7a shows the performance
of the three algorithms keeping the trainig budget fixed and varying the attack
budget. From these plots it can be seen that as the attacker’s budget grows, Treant
constantly outperforms its competitors, especially when the attacker gets stronger.
Figure 3.7b shows the performance of the three algorithms keeping the attack
budget fixed and varying the training budget. The plots show that Treant still
outperforms its competitors and the more the training budget grows, the more
Treant improves its performance under attack.

Algorithm 6 Treant

Require: A training set D = {(x 1, y1), . . . , (xn, yn)}, the attacker model A and
the set of constraints C

1: function Treant(D, A, C)
2: ŷ ← arg miny LA(λ(y),D) subject to C
3: σ(f, v, λ(ŷl), λ(ŷr)),Dl,Dr, Cl, Cr ← TSplit(D, A, C)
4: if LA(σ(f, v, λ(ŷl), λ(ŷr)),D) < LA(λ(ŷ,D) then
5: tl ← Treant(Dl, A, Cl)
6: tr ← Treant(Dr, A, Cr)
7: return σ(f, v, tl, tr)
8: else
9: return λ(ŷ)

10: end if
11: end function

12: function TSplit(D, A, C)
13: N ← {σ(f, v, λ(ŷl), λ(ŷr))|f ∈ [1, d] ∧ ∃(x , y) ∈ D : x(f) = v ∧ ŷl, ŷr =

arg minyl,yr LA(σ(f, v, λ(yl), λ(yr)),D)} subject to C
14: t̂ = arg mint∈N LA(t,D) = σ(f, v, λ(ŷl), λ(ŷr))
15: Dl ← DL(t̂, A)
16: Dr ← DR(t̂, A)
17: Cl ← CL(t̂, A)
18: Cr ← CR(t̂, A)
19: return t̂,Dl,Dr, Cl, Cr
20: end function
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(a) Comparison of adversarial learning techniques for different test budgets and maximum
train budget.

(b) Comparison of adversarial learning techniques for different train budgets and maximum
test budget.

Figure 3.7: Results of the analysis on the robustness of the Treant algorithm compared
to other robust training techniques. The robustness of the models was compared with
Accuracy, F1 Macro and ROC AUC, against evasion attacks generated with L∞-
norm. The images of the experiments were taken from [12].
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Summary

Briefly, in the first part of this chapter we gave a quick introduction of the state of
the art of training techniques to make models as NN, SVM etc., robust to evasion
attacks. The second part it focused on the state of the art of learning algorithms
and ensemble methods based on decision trees, robust against evasion attacks. The
chapter highlighted what has been done so far on ensemble methods and decison
tree against evasion attacks. The models analyzed in this chapter are the following:

• Boosted Decision Tree - Robust. The BDT-R model is an ensemble
methods based on Boosted Decision Tree and is trained through adversarial
training. In the article they introduced two strategies for creating evasion
attacks, one called optimal evasion based on a very expensive but precise
MILP problem and one based on a faster but less accurate technique called
symbolic prediction. Through symbolic prediction they trained a BDT-R
on evasion attacks with distance L0-norm less than the attacker’s budget b

• Random Subspace Method. RSM is an ensemble methods designed to
increase the accuracy of individual base-learners. It trains each base-learner
on a restricted subset of randomly sampled features. Later, in other researches,
this construction was exploited to better distribute the most discriminating
features among the various base-learners and increase robustness against
adversarial examples bound by distance function L0. In the experiments we
compared our model with RSM.

• Robust Split. The Robust Split algorithm bases its robustness by max-
imizing the minimum score under attack. In other words, it divides the
instances so as to generate the highest score when the model is under attack.
The algorithm trains the model based on attacks generated by an adversary
constrained by distance function L∞. The algorithm was presented in two
versions. The first based on maximizing the minimum score under attack
calculated by information gain score. While the second version is based
on GBDT and the minimum score under attack is calculated through four
specific cases of distribution of instances with respect to the left or right
branch of the tree.

• Treant. The Treant algorithm trains a robust decision tree to attacks
generated by an adversary whose strength is constrained by distance function
L∞. The robustness of the tree is guaranteed through two properties: the
robust splitting which divides the training data in order to generate the
lowest maximum loss under attack and the attack invariance which allows
to maintain the assumptions made during the robust splitting consistent with
the growth of the tree.
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Chapter 4

Feature Partitioned Forest

This chapter represents the heart of this thesis, as well as the scientific contribution
that we have given regarding adversarial machine learning. This chapter introduces
our ensemble learning algorithm called Feature Partitioned Forest (FPF) based
on decison trees and robust to evasion attacks. The chapter also contains the
definitions of the two certificates to calculate the performance of FPF without
performing all the possible attacks.

4.1 Adversary’s Model

Before giving the definition of our algorithm, it is necessary to specify the attacker’s
model for which it was designed. The attacker’s model is defined on evasion attacks,
where an attacker aims at fooling an already trained classifier by maliciously
modifying a given instance before submitting it to the classification model. The
perturbation caused by the attacker is not unconstrained as the attack should
be ”invisible” to the classification system. As in Kantchelian [32], we assume
an attacker Ab that is capable of modifying a given instance x into a perturbed
instance x ′ such that the L0-norm of the perturbation is smaller than the attacker’s
budget k, i.e., ‖x − x ′‖0 ≤ b with b ∈ N+. Therefore, attacker Ab can perturb
the instance x by modifying at most b features, without any constraint on how
much a given feature can be altered. Indeed, a very small b is sufficient to achieve
successful attacks. Su [44] show that with a one-pixel attack, i.e., with b = 1, it
is possible to fool a complex deep neural network as VGG16 [42] and decrease its
accuracy to a poor 16%. Given an instance x ∈ X , we denote by Ab(x ) the set of
all the perturbed instances the attacker may generate:

Ab(x ) = {x ′ | x ′ ∈ X ∧ ‖x − x ′‖0 ≤ b} . (4.1)
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The power of the attacker that we have proposed is bound by the value of b. The
budget can take a value between 0 ≤ b ≤ dd/2e − 1 1. In other words, attacker
Ab can perturb the instance x by modifying at most b features, and there are no
limits on how much perturbed features can be changed.

4.2 Model definition

before continuing with the definition of the FPF model, it is essential to introduce
the concept of features partitioning and when a partitioning can be considered
robust against attacks produced by an adversary Ab.

4.2.1 Feature Partitioning

Given P a set partition of the feature set F and an attacker Ab that decided to
corrupt the set of features B ⊆ F , with |B| ≤ b, It is easy to compute the number
of sets in P overlapping with B as:

O(P , B) =
∑
P∈P

1[B ∩ P 6= ∅] (4.2)

where 1[e] equals 1 if expression e is true and 0 otherwise. Partition P is called
robust if the majority of its sets cannot be impacted by the attacker Ab, i.e., if the
following property holds:

∀B ⊆ F , |B| ≤ b O(P , B) <
|P|
2
. (4.3)

When |B| ≤ b, it is straightforward to show that this property is surely satisfied if
|P| ≥ 2b + 1. Consider the worst case: at most b distinct subsets of P can have
an overlap with B, leaving other ≥ b+ 1 subset of P unaffected. Hereinafter, we
consider only robust feature partitions P where |P| = 2b+ 1.

4.2.2 Robust Forest

Given the dataset D = {(x 1, y1), . . . , (xn, yn)} with x ∈ X d and y ∈ {−1, 1},
FPF trains a forest of binary decision trees and the resulting ensemble is a binary
classifier. The robustness of the ensemble method against evasion attacks generated
by Ab is implemented as follows. Let’s consider a forest T that, given an attacker
Ab, is built by exploiting a robust feature partition P as follows. Let D be a set of
training instances x ∈ X , and P be a robust partition of its feature space F . Given

1The reason for this constraint is explained in the Observations section 4.4
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P ∈ P, we call πP (D) the projection of D on the feature set P , i.e., the dataset
obtained from D by discarding those features not included in P . Given a robust
feature partitioning P , it is thus possible to build a robust forest by training 2b+ 1
trees independently on the 2b+ 1 projections πP (D), with P ∈ P . The algorithm
sketched above achieves what we formally define as robustness.

Definition 1 (Robust Forest). Given an attacker Ab, a forest T is robust if the
majority of its trees is not affected by Ab for any of its attacks:

∀x ∈ X , ∀x′ ∈ Ab(x)
∑
t∈T

(1[t(x) = t(x′)]) >
|T |
2

(4.4)

It is straightforward to show that if a forest is built on the basis of a robust
feature partitioning P as described above, then, at most b of its 2b+ 1 trees can
be affected by the attacker. Note that, the above definition and training strategy
trivially generalizes to any ensemble learning algorithm.

Increasing the accuracy of a robust forest. The above definition does not
provide any guarantee on the accuracy of the full forest T , which clearly depends
on the accuracy of its single trees. Yet, the more accurate the trees t ∈ T , the more
likely the forest T is accurate under attack. One limitation of feature partitioning
is that each single tree is trained on a reduced number of features. In this regard,
to increase the accuracy of a robust forest T , we equi-partition F across P so as
to have |P | = b |d|

2b+1
c for all P ∈ P. Clearly, as the attacker’s power b increases,

we require to partition F in to a larger number of subsets, and for these to be
effective we require the dataset to have a larger number of high quality features.
Note that this is true for every learning algorithm: if the attacker can perturb
at will b features, we require to have more than b high quality features to train
an accurate model. The ideal case is the perfect accuracy of T , which guarantees
that T is resilient by construction to an attacker Ab. Suppose that for a given test
instance (x , y), we have that ∀t ∈ T , t(x )y > 0: in this case attacker Ab does not
have any chance to modify the prediction of T , i.e., ∀x ′ ∈ Ab(x ), T (x ) = T (x ′)
by construction. In fact, the maximal attack to T , which can break b trees by
perturbing b features, cannot however modify the prediction of the majority of the
2b+ 1 trees in T .

Increasing the robustness of a robust forest. In the ideal case, our model
can never be circumvented by an attacker Ab. However in the real case since
we use a limited number of features for each tree, some of them may not be
perfectly accurate. This fact undermines the robustness by construction of the FPF
algorithm. Specifically, given a test instance (x , y), even if T (x )y > 0, individual
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trees may still generate incorrect results. For example, if ∃t ∈ T , t(x )y < 0, let
x ′ ∈ Ab(x ) be an evading instance obtained by perturbing b features aimed to
break b (otherwise accurate) trees. This attack possibly succeeds in misleading T ,
i.e., y · T (x ′) < 0, despite our robust forest construction. Furthermore, the trees
inside the ensemble are built on different features, so they can present a different
strength to the attacks. For example a tree could break with only one feature
attacked, while for another one would need more. From these last observations
an attacker can maximize the damage by deciding how to spend his budget by
exploiting the independent errors committed by the forest and the robustness of
the single trees inside it. To overcome this problem we decided to increase the size
of the forest T . Indeed, we generate an ensemble of r forests T = {Ti}i=1,...,r, where
each single Ti is always composed of 2b+ 1 trees, but is build upon a different and
randomly selected equi-partition Pi of F . Using multiple rounds of the algorithm
brings several advantages. First of all, multiple rounds r increases the difference
between attackable and non-attackable trees. This increase allows to overcome the
problem of independent errors made by trees inside the forest. For example, let’s
consider a forest trained with parameters b = 1 and r = 1, the ensemble has a
size of 3 trees. In the worst case the attacker breaks at most 1 tree. If at least
one of the remaining 2 trees produces a wrong prediction of x ′ (or x , is the same)
then the prediction of the ensemble T will be wrong. In this case, an independent
error is sufficient to break the model. On the other hand, if r = 100 the forest
contains 300 trees, of which at most 100 can be attacked by the adversary and at
least 200 cannot be attacked. In this case, at most 49 out of 200 trees can break
independently to still ensure the correct prediction of the ensemble. So increasing
r introduces d rb

2
e − 1 trees of protection against independent failures. Furthermore,

the repetition of the construction, allows to have many more base-learners and
consequently a more heterogeneous ensemble. In this way the attacker has more
difficulty in finding a combination of b features that breaks all the trees contain
them. It is very important to note that even if there are trees with common features
between different rounds, the robust partition property is maintained because every
Ti ∈ T is defined on a robust partition. The proof of this statement is given in
4.4. Finally, another advantage of using multiple algorithm rounds is that at each
round, the features of each tree are sampled randomly. This randomness of the
distribution of fatures within the base-learners indirectly exploits the same idea
of RSM 3.3 in implementing the robustness strategy proposed by [33]. Briefly
in [33] they said that separating discriminative features from less discriminative
ones allows the models to discover new important features that were previously
eclipsed. The consequence is that an adversary has to modify a greater number
of features to evade the model [5]. Finally in 7 we reported the pseudocode of
the FPF algorithm to train a forest T aimed to be robust against an attacker
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Ab that can perturb at most b features. The algorithm takes as input a dataset
D = {(x 1, y1), . . . , (xn, yn)}, with x ∈ X ⊆ Rd, the features set F , the attacker
budget b and the number of round r. During each round i = 1, . . . , r, a new forest
Ti is added to T , where |Ti| = 2b+1. Each Ti is trained on a different and randomly
chosen robust partition Pi of F . Specifically, at each round the features set F is
shuffled and then equi-split into 2b+ 1 disjoint chunks, used to project D so that
each t ∈ Ti is trained with only the features specified in one of the chunks.

Algorithm 7 Robust Partitioning of Features

Require: A training set D = {(x 1, y1), . . . , (xn, yn)}, the features space F , the
attacker budget b and the training rounds r

1: function Robust Partitioning of Features(D,F ,b,r)
2: T ← ∅
3: k ← 2 · b+ 1
4: for i = 1 to r do
5: Ti ← ∅
6: Pi ← RobustPartition(F , k)
7: for all Pj ∈ Pi, j = 1, · · · , k do
8: t← DecisionTree(πPj (D))
9: Ti ← Ti ∪ t

10: end for
11: T ← T ∪ Ti
12: end for
13: return T
14: end function

4.3 Certificates of robustness

In this section we propose two certificates of robustness that allow to calculate
a lower bound of the performance of the model under attack without computing
all the possible evading instances in Ab(x ). The first lower bound is called fast
lower-bound, whose name derives from its polynomial complexity. The second
is called accurate lower-bound, which has greater accuracy than the first, but at
an exponential cost. Despite the exponentiality of the accurate lower-bound, it
is extremely faster than computing Ab(x ). It is important to note that the two
proposed lower-bounds allow to compute the robustness of a model with respect
to an instance x and an attacker Ab. The certificates answer ”yes” or ”I don’t
know” to the question ”is the model robust against an attack of Ab on x?”. If the
certificate answers ”yes” then for certification there is no perturbation of x on b
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features that eludes the model, ∀x ′ ∈ Ab(x ) : T (x ′)y > 0. If the answer is ”I don’t
know”, there is no guarantee of the existence of the attack. The uncertainty of the
certificate is a consequence of the assumptions made for the approximation. Table
4.1 shows some useful definitions for the explanation of each certificate.

Table 4.1: Certificate notation.

Notation Definition

F (i)
b F (i)

b ⊆ F with |F (i)
b | = b.

Fb {F (i)
b | ∀F

(i)
b ⊆ F}.

F tx set of features of x , tested in the decision path of t(x ).

T fx set of trees, which feature f is tested in the prediction of x

T Ai {t | ∀t ∈ T ,F tx ∩ F (i)
b 6= ∅}

ax a
(f)
x =

∑
t∈T fx

1[t(x )y > 0], ∀f ∈ [1, d]

āx vector ax sorted in descending order

4.3.1 Fast lower-bound: FLB

Fast lower-bound (FLB) is an algorithm that looks for the b features inside the
ensemble that cause the greatest damage. The approximation is based on the
pessimistic assumption that if a tree uses an attacked features to predict the label
of an instance x , then the instance will be classified incorrectly. Therefore the
approximation underestimates the strength of the individual tree under attack. To
deal with the explanation of the lower-bounds it is necessary to know the meaning
of prediction path set. The prediction path set denoted as F tx , is the set of features
used by t ∈ T when predicting x . Given the instance x , the decision path set is
created for each tree inside the forest. This set allows to understand which features
must be attacked in order to break t. Subsequently, through the decision path sets,
for each features in f ∈ [1, d], the algorithm creates the attacked tree set denoted
as T fx , each of which represents the set of potentially breakable trees by attacking
the feature f . Through these sets it is possible to calculate the damage vector ax ,
formally defined in Table 4.1. Each element a

(f)
x ∈ ax is associated with a feature

and maintains the maximum number of trees that the attacker can advantageously
break by attacking the feature f . Attacking with advantage means attacking a tree
that correctly predicts the label of x . The attacker has no advantage in wasting
budgets to attack an already broken tree. The vector ax is sorted in decreasing
order of damage and it is denoted as āx . In this way the first b elements represent
the features that break the largest number of trees. The vector āx allows the
algorithm to approximate the adversary’s strongest attack. To check if the model
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is robust to an attack on b features, the algorithm computes following formula:

oFLBx = y
∑
t∈T

t(x )−
b∑
i=1

2(āx )(i) (4.5)

If oFLBx is greater than zero, then the model correctly classifies each evading instance
in Ab(x ). The reason for the multiplication by 2 inside the rightmost sum is given
by the fact that in the first

∑
t∈T t(x )y all the trees are counted, even those attacked.

In this way, positive predictions are subtracted and errors are marked. In this lower
bound the approximation is given by two assumptions. The first as mentioned
above, if a tree is attacked even on a single feature of the prediction path set of x ,
it is considered broken. The second assumption is not to consider relevant the fact
that two or more features in āx can share the same tree and therefore it would be
counted more than once. To avoid this last problem, it is necessary to generate all
the C(d,b) combinations of features and count attacked trees correctly. The latter
consideration is used in the accurate lower-bound.

Fast lower-bound complexity To calculate the temporal complexity of FLB
it is necessary to analyze the cost of creating each data structure. By definition
|T | = r(2b+ 1), so the dimension of the set of trees is O(rb). The cost of scanning
the set of features F is O(d). Again by construction each features appears in a
tree per round then |T fx | = r. To calculate the decision path set F tx it is necessary
to traverse t from the root to the leaf corresponding to the prediction of x . In a
balanced binary tree the height h of the tree is given by log2(l − 1) where l is the
number of leaves of the tree. Since each tree can have a different number of leaves,
we refer to h as the height of the tree with the largest number of leaves. The cost
of the prediction t(x ) is therefore O(log2(l)) = O(h). So the cost of calculating
F tx , ∀t ∈ T is O(bhr). By construction the features in F are distributed in 2b+ 1
trees per round, so each tree has at most |F tx | = d

2b+1
features. The cost of scanning

F tx is therefore O(d
b
). The resulting sets T fx , ∀f ∈ [1, d] The resulting sets with

respect to the sets F tx , ∀t ∈ T . Through a dictionary that maps each feature
to a list of trees, it is possible to create the inverted index with the following
computational complexity. To create this inverted index, Marco visits each feature
f ∈ F tx at the cost of O(d

b
). The cost of visiting each features sets F tx for each

tree t ∈ T is O(d
b
· br) = O(dr). When a tree is added to a feature list, there is

no need to check that it is already there because F tx is a set and never has two
identical features associated with the same tree. If we assume that the predictions
t(x ),∀t ∈ T obtained during the calculation of the decison path sets are saved,

the cost of computing an element a
(f)
x of the damage vector ax will be O(r) as

it is sufficient visit the set T fx and count the correct predictions. The size of the
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damege vector is |a| = |F| = d. For each element of ax the temporal complexity
is O(dr). Finally, the damage vector āx is sorted in decreasing order with a
sorting cost of O(d log(d)). The temporal complexity for creating data structures
is O(bhr + dr + d log(d)) = O(bhr + dr + d log(d)). With the prediction of the
trees saved, the complexity of the two summations is O(rb). The final temporal
complexity of fast lower-bound is O(bhr+ dr+ d log(d)). The temporal complexity
depends on the training parameters r and b, the size of the feature space d and the
height of the trees h.

4.3.2 Accurate lower-bound: ALB

Unlike the FLB, accurate lower-bound (ALB) algorithm only makes one assumption
that defines its approximation: the classification made by any tree that uses a feature
under attack in the prediction of x is considered wrong. For each combination of d
features taken b at a time F (i)

b ∈ Fb, the algorithm calculates the set of attackable
trees T Ai defined as in 4.1 and the set of safe trees T Si = T \ T Ai . Trees in T Ai are

those that have features of their decision path set F tx in common with F (i)
b , and

they are therefore attacked. The accurate lower-bound for x with respect to an
attacker Ab is calculated using the following formula:

oALB
x =

C(d,b)∏
i=1

1

y∑
t∈T Si

t(x )− |T Ai |

 > 0

 (4.6)

If oALB
x is 1 it means that there is no parturbation x ′ ∈ Ab(x ) which produces

t(x )y < 0. If the difference y
∑

t∈T Si
t(x ) − |T Ai | is positive then it means the

majority of the forest predicts the correct label and the combination of features F
(i)
b

is not an attack. If the difference is positive, the 1 function returns 1, 0 otherwise.
Through the result of 1, the product returns 0 if there is at least a combination
of features F (i)

b which causes an error. Since the algorithm must test all possible
combinations of the d features taken b at a time, this approximation is much more
expensive than the previous ones, but at the same time it is more accurate since
trees are counted only once.

Accurate lower-bound complexity Also in this case, to calculate the temporal
complexity of the algorithm, it is necessary to divide the analysis into pieces. From
above, the complexity for creating all the decision path sets is O(bhr). As can be
seen from the definition of T Ai in table 4.1 for each t ∈ T (the scanning cost of the

forest is O(br)), ALB computes the intersection F tx∩F (i)
b . If we assume that the sets

F tx and F (i)
b are ordered then the intersection costs as the length of the longest list:

69



O(max{d
b
, b}). Since the sorting of the sets can be done a priori outside the product,

it is not involved in the search for all combinations. Therefore the costs of ordering
each F tx is O(d

b
log(d

b
)), for each tree inside the forest the temporal complexity of

sorting all the sets is O(dr log(d
b
)). Furthermore, the algorithm that we used to

generate all the combination sets F (i)
b ∈ Fb, creates them already ordered, therefore

we can omit the temporal complexity O(b log(b)). The final cost of creating T Ai is
O(br ·max{d

b
, b}). If the predictions t(x ),∀t ∈ T are saved when calculating the

Fx
t , the complexity of

∑
t∈T Si

t(x ) is O(br) which is less than O(br ·max{d
b
, b}) and

therefore can be omitted. The final temporal complexity of accurate lower-bound
is given by the cost of creating T Ai for each combination, added to the cost of
calculating and sorting each F tx , so it is O(C(d,b)br ·max{d

b
, b}+ bhr + dr log(d

b
)).

The temporal complexity of accurate lower-bound grows exponentially with the
growth of b and d, due to the number of combinations of attacks.

Due to the exponential growth of the combinations, the accurate lower-bound
can be used to give the robustness of a model for a limited attack strength. On the
contrary, as the name suggests, fast lower-bound prefers speed of execution over
accuracy. This lower-bound can be used to perform a deep analysis on the model,
especially when analyzing the robustness of the model as the attacker’s strength
increases. Or it can be used to find the best trainig parameter b without performing
all the attacks and checking the real robustness of the model. It is also possible
to use the two certificates in a combined way when tuning the model parameters.
In fact, the fast lower bound can be used to reduce the space of possible values.
Once a small set of good values has been found for the analyzed parameters, it is
possible to verify them with the accurate lower-bound for greater accuracy. Finally,
as explained in more detail in the next chapter, fast lower-bound can be used to
significantly reduce the search for possible attacks, excluding those instances that
cannot be attacked.

4.4 Observations

Limit of robustness: FPF algorithm has a limitation on the maximum number
of features it can protect. In fact the training parameter b must be b ≤ dd/2e − 1.

Proof. Suppose for absurdity to construct a model that protects b ≥ dd/2e features.
By definition of the model, the ensemble has a number of trees equal to 2b+ 1 ≥
2 · dd/2e+ 1, each with features distributed with robust partitioning. There are
two cases:

• if d is even then 2b+ 1 ≥ 2 · dd/2e+ 1 = d+ 1 > d

• if d is odd instead 2b+ 1 ≥ 2 · dd/2e+ 1 = d+ 2 > d
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In both cases the size of the ensemble is larger than the number of features. This
is absurd by the definition of the ensemble. It is not possible to distribute d
features on a larger number of trees, unless for some empty trees or to repeat some
features.

This limit is not so problematic. For example, if an attacker can modify all
the features of a sample x as much as he wants, it is not possible in any way to
create a useful model capable of predicting the correct label of the instance. This
because the attacker could transform an instance x from class y into any instance
of another class y′ 6= y. So limiting the attacker’s strength to b ≤ dd/2e − 1 is
reasonable.

Robustness preserved: In this section, we have demonstrated that even for a
number of rounds r > 1, an attacker Ab can attack only less than half the forest.
So the robustness property guaranteed by robust partitioning is preserved.

Proof. Given the number of features to be protected b ∈ N+ and the number of
rounds r ∈ N+, the algorithm creates an ensemble of r(2b+ 1) trees. The minimum
number of trees to have the majority in the prediction is br(2b + 1)/2c + 1. By
definition, FPF creates r forests of 2b + 1 trees with robust partitioning. By
construction only b trees for each round are attackable by Ab. Consequently, Ab
can attack at most br trees in the ensemble. Given r ∈ N+ we can say that
br(2b + 1)/2c + 1 = b(2br + r)/2c + 1 = br + br/2c + 1 ≥ br + 1 > br, then
the number of attackable trees is always less than the number of non-attackable
trees.

Possible attack scenario: Suppose a context in which an attacker can attack b
features taken from a small subset of features FA ⊂ F . Is it useful to remove these
features from the model to make it safe? No, the removal of the features leads to
a decrease in the accuracy of the model. A model designed to be robust should
maintain performance similar to a non-robust model on normal instances. In this
context, the FPF model allows to maintain the features of the subset FA and
guarantee the robustness of the model. Also, the more FA grows, the more features
are removed from the datast. If FA = F all features are potentially attackable,
therefore they should all be removed and therefore it would be impossible to
generate a model.
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Summary

This chapter is the most important of the thesis because we have presented our
ensemble learning algorithm called Feature Partitioned Forest. FPF is an
ensemble method based on decison tree robust to evasion attacks. The chapter can
be summarized in the following main points:

• Attacker’s model. In the first section of this chapter we presented the
attacker model for which FPF must be robust and on which we have performed
the experiments. The attacker denoted as Ab can perturb each instance with
respect to the distance function L0 with at most b changes.

• Model definition. FPF bases its robustness on a robust feature partition
that divides the dataset features into 2b + 1 sets (robust = each partition
doesn’t share features). Each 2b+1 sets is used to train a base-learner. Given
the attacker Ab, through this robust partitioning it is possible to guarantee
that the largest number of base-learners within the ensemble is not involved in
the attack. We subsequently showed that aggregating multiple groups of 2b+1
base-learners, trained upon a different and randomly selected robust partition
of the features set, leads to an increase in the robustness of the model. The
final size of the ensemble produced by FPF is of r(2b+ 1) base-learners.

• Certificates. Together with the model, we presented two certificates of
robustness based on the structure of the decision trees: fast lower-bound
and accurate lower-bound which respectively allow a fast and accurate
calculation of the lower bound of the performance of a model under attack,
without performing all possible attacks. Furthermore, for each certificate we
calculated the temporal complexity.

• Observations. In the last section of this chapter we have reported some
observations and demonstrations about FPF. For examples we demonstrated
that increasing the size of the ensemble with multiple groups of 2b+ 1 trees
does not compromise the robustness by construction. Or we demonstrated
that the model has a construction constraint on the maximum number of
features it can protect.
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Chapter 5

Evaluation Methodology

This chapter details how we performed the experiments and evaluations to compare
the robustness of Feature Partitioned Forest with state-of-the-art approaches. The
first part of the chapter concerns the experimental settings, where we introduced
the datasets used, the models compared and the strength of the attacker Ab used
for the evaluation of robustness. Next, we defined the accuracy under attack, a
robustness evaluation metric and then we presented the brute-force algorithm for
generating evasion attacks. For some training parameters, we have defined targeted
experiments to perform the best tuning in favor of the robustness of each model.
In this way the comparison between the models was as fair as possible. Finally, we
have defined some experiments to demonstrate that the accuracy under attacks,
approximated by the two lower bounds, is very close to the real value calculated
by our brute-force algorithm.

5.1 Experimental settings

The purpose of this section is to detail the datasets used and their characteristics,
the models used in the experiments and their training parameters and finally
the definition of the strength of the attackers used. For each dataset, we gave
a description of what it represents and the possible purpose of an adversary
attacking an instance inside it. Subsequently we introduced the algorithms used in
the comparisons and for each one we described the training parameters that we
analyzed in the experiments. Finally, from the definition of attacker’s model given
in section 4.1, we have specified the possible budgets of the attacker used during
the experiments.
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Table 5.1: Datasets description.

dataset name |F| #imp maj. class |D| |Dtrain| |Dtest|

Spam Base 57 26 60.6% 4600 3036 1564
Breast Cancer 30 15 62.7% 569 375 194
Binary Wine 13 7 73.0% 178 117 61

MNIST 0/1 784 54 53.3% 14780 9754 5026
MNIST 1/7 784 79 51.9% 15170 10012 5158
MNIST 5/6 784 173 52.1% 13189 8704 4485

5.1.1 Datasets

In the experiments we used the following datasets: Spam Base, Breast Cancer,
Binary Wine, MNIST 0/1, MNIST 1/7 and MNIST 5/6. The datasets
characteristics are summarized in Table 5.1. In order, the fields in the table
represent: |F| the cardinality of the features space of the dataset, #imp indicates
the number of important features within the datasets. This value was calculated
by training a Random Forest with 100 estimators and counting the features whose
collective importance represents 90% of the total. The maj. class (majority class)
represents the percentage of the majority class within the dataset. The whole
dataset is noted with D. The instances in D were divided into: 0.66% for the
training set Dtrain and 0.34% for the test set Dtest. The division of the instances
into the two sets was done with stratified sampling to maintain the proportion
of the classes. Hereinafter it must be considered that each model was trained
with instances in Dtrain and evaluated on set Dtest. Each value reported in the
experiment results is based on the instances in Dtest. The description of the meaning
of each dataset is given below.

• Spam Base [19] is an email classification dataset representing spam / ham
messages. Each entry in the dataset is a vector of 57 features. The first
54 are the percentage of 48 higly discriminative words and 6 characters,
calculated through baf-of-words. Feature 55 represents the average length of
uninterrupted sequences of capital letters. Feature 56 represents the longest
uninterrupted sequence of capital letters. While feature 57 is the number
of capital letters in the e-mail. The dataset is divided into two classes,
spam (unwanted) and ham (legitimate) emails. In an adversarial contest, the
attacker changes the number of words and the length of the uninterrupted
sequence of capital letters to make a spam email misclassified as ham and
vice versa.

• Breast Cancer (full name Breast Cancer Wisconsin (Diagnostic) Data Set)
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[19] is a dataset that represents the fundamental features extracted from
digitized images of a fine needle aspirate of a breast mass. The dataset is
made up of 30 real-valued features. The dataset is binary and the classes are
M (malignant) and B (benign). In a context of evasion attack, an adversary
modifies the attributes of the analysis to alter the diagnosis of the disease.
Beyond the somewhat unreal context, the dataset was used to show the ability
of FPF to protect the features better than the other models compared and
to correctly classify the instances of the dataset.

• Binary Wine is a dataset created from the Wine Data Set [19] dataset. Wine
Data Set represents the results of a chemical analysis conducted on three wines
grown in the same Italian region but derived from three different cultivars.
Chemical analysis measures the quantity of 13 different constituents (as
alcohol, magnesium, color intensity) found inside the three types of wine. The
classification task involves understanding the origin of the wine by comparing
the constituents inside it. Since there are three classes and the proposed
model has been developed for binary classification, we have binarized the
dataset by merging 2 cultivars (1 and 2). In this case an attacker modifies
the constituents of the wine coming from a cultivars to make it seem to come
from another cultivars and vice versa.

• MNIST 0/1, MNIST 1/7 and MNIST 5/6. MNIST database [35] (Mod-
ified National Institute of Standards and Technology database) is a dataset
of 70, 000 handwritten digits images in grayscale. Each image has a size
of 64 × 64 pixels for a total of 784 features. Each feature has an integer
value ranging from 0 to 255 which identifies the intensity of the pixel. In a
context of evasion attacks, an attacker modifies the pixels of the image to
transform one digit into another. The datasets MNIST 0/1, MNIST 1/7 and
MNIST 5/6 are the binary version of MNIST, in which the model is trained
to discriminate only two digits.
Due to the large number of features and instances, it is infeasible to run the
brute-force algorithm with attacker Ak on this dataset. Thus we decided to
use these datasets only for fast lower-bound experiments 5.4.

5.1.2 Models

In this thesis we decided to compare FPF with the ensemble learning algorithms RF
and RSM (applied to decision trees). Below we describe the training parameters of
interest for each model.

• FPF: The training parameters of FPF are b, r and l. The parameter b
indicates the number of features that the model protects against an attack
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performed by Ak. The parameter r indicates the number of rounds performed
by the algorithm during training. Finally parameter l indicates the maximum
number of leaves for each tree inside T . If l =∞, then the number of leaves
is chosen by the learning algorithm.

• RSM-DT: Random Subspace Methods [5, 29, 6] described in section 3.3
was used to train a forest of decision trees, robust against evasion attacks
generated by the attacker Ak. The ensemble resulting from the application
of RSM on DT was called RSM-DT. RSM is characterized by two training
parameter. First, p ∈ [0, 1] which specifies the size of the subset of features
F for each tree and second the size of the ensemble. Furthermore, since we
have used decision trees, it is possible to specify the maximum number of
leaves l of each tree.

• Random Forest: Random Forest [10] described in section 1.3.1 has as
important parameters the size of the forest T and the size of the subset
produced by the boostrap sampling. For this last parameter we have chosen
the value

√
|F|. RF has the possibility to specity the maximum number of

leaves, but by definition RF grows as it can. So we decided to specify l =∞,
the default value of this learning algorithm. Random Forest is known to have
some good level of robustness thanks to the ensembling of several decision
trees.

5.1.3 Attacker’s strength

In experiments involving the use of the brute-force algorithm, we used two attackers,
A1 and A2. The reason why we limited the attack to a maximum of 2 features is
given by the computational cost of the brute-force algorithm in the calculation of
all possible attacks. In the experiments related to fast lower-bound the attacker
had a budget greater than 2. We were able to increase the budget because this
certificate allow us to approximate the robustness of the model efficiently even
with high values of r, b and k. Hereinafter for simplicity when a model classifies
orignal instances, it is considered as a model that classifies instances perturbed
by an attacker A0 with budget 0. We have collected the accuracy of A0 because
even if in an adversarial scenario the attacker has no reason for non conducting an
attack, the model must still guarantee a high accuracy on non-perturbed instances
submitted by a legitimate user. In addition, we referred to the attacker’s model Ab
as Ak to avoid confusion between the parameter b chosen to train the model and
the attacker’s strength.
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5.2 Evaluation

In a context without attacks it is possible to measure the performance of a model
through the accuracy denoted ad Acc.

Acc =
|Dtest| − |E|
|Dtest|

(5.1)

whit E = {(x , y) ∈ Dtest | T (x )y < 0}. In a context with an opponent, accuracy is
no longer a valid metric for measuring model performance (robustness). To consider
an instance in x ∈ Dtest correctly classified, the model must also correctly classify
every perturbation x ′ ∈ Ak(Dtest). For this reason, to measure the robustness of
the model, we decided to use the accuracy under attack, defined as follows.

AccAk =
|Dtest| − |E ∪ E ′|

|Dtest|
(5.2)

with E ′ = {(x , y) ∈ Dtest \E | ∃x ′ ∈ Ak(x ), y ·T (x ′) < 0} the set of the perturbed
instances that are not classified correctly by T . In our case, to compare the real
robustness of the models, we have implemented a brute-force algorithm which
generates all possible perturbation of x with respect to Ak and this allows to
correctly compute AccAk .

5.2.1 Evaluation algorithm

To accurately verify the robustness of the models with respect to the attacker Ak
we decided to implement a brute-force attack algorithm which generates all the
possible perturbations for the model to be tested. Given the instance x and the
number k of features to attack, the brute-force algorithm finds all the possible
perturbations x ′ ∈ Ak(x ). The instance x evades the model if there is at least one
instance x ′ ∈ Ak(x ) such that y · T (x ′) < 0. Considering that each x(f) can take
any value in R, the size of Ak(x ) is infinite. On the other hand we can limit its
enumeration to the set of attacks that are relevant for the given forest T , i.e., those
attacks that can invert the outcome of a test in some internal nodes of trees in T .
Recall that nodes in a tree are in the form x(f) ≤ v for some threshold v. Indeed,
the thresholds used in the tree nodes induce a discretization of the input space X
that we exploit as follows. For any given feature f ∈ [1, d], we define with Vf the
set of all threshold values v of the nodes in the ensemble, that split instances using
f as follows:

Vf = {∃σ(f, v, tl, tr) ∈ t, t ∈ T } ∪ {∞} (5.3)

The set Vf includes all the thresholds that are associated to f in any node
σ{f, v, tl, tr} of any tree in T , plus the ∞ value that allows to traverse the right
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branch of the node with the largest threshold. The set of all possible Vf is defined
as V . Given an attacker Ak, the set of relevant perturbations is thus given by the
cartesian product of sets Vf for k different features. Let Fk be the set of all subsets

F (i)
k ⊆ F having size at most k and |Fk| = C(d,k), we denote with Âk(x ) the set of

such perturbations, formally defined as:

Âk(x ) =
{
x ′ | x(f) = v,∀v ∈ Vf ,∀f ∈ F (i)

k ,∀F (i)
k ∈ Fk

}
. (5.4)

We conclude that an attacker Ak can successfully perturb an instance x against
a forest F if there exists at least one x ′ ∈ Âk(x ) for which T (x )y < 0. This
brute-force approach is very expensive, due to three factors: i) as k increases, the
number of feature combinations Fk increases; ii) as the number of trees grows, the
number of threshold values associated with each feature increases; iii) for each
perturbed instance x ′, the prediction T (x ′) must be retrieved by traversing the
given forest. Evaluating the accuracy of a model in presence of an attacker is a
difficult and computationally expensive task. This is due to the possibly large
size of Ab(x ) for some x ∈ X and to the number of interactions among trees in
a forest. In [14] they showed that verifying the robustness of a forest T with at
most l leaves per tree has cost min{O(l|T |), O((2|T |l)|F|)} assuming a L∞-norm
attacker. In [32] they proved that in case of a L0-norm attacker, as in this work,
the problem of finding a successful attack is NP-complete. For simplicity we
decided to implement our version of a brute-force algorithm instead of using the
algorithm proposed in [32] The algorithm 8 shows the pseudocode of the brute-force
algorithm we used to generate all the possible perturbations of a given instance
x . The algorithm returns True when there exists a perturbation x ′ of x such that
y · T (x ′) < 0, False otherwise. To reduce the execution time of the algorithm we
used two strategies: i) early termination, as soon as a perturbation is found such
that y · T (x ′) < 0, the algorithm ends; ii) through the FastLowerBound certificate
we have filtered the instances for which there is no attack of Ak that evades T .
In particular, we only performed brute-force on instances that fast lower-bound
consider attackable. We could have also used ALB in cascade but since they have
almost similar performances we have chosen not to introduce another exponential
component in the algorithm. It should be noted that thanks to the use of early
termination, the most difficult instances to process are those that do not have a
perturbation that evades the model and for which the whole set of possible attacks
must be inspected. Fast lower-bound removes a large number of instances whose
set Âk(x ) should be completely inspected. Early termination reduces the search in
attackable instances, while fast lower-bound reduces the search in non-attackable
instances. The combination of the two strategies significantly reduce the execution
time of the BruteForce algorithm.
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BruteForce complexity To calculate the temporal complexity of BruteForce
we need to look at the pseudocode of the algorithm in 8. The algorithm starts by
calling the FastLowerBound function on the input instance x . As we previously
specified the complexity of FLB is O(bhr+dr+d log(d)), so the temporal complexity
of BruteForce is at least this. The algorithm continues by executing the for inside
the function BruteForce. The for iterates for each element of the set Fk, which
has size C(d,k). For each iteration of the for the set V̂ is created at a cost of O(k)
if V is implemented as a vector of size d. Furthermore, for each iteration the
algorithm makes a call to BruteForceRec, a recursive function that calculates all
perturbations x ′ of x given all threholds sets in V̂ . Function BruteForceRec recurs
for every Vf ∈ V̂ , so k times. Each recursion performs a for on the thresholds v ∈ Vf .
The size of Vf is variable for each feature f . Since we are calculating an upper bound
of the temporal complexity we define m = max{|Vf | | ∀ Vf ∈ V}, as the size of the
largest set of thresholds. Finally for any possible evading instance x ′ the prediction
T (x ) is calculated at a cost of O(r(2b + 1)h). The final temporal complexity of
BruteForce in the worst case is O(bhr + dr + d log(d) +C(d,k)(k +mk · rh(2b+ 1))).

5.3 Parameters analysis

Each model used in the experiments has different training parameters. Before
comparing the robustness of the models against A0, A1 and A2, we performed
experiments to find the training parameters that generate models with the highest
robustness. In this way the comparison between the state of the art and the FPF
model was fair. For RF and RSM-DT we investigated the impact of the number of
trees in the ensemble with the robustness of the model. For FPF and RSM-DT
we analyzed the importance of the maximum number of leaves per tree. For FPF
we looked for the value of p which generates the most robust model. Finally, for
the FPF model we investigated the effects of the training parameters b and r.
Due to the complexity of the experiments (which involve the calculation of the
accuracy under attack with the brute-force algorithm), we decided to conduct the
analysis of the training parameters only on the Breast Cancer dataset. We chose
this dataset among those listed above because it has a good trade-off between
number of features/instances, small enough to perform all the experiments of the
analysis and large enough to guarantee relevant results for each parameter. As the
parameters were estimated, we performed the remaining experiments specifying
these parameters with the best estimated value.
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Algorithm 8 BruteForce

Require: The instance to be verified x ∈ Rd, the corresponding label y, the
attacker budget k, tree ensemble T , the set V and the set Fk.

1: function BruteForce(x ,y,k,T ,Fk)
2: if FastLowerBound(x , y, k) ≤ 0 then

3: for F (i)
k ∈ Fk do

4: V̂ = {Vf |Vf ∈ V ∧ f ∈ F (i)
k }

5: if BruteForceRec(x , y, T , V̂) then
6: return True

7: end if
8: end for
9: end if

10: return False

11: end function

12: function BruteForceRec(x ′,y,T ,V̂)
13: if V ′ = ∅ then
14: return T (x ′) 6= y
15: else
16: for all v ∈ Vf ,Vf ∈ V̂ do
17: x ′(f) = v
18: if BruteForceRec(x ′, y, T , V̂ \ {Vf}) then
19: return True

20: end if
21: end for
22: return False

23: end if
24: end function

5.3.1 Features subset size analysis

As previously mentioned, RSM-DT is characterized by the parameter p which
specifies the size of the subset of F inside each base-learner. The p parameter is
critical to the accuracy and robustness of the ensemble. A small value of p creates
a base-learner with few features that cannot generalize the distribution of data
and therefore has an underfitting problem. On the other hand, if the value of
p is too large, there will be many more features inside and in common between
base-learners. This allows the adversary to have multiple attack opportunities and
to attack multiple base-learners simultaneously with the modification of the same
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feature. Thus the p value is fundamental for the trade-off between accuracy and
robustness. In this regard, we analyzed the impact of parameter p on robustness of
the model in the following way. To conduct the analysis we trained a RSM-DT
for each value of p ∈ {0.1, 0.2, 0.4, 0.6} and for each of the following parameters:
l =∞, |T | = {10, 100, 300, 500}. For each model we calculated the accuracy under
attack with respect to attackers Ak with k ∈ {0, 1, 2}. It is important to note
that when p is small enough the resulting ensemble can present a distribution of
features within the ensemble similar to FPF. In fact, as explained in the Bagging
section 1.3.1, using boostrap sampling to sample a subset of features with a small
size allows the ensemble to train trees with few features in common. This fact is
similar to the distribution achieved with robust partitioning in FPF. In addition, if
we consider that our model is trained for several rounds, the distribution of the
features can be very similar. This similar distribution leads to similar performances
between the two models. however RSM-DT doesn’t have robustness property by
construction and this can be seen in the results with lower performances than FPF.

5.3.2 Maximum number of leaves analysis

For a decision tree the maximum number of leaves is a fundamental parameter both
in a normal context and under attack. If the tree has few features to discriminate
the samples, limiting the number of leaves prevents the model from overfitting by
growing too much. Furthermore, a limited number of leaves generate a reduced
number of iternal nodes and therefore less opportunity for the adersary to attack
the model. For each model we made some considerations on which is the best
number of leaves to choose. We decided to train Random Forest with a maximum
number of leaves l =∞, which corresponds to the standard implementation. In
general RF grow each tree as high as necessary to maximize forest accuracy on
legitimate instances. In addition, each tree in the forest sees all the features in F ,
performing boostrap sampling for each node. If we limited the number of leaves
in RF, each tree would be prevented from exploiting all the features. In FPF
and RSM, each tree uses a subset of features, however, each algorithm use its
strategy for the distribution of the features and choosing the size of the subset. The
experiments on the leaves have allowed us to understand for the two models which
is the most suitable value of the parameter l. For both models, we analyzed the
accuracy under attack for each l ∈ {∞, 4, 8, 16}. For FPF we analyzed the effect of
the number of leaves on the robustness for each b ∈ {1, 2, 3, 4, 5} and r = 30. We
decided to vary b to analyze the influence of the l parameter on decreasing features
in each tree. For RSM-DT we analyzed the influence of the number of leaves as
the size of the ensemble increases, |T | = {100, 300, 500}, to see if the choice of the
best number of leaves changes as the forest grows.
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5.3.3 Forest size analysis

As mentioned above, the ensemble learning algorithms RF and RSM-DT have the
training parameter |T | which defines the size of the resulting ensemble (i.e. the
number of trees inside the forest). In Random Forest it is well known that increasing
the size of the forest increases the accuracy of the model in a context without
attacks. After reaching a certain number of trees, the forest’s performance remains
stable. For RSM it has been shown that increasing the size of the forest allows to
have a better accuracy both in a context without attacks [29] and under attack
[5]. In general it is reasonable to think that as the number of trees increases, the
robustness of the model increases. This is because the attacker has more difficulty
finding an attack that evades the majority of trees. To empirically demonstrate
that forest robustness increases with the number of trees, we tested the accuracy
under attack of RF and RSM-DT as the size of the ensemble increased. The attacks
were generated by Ak with k ∈ {0, 1, 2} and the robustness of the models was
analyzed for each |T | ∈ {1, 3, 5, 10, 30, 50, 100, 300, 500}. The models were trained
with the following training parameters: l =∞, and p = 0.2 for RSM-DT.

5.3.4 Rounds analysis

As for RF and RSM-DT we expect that as the number of trees inside FPF increases,
the accuracy of the model will also increase both under attack and not. Feature
Partitioned Forest does not have the training parameter |T |, but since the number
of trees inside it is r(2b+ 1) the size of the ensemble depends on b and especially on
r. So to demonstrate that the increase in the number of trees within the ensemble
improves forest performance it is necessary to separate the analysis of r from b. The
b parameter specifies how many features to protect and is not to be considered as a
parameter to enlarge the forest. Furthermore, the results obtained by analyzing b as
a parameter to make the forest larger can lead to misleading results. In fact, with
the increase of b the size of the forest increases, but the features inside the trees
decrease and with this also the accuracy of the base-learner, with consequent lower
performances. The r parameter was instead designed to increase the gap between
attackable and non-attackable trees, to distribute the features between the trees in
the ensemble in different ways and to increase the number of trees to be broken
by attacking the same number of features. However, it is still important to show
that increasing r increases the robustness of the model for each b. For this reason
we have trained a model for each r ∈ {1, 15, 30} and for each b ∈ {1, 2, 3, 4, 5},
with l = 8. The robustness was calculated based on the accuracy under attack
calculated with respect to the attackers Ak with k ∈ {0, 1, 2}. One last important
consideration to make to understand the results of these experiments. Models are
trained to protect b features with b ranging from 1 to 5 but are attacked at most on
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two features. Because of this the effect of the growth of r is expected to be more
on models trained to be robust to attacks on 1 or 2 features. For models trained to
protect 3, 4 and 5 features, the effect of r is expected to be less prominent as the
model is trained to be robust to stronger attacks. However, a slight improvement
in robustness can still be seen as r increases. In particular, we expect to see a more
noticeable effect of the r passing from r = 1 to r = 15 for the reason that we have
explained in section 4.2.2: as r increases, the algorithm introduces dd

2
e − 1 trees

gap between possible attackable and non-attackable trees.

5.3.5 Model robustness parameter analysis

As explained in Feature Partitioned Forest chapter, the parameter b is used to
specify how many features the model must protect during training. The analysis on
parameter b that have been defined in this section allow to empirically demonstrate
the following considerations:

i) since the trees inside the forest are not perfectly accurate, it is possible that
the robustness by construction is invalidated by the presence of errors independent
of the attacks. Given an attacker Ak, it is reasonable to think that training a model
m1 with b1 > k could lead to better performances than m2 trained with b2 ≥ k,
with b1 > b2. This because m1 protects more features than m2 and therefore has
more trees that cannot be attacked by Ak.

ii) As the parameter b grows, the number of features in each tree decreases and
consequently its accuracy. For this reason, as the b increases, the model is expected
to have a decrease in accuracy on original instances.

iii) By increasing the number of trees in the forest it is possible to solve the
problems of the first and second observations. As the number of trees increases, the
probability that independent errors are the cause of the misclassification decreases.
So models trained for b smaller will increase their robustness and since they have
more features per tree they will maintain a high accuracy on original instances.
This last observation has similarities with what was said in the round analysis
section, but this time is analyzed from the point of view of the parameter b. To
demostrate the first observation we trained a model of about 50 trees for each
b ∈ {1, 2, 3, 4, 5} and l = 8 and we calculated the accuracy under attack with
Ak with k ∈ {0, 1, 2}. To demostrate the third observation we also repeated the
experiments with 100 and 300 trees to show how models trained with smaller b
acquire greater robustness for less strong attacks (A1). The second observation
can be appreciated in all experiments against A0 with the increase of b. In this
experiment we chose the rounds for each b to get more or less 10, 50, 100 and 300
trees per model. To have the desired number of trees we calculated r = b |T |

2b+1
c.

The reasons why we have chosen to keep a constant number of trees for each model
trained on a different b are two: The first is to focus the analysis only on the
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parameter b, without the influence of r. The second one, for the same number
of trees, a model with large b has less attackable trees. For example, given two
models, one trained with b = 1 and r = 5 and one with b = 2 and r = 3, both
have 15 trees, but against A1 the first has at most 5 attackable tree, the second at
most 3. This is a property of parameter b. But if we had specified r = 5 also for
the second model, the number of possible attackable trees would have been 5 out
of 25, an even bigger and more unfair difference of trees that cannot be attacked
compared to the first model.

5.4 Certificates analysis

To show the pecision and usefulness of the lower-bounds, we have prepared two
types of analysis. The first shows the precision of the two lower-bound algorithms
(accurate and fast lower-bound) with respect to the real robustness of the model.
While the second analysis shows how it is possible to calculate in advance a lower-
bound of the accuracy under attack for a model that would be infeasible to verify
with the brute-force algorithm due to the high number of combinations C(d,b) and
number of thresholds v for each f .

Certificates accuracy In FPF chapter we presented two certificates of robust-
ness, called fast lower-bound and accurate lower-bound. What we wanted to show
with these experiments is how the two certificates allow to accurately approximate
the accuracy under attack of the FPF model without attacking it with the brute-
force algorithm. In isolated contexts we referred to the accuracy approximated by
the two lower-bounds as accuracy lower-bound, in the cases of comparison with
BruteForce instead we called it accuracy under attack for simplicity. The analy-
sis was conducted on the Breast Cancer, Binary Wine and Spam Base datasets,
varying b. For the first two datasets we trained a model with about 300 trees. Due
to the large number of features and instances in Spam Base, the complexity for
calculating the AccAk with BruteForce is very high and therefore we decided to
perform the analysis with about 100 trees. For each model we calculated AccAk
with both brute-force and lower-bounds strategies, with k ∈ {1, 2}.

Fast lower-bound utility Thanks to the speed of the fast lower-bound algorithm
we have been able to show the trend of the lower bound accuracy of the models
generated with FPF also for attacker Ak with budget k > 2. The purpose of the
experiment is to show the behavior of the FPF algorithm with the variation of
b and k and show the potential of the fast lower-bound algorithm by calculating
the accuracy lower bound with a large number of b and k and even with a large
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number of instances and trees inside the forest. Below we have reported the values
of the training parameters used to conduct the experiments.

• Breast Cancer: T ≈ 1000, l = 8, b ∈ {1, . . . , 14} and Ak with k ∈ {0, . . . , 14}.

• Spam Base: T ≈ 1000, l = 8, b ∈ {1, . . . , 14} and Ak with k ∈ {0, . . . , 14}.

• Binary Wine: T ≈ 3000,l = 8, b ∈ {1, . . . , 6} and Ak with k ∈ {0, . . . , 6}.

• MNIST 0/1, MNIST 1/7 and MNIST 5/6: T ≈ 500, l = 8, b ∈ {1, . . . , 100}
and Ak with k ∈ {0, . . . , 100}.

Furthermore, the experiment wants to show that as the training parameter b
increases, the accuracy of the model on the original instances and on weaker attacks
decreases compared to models trained for less strong attacks. This is because as
b increases, the number of features per tree decreases, with consequent loss of
accuracy. At the same time, the experiment wants to show the greater robustness
at strong attacks in models trained with large b.

5.5 Models comparison settings

As reported in the next chapter of the results of the experiments, in general all
the models perform better by increasing the size of the forest. The problem with
training a model with many trees is calculating the accuracy under attack with
BruteForce. As T increases the number of thresholds v associated with each feature
f grows and calculates the set of all possible attacks Z through the BF algorithm
becomes infeasible. For this reason, for our algorithm FPF we decided to train the
models keeping a fixed number of trees for every b. Specifically, we chose a total of
|T | = 300 for Breast Cancer and Binary Wine and |T | = 100 for Spam Base. For
RF and RSM-DT we trained a model at the maximum number of trees that we
could test and one with the same number of trees used for FPF to compare the
models with the same forest size. Precisely for each algorithm, RF and RSM-DT,
we have chosen the following forest size. For Breast Cancer we trained a model
with 500 and 300 trees, and for Binary Wine with 1000 and 300 trees. Finally for
Spam Base we trained a model of 100 trees. The remaining training parameters
used for each model are shown below. For FPF we trained a model to protect
b ∈ {1, 2, 3, 4, 5} features, with a maximum number of leaves l = 8. For RSM-DT
we have specified p = 0.2 as the proportion of the subset of F used in each tree
and with l =∞ the maximum number of leaves. Finally for RF we have specified
l =∞ and

√
|F| as the size of the of the boostrap sampling for each node.
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Summary

In this chapter we have defined the experimental setting to verify the robustness
of FPF, RF and RSM-DT with respect to the attacks generated by Ak with
budget k ∈ {0, 1, 2}. Furthermore, we have defined the experiments to show
the performance and usefulness of the ceritifcates. Briefly, the chapter can be
summarized as follows:

• Experimental settings. In this section we have presented the datasets used
in the experiments (Breast Cancer, Binary Wine, Spam Base, MNIST
0/1, MNIST 1/7 and MNIST 5/6) and for each we have given: a general
description, the number of instances/features, the majority class percentage,
the portion of training and test set, etc.). Then we defined the models on
which we have performed the experiments: FPF, RF and RSM. Finally,
we defined the attacker’s strength (budget) we have used to evaluate the
robustness of the models and the precision of the certificates.

• Evaluation. In the evaluation section we introduced the accuracy under
attack, the metric to evaluate the robustness of the model. Accuracy under
attack represents the ratio of instances in a given set that the model correctly
classifies under attack. Finally we defined the brute-force algorithm denoted
ad BruteForce, used to generate all possible attacks and verify the robustness
of the model. Together with the definition of the BruteForce algorithm, we
have given its temporal complexity.

• Parameters analysis. The section called parameters analysis defines all
the experiments performed for tuning the models and to investigate their
behavior when the parameters change. For each algorithm we analyzed in
detail the robustness of the models with respect to their training parameters
(|T |, l, b, r, p).

• Certificates analysis. In this section we have defined the experiments
performed to prove empirically the precision of the lower-bounds despite their
approximation and some experiments aimed at showing the behavior of FPF
compared to an attacker with budget k > 2, which would be infeasible to be
calculated without lower-bound.

• Models comparison settings. In the last section of the chapter we defined
the values of the training parameters of each model used in the comparisons.
Precisely for FPF: l = 8 and b ∈ {1, 2, 3, 4, 5}. For RSM-DT: p = 0.2 and
l =∞. For RF: l =∞ and boostrap samplig size

√
|F|. The forest size was

chosen based on the maximum size that BF can feasibly test for each dataset.
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Chapter 6

Experimental results

In this chapter we reported and described the results of the experiments defined in
the previous chapter. The chapter is divided into three macro parts. In the first
part, for each model, we described the results of the experiments conducted for
tuning the training parameters. In the second part, we compared the robustness
of the FPF, RSM-DT and RF on Breast Cancer, Binary Wine and Spam Base
datasets, trained with the best parameters found in the previous experiments.
Finally, we described the results of the analysis conducted on fast and accurate
lower-bounds.

6.1 Parameters analysis

In this first part of the chapter we have collected all the results of the experiments
on the training parameters performed on the dataset Breast Cancer. For each
model, FPF, RSM-DT and RF, we have summarized the results below.

6.1.1 FPF analysis

For our proposed algorithm, Feature Partitioned Forest, we analyzed the maximum
number of leaves l, the number of features to be protected b, and the number of
rounds r. Below, for each parameter we report the results of the analysis.

Maximum number of leaves analysis

The first analysis we performed was on the maximum number of leaves for the
decision trees of the forest. Recalling what was said in the evaluation methodology
section, fixed r = 30, we analyzed the behavior of the model attacked by Ak with
budget k ∈ {0, 1, 2}, by varying b ∈ {1, 2, 3, 4, 5} for each maximum number of
leaves l ∈ {4, 8, 16,∞}. Table 6.1 summarizes the accuracy under attack collected
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Table 6.1: Analysis on the maximum number of leaves l: Breast Cancer dataset, FPF
model, number of rounds r = 30. For each value of b and Ak the highest accuracy
under attack associated with the maximum number of leaves l used to train the model is
highlighted in boldface.

b Ak
l

4 8 16 ∞

1
0 0.964 0.974 0.969 0.974
1 0.887 0.902 0.902 0.907
2 0.670 0.691 0.691 0.675

2
0 0.964 0.964 0.964 0.964
1 0.918 0.943 0.933 0.933
2 0.861 0.871 0.871 0.861

3
0 0.964 0.954 0.954 0.964
1 0.912 0.938 0.923 0.923
2 0.887 0.902 0.892 0.881

4
0 0.964 0.954 0.954 0.954
1 0.918 0.933 0.923 0.929
2 0.892 0.902 0.897 0.887

5
0 0.959 0.948 0.954 0.954
1 0.912 0.928 0.917 0.917
2 0.892 0.897 0.892 0.887

for each model, instead in Figure 6.1 it is possible to see a graphical representation
of the results for each b. As can be seen from the results, with b = 1 the robustness
of FPF is not affected much by the parameter l. But as b increases, l = 8 turns
out to be the limit of the number of leaves that produces models with greater
robustness under attack, both for A1 and for A2. For A0 and low values of b,
the best value of l appears to be ∞. This was predictable beacause each tree
inside the forest can choose the best number of leaves to discriminate training data
(legitimate instances), so that each tree is grown to best discriminate non-attacked
instances. However, for large values of b the model risks overfitting on training
data if the leaves are not limited. In fact for b = 4 and b = 5, with l = 4 the
performances are better than with l =∞. Obviously a high accuracy of the model
on original instances does not give any guarantee of robustness under attack. Thus,
with an adequately limited number of leaves, there is a decrease in accuracy on
original instances but the robustness of the model under attack increases. For the
subsequent experiments on FPF we chose l = 8 as the best maximum number of
leaves.
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(a) FPF b = 1
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(b) FPF b = 2
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(c) FPF b = 3
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(d) FPF b = 4
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(e) FPF b = 5

4 8 16 ∞

Maximum number of leaves

0.86

0.88

0.90

0.92

0.94

0.96

0.98

A
cc

u
ra

cy
u

n
d

er
at

ta
ck

A0

A1

A2

(f) RSM-DT |T | =
100
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(g) RSM-DT |T | =
300
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(h) RSM-DT |T | =
500

Figure 6.1: FPF and RSM-DT leaves analysis on Breast Cancer dataset.

Rounds analysis

In this section we reported the results of the analysis on the parameter r which
specifies the total number of trees, i.e. how many sub-forests of size 2b + 1 are
inside T . Table 6.2 contains the results of the experiments performed on varyng r.
Fixed l = 8 we trained FPF models for each r = {1, 15, 30} and b = {1, 2, 3, 4, 5}.
As expected from the considerations made in the chapter of the experiments, by
increasing the number of rounds the robustness of the forest increases. A clear
example of the effect of r can be seen when a model is trained with b = 1. The
model trained with r = 1 has a forest of size 3. By attacking the ensemble on 2
features, the model gets AccA2 = 0.108, evidence that the attacker can in most
cases break 2 trees out of 3. By increasing the round value to r = 15, the size of
the forest becomes 45 trees. In this case AccA2 = 0.670, a high value considering
that the model has been trained to be robust to attacks on a single feature. The
increase in accuracy under attack from r = 1 to r = 15 is 83.9%. While from r = 15
to r = 30 with the same attacker it is 3%, a slight increase, a sign that the model
has stabilized. With a higher b, for example b = 3 going from r = 1 to r = 15 with
A2 there is an increase of 5.4% while from r = 15 to r = 30 with the same attacker
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Table 6.2: Analysis on the number of rounds r: Breast Cancer dataset, FPF model,
l = 8. For each value of b and Ak the highest accuracy under attack associated with the
number of rounds r used to train the model is highlighted in boldface.

b Ak
r

1 15 30

1
0 0.964 0.969 0.974
1 0.881 0.902 0.902
2 0.108 0.670 0.691

2
0 0.954 0.964 0.964
1 0.902 0.943 0.943
2 0.804 0.866 0.871

3
0 0.954 0.954 0.954
1 0.923 0.938 0.938
2 0.851 0.897 0.902

4
0 0.943 0.954 0.954
1 0.907 0.928 0.933
2 0.871 0.887 0.902

5
0 0.933 0.954 0.948
1 0.912 0.923 0.928
2 0.876 0.892 0.897

is 0.5%. These results confirm what was said in the section of experiments. As the
value of r increases, the robustness of the model also increases. Beyond a certain
value of r, the robustness of the model stabilizes. Given the attackers A1 and A2

as b increases the influence of r decreases. This phenomenon occurs because the
model is trained to be robust to stronger attacks, so even with small r the model is
robust. In conclusion, as expected accuracy under attack increases when increasing
the number of rounds until a plateau is reached. So training a model using a large
number of rounds r improves its robustness.

Model robustness parameter analysis

The last analysis conducted on FPF is related to the parameter b. We have
trained a model for each each value of b = {1, 2, 3, 4, 5} and ensemble size |T | =
{10, 50, 100, 300}. The impact of b is summarized in Table 6.3. These experiments
show the behavior of FPF by varying b with a constant number of trees. In this
case a trade-off is apparent. Even if increasing b is expected to increase robustness
against stronger attacks, at the same time it reduces the number of features that
can be exploited when training a single tree. This harms the performance of the
whole ensemble especially with larger values of b. This would be more apparent
with datasets that contain a limited number of informative features. The results
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Table 6.3: Analysis on training parameter b: Breast Cancer dataset, FPF model, l = 8.
For each value of |T | and Ak the highest accuracy under attack associated with the value
of b used to train the model is highlighted in boldface.

|T | Ak
b

1 2 3 4 5

10
0 0.964 0.943 0.954 0.943 0.933
1 0.871 0.897 0.912 0.923 0.912
2 0.340 0.840 0.851 0.871 0.876

50
0 0.969 0.969 0.964 0.954 0.948
1 0.902 0.938 0.938 0.943 0.928
2 0.628 0.871 0.876 0.892 0.892

100
0 0.974 0.964 0.954 0.954 0.948
1 0.912 0.943 0.938 0.933 0.928
2 0.675 0.871 0.902 0.897 0.897

300
0 0.974 0.964 0.954 0.954 0.948
1 0.912 0.943 0.938 0.933 0.928
2 0.711 0.876 0.897 0.902 0.897

show that when using a limited number of trees, accuracy under attack increases
with b. For example with |T | = 10 and A1 the robustness of the model trained
with b = 5 improves by 0.041 compared to the model trained with b = 1. Against
A2 the robustness increases by 0.036 by varying b from 2 to 5 and by 0.536 from 1
to 5. The increase in robustness is due to what we said in section 5.3.5. If we train
two models, respectively with b = b1 ∈ N+ and b = b2 ∈ N+ with b1 < b2. For the
same number of trees, the model trained with b1 has more attackable trees than
the model trained with b2. For this reason, in the first model an independent error
is more likely to change the result of the forest prediction. But when the forest is
sufficiently large to exploit the ensembling benefits, then the limited accuracy of
singles trees plays an important role making not rewarding the use of larger values
of b. For instance, in Breast Cancer dataset, we have identified only 15 informative
features which are difficult to partition in 2b + 1 sets for b = 5. In support of
this with |T | = 100 the model trained for b = 2 has an AccA1 = 0.943 instead the
model with b = 5 has an AccA1 = 0.928. We conclude that, while it is beneficial
to increase the number of rounds r, it is not always a good strategy to increase
b, unless the dataset we have at hand has a sufficiently large set of informative
features compared to the attacker strength.

91



6.1.2 RSM-DT analysis

In this section we have exposed the results of the experiments conducted to find
the best values for the training parameters of RSM-DT. The parameters analyzed
are the subset size parameter p, the maximum number of leaves l and the forest
size T . Below for each parameter we report the results of the analysis.

Features subset size analysis

The first parameter analyzed is p which controls the size the subset of F sampled
by the boostrap sampling. Each tree inside the forest is trained on a sample of
features of size |F| · p. The search for the best subset size was done for every
p ∈ {0.1, 0.2, 0.4, 0.6} for every |T | ∈ {10, 100, 300, 500} and with l =∞ compared
to Ak with budget k ∈ {0, 1, 2}. In Table 6.4 we have reported the AccAk calculated
for each model and budget of the attacker. The results of these experiments are
particularly explicit. It is clear that RSM-DT acquires greater robustness against
Ak with a value of p = 0.2. In general it can be seen that with the increase of p
the robustness decreases, especially for A2. This because as p grows, more trees
have features in common, even more than one feature, so the adversary involves
multiple trees with the same attack. The difference between p = 0.1 and p = 0.2
is not as evident as for the other values, but as can be seen from the table 6.4,
models trained with p = 0.1 have lower accuracy on non-attacked istances. Values
of p < 0.2 generates too small subset that brings trees with few features and poor
ability to generalize unknown instances at prediciton time. For all subsequent
experiments we kept the value of p = 0.2.

Maximum number of leaves analysis

As we did for FPF also for RSM-DT we analyzed the accuracy under attack by
varying the number of leaves. For each l ∈ {4, 8, 16,∞} and for each forest size
|T | ∈ {100, 300, 500} we have trained a model with RSM-DT and calculated the
AccAk with budget k ∈ {0, 1, 2}. The results of this analysis are summarized in
Table 6.5 and in Figure 6.1. From the table and the figures it can be seen that as
the size of the forest grows it becomes more and more evident that the value of l
which produces the highest robustness is ∞ reaching an AA2 = 0.881. From the
results of this experiment we decided to train all RSM-DT models with maximum
number of leaves l =∞.

Forest size analysis

The latest analysis conducted on RSM-DT is on the influence of the number of trees
inside the forest. We collected the accuracy under attack of the models generated

92



Table 6.4: Analysis on the parameter p: Breast Cancer dataset, RSM-DT model, l =∞.
For each value of |T | and Ak the highest accuracy under attack associated with the
subset size p used to train the model is highlighted in boldface.

|T | Ak
p

0.1 0.2 0.4 0.6

10
0 0.928 0.974 0.948 0.969
1 0.814 0.845 0.856 0.443
2 0.649 0.655 0.216 0.088

100
0 0.943 0.974 0.959 0.954
1 0.912 0.933 0.861 0.763
2 0.851 0.851 0.325 0.129

300
0 0.954 0.969 0.969 0.948
1 0.923 0.933 0.892 0.340
2 0.856 0.861 0.309 0.196

500
0 0.954 0.964 0.974 0.954
1 0.923 0.933 0.892 0.34
2 0.861 0.881 0.299 0.191

Table 6.5: Analysis on the maximum number of leaves l: Breast Cancer dataset, RSM-
DT model, p = 0.2. For each value of |T | and Ak the highest accuracy under attack
associated with the maximum number of leaves l used to train the model is highlighted
in boldface.

|T | Ak
l

4 8 16 ∞

100
0 0.964 0.964 0.959 0.974
1 0.912 0.918 0.918 0.933
2 0.851 0.866 0.851 0.851

300
0 0.969 0.964 0.959 0.969
1 0.907 0.923 0.928 0.933
2 0.856 0.866 0.861 0.861

500
0 0.969 0.964 0.959 0.964
1 0.907 0.928 0.933 0.933
2 0.861 0.871 0.861 0.881

by RSM-DT with p = 0.2 and l = ∞, as the ensemble size grows. The analysis
results are shown in the Table 6.6. From the results we see that the growth of the
forest also increases the robustness against A1 and A2. In conclusion, from these
results we can confirm that also RSM-DT becomes more robust as the forest grows.
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Table 6.6: Analysis on the number of trees |T |: Breast Cancer dataset, RSM-DT model,
l =∞, p = 0.2. For each value of |T | the highest accuracy under attack with respect to
the attacker Ak used to test the model is highlighted in boldface.

|T | Ak
0 1 2

1 0.907 0.0 0.0
3 0.943 0.273 0.005
5 0.948 0.32 0.010
10 0.969 0.845 0.665
30 0.964 0.923 0.809
50 0.974 0.912 0.799
100 0.974 0.933 0.851
300 0.969 0.933 0.861
500 0.964 0.933 0.881

6.1.3 RF analysis

The last model we analyzed is RF. As mentioned previously for this model we have
not specified the maximum number of leaves, so by default for the RF learning
algorithm it is l =∞. We chose

√
|F| for the size of the subset of features sampled

by boostrap samplig at each node. For RF we analyzed the influence of forest size
on the robustness of the model. We performed the same experiments conducted
for RSM-DT. The results of the analysis are reported in the Table 6.7. From the
results it can be seen that RF also has an increase in robustness as the forest
grows. The larger the forest, the less likely it is to be fooled by attacking one or
two features.

6.2 Algorithms comparison

In Tables 6.8, 6.9 and 6.10 we reported the accuracy under attack of FPF, RF and
RSM-DT trained as specified in section 5.5, against an attacker that can modify 0,
1 or 2 features. Feature Partitioned Forest provided the highest robustness in all
attack scenarios, both with less or equal number of trees than the other algorithms.
In all datasets, RF performs best in absence of attacks, but as the attacker budget
increases its accuracy under attacks drops significantly. Analyzing each model
with respect the accuracy under attack achieved by FPF. For example, for A1

on the Spam Base dataset, the FPF model achieves an accuracy under attack of
0.834, while RF gets 0.580, the difference in performance between the two models
is 30.4%. Subsequent comparisons are based on this measure. When attacking
two features RF has a 76.5% and 81.3% percent decrease in accuracy, rispectively
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Table 6.7: Analysis on the number of trees |T |: Breast Cancer dataset, RF model, l =∞.
For each value of |T | the highest accuracy under attack with respect to the attacker Ak
used to test the model is highlighted in boldface.

|T | Ak
0 1 2

1 0.902 0.170 0.0
3 0.938 0.742 0.0
5 0.948 0.794 0.211
10 0.959 0.840 0.572
30 0.969 0.907 0.763
50 0.969 0.907 0.799
100 0.964 0.907 0.804
300 0.974 0.907 0.825
500 0.969 0.918 0.83

for Spam Base and Binary Wine datasets. By construction each tree in a RF can
potentially contain all the features, so each attack can involve the whole forest. As
the number of attackable features increases, the probability of failure of each tree
increases and the strength of RF decreases significantly. This confirms that the
L0-norm attack we are tackling in this work is indeed very powerful and sufficient
to fool a very accurate and effective random forest model. The RSM-DT provides
good performance in absence of attacks, meaning that the dataset projection is
not disadvantageous, and it is much more robust than RF in present of attacks.
The performance of RSM-DT is similar to that of FPF when only one feature
is attacked, but when two features are attacked FPF shows significantly better
performance than RSM-DT. In fact, compared to our FPF algorithm, RSM-DT
decreases in accuracy under attack by 12.6% and 10.5% respectively for Spam Base
and Binary Wine datasets. For Breast Cancer dataset all three algorithms have
very good performances, however FPF is always the best under attack. In Figure
6.2 it is possible to see a graphic representation of the comparison between the
models for each of the three datasets. For each algorithm, we took the highest
accuracy under attack for each budget. This because given k, an adversary Ak has
no advantage in attacking with a lower budget. Therefore it is better to choose the
most robust model with respect to the budget k. On the contrary for A0 we cannot
take the maximum value of AccA0 among all the results in Table 6.8. This because
the higher AccA0 may not correspond to one of the most robust models against A1

and A2. A robust model should also be as accurate as possible on original instances.
For this reason, for A0 we took the lower accuracy between the two most robust
models against A1 and A2 for each learning algorithm. From the figures in 6.2 it is
clear that as the budget of Ak increases the algorithm FPF produces more robust
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Table 6.8: Comparison on Breast Cancer. Highest accuracies are highlighted in boldface
for each Ak.

L l b r |T | Ak
0 1 2

RF ∞ 300 0.974 0.907 0.825
500 0.969 0.918 0.830

RSM-DT ∞ 300 0.969 0.933 0.861
500 0.964 0.933 0.881

FPF 8

1 100 300 0.974 0.912 0.711
2 60 300 0.964 0.943 0.876
3 42 294 0.954 0.938 0.897
4 33 297 0.954 0.933 0.902
5 27 297 0.948 0.928 0.897

Table 6.9: Comparison on Spam Base. Highest accuracies are highlighted in boldface
for each Ak.

L l b r |T | Ak
0 1 2

RF ∞ 100 0.956 0.580 0.181

RSM-DT ∞ 100 0.920 0.830 0.691

FPF 8

1 33 99 0.930 0.810 0.367
2 20 100 0.911 0.834 0.716
3 14 98 0.896 0.832 0.752
4 11 99 0.876 0.833 0.770
5 9 99 0.859 0.827 0.772

models than those produced by RSM-DT and RF, at the price of less accuracy on
original instances. Finally, in general it can be seen that the more robust a model
becomes, the more its accuracy on normal instances decreases.

6.3 Certificates analysis

In this last section of the chapter we exposed the results of the analyses performed
on the certification methods. In the first part we showed the accuracy lower-bound
calculated with ALB and FLB, and the error made with respect to BF. While in
the second part we showed how through FLB it is possible to calculate the accuracy
lower-bound even with very large values of b, k and r.
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Table 6.10: Comparison on Binary Wine. Highest accuracies are highlighted in boldface
for each Ak.

L l b r |T | Ak
0 1 2

RF ∞ 300 0.984 0.868 0.147
1000 0.984 0.902 0.180

RSM-DT ∞ 300 0.967 0.918 0.688
1000 0.967 0.918 0.688

FPF 8

1 100 300 0.984 0.885 0.508
2 60 300 0.984 0.918 0.705
3 42 294 0.967 0.918 0.738
4 33 297 0.967 0.918 0.754
5 27 297 0.951 0.918 0.787

0 1 2

Number of attacked features

0.84

0.86

0.88

0.90

0.92

0.94

0.96

A
cc

u
ra

cy
u

n
d

er
at

ta
ck

RF

RSM-DT

FPF

(a) Breast Cancer

0 1 2

Number of attacked features

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy
u

n
d

er
at

ta
ck

RF

RSM-DT

FPF

(b) Spam Base

0 1 2

Number of attacked features

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

u
ra

cy
u

n
d

er
at

ta
ck

RF

RSM-DT

FPF

(c) Binary Wine

Figure 6.2: Models comparison for each dataset.

6.3.1 Lower-bounds performance

Tables 6.11, 6.13 and 6.12 summarize respectively for Breast Cancer, Spam Base
and Binary Wine the accuracy lower-bound estimated by two certificates and the
real robustness computed with BF. We use the notation ∆% for the percentage
error of the certificate compared to BF. For each dataset and A1, the certificates
ALB and FLB estimate the same accuracy. The highest ∆% for each dataset is
1.6% on Breast Cancer, 1.7% on Binary Wine and 8% on Spam Base. The accuracy
estimated by the lower bounds is very close to the real one. With A2 and b = 1, both
lower bounds make a 100% error. This is normal for the following reason. With
b = 1 the model is trained to protect only one feature. If the attacker can modify
2 features then the attacked features can be in more than half of the forest and
are probably used in more than half of the decision paths. In this scenario for the
assumption made by the lower-bounds: using an attacked feature in the prediction
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of x involves an incorrect prediction, leads to having the majority of the forest under
attack, with the consequent estimation of the accuracy lower-bound equal to 0. For
A2 and small b (excluding b = 1), searching for all possible combinations of features
of ALB turns out to be a better strategy for calculating the accuracy lower-bound,
as the result is more close to the real one compared to the one estimated by FLB.
For example for b = 2 on Binary Wine, the algorithms get ∆%ALB = 11.6% and
∆%FLB = 27.9%. As b increases the certificates significantly improve their ability
to approximate real accuracy. This is due to the fact that with large b trees are less
accurate and therefore the assumption made by the lower bounds is very probable,
and the lower bounds are more accurate. Furthermore, as b increases, the accuracy
under attack predicted by ALB and FLB get closer and closer. This because the
less features trees have, the more likely they are all used in the decision path and
therefore the second approximation made by fast lower-bound 1 turns out to be
as precise as the search for all combinations C(d,b) done by ALB. In general, both
algorithms approximate an accuracy very close to the real one. This means that,
the proposed lower bounds can accurately certify the non-attackability of a large
portion of instances without the cost of the brute-force exploration.

Table 6.11: Lower bound analysis Breast Cancer. FPF with |T | ≈ 300, l = 8.

b
A1 A2 A1 A2

BF ALB FLB BF ALB FLB ∆%ALB ∆%FLB ∆%ALB ∆%FLB

1 0.912 0.897 0.897 0.711 0.0 0.0 1.6 1.6 100.0 100.0
2 0.943 0.933 0.933 0.876 0.856 0.845 1.1 1.1 2.3 3.5
3 0.938 0.928 0.928 0.897 0.876 0.876 1.1 1.1 2.3 2.3
4 0.933 0.923 0.923 0.902 0.897 0.887 1.1 1.1 0.6 1.7
5 0.928 0.928 0.928 0.897 0.892 0.887 0.0 0.0 0.6 1.1

Table 6.12: Lower bound analysis Binary Wine. FPF with |T | ≈ 300, l = 8.

b
A1 A2 A1 A2

BF ALB FLB BF ALB FLB ∆%ALB ∆%FLB ∆%ALB ∆%FLB

1 0.885 0.885 0.885 0.508 0.0 0.0 0.0 0.0 100.0 100.0
2 0.918 0.902 0.902 0.705 0.623 0.508 1.7 1.7 11.6 27.9
3 0.918 0.918 0.918 0.738 0.705 0.705 0.0 0.0 4.5 4.5
4 0.918 0.918 0.918 0.754 0.721 0.721 0.0 0.0 4.4 4.4
5 0.918 0.918 0.918 0.787 0.787 0.77 0.0 0.0 0.0 2.2

1FLB takes the k features involving the largest number of trees regardless of whether they can
share trees and therefore overestimate the strength of the attacker
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Table 6.13: Lower bound analysis Spam Base. FPF with |T | ≈ 100, l = 8.

b
A1 A2 A1 A2

BF ALB FLB BF ALB FLB ∆%ALB ∆%FLB ∆%ALB ∆%FLB

1 0.81 0.745 0.745 0.367 0.0 0.0 8.0 8.0 100.0 100.0
2 0.834 0.806 0.806 0.716 0.566 0.523 3.4 3.4 20.9 27.0
3 0.832 0.819 0.819 0.752 0.691 0.682 1.6 1.6 8.1 9.3
4 0.833 0.822 0.822 0.77 0.737 0.733 1.3 1.3 4.3 4.8
5 0.827 0.82 0.82 0.772 0.749 0.747 0.8 0.8 3.0 3.2

6.3.2 Fast lower-bound utility

In Figure 6.3 and 6.4 we showed the accuracy lower-bound computed with FLB
on different dataset, by varying b and the attacker budget k. For each dataset
we provided a 2D and 3D version of the performance of the models under attack.
The 2D plot highlights the accuracy obtained by the models with the variation
of k. Instead the 3D one allows to have a better view of the trend of the AccAk
as b increases. For 3D plots, values below the majority class threshold are cut for
better view. The polynomial temporal complexity of fast lower-bound allows to
compute the accuracy lower-bound for large values of b, k and r. The figure shows
how larger values of b allow to sustain a larger attacker strength. Of course, when
the attacker becomes too strong compared with the number of relevant features
in the dataset the accuracy of FPF drops. As mentioned in dataset section 5.1.1,
in this experiment we also included three datasets generated from MNIST by
isolating instances of two digits. The results for Breast Cancer dataset are shown
in Figures 6.3a. With FPF it is possible to train a model that has an accuracy
lower-bound of over 0.85 attacked by A3, an accuracy greater than RF attacked by
A2. With A4 it’s possible to train a model with accuracy lower-bound of roughly
0.82, slightly below RF with A2. As the attacker gets stronger, the degradation
of the model’s performance is inevitable. For Spam Base dataset, in Figures 6.3b
the phenomenon mentioned in the evaluation methodology section 5.3.5 about the
parameter b is particularly evident. As b grows individual trees become less accurate
and robustness decreases on weak attacks. On larger attacks, obviously a large b
has better performances. For Binary Wine dataset, in Figures 6.3c it can be seen
that an attacker with budget k > 2 leads to a degradation of performances below
the majority class threshold. Predictable behavior, considering that Binary Wine
has only 13 features and only 7 are relevant. To protect 3 features FPF generates
7 trees for each round and each tree has 2 features. In the best case, each tree
has an important feature. Expecting single trees to be robust to such a strong
attack is unreasonable. The attack L0 is very strong so even the attack of a few
features can make the difference. For the datasets deriving from MNIST we wanted
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to show how FLB can calculate the accuracy lower-bound also with a number of
instances greater than 15000 each with 784 features and for each budget k ≤ 100.
The Figures 6.4a of the analysis on MNIST 0/1 dataset, show how it is possible
to train a model robust to an attack on 20 features and still have an accuracy
under attack of roughly 0.97. With a stronger attacker for example A30 or A40

it is possible to guarantee a lower-bound accuracy of 90% and 73% respectively.
Considering that the important features are 56 the results are remarkable. For
MNIST 1/7 dataset, reported in Figures 6.4b the performances degrade earlier
than the previous dataset. It is not difficult to imagine why. The number of pixels
to be changed to make a 1 look like a 7 is less than needed to turn a 0 into a 1.
fast lower-bound estimated an accuracy lower-bound of 95% and 83% attacking
respectively 10 and 20 features. Finally, the results for the MNIST 5/6 dataset,
reported in Figures 6.4c, show how the performances degrade even much faster
than the previous ones. The reason is the same as before, but much more evident.
The digits 5 and 6 are very similar, and the attacker can simply modify a few
pixels to deceive the model. By modifying 10 pixels the model correctly classifies
the 90% of the instances and attacking 20 features the 74%. Obviously these are
accuracy lower-bound so the actual accuracy under attack could be higher than
these, especially since, as we have seen in the previous section, the lower-bounds
error grows with k.
Finally, the 3D plots suggest that as k increases, models that maintain accuracy
under attack above the majority class threshold are those that have a high b. As k
grows, b must also grow. Concluding, with this experiment we have shown how
FLB can be used to give an accurate lower-bound of the model’s performances as
k grows, which would be infeasible with the use of the BF algorithm. We showed
the power of FLB both for large values of b and k but also for large values of |T |,
reaching up to 3000 trees per model. The presence of many trees in the forest
involves many different thresholds for each feature and therefore increases the
execution time of BF. For FLB the increase in the number of trees is extremely less
incisive. With FLB it is possible to quickly train many models for different values
of the training parameters and understand which are the best values to create the
most robust model against Ak. In addition, it can be used to filter non-attackable
instances and significantly reduce the execution time of ALB and BF.
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(a) Breast Cancer, |T | ≈ 1000, l = 8.
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(b) Spam Base, |T | ≈ 1000, l = 8.
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(c) Binary Wine, |T | ≈ 3000, l = 8.

Figure 6.3: Accuracy under attack computed with fast lower-bound by varying b and k.
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(a) MNIST 0/1 |T | ≈ 500, l = 8.
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(b) MNIST 1/7 |T | ≈ 500, l = 8.
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(c) MNIST 5/6 |T | ≈ 500, l = 8.

Figure 6.4: Accuracy under attack computed with fast lower-bound by varying b and k.
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Summary

In this chapter we collected all the results of the experiments defined in the previous
chapter. We have summarized the main sections of the chapter below.

• Parameters analysis. For each algorithm: FPF, RF and RSM-DT we dis-
cussed the results performed for each training parameter on Breast Cancer
dataset. We have seen that for FPF models the best maximum number
of leaves is l = 8. For the parameter r we have seen that in general the
robustness of the ensemble increases with the size of the forest. For this
reason, we trained the model with r large enough to be robust.Finally, as b
increases, a model becomes more robust with stronger attacks, but it loses
accuracy on original instances and attacks with smaller budgets. For smaller
b the model acquires greater robustness as the forest grows. For the RSM-DT
algorithm we have seen that the size of the subset that generates the most
robust models against Ak is obtained with p = 0.2, while the best maximum
number of leaves is l =∞. Finally, the forest size analysis showed that both
RF and RSM-DT gain robustness against Ak as |T | increases.

• Algorithms comparison. Through the best values of the training pa-
rameters found with the experiments, we have trained for each dataset
Breast Cancer, Spam Base and Binary Wine the models used in the
comparisons. From the comparisons we have seen that, for each dataset,
Feature Partitioned Forest has greater robustness than RSM-DT and RF
for attacks generated by A1 and A2.

• Certificates analysis. Finally we discussed the results of the experiments
performed on the lower bounds. In particular we showed that both ALB
and FLB approximte the accuracy under attack very close to the real one
calculated with BruteForce. We have seen that accurate lower-bound performs
better with small b and when b increases ALB and FLB perform similarly.
Finally we showed how through FLB it is possible to calculate a lower bound
of the performance of FPF models even with very large k, b and r. Calculating
the real accuracy under attack with the parameters used in the experiments
is infeasible with BruteForce.
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Chapter 7

Conclusion

It is known traditional machine learning algorithms are vulnerable to attacks
perpetuated by an intelligent agent called adversary. The attacks can be of various
types and affect both the training phase and the operability phase of the model.
Among all the types of attack, we focused on evasion attacks and defense strategies
for this type of vulnerability. In an evasion attack, the adversary can perturb with
a certain budget k, an instance x ∈ X such that the resulting evading instance
x ′ produces T (x ) 6= T (x ′). In literature there are various strategies to contrast
this type of attack, designed for the most common machine learning algorithm. At
the same time, only a small part of them focuses on decision trees and ensemble
methods based on them.

In this thesis, we proposed Feature Partitioned Forest, a new ensemble learning
algorithm for the generation of decision tree forest, robust to evasion attack such
that ‖ x − x ′ ‖0≤ k. The value of k is called budget and it specifies the strength
of the attacker Ak. This means that the evading instance x ′ can differ from x at
most on k features. The FPF algorithm that we proposed is based on a robust
partitioning of the set of features F . To counteract an evasion attack performed
on b features, the FPF algorithm robustly partitions the set of features into 2b+ 1
disjoint subsets. Subsequently, for each partition, a projection of the dataset is
performed on which a binary tree is trained. This generates a forest of 2b+ 1 trees,
whose features have an empty intersection. To increase the robustness of the model,
FPF repeats r times the robust partitioning on a random order of features to
generate other robust partitions, different from the previous ones, and trains 2b+ 1
trees at each round. In total, the ensemble produced by FPF contains r(2b + 1)
trees. Thanks to this robust partitioning of the feature set, given an attacker Ak
with a budget k ≤ b, the evasion instances generated involve at most rk trees, less
than half of the forest, so the ensemble does not change its prediction.

In addition we provided two certificates to efficiently calculate a lower bound of
the performance that the model obtains under attack, which experimentaly proved
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to be very accurately. The approximation performed by the lower bounds is based
on the assumption that trees that uses a feature attacked by Ak, in the prediction of
x , commits a misclassification of x ′. The first certificate is called fast lower-bound,
whose name derives from its polynomial complexity. The algorithm approximates
the robustness of the model by looking for the k features inside T that break the
largest number of trees. If the number of trees that correctly predict the label is
greater than the number of trees that make a mistake/break, then the ensemble
is robust for every attack on k features. This lower bound can overestimate the
attacker’s strength when the chosen k features share some trees and therefore these
trees would be counted multiple times To improve the accuracy of the lower bound
we also developed the accurate lower-bound which predicts the robustness more
precisely than the previous algorithm but with higher computational cost. The
ALB calculates all combinations of C(|F|,k) of attackable features and for each one
looks at which trees are involved in the attack. If most of the trees predict the
correct label then the combination of features is not an attack. If the forest is
robust to every possible combination of features then there is no attack of Ak that
evades the model.

The real robustness of the model can be calculated with a brute-force strategy
that searches for all possible perturbations of x on T . However, this strategy has
a prohibitive cost as the forest size and budget k grow, and as we said before,
computing all possible evading instances with a brute-force strategy is NP-complete.
Through the experiments conducted we have shown how the certificates can very
precisely approximate the real robustness of the model, at a significantly lower
computational cost than the brute-force strategy.

Finally we showed that FPF is more robust against Ak than ensembles produced
by Random Forest and a state-of-the-art algorithm Random Subspace Method.
For each algorithm, we performed an extensive analysis of the training parameters
to better train each model and have a more fair comparison. In general, we have
seen that as the forest grows, each model acquires greater robustness to attacks.
Furthermore, we have shown empirically how the maximum number of leaves in
each tree affects the robustness of the ensemble. Concluding FPF is proved to be
resilient against evasion attacks, and, more importantly, we are able to certificate
in a very efficient way that, given a test dataset, some of the instances cannot be
attacked at all, thus avoiding the costly computation of all the possible evasion
attacks.

From this results we conclude that FPF is able to outperform state-of-the-art
competitors especially with a stronger attacker. FPF achieves an accuracy under
attack of 12.6% and 10.5% higher than that obtained from RSM on Spam Base and
Binary Wine datasets. Instead, compared to RF, the algorithm we have proposed
has a 76.5 and 81.3 percent increase in accuracy under attack, rispectively for
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Spam Base and Binary Wine datasets. The experimental evaluation, carried out on
publicly available datasets, is promising and ouperforms the main direct competitor
RSM-DT, based on ensembles build on random sampling of the features. Moreover,
we also show that our certified lower bounds on the accuracy under attack are
significant.
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Chapter 8

Future Works

In this last chapter we have collected some ideas of future works, starting from this
thesis. As we have seen FPF has an important limitation, in fact, the algorithm
was developed to be applied only in binary classification scenarios. As future
work we want to investigate the extension of the model from binary classification
model to multi-class classification model and investigate if the same properties and
certifications can still be maintained. Feature Partitioned Forest was developed
and tested using decision trees as weak-learners, but the robustness properties by
construction are not related to this specific learning algorithm. Thus another point
of research is to use FPF with other base-learners. The proposed certificates are
closely related to the structure of the decision tree, so it is necessary to investigate
whether it is possible to recreate the same type of certificates with different base-
learners. GBDT is the state-of-the-art of tree-based models in non-adversarial
contexts. It would be interesting to implement FPF robust partition with GBDT as
a base-learner. Given the dependence that each tree in GBDT has on its successor,
a future work could be to investigate whether it is possible to train a possile FPF-
GBDT so that the attacker can still involve only less than half of the forest when
performing an attack. As was said in the chapter 4, one of the reasons why FPF
badly classifies some instances under attack is that some trees make mistakes even
without being attacked, while the attacked trees break because they are not robust
taken individually. In this regard, it would be interesting to combine the ensemble
learning algorithm FPF with robust base-learners against adversarial examples
and see if the performance improves. For example, decision trees generated with
Treant algorithm shown in section 3.5 can be used as robust base-learners. Finally,
FPF creates a robust model for evasion attacks modeled with distance function L0.
Another future work is to investigate whether the combination of FPF and robust
base-leaners against adversarial examples constrained by L1-norm, L2-norm and
L∞-norm, improve performance against their adversary’s model.
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