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Chapter 1

Introduction

Since the birth of financial markets, both analysts and investors have tried to

find a model that can efficiently explain (and possibly predict) the path the

markets are following. Knowing such model, investors can try to speculate

on price changes both in the short- or in the long-term period through

different investment strategies.

Among all the theories that has been developed over the years, one of the

most important is the Efficient Market Hypothesis, proposed by Eugene Fama

in 1970. Many other scholars gave their contribution, either directly or

indirectly, to the EMH that is still studied and referred to as the basis of

modern risk-based theories of asset prices.

However, despite the success this theory had over the years, some scholars

claim that EMH does not explain well the behaviour of financial markets.

Indeed, it has been demonstrated and proved that this theory has many

fallacies and does not efficiently represent the evolution of prices in real

markets. Then many alternative theories has been proposed, and in this
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2 CHAPTER 1. INTRODUCTION

dissertation we are going to analyse the Fractal Market Hypothesis proposed

by Edgar E. Peters in 1991. This theory solves all the inconsistencies that

were present in the Efficient Market Hypothesis and analyses markets from a

different perspective, allowing the existence of long-term memory in market

prices and offering new possibilities for investors.

As the name suggest, the FMH recalls some concepts from fractals. Although

there is not a rigorous definition, in mathematics a fractal is a particular

figure which, when zoomed in, exhibits local patterns that are similar to the

whole figure. This property is called self-similarity, and it is one of the feature

of the model proposed by Peters. To better understand the concepts that

we are going to use in this dissertation, the main characteristics of fractals

and fractal geometry will be deeply analysed and described with examples

before introducing the Fractal Market Hypothesis.

Furthermore, fractals are present also in the trading strategy we decided to

apply to some time series of market prices. The strategy, which is merely

speculative and do not have any hedging purpose, is developed on the same

assumptions of the FMH and applies some concepts of fractal geometry to a

new technical indicator used to take investment decisions. The time series

to which we will test this trading strategy are six highly-traded American

futures traded at the Chicago Mercantile Exchange, and are four indices and

two currency couples.

Before moving to the technical application, some important concepts about

trading are explained in-depth in order to better understand the investment



3

strategy that will be adopted later. Hence, we provide a brief introduction to

trading and investing techniques, presenting the various types of investors

and describing the tools used in a trading strategy such as candlestick charts

and indicators. Also, we briefly present the paper produced by Petr Kroha

and Miroslav Škoula, the two Czech scholars that developed the new techni-

cal indicator we are going to use in our application.

The strategy will be computed in five different ways for each instrument.

Each method uses a different procedure to estimate the value of the parame-

ter used by the technical indicator, and so different results are obtained. In

addition, for each instrument a similar strategy using a traditional indicator

(the Moving Average Convergence/Divergence) will be applied and used as

a benchmark.

Then, performances of the trading strategy will be evaluated for all the in-

struments and compared. At last, after a few clarifications on some trading

aspects, conclusions will be drawn along with some suggestions for further

analyses.
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Chapter 2

The traditional theory

2.1 Louis Bachelier and the Théorie de la spécula-
tion

The first important contribution towards the theory that will become the

Efficient Market Hypothesis has been given by Louis Bachelier in his Théorie de

la spéculation, published in 1900. In this dissertation the French mathemati-

cian models the fluctuations in stock prices using a random walk process.

By stating so, he argues that the small fluctuations in price seen over a short

time interval should be independent of the current value of the price. Fur-

thermore, he also assumes them to be independent of past behaviour of the

process. Combining these assumptions with the Central Limit Theorem he

came to the conclusion that increments of the process are also independent

and normally distributed. Indeed, by taking all these steps he just obtained

a Brownian motion process as the diffusion limit of random walk. Hence, ac-

cording to Bachelier, price changes cannot be predicted due to the countless

variables that affect their evolution, but it can be assigned a probability to

5



6 CHAPTER 2. THE TRADITIONAL THEORY

each future possible event in order to evaluate their chance of happening.

2.2 Eugene Fama and the Efficient Market Hy-
pothesis

In the first years after the publication of the Théorie de la spéculation, Bache-

lier’s work did not received particular attention by scholars, also due to

the use of French language. But then from ’30s to half of ’60s many papers

on similar topics started to be published, and a book published in 1912 by

Bachelier in which he detailed his work was cited many times by various

mathematicians such as Andrey Kolmogorov and William Feller, making

more academics discover the work of the French mathematician. Finally

in 1965 Eugene Fama, studying the work of Paul Samuelson and all the

previous papers written by the already cited and other scholars, introduced

in his doctoral thesis the Efficient Market Hypothesis, which added a more

statistical approach to better evaluate market behaviour.

First of all it is necessary to specify that in this theory investors are considered

to be rational. An investor is rational (or better, has rational expectations) if

he implements a decision-making process that is based on making choices

that result in the optimal level of benefit for him. In simple terms, an investor

has rational expectations if he efficiently uses the information he knows in

order to maximise profit or minimise losses.

Actually Fama structured his Efficient Market Hypothesis (EMH) in three

different hypothesis:
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• Weak-form efficiency: market prices reflect all the available informa-

tion of the historical prices;

• Semi-strong-form efficiency: market prices reflect all the available

information of the historical prices, plus all the available public infor-

mation;

• Strong-form efficiency: market prices reflect all the available infor-

mation of the historical prices, plus all the available information both

public and private.

Obviously, to have strong-form efficiency it is necessary to have semi-strong-

form efficiency, that in turn needs the weak-form efficiency.

The first implication of this theory is that future market prices always depend

only on the most recent known price, since it is the most complete set of

information available. In statistics, this characteristic is called martingale:

it is a stochastic process Xt in which the expected value of Xt conditioned

to Xs, with s ≤ t, is equal to Xs. This leads to the conclusion the price

instantly changes as soon as a new information becomes available: the new

information gets immediately incorporated by the price, resulting in an

appropriate positive or negative variation. Consequently, outperforming

the market is not possible since any sort of information is reflected on the

market in no time, leaving no possibility of sure gains for investors.

The stochastic process that better resemble this behaviour is the random walk.
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2.3 Random walk and Geometric Brownian Mo-
tion

As just anticipated, the behaviour of markets described by Fama can be

well represented by the stochastic process known as random walk, since the

forecast of a future price is based only on the most recent known price, which

evolution is almost random.

A random walk is indeed a stochastic process with independent increments,

and it is defined as

Yt = Yt−1 + ηt

Y0 = y0

where εt is a White Noise process, defined as

ηt ∼ WN(0, σ2).

This is a simple random walk process. Indeed, it is better to consider a

slightly different process with an additional component, that is the random

walk with drift, defined as

Yt = α + Yt−1 + εt

Y0 = y0.

It is possible to see the addition of the deterministic component α, which is

called the drift term of the process. Furthermore, the stochastic component

εt, called diffusion term, is usually a Gaussian White Noise defined as

εt
iid∼ N(0, σ2)
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or, alternatively,

εt ∼ GWN(0, σ2).

On the basis of such premises, a random walk stochastic process with drift

and independent increments able to represent the variations of a financial

price could be the following one:

Pti+1 = Pti + µPti(ti+1 − ti) + σPti

√
(ti+1 − ti)εti (2.1)

where, considering an interval [0, T ] divided in n intervals [ti, ti+1] of same

length ∆t with i = 1, ..., n, we have then

ti = i ·
(
T − 0
n

)
= i ·∆t, ∀ i = 0, 1, ..., n

and for which

ti+1 − ti = T

n
= ∆t, ∀ i = 0, 1, ..., n.

Furthermore, we also have that

µ ∈ R

σ ∈ R+

εt
iid∼ N(0, σ2).

where, under a financial point of view, µ is the expected value of the process

and σ is the standard deviation of the process (hence it can only be positive).

Also, knowing that ti = ti−1 + ∆t, we can rewrite equation (2.1) as

Pti+1 = Pti + µPti∆t+ σPti
√

∆tεti (2.2)
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and then we get

Pti+1 − Pti = µPti∆t+ σPti
√

∆tεti . (2.3)

This model is defined in a discrete time interval. If we release this construc-

tion assumption and extend the model to a continue time interval, letting

then the number of intervals n → ∞, and consequently ∆t → 0, under

certain conditions it is possible to prove1 that we get

dP (t) = µP (t)dt+ σP (t)
√
dtεt. (2.4)

Equations like this are part of a specific family of stochastic differential equa-

tions whose solution provides the Geometric Brownian Motion. In particular,

a GBM is the stochastic process described by the following SDE (Stochastic

Differential Equation):
dX(t) = αX(t)dt+ σX(t)dW (t)

X(0) = x0.
(2.5)

Equation (2.4) is very similar to the function described above, but it is neces-

sary to model the diffusion term of the equation as a Wiener process (also

called Brownian Motion)2.

It is possible to prove that the just described process has the following explicit

solution:

X(t) = x0 · e(α− 1
2σ

2)t+σW (t). (2.6)

1See S.E. Shreve - "Stochastic Calculus for Finance II: Continuous-Time Models", Springer
(2004)

2A stochastic process W(t)is called a Wiener process if the following conditions hold:
W(0) = 0, W(t) has independent increments, for s < t the stochastic variable W(t) - W(s) has
the Gaussian distribution N(0, t-s), W(t) has continuous trajectories. See T. Bjork - "Arbitrage
Theory in Continuous Time", Oxford University Press (2009)
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The distribution of X(t) is log-normal, meaning that logX(t) is normally

distributed. Moreover, we have that

E[X(t)] = x0 · eαt. (2.7)

Coming back to our model described in (2.4), from (2.7) we know that

E[Pti ] = Pt0 · eµti (2.8)

from which

E[Pti+1|Pti ] = Pti · eµ∆t. (2.9)

It is now clear why the expected value of the price in a future time instant

depends only on the most recent known price of that time series. This means

that future price changes will reflect only future news and, since news is by

definition unpredictable, therefore price changes must be unpredictable and

random, leaving no possibility for investors to achieve a sure return.

2.4 Critics on the EMH

Although the Efficient Market Hypothesis had been widely accepted, claim-

ing that future prices rely only on the most recent known price and not on

the entire time series exposed Fama and his theory to various critics in years,

coming from scholars and investors that analyse markets from different

points of view.

First critics came from investors and scholars that analyse stock markets

through the tools offered by the technical analysis.



12 CHAPTER 2. THE TRADITIONAL THEORY

Technical analysis is a particular analysis methodology used to analyse and

eventually forecast financial markets which is based on the study of graphs

and plots and on the use of technical indicators. Some indicators are based

on past market data, such as highs, lows, volume, . . . , while others are built

through greater or lesser complex mathematical functions such as Expo-

nential Moving Average, Commodity Channel Index, and Relative Strength

Index.

Hence technical analysts base their actions and their investment decisions

on the belief that market trends actually can in part be forecast using math-

ematical instruments, so they reject Fama’s thesis of unpredictability and

randomness of future prices.

Other critics came from fundamental analysts, which study price behaviour

relying on information available on the financial statements of the inspected

firm, along with competitors’ ones and a general market analysis. These

information are usually business’s assets, liabilities, and earnings, but many

other parameters can be considered by a fundamental analyst.

So, fundamental analysts too state that market trends can be somehow

predicted, at least in part, through a correct evaluation of company’s financial

data, thus they too reject the implications of Fama’s theory.

But the critics that better relate with this dissertation are the ones coming

from mathematicians and statisticians, and in general from whoever analyses

market data under the statistical point of view.

In the Efficient Market Hypothesis, the density distribution of returns is
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assumed to be normally distributed. The fact is that returns much often

appears not to be distributed in such a way. In particular, tails appear to

be fatter, and with a higher peak of the mean with respect to the Normal

distribution. In normal market conditions, these differences slightly influence

the effect on an investor’s account, but having fatter tails means that extreme

events (both positive and negative) occurs often then expected in the Normal

case, so these events could become very important and could hugely affect

the investor’s account.

Furthermore, there is a difference also in the behaviour of the volatility of

returns. In the Normal distribution, having a daily variance equals to σ

implies that in t days the variance becomes t times the daily variance. In

terms of standard deviation (which measures the volatility), the formula

then becomes

σt = σ ·
√
t (2.10)

where σt is the standard deviation observed in t days. “This practice is derived

from Einstein’s3 observation that the distance that a particle in brownian motion

covers increases with the square root of time used to measure it.” (Peters, 1994)

Many scholars4 yet have observed that often returns’ volatility does not

behave as expected in case of Normal distribution, and in particular have
3See A. Einstein - "Über die von der molekularkinetischen Theorie der Wärme geforderte

Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" (English: "On the move-
ment of small particles suspended in a stationary liquid demanded by the molecular-kinetic
theory of heat") (1905)

4See R. J. Shiller - "Market Volatility", The MIT Press (1989), A. L. Turner and E. J. Weigel
- "An Analysis of Stock Market Volatility", Russell Research Commentaries Press (1990), E. E.
Peters - "Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market
Volatility", John Wiley & Sons (1991), E. E. Peters - "Fractal Market Analysis: Applying
Chaos Theory to Investment and Economics", John Wiley & Sons (1994)
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observed that standard deviation scales at a faster rate than the square root

of time.

To overcome all these problems that affect the efficiency of the Efficient

Market Hypothesis, many theories have been proposed. The one that is going

to be analysed in details is the Fractal Market Hypothesis (FMH) proposed by

Edgard E. Peters.



Chapter 3

Fractals: characteristics and
examples

3.1 Fractal geometry

Before presenting the Fractal Market Hypothesis, it is necessary to first intro-

duce and describe what is a fractal and which are its characteristics. The

term “fractal” comes from the Latin fractus, which means “broken” or “frac-

tured”, but formal definition of “fractal” is still missing, as there is some

disagreement among mathematicians about how it should be defined. In

1982 Mandelbrot, the first one to use this term in 19751, stated that “A fractal

is by definition a set for which the Hausdorff-Besicovitch dimension strictly

exceeds the topological dimension”, and then later changed the definition

stating that “A fractal is a shape made of parts similar to the whole in some

way”. We will come back later on the definitions of Hausdorff-Besicovitch

and topological dimensions.

1See B. Mandelbrot - "Les object Fractals: Forme, Hazards et Dimension" (English:
"Fractals: Form, Chance and Dimension"), W.H.Freeman & Co Ltd (1977)

15



16 CHAPTER 3. FRACTALS: CHARACTERISTICS AND EXAMPLES

One of the first examples of fractals, although at that time it was not defined

in such a way, is the Weierstraß function:

f(x) =
∞∑
n=0

an · cos(bnπx) (3.1)

where 0 < a < 1 and b is an odd integer number such that ab > 1 + 3
2π.

Figure 3.1: Weierstraß Function in (-2, 2)

It is possible to see that in the highlighted red circle in which the function

is zoomed in the path of the function in some way resemble the path of the

entire function. This property is called self-similarity. Furthermore, the Weier-

straß function, as well as fractals, is everywhere continuous but nowhere

differentiable.

To better explain this last aspect, consider now one of the most known fractal
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as well as one of the earliest ones to have been described2, known as Koch

snowflake:

Figure 3.2: The first four iterations of the Koch snowflake

This fractal is constructed starting from a simple equilateral triangle. Then,

divide each side of the triangle in three equal parts and build a smaller

equilateral triangle outward on the middle one, remove the segment used

as the base of the new equilateral triangle and repeat the procedure at each

successive stage.

It is a very simple procedure, yet it has some interesting properties. Indeed,

it is easy to demonstrate that, as the number of iteration increases, the area

of the snowflakes converges to a specific value (which is 8
5 of the original

2See H. von Koch - "Sur une courbe continue sans tangente, obtenue par une con-
struction géométrique élémentaire" (English: "On a Continuous Curve Without Tangents,
Constructible from Elementary Geometry") (1904)
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triangle), while the perimeter increases without bound, having then a finite

area and an infinite perimeter. But now we focus on its shape, that it makes

its border everywhere continuous but nowhere differentiable, the same as

the Weierstrass function cited before.

In order to better analyse this property we now consider the Koch curve,

which is built in the same way of the Koch snowflake, but considering only

one side of the triangle instead of three. This means that three Koch curves

make a Koch snowflake.

Figure 3.3: The first five iterations of the Koch curve
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First of all, the self-similarity of this fractal is now very clear to see: indeed,

one can easily notice that the upper part in the middle of each figure is

exactly the entire curve at the previous step.

Also, the Koch curve is nowhere differentiable: indeed when a generic point

x0 on a differentiable curve is considered, the curve on the neighbourhood

of x0 tends to resemble a straight line when zoomed. Instead the Koch curve

due to its self-replicating structure is identical to itself at each scale.

3.2 Fractal dimension

Jagged patterns are a good starting point to introduce fractal dimension,

often called Hausdorff dimension in honour of the German mathematician

Felix Hausdorff who firstly introduced it in 1918.

Usually in nature objects are known for having three dimensions at most: a

point has zero dimensions, a line segment has one, a square has two, and a

cube has three. Sometimes in physics dimensions are considered to be four,

if we include time, or even more up to eleven dimensions in strings theory.

But the common denominator of all these numbers is that they are natural

numbers. Fractals allow objects to have a real number of dimensions.

Mandelbrot did not coin the term “fractal” until 1975, but in one of his

first papers on the topic3 he analysed this interesting aspect starting from

measuring the length of Great Britain coastline. He stated that the measured

length of a stretch of coastline depends on the scale of measurement. In other

3See B. Mandelbrot - "How Long Is the Coast of Britain? Statistical Self-Similarity and
Fractional Dimension" (1967)
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words, the smaller the increment of measurement, the longer the measured

length becomes: imagining of walking along the coastline and measuring it

using the number of steps, the measure done by a kid would be significantly

greater (and also more precise) than the one done by ad adult.

Figure 3.4: Great Britain coastline. Left: unit = 200 km, length = ~2400 km.
Right: unit 50 km, length = ~3400 km

Letting the measurement scale decreasing towards zero implies that the

measure length increases without limit. The point that Mandelbrot wanted

to highlight was that it is meaningless to talk about the length of a coastline,

and that some other means of quantifying coastlines are needed. This led

the author to anaylise an empirical law discovered by Lewis Fry Richardson

which links the measured length of various geographic borders with the

measurement scale used to measure it.
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The main idea is: if the coastline is smooth, then it has 1 dimension (since it

is a simple line), while if it becomes more jagged and irregular the number

of dimensions its dimension tend to 2, since the coastline itself is more than

a line but less than a plane (which has 2 dimensions). In particular, the

dimension of the Great Britain coastline is known to be 1.25.

This lead towards the definition of fractal dimension. In simple words, the

fractal dimension indicates how much a curve “fills” the space. Thinking about

the coastline of Great Britain, as said before it is more than a line and less

then a plane, so its fractal dimension is between 1 and 2 because it has some

“voids”. The same could be said for many other things in nature, starting

from the Earth itself: our planet is not a perfect sphere since it has mountains

and valleys, and it is also flattened at the poles, so its fractal dimension is a

non-integer value between 2 and 3, since it is more than a plane and less than

a solid. To be precise, a fractal dimension of 2.3 is found to be a common

value in describing the relief on the Earth.

There are more definitions of fractal dimension, and in particular two of the

most important are:

• the Hausdorff-Besicovitch dimension

• the Minkovski-Bouligand dimension (also known as box-counting

dimension).
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3.2.1 The Hausdorff-Besicovitch dimension

One of the first methods to estimate the fractal dimension of a curve involves

covering the curve with circles of radius r. Then, the number of circles

needed to cover the curve is counted, and the radius is decreased. The

number of circles is known to scale as the following equation:

N · (2 · r)d = 1 (3.2)

where N is the number of circles, r is the radius, and d is the fractal dimension.

Solving for d, it turns out that

d = lnN
ln
(

1
2·r

) . (3.3)

As previously said, a straight line has a fractal dimension of 1. Instead a

random walk, which has a 50% probability of going either up or down, has

then a fractal dimension equal to 1.50 since it is halfway between a line and

a plane.
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Figure 3.5: Estimating the Hausdorff dimension of the coast of Great Britain

A more rigorous definition of the Hausdorff dimension needs using some

concepts of the earlier Lebesgue measure from measure theory, and using

the diameter of the circles rather than the radius.

In measure theory, a measure is defined using a collection of paral-

lelepipedons as cover of a generic set A, but Hausdorff replaced them with

balls4 and to define the Hausdorff measure he used their diameters, defined

as following:

4In mathematics, a ball (or hyperball) is the space bounded by a sphere. A ball in n
dimensions is called n-ball and is bounded by an (n-1)-sphere. For example, a ball in
Euclidean 3-space is taken to be the volume bounded by a 2-dimensional sphere.
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Definition: diameter

Let E ⊆ Rn not empty, the diameter of E is then

diam(E) = sup {||x− y||, ∀ x, y ∈ E} (3.4)

where ||x− y|| =
√∑n

i=1(xi − yi)2 is the Euclidean distance between

the two points x and y. �

It is now necessary to define the δ − cover of a given set:

Definition: δ-cover of E

Let E ⊆ Rn not empty and δ > 0. A δ-cover of E is a countable family

{Ei} of not empty subsets Ei such that

E ⊆
⋃
i

Ei and 0 < diam(Ei) ≤ δ ∀i.� (3.5)

Then, the Hausdorff s-dimensional measure is defined as:

Definition: Hausdorff s-dimensional measure of scale δ for a set

E

Let E ⊆ Rn not empty and δ > 0, s ≤ 0. We define

Hs
δ(E) = inf

{∑
i

(diam(Ei))s | {Ei} is a δ-cover of E
}

(3.6)

andHs
δ(∅) = 0.�
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Hence we can apply the Hausdorff s-dimensional measure to a subset of Rn:

Definition: Hausdorff s-dimensional measure for a subset E ⊆

Rn

We define

Hs(E) = sup
δ>0
Hs
δ(E) = lim

δ→0+
Hs
δ(E).� (3.7)

It is obvious then that, as δ decreases, the number of sets of {Ei} increases,

and tend to infinite as δ → 0.

Thus, when δ → 0 the measureHs(E) becomes a sum of infinite subsets with

diameter zero, which is the undetermined form [∞ · 0]. The value assumed

by the exponent s helps us to solve this undetermined form. Indeed, naming

s0 = DH(E), we obtain that that Hs(E) → +∞ as s → 0 and Hs(E) →

0 as s → +∞. The Hausdorff dimension is then the value of s that makes

Hs(E) jumps from 0 to +∞. The formal definition is the following:

Definition: Hausdorff dimension for a subset E ⊆ Rn

We define

DH(E) = inf {s ≥ 0 : Hs(E) = 0} = sup {s ≥ 0 : Hs(E) = +∞} .�

(3.8)

3.2.2 The Minkowski-Bouligand dimension

The Minkowski-Bouligand dimension, also known as box-counting dimension

is a variation of the approach to compute fractal dimension using circles

(or spheres, for objects with more than 2 dimensions). Now, as the name
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suggests, squares (cubes) are used instead of circles (spheres). It is a relatively

easier approach, since squares are easier to manipulate rather than circles,

but the procedure is identical. Starting from a square with a side length

of ε, the number of boxes Nε necessary to completely cover the curve is

counted, and then the procedure is repeated reducing the value of ε. Then,

the Minkowski-Bouligand dimension is defined as

DM = lim
ε→0

lnNε

ln
(

1
ε

) . (3.9)

Figure 3.6: Estimating the box-counting dimension of the coast of Great
Britain

Furthermore, it has been proven5 that

DH ≤ DM. (3.10)

5See K. Falconer - "Fractal Geometry - Mathematical Foundations & Applications", John
Wiley & Sons (1990)
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Thinking about the Koch snowflake described before, we are now able to

understand its fractal dimension and even compute it using a even simpler

method.

After each iteration, all original line segments are replaced with N = 4, where

each self-similar copy is 1/S = 1/3 as long as the original. So, to calculate the

dimension D we must solve

N = SD (3.11)

for D, that is

D = lnN
lnS = ln 4

ln 3 ≈ 1.262.

So, the Koch snowflake has a fractal dimension of approximately 1.262.

3.3 Examples of fractals

Fractals can be classified in various categories depending on their construc-

tion process:

• IFS fractals (Iterated Function System);

• LS fractals (Lindenmayer System).

An IFS fractal is a generated by a series of affine transformations6. These

transformations, which are originated by simple equations such as rotations,

traslations, reflections, and homotheties7, let the iterative process tend to

6In geometry, an affine transformation is a function which preserves points, straight
lines, and planes, though it does not necessarily preserve angles between lines or distances
between points. For further details, see M. Berger - "Geometry I", Springer (1987)

7In geometry, a homothety is a particular geometric transformation of an affine space
that dilates or shrinks the objects, leaving unchanged the angles.
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a specific attractor8 independent from starting conditions. This mean that

continuing the iteration process for an infinite number of steps will lead to

obtain always the same final figure.

The most famous fractal of this type is probably the Sierpiński triangle. The

procedure to obtain it is the following:

1. The starting figure is an equilateral triangle with side length ε;

2. Four new triangles are generated by connecting the midpoints of the

three sides of the original triangle, with the middle one upside down,

all with side equals to ε
2 ;

3. Midpoints of all the new not-upside down triangles are now connected

obtaining then 9 further not-upside down triangles with side ε
4 ;

4. When the number of iterations tends to infinity, the limit is the Sier-

piński triangle. At the n-th iteration there are 3n not-upside down

triangles of side length 2−nε.

Figure 3.7: First five iterations of the Sierpiński triangle

To compute the fractal dimension of the Sierpiński triangle, remember that

the scaling factor S is 2 (since each new triangle’s side is half the previous

8In mathematics, an attractor is a set of numerical values toward which a system tends to
evolve, after a sufficiently long time, for a wide variety of starting conditions of the system.
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one’s) and that the new triangles to which the procedure is always the triple

of the number of triangles at the previous step, thus N = 3. Hence having

N = SD it is easy to solve for D: D = ln 3
ln 2 ≈ 1.585.

On the other hand, LS fractals (sometimes called also L-system) are complex

images originated by successive iterations consisting in the substitution

of part of the object at the previous step, and in each step the rewriting

procedure is always the same.

We have already analysed a fractal of this kind, which is the Koch snowflake,

and then obviously the Koch curve, but there are many more.

One of the most interesting fractals is also a three-dimensional (meant in the

common sense) object. That’s the Menger sponge.

The procedure to obtain a Menger sponge is quite easy:

1. The starting figure is a cube of side length ε;

2. The cube is then divided in 27 smaller cubes of side length ε
3 (similar

to a Rubik’s cube);

3. The central cubes of each face are removed as well as the central one

on the inside;

4. The procedure is repeated from step 2) for each remaining cube.
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Figure 3.8: First four iterations of the Menger sponge

Now we want to calculate the fractal dimension of the Menger sponge. We

know that the scale factor is S = 3, since each new cube has a side length of

one third of the cube at the previous iteration. Furthermore, at each iterations

27-6-1 = 20 new cubes are generated, which leads to N = 20. Hence, solving

N = SD we D = ln 20
ln 3 ≈ 2.727.



Chapter 4

Fractals and markets

4.1 Presence of fractals in markets trends

After this brief introduction to fractals and their characteristics, it is necessary

to link them to stock markets and market analysis. Hence, it is necessary to

find some evidence of the presence of fractals in price trends.

Fractals are regulated by strict mathematical laws and equations, while the

evolution of market prices is not, or would not seem. According to the EMH,

the only factor that affect the price and can lead to a rise or a drop of the

value of the security is the release of some new information. However, we

already discussed about the fallacy of the EMH, and actually a change in the

price of a security can happen due to many reasons. Indeed for example, as

pointed out by behavioural economists, not every investor is fully rational

or has rational expectations, and this can lead to strange changes in market

prices.

But, even if markets are not directly math-regulated, some regularities can be

31
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found observing the behaviour of stock markets, and in particular the pres-

ence of fractal patterns. A fractal pattern is a section of a time series which

is repeated multiple times on the graph, analogously to the self-similarity

property of fractals. Consider now the price history of the S&P 500 index1

illustrated below:

Figure 4.1: S&P 500 price history from 1925 (from ANG Traders)

It is possible to identify a recurring pattern over the years, as highlighted

with red rectangles and green arrows. A range-trade sections colored in red,

delimited by two red arrows, start when a new maximum is reached and end

when that high is surpassed. It defines a portion of the graph in which the

price oscillates within a bounded range and without reaching new higher

values. On the other hand, trending patterns are the up-legs between two

1The Standard & Poor 500, known as S&P 500, is a market index created by Standard &
Poor’s in 1957 and it reflects the trend of the 500 American companies with greater market
capitalization. Values before that date are recreated considering the best companies at the
evaluated year.
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range-trade sections, and they are indicated by the green upwarding arrows.

These patterns determine a section of the graph in which the price is rising

with greater or lesser steepness.

The three range-trade sections are very similar in duration, and are respec-

tively 13-, 11-, and 14-years long. Likewise, the first two up-legs are of similar

length, respectively 19- and 20- years long. The repetitiveness in behaviour

suggests that also the third leg will be of similar length.

The variances within the range-trade patterns, expressed as percent of the

maximum reached in those sections, are quite similar too: they are respec-

tively 61%, 48%, and 50%.

However, it is interesting to notice that these patterns can be spotted also in

a shorter time interval, as shown in the following chart:

Figure 4.2: S&P 500 price history from 2009 (from ANG Traders)

Here the time interval is much smaller than before, starting from the be-
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ginning of 2009 instead that from 1925, as in the previous figure. However,

similar range-trade sections and up-legs are highlighted. Furthermore, the

S&P 500 index is currently in the up-leg phase, since it reached and surpassed

the maximum value of the latest range-trade phase in April 2019, and now

in January 2020 its value is currently more than 3300.

4.1.1 Elliott Wave Theory

At the end of ’30s, taking the cue from the Dow theory on stock price move-

ment developed by Charles H. Dow, a new form of technical analysis has

been developed by Ralph Nelson Elliott. In this theory, defined in his book

“The Wave Principle” published in 19382, the American accountant described

a recurrent pattern that can be spotted observing market price time series.

Elliott posited this theory thinking that crowd psychology moves between

optimism and pessimism in natural sequence, but he did not mean to link

his theory to fractals. Indeed, they were not even defined yet. However, one

of the biggest evidence of fractals in markets can be found in the Elliott Wave

Theory. Indeed, the specific pattern of price evolution that can be recognised

after the first upward and downward movements is recurrent in market price

time series, at various time interval between two consecutive observations

and at multiple resolution scales. The pattern described by the author is the

following:

2See R. N . Elliott - "The Wave Principle" (1938), and R. R. Prechter - "The Basics of the
Elliott Wave Principle", New Classics Library (1995)
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Figure 4.3: Pattern described in the Elliot Wave Theory

In his theory, Elliott defined two wave types: impulse waves and corrective

waves. The former consists of five sub-waves that together make the price

moves upward, while the latter consists of three sub-waves that correct the

upward movement through a slight decrease in market price.

There are some simple rules that help to spot the presence of this kind of

structure:

• The impulse wave is formed by three motive waves and two corrective

waves, all labeled by numbers (from 1 to 5). The rules that define its

formation are unbreakable, and if one of these is violated then the

structure is not an impulse wave. In particular, wave 2 cannot retrace

more than the entire wave 1, and wave 3 can never be shorter than

wave 1 and wave 5;
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• The corrective wave is formed by two corrective waves and one motive

wave, all labeled by letters (from A to C). Corrective waves are typically

harder to identify than impulse moves. Rules state that wave B cannot

retrace more than the entire wave A, and that wave C is typically at

least as large as wave A.

The entire structure just described is the so-called Bullish Elliott Wave Cycle,

but also the opposite pattern can be spotted and it would describe a Bearish

Elliott Wave Cycle.3

Elliott suggested also that often inside one cycle of waves other small cycles

can be found, describing then a structure that also meet the common defini-

tion of a fractal, since it consists in self-similar patterns appearing at every

degree of trend.

3In finance, the market is described as bullish when prices are moving upward and bearish
when the overall movement is heading downwards.
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Figure 4.4: Cycle and sub-cycles of a Bullish Elliott Wave Cycle

Nowadays Elliott Wave Theory is still used as technical instrument by some

market analysts, but many others thinks that the application to modern

financial markets is no more possible due to changes in economies and social

systems, making then the Elliot Principle obsolete and outdated. As stated

by market analyst Glenn Neely4:

“Elliott wave was an incredible discovery for its time. But, as tech-

nologies, governments, economies, and social systems have changed,

the behavior of people has also. These changes have affected the wave

patterns R.N. Elliott discovered. Consequently, strict application of

orthodox Elliott wave concepts to current day markets skews forecasting

accuracy. Markets have evolved, but Elliott has not.”

4See G. Neely - "Picking Up the Elliott Wave Pieces" (1996)
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At last, also Benoit Mandelbrot questioned about the efficacy of Elliot waves5:

“But Wave prediction is a very uncertain business. It is an art to which

the subjective judgement of the chartists matters more than the objective,

replicable verdict of the numbers. The record of this, as of most technical

analysis, is at best mixed.”

4.1.2 Fractals indicator

In technical analysis there is also another indicator that take advantage of

repetitive patterns in price movements, which is the self-similarity property

of fractals previously described. This technical indicator, which has been

developed by Bill Williams, is called fractals precisely and it consists in a

precise sequence of price movements that can be spotted only in graphs that

use the Japanese candlestick data visualisation. The necessity of using this

chart type is due to the construction of the fractals indicator that needs the

price information represented by candlesticks.

5See B. Mandelbrot, D.L. Hudson - "The (mis)Behavior of Markets", Basic Books (2004)
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Figure 4.5: Examples of bullish and bearish candelsticks

Candlestick representation is widely used due to its clarity in reading, along

with the presence of all the relevant price information (open, high, low, close)

in a single figure. The area between open and close is the real body, while

price excursions delimited by high and low above and below the real body

are the shadows. If the market moved upward in the time interval to which

the candlestick refers to, close would be higher than open and the body of the

candle would be green (or white), otherwise if the market moved downward

close would be lower than open and the body would be red (or black).

The fractals indicator is used to identify change in price trends, both from

bearish to bullish and vice versa. In particular, a bearish fractal is drawn on

the candlestick chart over a candle when the high of that candle is greater

than the highs of both the two previous and the two successive candles. On

the other hand, a bullish fractal is drawn when the low is lesser then the lows

of both the two previous and the two successive candles. As illustrated in
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the following figure, bearish fractals are represented by an upward arrow

(resembling a peak), while bullish fractals are represented by a downward

arrow.

These kind of structures appears quite frequently when observing candlestick

charts and are widely used, together with other technical indicators, to

identify investment opportunities.

Figure 4.6: Examples of bearish and bullish fractals

4.1.3 Failure of the EMH

But fractals does not necessarily imply the presence of clearly visible repet-

itive patterns. As already stated before, the term fractal comes from the

Latin fractus which means “broken” or “fractured”, and in mathematics is

somewhat similar to “fractional”. Indeed, the presence of fractals in markets

can be found also analysing the time series of prices. For example, when

considering the volatility of prices with respect to time, the EMH supposed

it should follow the so-called T to the one-half rule previously described when
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illustrating the Brownian Motion. The interesting thing is that this rule is

often not valid.

Furthermore, we already showed that returns might be non-normally dis-

tributed, so two important pillars of the EMH are violated. Many scholars6

showed that the Normal distribution (and consequently the Geometric Brow-

nian Motion) is not the best possible choice to evaluate time series of market

prices, along with the presence of non-Markovian memory7 in many histori-

cal prices, so a different solution needs to be found.

4.2 Fractional Brownian Motion

The presence of non-Markovian memory allows the possibility of long-range

dependence (LRD) in price values. A phenomenon is usually considered to

have long-range dependence if the dependence between two observations

at lag τ , with τ = 1, 2, ..., n, decays slowly and has significant values for

many lags8. We need a model that can include the possibility of long-range

dependency in price time series, since we already showed that the Geometric

Brownian Motion is often not suitable due to not-independent values of

6See, among the others, E. Fama - "The Behavior of Stock Market Prices" (1965), M. F. M.
Osborne - "Brownian Motion in the Stock Market" (1959), W. F. Sharpe - "Portfolio theory
and capital markets", McGraw-Hill (1970), and E. E. Peters - "Fractal Market Analysis -
Applying Chaos Theory to Investment and Economics", John Wiley & Sons (1994)

7A Markov chain is a stochastic model describing a sequence of possible events in which
the probability of each event depends only on the state attained in the previous event. Thus,
the presence of non-Markovian memory is index of a stochastic process in which the state
of the random variable is dependent not only on the last observation but also from previous
ones.

8To be precise, a phenomenon is considered to have LRD if the dependence decays more
slowly than an exponential decay, typically a power-like decay. For further details, see
exponential and power decay in mathematics and physics.
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returns. It is then necessary to generalise the Brownian Motion by adding an

important feature that can be useful to better evaluate time series.

Definition: fractional Brownian Motion (fBM)

A stochastic process
{
XH
t

}
t≥0
7→ R is a fractional Brownian Motion if:

• XH
0 = 0

• XH
t is continuous ∀t ∈ R+

• E
[
XH
t

]
= 0 ∀t ∈ R+

•
γ∆t = E

[
XH
t X

H
t+∆t

]
= 1

2

(
t2H + (t+ ∆t)2H − |t− (t+ ∆t)|2H

)
∀t,∆t ∈ R+

where H is a real number in (0, 1).�

When the exponent H is set equal to 1
2 , the fractional Brownian Motion

becomes a simple Brownian Motion. Although every fractional Brownian

Motion has stationary increments, they are independent only in the Brownian

Motion case. Here instead we have three different cases:

• H = 1
2 : as just said, in this case we get γ∆t = 0 and thus the simple

Brownian Motion;

• H < 1
2 : in this case we get γ∆t < 0 and consequently increments of the

process are negatively correlated;

• H > 1
2 : in this case we get γ∆t > 0 and consequently increments of the

process are positively correlated.

The following image shows three different fractional Brownian Motions,

highlighting the difference between the three possible values of exponent

H. Left plot represents a fBM process with H > 1
2 , right plot a fBM process
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with H < 1
2 , and center plot, having H = 1

2 , represents the simple Brownian

Motion.

Figure 4.7: Comparison of fractional Brownian Motions

Furthermore, we know that increments, as in the simple Brownian Motion,

are Normally distributed with mean 0 but with variance ∆t2H . Again, it is

simple to recognise that ifH = 1
2 the fBM get reduced to the simple Brownian

Motion with variance ∆t.

It is now necessary to define the coefficient H, which regulates the entire

path followed by the fractional Brownian Motion process.
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4.3 Hurst exponent and R/S analysis

The coefficient H, namely the Hurst exponent, has been called in this way in

honour of the British hydrologist Harold Edwin Hurst, who was the inventor

of the rescaled range analysis used to estimate it.

Hurst from 1907 to the beginning of ’50s worked in Egypt as hydrologist,

and his task was defining a mathematical model to simulate the problem

of monitoring the amount of Nile water supply. As suggested by other

colleagues, the initial hypothesis he made was that Nile floods were random

and unpredictable in entity, meaning that the flood range should follow the

T to the one half rule already mentioned. Hurst analyses however seemed to

lead to different conclusions, and this convinced him to do more analyses. In

particular, Hurst noticed the existence of a persistent behaviour, suggesting

that great overflows are generally followed by other significantly serious

floods, and when the trend inverted small floods are usually followed by

other relatively scarce overflows.

Hurst then created a tool, the rescaled range analysis9 to evaluate the magni-

tude of the periodicity of a cycle. Starting from a time series Xt with t = 1, . . . ,

N observations, he divided it into 2k (with k = 0, 1, . . . ) sub-periods of same

length n so that 2k · n = N , obtaining 1 sub-period of length N, 2 sub-periods

of length N/2, 4 sub-periods of length N/4, etc. Then he computed the

following operations for each sub-period.

First of all, he computed the arithmetic mean X̄ and the standard deviation

9Also called R/S analysis.
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which is given by

sn =
√√√√ 1
n

n∑
t=1

(
Xt − X̄

)2
. (4.1)

Then, he calculated the cumulated sum of deviations from the mean as

Yt =
t∑

m=1

(
Xm − X̄

)
, t = 1, ..., n (4.2)

where Xm is the observation in year m. Please note that, by definition, the

last value of Y (namely Yn) will always be zero since it is computed as the

total sum of the n observations minus n-times the mean.

The range Rn of Y is given by the difference between the greatest and the

smallest values of Y, namely

Rn = max(Y1, Y2, ..., Yn)−min(Y1, Y2, ..., Yn).

In order to get a standardised measure and a pure number, Hurst divided

the range by the standard deviation of the observation, obtaining then

Rn

sn
= max(Y1, Y2, ..., Yn)−min(Y1, Y2, ..., Yn)√

1
n

∑n
t=1

(
Xt − X̄

)2
. (4.3)

The relationship that link the rescaled range to the Hurst exponent has been

found10 to be

Rn

sn
= c · nH (4.4)

10Actually, Hurst found the relationship to be Rn

sn
=
(

n
2
)H , and then later Mandelbrot

proposed the form expressed in equation (4.4).
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where c is a constant, n is the number of observations, and H is the Hurst ex-

ponent. Then, the Hurst exponent can be easily computed taking logarithms

of both the left and the right hand sides of the previous equation, obtaining

ln(Rn/sn) = ln(c) +H · ln(n). (4.5)

Finally, the value of H is obtained computing simple linear regression for all

the sub-periods and estimating the angular coefficient of the regression.

The exponent H can assume any real value between 0 and 1, but three differ-

ent important scenarios can be defined, and they are the ones described also

in the fBM. However, knowing the mathematical meaning of the exponent

H, some further details can be added:

• H = 1
2 : there is no dependence between observed values, which then

follow a random walk;

• H < 1
2 : there is negative dependence, making the series anti-persistent

and thus the trend is often reverted: this means that a positive trend is

usually followed by a negative one, creating a mean-reverting series;

• H > 1
2 : there is positive dependence, making the series persistent and

thus a positive trend is supposed to be followed by further observations

in the same direction.

4.3.1 Relationship with fractal dimension

Although it does not seem obvious the link, Mandelbrot11 explained the

relationship between the Hurst exponent and the fractal dimension. In

11See Mandelbrot - "The Fractal Geometry of Nature", Times Books (1982).
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particular, it has been proven that for a time series described by a fractional

Brownian Motion, the fractal dimension of the fBM graph can be described

by

DH(GX) = DM(GX) = 2−H (4.6)

where

GX =
{

(t, Y ) ∈ R2 | Y = X(t) ∧ t ∈ [0,∞)
}

is the graph of a fractional Brownian Motion X(t) with Hurst exponent 0 < H

< 1.

Hence, having that the Hurst exponent can take any value between 0 and

1, this leads to the conclusion that the fractal dimension of the graph of a

fractional Brownian Motion is a value between 1 and 2, meaning that its

pattern is more than a line and less than a plane. In formulas:

1 < DH(GX) = DM(GX) < 2.
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Chapter 5

Fractal Market Hypothesis

5.1 Premises and introduction

We already synthetically described the Efficient Market Hypothesis and we

also discussed about the fallacies that make it not adherent to the reality. It

is now necessary to provide a suitable alternative model to better evaluate

the behaviour of markets and overcome all the problems highlighted while

describing EMH.

Probably the most relevant issue described was the necessity for the time

series to be a martingale, meaning that observations had to be independent or,

at best, had to have a short-term memory. This implies that current change

in prices could not be inferred from previous changes.

Furthermore, according to EMH the frequency of price changes should be

well-represented by the Normal distribution. However, it has been widely

showed that returns do not follow this rule since there are too many differ-

ences with respect to the Gaussian distribution. Actually, these differences

are usually labeled as “anomalies” and the distribution is said to be “approx-

49
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imately Normal”. Many alternatives had been proposed, such as the stable

Paretian distribution1, but they are less used due to the major complexity of

using standard statistical analysis.

The basis principle of EMH is that the current price reflects all the available

information related to it. Then it can be said that the price of a security is

always “fair” since every data that concerns the price is incorporated in

the price itself, no matter what happens. Some scholars do not agree with

this statement, and among them Edgar E. Peters suggested an interesting

alternative model. The American scholar indeed suggested that the fairness

of the price is directly linked with the liquidity of the security: if there is

not enough liquidity the price is not fair, and an investor that wanted to

complete a trade at any cost would be forced to accept any price to close the

position, no matter it was fair or not. To use Peter’s words2:

“A stable market is not the same as an”efficient" market, as defined by

the EMH. A stable market is a liquid market. If the market is liquid,

then the price can be considered close to “fair”. However, markets are

not always liquid. When lack of liquidity strikes, participating investors

are willing to take any price they can, fair or not."

Furthermore, Peters considered that the presence of liquidity is linked to

1The stable distribution, also called stable Pareto-Lévy distribution after Vilfrido Pareto
and Paul Lévy, is family of distributions depending on four variable parameters that allows
to vary not only mean and variance of the distribution but also its skewness and kurtosis.
The Normal distribution is a particular case of stable Pareto-Lévy distribution. For further
details, see J. P. Nolan - "Stable Distributions - Models for Heavy Tailed Data", American
University Press (2009)

2For this and next quotes, see E. E. Peters - "Fractal Market Analysis - Applying Chaos
Theory to Investment and Economics", John Wiley & Sons (1994)
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investors’ investment horizon. The reasoning that led him to this conclusion

starts considering the impact of information on investors. Consider now that

some new information on a security come out: if the news had the same

impact on all investors, there would be no liquidity, since all investors would

be executing the same trade trying to get the same price.

This means that investors are not homogeneous, and in particular investors

do not react in the same way to news. The difference that Peters suggest is

linked to investors’ investment horizon. Consider for example two different

investors holding the same security: a day trader, and a pension fund. The

former is surely more reactive to news than the latter, which has a much more

longer investment horizon and so he is less affected by new information

coming out. To sum up, quoting Peters:

“All of the investors trading in the market simultaneously have different

investment horizons. We can also say that the information that is

important at each investment horizon is different. Thus, the source

of liquidity is investors with different investment horizons, different

information sets, and consequently, different concepts of”fair price".

5.2 Definition of FMH

These are the main keys that Peters formulated to introduce his Fractal Market

Hypothesis. Peters named it Fractal due to the self-similar statistical structure,

just like the self-similar structure of fractals. The presence of self-similarity

is highlighted by Peters looking at returns at different investment horizons:

if a day-trader experiences a significant price change, an investor with a
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long-term investment horizon steps in and stabilise the market since for him

the price change is not so relevant.

“As long as another investor has a longer trading horizon than the in-

vestor in crisis, the market will stabilize itself. For this reason, investors

must share the same risk levels (once an adjustment is made for the

scale of the investment horizon), and the shared risk explains why the

frequency distribution of returns looks the same at different investment

horizons.”

The next point to discuss is what happens when market crashes. According

to the American scholar, markets become unstable when the fractal structure

breaks down. This occurs when long-term horizon investors stop acting as

usual, either by behaving as short-term investors or by not participating

in the market at all. This usually happens in case of crises, political or

economic (or both), and long-term forecasts and information lose reliability.

Hence long-term investors who usually base their strategies on fundamental

analysis of companies and economy, panic and lose focus. This translates

in stopping considering a long-term investment horizon since they become

less confident about the future of the economy, beginning then to act as

short-term investors and taking investment decisions mainly relying on their

perceptions rather than mathematical and economic evidence. This leads

to high levels of short-term volatility and eventually to significant market

shocks in a limited amount of time.

If the reason that caused the shock is important but does not affect too much
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the economy (in contrast to, for example, a war), investors with a long-term

horizon return to behave normally usually after some days and market

returns stable.

Hence, according to Peters, the stability of the market is assured by the

presence of long-term investors who “absorb” sudden price changes that

could worry short-term traders. This is possible because long-term investors

are less concerned about new information since news usually affect market

prices in the short-term, while these investors mostly rely on fundamental

analysis on the long-term. Indeed, quoting Peters:

“As the investment horizon grows, technical analysis gradually gives

way to fundamental and economic factors. Prices, as a result, reflect

this relationship and rise and fall as earnings expectations rise and fall.

[. . . ] If the market has no relationship with the economic cycle, or if that

relationship is very weak, then trading activity and liquidity continue

their importance, even at long horizons.”

It is then clear that stocks of healthy companies in solid economies have

quite stable returns on the long-term, since stock prices are linked also to

the economic cycle. Since the latter is less volatile than trading activity, long-

term returns of stocks are less volatile as well. The same reasoning could be

applied to bonds, while it is not valid for currencies since these are a trading

market only.

Summing up all the features of the Fractal Market Hypothesis, we know that:

1. The market is stable when investors have many different investment
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horizons, assuring then enough liquidity for traders.;

2. Information is valued according to the investment horizon of the in-

vestor, implying that at any one time prices may not reflect all available

information but only the information important to that investment hori-

zon. Short-term investors rely more on technical analysis and factors,

while long-term investors prefer fundamental analysis and economic

information;

3. Markets become unstable when fundamental information become ques-

tionable and long-term investors lose faith and stop behaving as such:

if this occurs, there is no one offering liquidity to short-term investors;

4. Securities with no tie to the economic cycle have no long-term trend,

and trading and short-term information will dominate.

No assumptions are done about memory of prices, unlike in the EMH. Then,

not only short-term memory but also long-term memory can exist, and can

be spotted using adequate tools such the Rescaled Range Analysis.

5.2.1 An example of market reaction

A concrete example of this previously described situation of uncertainty can

be found observing the futures3 on the two main indices of United States,

the Dow Jones Industrial Average and the S&P 500 already mentioned. In

particular, at the end of November 2019 they were both quite stable and

3A future contract is an agreement between two parties to buy or sell an asset at a certain
time in the future for a certain price. These instruments are derivative contracts, and are
normally traded on an exchange. To make trading possible, the exchange specifies certain
standardised features of the contract. For further details, see J. C. Hull - "Options, Futures,
and Other Derivatives", Prentice Hall (2000).
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actually they seemed to be in a bullish phase. Then, on the first days of

December, President of U.S.A. Donald Trump published a tweet4 in which he

announced the restoration of all the tariffs on steel and aluminium imported

in U.S.A. from Argentina and Brazil. Furthermore, the next day he also

declared that the negotiation of tariffs on imports from China will probably

be delayed after the Presidential Elections that will hold at the end of 2020.

Financial markets instantly reacted to Trump’s declarations, carrying out

a sharp fall in both the two days: long-term investors probably panicked

and immediately started selling, and consequently both the indices dropped

significantly. Then, after some days the situation came back to normality,

and the two indices returned to pre-announcements levels.

Figure 5.1: Effect of President Donald Trump declarations on DJIA and S&P
500 indices futures

It is possible to see from the above image that both the drops on the Dow

4See President Donald Trump’s post on Twitter.

https://twitter.com/realDonaldTrump/status/1201455858636472320
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Jones and the S&P 500 were significant, as they were of almost 1000 and 100

points respectively. In terms of percentage, in two days both the futures lost

more than 3%. Then markets realised they overreacted to some news that

were important but not so tragic, and in a few days both the futures came

back to their original levels.

This is a concrete example of market reaction to a bad news: the thought

of possible future problems in world economy instilled fear on both short-

and long-term investors who immediately started selling, making the price

rapidly drop. Then, after some days of uncertainty, market became stable

again and both the futures corrected the loss.
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A fractal trading strategy

6.1 Introduction to trading

Before outlining the trading strategy we are going to use, it is necessary to

do a brief introduction to describe what trading is and which are the tools

necessary to trade efficiently.

We already highlighted the difference between fundamental analysis and

technical analysis, and we know they are both used to have a general

overview of a company or a security. However, this is not the only fea-

ture that creates a distinction between different traders, indeed there are

many more.

6.1.1 Different markets for different investments

First of all, the kind of market, and consequently the kind of security. There

are many different markets in which a trader could choose to invest, but the

main classification is between exchanges and OTC markets:

• Exchanges are organised markets with a specific real location where
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stocks, bonds, commodities1, futures, and options are traded with a

regulation For example, English stocks are traded in the London Stocks

Exchange, and American futures are traded in the Chicago Mercantile

Exchange. Products traded on the exchange must be well standardised,

with pre-defined quantities, quality, and identity.

• OTC (short for Over The Counter) markets are online regulated mar-

kets, in which two parties trade directly without the supervision of

an exchange. OTC trading, as well as exchange trading, occurs with

commodities, financial instrument, and derivatives of such products, in

particular interest rates, FOREX (short for FOReign EXchange), stocks,

and commodities. OTC markets do not have limitations on quantity

and quality.

It is then clear that investors have to choose the markets in which they want

to operate depending on what they want to trade, since not every market

trades everything. Furthermore, there are some additional limitations for

some specific markets. For example, a private trader cannot simply decide

to trade on futures since there are some specific requirements that one needs

to meet in order to be allowed to trade futures. Hence a private trader

who wants to invest on futures can either go to his bank and ask to execute

the trade for him, or he can trade on a CFD (Contract For Difference) on

1In economics, a commodity is an economic good or service that has full or substantial
fungibility, meaning that the market has no regard to who produced the commodity but
treats instances of the good as equivalent. Most commodities are raw materials, agricultural,
or mining products, such as sugar, rice, wheat, or iron ore. For further details, see J. C. Hull -
"Options, Futures, and Other Derivatives", Prentice Hall (2000).
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the desired future2. In the latter case, the trader is no longer investing on

a regulated future but has a contract with a private broker in a Over The

Counter market.

6.1.2 Investment horizon and indicators

Another fundamental characteristic that make a distinction between various

investors is the investment horizon, as already outlined beforehand. De-

pending on what kind of investment one wants to do, some instruments are

better indicated than others. For example, a person who wants to invest in a

company because he wants to financially support that company and believes

its value will grow in the future should think of using stocks of that firm. On

the other hand, a private day-trader who simply wants to speculate and take

profits from price changes could consider to trade CFDs.

As already outlined when explaining Peters’ FMH, time horizon of invest-

ment affect not only the kind of financial instrument used by the investor

but also the analysis he uses to evaluate investment opportunities. Indeed,

traders with short-term investment horizon would prefer technical analysis,

while investors with longer perspectives would prefer fundamental analysis.

This distinction leads to another important feature that characterise both

kind of investors: indicators.

Indicators are mathematical tools used to assess a company (or a security)

under a financial and statistical point of view. Indicators can be essentially

2In finance, a Contract For Difference (CFD) is a contract between two parties, typically
described as "buyer" and "seller", in which the buyer pays an interest rate to the seller in
exchange for the return of the underlying.
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divided in two categories: economic indicators and technical indicators.

• Economic indicators: these are statistics about an economic activity,

and allow analysis of economic performance and predictions of future

performance. Economic indicators include various indices, earning

reports, and economic summaries. Thus, it is obvious that this kind of

indicators is mainly used by fundamental analysts. Examples of eco-

nomic indicators are the consumer price index and the gross domestic

product.

• Technical indicators: these are mathematical calculation based on his-

toric markets data such as price and volume, and their aim is to forecast

financial markets direction. These indicators are mainly used by techni-

cal analysts who want to identify patterns that the price will probably

trace on the chart. There are many technical indicators that had been

developed over the years, and new variants continue to be developed

by traders with the aim of getting better results. Examples of technical

indicators are the Average directional movement index (ADX) devel-

oped by J. Welles Wilder in 1978 and the Bollinger Bands developed by

John Bollinger in the ’80s.

6.2 The trading strategy

The trading strategy we are going to define later has a short-term investment

horizon since its aim is to speculate on price movements, and the time inter-

val between two consecutive price observation is half-an-hour long. It is clear

then we are going to use technical analysis to take investment decisions, and
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in particular we are going to use the MH (Moving Hurst), a new indicator

developed by two Czech scholars which will be described in detail later.

Simultaneously, we will show profit results that could be obtained using

three further trading strategies: the first one using the MACD (Moving Aver-

age Convergence/Divergence) indicator, the second one using two different

moving averages, and the third one using the CCI (Commodity Channel

Index) indicator. All these three strategies will be used as benchmarks to

compare the performance of the Moving Hurst with trading strategies using

more traditional indicators.

We are now going to describe the mathematical construction of MACD, CCI,

and MH indicators.

6.2.1 Moving Average Convergence/Divergence

To correctly define the MACD indicator, it is necessary to first introduce the

EMA (Exponential Moving Average). As the name suggests, it is a moving

average calculated on the last n observations, where n is chosen, but it is

slightly different from the SMA (Simple Moving Average). While the SMA is

computed as the mathematical average of the last n, so simply as

SMAt = 1
n

n−1∑
i=0

Pt−i (6.1)

the EMA (also known as EWMA, Exponentially Weighted Moving Average)

applies weighting factors which decrease exponentially, giving more weight

to recent observations and less weight to obvservations far in time. EMA can
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be calculated recursively using the following formula:

EMAt =
(
Pt ·

2
1 + n

)
+ EMAt−1 ·

(
1− 2

1 + n

)
(6.2)

where 2
1+n is the smoothing factor. So, since to compute the current EMA the

previous EMA is needed, after the first n observation the SMAn is computed,

therefore having EMAn = SMAn. Then, from the following observation it

will be used (6.2) to compute EMAn+1, EMAn+2 and so on.

Now it is possible to define the MACD indicator. First of all, it is necessary

to compute two EMAs, usually on closing price: a “fast” EMA on 12 observa-

tion, and a “slow” EMA on 26 observation. The difference of these two series

originates the MACD line proper. Then, the EMA of the MACD series is

computed, and it originates the so called “signal line”. Finally, the difference

between the MACD line and the signal line originates the divergence series,

that is the only one represented with bars in the chart, while others are

simple lines.
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Figure 6.1: Example of MACD construction

The lengths of the moving average windows we have employed are the

most commonly used values, since when having daily observations and the

old working week used to be 6-days these numbers represent respectively

two weeks, one month, and one and a half week. Now the working week

is 5-days long and many investors changed the default numbers to more

reactive values such as MACD(5, 35, 5), but the classic MACD(12, 26, 9) is

still widely used.

The technical interpretation of the MACD indicator is pretty simple: it

generates a buy-signal when the MACD line crosses up through the signal

line (bullish crossover, also called golden cross), and a sell-signal when the
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MACD line crosses down through the signal line (bearish crossover, also

called devil cross). Some traders also attribute special significance to the

MACD line crossing the zero axis, but we will not consider in a particular

way this event.

The MACD indicator is usually used together with other indicators like the

RSI (Relative Strength Index)3, but it could also be used alone, and we will

opt for this alternative.

6.2.2 Commodity Channel Index

The Commodity Channel Index (CCI) is an indicator developed by Donald

Lambert in 1980. It has been originally developed to identify cyclical trends

in commodities’ markets, but its popularity grew over the years and now it

is widely used in many different markets.

The calculation is pretty simple: it is computed as the difference between the

typical price and its simple moving average, divided by the mean absolute

deviation of the typical price times a constant:

CCIt = ptypt − SMAn(ptyp)
0.015 ·MADn(ptyp)

(6.3)

where the typical price at time t is computed as

ptypt = phigh + plow + pclose
3 (6.4)

and SMAn(ptyp) is the Simple Moving Average of typical prices computed on

3The Relative Strength Index (RSI) is a technical indicator developed by J. Welles Wilder
intended to chart the current and historical strength or weakness of a stock or market based
on the closing prices of a recent trading period. For further details, see J. Welles Wilder -
"New Concepts in Technical Trading Systems", Trend Research, Pristine (1978).
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a period of n days. Furthermore, the mean absolute deviation MADn(ptyp) is

computed as

MADn(ptyp) = 1
n

n−1∑
i=0
|pt−i − SMAn(ptyp)|. (6.5)

The constant in formula (6.3) had been set to 0.015 from Lambert to ensure

that approximately 70 to 80 percent of CCI values would fall between -100

and +100, even though this percentage depends also on the number of period

used.

Figure 6.2: Example of CCI construction

It is really simple to technically interpretate the value of the CCI indicator:

when it produces a value greater than 100 it means the security has reached
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an overbought level, while when it produces a value smaller than -100 it

means the security has reached a oversold level. Thus, the trading strategy

consists in buying the security when the CCI exceed 100 and sell it when

it returns lower than this value, and on the other hand short-selling4 the

security when the CCI decreases below -100 and buy it back when it returns

higher than this level.

The most commonly used value for the CCI parameter is 20, but if used

alone this indicator generates too many signals, so we decided to smooth the

resulting plot of CCI setting the parameter to 50 and consequently generating

less investment signals.

6.2.3 Moving Hurst

Many scholars and many traders over the years tried to develop trading

strategies based on the Hurst exponent and on the concept of long memory

in financial markets, but not many concrete and valid application were found.

Among the few ones that came to light, the one developed by the Czech

scholars Petr Kroha and Miroslav Škoula seems quite interesting. While

the majority of other scholars used the Hurst exponent in its classical inter-

pretation (a tool to identify the presence of long-term dependence between

observations), Kroha and Škoula took advantage of the relationship it has

with the fractal dimension. In simple terms, they linked the variation of

fractal dimension to the change in direction of the price trend, and use this

4The definition of short-selling will be provided later.
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connection to predict and identify trend inversions. In particular5:

“The main idea of our approach is that changes in fractal dimension

of a time series, which describe the history of prices, invoke changes in

behavior of investors and traders. They buy or sell, and the feedback can

be either negative, i.e., the fluctuation of prices decreases (a trend appears

or continues), or positive, i.e., the fluctuation of prices increases.”

To better understand the process that led them to develop this technical

indicator, it is appropriate to first describe their point of view on financial

markets and price changes.

They explicitly declare they follow ideas of Peters’ Fractal Market Hypothesis,

though they also delineate their point of view on markets. In particular, they

state that financial markets can be seen as a complex mixture of deterministic

chaotic systems and stochastic non-linear systems. Chaotic systems are

deterministic because, although being extremely dependent on the initial

conditions, it is possible to predict their final state knowing the equations

that regulate the entire system. The term “chaotic” refers to the unknown

equations that describe the system, but it does not affect the fact that it is

totally predictable. On the other hand, stochastic systems are affected not

only by small differences of input parameters but also by unpredictable

random external events having unpredictable impact on system behaviour.

These systems are indeterministic because their rules of behaviour involve

probabilities.

5For this and next quotes, see P. Kroha, M. Škoula - "Hurst Exponent and Trading Signals
Derived from Market Time Series" (2018)
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"Processes behind markets have their weak deterministic component

[. . . ], but they have a strong built-in randomness component, because

the main changes are reactions on unpredictable, random events in the

world, e.g. volcano eruption, terrorist attack on World Trade Center,

floods in Thailand, some political decision.

Additionally, compared with deterministic chaotic systems in physics

[. . . ], markets are nonlinear feedback systems, because they contain a

component including psychology of human investors called behavior

finance. This component brings reflexivity into the system, i.e., circular

relationship between cause and effect. For example, when we would

predict weather very exactly, weather were not change because of it. On

the other hand, a well-known, precise market prediction would change

markets completely."

The stochastic component cannot be predicted, so their work focuses on the

chaotic part of financial markets. In particular, they suppose that chaotic

properties can react before prices change, meaning that a signal of a future

reverse in the trend followed by the price of the security can be spotted before

it actually happens. They focused on predicting changes on trends looking at

changes in fractal dimension as previously stated. To do so, they developed a

new indicator they called MH (short for Moving Hurst) which simply consists

in the difference between two Hurst exponents, one “slow” and one “fast”,

computed on closing prices. When this indicator performs a golden cross on

the zero line, it generates a buy-signal, while when it performs a devil cross

it generates a sell-signal.
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After many optimisations, they found that the best profit results were ob-

tained using 16 observations for the “fast” Hurst exponent and 32 observa-

tions for the “slow” one. The trading strategy is then so defined:
(H32 −H16)t−1 < 0 ∧ (H32 −H16)t ≥ 0 ⇒ buy-signal

(H32 −H16)t−1 ≥ 0 ∧ (H32 −H16)t < 0 ⇒ sell-signal.

Figure 6.3: Application of Moving Hurst on DJIA. Red lines are sell-signals,
green lines are buy-signals.

It is important to remind that this indicator, altough being computed calcu-

lating the Hurst exponent which measures long-term memory, is not based

on the classical meaning of H. Indeed, it does not try to find cycles in the past

observations of the time series, but instead uses the relationship between the

Hurst exponent and the fractal dimension to try to predict changes in trend
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before they happen. Hence for this reason Kroha and Škoula applied this

indicator also to short-term trading even though it uses parameter that are

usually calculated to identify cycles in the long-term.

This indicator, as well as the MACD and the CCI, could be used together

with other indicators to obtain better results. However, in our analysis it will

be employed alone for the sake of simplicity.
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Technical application

7.1 Data input

We have described the indicators we are going to use and briefly introduced

the trading strategy we will adopt, so it is now necessary to apply them to

real past data. The data we are going to use are closing prices of futures on

four american indices and from two currencies couples1. Observations are

taken every thirty minutes from 00:00 to 24:00 for the following futures:

• Dow Jones Industrial Average (YM)

• S&P 500 (ES)

• Nasdaq 100 (NQ)

• S&P 400 MidCap (MC)

• Euro FX (6E)

• British Pound (6B)

The two currencies are coupled with the American dollar, and the symbols

1In trading, a currency couple refers to the security on the exchange rate between two
currencies.
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for these futures reflects the ones used in the Chicago Mercantile Exchange,

one of the main futures markets. Observations for every future starts on

the beginning of 2009 (except for the British Pound, which starts on 19th

November 2010 due to missing data), and end on 16th October 2019, so they

cover a period of a little more than ten years.

From To Observations
Dow Jones Industrial Average 2009-01-02 2019-10-16 128483

S&P 500 2009-01-02 2019-10-16 128588
Nasdaq 100 2009-01-02 2019-10-16 128536

S&P 400 MidCap 2009-01-02 2019-10-16 111304
Euro FX 2009-01-02 2019-10-16 128720

British Pound 2010-11-19 2019-10-16 105993

Table 7.1: Summary of analysed time series

The main trading strategy more in detail will consists in a continuous se-

quence of opening and closure of positions depending on the value of the

Moving Hurst. So, after identifying the first cross, the strategy opens a long

position in case a golden cross happened, or a short position in case a devil

cross happened2. Then, when a golden (devil) cross happen, the open short

(long) position is closed and a new long (short) position is opened, both at

the current closing price. Eventually, any open position is closed at the last

observation.

To compute the MH indicator, five different methods are adopted in order to

highlight the performance differences between the various alternatives:

2In trading, opening a long position means buying the instrument object of the trade,
while opening a short position means short-selling the instrument. Short-selling is a trading
practise that allows the investor to sell an instrument he does not own with the obligation
of buying it back later.
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• Fractal dimension (Fd): this is the only method that compute the fractal

dimension and uses equation (4.6) to get the value of Hurst exponent.

Among the possible methods to compute the fractal dimension of the

given time series, the box-counting (or Minkovski-Bouligand) method

has been chosen;

• Simplified Hurst (Hs): this method uses a simpler version of the R/S

Analysis in which no sub-periods are computed and the Hurst expo-

nent is computed simply as H = ln(R/S)/ ln(N);

• Corrected Hurst (Hrs): the classical R/S analysis to compute the Hurst

exponent;

• Empirical Hurst (He): a corrected version of the classical R/S analysis

which calculates all the exact divisors of the number of observations

and computes a more precise Hurst exponent;

• Corrected Empirical Hurst (Hal): the most precise way to compute

the Hurst exponent, derived from Anis and Lloyd work, which starts

from the Empirical Hurst and considers also the expected R/S using

the following formula:

Hal =
He ·

√
d·π
2

E[Rn/Sn] (7.1)

where d is the number of divisors for the evaluated number of observa-

tions, and E(Rn/Sn) is given by

E[Rn/Sn] =
(
n · π

2

)− 1
2
·
n−1∑
r=1

√
n− r
r

(7.2)
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if n > 340, otherwise by

E[Rn/Sn] =
Γ
(

1
2(n− 1)

)
√
π · Γ

(
1
2n
) · n−1∑

r=1

√
n− r
r

. (7.3)

where Γ(x) is the Euler gamma function defined as

Γ(z) =
∫ ∞

0
xz−1e−xdx, R(z) > 0 (7.4)

with R(x) meaning the real part of the complex number x.

The one just described is the main strategy, which operates using the Moving

Hurst indicator only. Additionally, to every time series of future prices two

similar strategies of continuous buy and sell signals will be applied as a

benchmark.

The first one relies on the MACD indicator previously described using stan-

dard values for its parameters.

The second one uses two different Exponential Moving Averages, one fast

and one slow considering a window of 12 and 26 observations respectively,

similarly to the MACD. The technical interpretation of these two EMAs can

be compared to the one regarding the MACD line and the signal line: when

the fast EMA performs a golden gross on the slow EMA the strategy gener-

ates a buy-signal, while vice versa when the fast EMA performs a devil cross

on the slow EMA it generates a sell-signal. Lastly, an additional strategy

considering the CCI indicator will be used as a benchmark. This strategy

does not continuously alternate long and short positions since it is possible

to have periods without open positions if the CCI oscillates in the [-100, 100]

range, as well as two or more consecutive long or short operations.
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7.2 Implementation and results

The following graphs show the evolution of profits for each instrument,

applying the previously described trading strategy for each different way

of computing the Hurst exponent, plus the benchmark strategies using

the standard MACD indicator MACD(12, 26, 9), the two moving averages

EMA(12) and EMA(26), and the CCI(50). Profits are expressed simply as price

variation between opening and closure of the position, so values shown in

the graphs are “absolute” and do not depends on the amount invested in

operations. For the two currencies, profits are multiplied by 1000 in order to

get non-decimal price variations.

7.2.1 Performance of Dow Jones Industrial Average

Net profit # trades % wins Avg win Avg loss Avg trd
Fd 13983.92 54988 48.55 19.24 -18.92 0.25
Hs 17698.08 7484 49.73 51.53 -48.04 2.36

Hrs 19395 15922 49.47 36.46 -34.61 1.22
He 5770 16924 49.28 36.52 -36.03 0.34

Hal 6773 18714 49.07 35.05 -34.32 0.36
MACD 5816 9566 33.24 74.11 -36.39 0.61

MA 959 4307 28.37 122.62 -48.51 0.22
CCI 2418.04 7006 29.17 62.76 -25.99 0.35

Table 7.2: Trading results for the Dow Jones Industrial Average

Profits achieved by the trading strategy applied to the Dow Jones Industrial

Average are positive for every different way to compute the Hurst exponent.

Furthermore, also the benchmark strategies lead to a gain at the end of

the considered time period, although they all had negative profits most of
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the time. In particular, the MACD indicator seems to provide the better

results among the three alternatives, ending in a profit that is comparable

to profits obtained using Empirical Hurst and Corrected Empirical Hurst,

while strategies using Moving Averages and CCI lead to positive but much

smaller gains.

Considering only the five main strategies, the best performing strategy is the

one using the classical R/S analysis, while the worst one is the one based on

the Empirical Hurst.

Figure 7.1: Profit on the Dow Jones Industrial Average
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7.2.2 Performance of S&P 500

Net profit # trades % wins Avg win Avg loss Avg trd
Fd 1151.65 55231 46.52 2.33 -2.28 0.02
Hs 1562.25 7314 49.12 6.04 -5.75 0.21

Hrs 2283.3 15758 48.93 4.3 -4.17 0.14
He -1085.55 16834 47.71 4.29 -4.31 -0.06

Hal -225.15 18768 47.66 4.13 -4.08 -0.01
MACD 36 9584 32.99 8.58 -4.31 0

MA -433.75 4391 27.99 13.92 -5.6 -0.1
CCI 287.8 6995 28.23 7.44 -3.01 0.04

Table 7.3: Trading results for the S&P 500

Profits on the S&P 500 are quite various, ranging from -1000 to more than

2000 depending on the chosen computation algorithm. On the other hand

the benchmark strategies realises restrained losses most of the time, and at

the end the ones using the MACD and the CCI manage to achieve marginal

gains, while the one using Moving Averages ends in a discrete loss.

Again, the higher profit is obtained using the strategy with H computed

through the classical R/S analysis, while the most serious loss is originated

by the strategy which uses the Empirical Hurst exponent.
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Figure 7.2: Profit on the S&P 500

7.2.3 Performance of Nasdaq 100

Net profit # trades % wins Avg win Avg loss Avg trd
Fd -448.5 54972 48.38 5.57 -5.6 -0.01
Hs 4414 7818 49.78 15.2 -14.39 0.56

Hrs 2006.5 16062 49.38 10.59 -10.52 0.12
He -2404.25 17080 49.04 10.65 -10.89 -0.14

Hal -2403.75 18812 49.3 10.12 -10.44 -0.13
MACD -119 9512 32.18 22.88 -11.01 -0.01

MA -825 4352 27.94 37.06 -14.68 -0.19
CCI 1722 6911 28.72 19.66 -7.75 0.25

Table 7.4: Trading results for the Nasdaq 100

For the Nasdaq 100 the range between the best and the worst performing

strategies is even wider than before, varying from almost -2500 to slightly

less than 4500. Benchmark strategies, after being in constant loss for almost
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all the time, in the last years exhibit a significant rise in profits, managing to

almost break even the starting value and even ending in a substantial gain

in the case of CCI.

Here the best performing strategy is the one using the Simplified Hurst,

while the Corrected Hurst only realises less than half of Simplified Hurst

strategy’s profit. On the other hand, Empirical Hurst is the worst performing

strategy, along with the Corrected Empirical Hurst.

Figure 7.3: Profit on the Nasdaq 100

7.2.4 Performance of S&P 400 MidCap

The only strategies which realise profits on the S&P 400 MidCap are the ones

using the Simplified Hurst and the Corrected Hurst. All the other strategies

end up with significant losses, as well as all the benchmark strategies, with
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Net profit # trades % wins Avg win Avg loss Avg trd
Fd -1133.7 47895 47.88 1.97 -1.98 -0.02
Hs 781.2 6306 50.03 5.33 -5.22 0.12

Hrs 542.5 13765 49.07 3.72 -3.63 0.04
He -888.5 14369 49.05 3.73 -3.82 -0.06

Hal -872.3 16136 48.85 3.56 -3.61 -0.05
MACD -895.4 8425 33.07 7.42 -3.86 -0.11

MA -340.2 3833 28.18 12.27 -4.96 -0.09
CCI -266.6 6381 29.9 5.68 -2.53 -0.04

Table 7.5: Trading results for the S&P 400 MidCap

the MA and CCI ones performing much better than the MACD one.

Here the best strategy is the Hs one, gaining a little more than the Hrs one,

while the worst one is the one using the fractal dimension, which loses

slightly more than the He and the Hal strategies.

Figure 7.4: Profit on the S&P 400 MidCap
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7.2.5 Performance of Euro FX

Net profit # trades % wins Avg win Avg loss Avg trd
Fd -136.6 55390 47.67 1.06 -1.06 0
Hs -317.9 7297 49.77 2.67 -2.85 -0.04

Hrs -323.3 15326 48.97 1.92 -1.98 -0.02
He 52.8 16521 48.8 1.99 -1.98 0

Hal 255.4 18517 48.89 1.91 -1.89 0.01
MACD -325.8 9816 33.65 3.8 -2 -0.03

MA -1.4 4367 29.88 6.11 -2.62 0
CCI -648.05 7311 27.83 3.08 -1.35 -0.09

Table 7.6: Trading results for the Euro FX

For the Euro FX strategies’ behaviour is totally the opposite compared to

previous indices. Here the Hs and Hrs strategies, along with the Fd one and

the benchmark strategy using the MACD, leads to moderate losses, while

the Empirical Hurst and above all the Corrected Empirical Hurst result in

reasonable profits. The benchmark strategy using the MA ends with a profit

of almost zero, while the CCI one is the worst strategy at all, having negative

profits since the beginning.

Furthermore, it is possible to notice that all these series have much more

jagged paths rather than the previous analysed ones.
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Figure 7.5: Profit on the Euro FX

7.2.6 Performance of British Pound

Net profit # trades % wins Avg win Avg loss Avg trd
Fd 430.2 45175 47.8 1.1 -1.1 0.01
Hs -160.6 6098 48.18 2.87 -2.85 -0.03

Hrs -689.2 13179 47.61 1.99 -2.02 -0.05
He 160.9 13743 48.29 2.09 -2.03 0.01

Hal 163.1 15241 48.13 2.01 -1.95 0.01
MACD -721.8 8045 32.67 4.01 -2.11 -0.09

MA 147.6 3552 28.86 6.67 -2.67 0.04
CCI -412.9 5934 27.67 3.37 -1.43 -0.07

Table 7.7: Trading results for the British Pound

Finally, for the British Pound the behaviour is similar to the Euro FX. Here

again both the Simplified and Corrected Hurst do not realise profits, as well

as the MACD and the CCI strategies which are in continuous and constant
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loss. On the other hand, the strategy using the Fractal Dimension is the

only one which almost always has a positive profit, as well as being the best

performing one. The MA strategy ends with a positive profit too, but for

more than half the considered time interval had discrete losses, recovered

only in the last years.

Figure 7.6: Profit on the British Pound

7.3 Analysis of results

Talking about the four indices, it is interesting to notice that the best per-

forming computation methods are the ones using either the Simplified or the

Corrected Hurst exponent, while the others do not perform very well.

In particular, the two specified methods are the only one which always gen-

erate a profit at the end of the considered time period. On the other hand,
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the strategies using the Empirical Hurst and the Corrected Empirical Hurst

always leads to substantial losses but in the case of the Dow Jones Industrial

Average, in which they are the worst performing ones anyway. The strategy

using the Fractal Dimension is somehow halfway in performance, ending

with a significant profit when applied to the Dow Jones Industrial Average

and the S&P 500, and in a moderate or considerable loss when applied to the

Nasdaq 100 and the S&P 400 MidCap respectively.

The matter is different for what concerns the two analysed currency couples.

Here the Simplified Hurst and the Corrected Hurst not only lead to consistent

losses, but also in both cases are the worst performing methods among

the five possible choices. Instead the Empirical Hurst and the Corrected

Empirical Hurst, that for indices are always the worst performing ones, here

behaves quite well leading to interesting profits. Finally, again the strategy

using the Fractal Dimension places midway, realising a marginal loss on

the Euro FX and the higher profit among all the five alternatives on the

British Pound. However, the MH indicator does not seem to be a good

trading strategy for currencies, as it is possible to see looking at the graphs.

While on indices profits have kind of monotone trends (either upwards or

downwards), on currencies they have much more volatility and their time

series seem to change direction quite frequently. This aspect is much more

visible on the Euro FX graph, which highlights the jagged patterns followed

by profit time series. Hence, looking at the plots, profits on currencies seem

to be much more “unstable” than profits on indices, so applying this strategy

in currency markets is not recommended in our opinion.
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Finally, looking at the performance of the benchmark strategies, it is clear

that they are always outperformed by the MH indicator.

More in detail, the MACD trading strategy always leads to lower or higher

losses, or to a breakeven at most, with the only exception that occurs when

applied to the Dow Jones Industrial Average.

The same can be said for the strategy considering the two Moving Averages

does not perform particularly well when applied on indices. On the other

hand, when applied to currencies it behaves a little better, especially with

the British Pound, but still does not stand out too much from the others.

Finally, the CCI strategy leads to a profit when applied to all the indices but

the S&P 400 MidCap, although the gains are still smaller compared to the

ones obtained by other strategies using the MH indicator. Vice versa, when

applied to currencies this strategy leads to consistent losses, especially on

the Euro FX.

Notice that these strategies used as a benchmark were built using specific

values for their parameters, but can lead to very different results when these

values are changed. So, it is necessary to specify that the efficiency of these

strategies may be improved performing an optimisation process for the

parameters considered.
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Chapter 8

Conclusions

This dissertations is mainly focused on demonstrating that the classical

Efficient Market Hypothesis, although being still widely used worldwide, is

partly outdated, and other valid and interesting theories could be considered.

Among the various alternative models proposed over the years by many

scholars, we have chosen to focus on the Fractal Market Hypothesis developed

by Edgar E. Peters. Then, before presenting in details the FMH, we made

a brief introduction to the world of fractals describing their characteristics

and properties. Later, we illustrated thoroughly Peters’ theory analysing all

its features and highlighting the differences from the classical EMH. Finally,

considering the characteristics and the constraints of the FMH, we developed

a trading strategy based on a technical indicator called Moving Hurst. To

compute the MH we followed the procedure proposed by Petr Kroha and

Miroslav Škoula calculating the Hurst exponent in five different ways, and

we applied the same trading strategy to six different futures, two American

indices and two currency couples.

87
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Results were discussed and analysed, and the Moving Hurst indicator su-

periority compared to other classical indicator has been proved for every

security. However, better results were obtained when applied to indices

rather than currency couples, that exhibited more jagged patterns of profits.

This instability over time suggests that the MH indicator may not be the

best indicator for currencies, or at least that could be used along with other

techinical indicators. Hence, further analyses are required in order to find a

better application of the Moving Hurst to currency couples.

It is also important to precise that all these strategies do not take into accounts

transaction fees. These can significantly affect the final profit, especially

considering the great number of operations completed for the strategy using

the Fractal Dimension. For example considering the Dow Jones Industrial

Average, which is best performing index among the instruments considered,

between the beginning and the end of the analysed time period there are 3939

days. Considering 250 working days per year and computing a proportion,

we found that there are about 2700 working days in this period of time.

Hence, having almost 55000 operations in this time interval, it means that the

strategy completes more than 20 trades per day. This is an extremely high

number for a private investor, who usually suffers prohibitive transactions

fees, and it makes this trading strategy unsustainable unless the investor has

particular agreements on fees and transactions costs with his broker.

This leads to the possibility of changing the parameters of the strategy, and

in particular the number of observations considered by the “fast” and the
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“slow” Moving Hurst. Considering again the Dow Jones industrial Average,

it is sufficient to slightly change the values of these parameters to completely

change the output. For example, the following are profit results of the trading

strategy that differs from the previously analysed one just for the value of

the “fast” Moving Hurst, which now is 18 instead of 16 (MACD strategy

remained the same).

Net profit # trades % wins Avg win Avg loss Avg trd
Fd 11632.92 53202 48.61 19.73 -19.53 0.22
Hs 17200.08 8632 50.06 48.7 -46.44 1.99

Hrs 20285 16896 49.38 35.34 -33.57 1.2
He 8481 16324 49.33 37.62 -36.78 0.52

Hal 2854 17914 49 35.73 -35.21 0.16
MACD 5816 9566 33.24 74.11 -36.39 0.61

MA 959 4307 28.37 122.62 -48.51 0.22
CCI 2418.04 7006 29.17 62.76 -25.99 0.35

Table 8.1: Trading results for the Dow Jones Industrial Average

It is possible to see that patterns are slightly different for all the computation

methods, but profit results do not change too much considering that the time

interval is almost 11 years long.
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Figure 8.1: Profit on the Dow Jones Industrial Average

However, doing a little change in both the parameters, and setting for exam-

ple to 20 and 40, results are totally different.

Net profit # trades % wins Avg win Avg loss Avg trd
Fd 4152 50033 48.95 20.18 -20.4 0.08
Hs 18616 6724 49.97 58.12 -53.72 2.77

Hrs 14176 13568 50.22 39.68 -39.54 1.04
He 17672 14049 49.99 41.13 -39.97 1.26

Hal 17860 15447 50.16 38.75 -38.15 1.16
MACD 5816 9566 33.24 74.11 -36.39 0.61

MA 959 4307 28.37 122.62 -48.51 0.22
CCI 2418.04 7006 29.17 62.76 -25.99 0.35

Table 8.2: Trading results for the Dow Jones Industrial Average

Now the strategies using the Empirical Hurst and the Corrected Empirical

Hurst are no longer the worst performing ones. Indeed, only the Simplified



91

Hurst one performs a little better, while the Hrs and above all the Fd strategies

perform worse than before.

Figure 8.2: Profit on the Dow Jones Industrial Average

Further analyses should be done before actually applying this indicator

to a real trading strategy, but the results obtained for the selected indices

are certainly very interesting. A complete strategy optimization would be

the next step to follow in order to produce a valid and efficient indicator,

optimising not only the values of the parameters but also the time interval

between two different observations. Eventually, for what concerns currency

couples, doing the same optimisation would be useful not only to identify

the best parameters combination but also to evaluate whether it is worth or

not to apply this indicator on currencies time series.
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