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Abstract

Many authors have shown that investors are not fully rational, as the traditional
E�cient Markets Hypothesis suggests, and that investor sentiment can have an
impact on stock prices. As investor sentiment is not directly measurable, di�erent
proxies have been used by researchers. In addition, progress in Natural Language
Processing has contributed to the development of new sentiment measures based
on text sources obtained by news providers and social media. This work deals
with a classi�cation problem on �nancial news data and de�nes a reliable proxy for
investor sentiment using both dictionary � based and supervised Machine Learning
techniques. In particular, LSTMs networks are adopted. The resulting sentiment
proxies are used as exogenous variables in the mean and variance equations of a
Generalized Autoregressive Conditional Heteroskedasticity model in order to prove
the existence of a relationship among them and stock returns and among them and
volatility.
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Introduction

According to the E�cient market hypothesis, in presence of no frictions, assets are
always traded fairly. Indeed, rational investors price assets by discounting all future
cash �ows and thus prices incorporate all available information. Even in presence
of some irrational investors, their impact on asset prices would be o�set by rational
ones through arbitrage. Therefore, the best forecast about the future price of an
asset is its current price.

In its in�uential paper [17], Eugene Fama presents a review of empirical tests
of market e�ciency considering di�erent information sets. Under weak market
e�ciency, information is represented by stock prices and volumes only, while in
the semi-strong form, also other publicly available information is considered, such
as earnings announcements and stock splits. Finally, in presence of strong market
e�ciency, prices re�ect all public and private information so that no investor �has
monopolistic access to some information� [17]. The empirical evidence presented
in his paper seems to support the �rst two forms of e�ciency, while the latter, as
expected, produces contradictory results and it is considered as benchmark to test
the e�ciency hypothesis under the other two information sets.

During the last thirty years, several authors have tried to prove an alternative
scenario where prices don't fully re�ect all available information, and behavioral
�nance has emerged as a new approach, assuming an important role, as demon-
strated by the award of the Nobel prize in Economic Sciences to the behavioral
economist Richard Thaler in 2017. For behavioral economists, investors are not
fully rational, and their investment decisions are in�uenced by emotions.

In their "Survey of Behavioral Finance" [9], Barberis and Thaler describe the
psychological aspects that characterize irrational investors, namely beliefs and pref-
erences. In particular, they report evidence showing that people are often overcon-
�dent in their judgments and too optimistic about their abilities and prospects. In
addition, the likelihood of events is sometimes estimated based on representative-
ness, that is making simplistic assumptions that consider only incomplete features
of a given population. Other times, instead, investors are subject to conservatism,
relying heavily on prior convictions without updating them with new sample infor-
mation. They stick to their beliefs even in presence of new evidence and anchor on
their initial estimate. Furthermore, people rely too much on their memory, which

1
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might be biased, as not all past events are equally available in their memory.
With respect to investors' preferences, Barberis and Thaler [9] explain that,

di�erently from the traditional expected utility framework, losses are given more
weight than gains, investors are more sensitive to changes in probability at high
probability levels, and the way an investment is presented can in�uence the �nal
decision. In addition, people show a certain aversion for unfamiliar situations,
where they don't know the probability distribution of an investment.

According to traditional �nance, even in presence of irrational investors, arbi-
trageurs would o�set their e�ect and bring the asset price back to its fundamental
value. However, as explained by Barberis and Thaler [9], arbitrage possibility is
often limited. Indeed, short sale constraints and implementation costs make this
tool imperfect. In addition, it might take a while for asset prices to reach their
fundamental value and, in the meantime, arbitrageurs might be forced to liquidate
their positions, incurring in big losses. Therefore, in presence of limits to arbitrage,
prices might deviate from the fundamental value of the asset, if irrational investors,
also called noise traders, express wrong and correlated beliefs.

Given the increasing in�uence of behavioral �nance, many academicians have
tried to prove the possibility that market sentiment, de�ned by Malcolm Baker and
Je�rey Wurgler [7] as "a belief about future cash �ows and investment risks that is
not justi�ed by the facts at hand" impacts stock prices.

A big challenge about this topic comes from the fact that measuring market
sentiment is not straightforward. Researchers have tried to overcome this problem
with the use of di�erent proxies. As Zhang [75] points out, there is no commonly
accepted de�nition of investor sentiment and, together with the "propensity to trade
on noise rather than information", which is similar to the de�nition by Baker and
Wurgler [7], one may refer to the same term as "investor optimism or pessimism".
Following this second de�nition, professionals have introduced indicators based on
surveys to measure the propensity of investors towards long or short positions.

In more recent years, the advent of Big Data analytics and the improvements in
Arti�cial Intelligence have given the possibility to access additional unstructured
data sources and integrate the already publicly available information presented
by Eugene Fama [17], earnings announcements and dividend splits. For instance,
companies can now predict future revenues relying on satellite images, web searches
and product reviews. Useful sources to determine the attitude of investors towards
a given asset are the multitude of �nancial news articles and social media contents
published every day, accessible in the past only at high costs of time. Indeed,
Natural Language Processing allows investors to save time and e�ort in reading
each article and assess its content in real time.

Natural Language Processing can be de�ned as a �eld of Arti�cial Intelligence
that allows machines to read and "understand" the content of a text document. It
is therefore possible to assess if a text is positive or negative with respect to a given
target.
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Introduction

The aim of this work is dealing with a text classi�cation problem on �nan-
cial news articles in order to derive a reliable proxy for investor sentiment. The
classi�cation problem was addressed following both dictionary-based and machine
learning techniques. The former was handled using di�erent dictionaries available
in the �nancial literature, while the latter through a supervised machine learning
approach that uses a particular type of Recurrent Neural Network (RNN), the Long
Short Term Memory (LSTM) model. The news-based proxies obtained from this
work were used individually as exogenous variables in the mean and variance equa-
tions of a GARCH model �tted on the log returns of the S&P 500 Index. The
purpose is trying to improve the explanatory power of the Generalized Autoregres-
sive Conditional Heteroskedasticity model and prove the existence of a relationship
between investor sentiment and stock returns or volatility.

Before developing my own proxies for investor sentiment, I started with a pre-
liminary analysis of the relationship between some news-based sentiment proxies
provided by Bloomberg Terminal. The aim was assessing the reliability of exis-
tent sentiment variables and the research led to some interesting results, which are
presented in the Appendix.

Chapter 1 describes the main proxies used in literature to de�ne market senti-
ment and introduces the main techniques of Natural Language Processing. Chapter
2 presents the model I have developed using both dictionary-based and supervised
machine learning techniques. In Chapter 3, I introduce the sentiment proxies de-
rived from the previous models as exogenous variables in the mean and variance
equations of a GARCH model �tted on the intraday returns of the S&P 500 Index.
Finally, the Appendix shows the results of the analysis of the daily Sentiment Indi-
cators provided by Bloomberg Terminal on the basis of �nancial news and Twitter
contents.
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1 Measuring Investment Sentiment

1.1 Investor sentiment proxies

As measuring market sentiment is not easy work, many academicians have tried to
use di�erent proxies. Baker and Wurgler [7] relate the use of di�erent proxies to
the speci�c phase of the chain that connects a change in investor sentiment to its
e�ects on securities trades. The �rst phase of the chain is represented by investors
beliefs and useful proxies can be obtained directly by surveying investors to �nd
out their expectations about stock price appreciation or depreciation. The following
phases correspond to possible deviations of asset prices from the fundamental value
and even consequent reactions of corporate executives, such as capital structure
adjustments through equity issues or stocks repurchases, on the basis of stock prices
being overvalued or undervalued. In this case, information about investor sentiment
can be retrieved indirectly from market-based sources, like trading volume.

One of the drawbacks of survey-based proxies is the possible discrepancy be-
tween what respondents say and the actual investment decisions they make. In
addition, observations for these measures are not so frequent, as they are registered
weekly, monthly, or even quarterly. Market-based proxies, instead, incorporate in-
vestors behaviors measuring how they react to their belief and some of them are
collected at higher frequency.

1.1.1 Survey-based proxies

A group of four Stock Market Con�dence Indexes [44] have been produced by the
International Center of Finance at Yale School of Management, based on survey
data on investors behavior in the United States continuously collected by Professor
Robert Shiller since 1989. Among them, the One-Year Con�dence Index represents
the percentage of respondents that expect a positive variation in the Dow Jones
Index in the following year, while the Buy-on-Dips Con�dence Index shows the
percentage of the population expecting a rebound the day after a hypothetical 3%
drop of the Dow Jones Index. The Crash Con�dence Index, instead, denotes the
proportion of interviewees that attributes a low probability to a catastrophic stock
market crash in the United States. The last index is the Valuation Con�dence Index,
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1 Measuring Investment Sentiment

which represents the percentage of investors believing stocks are not overvalued with
respect to their fundamental value. Yale University provides parallel indexes for
Japanese investors, using surveys conducted since 1989 by Professor Yoshiro Tsutsui
of Osaka University, Fumiko Kon-Ya of the Japan Securities Research Institute, and
Akiko Kamesaka of Aoyama Gakuin University.

Another Survey-based proxy, the Index of Investor Optimism [59], has been
produced by UBS and the Gallup Organization from 1996 to 2007 and is made
available by the Roper Center for Public Opinion Research at Cornell University.
The interviewees are households holding an investment portfolio of $10,000 or more,
and the index summarizes the answers to seven questions regarding their own ex-
pectation about the overall investment environment and their personal �nancial
situation.

In order to show that sentiment of Wall Street strategists and that of individual
investors are uncorrelated, Fisher and Statman [18] make use of three survey-based
sentiment proxies. To account for large investors sentiment, they use Merrill Lynch
data about sentiment of Wall street sell-side strategists, available since 1985. It
is compiled monthly and is useful as a contrary indicator1. For medium-sized
investors, they refer to Investors Intelligence Sentiment Index, produced by the
investment services company Chartcraft, which surveys more than 130 investment
newsletter writers and monitors their recommendations. According to Investopedia
[33], this index is a contrarian indicator, meaning it predicts a reversal of the stock
trend so that traders can take opposite positions to that of average investors. Data
has been compiled weekly since 1964. A solution for small investors comes from the
American Association of Individual Investors [29], which proposed a measure based
on weakly surveys in 1987. As its website points out, this index has been widely
adopted by professionals, and the weekly survey results are published in important
�nancial publications, such as Barron's and Bloomberg.

1.1.2 Market-based proxies

Academicians have worked on various proxies for market sentiment that are re-
trieved from stock prices, such as liquidity, volatility, equity issues.

Baker and Stein [3], in their e�ort to explain why increases in liquidity predict
lower subsequent returns, highlight that trading volume and liquidity can be good
proxies for investment sentiment. Indeed, in presence of short-sale constraints,
pessimistic irrational investors stay out of the market, while optimistic ones are
active in the market, increasing trading volumes. Under the assumption that noise
traders underreact to order �ows, that represent the imbalance between bids and

1A contrary indicator is a type of indicator that can be used for contrarian investing strategies,
where investors make opposite decisions with respect to the market. Contrary indicators are useful
to predict a reversal of the stock trend.

6



1 Measuring Investment Sentiment

asks, as soon as they enter the market, they create more liquidity, being their
views di�erent from those of rational investors. Therefore, liquidity and volumes
can provide a good proxy for the presence of irrational investors with positive
sentiment. Trading volume is also used by Chuang, Ouyang and Lo [12], who show
the impact of investor sentiment on excess returns in Taiwan stock market. Lee and
Swaminathan [38], in their attempt to show that past trading volume, measured by
average daily turnover2, predicts both the magnitude and the persistence of price
momentum, �nd evidence that variations in trading volume measure �uctuations
in investor sentiment. Interesting empirical results have been obtained by Liu [40].
Using two survey-based measures, the Investor's Intelligence Index and that of
the American Association of Individual Investors, as well as a liquidity measure,
he shows that investor sentiment Granger-causes market liquidity. Similar results
have been obtained for trading volume.

Kumar and Lee (2006) examine the correlation among retail investors' trades
and note that they tend to buy or sell stocks in concert with each other. They
build di�erent portfolios of stocks and show that their buy-sell imbalances3 behave
similarly and can represent a proxy for retail investor sentiment.

Another proxy for market sentiment comes from dividend premiums, de�ned
by Baker and Wurgler [4] as "di�erence between the average market-to-book ratio
of dividend payers and non-payers", which are expected to be inversely related
to sentiment. Baker and Wurgler prove that managers try to cater to investors
high demand for dividend, when they believe this will lead to dividend premium.
For Baker and Wurgler, one of the reasons for variations in investors demand for
dividend paying stocks over time, is their risk tolerance. Investors may demand
dividend paying stocks in case of pessimistic sentiment, as these stocks are perceived
as safer, and prefer non dividend stocks, assumed to have higher growth potential,
in case of optimistic sentiment.

Risk tolerance is also the reason behind the use of mutual fund �ows as proxy
for sentiment. Indeed, examining the holdings of the mutual funds, it is possible
to assess whether investors are moving towards mutual funds that invest in less
risky or riskier assets. Frazzini and Lamont [20] note that irrational investors tend
to transfer money from mutual funds with low recent returns to those with high
past returns, even though this practice is disadvantageous and reduces wealth in
the long run. They use �ows from a mutual fund to another to measure individual
market sentiment towards particular stocks and show that this variable can predict
future stock returns. Before this work, Brown et al. [11] provide evidence that daily

2Turnover is de�ned by Lee and Swaminathan [38] as "the ratio of the number of shares traded
to the number of shares outstanding".

3Buy-sell imbalance is de�ned as di�erence between buying and selling volume over the total
trading volume
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mutual fund �ows can be considered as proxy for investor sentiment. In particular,
they �nd a strong negative correlation between Japanese funds explicitly named
"bull", that bet on the rise of Japanese stock market, and those named "bear".

Other studies deal with mutual funds, but with speci�c focus on mutual funds
premium (or discount). Zweig [76] proves that unexpected changes in investor
expectations can have an impact on the fund premium (or discount), de�ned as the
di�erence between fund market price and market value of the stocks held by the
speci�c closed-end fund, expressed in percentage terms with respect to the market
value of the stocks. Zweig recognizes that irrational investors might over-discount
the value of new information and changes in closed-end funds premiums can be used
as measure of sentiment. Lee and Thaler [37] point out that closed-end funds are
owned primarily by individual investors and are, on average, traded at a discount,
due to the negative correlation between investor sentiment and funds discount,
which bring about additional risk to that of the assets held by the funds. Neal and
Wheatley [53] use closed-end funds discount as proxy for sentiment and �nd that it
can signi�cantly predict the size premium, that is the di�erence in returns between
small and large �rms, and the returns of small �rms, which are held mainly by
individual investors.

Bandopadhyaya and Jones [8] provide a comparative analysis of other two senti-
ment measures computed by the CBOE, implied volatility index (VIX) and Put-Call
volume ratio, showing that the latter explains better variations in the S&P index
that are not explained by economic factors. VIX, also called the Fear Index, is
a measure of implied volatility retrieved by S&P 500 index options and reaches
high values when sentiment is low, because investors are assumed to be risk averse.
Put-Call volume ratio consists in the ratio of put options and call options trad-
ing volume. Buyers of put options are considered to be pessimistic, while buyers
of call options are optimistic, thus when this ratio is greater than one, sentiment
is assumed to be negative, and when it is lower than one it represents positive
sentiment. The PCR is widely used by practitioners as a contrarian indicator.

Some authors, such as Baker and Wurgler [7], have used IPO �rst day returns
to measure market sentiment. The fact that IPOs are often followed by a strong
reaction in the stock price and produce abnormal �rst day returns is widely treated
by academicians. The �rst evidence comes from Stoll and Curley [68], who unsuc-
cessfully try to prove the existence of an equity gap, de�ned as di�erence in the cost
of funds for small and large �rms with same riskiness, but demonstrate that returns
are particular high following IPOs. To conduct this analysis, they measure the cost
of funds as the ex-post rate of return of small �rms which go public, and they �nd
that stocks price increases substantially between the initial o�ering date and the
�rst market date, far more than the S&P Index during the same time period.
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1.1.3 Corporate �nance-based proxies

Corporate �nance is another part of the chain of reactions triggered by variations
in market sentiment. Baker and Stein [3], for instance, while using liquidity as
proxy for investor sentiment, note that managers might easily time the market for
Seasoned Equity O�erings (SEOs)4, following waves of high liquidity. Executives
have more information about the real growth potential of stocks and do time the
market when the opportunity comes, as proved by Graham and Harvey [24], who
survey 392 anonymous CFOs and ask what factors a�ect managers decisions about
issuing common stocks. They �nd that 67% of CFOs consider how much stocks are
undervalued or overvalued by the market and 63% admit a recent increase in price
might be a good reason for issuing new shares.

Baker and Wurgler [5] �nd that the rate of new equity issues to the total issues
of equity and debt predicts stock market returns and that this negative relation is
explained by market timing. Indeed, in presence of correlated sentiment, irrational
investors can cause numerous stocks to be overvalued, leading these �rms to make
similar �nancing decisions. Variations in the aggregate level of equity issues are
explained by mispricing and can be used to measure variations in market sentiment.
In addition, Baker and Wurgler show that this variable is correlated with other
proxies for investor sentiment, such as insider sales of stocks, value weighted closed-
end fund discount and changes in consumers' expectations of business conditions.

Another situation where managers show their ability to time the market is
Initial Public O�ering. Michelle Lowry [42] show that investor optimism is among
the major determinants of IPO waves. She �nds that investor sentiment, measured
by closed-end funds discount and post-IPO market returns, explain IPO volumes
with high signi�cance. Also Baker and Wurgler [7] include IPO volumes among the
proxies for market sentiment and note that investment bankers consider speci�c
windows of opportunity for IPOs, when investor sentiment is higher.

1.1.4 Composite proxies

As all these proxies are imperfect and no commonly accepted one has been found,
some authors have produced proxies which combine some of the measures already
listed.

One of the most famous works is that of Baker and Wurgler [6], who study
the e�ect of market sentiment on the cross section of stock returns, �nding that
it has a higher impact on small, young, volatile, unpro�table, non-dividend paying
and distressed stocks. For this aim, they make use of a composite sentiment in-
dex that involves six di�erent proxies: the closed-end fund discount (CEFD), the

4Seasoned Equity O�erings are equity issues made by listed companies. These companies have
already held their Initial Public O�ering and seek new equity capital to fund their operations.
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NYSE share turnover (TURN), the number of IPOs (NIPO), the average �rst-day
returns on IPOs (RIPO), the equity share in new issues (S) and the dividend pre-
mium (PD−ND). To separate the sentiment component from the idiosyncratic one,
principal component analysis [34] has been applied to all the proxies and their lags,
so that a �rst-stage index5 with 12 coe�cients, named loadings, can be determined.
Then, Baker and Wurgler compute the correlation between the �rst-stage index and
the 12 proxies and obtain the �nal composite index through a principal component
analysis of the correlation matrix of six of these variables. Indeed, for each proxy's
lead or lag, they select only the one with highest correlation with the �rst-stage
index. Coe�cients have been re-scaled so that the index has unit variance and the
results are presented in Equation (1).

SENTIMENTt =− 0.241CEFDt + 0.242TURNt−1 + 0.253NIPOt

+ 0.257RIPOt−1 + 0.112St − 0.283PD−ND
t−1

(1)

In a di�erent paper, Baker and Wurgler [7], use the same variables for their
operational sentiment index, but they follow a di�erent procedure. They point out
that these variables, might still include some common variability that is related
to economic fundamentals, instead of market sentiment. Therefore, they regress
each proxy on a set of macroeconomic variables and keep the residuals. Then, they
compute the average of all these residuals and obtain the �nal index.

Exploiting the six proxies used by Baker and Wurgler [6], Huang et al. [28]
produce a new aligned investor sentiment index. In their paper, they explore the
impact of investor sentiment on stock market return, showing that their index per-
forms better than many macroeconomic variables and is more e�cient that Baker
and Wurgler's index itself. They note that some of the common variation captured
by principal component analysis is not representative of investor sentiment, leading
to errors in market return predictions. Therefore, they apply partial least square
(PLS) method using a two-stage approach. First, they assume that realized fu-
ture returns Rt+1 are explained by the unobservable investor sentiment St, as in
Equation (2).

Rt+1 = α + βSt + εt+1 (2)

Then, they use OLS method to regress each proxy xi,t on Rt+1, as shown in Equation
(3).

xi,t = πi,0 + πi,1Rt+1 + ui,t, for t = 1, .., T (3)

Finally, they use the slope coe�cient πi,1 (also called factor loading), which mea-
sures the sensitivity of each proxy to investor sentiment (expressed by the instru-
ment Rt+1), in a second OLS regression. They run T cross sectional OLS regres-
sions, one for each time period, using the proxies xi,t as dependent variables and

5The �rst-stage index is represented by the linear combination of twelve proxies (all six proxies
and their lagged values) that maximizes the variance
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the corresponding factor loadings as explanatory variables.

xi,t = ct + SPLS
t π̂i + vi,t, for i = 1, .., N (4)

The slope coe�cient SPLS
t represents the Aligned investor sentiment index.

Rupande et al. [61] explore the relation between investor sentiment and stock
return volatility on the Johannesburg Stock Exchange market and propose a daily
sentiment composite index based on a set of proxies. Given the constraint on
the availability of data, they use the exchange rate between the South African
Rand and the US dollar (Exch), the prime rate (Prime)6, the 90-day Treasury Bill
rate (Treasury), the repo rate (Repo)7, the trading volume (Volume), the volume-
weighted average price changes (Vwap), the South African Volatility Index (Savi).
In their paper, they follow the same procedure of Baker and Wurgler [6] and use
principal component analysis to produce InvSent, the index represented in Equation
(5).

InvSentt =θ1Excht− 1/t + θ2Primet− 1/t + θ3Treasuryt− 1/t + θ4Repot− 1/t

+ θ5V olumet− 1/t + θ6V wapt− 1/t + θ7Savit− 1/t

(5)

1.2 Natural Language Processing for Sentiment Anal-

ysis

The proxies presented so far are correlated with market sentiment because they
represent its e�ect on stock markets or corporate executive decisions. Investors,
as well as companies and individuals, produce a huge quantity of data, and being
able to analyze them can give access to additional important information to deter-
mine their sentiment. News articles and social media contents, for instance, may
represent useful sources to assess investors' optimism or pessimism, either because
investors write them and express their opinions in a less biased way than common
surveys, or because they in�uence market sentiment changes.

Recent developments in Arti�cial Intelligence and Machine Learning techniques
have contributed to uncover new patterns in huge amounts of structured and un-
structured data and allow to process information at relatively low costs. Data
is structured when it is organized in spreadsheets under a standardized format.
Elements can be grouped together and classi�ed on the basis of various features.

6According to Investopedia [31], the prime rate is de�ned as the average interest rate charged
by the largest banks to their most creditworthy customers and it is based on the federal funds
overnight rate.

7Repo rates are implied by Repurchase Agreements, de�ned by Investopedia [32] as a sort of
short term borrowing where one party sells government bonds to another party and agrees to buy
them back in the future.
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However, most of the available data is unstructured [19] and can not be stored
as standardized information. It is the case of qualitative information sources such
as photos, text documents, satellite images, video and audio �les. Natural lan-
guage processing can provide a useful tool to assess the level of optimism of these
text sources and determine new proxies for market sentiment. Academicians have
explored two main approaches to Natural Language Processing of �nancial text
sources: lexicon-based and Machine Learning approach.

In the next paragraphs I review the main papers concerning sentiment analysis
with text data, using both lexicon and Machine Learning approach. I also present
the �nest pre-processing techniques that are commonly used to prepare raw data
to be fed into the learning algorithms.

1.2.1 Pre-processing phase

Pre-processing is an essential phase in Natural Language Processing, because it
transforms text data in a form that can be fed into Machine Learning algorithms.
The �rst step is tokenization, consisting in splitting a text string into an ordered
sequence of tokens, which after being pre-processed, will be the input of Natural
Language Processing algorithm. A token is an ordered set of characters, which is
given a particular meaning, and may include a word, a group of words or punctu-
ation. Nassirtoussi et al. [52] divide pre-processing in three parts, namely feature
selection, dimensionality reduction and feature representation.

Bag of Words is the most widely used feature selection method because of its
simplicity and consists in dealing with each word expressed by the token as a
single and separate observation, without considering repetitions and the order of
the words. A similar technique consists in using n-grams in a Bag of Words model,
that means combining two or more consecutive words in order to keep their joint
meaning.

Another important part is dimensionality reduction, as a high number of fea-
tures can worsen the e�ciency of learning algorithms. Some of the most common
techniques are stop-words removal and stemming. The former consists in removing
all the words that do not add signi�cant information to sentences, such as punc-
tuation, articles or prepositions, while the latter is a process that reduces words
to their root form, in order to limit dictionary size. Other solutions are de�ning a
minimum occurrence limit, such that words with low frequency are discarded, and
converting all letters to lower case.

The last part of the pre-processing phase is feature representation, that is ex-
pressing the features, or words in case of a bag of words model, as numeric values
in order to feed them into the learning algorithm. Nassirtoussi et al. [52] mention
binary representation and Term Frequency-Inverse Document Frequency (TF-IDF)
as the most common techniques. In fact, the simplest representation method is cer-
tainly one-hot vector encoding that consists in creating an ordered dictionary that
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assigns an integer value to each word and then representing each word included in
the documents as a sparse vector that has same dimension of the dictionary. All
elements of the vector have zero values, except for the one corresponding to the spe-
ci�c word in the dictionary, which has value "one". Figure 1 shows an example of
one-hot encoding, where each column corresponds to one word in the dictionary and
each row to the speci�c word in the text. For instance, each time the word "Rome"
appears in the corpus, this kind of representation associates the sparse vector cor-
responding to the word "Rome" to that particular word in the text. Sentences are
represented as sequences of sparse vectors. The main drawbacks of one-hot encod-

Figure 1: One-hot encoding.

Source: Medium. "Vector Representations of Text for Machine Learning".

ing [64] are connected to the large vocabulary size, the computational problems
brought about by sparse vectors and the fact that it does not account for similar-
ities among di�erent words, as every feature is treated independently. Embedding
[64] solves these problems by representing features, or words, in dense vector form
and locating words with similar meaning close to each other in the vector space.
Figure 2 shows that words with semantic relationship, such as Countries and their
Capitals, are mapped close to each other in the vector space. Embedding can be
performed using an embedding layer in the training phase of a Machine Learning
process in order to adapt the embedding vector to the speci�c corpus, but it is also
possible to use pre-trained word embeddings, such as Word2Vec [51] or GloVe [58].
For these reasons, embedding is widely used and, in recent times, it has overcome
other methods such as TD-IDF.

Term Frequency-Inverse Document Frequency (TF-IDF) is a variation one-hot
encoding. Instead of representing the encoding vector with binary values, and thus
giving the same relevance to each feature, TF-IDF assigns a value that depends on
the term frequency and the inverse frequency of the speci�c word in the corpus.
To be clearer, each word i included in document j is still represented by a sparse
vector, but the value of the element that corresponds to the speci�c word in the
vocabulary is the product of term frequency and inverse document frequency, as in
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Figure 2: Word embedding.

Source: Google Developers. "Embeddings: Translating to a Lower-Dimensional

Space."

Equation (6).

TF -IDFi,j = TFi,j × IDFi,j

=
Nwordsi,j
Totwordsj

× log
(
Totdocj
Ndoci

)
(6)

Term frequency (TFi,j) is the ratio between number of times a given word i ap-
pears in document j (Nwordsi,j) and the total number of words in document j
(Totwordsj), while inverse document frequency (IDFi,j) is the logarithm of the
ratio between total number of documents (Totdocj) and number of documents that
include the speci�c word i (Ndoci). This feature representation method takes into
account the relevance of each word, on the basis of how often it appears in a doc-
ument and how many documents include that word. Indeed, common words that
appear very frequently in all documents do not add much information, but words
that do not appear so often and are included with high frequency in a small number
of documents are likely to be representative of those documents.

1.2.2 Lexicon approach

Lexicon-based approach to sentiment analysis consists in de�ning a list of words
that are associated with a given sentiment state. Medhat, Hassan and Korashy
[49] present two lexicon-based approaches, namely dictionary-based and corpus-
based approach. Both of them start with a list of opinion words that is built
manually. In dictionary-based approach, this list of words is labeled based on the
words meaning and expanded using synonyms and antonyms. Using corpus-based
approach, instead, allows to build up a set of words that refer to the speci�c context
of the documents. This is done making use of a wide context-speci�c corpus to
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identify new terms associated with the same labels of those of the initial list.

A well known publicly available list of opinion words is Psychological Harvard
IV-4 Dictionary, which is part of the General Inquirer [69] software for text analysis
and classify words in positive or negative. However, Loughran and McDonald [41]
note that the poor performance of positive words is probably due to their frequent
negation and negative word list should be preferred.

Some authors have developed �nance-speci�c dictionaries that are widely used
for research purposes and Loughran and McDonald [41] are among them. They
analyze SEC's 10-K documents8 �led between 1994 and 2008 and select, among
words that occur in at least 5% of the documents, new terms to improve Harvard
Dictionary.

Henry [27] proposes another interesting �nancial dictionary using words taken
from corpus of earnings press releases. To account for the context of each word, she
assesses its directional meaning based on the relationship with close terms in the
same sentence. In particular, she starts with an initial list of words and examines
the three words preceding and following each word in the documents. She evaluates
if the word is positive and negative on the basis of its relationship with each of these
close terms. Finally, only the words that are labeled as positive (or negative) at
least in 80% of the occurrences are included in Henry's dictionary.

1.2.3 Supervised Learning approach

Supervised Machine Learning is a technique that is used to learn the function that
maps a series of inputs to some outputs. It is based on a labeled data set, where the
inputs are the features of that data set and the outputs are the corresponding labels.
The supervised Machine Learning algorithm is able to learn from the examples
provided by the labeled data set and then apply the same function to unlabeled
dataset in order to de�ne the output.

Among the Machine Learning methods, Medhat, Hassan and Korashy [49]
present some supervised learning techniques for text classi�cation, such as Naive
Bayes classi�er (NB), which computes the probability that a document belongs
to a given class based on the distribution of the words in the document and as-
sumes the independence of all the features. They also mention Bayesian Network
classi�er (BN), which is hardly used because it assumes all features to be fully
dependent, instead, and thus requires a complete joint probability distribution to
be speci�ed. Maximum Entropy classi�er is another classi�cation method and, as

810-K document is a form that publicly traded companies submit annually and is required
by the U.S. Securities and Exchange Commission (SEC). It summarizes company's �nancial per-
formance and risk factors and it is necessary to allow investors to make informed buy and sell
decisions.
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explained by Nigam, La�erty and McCallum [56], it can be used when a joint prob-
ability distribution is unavailable. According to these authors, uniform distribution
should be preferred in these cases and updated under the constraints coming from
the training data. After selecting some relevant features from the text, they com-
pute their expected value over the training data and set them as constraints on the
conditional distribution. They also give an example saying that, if a document has
40% probability of belonging to a given class when it contains the word "professor",
uniform probability should be associated with the other classes for the remaining
probability: 20% for each of other three classes, for instance. In case the document
does not contain the word "professor", for which an expected probability of 40%
has been computed, a probability distribution is totally missing and thus the doc-
ument should be given an equal probability of 25% to belong to each of the four
categories.

Medhat, Hassan and Korashy [49] introduce also some linear classi�ers, such
as Support Vector Machines (SVMs) and Arti�cial Neural Networks (ANNs). The
former separates data into classes, de�ning a separating hyperplane that maximizes
the normal distance of any data points. Normal distance means distance is mea-
sured along a line that is orthogonal to the hyperplane. Figure 3 shows an example
of classi�cation for a bi-dimensional space, where straight line A is the has maxi-
mum margin of separation. Arti�cial Neural Networks, instead, are algorithms that

Figure 3: Support Vector Machines.

Source: Walaa Medhat, Ahmed Hassan and Hoda Korashy. "Sentiment analysis

algorithms and applications: A survey". In: Ain Shams Engineering Journal

5.4 (2014), pp. 1093-1113.

mimic the functioning of human brain and are made up of units called neurons.
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Each neuron receives a vector of inputs Xi = {a1, .., an}, combines them linearly
using a vector of weights A = {x1, .., xn} and transforms these combinations to
produce an output pi = A ·Xi. In the case of text binary classi�cation, the sign of
pi represents the label, positive or negative, to assign to the i-th document.

Other supervised learning algorithms mentioned by Medhat, Hassan and Ko-
rashy [49] are Decision Tree classi�ers, which follow a recursive approach to create
sub-partitions of data based on the presence of one of more words, and Rule-based
classi�ers, which divide the data de�ning sets based on if-then rules. If some rules
are satis�ed by a document, then that document can be classi�ed with the corre-
sponding class label. Rules are de�ned during the training phase on the basis of
criteria such as support and con�dence. The former counts the number of times a
speci�c rule, for instance the presence of a word in the text, is satis�ed in the whole
training set, while the latter represents the conditional probability of observing a
given label when the rule that is associated with that label is satis�ed.

Yadav et al. [73] use a supervised Machine Learning approach to classify real
time news headlines. First, they automatically label all headlines based on net
buying pressure9 patterns in S&P NIFTY Index, and then use naive Bayesian
classi�ers and support vector machines (SVM) for text classi�cation, �nding that
the best alignment window for Indian futures markets is 5 minutes.

Atkins, Niranjan and Gerding [2] prove that �nancial news makes a better job
in predicting stock market volatility than stock returns. To reduce data dimen-
sionality, they use Latent Dirichlet Allocation (LDA), a generative technique that
helps divide each document into a set of topics. Topics are sets of words and they
are generated, hence the adjective generative, on the basis of the words they con-
tain. Instead of having documents made up of a large number of words, or possibly
n-grams, each document is built up as a set of topics, so that dimensionality is
reduced. In particular, Atkins, Niranjan and Gerding [2] create a list of topics for
each 60-minute time interval, by assigning a sparse feature vector that counts the
number of times a topic appears in that interval. Then they label these feature vec-
tors based on the binary direction of volatility changes during the following time
interval. Finally, they perform text classi�cation using Naive Bayesian classi�er
and they justify this choice for the fact that it has high empirical performance even
under the simplistic assumption that each feature is independent of each other.

Also Souma, Vodenska and Aoyama [67] classify �nancial and economic news us-
ing the NLP Machine Learning approach. They train a Recurrent Neural Network
(RNN) with LSTM units, which is particularly suitable to capture long term depen-
dencies among words in a text.Before feeding the training algorithm, they perform
word embedding using Global Vectors for word representation method (GloVe) to

9Net buying pressure is de�ned as "the di�erence between the number of buyer-initiated trades
and the number of seller-initiated trades calibrated from the bid-ask quotes".
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convert words to vectors. Embedding consists in assigning a vector to each word in
the dictionary such that words with similar meaning are located close to each other
in the vector space. Glove contains pre-trained word vectors based on Wikipedia
documents. They assign labels to each news article based on stock return over the
next one-minute period and obtain a classi�cation in positive and negative news.

Wang et al. [70] work on sentiment analysis retrieved from two SeekingAlpha
articles and StockTwits messages, two social media platforms, and analyze their
correlation with S&P500 Index movements, �nding the former has better explana-
tory power, even though sentiment-based investment strategies have generally poor
performances. They use a dictionary-based approach for SeekingAlpha analysis,
relying on Loughran and McDonald's �nancial sentiment dictionary [41], and su-
pervised Machine Learning approach for StockTwits, using labels assigned directly
by users. Their best model is Supported Vector machine (SVM), a widely used
algorithm that detects a separating hyperplane to perform classi�cation.

1.2.4 Unsupervised Learning approach

There are also some authors that have explored alternative solutions to dictionary-
based and Supervised Machine Learning methods. While Supervised Machine
Learning needs labeled data to train the network and tailor the output to the
correct label in the training set, Unsupervised Learning does not require training
data to be labeled. Indeed, it can learn patterns in the training set identifying
relationships among variables.

Sohangir et al. [65] analyze sentiment of StockTwits using di�erent Unsuper-
vised Deep Learning techniques. Deep Learning [36] is de�ned as a subset of Ma-
chine Learning and more speci�cally a type of Representation Learning method.
Machine Learning, be it Supervised or Unsupervised, requires considerable expertise
to accurately pre-process data and extract the features to feed into the algorithm,
and feature selection has a high impact on the �nal result. With Representation
Learning, instead, machines can process raw data more easily. Deep Learning is a
Representation Learning method that processes data following a hierarchical and
multi-level approach and extracts nonlinear features that can eventually be com-
bined for classi�cation purposes. This means it works with multi-layer architectures
made up of nonlinear units, where features are extracted with more and more de-
tail as later layers are approached. A common example refers to image recognition,
where the �rst layers detect simple features, such as the edges of an image, and
later layers extract more complex features such as faces [65]. Sohangir et al. [65]
point out that using Deep Learning for Natural Language Processing can help solve
the sparsity problem caused by high-order n-grams, which are extremely useful to
keep word order, but appear infrequently in the corpus. Deep learning can help
learn abstract features and learn semantic relationship among words. It often uses
Arti�cial Neural Networks architectures with multiple hidden layers and, it these
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cases, it is referred to as Deep Neural Networks.
Deep Learning can be bene�cial when applied to Unsupervised Machine Learn-

ing tasks, because of its ability to �nd hidden relationships among variables, and the
large availability of unlabeled data makes Unsupervised Learning very attractive
for future research.

The interesting fact about StockTwits is that users can write short messages and
directly label them as bullish or bearish, but as only 10% of messages in this social
network are labeled, Sohangir et al. [65] �nd that Unsupervised Deep Learning
models can be useful for sentiment analysis and can predict stock returns with high
accuracy.

Ruan et al. [60] build a new investor sentiment indicator (ISI) using Sina
Finance blog, a Chinese platform that collects opinions of stock analysts. They
use Baidu AI platform10 to automatically conduct sentiment analysis through pre-
developed Deep Learning tools that assign a given value to each word in the text
and then combine the value of all words in the document, adjusting the overall
sentiment value with respect to the speci�c scenario. They �nd that their indicator
performs better than other widespread indicators, and correlation with macroeco-
nomic predictors is low.

10Baidu AI platform is the largest open platform for arti�cial intelligent analysis in China.
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networks

2.1 Introduction to ANNs and LSTM networks

Arti�cial Neural Networks (ANNs) are systems of interconnected nodes that take
inspiration from biological neural networks. In the human brain (Figure 4), electric
signals are transmitted from one nerve cell, named neuron, to another through
some connections named synapses. These sensory inputs enter the neuron through
some �bres known as dendrites and are processed by the cell body, called soma.
Then, the output �ows through the axon, a long tube that branches into multiple
dendrites, through which information reaches the synapses and it is passed on to
other neurons [25] [43].

Figure 4: Biological Neural Network.

Source: F. A Makinde et al. "Prediction of crude oil viscosity using feed-

forward backpropagation neural network (FFBPNN)". In: Petroleum and Coal

54 (2012), pp. 120-131. Scienti�c Figure on ResearchGate.

Similarly, in Arti�cial Neural Networks a set of inputs X = [x1, x2, ..., xn] is
provided to each node, or unit, as presented by Lek and Park [39]. The node
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assigns a set of weights W = [w1, w2, ..., wn], one for each input, to determine the
intensity of each input signal. Then, the weighted inputs are summed up and
the result are fed into an activation function in order to generate an output. An
activation function is a linear or non-linear function that is applied to the weighted
sum of inputs and it decides how much the output should be transferred to the
following node.

Figure 5 shows some of the most common activation functions [50], namely the
step function, the ReLU function, the Sigmoid function and the Hyperbolic Tangent
function.

(a) Step function.

Source: Wikipedia. "Step function".

(b) ReLU function.

Source: Medium. "Why is ReLU non-

linear?".

(c) Sigmoid function.

Source: Wikipedia. "Sigmoid function".

(d) Hyperbolic Tangent function.
Source: MathWorks. "tanh".

Figure 5: Types of activation functions used in Arti�cial Neural Networks.

Step function is a threshold-based activation function, meaning the weighted
sum of the inputs is transferred to the next step (�red) only if its value is greater
than, or equal to, a given threshold. Step function can be described by Equation
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(7):

f(x) =

{
1, if x ≥ α

0, if otherwise
(7)

ReLU function, in Equation (8), is a non-linear function11 that is linear only for
positive values of x. Given its non-linearity, it allows to create arti�cial neural net-
works with multiple layers. Indeed, if all layers have linear activation functions, the
�nal activation function is nothing more than a linear combination of the previous
ones. Di�erently from the step function, it does not have a binary output.

f(x) = max{0, x} =

{
x, if x ≥ 0

0, if otherwise
(8)

Sigmoid function is particularly suitable for classi�cation tasks as it tends to be
steeper in its central part and thus it pushes output towards its tails. It is non-
linear and it has the great advantage of returning values between 0 and 1. It is
described by Equation (9).

f(x) =
1

1 + e−x
(9)

Hyperbolic Tangent function is similar to sigmoid. It returns values between −1
and 1, as visible in Figure (10).

f(x) = tanh(x) =
2

1 + e−2x
− 1 (10)

As Gurney points out, ANNs can be designed following di�erent architectures.
In its simplest con�guration with one single node, the single-layer perceptron, an
input layer is followed by an output layer that produces the �nal result. In the
opposite case, instead, a large number of nodes can be fully interconnected and
form a Fully Connected Neural Network.

Lek and Park [39] distinguish between two main categories of ANNs, that are
supervised and unsupervised learning. While the former needs labeled data to learn
from the examples provided, the latter can independently �nd hidden relationships
in the data. One common scheme of supervised learning is Feed-Forward Network,
also called multi-layer perceptron, which is an evolution of the single-layer percep-
tron, and it is made up of at least three layers, where information is passed on from
the input layer through one or more hidden layers to the �nal output layer. All
nodes of one layer are connected to all nodes of the next layer and the previous
layer, but there are no connections between nodes of the same layers or non-adjacent
layers.

11ReLU function is not a linear function because it does not satisfy one of the two properties
that de�ne linearity, namely additivity. Additivity implies that f(x+y) = f(x)+f(y). The other
property is homogeneity, that is f(αx) = αf(x) for all α.
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2.1.1 Delta Rule and Backpropagation algorithm

The way connection weights are adjusted in Feed-Forward Networks is known as
Backpropagation Algorithm. The �rst part of this algorithm is called Forward Prop-
agation and works in the following way. First, weights are randomly determined
and weighted inputs summed up and fed into the activation function. Then, the
value of the activation function is passed on to the following layer and, when the
last layer is reached, an output is produced. The output is compared with the de-
sired output and the di�erence δ, named error, is used to update the initial weights
so that the process can be run again and the error minimized.

In single-layer Perceptron, the weight-correction procedure [39] works multiply-
ing the di�erence between target and output value by the derivative of the activation
function at point ak to obtain Equation (11).

δk = (tk − xk)f ′(ak), (11)

(tk − xk) is the di�erence between target and output value of k-th output layer,
and f ′(ak) is the derivative of the weighted sum of inputs of k-th output layer, ak.
f ′(ak) is useful to increase the correction step when the weighted sum of inputs
is close to the central part of the non-linear activation function, for instance the
sigmoid. The correction works as in Equation (12), where ∆wkj is the variation
in the weights that connect unit j to unit k, δk represents the error of unit k as
in Equation (11), xj is the output value of the previous unit and η is the learning
rate, which is set by the user and determines the learning speed of the network. It
usually takes values between 0 and 1.

∆wkj = ηδkxj (12)

This Equation represents a slight modi�cation of the so called Delta Rule, because
it introduces a non-linear activation function, instead of a linear one, to speed the
correction up. The derivation of the Delta rule comes from a general algorithm
called gradient descent, which is an iterative procedure that adapts a vector of pa-
rameters in order to minimize an objective function. Gradient descent is an iterative
technique that uses the gradient of a cost function to �nd its local minimum. The
gradient of a multivariate function with k variables, ∇f(x1, x2, ..., xk) [71] [72], is a
vector whose components are the partial derivatives of f at point x = (x1, x2, ..., xk)
and it summarizes the direction and rate of fastest increase of f . Gradient descent
method exploits this de�nition by taking small steps towards the direction of the
negative gradient. The result is a sequence of vectors (xn)∞n=0 that moves towards
the local minimum. Each element of the sequence is described by Equation (13),
where xn and xn+1 are the n-th and (n+ 1)-th elements of the sequence, ∇f(xn) is
the gradient of f at point xn, and γ ∈R is the step size. Figure 6 shows how the
sequence behaves on a series of level sets.

xn+1 = xn − γ∇f(xn), n ≥ 0 (13)
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Figure 6: Gradient descent on a series of level sets.

Source: Wikipedia. "Illustration of gradient descent on a series of level sets".

Delta rule was introduced for a single layer network, but it can be generalized
and applied to multiple layers networks, using the Backpropagation Algorithm.
The �rst part of this algorithm has already been presented. The second part deals
with the actual Backpropagation. Backpropagation [74] is the method used to
adjust the weights given the loss function produced in the Forward propagation.
Weights are modi�ed computing the gradient of the parameters starting from the
output layer and going backward to the input layer, following the chain rule12.
Nielsen [55] explains how the Backpropagation phase works and start with two main
assumptions. The �rst one regards the functional form of the cost function, which
should be expressed as an average C = 1

n

∑
xCx of the cost functions computed over

di�erent training sets x. The second assumption is that the cost function should
be described as a function of the �nal output of the ANN, aLj . Both conditions are
satis�ed by the quadratic cost function in Equation (14).

C(aLj ) =
1

2

∑
j

(yj − aLj )2, (14)

where aLj is the result of the activation function of the j-th neuron of the output
layer L and yj is the target value of the j-th neuron of the output layer.

12The chain rule helps compute the derivatives of composite functions. Given two di�erentiable
functions f and g, d

dxf(g(x)) = f ′(g(x)) · g′(x).
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In order to adjust weights following the backpropagation technique, one needs
to compute the partial derivatives of the cost function with respect to the weights
and the bias ∂C

∂wl
jk

and ∂C
∂blj

. To familiarize with the notation used by Nielsen, wl
jk

represents the weight (Figure 7) that connects the k-th neuron of layer l−1 to j-th
neuron of layer l, while blj is the bias of the j-th neuron of layer l. The bias is a

Figure 7: Notation used by Nielsen.

Source: Michael Nielsen. "How the backpropagation algorithm works". In:

Neural Networks and Deep Learning. 2015. Chap. 2, pp. 39-58.

term that is added to the weighted sum of inputs of each j-th neuron of layer l, as
shown in Equation (15)

zlj =
∑
k

wl
jka

l−1
k + blj, (15)

where the inputs al−1k correspond the output of the previous layer. This weighted
sum is then fed into a sigmoid activation function, leading to Equation (16), which
represents the output of the j-th neuron of layer l.

alj = σ(zlj) (16)

To compute ∂C
∂wl

jk
and ∂C

∂blj
, Nielsen introduces an intermediate variable δlj, repre-

senting the error of the j-th layer. As the actual output and the target output of
hidden layers are unknown, Nielsen �nds that Equation (17) can be a useful proxy.

δlj ≡
∂C

∂zlj
(17)

The reason for applying this proxy comes from the fact that, in order to adjust
weights, one should focus on choosing the sum of weights zlj that minimizes the
cost function C. This is done by taking small steps towards the opposite direction
of ∂C

∂zlj
and therefore this measure can approximate the error for layer j-th.
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The error δlj ≡ ∂C
∂zlj

can be computed through the chain rule, as in Equation (18).

Indeed, the cost function C, expressed by Equation (14), is a function of aj, which
is itself a function of zlj, as shown by (16).

δlj ≡
∂C

∂zlj
=
∂C

∂alj

∂alj
∂zlj

=
∂C

∂alj
σ′(zlj) (18)

The last term is straightforwardly computed plugging
∂alj
∂zlj

= σ′(zlj) into the equa-

tion. This means the error δLj of the output layer L can be computed from this
equation, because the �nal output aLj and the functional form of the activation
function are known. To actually determine the value of δlj for all layers, Backprop-
agation method is used. Starting from the output layer it is possible to go backward
through the network and retrieve the errors of the l-th layer, given the error of the
(l+ 1)-th layer. Equation (19) represents δlj in terms of δl+1

j and is computed, once

again, using the chain rule. The last line of this equation substitutes ∂C

∂zl+1
k

with

δl+1
k , as in Equation (17).

δlj ≡
∂C

∂zlj
=

∂C

∂zl+1
k

∂zl+1
k

∂zlj
= δl+1

k

∂zl+1
k

∂zlj
(19)

Chain rule can be applied because C is a function of zl+1
k , which is itself a function of

zlj. Indeed, plugging Equation (16) into the cost function C, expressed by Equation

(14), and �xing L = l+1, one obtains Equation (20). It is easy to note that C(al+1
k )

is a function of zl+1
k through al+1

k .

C(al+1
j ) =

1

2

∑
j

(yj − σ(zl+1
j ))2 (20)

Plugging Equation (15) into Equation (20), it is straightforward that zl+1
j is also

function of outputs from layer l, alk, and consequently zlk.

Solving
∂zl+1

k

∂zlj
in Equation (19), using Equations (15) and (16), leads to Equation

(21).

δlj = δl+1
k

∂zl+1
k

∂zlj
=
∑
k

δl+1
k wl+1

kj σ
′(zlj) (21)

Finally, using Equations (18) and (21), it is possible to compute ∂C
∂wl

jk
and ∂C

∂blj
.

The partial derivative of the cost function with respect to the bias is simply equal
to δlj for the j-th neuron in the l-th layer, as shown in Equation (22).

∂C

∂blj
= δlj (22)
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The partial derivative of the cost function with respect to the weights can be ex-
pressed in terms of δlj, as Equation (23) shows.

∂C

∂wl
jk

= al−1l δlj (23)

2.1.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) [63] is a type of Arti�cial Neural Network
(ANN) that processes sequences of inputs to obtain one or more �nal outputs and
it is widely used in speech recognition, image captioning13 and next word prediction.
RNN architectures can be one-to-many, with one input and many outputs, many-
to-one, with many inputs and one output, or many-to-many, with a sequence of
many inputs and a sequence of many outputs. In this last case, number of output
and inputs can be the same or di�erent. Unlike ANNs, RNNs have an internal
memory that keeps past observations so that the output depends not only on the
current input, but also on past information. In addition, they work well with
sequences of variable length.

Figure 8 shows an common example of many-to-many RNN, with number of
inputs equal to number of outputs [1] [66], where a sequence of vectors xt is fed
into the machine and produces a sequence of outputs ŷt. For each time step t, xt,

Figure 8: Recurrent Neural Network.

Source: Massachusetts Institute of Technology. "MIT 6.S191 Introduction to

Deep Learning. Deep Sequence Modeling with Recurrent Neural Networks".

which represents the input vector, is pre-multiplied by a weight matrix Wxh, as in
traditional ANNs. In RNNs, however, past activations ht−1, named hidden states,
are used as additional inputs for the network, which assigns them a weight matrix
Whh. The activation for each time step is represented by Equation (24) and consists

13Image captioning consists in generating a textual description from an image.
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in applying a function g1 to the weighted sum of inputs and past activations with
the addition of the constant vector bh, named bias.

ht = g1(Whhht−1 +Wxhxt + bh) (24)

The hidden state ht is both used to compute the output ŷt and passed on to the
next time step. For each time step t, output ŷt is computed similarly to activation
for a common ANN. The weighted sum of current activation ht is computed using
weight matrix and a constant term is by added to the calculation. Then a function
g2 is used to transform this weighted sum, as in Equation (25).

ŷt = g2(Whyht + by) (25)

In Supervised Learning, the true sequence of outputs yt of the training set is
known and a Loss function L(yt, ŷt) is computed for each time step t. The �nal
total Loss function L(y, ŷ) is then obtained summing up these intermediate loss
functions, as in Equation 26.

L(y, ŷ) =

Ty∑
t=1

L(yt, ŷt) (26)

RNNs are trained using a technique known as Backpropagation Through Time
(BPTT), which is an application of the Backpropagation Algorithm presented in
the previous paragraph. Like traditional Backpropagation, BBTT uses the gradient
of the Loss function to minimize L(y, ŷ) and �nd the optimal weights. To do so, it is
necessary to retrieve the partial derivative of the Loss function with respect to each
weight in the network. In traditional Backpropagation, partial derivatives are com-
puted starting from the output layer and going backward through the hidden layers
to the input layer. In Backpropagation Through Time the network is unfolded14 as
in Figure 8 and, therefore, an additional variable, time t, must be considered. For
each time instant t, the partial derivatives of the total Loss function L(y, ŷ) with
respect to the weights and biases, Why, Wxh, by and bh, are computed backward
through the layers using the chain rule, as in common Backpropagation. But in this
case, Backpropagation also acts through time, meaning gradient is back-propagated
across time steps, as shown by Figure 9. This means the chain rule computes the
partial derivative of L(y, ŷ) with respect to all weights at each time step t passing
through all layers of the individual network and then going backward in time.

In principle, RNNs would be suitable to learn long-term dependencies, but in
practice they su�er from vanishing and exploding gradient problems [21] [66]. Re-
current Neural Networks can have arbitrary length and applying the chain rule

14An unfolded representation of Recurrent Neural Network is represented in Figure 8, where
the same RNN network is repeated many times and the activations of each time step are fed into
the next time step.
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Figure 9: Backpropagation Through Time.

Source: Massachusetts Institute of Technology. "MIT 6.S191 Introduction to

Deep Learning. Deep Sequence Modeling with Recurrent Neural Networks".

backward in time implies computing a long series of weight matrix multiplications,
as well as multiplication of derivatives of the activation functions. When many
multiplication terms are greater than one, their product can explode. When terms
are close to zero, instead, their product can vanish. This means the network might
meet some di�culties in computing the gradient for early time steps, not being
able to learn long-term dependencies. For instance, when adopting Sigmoid or Hy-
perbolic Tangent activation functions (Figure 5), the derivative of the activation,
which is included in the formula of the chain rule used in the Backpropagation
phase, as shown by Equation (21), tends to vanish if the input of the function is
very high or very low. This is because derivative of both functions is zero at the
tails (Figure 10).

Some solutions may include changing the functional form of the activation func-
tion, initializing the weight matrix with reasonable values, or modifying the struc-
ture of the network. ReLU function (Figure 5), for instance, has constant derivative
for values higher than zero, but the problem remains for values lower than zero.
Gradient Clipping, instead, is a technique that involves �xing the maximum value
of the gradient of the loss function to an arbitrary value and can be adopted for ex-
ploding gradient problems [1]. However, the best results have been obtained using
particular types of Recurrent Neural Network architectures that have been designed
to deal with both exploding and vanishing problems and the most renowned one is
Long Short Term Memory networks (LSTMs).
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Figure 10: Derivative of Sigmoid function.

Source: Massachusetts Institute of Technology. "MIT 6.S094: Deep Learn-

ing for Self Driving Cars. Recurrent Neural Networks for Steering Through

Time".

2.1.3 LSTM networks

Long Short Term Memory networks (LSTMs) [57] are a particular type of Recur-
rent Neural Network, speci�cally designed to solve vanishing and exploding gradient
problems. Therefore, it achieves high performance in learning long-term dependen-
cies.

Figure 11 shows an unfolded representation of a LSTM network, where each
module represents an individual LSTM module at time step t. A standard Recur-
rent Neural Network has one hidden layer.LSTMs are designed to have four hidden
layers that interact with each other, instead, represented by the yellow boxes in
Figure 11.

Figure 11: LSTM network.

Source: Christopher Olah's blog. "Understanding LSTM Networks".

To keep track of relevant long-term dependencies, LSTM model contains a cell
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state Ct, which memorizes the information about the training set that is learned
after the module processes the available information at time t. The cell state Ct

substitutes the hidden state ht of standard Recurrent Neural Networks. In LSTM
networks, the notation ht is used to de�ne the output, instead. The current cell
state is computed starting from the previous cell state Ct−1 and updating it on the
basis of the new input at time t. Information contained in cell state Ct−1 �ows
through the so called conveyor belt, as in Figure 12. Before passing information
on to next step, the conveyor belt undergoes only two pointwise operations, which
introduce some corrections to the cell state. Therefore, information can �ow quite
easily.

Figure 12: Conveyor belt in a LSTM network.

Source: Christopher Olah's blog. "Understanding LSTM Networks".

A system of gates determines what part of information is added and what part
is removed. Gates are made up of a sigmoid layer, which forces the input of the
gate to be between zero and one, and a pointwise operation that updates the cell
state. Each module receives an input xt which, together with the output of the
previous module ht−1, passes through a forget gate (Figure 11 Part (a)). The forget
gate ft, represented by Equation (27), applies a Sigmoid function to the weighted
sum of current input and previous output, so that all values of the cell state are
assigned a number between zero and one. In this way, the gate assesses how much
of the information contained in the cell state should be forgotten.

ft = σ(Wf · [ht−1, xt] + bf ) (27)

The second and third layers decide how to update the cell state with new infor-
mation (Figure 11 Part (b)). In particular, the input gate it, which behaves similarly
to the forget gate, decides which elements of the cell state will be updated. An-
other layer, C̃t, applies a Hyperbolic Tangent function to the same variables used
by ft and it and it determines the new candidate values for Ct. Both layers are
represented by Equations (28).

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)
(28)
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Equations (28) and Equation (27) are combined to compute the actual cell state
Ct and Equation (29) describes how update is executed.

Ct = ft ∗ Ct−1 + it ∗ C̃t (29)

In the �rst term, the forget gate ft is multiplied by the previous cell state Ct−1,
so that unnecessary information is erased from the cell state. In the second term,
instead, the input gate it, which decides what elements to update and how much
to update them, is multiplied by the candidate values C̃t. Finally, summing up the
two terms, the cell state is updated, dropping useless information and including
new signi�cant information. Figure 11 Part (c) graphically shows how Equation
(29) update the cell state, starting from the outputs produced by the �rst three
layers.

(a) (b)

(c) (d)

Figure 13: Broken down LSTM Network.

Source: Christopher Olah's blog. "Understanding LSTM Networks".

The last layer (Figure 11 Part (d)) is another gate that applies a sigmoid function
to the weighted sum of previous output ht−1 and current input xt and it is called
output gate. The output gate decides what part of the updated cell state to output.
Before multiplying the result of the output gate by the cell state, the values of the
cell state are forced to be between minus one and plus one, using a Hyperbolic
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Tangent function. The result of the output gate ot and the �nal output ht are
described by Equations (30).

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)
(30)

The real advantage of this model is that it completely solves vanishing and
exploding gradient problem [66]. Indeed, backpropagation only acts among cell
states Ct and ht is not involved in this. Equation (29) clearly shows that Ct only
involves pointwise operations and, thus, matrix multiplications are not necessary
when applying the chain rule.

Figure 14: Backpropagation Through Time in a LSTM network.

Source: Massachusetts Institute of Technology. MIT 6.S191 Introduction to

Deep Learning. Deep Sequence Modeling with Recurrent Neural Networks".

2.2 The model

In this section, I present the main �ndings of the model I developed. The aim of
this work is to de�ne a reliable proxy for market sentiment using �nancial news
sources and assess if it is correlated with S&P 500 Index returns or volatility.

For this aim, publicly available �nancial news articles related to S&P 500 Index
were scraped from Reuters.com website. Web scraping was done using Rvest and
Rselenium, two open source packages available for the software environment R. As
the web page is a dynamic page, it was necessary to use a dynamic approach to
retrieve the html code. Using Rselenium, I simulated browser activity to load web
pages that contained older news articles and with Rvest I extracted the html code
that included article headlines and links to these articles. Then, using those links,
I extracted the remaining information.
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Scraping techniques allowed me to download 20,799 news articles, from March
20 to November 7, 2019. The output was an excel �le, which did not include any
html tags, where each article was cataloged by headline, body, date and time.

Article Headlines and bodies were concatenated in order to have a unique text
source for each article.

As news articles scraped from Reuters are not labeled, I introduced some as-
sumptions to automatically label them, following two main approaches. The �rst
approach de�nes labels based on S&P 500 Index returns, while the second one on
S&P 500 Implied Volatility Index (VIX) log variations.

First, I downloaded intraday S&P 500 Index prices from Bloomberg Terminal,
choosing 20-minute time intervals, as suggested by Gidofalvi and Elkan [23]. Then,
I computed log returns using the close price of each time interval t as in Equation
(31), except for the �rst 20-minute interval of each day, where log returns were
computed using the open price and close price of that time window.

Rt = log

(
Closet
Closet−1

)
(31)

All news articles were classi�ed into three categories on the basis of the time interval
they belong to. Articles published during time intervals that registered a positive
return, higher than the 65th percentile, were labeled as positive. Those included in
intervals that scored negative, meaning returns were lower than the 35th percentile,
were classi�ed as negative. With returns between the 35th and 65th percentile,
articles were labeled as neutral. The choice of using these two percentiles derives
from the attempt of capturing only relevant price variations, which are not due
to normal price �uctuations. In addition, these percentile levels allows positive,
neutral and negative news to be almost relatively equally labeled on the data set.

Of course, this labeling approach, based on �xed time intervals, has the limit
that articles published at the beginning of each time window have enough time to
impact stock index returns, meaning they belong to that speci�c time interval and
they are labeled on the basis of price movements during that time interval, while
articles published at later times within the time window are labeled with price
movements of that time window even if they don't impact them. I also tried to
apply a lagged labeling technique, meaning each article was labeled following index
returns over the next time window, but no signi�cant improvement was registered.
An alternative solution might be observing index returns over the exact 20-minute
period following each news.

During this matching procedure, all articles published before 9:30 AM and after
4:00 PM were removed, as it was not possible to match them with any label. In
addition, Bloomberg Terminal allowed me to download only data from May 14 to
December 17, 2019. Therefore, news articles available for sentiment analysis were
3506 (2628 when considering lagged labeling).
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The same procedure was followed for VIX Index. Intraday VIX data were down-
loaded from Bloomberg Terminal, and I performed automatic labeling considering
VIX Index log variations, instead of index returns, because VIX can be considered
as proxy for investor sentiment [8]. In this case, negative log variations in the
VIX index were associated with more optimistic sentiment and positive variations
to more pessimism among investors. The reason is that volatility is asymmetric,
meaning it is higher in downtrends. It was possible to download VIX data between
June 5 and December 17, 2019, therefore news articles available for sentiment anal-
ysis at the end of this matching procedure were 3090 (2719 when considering lagged
labeling).

After running the �rst codes, I tried to modify some parameters looking for
improvements. Indeed, I tried with both 20-minute and 10-minute time intervals,
as Gidofalvi and Elkan [23] empirically prove that increasing time interval size,
from the optimal 20-minute one, worsen stock return prediction. Furthermore, in
an e�ort to obtain better results, I changed the percentiles used to de�ne positive,
negative and neutral news. Besides 35th and 65th percentiles, I also tried with 45th
and 55th.

2.2.1 Data, preprocessing and labeling

Text data were pre-processed using Matlab, which gives access to many toolboxes
for text analysis and deep learning.

The excel �le containing the corpus was imported into Matlab environment.
Figure 15 presents the histograms of the class distribution of news articles labeled
using S&P 500 Index 20-minute log returns. In Part (a) the percentiles used to
de�ne positive and negative news are the 35th and 65th percentiles, and out of
3506 articles, 1333 were classi�ed as negative, 962 as neutral and 1211 as positive.
When using the 45th and 55th percentiles, instead, out of 3506 articles, 1636 were
classi�ed as negative, 315 as neutral and 1555 as positive. Thus, in Figure 15 Part
(b), the number of news classi�ed as neutral decreases.

In Figure 16, similar histograms are presented, where articles are labeled using
VIX Index 20-minute log variations. In Part (a), the 35th and 65th percentiles were
used and out of 3090 articles, 1099 were classi�ed as negative, 342 as neutral and
1649 as positive. When using the 45th and 55th percentiles, as in Part (b), 1364
articles were labeled as negative, 293 as neutral and 1433 as positive. Using 35th
and 65th percentiles, leads to a more uniform classi�cation, at least in the case of
log returns, but results are unsatisfactory. However, the fact that the number of
negative and positive labels is almost identical is a good starting point for training
the network.

Before training the network, the �rst step is dividing data into three sets, namely
Training, Validation and Testing sets. The Training set is used to �nd the optimal
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(a) 20-minute log returns with 35th-65th per-

centiles.

(b) 20-minute log returns with 45th-55th per-

centiles.

Figure 15: Financial news labels based on S&P 500 Index 20-minute log returns.

Source: Matlab.

(a) 20-minute VIX log variations with 35th-

65th percentiles.

(b) 20-minute VIX log variations with 45th-

55th percentiles.

Figure 16: Financial news labels based on VIX Index 20-minute log variations.

Source: Matlab.

weights through Backpropagation. Many algorithms, like the one I explain in Sec-
tion 2.2.3, divide the Training set into subsets of observations named mini-batches.
The network computes the total loss function at each mini-batch and updates the
parameters, which can be used by the following mini-batch. The Validation set,
which is itself divided into the same number of mini-batches, is used to test the
model with the parameters optimized by the network at each mini-batch. The
Testing set, instead, is used to test the fully trained network, when the learning
phase is completed.

I used Holdout cross validation technique to divide data into Training, Valida-
tion and Testing sets. After �xing the percentage of data to allocate to each of
these subsets, this technique allows to randomly select observations from the data
set. I used 70% of the articles for Training and 15% each for Testing and Validation
set.

Figure 17 Part (a) shows the words that appear most frequently in the Training
set, before the preprocessing phase. Words like Reuters appear very often in the
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text but are unlikely to have strong semantic relevance for the article. Fortunately,
punctuation is not included among the most frequent features even before prepro-
cessing the data. Preprocessing is an important phase and can heavily in�uence the

(a) Raw word cloud. (b) Processed word cloud.

Figure 17: Word cloud representation of raw Training Data and Preprocessed Training

Data.

Source: Matlab.

accuracy of text classi�cation. First, documents were tokenized and punctuation
and stop words were erased. Then, all words were converted to lower case, in order
to avoid duplication.

Another useful technique to reduce dimensionality is lemmatization, which con-
sists in keeping only roots of each words, as in stemming. The di�erence is that
stemming uses general rules to cut o� the �nal part of a word, for instance it cuts
su�xes like "ing" or "ed", while lemmatization is a more complex method that is
able to turn each word into its dictionary form [62]. Words like "are" and "is" are
transformed into "be", for instance. Matlab provides pre-trained lemmatization
tools based on widely available English dictionaries. To apply lemmatization, part
of speech (POS) information is needed. This means words are categorized in nouns,
verbs, adjectives, adverbs and so on.

In addition, words with less than two characters or more than 14 characters
were removed. Lastly, I removed "reuters" from the corpus, as it unlikely to be
informative.

After preprocessing the Training set and doing the same with validation and
testing sets, the word cloud representation in Figure 17 Part (b) shows that some
words do not appear anymore, even though a lot of them are still present.

Tokens went through encoding, which transformed them into numerical indexes,
expressed by a sparse vector with all zero values but the one corresponding to the
speci�c word in the vocabulary. In this way, tokens can be recognized by the
machine.
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Another important aspect to consider is document size. Each document is an
article that contains an arbitrary number of words. However, best results can be
achieved when the Training set contains documents with similar length, because
infrequent long articles might bias the learning phase, and, therefore, their length
should be reduced. Figure 18 represents length of documents that belong to the
Training set using a histogram. Most documents have length that does not exceed
360, so this value can be used as an appropriate threshold. All articles that exceed
this limit were truncated, while shorter articles were padded, meaning they were
�lled in with zero vectors.

Figure 18: Length of news articles included in the Training set.

Source: Matlab

2.2.2 The LSTM architecture

In this section, I describe the Arti�cial Neural Network architecture used to analyze
sentiment and divide �nancial news in three classes: positive, negative and neutral.

Before training the network, a common practice is performing word embedding.
Embedding allows for dimensionality reduction and it can be useful to capture the
semantic of words, mapping words into real vectors, as explained in Chapter 1.
Among the di�erent alternatives, I decided to include an embedding layer in the
Arti�cial Neural Networks used to train the model. A di�erent solution might be
using pre-trained word embedding.
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The �rst step of the ANN is feeding the network with sequences of words.
Therefore, the �rst layer is a one-dimensional Input layer that takes each individual
word of the sequence and passes it on to an Embedding layer, as shown by Figure
19. The Embedding layer maps each word to a d-dimensional dense vector and
adapts it to the corpus during the learning phase. The weighting matrix computed
by the network for this layer is a d× k matrix, where d represents the embedding
dimension and k the dictionary size, meaning the number of words in the dictionary.

Figure 19: ANN Architecture with LSTM layer.

After the Embedding layer, vectors are transferred to the Long Short Term
Memory layer, which is made up of an arbitrary number of LSTM blocks. Each
vector is associated with a LSTM block, which includes multiple LSTM units, as
shown in Figure 20. Units are essentially represented by the LSTM modules in
Figure 11. According to the Matlab documentation [46], the number of hidden
units determines how much information is remembered between time steps. The
number of hidden units should be �xed to an appropriate integer value, in order
not to over�t the training data.
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For each LSTM block, the input weights to compute are de�ned by a d × 4u
matrix, where d is again the embedding dimension and 4u the number of units of
each LSTM block u multiplied by four, recalling that a LSTM unit has four layers
(Forget Gate, Input Gate, Candidate Cell and Output Gate). In addition, each
LSTM block has a 4u× u recurrent weight matrix that must be computed by the
network at each time step. Finally, the layer learns also a 4u-dimensional vector of
biases.

Figure 20: Interpreting LSTM units.

Source: jasdeep06's blog. Understanding LSTM in Tensor�ow (MNIST

dataset)

When the last �nal LSTM block is reached, outputs are passed on to a Fully
Connected layer with three activations, like the number of classes (positive, negative
and neutral). The number of weights among these two layers are equal to the
product of the three activations and the number of units of the LSTM block u.
This Fully Connected layer receives as inputs the result of the activations of the
LSTM layer, which learns long-term dependencies in the documents, and compute
three weighted sums of these inputs, adjusting the weights together with all the
others in the network.

When classi�cation involves only two classes, only one activation is necessary
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in this layer and a Hyperbolic Tangent Function (or a Sigmoid) pushes its output
between −1 and 1. The more the value of this function is close to −1, the more
the document is associated with one class. The opposite holds true when the value
approaches 1. In a three-class classi�cation, instead, three activations are needed,
and their output is passed to a Softmax function, which generalizes the Sigmoid
function for multi-class classi�cation [47]. The Softmax function [14] computes the
conditional probability of a class xi with i = (1,2, ..., k) over all possible classes, as
shown by Equation 32.

Softmax(x) =
exp(xi)∑k
j=1 exp(xj)

(32)

It is also called Normalized Exponential function, because it normalizes its input
vector, meaning its norm15 is equal to one. The Softmax function takes values
between 0 and 1 (Figure 21), and the sum of the probabilities of all classes is one,∑k

j=1 Softmax(xi) = 1.

Figure 21: Softmax function.

Source: Leixian et al. "Fall Detection System Based on Deep Learning and

Image Processing in Cloud Environment". In: Complex, Intelligent, and Soft-

ware Intensive Systems. 2019, pp. 590-598. Scienti�c Figure on Research-

Gate.

The �nal layer is the Classi�cation Output layer [45] [35], which takes the prob-
abilities provided by the Softmax layer and computes a particular type of loss
function, called Cross-Entropy Loss function, for all documents i.

Cross-Entropy Loss function is used for classi�cation tasks and it is described

15The norm of a vector ||x||, with x = (x1, x2, ..., xn), denotes the magnitude of the vector and
is represented by a scalar. In its Euclidean form ||x|| :=

√∑n
i=1 x

2
i .
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by Equation 33.

Loss(yi, ŷi) = −
n∑

i=1

k∑
j=1

yijln(ŷij), (33)

where yij represents the true class distribution of document i and is an indicator
function that takes value one when the processed document i belongs to class j
and zero otherwise. The output of the Softmax layer is ŷij and it represents the
estimated probability of document i to belong to class j. The indexes n and k
denote the number of documents in the Training set and the number of classes,
which is equal to three (positive, negative and neutral).

Equation 34 shows an example of the Cross-Entropy Loss function computed in
vector form for the individual document i, assuming document i belongs to class
j = 3.

Loss(yi, ŷi) = −

0
0
1

 [ln(ŷi1) ln(ŷi2) ln(ŷi3)
]

= −ln(ŷi3) (34)

In this example, the sparse vector y = [y1, y2, y3] = [0, 0, 1] is multiplied by the log-
arithm of the transpose of the dense vector ŷ, ŷT = [ŷ1, ŷ2, ŷ3]

T . As the three classes
are mutually exclusive, only one element of the vector yi has non-zero value. There-
fore, the result of the equation is simply represented by the last line of Equation
34.

The network selects the weights that minimize the loss function for each indi-
vidual document i and this implies minimizing the negative log likelihood of the
true class j for training observation i, Loss(yi, ŷi) = −ln(ŷij), which can be in-
terpreted as performing Maximum Likelihood Estimation (MLE)16 to estimate the
parameters [35].

2.2.3 LSTM network for text classi�cation

Before presenting the di�erent parameters used to train the network, I present the
algorithm that performs the text classi�cation.

The algorithm I used is Adam [48], which is widely adopted by practitioners and
derives from Stochastic Gradient Descent method. Stochastic Gradient Descent
method is a modi�cation of Gradient Descent presented in Equation 13. Stochas-
tic Gradient Descent (SGD) applies Gradient Descents method to subsets of the
training data, called mini batches, instead of the whole Training set. Oftentimes,
a momentum term is added to Stochastic Gradient Descent, as in Equation 35, in

16Maximum Likelihood Estimation (MLE) is a method used to estimate the parameters of a
model. It does so by maximizing the logarithm of the Likelihood function, which represents the
probability that the available sample data set was produced by the underlying model.
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order to reduce the oscillation of the algorithm. The coe�cient δ represents the
e�ect of the previous step (xn− xn−1) on the current step, where xn represents the
vector of parameters at step n.

xn+1 = xn − γ∇f(xn) + δ(xn − xn−1), n ≥ 0 (35)

Adam (Adaptive Moment Estimation), like SGD, adapts the parameters divid-
ing the Training set into many subsets called mini-batches. A mini-batch corre-
sponds to a �x number of instances in the Training set and parameters are adapted
at each mini-batch. The number of mini-batches needed by the network to analyze
the entire Training set represents an epoch. It uses two main terms, mn and vn, as
shown in Equation 36. The former is useful as a momentum term and it represents
the moving average of the gradient and substitutes the gradient itself in Adam al-
gorithm. The latter includes a moving average of the element-wise squares of the
gradient, where β2 (the default value is β2 = 0.999) is the decay rate of the moving
average. The learning rate γ is divided by the square root of vn, plus an additional
term ε that avoid division by zero. In this way, the learning rate becomes variable
and it adapts to the loss function.

xn+1 = xn −
γmn√
vn + ε

, n ≥ 0

mn = β1mn−1 + (1− β1)∇f(xn)

vn = β2vn−1 + (1− β2)[∇f(xn)]2

(36)

To train the network in Matlab, 192 di�erent combinations of parameters for
both labeling types were used, and the main parameters are presented as follows.

� Time window size;

� percentiles used to de�ne classes;

� embedding dimension;

� number of hidden units of the LSTM blocks;

� gradient threshold;

� number of epochs;

� initial Learn Rate;

� validation patience.
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As already anticipated, I used 10-minute and 20-minute time windows and I
classi�ed articles on the basis on returns and volatility log variations corresponding
to the speci�c time window, or lagged time window. I used both 35th-65th and
45th-55th percentiles.

For the embedding dimension, which represents the length of the d-dimensional
dense vector used by the Embedding layer, three values were used: 10, 50 and
100. For the number of hidden units used by the LSTM blocks, the values were
50 and 100. Gradient threshold is a �xed value that the gradient is not allowed
to overcome. Indeed, using gradient threshold method, every time the Euclidean
norm17 of gradient becomes greater than this threshold, the algorithm clips it and
brings it back to the threshold. This is to avoid gradient to diverge. The values I
used as gradient threshold are 1 and 0.1.

The initial learning rate represents the step size used by the learning algorithm
at each iteration to move towards the minimum of the loss function. First, I tried
di�erent values of initial learning rate, but then I decided to use only 0.0001, as
I noticed that with larger values, the algorithm tends to run quickly and leads to
unsatisfactory results.

After trying with 100, I �xed the number of epochs to 150, but the use of an early
stopping method makes this number variable. Early stopping is a technique that
avoids network over-training. During the learning phase, the network adjusts its
parameters in order to learn relationship in the training data. However, while this
iterative procedure decreases the error in the Training set, it might increase that of
the Validation set if the network excessively tailors the parameters to the speci�c
data set. As shown by Figure 22, in a perfect word, the learning phase should be
stopped when the error function of the Validation set reaches its minimum. After
this point, the network starts learning also the individual biases of the Training
set, and the out of sample performance worsens. The Validation Patience is an
early stopping technique that is useful to stop the algorithm before approaching
the maximum number of epochs. The Validation Patience �x the number of times
the loss function computed on the Validation set can be larger than the previous
smallest loss [48]. This means the loss function on the Validation set must decrease
towards zero and, if it increases too much, the training algorithm stops. After a
few attempts with 10, 15, 20, 30 and 50, I decided to �x this value to 30, that is
not too low, in order to allow the algorithm to run for enough time.

In addition to these variables, I decided to set two additional variables to their
default values. The mini-batch size represents the number of training instances
that are analyzed by the algorithm before updating the parameters, and I set this
value to the default value of 128. The Validation frequency, instead, represents the
number of instances used by the network to validate the training parameters on

17The Euclidean norm is ||x|| :=
√∑n

i=1 x
2
i .
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Figure 22: Early stopping.

Source: Afshine Amidi and Shervine Amidi. Deep Learning Tips and Tricks

cheatsheet. Stanford University.

the Validation set. Its default value is 50. This means the network assesses the
accuracy of the model once every 50 instances.

Table 1 shows the main results obtained by the network. The columns repre-
sent the accuracy of the model, the labeling technique used, the time window, the
percentile used to de�ne positive or negative variations of returns or volatility log
variations, the embedding dimension, the number of units in each LSTM block of
the LSTM layer and the Gradient Threshold.

Accuracy Label Time Window Percentile Lag Embedding Dim. N. units GT

0.51619 Returns 20 min 45th-55th no 100 100 0.10
0.50095 Returns 20 min 45th-55th no 100 100 0.10
0.5054 ∆ % Vix 20 min 45th-55th no 100 100 0.10
0.52268 ∆ % Vix 20 min 45th-55th no 100 100 0.10
0.55411 ∆ % Vix 10 min 45th-55th no 100 100 0.10
0.51515 ∆ % Vix 10 min 45th-55th no 100 100 0.10
0.55399 ∆ % Vix 10 min 45th-55th yes 100 100 0.10
0.5681 ∆ % Vix 10 min 45th-55th yes 100 100 1

Table 1: Results of LSTM network applied on articles labeled with S&P 500 Index log

returns and VIX Index log variations.

Source: Matlab

The table shows the best results obtained by this study, which were mainly
achieved with VIX labeling. In all these cases, accuracy is higher than the random
guess, 50%. For returns-based labeling, however, achieving this accuracy level was
more di�cult.

It is interesting to note that for VIX labeling, the highest accuracy values were
achieved with 10-minute time windows, proving that more e�cient markets, like
the American one, discount information quickly. For the same reason, when using
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lagged observations, good accuracy was achieved only with 10-minute time windows.
This partially con�rms the empirical �ndings about the time window size pre-

sented by Gidofalvi and Elkan [23], which proved that 20-minute time windows are
optimal to capture market reactions to new information, and higher time windows
tend to make results worse.

In all the attempts, 45th and 55th percentiles led to good accuracy results, while
using 35th and 65th percentiles was not successful. In addition, the best results in
terms of accuracy were produced using 100-dimensional embedding vectors and 100
hidden units in the LSTM blocks. These results show that using higher embedding
dimension is bene�cial in terms of accuracy, as it can better capture semantic
relationships among words. Similarly, a high number of hidden units allows the
LSTM nodes to learn more complex representations of the training data.

Figure 23: Accuracy and Loss function of the Training Process of the LSTM network.

Source: Matlab

Figure 23 shows the training process of the network that produced an accuracy
of 0.52268 on the Testing set. Accuracy is de�ned as the number of labels predicted
correctly, over the total number of predicted labels. The blue line represents the
accuracy of the model on the Training set, given the parameters �xed during each
iteration. The dashed black line in the upper graph, instead, indicates the accuracy
on the Validation set, computed at each mini-batch. The orange line represents the
loss function, updated at every iteration, while the dashed black line indicates
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the loss function computed on the Validation set, at each mini-batch. In this
case a Validation Patience was �xed to 30 and the algorithm stopped after 100
epochs, instead of reaching 150. The dashed line on the upper graph shows the
�nal accuracy achieved on the Validation set, which is slightly lower than 50%.
The accuracy on the Testing set was computed using the �nal parameters obtained
by the model. The blue line increases an converges towards high levels and the loss
function has opposite behavior. However, validation is not able to increase above
50%, meaning the process is not able to learn too much information. Using an early
stopping technique avoided over�tting, which would have worsened the results on
the Validation and Testing sets.

2.2.4 Dictionary-based approach to text classi�cation

In addition to automatic labeling that uses returns and changes in the volatility
of the S&P 500 Index, I decided to adopt another approach. Indeed, I tried to
label each article following a dictionary-based approach. I decided to use three well
known dictionaries, already presented in Chapter 2.

� Psychological Harvard IV-4 General Inquirer dictionary (GI);

� Loughran and McDonald's dictionary (LM);

� Henry's Dictionary (HE).

These three dictionaries provide a classi�cation of positive and negative words,
which can be used to assess if a document is positive or negative using a simple
formula. Each article was labeled on the basis of how many positive and negative
words it contains, and I repeated the process for each of the three dictionaries.

Equation 37 shows the formula used to de�ne each label. A "positive" class was
attributed to article i if the di�erence between the number of positive and negative
words it contains is greater than zero. If this di�erence is negative the assigned
class is "negative". If, instead, this formula returns zero, then the class of article i
is "neutral".

Classi = p_wordsi − n_wordsi (37)

Table 2 shows some of the positive and negative words included in the three Dic-
tionaries.

After labeling all articles according to the three dictionaries, I used the same
LSTM network presented in the previous paragraph and I trained the model to
recognize these words and predict the class of each article. I divided the data set
into Training, Validation and Testing sets and I used the parameters listed in Table
3, which shows the result of the training process for the three dictionary-based
labeling techniques. The columns represent the accuracy of the model, the type of
dictionary used for labeling, the embedding dimension, the number of units in each
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LSTM block, the Gradient Threshold, the number of epochs, the initial learning
rate and the validation patience used as early stopping technique.

Henry's Dictionary Harvard IV-4 General Inquirer Dictionary Loughran and McDonald's Dictionary
POSITIVE NEGATIVE POSITIVE NEGATIVE POSITIVE NEGATIVE

above below abide abandon able abandon
accomplish challenge ability abandonment abundance abandoned
accomplished challenged able abate abundant abandoning
accomplishes challenges abound abdicate acclaimed abandonment
accomplishing challenging absolve abhor accomplish abandonments
accomplishment decline absorbent abject accomplished abandons

Table 2: Main words contained in Henry's, Loughran and McDonald's, and Harvard IV-4

Dictionaries.

Source: CRAN. Package `SentimentAnalysis'

Accuracy Label Emb. Dim. N. units GT N. epochs Learn Rate Val. Patience

0.94476 LM Dictionary 100 200 0.1 100 0.001 5
0.84571 GI Dictionary 100 200 0.1 100 0.001 10
0.6190 HE Dictionary 100 200 0.1 100 0.001 10

Table 3: Results of LSTM network applied on articles labeled with Dictionary-based

techniques.

Source: Matlab

The best result was obtained for Loughran and McDonald's �nance-speci�c Dic-
tionary and Figure 24 explains why this result is not surprising. Indeed, Loughran
and McDonald's Dictionary is the one that contains the higher relative number of
negative words. Positive words lead to poor performances, as Loughran and Mc-
Donald [41] note, and the reason is that they are often followed or preceded by
negations, which change the meaning of the word, biasing the results.

Figure 25 shows the training process run on the articles labeled with Loughran
and McDonald's Dictionary. As explained in the previous paragraph, the graph
on the top represents the accuracy of the model along the mini-batches. The blue
line computes the accuracy on the Training set, while the dashed black line the
accuracy on the Validation set. The graph on the bottom, instead, represents the
loss function computed at each mini-batch. The accuracy of the Training set rapidly
approached high values and the loss function, shown in orange, goes in the opposite
direction, decreasing sharply and converging towards zero. Both graphs clearly
show that the training process stopped before reaching the maximum number of
epochs, as a result of the early stopping technique that was adopted. The dashed
line on the top follows the blue line quite well, the one on the bottom decreases
together with the orange line, and then increases a bit, activating early stopping.

The network was able to learn LM Dictionary classi�cation with high accuracy.
When it comes to GI and HE Dictionaries, accuracy decreases to 0.84571 and
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(a) HE Dictionary.

(b) GI Dictionary.

(c) LM Dictionary.

Figure 24: Histogram representation of article classes based on HE, GI and LM dictio-

naries.

Source: Matlab.

0.6190, both of them better than the random guess 0.50. At the end of the process
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the network reached an accuracy on the out of sample Testing set of about 94%,
which is the percentage of articles labeled correctly.

Figure 25: Accuracy and Loss function of the Training Process applied on articles labeled

with LM Dictionary.

Source: Matlab
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3 Investor Sentiment contribution to

stock index returns and volatility

variations

3.1 Introduction to the problem

Previous chapters mentioned the importance of alternative sources of information,
such as social media contents and news articles, in many �elds and some papers
have proved they can be bene�cial to investment decisions.

The previous chapter already proved in same sense the existence of a relationship
between VIX log variations and text-based investor sentiment, even though VIX
Index considers implied volatility registered on the options market and not on the
stock market. Some kind of relationship was shown also with respect to stock
index log returns, as it was possible to classify news articles with fair accuracy. In
both cases accuracy was higher than the random guess, but results were far from
100%. Chapter 2 focuses on classifying news articles and de�ning what can be seen
as proxies for investor sentiment. However, it is interesting to assess the actual
explanatory power of these sentiment indicators.

In this chapter, I investigate whether the sentiment variables presented so far can
explain stock index returns or volatility. While returns can be easily computed from
stock prices, volatility is not directly measurable, exactly like market sentiment.
Therefore, univariate volatility needs to be estimated.

For this aim I used S&P 500 Index close prices to compute log returns, and
I estimated volatility with a type of Generalized Autoregressive Conditional Het-
eroskedasticity model. I followed the same approach of Rupande et al. [61], who
investigate the explanatory power of their market-based investor sentiment proxy
introducing it into the mean and variance equation of a GARCH model applied on
the South African stock index. Unlike Rupande et al., I did not use any market-
based proxy of investor sentiment for this analysis and I dealt with a much more
e�cient market than the South African one.

In the next paragraphs, I brie�y introduce GARCH models and then I present
the main �ndings of my work.
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3.1.1 A brief introduction to GARCH models

Generalized Autoregressive Conditional Heteroskedasticity models are among the
techniques used to estimate volatility. One of the biggest challenges in volatility
modeling is the presence of volatility clusters, which suggests that recent observa-
tions should be given a higher weight [13]. The �rst models address this issue by
considering simple or exponential moving averages of past squared returns over an
estimation window.

Engle [16] in 1982 introduced the �rst GARCH type model, the Autoregressive
Conditional Heteroskedasticity model, ARCH(p), described by Equation 38.

σ2
t = ω +

p∑
i=1

αiY
2
t−i (38)

Conditional variance is represented by a constant, ω, plus a weighted sum of past
squared returns Y 2

t−i, with p indicating the number of lags considered by the ARCH
model [13]. Returns Yt are expressed as Yt = σtZt, where σt is the conditional
volatility and Zt is a white noise standardized random variable with zero mean and
unit variance, often assumed to be Normally or Student-t distributed.

ARCH models have zero conditional and unconditional mean and they have con-
stant unconditional variance and time varying conditional variance. For ARCH(1)
model, which is the simplest ARCH model, for instance, unconditional variance is
de�ned as in Equation 39:

σ2 =
ω

1− α
(39)

In ARCH models [15], Yt is serially autocorrelated, but not independent, which
means Y 2

t is autocorrelated. ARCH models are particularly suitable for modeling
conditional variance of stock returns, whose distribution is often known to be fat
tailed. Indeed, even when Zt is assumed to be normally distributed, conditional
returns are normal, but unconditional distribution of returns is fat tailed.

The main drawback of this model is its complexity. Indeed, it is often the case
that many lags are necessary to appropriately model volatility. Besides the fact that
a high number of lags makes estimation particularly hard, it also requires a longer
sample time series for modeling purposes. The solution to this issue comes from
the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models
developed by Bollerslev in 1986 [10], which generalize the ARCH model introduced
by Engle.

GARCH models [13] include one or more lagged volatility terms in the equation
for conditional volatility, as in Equation 40:

σ2
t = ω +

p∑
i=1

αiY
2
t−i +

q∑
j=1

βjσ
2
t−j (40)
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The �rst part of the equation is exactly like Equation 38, while the second
part represents the weighted sum of past variances. The parameter p indicates the
number of lags related to past squared returns, q the number of lags related to past
variances, and the coe�cients βj represent the decaying e�ect of past variances on
current conditional variance.

GARCH(p,q) models share the same properties of ARCH models, but they are
much easier to estimate. The simplest example of GARCH model is GARCH(1,1),
which can capture the long-term dependencies of high-order ARCH processes. The
unconditional variance of a GARCH(1,1) is described by Equation 41.

σ2 =
ω

1− α− β
(41)

To ensure variance to be positive and to assume second order stationarity18,
ARCH and GARCH models are subject to some constraints.

The �rst and more important constraint regards non-negativity of the condi-
tional volatility and implies that all parameters in Equation 40, ω, αi and βj, must
be strictly positive. Equation 42 represents these constraints for all i > 0 and j > 0.

ω, αi, βj > 0 (42)

In addition, to ensure second order stationarity, the sum of αi and βj coe�cients
must be lower than 1.

In a GARCH(1,1) process, this constraint is represented by Equation 43:

α + β < 1 (43)

If α+β = 1, unconditional variance expressed by Equation 41 explodes towards
in�nite, while if α + β > 1, it is not de�ned.

Generalized Autoregressive Conditional Heteroskedasticity models represent an
important innovation in volatility modeling and some academicians have developed
alternative models that are based on GARCH.

Nelson in 1991 [54] introduced the Exponential GARCH model, which takes into
consideration the asymmetric e�ect of returns on volatility. Stock returns are often
negatively correlated with volatility, because price drops deteriorate the market
price of equity and, thus, increase leverage, making the company riskier [15]. In
addition, risk aversion makes investors more sensitive to losses than gains [9] and
creates panic selling when market prices decrease.

18A stochastic process is Second Order Stationary if it has constant mean, constant variance and
its autocovariance and autocorrelation functions, which de�ne the covariance between the same
random variable at di�erent time instants, depend only on the distance between time instants.
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Exponential GARCH [13] [22], or E-GARCH, de�nes the logarithm of the con-
ditional volatility as in Equation 44:

log(σ2
t ) = ω +

p∑
j=1

[αj(Zt−j) + δj(|Zt−j| − E(|Zt−j|))] +

q∑
j=1

βjlog(σ2
t−j) (44)

The parameters δj and αj represent the leverage e�ect. The former captures the
size or magnitude e�ect, while the latter the sign e�ect. This model uses past
errors Zt−j, instead of past squared returns, and past log variances σt−j instead of
variances.

One of the advantages of this model is that it does not require any non-negativity
condition, because conditional volatility, expressed in exponential form, is always
positive. It still requires some conditions to be second order stationary. For E-
GARCH(1,1) model, to ensure unconditional variance does not explode towards
in�nite, the parameter β1 must be lower than one in absolute value. Therefore,
the necessary and su�cient condition to ensure second order stationarity in the
E-GARCH(1,1) is |β1| < 1 [54] [26].

3.2 GARCH models and sentiment variables: empir-

ical evidence

In this section I present the main empirical �ndings of the analysis of the sentiment
variables obtained through supervised Machine Learning techniques.

To assess the explanatory power of these sentiment variables on stock market
returns, I used S&P 500 Index intraday log returns computed from May 14 to
November 7, 2019, using both 10-minute and 20-minute time intervals. Figure 26
shows these two time series with respectively 4983 and 2619 observations.

First, I modeled the conditional volatility of stock index returns using a GARCH
type model and then I introduced the sentiment variables into the mean and vari-
ance equations of the GARCH, looking for improvements in model �tting. All
variables underwent unit root tests in order to assess their stationarity. S&P 500
Index 10-minute returns were modeled using an ARCH(1) model with the addition
of Autoregressive model of order 1, AR(1). The conditional distribution that was
used is a Skew Student's t-distribution, because of the presence of left skewness and
fat tails in log returns distribution. Fitting this model leads to uncorrelated resid-
uals and squared residuals, as shown by the estimated Autocorrelation functions in
Figure 27. Ljung-Box and McLeod Li tests con�rm this result, not rejecting the null
hypothesis of no serial correlation for all lags. Table 4 presents the model, where
all coe�cients are signi�cantly di�erent from zero, except for the intercept, and
standard errors are the robust ones based on the method of White [22]. Skewness
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Figure 26: Plot of S&P 500 Index log returns with 10-minute and 20-minute time intervals

from May 14 to November 7, 2019.

Source: R.

(a) Estimated ACF of residuals. (b) Estimated ACF of squared residuals.

Figure 27: Estimated Autocorrelation function of residuals and squared residuals of

ARCH(1) and AR(1) models applied on S&P 500 10-minute log returns.

Source: R, Rugarch package.

is positive as expected and shape parameter is quite low, signaling the presence of
fat tails.

When dealing with 20-minute returns, instead, an E-GARCH(1,1) model was
adopted, again with the assumption of Skew Student-t conditional distribution.
Figure 28 shows the estimated Autocorrelation function of residuals and squared
residuals of this model, where uncorrelation holds for all reasonable lags. This is
also con�rmed by Ljung-Box and McLeod Li tests. Table 5 presents the estimates
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Estimate Std. Error t-value p-value

mu 3.966450e-06 1.505715e-05 0.2634262 7.922221e-01
ar1 1.370350e-01 1.715969e-02 7.9858656 1.332268e-15 ***
omega 1.703900e-06 1.124324e-07 15.1548802 0.000000e+00 ***
alpha1 9.983071e-01 1.404554e-01 7.1076471 1.180389e-12 ***
skew 9.531758e-01 1.646085e-02 57.9056120 0.000000e+00 ***
shape 2.236005e+00 1.276375e-02 175.1840535 0.000000e+00 ***

Table 4: ARCH(1) and AR(1) models �tted on S&P 500 Index intraday log returns with

10-minute time intervals.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence level.

Source: R, Rugarch package.

of the parameters of this model and uses Heteroskedasticity-robust standard errors.
Again, skew and shape parameters behave as expected.

(a) Estimated ACF of residuals. (b) Estimated ACF of squared residuals.

Figure 28: Estimated Autocorrelation function of residuals and squared residuals of E-

GARCH(1,1) model applied on S&P 500 20-minute log returns.

Source: R, Rugarch package.

3.2.1 Explanatory power of automatic labeling-based senti-

ment variables

After having speci�ed a suitable model to �t the S&P 500 Index log returns, I
introduced the sentiment variables presented in previous chapters into the mean
and variance equations of these models, depending on their speci�c time window
(10 or 20 minutes). All the sentiment variables are summarized in Table 6, which
recalls the results of the learning processes presented in Table 1. The columns refer
to the sentiment variable name, the accuracy of the model computed on the Testing
set, the label type, the time window and the presence of lags. Figure 29 shows time
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Estimate Std. Error t-value p-value

mu 7.442975e-06 2.171365e-05 0.3427787 7.317650e-01
omega -3.774281e-01 9.315179e-03 -40.5175371 0.000000e+00 ***
alpha1 -6.092010e-02 1.456591e-02 -4.1823746 2.884801e-05 ***
beta1 9.720799e-01 6.486486e-04 1498.6231387 0.000000e+00 ***
gamma1 2.081576e-01 6.261149e-03 33.2459123 0.000000e+00 ***
skew 9.848583e-01 2.712338e-02 36.3103061 0.000000e+00 ***
shape 4.064593e+00 3.239540e-01 12.5468191 0.000000e+00 ***

Table 5: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence level.

Source: R, Rugarch package.

Variable name Accuracy on Testing set Label Time Window Lag

S1 0.51619 Returns 20 min no
S2 0.50095 Returns 20 min no
S3 0.5054 ∆ % Vix 20 min no
S4 0.52268 ∆ % Vix 20 min no
S5 0.55411 ∆ % Vix 10 min no
S6 0.51515 ∆ % Vix 10 min no
S7 0.55399 ∆ % Vix 10 min yes
S8 0.5681 ∆ % Vix 10 min yes

Table 6: Sentiment variables to introduce into mean and variance equations of GARCH

type models.

Source: Matlab.

series of sentiment variables computed over 20-minute time intervals, while Figure
30 shows those computed over 10-minute time windows.

It is worth mentioning that there is a small di�erence between 20-minute time
intervals used for computing S&P 500 log returns and those used for VIX log varia-
tions. The format of returns-based 20-minute time windows represents observation
as hh:00, hh:20 and hh:40, where hh is the hour in a 24-hours time system and
00, 20, and 40 are minutes. The format of VIX-based 20-minute time intervals,
instead, given prices available on Bloomberg Terminal, represents observation as
hh:15, hh:35 and hh:55. Therefore, when performing regression between S&P log
returns and news sentiment based on VIX log variations, it is important to remem-
ber that sentiment is slightly lagged by 5 minutes. The same problem holds true
when considering 10-minute time intervals.
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Figure 29: Log returns and Sentiment variables computed over 20-minute time intervals.

Source: R.

Figure 30: Log returns and Sentiment variables computed over 10-minute time intervals.

Source: R.

In previous chapters I explain that the whole data set was divided into Training,
Validation and Testing set before running the learning algorithm. These sets were
built through random sampling and, thus, they do not contain only consecutive
observations, but they can be represented as a sparse time series with many zero
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values and some observations (about 15% of the total number of news articles).
To make this concept clearer, Figure 31 shows the sparse time series of Sentiment
values computed for news articles belonging to the Testing set, thus not related to
the learning process. The plot on the top shows the time series of the sentiment
variable S1, computed by applying the learned model to the articles included in the
whole data set. The plot on the bottom, instead, represents the sparse time series of
sentiment S1 computed over articles that belong to the Testing set only. The former
is itself a sparse time series, but it is less sparse. Articles were classi�ed on the basis

Figure 31: Sentiment variable S1 computed using the whole data set and the Testing set,
respectively.

Source: R.

of the parameters obtained through the learning process and they were assigned
value 1 if they are positive, −1 if negative, 0 if neutral. However, as some time
intervals include more than one article, the values assigned to articles belonging to
the same time window are algebraically summed up. For this reason, the value of
some of the observations in the sentiment time series presented in Figure 31 is not
included in the interval [−1,+1].

As sparser time series may show less empirical signi�cance, I used sentiment
values computed on the whole data set. However, I analyzed also the Testing set
and, in some cases, sentiment variables are still signi�cant. The sentiment variable
S1, obtained classifying articles using the model that associates them with S&P 500
Index 20-minute log returns, was introduced into the mean and variance equations
of the E-GARCH(1,1) model. Table 7 shows the results for the sentiment variable
S1 representing the classi�cation of the entire data set of articles and it con�rms
its explanatory power in both equations, where mxreg1 indicates the sentiment
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variable in the mean equation and vxreg1 in the variance equation. Signi�cance is
at the 99% for mxreg1 and 95% for vxreg1, and both coe�cients have the expected
sign. Indeed, sentiment S1 was built on the basis of log returns and positive sen-
timent should be associated with positive variations in the S&P 500 Index. With
regard to the variance equation, instead, vxreg1 represents the negative relation
between sentiment and volatility. Positive sentiment (associated with positive log
returns) is linked to decreasing volatility, because of the asymmetric e�ect of stock
returns on volatility. As investors are risk averse and give more weight to losses
than gains [9], downtrends can push investors to sell and this creates larger price
movements which are re�ected in higher volatility. This is particularly true in case
of panic selling. When using the sparser time series, the one that considers only

Estimate Std. Error t-value p-value

mu -2.980005e-05 1.877663e-05 -1.587082 0.1124941629
mxreg1 2.546154e-04 1.141802e-05 22.299446 0.0000000000 ***
omega -1.198721e-01 3.059420e-03 -39.181316 0.0000000000 ***
alpha1 -4.670968e-02 1.272715e-02 -3.670082 0.0002424724 ***
beta1 9.908866e-01 1.067440e-04 9282.830110 0.0000000000 ***
gamma1 1.167086e-01 9.070969e-03 12.866162 0.0000000000 ***
vxreg1 -2.093745e-02 9.274082e-03 -2.257630 0.0239687224 **
skew 1.000324e+00 2.198744e-02 45.495255 0.0000000000 ***
shape 3.127035e+00 2.109837e-01 14.821216 0.0000000000 ***

Table 7: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with Sentiment S1 as exogenous variable in the mean and

variance equations.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence level.

Source: R, Rugarch package.

article in the Testing set, the coe�cient of the sentiment variable in the mean equa-
tion is still signi�cantly di�erent from zero, even though this does not hold for the
variance equation.

The same model applies for the sentiment variable S2, which was obtained
using the same time window, but produced a slightly lower accuracy. Here too,
the estimate of the coe�cient in the mean equation is signi�cantly di�erent from
zero (Table 8), but the one in the variance equation is not signi�cant when it is
introduced. Again, when using the sparse representation of S2, the one based on
the Testing set only, sentiment is still signi�cant in the mean equation.

The same procedure was followed for variables S3 and S4, which use 20-minute
time intervals, too, but they are based on VIX log variations instead of Index log
returns. As observations for VIX Index are available only from June 5 to November
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Estimate Std. Error t-value p-value

mu 8.670035e-06 1.628008e-05 0.5325547 5.943419e-01
mxreg1 2.548016e-04 1.231658e-05 20.6876954 0.000000e+00 ***
omega -9.030236e-02 2.633125e-03 -34.2947542 0.000000e+00 ***
alpha1 -4.996589e-02 1.164639e-02 -4.2902481 1.784736e-05 ***
beta1 9.933408e-01 1.252367e-04 7931.7094487 0.000000e+00 ***
gamma1 1.027694e-01 9.074579e-03 11.3249779 0.000000e+00 ***
skew 9.652446e-01 1.970511e-02 48.9844924 0.000000e+00 ***
shape 3.145021e+00 2.255473e-01 13.9439552 0.000000e+00 ***

Table 8: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with Sentiment S2 as exogenous variable in the mean

equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence level.

Source: R, Rugarch package.

7, 2019, I reduced the number of observations of the S&P 500 Index log returns to
match them with this new time window. The model applied on this new subset of
data is still E-GARCH(1,1), so nothing changes. Table 9 and Table 10 show the
most relevant results. While the coe�cient of S3 is signi�cantly di�erent from zero
when introduced in the mean equation mxreg1 of E-GARCH(1,1) model, the one
of S4 is signi�cantly di�erent from zero in the variance equation vxreg1. Coe�cient
have again their expected sign, with volatility negatively in�uenced by sentiment S4.
In this case sentiment was built on the basis of VIX Index and positive variation of
the index were associated with negative sentiment, because of the asymmetric e�ect
of volatility. Therefore, vxreg1 re�ects the predictable positive relation between
volatility computed on S&P 500 Index log returns and VIX Index itself.

When considering 10-minute time intervals, no statistical signi�cance was found
with respect to the variance equation, but interesting results were achieved for the
mean equation. Log returns over 10-minute time intervals were modeled using
an ARCH(1) model with the addition of an autoregressive component of order 1,
AR(1), as shown before. Even when reducing the length of the time series of the
S&P 500 Index log returns to adapt it to VIX-based sentiment (from June 5 to
November 7, 2019), the model remains the same. Sentiment variables S5 and S6

were introduced into the mean equation of the ARCH(1) model and in both cases,
coe�cients are signi�cant, even with the addition of the AR(1) model. In the case
of S6, however, the coe�cient for α is equal to 1, violating the constraint for second
order stationarity. When imposing the constraint, the coe�cient for S6 remains
signi�cant. Results are shown in Table 11 and Table 12.

The last two sentiment variables, S7 and S8, are the result of the learning
process based on automatic labeling technique, where articles belonging to a given
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Estimate Std. Error t-value p-value

mu 8.362319e-06 0.000023135 0.3614575 0.7177574879
mxreg1 2.871462e-04 0.000116819 2.4580437 0.0139696185 **
omega -4.988590e-01 0.023114450 -21.5821281 0.0000000000 ***
alpha1 -5.794299e-02 0.016738266 -3.4617082 0.0005367588 ***
beta1 9.632287e-01 0.001685761 571.3910110 0.0000000000 ***
gamma1 2.421911e-01 0.009252674 26.1752523 0.0000000000 ***
skew 9.766263e-01 0.029313134 33.3170201 0.0000000000 ***
shape 3.912570e+00 0.329895116 11.8600414 0.0000000000 ***

Table 9: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with Sentiment S3 as exogenous variable in the mean

equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu 7.806203e-06 2.269457e-05 0.3439679 0.7308704262
omega -4.038238e-01 1.219396e-02 -33.1167124 0.0000000000 ***
alpha1 -6.019315e-02 1.563671e-02 -3.8494765 0.0001183705 ***
beta1 9.702983e-01 8.401103e-04 1154.9653134 0.0000000000 ***
gamma1 2.111217e-01 7.193224e-03 29.3500840 0.0000000000 ***
vxreg1 -8.167910e-02 4.014461e-02 -2.0346219 0.0418889311 **
skew 9.754886e-01 2.898713e-02 33.6524664 0.0000000000 ***
shape 3.936890e+00 3.309971e-01 11.8940325 0.0000000000 ***

Table 10: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with Sentiment S4 as exogenous variable in the variance

equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

time interval were classi�ed as positive if the subsequent time interval registered a
negative VIX Index log variation. Therefore, they were introduced in the model as
lagged variables. Table 13 and Table 14 show the result, where mxreg1 represents
the positive e�ect of past sentiment on current Index log returns.

S7 is statistically signi�cant at the 99% level, while S8 at the 95% level. The
signi�cance of S8 is even more relevant considering that it contains only articles
that belongs to the Testing set. In addition, the fact that this sentiment variable
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explains subsequent log returns in the S&P Index makes it particularly interesting
for prediction purposes. The case of S8 is similar to that of S6, with the coe�cient
for α that is equal to 1 and violates the constraint for second order stationarity.
Here too, when imposing the constraint, the coe�cient for S8 remains signi�cant.

Estimate Std. Error t-value p-value

mu 7.042988e-06 1.530042e-05 0.4603134 6.452913e-01
ar1 1.273821e-01 1.964287e-02 6.4849006 8.879031e-11 ***
mxreg1 4.592985e-05 2.058660e-05 2.2310553 2.567746e-02 **
omega 1.553271e-06 1.079462e-07 14.3893094 0.000000e+00 ***
alpha1 9.989864e-01 1.494660e-01 6.6837044 2.329759e-11 ***
skew 9.482215e-01 1.761249e-02 53.8380207 0.000000e+00 ***
shape 2.240371e+00 1.650998e-02 135.6979724 0.000000e+00 ***

Table 11: ARCH(1) and AR(1) models �tted on S&P 500 Index intraday log returns with

10-minute time intervals with Sentiment S5 as exogenous variable in the mean

equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu 7.939078e-06 1.532829e-05 0.5179363 6.045027e-01
ar1 1.260838e-01 1.735062e-02 7.2668175 3.681500e-13 ***
mxreg1 5.325421e-05 2.082264e-05 2.5575151 1.054230e-02 **
omega 1.614932e-06 8.998988e-08 17.9457102 0.000000e+00 ***
alpha1 1.000000e+00 1.402630e-01 7.1294640 1.007638e-12 ***
skew 9.497868e-01 1.766126e-02 53.7779674 0.000000e+00 ***
shape 2.231162e+00 1.661229e-02 134.3079258 0.000000e+00 ***

Table 12: ARCH(1) and AR(1) models �tted on S&P 500 Index intraday log returns with

10-minute time intervals with Sentiment S6 as exogenous variable in the mean

equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.
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Estimate Std. Error t-value p-value

mu 7.733672e-06 1.588303e-05 0.486914 6.263192e-01
ar1 1.270495e-01 1.865763e-02 6.809518 9.792611e-12 ***
mxreg1 5.232186e-05 2.246800e-05 2.328728 1.987346e-02 **
omega 1.571057e-06 1.414926e-07 11.103455 0.000000e+00 ***
alpha1 9.989993e-01 1.814273e-01 5.506335 3.663812e-08 ***
skew 9.486055e-01 1.776720e-02 53.390831 0.000000e+00 ***
shape 2.237188e+00 1.391400e-02 160.786907 0.000000e+00 ***

Table 13: ARCH(1) and AR(1) models �tted on S&P 500 Index intraday log returns

with 10-minute time intervals with lagged Sentiment S7 as exogenous variable
in the mean equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu 7.616759e-06 1.473716e-05 0.5168402 6.052677e-01
ar1 1.290559e-01 1.943411e-02 6.6406928 3.122125e-11 ***
mxreg1 1.578665e-04 6.061979e-05 2.6042077 9.208695e-03 ***
omega 1.595593e-06 1.273945e-07 12.5248142 0.000000e+00 ***
alpha1 1.000000e+00 1.621201e-01 6.1682662 6.904286e-10 ***
skew 9.488065e-01 1.727392e-02 54.9271032 0.000000e+00 ***
shape 2.234101e+00 1.308588e-02 170.7260739 0.000000e+00 ***

Table 14: ARCH(1) and AR(1) models �tted on S&P 500 Index intraday log returns

with 10-minute time intervals with lagged Sentiment S8 as exogenous variable
in the mean equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

3.2.2 Explanatory power of dictionary-based sentiment vari-

ables

After proving that the sentiment variables obtained through the classi�cation that
associates news with S&P 500 Index log returns and VIX log variations contribute
to the explanatory power of GARCH models, it is interesting to assess also the
impact of dictionary-based sentiment variables. Therefore, in this paragraph I
present the analysis of the three sentiment variables based on positive and negative

66



3 Investor Sentiment contribution to stock index returns and volatility variations

words of Harvard IV-4 (GI), Loughran and McDonald's (LM) and Henry's (HE)
dictionaries. For each dictionary, I used the model with the parameters learned
during the training phase to classify the news contained in the whole data set. The
LSTM network proved to perform this classi�cation task with high accuracy and
provided a time series of observations (with value −1, 0 or +1) that represent the
class of each articles.

To assess the relationship between these sentiment variables and S&P 500 In-
dex, articles with their corresponding class value were divided into 20-minute time
intervals, depending on the time they had been published. When more than one
article belonged to the same time interval, their value was algebraically summed
up to one single value. The resulting time series represents the dictionary-based
sentiment variable used for the analysis of the relationship with 20-minute log re-
turns from May 14 to November 7, 2019. Depending on the dictionary used, the
three sentiment variables are represented by Figure 32.

Figure 32: S&P 500 Index 20-minute log returns and dictionary-based sentiment vari-

ables.

Source: R.

The S&P 500 Index was modeled with an E-GARCH(1,1) as in Table 5 and the
dictionary-based sentiment variables were introduced into its mean and variance
equations.

Table 15 and Table 16 show the results for Loughran and McDonald's (LM)
Dictionary-based sentiment in the mean (mxreg1) and variance (vxreg1) equations
respectively.

In both cases, the coe�cient is signi�cantly di�erent from zero at the 90%
con�dence level, but their sign is di�erent from the expectation. Previous results
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Estimate Std. Error t-value p-value

mu -1.525793e-05 2.285015e-05 -0.6677388 5.043003e-01
mxreg1 -1.987881e-05 1.191402e-05 -1.6685224 9.521206e-02 *
omega -3.754431e-01 9.404097e-03 -39.9233589 0.000000e+00 ***
alpha1 -6.031359e-02 1.458086e-02 -4.1364903 3.526582e-05 ***
beta1 9.722401e-01 6.592614e-04 1474.7414777 0.000000e+00 ***
gamma1 2.073228e-01 6.171541e-03 33.5933591 0.000000e+00 ***
skew 9.890137e-01 2.702973e-02 36.5898519 0.000000e+00 ***
shape 4.074326e+00 3.258646e-01 12.5031261 0.000000e+00 ***

Table 15: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with Sentiment obtained through LM Dictionary as ex-

ogenous variable in the mean equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu 9.562106e-06 2.194618e-05 0.4357071 0.6630492760
omega -4.907180e-01 2.712740e-02 -18.0893878 0.0000000000 ***
alpha1 -6.369098e-02 1.661897e-02 -3.8324257 0.0001268859 ***
beta1 9.624042e-01 1.797018e-03 535.5561654 0.0000000000 ***
gamma1 2.475420e-01 1.035877e-02 23.8968588 0.0000000000 ***
vxreg1 1.360451e-02 8.014069e-03 1.6975789 0.0895872682 *
skew 9.868604e-01 2.750760e-02 35.8759201 0.0000000000 ***
shape 4.042029e+00 3.169450e-01 12.7530936 0.0000000000 ***

Table 16: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with Sentiment obtained through LM Dictionary as ex-

ogenous variable in the variance equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

indicate a negative relationship between sentiment and volatility, explained by the
fact that high sentiment is bene�cial for positive market returns, which create low
volatility conditions because of the asymmetric behavior of volatility. In this case,
mxreg1 has negative sign and a possible explanation might be that, out of 2618
time intervals, only 14 contains positive articles (value 1) according to this model,
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and 939 intervals have value zero. Time intervals can have value zero if they con-
tain neutral articles, if the number of positive and negative articles contained in
those time windows is the same, or if they do not contain any articles. All other
time intervals are associated with negative sentiment, as shown by the histogram in
Figure 33 Part (a). As most of the articles are associated with negative sentiment,
this sentiment variable might erroneously capture the number of articles published
within time intervals, instead of the optimism or pessimism expressed by the text.
When this sentiment variable is highly negative, it means a lot of articles are pub-
lished during the corresponding time interval. Therefore, the negative relationship
between sentiment and log returns might imply that the presence of numerous arti-
cles leads or follows market price increases in the same time window, which in turn
decrease volatility, because of its asymmetric behavior.

When considering sentiment generated by Harvard IV General Inquirer Dic-
tionary, the estimate of the coe�cient in the E-GARCH(1,1) speci�cation of log
returns, mxreg1, is signi�cantly di�erent from zero at the 90% con�dence level.
However, the sign of the relationship, shown in Table 17, is exactly like the one
provided by Loughran and McDonald's Dictionary-based sentiment and might be
explained by the same reasons.

Estimate Std. Error t-value p-value

mu -1.425324e-05 2.499963e-05 -0.5701382 0.5685839697
mxreg1 -2.459831e-05 1.320323e-05 -1.8630520 0.0624549495 *
omega -3.579121e-01 8.570550e-03 -41.7606948 0.0000000000 ***
alpha1 -6.102813e-02 1.441544e-02 -4.2335256 0.0000230056 ***
beta1 9.735393e-01 5.919666e-04 1644.5848129 0.0000000000 ***
gamma1 2.014105e-01 6.089790e-03 33.0734714 0.0000000000 ***
skew 9.878571e-01 2.640676e-02 37.4092569 0.0000000000 ***
shape 4.082704e+00 3.277803e-01 12.4556116 0.0000000000 ***

Table 17: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with Sentiment obtained through GI Dictionary as ex-

ogenous variable in the mean equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Results produced by sentiment based on Henry's Dictionary, instead, are much
more intuitive and interesting. This sentiment variable was introduced in the vari-
ance equation of the E-GARCH(1,1) model applied on S&P 500 Index log returns
and Table 18 shows that the corresponding coe�cient vxreg1 is signi�cantly di�er-
ent from zero at the 99% con�dence level. In addition, the sign of the relationship is
the expected one, implying a negative relationship between sentiment variable and
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(a) Loughran and McDonald's Dictionary.

(b) Harvard IV-4 General Inquirer Dictionary

(c) Henry's Dictionary

Figure 33: Histogram of class distribution of dictionary-based sentiment variables.

Source: R.
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volatility. Indeed, negative sentiment represented by pessimistic news articles leads
or follows increases in volatility within the same 20-minute time interval. It is not
clear whether news articles published within a time interval causes price changes, or
whether the opposite holds true. However, an interesting insight into this question
is provided by the next analysis, which involves the use of a lagged version of this
sentiment variable in the variance equation of the E-GARCH(1,1) model. Table 19
shows the results, where vxreg1 represents the estimate of the coe�cient and it is
signi�cantly di�erent from zero at the 99% con�dence level. Again, the estimate
has the expected negative sign. This result implies sentiment registered within one
time window is able to explain volatility variations over the following time window.

Estimate Std. Error t-value p-value

mu 1.251185e-05 2.216413e-05 0.5645092 5.724076e-01
omega -8.545816e-01 7.446377e-02 -11.4764760 0.000000e+00 ***
alpha1 -5.982697e-02 1.936310e-02 -3.0897412 2.003310e-03 ***
beta1 9.342788e-01 5.769767e-03 161.9265911 0.000000e+00 ***
gamma1 3.050301e-01 4.102904e-02 7.4344924 1.050271e-13 ***
vxreg1 -6.887654e-02 1.650614e-02 -4.1727826 3.009020e-05 ***
skew 9.867904e-01 2.794138e-02 35.3164566 0.000000e+00 ***
shape 4.078447e+00 3.162936e-01 12.8945000 0.000000e+00 ***

Table 18: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with Sentiment obtained through HE Dictionary as ex-

ogenous variable in the variance equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

The analysis of the explanatory power of these three dictionary-based sentiment
variables is particularly interesting because the way they were built is not related
to market information, but only to semantic of words in the dictionaries.

Finance-speci�c Henry's dictionary is the one that produced the most relevant
results in this sense. However, it is also the one that the LSTM network learned
with lowest accuracy on the Testing set, 0.6190 compared to 0.84571 of General
Inquirer and 0.94476 of the Loughran and McDonald's Dictionary. Therefore, this
result might be biased by the fact that the Machine Learning algorithm was not able
to fully learn the relationship between features contained in the corpus and words
in the dictionaries. To solve this issue, I used the labels originally assigned to the
articles on the basis of dictionary words, as in Equation 37, and I divided all articles
in 20-minute time intervals following the same procedure presented at the beginning
of this paragraph. Figure 34 shows the resulting sentiment variable, which was
introduced into mean and variance equation of the E-GARCH(1,1) model.
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Estimate Std. Error t-value p-value

mu 9.541357e-06 2.170781e-05 0.4395357 6.602734e-01
omega -6.161600e-01 1.324292e-01 -4.6527507 3.275361e-06 ***
alpha1 -6.222232e-02 1.687603e-02 -3.6870235 2.268924e-04 ***
beta1 9.531277e-01 1.013690e-02 94.0255892 0.000000e+00 ***
gamma1 2.572402e-01 6.304220e-02 4.0804450 4.494957e-05 ***
vxreg1 -3.520249e-02 1.340897e-02 -2.6252944 8.657408e-03 ***
skew 9.850433e-01 2.747244e-02 35.8556965 0.000000e+00 ***
shape 4.057888e+00 3.158441e-01 12.8477558 0.000000e+00 ***

Table 19: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with lagged Sentiment obtained through HE Dictionary

as exogenous variable in the variance equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Figure 34: Henry's Dictionary-based Sentiment variable computed over 20-minute time

intervals and using the original labels.

Source: R.

This analysis not only con�rms previous results with respect to signi�cance
of sentiment and lagged sentiment in the variance equations, but it also reports
a signi�cant estimate of the coe�cient for the sentiment introduced in the mean
equation.
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In both Table 20 and Table 21 the coe�cient vxreg1, which represents senti-
ment and lagged sentiment respectively, is signi�cantly di�erent from zero at the
99% con�dence level and the sign is negative, as expected. Table 22, instead,
shows a signi�cant positive relationship between S&P 500 log returns and Henry's
Dictionary-based Sentiment index. Negative sentiment expressed by pessimistic
news articles is correlated with negative log returns and, as a consequence, with
higher volatility. In addition, the relationship between sentiment and volatility
holds also when introducing a lagged version of the sentiment index, even though
the e�ect on log returns is not signi�cantly di�erent from zero in this case. This
analysis proves that, among the three selected dictionaries, Henry's �nance-speci�c
Dictionary is the one that better captures the relationship between words in �-
nancial news articles and market prices. In contrast to Loughran and McDonald's
view [41] that positive words have poor performance in text classi�cation because
of their frequent negation, Henry's Dictionary is the one that contains the highest
relative number of positive words (Figure 33) and obtained the best results in this
�nance-speci�c context.

Estimate Std. Error t-value p-value

mu 1.492872e-05 2.250041e-05 0.6634867 5.070189e-01
omega -8.323309e-01 7.725308e-02 -10.7740811 0.000000e+00 ***
alpha1 -5.558335e-02 2.350810e-02 -2.3644343 1.805763e-02 **
beta1 9.359287e-01 5.862907e-03 159.6356109 0.000000e+00 ***
gamma1 2.951145e-01 4.628470e-02 6.3760687 1.816916e-10 ***
vxreg1 -6.929969e-02 1.376328e-02 -5.0351147 4.775628e-07 ***
skew 9.895577e-01 2.798567e-02 35.3594486 0.000000e+00 ***
shape 4.120365e+00 3.262731e-01 12.6285747 0.000000e+00 ***

Table 20: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with original Sentiment obtained throughHE Dictionary

as exogenous variable in the variance equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

73



3 Investor Sentiment contribution to stock index returns and volatility variations

Estimate Std. Error t-value p-value

mu 1.101497e-05 0.0000239968 0.4590184 6.462210e-01
omega -6.816847e-01 0.1022128222 -6.6692675 2.570832e-11 ***
alpha1 -5.905524e-02 0.0187535380 -3.1490187 1.638197e-03 ***
beta1 9.478881e-01 0.0078794982 120.2980309 0.000000e+00 ***
gamma1 2.640949e-01 0.0696391282 3.7923355 1.492371e-04 ***
vxreg1 -4.635476e-02 0.0140226639 -3.3057028 9.473852e-04 ***
skew 9.859291e-01 0.0284708561 34.6294168 0.000000e+00 ***
shape 4.091208e+00 0.3227999508 12.6741284 0.000000e+00 ***

Table 21: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with lagged original Sentiment obtained through HE
Dictionary as exogenous variable in the variance equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu -2.667267e-06 2.300738e-05 -0.1159309 9.077073e-01
mxreg1 1.968617e-05 5.201425e-06 3.7847644 1.538543e-04 ***
omega -3.553421e-01 8.124346e-03 -43.7379299 0.000000e+00 ***
alpha1 -5.966158e-02 1.440262e-02 -4.1424124 3.436716e-05 ***
beta1 9.737226e-01 5.524124e-04 1762.6733781 0.000000e+00 ***
gamma1 2.024959e-01 5.990988e-03 33.8000888 0.000000e+00 ***
skew 9.886369e-01 2.739394e-02 36.0896144 0.000000e+00 ***
shape 4.072977e+00 3.259451e-01 12.4958996 0.000000e+00 ***

Table 22: E-GARCH(1,1) model �tted on S&P 500 Index intraday log returns with 20-

minute time intervals with original Sentiment obtained throughHE Dictionary

as exogenous variable in the variance equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.
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This thesis analyzes the alternative proxies used by academicians to estimate in-
vestor sentiment, which is not directly measurable. Among the various sentiment
variables, those based on �nancial news and social media contents have become
particularly interesting in recent years, due to improvements in Machine Learning
and text-based sentiment analysis. The continue development in Internet of Things
(IoT) and the growing interaction of humans with devices connected on the inter-
net allows the collection of larger and larger amounts of unstructured data, which
can now be processed and used for business and research purposes. The senti-
ment indicators based on �nancial news and Twitter contents that are provided by
Bloomberg Terminal represent interesting examples of how qualitative information
can be transformed into quantitative variables that are easier to manage for making
investment decisions. An analysis of these sentiment variables is presented in the
Appendix.

This thesis proves that Long Short Term Memory networks can be used to
perform supervised text classi�cation with fair performance in terms of accuracy,
even if documents are not manually labeled, but are assigned a label on the basis
of automatic techniques. One of the two automatic labeling techniques matches
�nancial news articles that belong to a particular time window with the log returns
of S&P 500 Index over the corresponding time window. The other technique applies
the same method with VIX Index logarithmic variations. In all the cases presented
in Chapter 2, accuracy computed on the Testing set was higher then random guess,
indicating that the network is able to learn the features presented by the examples
and apply its knowledge on new unlabeled data sets.

In addition, Chapter 3 proves that the sentiment variables obtained by this text
classi�cation improve the explanatory power of GARCH models. They explain S&P
500 Index log returns and, in some cases, they also have some predictive power when
introduced as lagged variables. In a few cases the sentiment variables explain S&P
500 Index volatility, computed using GARCH models.

This thesis also analyzes an alternative text classi�cation method, which is
based on positive and negative words contained in three well known dictionaries
available in the �nancial literature. Articles were classi�ed as positive if they con-
tains more positive than negative words, and negative in the opposite case. Using
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this classi�cation as labels, the LSTM network was applied also on this supervised
Machine Learning problem and showed high accuracy on the Testing set, being able
to learn this classi�cation technique. Three new sentiment indicators were based
on this classi�cation method and, in one case, the sentiment indicator improves the
explanatory power of the E-GARCH model �tted on S&P 500 log returns, demon-
strating the goodness of Henry's �nance-speci�c dictionary. This variable is able
to explain both mean and variance of S&P 500 Index log returns and it proves to
have an impact on the variance even when introduced as a lagged term.

Future research might focus on the analysis of the �nancial news-based and
Twitter-based daily sentiment Indicators provided by Bloomberg. The analysis pre-
sented in the Appendix has room for improvements. Principal Component Analysis
might be a better solution to capture the common sentiment among indicators that
refer to individual stocks. In addition, although this thesis focuses on the analy-
sis of the overall market sentiment, it might be interesting to assess the predictive
power of these sentiment variables with respect to individual stocks, with particular
emphasis on low-volume stocks, which might be impacted by positive or negative
news or tweets.

The sentiment variables produced by the LSTM network and those based on
dictionaries, especially Henry's dictionary, might be used to built an intraday trad-
ing system. A trading system might be particularly interesting when considering
the explanatory power of the sentiment variables expressed as lagged terms.

Of course, there is room for improvement in these sentiment variables and fu-
ture research might work on perfecting the parameters used to train the LSTM
models. To improve results, instead of considering �xed time intervals, articles
might be labeled using Index log returns (or VIX log variations) computed over
the 20-minute (or 10-minute) time interval that starts from the exact moment the
article is published. In this way the e�ect of each article on index prices is reg-
istered over the same exact time interval. Indeed, the approach I used has the
limit that articles published at the end of each time window are labeled with price
movements of that time window even if they don't have the time to impact them,
assuming the causality follows this direction. If, instead, the causality is inverse
and articles are published on the basis of price movements that have been observed
on the market, the problem concerns articles published at the beginning of the time
window, because they don't have enough time to observe the pattern of that time
window. Another way to try to improve the results might be using di�erent word
embedding techniques and, for instance, using pretrained word embedding to ini-
tialize the weights of the embedding layer. In addition, improvements might come
from the use of di�erent �nancial news sources.

With respect to dictionary-based sentiment, more complex equations than that
presented in Equation 37 can be used in order to improve the results based on the
three dictionaries. Even if the dictionaries used in this analysis are widely used in
�nancial literature, other dictionaries can be used.
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Appendix: News and Twitter

Sentiment provided by Bloomberg

Terminal

Before approaching Natural Language Processing of �nancial news, I performed a
preliminary analysis to assess the existence of a relationship between this type of
text sources and market prices.

Bloomberg Terminal provides some daily indicators, which summarize sentiment
towards a particular stock on the basis of various news sources and Twitter social
network contents. Their sentiment indicators are built following some proprietary
supervised Machine Learning techniques and are released ten minutes before market
opening based on articles published within the previous 24 hours.

Among the di�erent indicators provided by Bloomberg, I highlight the ones that
were used in this analysis:

� NEWS SENTIMENT DAILY AVG: It is an average daily news sen-
timent indicator towards a stock. It aggregates the sentiment of all news
published during the previous 24 hours that refer to a particular stock. It
takes values bounded to the interval [−1,1].

� NEWS POS SENTIMENT COUNT: It represents the number of posi-
tive news during the day (24 hours).

� NEWS NEG SENTIMENT COUNT: It represents the number of neg-
ative news during the day (24 hours).

� TWITTER SENTIMENT DAILY AVG: It is the average daily Twitter
sentiment indicator towards a stock. It aggregates the sentiment of all Tweets
published during the previous 24 hours that refer to a particular stock. It
takes values bounded to the interval [−1,1].

� TWITTER POS SENTIMENT COUNT: It represents the number of
positive tweets during the day (24 hours).
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� TWITTER NEG SENTIMENT COUNT: It represents the number of
negative tweets during the day (24 hours).

To analyze the explanatory power of these sentiment variables with respect to
S&P 500 Index log returns and volatility, I considered Index prices from January
5, 2015 to October 3, 2019.

As sentiment variables are only available for individual public companies, I
downloaded sentiment indicators for all stocks included in S&P 500 Index from
Bloomberg Terminal, and, then, I combined them taking weighted average with
respect to their weights within the index. The resulting variables were introduced
into mean and variance equation of a E-GARCH(1,1) model applied on S&P 500
Index log returns, where the conditional distribution assumed for the model is Skew
Student-t.

All variables have some predictive power because, although they are not in-
troduced as a lagged variable, they are built on the basis of news and Twitter
contents published during the previous 24 hours and released ten minutes before
stock market opening.

Figures 35 and 36 show S&P 500 Index daily log returns, together with the six
sentiment variables retrieved from �nancial News and Twitter posts respectively.
Table 23, instead, shows the estimates of the coe�cients for the E-GARCH(1,1)
model applied on Index log returns.

Figure 35: Daily news Sentiment about S&P 500 Index provided by Bloomberg Terminal.

Source: R

All the following Tables represent the estimates of the coe�cients for the E-
GARCH(1,1) model with the addition of one of these sentiment variables in the
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Figure 36: Daily Twitter Sentiment about S&P 500 Index provided by Bloomberg Ter-

minal.

Source: R

Estimate Std. Error t-value p-value

mu 0.02030164 0.01155126 1.757526 7.882825e-02 ***
omega -0.03496290 0.01062274 -3.291327 9.971578e-04 ***
alpha1 -0.22483024 0.03171206 -7.089740 1.343592e-12 ***
beta1 0.94552326 0.01380110 68.510728 0.000000e+00 ***
gamma1 0.19266541 0.04410278 4.368555 1.250716e-05 ***
skew 0.89011345 0.03258361 27.317832 0.000000e+00 ***
shape 5.94559518 1.12847174 5.268714 1.373826e-07 ***

Table 23: E-GARCH(1,1) model �tted on S&P 500 Index daily log returns, with Skew

Student-t conditional distribution.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

mean or variance equation. In the next rows, I summarize the main results. Then
I try to interpret the relationships among variables.

� In Table 24, NEWS SENTIMENT DAILY AVG was introduced into the mean
equation and the estimates of all coe�cients are signi�cantly di�erent from
zero at the 99% level. The sign of mxreg1 is negative. A possible reason is
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covered later on this Appendix and it is connected to price correction following
previous day positive (or negative) log returns.

� In Table 25, NEWS POS SENTIMENT COUNT was introduced into the
variance equation and the estimate of the coe�cient for vxreg1 is signi�cantly
di�erent from zero at the 90% level. The sign of vxreg1 is negative, as
expected. Positive sentiment is associated with low volatility levels, because
of the asymmetric behavior of volatility. Omega ω, the intercept of the E-
GARCH model, is not signi�cantly di�erent from zero, but this is not a
problem because the Exponential GARCH model does not require any non-
negativity constraint.

� In Table 26, NEWS NEG SENTIMENT COUNT was introduced into the
mean equation and the estimates of all coe�cients are signi�cantly di�erent
from zero at the 99% level. The sign of mxreg1 is negative. Negative news
sentiment is associated with negative log returns over the following day.

� In Table 27, NEWS NEG SENTIMENT COUNT was introduced into the
variance equation and the estimate of the coe�cient for vxreg1 is signi�cantly
di�erent from zero at the 90% level. The sign of vxreg1 is negative, implying
a negative relationship between number of negative news published during
the previous 24 hours and volatility, which is di�cult to explain. Here too,
omega ω is not signi�cantly di�erent from zero, but this is not a problem
because the Exponential GARCH model does not require any non-negativity
constraint.

� In Table 28, TWITTER SENTIMENT DAILY AVG was introduced into the
variance equation and the estimate of the coe�cient for vxreg1 is signi�cantly
di�erent from zero at the 90% level. The sign of vxreg1 is negative, as
expected. Positive sentiment is associated with low volatility levels, because
of the asymmetric behavior of volatility. Again, omega ω is not signi�cantly
di�erent from zero, but this is not a problem because the Exponential GARCH
model does not require any non-negativity constraint.

� In Table 29, TWITTER POS SENTIMENT COUNT was introduced into the
mean equation and the estimate of the coe�cient for mxreg1 is signi�cantly
di�erent from zero at the 95% level. The sign of mxreg1 is negative. This
result is di�cult to explain, as positive sentiment should be associated with
positive returns.

� In Table 30, TWITTER NEG SENTIMENT COUNT was introduced into the
mean equation and the estimate of the coe�cient for mxreg1 is signi�cantly
di�erent from zero at the 90% level. The sign ofmxreg1 is negative. Negative
Twitter sentiment is associated with negative log returns on the following day.
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As some of these estimates, obtained introducing sentiment variables into mean
and variance equations of an E-GARCH(1,1) model applied on S&P 500 Index log
returns, have ambiguous signs, I examined further the relationship between log
returns and sentiment. In some cases, a reasonable explanation was found, while,
in others, the assumption made at the beginning of this Appendix, where S&P 500
Index sentiment was de�ned as the weighted average of individual stocks sentiment,
might have played an important role.

These news and Twitter based sentiment variables can be thought of as lagged
variables, because they are released 10 minutes before market opening and are based
on news published during the previous 24 hours. Although some of these articles
are published when markets are closed, others are published during the previous
market session and, thus, they might have an impact on previous day market prices.
Therefore, I analyzed also the e�ect of these variables on lagged log returns. In
this way I tried to assess the impact of Sentiment released by Bloomberg at time
t+ 1, but representing news published during the previous 24 hours, on log returns
at time t. Results are shown in Tables 31 to 36.

� In Table 31, NEWS SENTIMENT DAILY AVG was introduced into the mean
equation and the estimates of all coe�cients are signi�cantly di�erent from
zero at the 99% level. The coe�cient for mxreg1 is 0.88590361 and this
implies that news based positive sentiment leads or follows positive returns.
The causality of this relation is uncertain also because the indicator refers
both to articles published during open markets and those published after
markets close. The sign of this coe�cient is in contrast to that of Table 24.
In this case, the negative sign of mxreg1 can represent a smaller correction
(-0.41102860) in market prices that follows the excessive optimism of the
previous day.

� In Table 32, NEWS POS SENTIMENT COUNT was introduced into the
mean equation and the estimates of all coe�cients are signi�cantly di�erent
from zero at the 99% level. However, it is not clear why the coe�cient for
mxreg1 is negative. One reason might be the assumption made in order to
de�ne Index sentiment based on sentiment of individual stocks.

� In Table 33, NEWS NEG SENTIMENT COUNT was introduced into the
mean equation and the estimates of all coe�cients are signi�cantly di�er-
ent from zero at the 99% level. The coe�cient for mxreg1 is negative, as
expected, implying a negative relationship between number of negative news
and log returns. Again, the direction of this relationship is not clear. Negative
news lead or follow negative returns and, the day after, when the indicator is
published, prices continue to decrease, even if magnitude is lower (Table 26).

� In Table 34, TWITTER SENTIMENT DAILY COUNT was introduced into
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the mean equation and the estimates of all coe�cients are signi�cantly dif-
ferent from zero at the 99% level. The coe�cient for mxreg1 is positive, as
expected, and the magnitude is quite important (1.48694395). In this case,
I interpret the positive relationship between Index log returns and Twitter
based sentiment as a result of Tweets being published after stock price vari-
ations, instead of prices being in�uenced by Tweets. However, this issue
should be examined further. No signi�cance was registered for the following
day, when the sentiment indicator is released by Bloomberg, meaning Tweets
of the previous day do not have an impact on Index log returns.

� In Table 35, TWITTER POS SENTIMENT COUNT was introduced into the
mean equation and the estimates of all coe�cients are signi�cantly di�erent
from zero at the 99% level. However, it is not clear why the coe�cient for
mxreg1 is negative and the reason might be again connected to the original
assumptions on S&P 500 Index sentiment indicators.

� In Table 36, TWITTER NEG SENTIMENT COUNT was introduced into the
mean equation and the estimates of all coe�cients are signi�cantly di�erent
from zero at the 99% level. The coe�cient for mxreg1 is −0.001217076,
which is negative, as expected, and implies a negative relationship between
number of negative news and log returns. Here too, the direction of this
relationship is not clear, but a reasonable answer might be that negative
Tweets are published following quite relevant drops in stock prices. The day
after, prices keep decreasing but magnitude is lower, −0.0006611851 (Table
30).

Of course, these results are in�uenced by the assumption I made at the begin-
ning of this Appendix, when I de�ned S&P 500 Index sentiment as the weighted
average of individual stocks sentiment. Using better techniques to aggregate senti-
ment related to individual stocks, such as Principal Analysis Component, might be
bene�cial to this analysis. In addition, it is also interesting to examine the impact
on individual stocks of the sentiment variables provided by Bloomberg Terminal.
In particular, low-volume stocks might register an interesting impact on volatility
when positive or negative news are published.
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Estimate Std. Error t-value p-value

mu 0.08099054 0.01559431 5.193597 2.062694e-07 ***
mxreg1 -0.41102860 0.07434946 -5.528334 3.232868e-08 ***
omega -0.03672300 0.01158073 -3.171043 1.518929e-03 ***
alpha1 -0.22670531 0.03354587 -6.758070 1.398415e-11 ***
beta1 0.94359643 0.01458649 64.689753 0.000000e+00 ***
gamma1 0.19389934 0.04490938 4.317569 1.577571e-05 ***
skew 0.89166585 0.03514590 25.370406 0.000000e+00 ***
shape 5.86143125 1.09946693 5.331157 9.758878e-08 ***

Table 24: E-GARCH(1,1) model �tted on S&P 500 Index daily log returns, with NEWS

SENTIMENT DAILY AVG as exogenous variable in the mean equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu 0.018995137 0.006764732 2.8079661 4.985548e-03 ***
omega 0.020248448 0.032495496 0.6231155 5.332086e-01
alpha1 -0.226370514 0.030953348 -7.3132803 2.606804e-13 ***
beta1 0.944137067 0.013873992 68.0508569 0.000000e+00 ***
gamma1 0.181506351 0.044357203 4.0919250 4.278069e-05 ***
vxreg1 -0.002928524 0.001762452 -1.6616189 9.658922e-02 *
skew 0.890056429 0.032050704 27.7702618 0.000000e+00 ***
shape 5.822409683 1.078786161 5.3971861 6.769416e-08 ***

Table 25: E-GARCH(1,1) model �tted on S&P 500 Index daily log returns, with NEWS

POS SENTIMENT COUNT as exogenous variable in the variance equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.
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Estimate Std. Error t-value p-value

mu 0.0528920202 0.0204568727 2.585538 9.722718e-03 ***
mxreg1 -0.0003484905 0.0001307312 -2.665702 7.682786e-03 ***
omega -0.0346652487 0.0121662671 -2.849292 4.381663e-03 ***
alpha1 -0.2245075473 0.0328599539 -6.832254 8.359091e-12 ***
beta1 0.9466783617 0.0142381349 66.488931 0.000000e+00 ***
gamma1 0.1879103646 0.0447895308 4.195408 2.723806e-05 ***
skew 0.8906283810 0.0369941848 24.074821 0.000000e+00 ***
shape 5.8420371202 1.1186923935 5.222202 1.768084e-07 ***

Table 26: E-GARCH(1,1) model �tted on S&P 500 Index daily log returns, with NEWS

NEG SENTIMENT COUNT as exogenous variable in the mean equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu 0.0191557336 0.012256191 1.562943 1.180659e-01
omega 0.0472815645 0.041175585 1.148291 2.508483e-01
alpha1 -0.2244970978 0.030163880 -7.442580 9.880985e-14 ***
beta1 0.9469326658 0.013497179 70.157823 0.000000e+00 ***
gamma1 0.1783175499 0.042941095 4.152608 3.287070e-05 ***
vxreg1 -0.0009021238 0.000481875 -1.872112 6.119115e-02 *
skew 0.8892299906 0.033596167 26.468198 0.000000e+00 ***
shape 5.7262212314 1.038179002 5.515640 3.475137e-08 ***

Table 27: E-GARCH(1,1) model �tted on S&P 500 Index daily log returns, with NEWS

NEG SENTIMENT COUNT as exogenous variable in the variance equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.
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Estimate Std. Error t-value p-value

mu 0.01768295 0.02289263 0.7724297 4.398600e-01
omega -0.01712149 0.01424370 -1.2020394 2.293483e-01
alpha1 -0.24063645 0.03477642 -6.9195299 4.531486e-12 ***
beta1 0.93722715 0.01510456 62.0492951 0.000000e+00 ***
gamma1 0.18729782 0.04555513 4.1114538 3.931755e-05 ***
vxreg1 -0.97822029 0.53469956 -1.8294765 6.732825e-02 *
skew 0.88512411 0.03716292 23.8174008 0.000000e+00 ***
shape 5.91181773 1.13259330 5.2197181 1.791957e-07 ***

Table 28: E-GARCH(1,1) model �tted on S&P 500 Index daily log returns, with TWIT-

TER SENTIMENT DAILY AVG as exogenous variable in the variance equa-

tion.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu 0.0469481653 0.0192445540 2.439556 1.470533e-02 **
mxreg1 -0.0005924614 0.0002658582 -2.228486 2.584811e-02 **
omega -0.0354687544 0.0114032885 -3.110397 1.868360e-03 ***
alpha1 -0.2287057792 0.0328486064 -6.962420 3.344880e-12 ***
beta1 0.9457045337 0.0143219488 66.031833 0.000000e+00 ***
gamma1 0.1838661185 0.0440932886 4.169934 3.046874e-05 ***
skew 0.8890999653 0.0360774124 24.644228 0.000000e+00 ***
shape 5.8152657911 1.0860257003 5.354630 8.573167e-08 ***

Table 29: E-GARCH(1,1) model �tted on S&P 500 Index daily log returns, with TWIT-

TER POS SENTIMENT COUNT as exogenous variable in the mean equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence level.

Source: R, Rugarch package.
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Estimate Std. Error t-value p-value

mu 0.0490358534 0.0236313213 2.075036 3.798316e-02 **
mxreg1 -0.0006611851 0.0003402361 -1.943312 5.197844e-02 *
omega -0.0351339216 0.0113645314 -3.091542 1.991201e-03 ***
alpha1 -0.2296788906 0.0326779075 -7.028568 2.086553e-12 ***
beta1 0.9456482026 0.0143243449 66.016855 0.000000e+00 ***
gamma1 0.1805632245 0.0441594313 4.088894 4.334352e-05 ***
skew 0.8884400942 0.0348441009 25.497575 0.000000e+00 ***
shape 5.8759293453 1.1044970503 5.320005 1.037647e-07 ***

Table 30: E-GARCH(1,1) model �tted on S&P 500 Index daily log returns, with TWIT-

TER NEG SENTIMENT COUNT as exogenous variable in the mean equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu -0.10532060 0.009831559 -10.712503 0.000000e+00 ***
mxreg1 0.88590361 0.089296951 9.920872 0.000000e+00 ***
omega -0.03260217 0.011166015 -2.919768 3.502920e-03 ***
alpha1 -0.21603750 0.032118271 -6.726312 1.740186e-11 ***
beta1 0.94953064 0.014055177 67.557359 0.000000e+00 ***
gamma1 0.18994354 0.043300396 4.386647 1.151116e-05 ***
skew 0.89887611 0.035476811 25.337004 0.000000e+00 ***
shape 5.88932600 1.158080462 5.085420 3.668127e-07 ***

Table 31: E-GARCH(1,1) model �tted on lagged S&P 500 Index daily log returns, with

NEWS SENTIMENT DAILY AVG as exogenous variable in the mean equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence level.

Source: R, Rugarch package.
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Estimate Std. Error t-value p-value

mu 0.059739540 0.0072824250 8.203248 2.220446e-16 ***
mxreg1 -0.002040942 0.0001674266 -12.190069 0.000000e+00 ***
omega -0.034783350 0.0104486078 -3.328994 8.716035e-04 ***
alpha1 -0.228196972 0.0316093971 -7.219276 5.226930e-13 ***
beta1 0.945519906 0.0138773398 68.134089 0.000000e+00 ***
gamma1 0.188610553 0.0446204054 4.227002 2.368253e-05 ***
skew 0.887036064 0.0329295661 26.937375 0.000000e+00 ***
shape 5.828202229 1.0743486723 5.424870 5.799663e-08 ***

Table 32: E-GARCH(1,1) model �tted on lagged S&P 500 Index daily log returns, with

NEWS POS SENTIMENT COUNT as exogenous variable in the mean equa-

tion.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu 0.1057421719 0.0279274611 3.786315 1.528977e-04 ***
mxreg1 -0.0009472503 0.0002688297 -3.523608 4.257136e-04 ***
omega -0.0337155019 0.0110940925 -3.039050 2.373255e-03 ***
alpha1 -0.2258707090 0.0308663777 -7.317694 2.522427e-13 ***
beta1 0.9475782491 0.0138232170 68.549763 0.000000e+00 ***
gamma1 0.1838835689 0.0454212875 4.048401 5.156882e-05 ***
skew 0.8880117224 0.0365318350 24.307887 0.000000e+00 ***
shape 5.7309444172 1.0480419686 5.468239 4.545276e-08 ***

Table 33: E-GARCH(1,1) model �tted on lagged S&P 500 Index daily log returns, with

NEWS NEG SENTIMENT COUNT as exogenous variable in the mean equa-

tion.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.
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Estimate Std. Error t-value p-value

mu -0.01587072 0.01772514 -0.8953793 3.705844e-01 ***
mxreg1 1.48694395 0.63990109 2.3237090 2.014109e-02 ***
omega -0.03328891 0.01111803 -2.9941380 2.752215e-03 ***
alpha1 -0.21391129 0.03489587 -6.1299892 8.788505e-10 ***
beta1 0.94819360 0.01399127 67.7703731 0.000000e+00 ***
gamma1 0.20142105 0.04140829 4.8642683 1.148810e-06 ***
skew 0.89534647 0.03472181 25.7862821 0.000000e+00 ***
shape 5.97845737 1.17076978 5.1064330 3.282970e-07 ***

Table 34: E-GARCH(1,1) model �tted on lagged S&P 500 Index daily log returns, with

TWITTER SENTIMENT DAILY AVG as exogenous variable in the mean

equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.

Estimate Std. Error t-value p-value

mu 0.0482558764 0.0170420604 2.831575 4.631933e-03 ***
mxreg1 -0.0006373508 0.0002602163 -2.449312 1.431295e-02 ***
omega -0.0357235888 0.0114393393 -3.122872 1.790958e-03 ***
alpha1 -0.2304154966 0.0328350982 -7.017354 2.261080e-12 ***
beta1 0.9448430791 0.0147641429 63.995796 0.000000e+00 ***
gamma1 0.1820918201 0.0441608624 4.123376 3.733602e-05 ***
skew 0.8886572173 0.0358570972 24.783301 0.000000e+00 ***
shape 5.7651943693 1.0809613518 5.333395 9.639307e-08 ***

Table 35: E-GARCH(1,1) model �tted on lagged S&P 500 Index daily log returns, with

TWITTER POS SENTIMENT COUNT as exogenous variable in the mean

equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.
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Estimate Std. Error t-value p-value

mu 0.074882337 0.0431915226 1.733728 8.296642e-02 ***
mxreg1 -0.001217076 0.0005416133 -2.247132 2.463161e-02 ***
omega -0.035645822 0.0126531835 -2.817143 4.845301e-03 ***
alpha1 -0.230975792 0.0344500504 -6.704658 2.018785e-11 ***
beta1 0.946448743 0.0154795787 61.141764 0.000000e+00 ***
gamma1 0.174642860 0.0438347675 3.984117 6.773138e-05 ***
skew 0.885748150 0.0374231899 23.668430 0.000000e+00 ***
shape 5.859110722 1.1059618579 5.297751 1.172376e-07 ***

Table 36: E-GARCH(1,1) model �tted on lagged S&P 500 Index daily log returns, with

TWITTER NEG SENTIMENT COUNT as exogenous variable in the mean

equation.

Statistical signi�cance at the 99% (***), 95% (***), 90% (***) con�dence

level.

Source: R, Rugarch package.
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