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Introduction 

Portfolio selection is a cornerstone of finance and economics. The problem 

consists in the minimization of a risk measure, while taking into account a series 

of constraints. Portfolio selection approach was introduced by Markowitz in 1952. 

His model was the first one to face the problem of how to efficiently invest a given 

amount of capital. Known also as Modern Portfolio Theory, Markowitz model 

revolutionized financial market investments. However, this model does present 

some limits and a set of assumptions rather utopic in the real world. 

In this dissertation we will create a portfolio model trying to include some of the 

aspects that were avoided at that time, as for instance the presence of transaction 

costs and the allowance to buy or sell only determined quantities of assets. 

Furthermore, some model’s assumptions will be modified, in particular the 

concept of risk measure. According to the most recent literature, in fact, only the 

so-called coherent risk measures can be employed as real financial risk measures. 

The most common risk measures, that have been used as alternatives to variance, 

are Value-at-Risk (VaR) – even though not being coherent – and Expected Shortfall 

(ES) or Conditional Value-at-Risk (CVaR). 

The risk measure chosen for the portfolio model developed in this work belongs 

to the class of entropy-based risk measures, is a coherent risk measure introduced 

by Ahmadi-Javid1 and is called Entropic Value at Risk (EVaR). All the above-

mentioned measures of risk will be accurately described and discussed later in the 

dissertation. 

Conversely to what proposed by Markowitz, the model developed in this work will 

not be based on the mean-variance criterion, but rather on mean-entropic VaR. 

Moreover, a system of characteristic Markowitz model’s constraints will be 

 
1 “Entropic Value-at-Risk: A New Coherent Risk Measure”, A. Ahmadi-Javid (See 
Bibliography) 
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applied, as budget constraint and desired minimum return. We will successively 

introduce mixed-integer constraints, useful for managing transaction costs. 

Since obtaining exact results from a constrained minimization problem is highly 

time-consuming, the solution proposed in the present dissertation will be 

metaheuristic-based (the concept of metaheuristic will be discussed in what 

follows): the metaheuristic employed, Particle Swarm Optimization, will not give 

an exact result to the problem, but a good level of approximation. This method 

consists in the employment of a bio-inspired metaheuristic algorithm able to 

search for an optimal solution to the problem, while not exact, exploiting the 

dynamics of exploration of groups of animals in the nature, like birds’ flocks or 

shoals of fish. 

The application of the model will be performed by Matlab and the results will be 

compared with the application in mean-Expected Shortfall of the same portfolio 

selection model. 
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Chapter 1 

Portfolio selection problem 

As well explained by (Constantinides G.M. and Malliaris A.G. 1995), in general a 

consumer, given a certain amount of income, typically faces two important 

economic decisions: the first one consists in deciding how to allocate his or her 

consumption among goods or services; the second one is the decision on how to 

invest among various assets. These two interrelated problems are known as the 

consumption-saving decision and the portfolio selection problem. 

Portfolio selection is one of the most discussed and interesting problems in the 

economics and finance world. Modern portfolio theory finds his pioneer in Harry 

Markowitz, which developed the Mean-Variance portfolio selection model in 

1952. Despite being recognized as one of the cornerstones in the portfolio 

selection problem, Markowitz’s model proved to be too simplistic to represent the 

actual real world and its basic assumptions have been widely contested in recent 

years. 

In this chapter we will give a synthetic but complete description of the Mean-

Variance portfolio selection model by Harry Markowitz and a brief description of 

some of the models that try to overcome its limits. We will then shift our interest 

on the desirable characteristics for a risk measure, closing the chapter focusing on 

the importance of the adoption of a coherent risk measure in this environment. 
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1.1 Markowitz Model 

Almost seventy years ago American economist Harry Markowitz developed a 

model which revolutionized investment the practise and became in the course of 

time one of the pillars of financial economics and Modern Portfolio Theory. His 

Mean-Variance model, rewarded with the Nobel Prize in Economics in 1990, aims 

at selecting a group of assets which have collectively lower risk than any single 

asset on its own. 

1.2 Basic assumptions 

As said previously, the mean-variance analysis has been challenged through the 

years due to the simplicity of the model with respect to the real world. The model 

limitations are given by some strong assumptions on which it relies: 

 

• Investors always maximize the rate of return yielded by their investments; 

 

• Investors are rational and risk-averse2: they are completely aware of all the 

risk underlying an investment and take positions basing their decisions on 

the risk, asking higher returns for accepting higher risk and coherently 

expecting lower return for lower levels of risk; 

 

• Investors make their investment judgements by taking into consideration 

expected returns and standard deviation (risk measure) of returns of the 

possible assets; 

 

• Investments have a single period horizon, meaning that at the beginning 

of the period t the investor allocates her/his wealth among different assets 

 
2 If faced by the decision between two identical portfolios, a risk-averse investor will 
choose the one with the lower risk. 
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and she/he will hold the portfolio until the period t + ∆t, without 

considering the opportunity to reinvest the wealth in a following period; 

 

 

• Under the condition of uncertainty, investors - and more in general, 

individuals - make decisions by maximizing the expected value of an utility 

function of consumption, which is assumed to be increasing and concave; 

 

• Investors’ assets are infinitely divisible. Thus, investors may decide to buy 

or sell a fraction of a share; 

 

• Investors are price-takers, meaning their actions can’t affect the 

probability distributions of returns on the available securities; 

 

• Financial markets are frictionless. Hence, there are no transaction costs, no 

taxes, absence of institutional restrictions, and so on. 

1.3 Markowitz portfolio selection model 

The portfolio selection process may be seen as constituted by three stages: 

 

1. The first stage consists in the identification of appropriate measures for 

measuring the expected    return and risk; 

 

2. The second stage establishes a criterion to identify the “best” portfolios, 

distinguishing between efficient portfolios and non-efficient ones; 
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3. In the third and last stage takes place the selection of a proper portfolio for 

the investor, according to her/his risk aversion. This activity is pursued by 

maximizing the investor’s expected utility function. 

 

1.3.1 Measures of Risk and Return 

The future profitability of an asset is uncertain at the time of the purchase. This 

uncertainty is given by the randomness associated to return, since we do not know 

the future price ex-ante. 

There are some statistical tools which help the investor to manage face the 

uncertainty of the investment: 

 

• The mean of the single-period rate of return. It represents the profitability 

– expected return – of an investment; 

 

• The variance of the single-period rate of return. It represents the risk of an 

investment and it is of course undesirable; 

 

• The correlation between the return of each pair of risky assets. It 

represents the linear dependency between the pair of returns of the 

assets. 

 

Expected value (mean) and variance of individual securities returns can be defined 

as follows: 

Let 𝑋 be a discrete random variable 𝑋 = {(𝑥1, 𝑝1), … , (𝑥𝑖 , 𝑝𝑖), … , (𝑥𝑀, 𝑝𝑀)}, where 

𝑥𝑖 with 𝑖 = 1,… ,𝑀 is the possible return from a given asset, and 𝑝𝑖, with 𝑖 =

1, … ,𝑀, is the probability of occurrence of 𝑥𝑖, with 0 ≤  𝑝𝑖  ≤ 1 for all 𝑖 and 

∑ 𝑝𝑖
𝑀
𝑖=1  =  1. Then: 
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𝐸(𝑋) =  ∑𝑥𝑖𝑝𝑖

𝑀

𝑖=1

 

𝑉𝑎𝑟(𝑋) =  ∑(𝑥𝑖 − 𝐸(𝑥))
2
𝑝𝑖

𝑀

𝑖=1

 

 

Since a portfolio is a set of two or more individual securities, we can now define 

its expected rate of return and its variance. Let 𝑅𝑝 be the portfolio rate of return: 

𝑅𝑝 = 𝑥1𝑅1 +⋯+ 𝑥𝑁𝑅𝑁 = ∑𝑥𝑖𝑅𝑖

𝑁

𝑖=1

 

where 𝑅𝑖 is the random variable representing the return of the 𝑖-th asset and 𝑥𝑖 

the portion of capital in percentage invested on the same asset. Let 𝑟𝑖 and 𝜎𝑖
2 be 

respectively the expected rate of return and the variance of the 𝑖-th asset, with 

𝑖 = 1, … ,𝑁. Then the portfolio expected return and variance can be defined as 

follows: 

 

𝐸(𝑅𝑃) =  ∑𝑥𝑖𝑟𝑖

𝑁

𝑖=1

≔ 𝑟𝑃 

 

𝑉𝑎𝑟(𝑅𝑃) =∑𝑥𝑖
2𝜎𝑖

2

𝑁

𝑖=1

+ 2∑ ∑ 𝑥𝑖𝑥𝑗𝜎𝑖,𝑗

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

= ∑𝑥𝑖
2𝜎𝑖

2

𝑁

𝑖=1

+ 2∑ ∑ 𝑥𝑖𝑥𝑗𝜌𝑖,𝑗𝜎𝑖𝜎𝑗

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

: =  𝜎𝑃
2 
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where 𝜎𝑖,𝑗 = 𝜌𝑖,𝑗𝜎𝑖𝜎𝑗 is the covariance and 𝜌𝑖,𝑗 ∈ [−1, 1] is the linear correlation 

coefficient between 𝑅𝑖 and 𝑅𝑗.
3 

Mean and variance of the portfolio might also be defined with the use of vectorial 

notation: 

o 𝑟𝑃 = 𝑥
′𝑟; 

o 𝜎𝑃
2 = 𝑥′𝑉𝑥. 

where 𝑉 is the usual variance-covariance matrix. 

1.3.2 Mean-Variance Dominance Criterion 

The efficiency criterion proposed by Markowitz for the second stage is the Mean-

Variance Dominance Criterion. It takes into consideration mean, that is the 

expected return, and variance to differentiate between efficient portfolios and 

inefficient ones, leading the investor to seek the lowest variance for a given 

expected return or the highest expected return for a given level of variance. 

 

Definition. Mean-Variance Dominance Criterion. Given two random 

variables 𝑋 and 𝑌, respectively with mean 𝜇𝑋 and 𝜇𝑌 and variance 𝜎𝑋
2 and 𝜎𝑌

2, it is 

possible to state that 𝑋 dominates 𝑌 with respect to the mean-variance criterion 

if and only if the following three conditions hold simultaneously: 

 

1. 𝜇𝑋  ≥  𝜇𝑌 ; 

2. 𝜎𝑋
2  ≤  𝜎𝑌

2 ; 

3. At least one of the previous inequalities is verified in narrower sense. 

 

 
3 If 𝜌 > 0 the return of the two assets move in the same direction and are positive 
correlated; if 𝜌 < 0 the return move in the opposite direction and they are negatively 
correlated; if 𝜌 = 0 there is no relationship between the two assets. 
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It is clear that the criterion introduces a partial basis for comparison since it does 

not allow to discriminate all pairs of portfolios. In fact, it may happen for instance 

that when considering two efficient portfolios, we are not able to determine 

whether one portfolio dominates the other. 

It is possible to state that the set of efficient portfolios, named efficient frontier, is 

constituted by all portfolios which, alternatively, once determined the desired 

level of expected return, minimize portfolio’s risk or, given a certain level of risk, 

maximize the expected return. Rational investors’ choice can fall only on a 

portfolio belonging to this set whereas for every inefficient portfolio there is one 

which, carrying the same risk, can guarantee a greater return or, equivalently, 

having the same expected return, guarantees a lower risk. 

In the case of N assets with random returns, Markowitz formulation for the 

portfolio selection problem can be stated as follows4: 

 

minimize
𝑥

𝑥′𝑉𝑥 

subject to {
𝑥′�̅� =  𝜋
𝑥′𝑒 = 1
𝑥 ≥ 0

 

 

where: 

• 𝑥 is the N-order vector constituted by the portion of wealth 𝑥1, … , 𝑥𝑛 

invested in the 𝑖-th asset of the portfolio, with 𝑖 = 1, 2,… , 𝑛; 

• 𝑉 is the N-order quadratic matrix of variances and covariances5; 

 
4 This formulation is an example of quadratic program, an optimization problem 
constituted by a quadratic function and linear constraints. 
5 Given the symmetric nature of covariances, the matrix is as well symmetric by definition, 
with variances on its diagonal. We assume that the matrix is non-singular: none of the 
assets returns is perfectly correlated with the return of a portfolio composed by the 
remaining assets and none of the assets is riskless. 



 

15 

• �̅� is the N-order vector composed by mean returns 𝑟1, … , 𝑟𝑁 of N assets6; 

• 𝑒 is a N-order unitary vector; 

• 𝜋 is the level of expected return that the investor wishes. 

 

The constraints considered by Markowitz are basic and they can be explained as 

follows: the first one implicates that, in the process of risk minimization, the level 

of expected return desired by the investor and fixed ex-ante 𝜋 must be taken into 

consideration; the second constraint requires that the entire wealth at disposal is 

invested; the last ones imply that the portions of wealth invested in each asset are 

non-negative, in order to avoid short selling7. 

With the aim of determining a unique vector of optimal weights, the following 

statement should be made. 

Theorem. If the variance-covariance matrix 𝑉 is positive definite8 and non-singular 

– hence invertible – and if there is at least one pair of different mean returns, then 

the optimization problem admits a unique solution. 

Notice that the first two linear constraints define a convex set and, being 𝑉 

positive definite, also the function 𝑥′𝑉𝑥 is convex. 

To find the formula for the optimal portfolio given the constraints, we shall start 

from the following lagrangian function: 

 

𝐿 = 𝑥′𝑉𝑥 − 𝜆1(𝑥
′𝑟 −  𝜋) − 𝜆2(𝑥

′𝑒 − 1) 

 
6 It is assumed that not all elements of 𝑟 are equal. Conversely, the entire wealth would 
be invested in the asset with the lowest variance. 
7 Short selling is a particular investment or trading strategy which involve the sale of a 
security not owned by the seller. It is undertaken when the seller has the belief that the 
price of the security will decline or when an investor wants to hedge, placing an offsetting 
position to reduce risk exposure. 
8 A 𝑁 × 𝑁 matrix 𝑉 is positive definite if 𝑥′𝑉𝑥 > 0 for any non-zero 𝑁-vector 𝑥. 



 
16 

 

where 𝜆1 and 𝜆2 are the Lagrange multipliers. 

We can now set equal to zero the partial first derivatives of 𝐿 and set up the 

system: 

 

{
  
 

  
 
𝜕𝐿

𝜕𝑥
= 2𝑥′𝑉 − 𝜆1𝑟

′ − 𝜆2𝑒
′ = 0

𝜕𝐿

𝜕𝜆1
= −𝑥′𝑟 + 𝜋 = 0

𝜕𝐿

𝜕𝜆2
= −𝑥′𝑒 + 1 = 0

 

 

With some computations it is possible to obtain the final unique solution to 

optimization problem: 

 

𝑥 =  
(𝛾𝑉−1𝑟 −  𝛽𝑉−1𝑒)𝜋 + (𝛼𝑉−1𝑒 −  𝛽𝑉−1𝑟)

𝛼𝛾 − 𝛽2
 

where: 

𝛼 = 𝑟′𝑉−1𝑟 

𝛽 = 𝑟′𝑉−1𝑒 = 𝑒′𝑉−1𝑟 

𝛾 = 𝑒′𝑉−1𝑒 

 

The efficient frontier’s analytical expression varies depending on the composition 

of the portfolio: 

➢ Portfolio with N > 2 risky assets: as in the case explained, the frontier 

expression is still represented by a parabola in the mean-variance plane, 
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but the vertex changes depending whether a risk-free asset is considered 

or not. 

➢ Portfolio with N = 2 risky assets: in this scenario the frontier expression is 

particularly affected not only by the possible presence of a risk-free asset, 

but also by the linear correlation coefficient between the two assets. 

1.3.3 Portfolio Selection 

In the third and last stage the proper portfolio for the investor is selected, taking 

into consideration the investor’s risk aversion and knowing that usually all 

investors prefer returns to be high and/or stable, not subject to uncertainty. In 

order to do so, we consider the investor’s expected utility function and we 

maximize it, seeking to obtain from one of the portfolios laying on the efficient 

frontier the greatest utility for the investor. 

In his model, Markowitz adopted the quadratic utility function, described by the 

following equation: 

 

𝑈(𝑅𝑃) = 𝑅𝑃 −
𝑎

2
𝑅𝑃
2 

 

where: 

• 𝑅𝑃 is the random variable representing the return of the portfolio; 

• 𝑎 is a strictly positive coefficient reflecting the investor’s risk aversion: the 

greater is 𝑎, the greater is the investor’s risk aversion. 

 

However, the compatibility between mean-variance criterion and the theory of 

expected utility maximization occurs only in two limit cases: following a 

“subjective” approach, when the utility function of all investors has quadratic 

form, whereas, following an “objective” approach, when the joined probability 
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distribution function of the N assets constituting the portfolio is a multivariate 

elliptical one, independently from the utility function form. 

Hence, it is necessary that the efficient frontier is consistent with the maximization 

of the expected utility. Knowing the diversity of forms that can characterize the 

efficient frontier, such as the variety of possible values that the linear correlation 

coefficient can assume, the determination of the optimal portfolio for a specific 

investor can be formulated as the following constrained maximization problem: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸[𝑈(𝑅𝑃)] 

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜎𝑃
2 = 𝑓(𝑅𝑃) 

 

Concerning this scenario, one of Markowitz’s most significant contribution can be 

considered the concept of diversification in the financial world. 

Definition. Diversification. There is diversification when, allocating wealth at 

investor’s disposal in N > 1 assets, it is possible to exploit the correlation between 

the assets to reduce portfolio risk under the level of the portfolio’s asset with the 

lowest risk. 

Recalling the mathematical properties of the variance, regarding the sum of non-

independent random variables9, it is possible to infer the key role played by the 

linear correlation coefficient. In fact, albeit in the reality of financial markets the 

existence of assets linked together by a linear correlation coefficient of -1 is 

unlikely, it is perceivable how also coefficients with less extreme values can 

participate in the decrease of overall portfolio risk. 

 
9 Given two random variables 𝑋 and 𝑌, the variance of their sum can be defined as 𝜎𝑋+𝑌

2 =

 𝜎𝑋
2 + 𝜎𝑌

2 + 2𝜎𝑋,𝑌 = 𝜎𝑋
2 + 𝜎𝑌

2 + 2𝜌𝑋,𝑌𝜎𝑋𝜎𝑌, with 𝜎𝑋,𝑌 being their covariance, 𝜎𝑋 and 𝜎𝑌  

being respectively the standard deviation of 𝑋 and 𝑌 and 𝜌𝑋,𝑌  being the correlation 

coefficient of the two variables. 
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Referring to the portfolio overall mean return, being a linear combination of its 

single assets’ expected returns, in absence of short selling – as in the case 

previously presented – it has to be included between the lowest and the highest 

of the single assets’ mean returns. Whereas, with the exploitation of short selling 

it is possible to enlarge the invested capital with respect to the initial quantity. In 

terms of portfolio returns this leads to the chance of obtaining a higher return in 

mean in relation to the portfolio’s asset with the highest return. In this case of 

course the greater expected return will come at the price of a higher overall 

portfolio risk. 

The limit of Markowitz model’s low diversification is that, since in the real world 

empiric correlations between assets are rather low, to reduce the overall variance 

the mean-variance criterion often tend to over-weight assets with low variances 

instead of exploiting negative relations between their market price trends. 

1.4 Critics to Markowitz Model 

As mentioned earlier, Markowitz model constitutes a fundamental contribution to 

the present quantitative finance on the subject of portfolio theory. However, the 

assumptions underlying the model which nowadays appear rather simplistic, were 

more suitable at the half of the last century, period in which the model was first 

presented and applied. Hence it seems appropriate discussing the main limits 

faced by the model, concerning its basic assumptions and the type of constraints 

employed. 

Returns distribution: 

The first limit regards hypothesis underlying returns theory. The Normal density 

probability function generally assumed poorly describes financial assets returns in 

the real market. In fact, a general tendency observed in assets returns is negative 

asymmetry in returns distribution. A Normal distribution variable is characterized 

by an asymmetry equal to zero. On the other hand, asymmetry suggests that a 

distribution has its barycentre towards values greater than the mean, in which 
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case asymmetry value will be positive, or towards values lower than the mean, in 

which case asymmetry value will be negative. A situation of negative asymmetry 

in returns distribution reveals that negative events often lead to greater negative 

returns in proportion with respect to positive returns given by favourable events. 

This scenario can be observed for instance in the case of bonds, where the 

consequence of a default10 lead to a great negative return, while positive return is 

fixed. 

Additional consideration that increases differences between real market and the 

Normal distribution assumption is kurtosis11. It has been shown that returns 

distributions observed on the market have greater values of kurtosis. Hence, 

extreme events (very positive or very negative returns) are more frequent with 

respect to theoretical returns with Normal distribution. 

Expected utility function: 

The assumption of a quadratic utility function has been often criticized. In 

particular, following the most common economic principles, as wealth increases 

also utility should increase, while it is evident that a quadratic utility function 

decreases above a certain level of wealth. This implication is of course 

controversial with the hypothesis of non-satiety of investors. Furthermore, other 

critics show that the implicit theoretical weakness in the assumption of utility 

function’s quadratic form lies in the increasing risk aversion deriving from it. On 

the contrary, economic theory suggests that a decreasing risk aversion 

corresponding to the increase of wealth would be more suitable with economic 

agents’ behaviour. 

Measure of risk: 

Being a symmetric measure, the use of variance as a risk measure has been as well 

disapproved since it considers positive and negative returns12 equally weighted. 

 
10 Complete or partial payment of capital and interests not fulfilled. 
11 Kurtosis is an index relative to distribution’s form. It measures the thickness of tails: a 
Normal distribution has a kurtosis value of 3, if tails are fatter the value is bigger than 3 
and vice versa. 
12 In this context, positive and negative returns can also be referred as upside potential 
and downside risk. 
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However, it has been shown that investors do not treat them with the same 

weight. The utilization of variance as a risk measure can only be consistent in case 

returns present a symmetric distribution. This aspect was noticed from Markowitz 

himself few years after the release of his article, as we will discuss in the following 

paragraph. 

Other assumptions: 

Additional unrealistic assumptions contribute to constitute more practical limits 

to Markowitz model, such as: 

 

• Friction-less market: absence of transaction costs or taxation costs. They 

affect portfolio performance; thus, they assume a major role in portfolio 

management; 

• Absence of constraints deriving from the economic-politic context in which 

one is operating; 

• Absence of constraints relative to the possibility of buying or selling an 

asset in a finite number. 

 

Despite being questioned for many assumptions and limits, Markowitz model 

remained the most important contribution to Modern Portfolio Theory. This 

relevance, in conjunction with continuous debating, has led to various 

improvements of the model. 

1.5 Improvements of Markowitz Model 

With the aim of making the model proposed by Markowitz more realistic, it is 

possible to follow two paths. First, constraints system can be modified in order to 

make it more consistent with the real world; we could add for instance market 

friction limits as transaction and taxation costs or take into account mixed-integer 

constraints. Secondly, it is possible to operate on the objective function, hence on 

the measure of risk. 
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In this work, the attention will be prevalently addressed to the objective function 

and its risk measure; nonetheless, it seems useful in author’s opinion to provide a 

brief description of mixed-integer constraints, that help portfolio selection 

problem to gain a more realistic form. 

Mixed-integer constraints can be divided into three categories: 

▪ Constraints relative to transaction’s minimum lots, which have to be 

negotiated only in an integer number of units; 

▪ Constraints relative to the maximum positive integer number of different 

assets which can be negotiated; 

▪ Constraints relative to the minimum positive integer number of minimum 

lots of a given asset which has to be negotiated. 

On one hand, the introduction of these limits provides a greater computational 

investigation of the programming problem; while on the other hand, it notably 

increases the complexity of the solution process. Indeed, the observance of mixed-

integer constraints in a mathematical programming problem constitutes a 

problem known as NP-complete13 and moreover, solving such mathematical 

programming problem is a NP-hard14 problem. 

As mentioned earlier, for the purpose of our work, we will undertake the second 

path which involves the objective function. 

Since the beginning the use of returns’ variance as risk measure inherent an 

investment portfolio appeared misleading. It was in fact Markowitz himself that 

proposed in 1959 its substitution in favour of semi-variance, formulated as 

follows: 

 

 
13 NP-complete are problems which are considerably burdensome to solve in terms of 
time requirement. In computational complexity theory, NP-complete are the most 
difficult problems in the NP class (non-deterministic polynomial-time problems). 
14 NP-hard are problems that are difficult at least as much as (or not less than) NP-
complete. 
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𝑆𝑒𝑚𝑖 − 𝑣𝑎𝑟 (𝑅𝑃) =  
1

𝑁
∑ (𝑅𝑖 − 𝜇)

2𝑁
𝑖=1;𝑅𝑖<𝜇

. 

 

While adopting this alternative, only potential losses are considered, thus returns 

realizations which are below their expected value. Any rational investor would not 

disdain to own a portfolio with returns above the expectations – hence the 

expected value –, so the notion of risk incorporated in variance definition does not 

result appropriate in this scenario. When a portfolio yields more than the expected 

return, it is suitable to refer to it as an opportunity, not a risk. Distinction between 

downside risk and upside potential appeared necessary in order to conceive risk 

as an element essentially negative rather than a simple dispersion measure. 

Following the previous analysis, it seemed indispensable providing a definition of 

risk measure and identifying certain desirable characteristics. 

1.5.1 Defining a risk measure 

Although it is feasible to define certain desirable characteristics that a risk 

measure should have, the concept of risk is rather subjective15 and it is, thus, not 

possible to univocally identify a measure capable of satisfying the problem of 

expected utility maximization – common to every investor – once the efficient 

frontier is determined. However, even though being affected by relativity and 

subjectivity, it is possible to determine some characteristics that a risk measure 

should have relatively to a specific set of investors: rational agents. 

In order to find a risk measure that satisfies properly investors’ preferences, 

different methodologies have been undertaken. Accordingly, a risk measure can 

be described with the following definition: 

Definition. Risk Measure. A risk measure is a function 𝜌 that assigns a non-

negative numeric value to a random variable 𝑋, which can be interpreted as future 

return, 𝜌: 𝑋 → 𝑅. 

 
15 Risk is linked with the perception of uncertainty that a single investor has. 
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It is possible to identify the basic properties that a risk measure should satisfy in 

order to define function 𝜌 as aforementioned, even though it is not enough to take 

into consideration. In fact, the concept of coherent risk measure is greatly relevant 

nowadays and will be discussed in the following paragraph. 

We begin from the relevant and desirable characteristics that a risk measure 

should have: 

 

➢ Positivity: a measure of risk associated to a random variable assumes a 

strictly positive value, at least null in case there is no randomness. Negative 

values do not make sense; 

➢ Linearity: especially in the resolution of optimization problems of big 

dimensions, the computational complexity might be diminished linearly 

linking risk measure and future return. The goodness of certain risk 

measures is connected to the more treatable computations that come 

from a linear optimization problem, where risk and return are linked in a 

basic way; 

➢ Convexity: a risk measure is convex if, given two random returns 𝑅𝑋 and 

𝑅𝑌 and a parameter 𝜗 ∈ [0; 1], the following relation holds: 

 

𝜌(𝜗𝑅𝑋 + (1 − 𝜗)𝑅𝑌) ≤  𝜗𝜌(𝑅𝑋) + (1 − 𝜗)𝜌(𝑅𝑌). 

 

It is a property that highlights the importance of diversification, since it is 

a process that permits to reduce the overall portfolio risk, hence, to expose 

invested wealth to a minor risk. 

This property can be satisfied indirectly, satisfying the two following 

properties: 

 

▪ Subadditivity: 𝜌(𝑅𝑋 + 𝑅𝑌) ≤  𝜌(𝑅𝑋) +  𝜌(𝑅𝑌); 

▪ Positive homogeneity: 𝜌(𝛼𝑅𝑋) =  𝛼𝜌(𝑅𝑋)   ,  𝛼 ∈ ℝ
+. 
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The procedure of risk measure minimization, given a certain level of expected 

return, has the aim of bounding the uncertainty linked to the invested capital 

future value rather than the increment of the latter, taking into consideration that 

the expected return level is established. In this way, it is possible to estimate in 

advance what the invested capital future value will be, with a level of uncertainty 

depending on returns’ distribution variance. Consequently, the resulting portfolio 

can be defined optimal only by a risk-averse investor, which cannot consider also 

the concept of non-satiety. 

Gathering in a unique real positive number all probability distribution’s 

characteristics, it is clear that an important limit of risk measures is constituted by 

their incapacity of incorporating the whole information available in a stochastic 

order, which utilizes the losses’ cumulative distribution function. 

An important measure of downside risk that has been widely used in the economic 

and financial environment is Value at Risk (from now on, VaR). Its notion is rather 

simple and intuitive: 

Definition. Value-at-Risk. Given a confidence level of 𝛼 ∈ [0; 1] and fixed a 

specific holding period, Value at Risk (VaR) indicates the maximum potential loss 

associated to a portfolio in 𝛼% of cases during the holding period. 

Originally conceived as synthetic indicator of market risk16, this measure of risk is 

notably widespread in savings and credit industries. Albeit having an experienced 

creator – it was conceived within the American investment bank J.P. Morgan – and 

expressing risk in the same unit measure of invested capital (monetary terms), VaR 

presents various limits when the underlying losses are not distributed as a Normal. 

Even in this case however, the assumption of Normality – rather widespread in 

literature – on one hand permits to lead back the portfolio optimization problem 

based on VaR to a Markowitz approach, while on the other hand leads to a not 

 
16 Market risk is defined as risk linked to adverse movements in financial activities’ prices, 
in goods’ prices, in interest rates, in exchange rates or in option volatility. 
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negligible underestimate of portfolio’s real VaR, since returns of portfolios 

containing derivatives or tools to which is associated a low rating tend to have a 

strongly left-asymmetric distribution (negative asymmetry). 

Regarding the computational profile, this measure does not fit in a particularly 

convenient way to bounded optimization problems since it emerges a stochastic 

programming problem rather difficult to solve. Moreover, with the exception of 

the case in which the underlying positions’ probability distributions are known, it 

is complex to obtain a precise measure of portfolio’s VaR. 

From a probabilistic standpoint, VaR with a confidence level of 𝛼 is the value that 

satisfies the following equality: 

𝑃(𝐿 > 𝑉𝑎𝑅𝛼) = 1 − 𝛼 

Where 𝐿 is a generic distribution of losses. Complying with this interpretation, it is 

evident how being a threshold measure17 – indeed it express the maximum 

potential loss with a certain level of probability – does not provide any indication 

on the size of losses that exceeds that threshold, thus on the nature of the profit 

and loss distribution’s left tail (the portion exceeding VaR). The distortion 

presented tends to be towards lower losses, leading to a contrast with the theory 

of risk management, which privileges a more cautious and pessimistic behaviour 

in the determination of risk level associated to a portfolio. 

Lastly, even though not being less relevant, another gap presented by VaR 

concerns the aggregation of more risk sources. The above-mentioned measure 

does not encourage – sometimes even prohibits – diversification, since it does not 

take into account events’ potential economic consequences. With such behaviour, 

VaR does not satisfy the feature of subadditivity – a property that will be seen 

more in detail in the next paragraph – since, applying this measure, the overall 

portfolio risk could result even greater than the sum of the single risk sources 

underlying each asset. It is important to underline how the lack of subadditivity 

creates, in addition to the inconsistency with the diversification principle, issues 

 
17 VaR belongs to the set of risk measures defined quantile-based. 
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with the numeric treatability. In fact, VaR is also criticized for is inability to quantify 

the so-called tail risk, hence, its low sensibility to extreme events. 

1.5.2 Concept of coherent risk measure 

In order to complete the process of individuation of desirable properties that a 

risk measure should have and to provide a follow-up to the inadequacies of VaR 

measure, it is appropriate to describe the concept of coherence, as formulated by 

Artzner et al. (1999). 

The writing of coherence axioms represented an attempt of translating a complex 

reality into a mathematical formulation that is not so restrictive to identify a 

unique coherent measure of risk, but it rather characterizes a class of measures. 

As mentioned above, in addition to the “basic” properties of a risk measure, there 

are other significant properties. The respect of these additional features is a 

necessary condition to a correct interpretation of the concept of risk associated to 

a financial instrument. 

Definition. Coherent Risk Measure. A risk measure that satisfies the four 

axioms of translation invariance, subadditivity, positive homogeneity and 

monotonicity is called coherent. 

We can now list and describe the four properties that define a coherent risk 

measure: 

 

• Translation invariance: it guarantees that investing a percentage 𝛼 of the 

available capital in a risk-free asset18, the overall risk associated to the 

portfolio contracts proportionally to the percentage 𝛼 allocated in the risk-

free asset: 

 

 
18 Asset that has a known future return and that does not carry any level of risk. Usually 
government bonds are a perfect example. 
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𝜌(𝑋 + 𝛼) = 𝜌(𝑋) −  𝛼   ,   ∀  𝑟. 𝑣.  𝑋 , 𝛼 ∈  ℝ. 

 

It implies that 𝜌(𝑋 + 𝜌(𝑋)) = 0. By adding a risk-free quantity equal to 

𝜌(𝑋) to a risky position 𝑋, we obtain a risk-free entity, coherently with the 

operative interpretation of 𝜌 as minimum positive quantity to add to the 

initial position in order to make the instrument acceptable (thus, risk-free); 

• Subadditivity: it represents the essence of how a risk measure should 

behave in the case in which the investor has to deal with a combination of 

assets. The risk of a portfolio should never be greater than the sum of the 

single risks associated to each of the assets that constitutes it. 

Subadditivity is strictly correlated to the concept of diversification since it 

can be affirmed that diversification leads to a contraction of the overall risk 

only if, for the risk inherent to a certain position, the following statement 

holds: 

 

𝜌(𝑋 + 𝑌) ≤  𝜌(𝑋) +  𝜌(𝑌)   ,   ∀  𝑟. 𝑣.  𝑋, 𝑌. 

 

• Positive homogeneity: it ensures that if the investment in a risky asset 

varies, then the riskiness associated to that investment varies 

proportionally. In cases in which positions dimensions directly affect risk 

(e.g. if positions are so large that time required to liquidate them depends 

on their dimensions), consequences of lack of liquidity should be 

considered when calculating the future net worth of a position: 

 

𝜌(𝜆𝑋) =  𝜆𝜌(𝑋)   ,   ∀  𝑟. 𝑣.  𝑋, 𝑌 𝑎𝑛𝑑 ∀𝜆 ≥ 0. 
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• Monotonicity: it underlines the preferability of an asset that systematically 

assures returns greater than another asset: 

 

𝜌(𝑋) ≤  𝜌(𝑌)   ,   ∀  𝑟. 𝑣.  𝑋, 𝑌 𝑤𝑖𝑡ℎ 𝑋 ≥ 𝑌. 

 

As mentioned earlier, the concept of coherent risk measure does not define a 

unique risk measure, instead, it characterizes a large class of risk measures. The 

choice of the right measure to use within the class should be made based on some 

additional economic considerations. 

 

First examples of coherent risk measures 

In their “Coherent Measures of Risk”, where they defined the axioms of coherence, 

Artzner et al. (1999) provided also the first guidelines concerning some proposals 

of coherent risk measures that satisfy the axioms. They present two measures, 

known as Tail Conditional Expectation (TCE) and Worst Conditional Expectation 

(WCE), for whom the authors demonstrated that the relation 𝑇𝐶𝐸𝛼 ≤ 𝑊𝐶𝐸𝛼19 

holds. 

Definition. Tail Conditional Expectation. Tail Conditional Expectation (known 

also as TailVaR) is a coherent risk measure defined as: 

𝑇𝐶𝐸𝛼(𝑋) ≝  −𝐸[𝑋|𝑋 ≤  −𝑉𝑎𝑅𝛼(𝑋)]. 

 

Definition. Worst Conditional Expectation. Worst Conditional Expectation is a 

coherent risk measure defined as: 

𝑊𝐶𝐸𝛼(𝑋) ≝  − inf{𝐸[𝑋|𝐴] | 𝑃[𝐴] > 𝛼}. 

 

 
19 As for VaR measure, subscript 𝛼 indicates the desired confidence level, which is given. 



 

30 

Financially, TCE and WCE try to determine “how bad is bad” since they focus on 

returns distribution’s left tail – the one representing losses – and they compute 

the mean value subject to the fact that the losses are greater than a certain value. 

The concepts of TCE and WCE represent first proposals of coherent risk measures. 

However, at the same time, their resemblance could erroneously let their aspects 

of distinction pass unnoticed. If on one hand WCE satisfies completely axioms of 

coherence and, nonetheless, it is widespread only in the theoretical field – since it 

requires knowledge of the entire underlying probability space – , on the other 

hand TCE is more manageable also in the application environment, even though 

not always satisfying axioms of coherence20. 

Conversely, as discussed before, the adoption of VaR as risk measure does not 

provide any indication on the size of losses beyond a threshold value, represented 

by the measure itself. The introduction of the axioms of coherence leads to a 

change in the question that we can ask ourselves with the aim of determining a 

more suitable risk measure, hence, coherent. More specifically, risk measures 

discussed in this paragraph do not observe at the maximum potential loss in the 

𝛼% of cases, but they rather point out the expected loss in the worst case (1 −

 𝛼)% scenario. In other words, these measures do not concentrate on a specific 

threshold, which does not supply with any information besides the threshold 

itself, but they focus on the losses’ distribution beyond the threshold value and 

they synthetize its features through their mean value. 

The aim of creating a measure of risk that combined contemporarily the good 

qualities of both measures was reached through the definition of an alternative 

and more suitable solution represented by the measure known as Expected 

Shortfall (ES). This index can be financially explained as the average loss 

considering all losses beyond a certain threshold value, VaR. 

 
20 TCE measure may not always respect the property of subadditivity. In fact, TCE 
coherence is guaranteed only restricting the analysis field on the continuous probability 
distribution’s functions, whereas it might not be guaranteed in the general case. 
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Expected Shortfall can be formally defined as follows. 

Definition. Expected Shortfall. Given a profit and loss distribution 𝑋 and defined 

holding period and significance level 𝛼 ∈ [0; 1], Expected Shortfall is defined as: 

𝐸𝑆𝛼(𝑋) ≝  − 
1

𝛼
(𝐸[𝑋1(𝑋≤𝑥𝛼)] − 𝑥

𝛼[𝑃[𝑋 ≤  𝑥𝛼] −  𝛼]) 

where 𝑥𝛼 = 𝑉𝑎𝑅. 

The second addendum of the sum within the parenthesis can be translated as the 

quantity to subtract from the mean value when 𝑋 ≤ 𝑥𝛼  has probability greater 

than 1 −  𝛼. Whereas, when 𝑃(𝑋 ≤  𝑥𝛼) = 1 − 𝛼, as it is usually the case with 

probability distribution’s continuous functions, we obtain that the value resulting 

from the ESα’s formula coincides with the TCEα’s one. 

An equivalent representation that provide the advantage of more transparency 

and that permits to appreciate the simplicity of ES, can be obtained renouncing to 

the definition in terms of expected values. Let 𝐹(𝑋) be the probability density 

function21 so that 𝑃(𝑋 ≤  𝑥) and let 𝐹−1(𝛼) = inf {𝑥|𝐹(𝑥) ≥ 𝛼} be the inverse 

function of 𝐹(𝑋), it can be proved that ES can be expressed as 𝐸𝑆𝛼(𝑋) =

 −
1

𝛼
∫ 𝐹−1(𝑝)𝑑𝑝
𝛼

0
. 

The sample estimation of ES is obtained sorting the 𝑛 possible realizations and, 

given a significance level, selecting the (1 − 𝛼)% of the greater losses and 

obtaining the following result: 𝐸𝑆𝛼(𝑋) =  − 
∑ 𝑥1:𝑛
𝑤
𝑖=1

𝑤
, where w represents the 

integer part of 𝑛(1 − 𝛼)%, hence 𝑤 = max{𝑚|𝑚 ≤ 𝑛(1 − 𝛼),𝑚 ∈  ℕ}. 

ES is a universal risk measure, meaning that is applicable to any financial tool and 

to any underlying risk source. Moreover, it benefits of simplicity and completeness 

properties since it computes a unique number even in case of portfolios exposed 

to different risk sources and robustness. This is possible because, conversely to 

other risk measures focusing on distributions’ tail, with ES, results do not vary 

 
21 Probability density function of a random variable X is a non-negative application 𝑝𝑥(𝑥) 
so that the probability of a set A is given by 𝑃(𝑋 ∈ 𝐴) = ∫ 𝑝𝑥(𝑥)𝑑𝑥

 

𝐴
 for all subsets A of 

the sample space. 
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significantly when changing the confidence level of some point basis. This last 

aspect cannot be guaranteed by VaR, TCE or WCE. 

An alternative expression of ES is the one proposed by Rockafellar and Uryasev 

(2002), named Conditional Value-at-Risk (CVaR). Let the function associated to the 

loss be 𝑧 = 𝑓(𝑥, 𝑦)22 with Ψ(𝑥, 𝜁) = 𝑃{𝑦|𝑓(𝑥, 𝑦) ≤ 𝜁}, CVaR can be defined as 

follows: 

Definition. Conditional Value-at-Risk. Fixed a significance level of 𝛼 ∈ [0; 1], 

CVaRα is equal to the expected value of the greater losses whose probability is 

equal to 1 − 𝛼. It is equivalent to the average of the distribution function: 

 

Ψα(𝑥, 𝜁) = {
0, 𝑖𝑓 𝜁 < 𝜁𝛼(𝑥)

[Ψ(𝑥, 𝜁) − 𝛼]/[1 − 𝛼], 𝑖𝑓 𝜁 ≥ 𝜁𝛼(𝑥)
 

 

where 𝜁𝛼(𝑥) is the VaRα associated to portfolio 𝑥. 

Rockafellar and Uryasev (2000) themselves, besides demonstrating its 

coherence23, highlighted an interesting further aspect: solving a simple convex 

optimization problem it is feasible to obtain separately both CVaRα and VaRα 

associated to portfolio 𝑥. It is a result of particular importance since it allows to 

compute CVaRα of a position without necessarily knowing the relative VaRα. Both 

risk measures can be determined simultaneously exploiting the following formula: 

 

Fα(𝑥, 𝜁) =  𝜁 +
1

1 − 𝛼
𝐸{[𝑓(𝑥, 𝑦) − 𝜁]+} 

 

 
22 Authors express the loss associated to a portfolio in function of percentages vector 𝑥 
and the vector of each asset’s future return 𝑦: the loss is then equal to −𝑥′𝑦. 
23 Acerbi and Tasche (2002b) let us understand that ES and CVaR are essentially two 
different labels employed to identify the same object, thus the expected loss in (1 − 𝛼) 
of cases. 
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where [𝑓(𝑥, 𝑦) − 𝜁]+ = max{𝑓(𝑥, 𝑦) − 𝜁; 0}. 

From the demonstration of a relevant theorem, thanks to whom the authors 

proved how it is possible to determine VaRα through a two-step approach24, it 

derives that minimization of CVaRα associated to a portfolio 𝑥 is equivalent to 

Fα(𝑥, 𝜁) minimization on the entire domain: min
𝑥∈𝑋

CVaRα(𝑥) = min
(𝑥,𝜁)∈𝑋×𝑅

𝐹𝛼(𝑥, 𝜁). 

This last result is remarkable since, with the aim of defining vector 𝑥 that 

minimizes CVaRα, it allows to work directly with a simple expression, convex with 

respect to variable 𝜁 in 𝐹𝛼(𝑥, 𝜁), rather than managing an expression that requires 

the knowledge ex-ante of VaRα’s value. Lastly, the numerical analysis conducted 

by Rockafellar and Uryasev (2000) guarantees how such process is implicitly valid 

also for VaRα minimization, being 𝐶𝑉𝑎𝑅𝛼 ≥ 𝑉𝑎𝑅𝛼. 

1.5.3 A new coherent risk measure: Entropic Value-at-Risk 

Sometimes being coherent for a risk measure could not be enough; an important 

deficiency of CVaR, or Expected Shortfall, is that it cannot be computed in a 

reasonable time. Indeed, in most of the cases is it necessary to approximate CVaR 

through sampling methods. There are also other examples of coherent risk 

measures, as spectral risk measures25, which cannot be efficiently computed even 

for simple cases. Having to face a stochastic optimization problem, as the portfolio 

selection one, incorporating a risk measure that has to be computed frequently, 

makes the need for an efficiently computable coherent risk measure more 

essential and relevant. 

In an important paper of the Journal of Optimization Theory and Applications, A. 

Ahmadi-Javid (2012) introduced a new coherent risk measure called Entropic 

Value-at-Risk (EVaR). It constitutes “the tightest possible upper bound obtained 

 
24 The approach consists of a first step which requires the definition of a set of values of 𝜁 
which minimize Fα(𝑥, 𝜁) and a second step which identifies its left extreme in case the set 
contains more elements. This process results worthless if not interested in VaR’s value. 
25 Acerbi C. (2002) 
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from Chernoff inequality26 for the value-at-risk (VaR) as well as the conditional 

value-at-risk (CVaR)” Ahmadi-Javid (2012). In his work Ahmadi-Javid 

demonstrated that a large class of stochastic optimization problems that are 

computationally intractable with CVaR, is efficiently solvable when incorporating 

EVaR. The dual representation of EVaR is strictly linked to the Kullback-Leibler27 

divergence, also known as relative entropy. 

Entropic Value-at-Risk owes its name to its connections with Value-at-Risk and 

relative entropy. We will describe this risk measure more in details and 

incorporate it in our portfolio selection model in the next chapter.  

 
26 Chernoff inequality will be explained in the following chapter. 
27 Kullback-Leibler divergence is a concept that will be discussed later. 
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Chapter 2 

Entropic Value-at-Risk application 

In this chapter, Entropic Value-at-Risk’s implementation as a risk measure in a 

portfolio selection problem is discussed. It has been demonstrated [Ahmadi-Javid 

(2012)] that this measure, proposed by Ahmadi-Javid itself, is able to efficiently 

solve a broad class of stochastic optimization problems which are instead 

intractable with CVaR. Indeed, in recent years EVaR has been discussed in many 

economists and scholars’ studies, often present in papers related to coherent risk 

measures and portfolio optimization problems28. 

EVaR will be applied to a realistic portfolio selection model, comprehensive of 

several constraints generally used in fund management practice, proposed by 

Corazza, Fasano and Gusso (2013). 

2.1 Entropic VaR as a risk measure and its properties 

Let the risk measure 𝜌 be a function assigning a real value to a random variable 

𝑋 ∈ 𝑿 and let 𝑿 be a set of allowable random variables. Then let (Ω, 𝑭, 𝑃) be a 

probability space where Ω is a set of all simple events, F is a 𝜎-algebra of subsets 

of Ω and 𝑃 is a probability measure on F. Furthermore, suppose that 𝑳 is the set 

 
28 Ahmadi-Javid A. (2012c). Application of information-type divergences to constructing 
multiple-priors and variational preferences. In: Proceedings of IEEE International 
Symposium on Information Theory, Cambridge, MA, pp. 538-540. 
Ahmadi-Javid A. (2012d). Application of entropic value-at-risk in machine learning with 
corrupted input data. In: Proceedings of 11th International Conference on Information 
Science, Signal Processing and their Applications (ISSPA), Montreal, QC, pp. 1104-1107. 
Ahmadi-Javid A. and Pichler A. (2017); Pichler A. (2017); Delbaen F. (2018). See 
bibliography. 
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of all Borel measurable functions29 – random variables –  𝑋:Ω → ℝ, and 𝑿 ⊆ 𝑳 is 

a subspace including all real numbers. It is now possible to define the risk measure 

𝜌:𝑿 → ℝ̅, where ℝ̅ = ℝ ∪ {−∞,+∞} is the extended real line. For 𝑝 ≥ 1 let 𝑳𝑝 

be the set of all Borel measurable functions 𝑋:Ω → ℝ for which 𝐸(|𝑋|𝑝) =

∫|𝑋|𝑝𝑑𝑃 < +∞, 𝑳∞ be the set of all bounded Borel measurable functions, 𝑳𝑀 be 

the set of all Borel measurable functions 𝑋:Ω → ℝ whose moment-generating 

function 𝑀𝑋(𝑧) = 𝐸(𝑒
𝑧𝑋) exists ∀𝑧 ∈ ℝ, and 𝑳𝑀+ be the set of all Borel 

measurable functions 𝑋:Ω → ℝ whose moment-generating function 𝑀𝑋(𝑧) exists 

∀𝑧 ≥ 0. Notice that 𝑳∞ ⊆ 𝑳𝑀 ⊆ 𝑳𝑝, ∀𝑝 ≥ 1. 

As mentioned in chapter 1, Entropic VaR can be described as the tightest possible 

upper bound obtained from Chernoff inequality for the VaR. Chernoff inequality 

[Chernoff H. (1952)] for any constant 𝑎 and 𝑋 ∈ 𝑳𝑀+ is as follows: 

 

Pr(𝑋 ≥ 𝑎) ≤ 𝑒−𝑧𝑎𝑀𝑋(𝑧), ∀𝑧 > 0. 

 

Solving the equation 𝑒−𝑧𝑎𝑀𝑋(𝑧) = 𝛼 with respect to 𝑎 for 𝛼 ∈ ]0,1], we obtain 

 

𝑎𝑋(𝛼, 𝑧) ≔ 𝑧−1ln (
𝑀𝑋(𝑧)

𝛼
), 

 

for which we have Pr (𝑋 ≥ 𝑎𝑋(𝛼, 𝑧)) ≤ 𝛼. Indeed, for each 𝑧 > 0, 𝑎𝑋(𝛼, 𝑧) is an 

upper bound for 𝑉𝑎𝑅1−𝛼(𝑋). It is possible now to consider the best upper bound 

of this type as a new risk measure that bounds 𝑉𝑎𝑅1−𝛼(𝑋) by using exponential 

moments. 

 
29 A map 𝑓:𝑋 → 𝑌 between two topological spaces is called Borel measurable if 𝑓−1(𝐴) 
is a Borel set for any open set A. Note that the 𝜎-algebra of Borel sets of X is the smallest 
𝜎-algebra containing the open sets. (Borel function: encyclopediaofmath.org). 
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Definition. Entropic Value-at-Risk (EVaR). The entropic value-at-risk of 𝑋 ∈

𝑳𝑀+ with confidence level 1 − 𝛼 is defined as follows: 

 

𝐸𝑉𝑎𝑅1−𝛼(𝑋) ≔ inf
𝑧>0
{𝑎𝑋(𝛼, 𝑧)} = inf

𝑧>0
{𝑧−1 ln (

𝑀𝑋(𝑧)

𝛼
)}. 

 

As proved in Ahmadi-Javid (2012a), EVaR is a coherent risk measure. To find its 

dual representation and its connection to relative entropy, we can proceed as 

follows: 

Theorem. For every coherent risk measure ρ: 𝐋∞ → ℝ with the Fatou property30, 

there exists a set of probability measures 𝔍 on (Ω, 𝐅) such that 

 

𝜌(𝑋) = sup
𝑄∈𝔍

𝐸𝑄(𝑋). 

 

The above equation is known as the dual representation or robust representation 

of 𝜌. Furthermore, the expression is an additional demonstration that this risk 

measure is coherent. 

Lemma. Donsker-Varadhan Variational Formula. For any 𝑋 ∈ 𝑳∞, 

 

ln 𝐸𝑃(𝑒
𝑋) = sup

𝑄≪𝑃
{𝐸𝑄(𝑋) − 𝐷𝐾𝐿(𝑄||𝑃)}, 

 

 
30 A translation invariant supermodular mapping 𝜙: 𝐿∞ → ℝ is said to satisfy the Fatou 
property if 𝜙(𝑋) ≥ sup𝜙(𝑋𝑛), for any sequence (𝑋𝑛)𝑛≥1 of functions, uniformly 
bounded by 1 and converging to 𝑋 in probability. Delbaen et al. (2000). 
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where 𝐷𝐾𝐿(𝑄||𝑃) ≔ ∫
𝑑𝑄

𝑑𝑃
(ln

𝑑𝑄

𝑑𝑃
)𝑑𝑃 is the relative entropy31 of 𝑄 with respect to 

𝑃, or the Kullback-Leibler divergence32 from 𝑄 to 𝑃. 

Theorem. The dual representation of 𝐸𝑉𝑎𝑅1−𝛼(𝑋) for 𝑋 ∈ 𝑳∞ has the form: 

 

𝐸𝑉𝑎𝑅1−𝛼(𝑋) = sup
𝑄∈𝔍

𝐸𝑄(𝑋), 

 

where 𝔍 = {𝑄 ≪ 𝑃:𝐷𝐾𝐿(𝑄||𝑃) ≤ − ln 𝛼}. 

 

Entropic value-at-risk is characterized by two other important properties: the 

former related to another variable with same distribution, the latter linked to the 

comparison with VaR and CVaR. 

Corollary. For 𝑋, 𝑌 ∈ 𝑳𝑀, 𝐸𝑉𝑎𝑅1−𝛼(𝑋) = 𝐸𝑉𝑎𝑅1−𝛼(𝑌) for all 𝛼 ∈ ]0,1] if and 

only if 𝐹𝑋(𝑏) = 𝐹𝑌(𝑏) for all 𝑏 ∈ ℝ. 

The proof of this property follows from a well-known property of moment-

generating functions, stating that two distributions are identical if the have the 

same moment-generating function. This corollary shows that 𝐸𝑉𝑎𝑅1−𝛼(𝑋) as a 

function of its parameter 𝛼 characterizes the distribution of 𝑋 ∈ 𝑳𝑀. The initial 

condition 𝑋, 𝑌 ∈ 𝑳𝑀 can be weakened to the existence of 𝑀𝑋(𝑏) and 𝑀𝑌(𝑏) over 

the interval 𝑏 ∈ ] − 𝜀,+∞] for a positive constant 𝜀 > 0. 

 
31 Entropy is a concept that derives from physics and allows to evaluate the level of 
disorder in a system. If the level of disorder grows, entropy increases as well, vice versa if 
it reduces, entropy decreases. Recently this measure has been reproposed in different 
fields as information theory, IT, biology, medicine and social sciences. In economics and 
finance entropy has been mostly employed as a measure of risk or as foundation of a 
more complex risk measure. 
32 Kullback-Leibler divergence – also known as information divergence or relative entropy 
– is a non-symmetric measure of the difference between two probability (P and Q) 
distributions. More specifically, K-L divergence from Q to P, identified as 𝐷𝐾𝐿(𝑄||𝑃), is the 
measure of the lost information when P is used to approximate Q. 
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Proposition. The EVaR is an upper bound for both VaR and CVaR with the same 

confidence levels, i.e. for 𝑋 ∈ 𝑳𝑀+  and every 𝛼 ∈ ]0,1]: 

 

𝐶𝑉𝑎𝑅1−𝛼(𝑋) ≤ 𝐸𝑉𝑎𝑅1−𝛼(𝑋). 

Furthermore, 

𝐸(𝑋) ≤ 𝐸𝑉𝑎𝑅1−𝛼(𝑋) ≤ 𝑒𝑠𝑠 sup(𝑋), 

where: 

▪ 𝐸(𝑋) = 𝐸𝑉𝑎𝑅0(𝑋); 

▪ 𝑒𝑠𝑠 sup(𝑋) = lim
𝛼→0

𝐸𝑉𝑎𝑅1−𝛼(𝑋). 

This statement affirms that EVaR is more risk-averse with respect to CVaR at the 

same confidence level. Thus, EVaR would suggest to a financial firm allocating 

more resources to avoid risk. This feature could make EVaR less attractive for 

companies which search, for instance, a greater return and are not afraid of risk; 

however, EVaR computational tractability results more simple, which can be 

important when we need to incorporate a risk measure in a stochastic 

optimization problem, both in terms of time and difficulty. 

2.2 A realistic portfolio selection model under EVaR 

Once an appropriate measure of risk is identified, with the purpose of quantifying 

the level of riskiness inherent in a financial investment, there is the necessity to 

introduce a set of constraints in order to develop a realistic portfolio selection 

model. 

Even though it could be taken for granted, it is important to underline how the 

research of a portfolio which is able to minimize any measure of risk, being it 

represented by returns’ variance or a coherent risk measure, does not lead to a 

solution that can be adopted in practical terms if not supplied by constraints to be 
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followed. Referring to what described in chapter 1, the generic rational investor 

has to deal with the choice between conflicting objectives as return maximization 

and risk minimization, in the overall search of expected utility maximization.  

Risk minimization without taking into consideration constraints in terms of 

expected return, but considering only the budget constraint33, would lead to an 

optimal solution that is given by the minimum risk portfolio34. Without explaining 

in details logics and reasonings of expected utility theory, since they are not part 

of the aim of our work, it appears clear that this efficient solution is only one 

among many admissible and does not take into account the level of risk aversion 

of each investor, transmitted through a specific utility function. 

Even considering the constraint related to the expected return, in addition to the 

pre-mentioned budget constraint, the solution appears too simplistic with respect 

to the reality of financial markets. For this reason, the model proposed in this work 

will take into account transaction costs, in other words those costs that the 

intermediary will charge to the investor once the transaction in completed and 

that represent, together with the tax regime, a significant financial market friction. 

Transaction costs will be considered indirectly through the introduction of 

cardinality constraints. The author believes it is appropriate to add these 

constraints to our model since they represent one of the major constraints 

categories to which a manager is subjected in daily practice. 

Nevertheless, it is important to highlight that each time that a constraint is added 

to the model, its computational complexity increases proportionally and even 

more rapidly when the added constraints do not have linear and/or continuous 

forms. The problems that generate after the insertion of such constraints are 

called NP-hard, which, due to their difficulty in terms of computation and time, 

require the employment of heuristics and metaheuristics to be solved, since the 

 
33 Risk unconstrained minimization would inevitably lead to a vector of zero percentages 
of investment in each asset, since no portion of wealth would be allocated in an asset with 
an aleatory return. 
34 In the Markowitz’s mean-variance approach it is called “global minimum variance 
portfolio”, meaning the portfolio with the returns’ minimum variance. 
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research of optimum solutions through the use of exact methods might not lead 

to a result. 

Before the final proposal of the realistic portfolio selection model, it is important 

to list and describe in detail the constraints that it has been decided to consider in 

the model. 

2.2.1 Budget and return constraints 

Budget constraint and return constraint are widespread in most of portfolio 

selection models, since they represent the essential part of the problem. They are 

also included in the constrained Markowitz model. 

Budget constraint assures that all available wealth is invested and can be 

mathematically formulated as follows: 

 

∑𝑥𝑖

𝑁

𝑖=1

= 1 

 

where 𝑥𝑖 represents the percentage of capital invested in the 𝑖 − 𝑡ℎ asset. Budget 

constraint can also be expressed in matrix terms as: 

 

𝑥′𝑒 = 1. 

 

Return constraint establishes the determination, on the investor side, of a certain 

level of desired return 𝜋 and guarantees that the expected return of the portfolio 

is not below that threshold. Hence, it permits to select a portfolio among all 

portfolios lying on the efficient frontier: the one which minimizes the adopted 

measure of risk, in our case the entropic value-at-risk. In algebric terms, portfolio 
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mean return is equal to 𝜇𝑝 = ∑ 𝑥𝑖𝑟𝑖
𝑁
𝑖 , whereas in matrix terms it is defined by 𝑥′𝑟. 

The constraint on the minimum mean return can be formulated as follows: 

 

∑𝑥𝑖𝑟𝑖

𝑁

𝑖=1

≥ 𝜋. 

 

In the specific problem that is being proposed, the perfect equality between mean 

return and 𝜋 is not required, whereas a wider condition is imposed in order to 

avoid that the admissible region results empty. Indeed, any rational investor 

would not be dissatisfied by a portfolio that, at the same risk level, provides a 

return greater than expected. 

From a conceptual point of view, it is possible to reach the same result if deciding 

to maximize return once a certain level of risk is fixed. However, considering the 

problem from a risk-averse investor’s perspective, the concept underlying the 

choice to configurate the objective function that must be optimized with a 

measure of risk – to be minimized – instead of a measure of the return – to be 

maximized – reflects the investor’s aversion to risk; investor who tends to focus 

his attention on risk rather than on return. This occurs notwithstanding these two 

variables are positively correlated. An example of this tendency towards risk is 

represented by the so-called MIFID35 interview, which is applied by credit 

institutions to their clients in order to verify both their knowledge and experience 

referring to products and financial tools and their investment goals. Questions that 

constitutes the interview, deal with the risk aversion of the investor rather than 

with its propension to profit. Hence, it is possible to obtain a financial profile of 

 
35 The 2004/39/EU directive MIFID (Markets in Financial Instruments Directive) was 
introduced in 2007 and has the objective of increasing investor protection and 
guaranteeing the maximum level of transparency through mandatory information to 
customers. 
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the client which allows to guide him through the formulation of an adequate 

investment choice. 

2.2.2 Cardinality constraints 

Cardinality constraints are bounds related to the number of assets to include in 

the portfolio; they will also be associated with a constraint regarding the fraction 

of portfolio that each asset constitutes. The reason for the introduction of these 

constraints is to obtain an indirect control on transaction costs. The majority of 

models presented in literature considers, especially in the case in which the focus 

is on the substance of the approach rather than on the form, a system of 

constraints rather elementary, based on the assumption of perfect market 

conditions, frictionless. However, transaction costs, in addition to being significant 

incidence factors on the effective real performances of the portfolio, represent a 

constraints category that needs to be taken into consideration in the development 

of a portfolio model since their presence considerably influences managers 

activities in their daily practice. 

Since the trade of assets comes with a cost, portfolio managers are led to 

subordinate portfolio creation to costs that has to be borne. For this reason, it is 

important that they operate, in first place, introducing a not too small not too big 

number of assets among the N constituting the basket of financial tools at their 

disposal. In fact, when the amount of assets selected is too large, many practical 

issues can befall, e.g. high dimensionality of the problem which can raise 

transaction costs as well. In second place, portfolio managers will also be 

subordinated to the selection of an investment percentage for each asset that 

must be not too small and not too big; these fractions of portfolio will be strictly 

correlated with the minimum and maximum number of assets present in the 

portfolio. 

We can introduce and consider transaction costs in our portfolio selection 

problem through the employment of the following cardinality constraint: 
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𝐾𝑑 ≤∑𝑧𝑖

𝑁

𝑖=1

≤ 𝐾𝑢, 

 

where: 

▪ 1 ≤ 𝐾𝑑 ≤ 𝐾𝑢 ≤ 𝑁; 

▪ 𝑧𝑖 ∈ {0, 1} represent a binary variable and 

o 𝑖𝑓 𝑧𝑖 = 1, 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑎𝑠𝑠𝑒𝑡 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜; 

o 𝑖𝑓 𝑧𝑖 = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

▪ 𝐾𝑑 is the minimum number of assets included in the portfolio; 

▪ 𝐾𝑢 is the maximum number of assets included in the portfolio. 

 

Moreover, it is important to add a constraint which states that each of the selected 

assets cannot be a too small or too large fraction of the portfolio. This bound 

consists in establishing minimum and maximum fractions, respectively 𝑑𝑖 and 𝑑𝑢, 

to allocate in each asset and can be formulated as follows: 

 

𝑧𝑖𝑑𝑖 ≤ 𝑥𝑖 ≤ 𝑧𝑖𝑢𝑖 , 

 

where 0 ≤ 𝑑 ≤ 𝑢 ≤ 1. 

In order to guarantee the compatibility between these two constraints, 

parameters 𝑑 and 𝑢 must satisfy the following inequalities: 

 

• 𝑑 ≤
1

𝐾𝑑
; 

• 𝑢 ≥
1

𝐾𝑢
. 



 
46 

 

Now that we have described in detail the system of constraints that will be 

considered for the purpose of the present work, it is possible to propose the 

portfolio selection model developed. 

2.2.3 Portfolio selection model 

Let N be the number of assets from which we can choose from and, for 𝑖 =

1, … ,𝑁, let 𝑥𝑖 ∈ ℝ be the weight of the 𝑖 − 𝑡ℎ asset in the portfolio, with 𝑋𝑇 =

(𝑥1, … , 𝑥𝑛). Let 𝑍𝑇 = (𝑧1, … , 𝑧𝑛) ∈ {0, 1}
𝑁 be a binary vector. Moreover, consider 

𝑟𝑖 a real valued random variable for 𝑖 = 1,… ,𝑁, which represents the return of 

the 𝑖 − 𝑡ℎ asset, and �̂�𝑖 = 𝐸(𝑟𝑖) =
1

𝑇
∑ 𝑟𝑖,𝑡
𝑇
𝑡=1  its expected value. Therefore, the 

random variable 𝑅 which represents the return of the overall portfolio can be 

formulated as: 

 

𝑅 =∑𝑥𝑖𝑟𝑖

𝑁

𝑖=1

 

 

Thus, its expected value can be expressed as: 

 

�̂� = ∑𝑥𝑖 �̂�𝑖

𝑁

𝑖=1

 

 

Considering our risk measure’s formula, previously described, our aim is to 

minimize 𝐸𝑉𝑎𝑅1−𝛼(𝑅), subject to the system of constraints just discussed, in 

order to find the optimal portfolio. Translating this constrained minimization 

problem, our resulting portfolio selection problem can be expressed as follows: 
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minimize
𝑋,𝑍

 𝐸𝑉𝑎𝑅1−𝛼(𝑅)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �̂� ≥ 𝜋

∑𝑥𝑖

𝑁

𝑖=1

= 1

𝐾𝑑 ≤∑𝑧𝑖

𝑁

𝑖=1

≤ 𝐾𝑢

𝑧𝑖𝑑𝑖 ≤ 𝑥𝑖 ≤ 𝑧𝑖𝑢𝑖 , 𝑤𝑖𝑡ℎ 𝑖 = 1,… ,𝑁

𝑧𝑖 ∈ {0, 1}, 𝑤𝑖𝑡ℎ 𝑖 = 1,… ,𝑁

 

 

Ahmadi-Javid (2012a) demonstrated, in his significant paper, that the function 

underlying the Entropic value-at-risk is convex. The introduction of such risk 

measure in our model, makes the latter a non-linear and convex mixed-integer 

optimization problem. Conversely to mean-variance portfolio selection problems, 

which are non-convex and generally admit several local solutions, our mean-EVaR 

portfolio selection problem facilitates the search of global solutions, rather than 

local minimizers. Since exact methods would be heavily time consuming, to solve 

the problem it has been decided to employ PSO metaheuristic, which can provide 

a good approximation in a reasonable amount of time. However, PSO was born as 

a metaheuristic technique that cannot be applied to constrained problems. 

Luckily, it is possible to reformulate the constraints in order to adapt the 

constrained optimization problem to the metaheuristic. 

2.3 Reformulation of portfolio selection model for PSO 

With respect to other forms of evolutive computations used in constraints 

management, in the opinion of Hu and Eberhart (2002), the employment of PSO 

presents several advantages: in addition to its simplicity in terms of number of 

parameters that need to be set, the amount of problems that it is able to solve is 

rather vast and, moreover, it does not set any restriction – regarding the potential 
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provision of a result – neither on the objective function nor on the constraints 

system. 

Despite the presence in literature of different methods to adapt a constrained 

problem to PSO algorithm, for this work it has been decided to adopt the strategy 

proposed by Parsopoulos and Vrahatis (2002), which consists in introducing a 

penalty function. This method permits to translate a constrained optimization 

problem into an unconstrained one by penalizing all the violations of the 

constraints and joining them into a particular fitness function which considers the 

objective function and the initial constraints. Since constraints are, in this way, 

integrated into it, the unique fitness function will then be optimized by applying 

PSO algorithm, which, as said earlier, was designed to solve unconstrained 

problems. 

2.3.1 Penalty function 

In general, the exact penalty method has the objective of solving constrained 

optimization problems through the exploitation of unconstrained problems. It 

consists in adding a term to the objective function that attaches a cost to the 

portfolio in case of constraints violations. Thus, solutions which comprehend 

constraints violations are made less favourable as potential good solutions. A 

parameter, 𝜖, measures the magnitude of the penalty, approximating the original 

constrained problem with the fitness of the unconstrained one. 

The general concept of this method consists in substituting a generic constrained 

minimization problem as the following: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ𝑗(𝑥) = 0, 𝑗 = 1, … ,𝑚

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,… , 𝑝

 

 

where: 
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▪ 𝑓(𝑥) is a continuous function 𝑅𝑛; 

▪ ℎ(𝑥) = 0 is a vector of 𝑚 constraints expressed in equality form; 

▪ 𝑔(𝑥) ≤ 0 is a vector of 𝑝 constraints expressed in inequality form; 

 

with an equivalent unconstrained minimization problem as the following: 

 

min𝑓(𝑥) + 𝜖𝑃(𝑥) 

 

where: 

▪ 𝜖 is a positive constant; 

▪ 𝑃(𝑥) is a function 𝑅𝑛 with the following characteristics: 

- 𝑃(𝑥) is continuous; 

- 𝑃(𝑥) ≥ 0, ∀𝑥 ∈ 𝑅𝑛; 

- 𝑃(𝑥) if and only if 𝑥 ∈ 𝑆36. 

 

One of the issues of this methodology usually concerns the level of good 

approximation that the unconstrained problem does on the original constrained 

one. In general, as 𝜖 tends to infinite, it is necessary to check whether the solution 

of the unconstrained problem converges towards the constrained one. This issue 

should not be considered in our model, since it has been decided to employ a 

specific family of penalty methods, which ensures the biunivocal correspondence 

between the two problems’ solutions. 

 
36 S is a vectorial subspace of 𝑅𝑛. 
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Considering the above-mentioned generic constrained minimization problem, the 

author decided to implement the approximation by introducing into the 

unconstrained optimization problem the following penalty function: 

 

𝑃(𝑥) =∑|ℎ(𝑥)|

𝑚

𝑖=1

+∑max (0, 𝑔𝑗(𝑥))

𝑝

𝑗=1

 

 

Correspondence between the original problem and the unconstrained one is 

guaranteed by the following important theorem. 

Theorem. Exact Penalty. Let 𝑥∗ be a point that satisfies all the sufficient 

conditions of the second order to be a local minimum point of a constrained 

problem and let 𝜆 and 𝜇 be two vectors containing the associated Lagrange 

multipliers with respect to 𝑚 constraints in ℎ(𝑥) = 0 and to 𝑝 constraints in 

𝑔(𝑥) ≤ 0. Then, for 𝜖 > max {𝜆𝑖|𝜇𝑗 ∶ 𝑖 = 1,… ,𝑚 𝑗 = 1,… , 𝑝}, 𝑥∗ is also a local 

minimum for the unconstrained penalty objective function. 

The theorem is proposed and demonstrated by Luenberger and Ye (2008). It is 

important to note that what previously described, together with the theorem, 

provides sufficient conditions in order to guarantee coincidence between 

unconstrained problem’s and original constrained problem’s solutions; however, 

it does not provide any information regarding the value of the penalty parameter 

𝜖. Such aspect will be discussed in the following paragraph. 

2.3.2 Unconstrained portfolio selection model 

In order to reformulate our portfolio selection model and to give a better 

understanding of the functioning of the selected penalty function, we start from 

the above-mentioned original constrained problem and we progressively 

transform it into the desired form. 

The constrained problem is expressed as follows: 
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minimize
𝑋,𝑍

 𝐸𝑉𝑎𝑅1−𝛼(𝑅)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 �̂� ≥ 𝜋

∑𝑥𝑖

𝑁

𝑖=1

= 1

𝐾𝑑 ≤∑𝑧𝑖

𝑁

𝑖=1

≤ 𝐾𝑢

𝑧𝑖𝑑𝑖 ≤ 𝑥𝑖 ≤ 𝑧𝑖𝑢𝑖 , 𝑤𝑖𝑡ℎ 𝑖 = 1,… ,𝑁

𝑧𝑖 ∈ {0, 1}, 𝑤𝑖𝑡ℎ 𝑖 = 1,… ,𝑁

 

 

Employing the exact penality method, it is possible to reformulate constraints as 

follows: 

 

▪ �̂� ≥ 𝜋    →      max{0, 𝜋 − �̂�} = 0; 

▪ ∑ 𝑥𝑖
𝑁
𝑖=1 = 1    →     |∑ 𝑥𝑖

𝑁
𝑖=1 − 1| = 0; 

▪ 𝐾𝑑 ≤ ∑ 𝑧𝑖
𝑁
𝑖=1     →     max{0, 𝐾𝑑 − ∑ 𝑧𝑖

𝑁
𝑖=1 } = 0; 

▪ ∑ 𝑧𝑖
𝑁
𝑖=1 ≤ 𝐾𝑢     →     max{0, ∑ 𝑧𝑖

𝑁
𝑖=1 − 𝐾𝑢} = 0; 

▪ 𝑧𝑖𝑑𝑖 ≤ 𝑥𝑖     →     ∑ max{0, 𝑧𝑖𝑑 − 𝑥𝑖}
𝑁
𝑖=1 = 0; 

▪ 𝑥𝑖 ≤ 𝑧𝑖𝑢𝑖     →     ∑ max{0, 𝑥𝑖 − 𝑧𝑖𝑢}
𝑁
𝑖=1 = 0; 

▪ 𝑧𝑖 ∈ {0, 1} → ∑ |𝑧𝑖(1 − 𝑧𝑖)|
𝑁
𝑖=1 = 0. 

 

Then, the unconstrained optimization problem becomes: 

 

min
𝑋,𝑍,𝜖

𝑃(𝑋, 𝑍; 𝜖) 
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where: 

 

𝑃(𝑋, 𝑍; 𝜖) = 𝐸𝑉𝑎𝑅1−𝛼(𝑅) +
1

𝜖
[max {0, 𝜋 −∑𝑥𝑖 �̂�𝑖

𝑁

𝑖=1

} + |∑𝑥𝑖

𝑁

𝑖=1

− 1|

+ max {0, 𝐾𝑑 −∑𝑧𝑖

𝑁

𝑖=1

} + max {0,∑𝑧𝑖

𝑁

𝑖=1

− 𝐾𝑢}

+∑max{0, 𝑧𝑖𝑑 − 𝑥𝑖}

𝑁

𝑖=1

+∑max{0, 𝑥𝑖 − 𝑧𝑖𝑢}

𝑁

𝑖=1

+∑|𝑧𝑖(1 − 𝑧𝑖)|

𝑁

𝑖=1

] 

 

with 𝜖 as the penalty parameter. 

It is possible to observe the presence of two distinguishing aspects in the 

application of this method, both strictly connected. In first place, we note the 

reformulation of constraints, differentiating between their typologies: constraints 

in the risk minimization problem expressed in equality form are reported in the 

penalty function in absolute value, while constraints in inequality form are re-

written in order to have an element represented by a numeric value equal to zero, 

with the aim of facilitating potential violations survey. In particular, cases of 

double inequality have been considered into the penalty function as divided 

inequalities, separating the initial constraint into two parts, without altering the 

substance37. In second place, it is important to note the nature of objects that are 

penalized: the function penalizes not the constraints themselves, but rather their 

violations. Each addendum in square brackets refers to one or more constraints, 

but it is formulated so that it is able to take into account the potential disregard 

of one of the conditions set by the constraints system. In other words, in the case 

in which every constraint is respected, the algebric sum of elements within square 

 
37 For instance, instead of considering the inequality 𝑎 ≤ 𝑥 ≤ 𝑏, we implement separately 
𝑎 − 𝑥 ≤ 0 and 𝑥 − 𝑏 ≤ 0. 
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brackets will be null, whereas, if at least one constraint is not respected, such sum 

will have positive value and will be added to the objective function. 

Ultimately, if all constraints are observed, the constrained minimization process 

focuses exclusively on the measure of risk – EvaR in our case –, otherwise it will 

provide a greater value, given by the sum of the risk measure and the extent of 

the violation encountered on one or more constraints. 

 

In conclusion, it is significant to mention that the biunivocal correspondence 

between solutions of the constrained minimization problem and the ones deriving 

from the minimization of the problem reformulated without constraints, depends 

on the appropriate choice of the penalty parameter 𝜖. 

Now that we have obtained an unconstrained objective function, we should 

present and describe in detail the metaheuristic algorithm that will be used in this 

dissertation. 
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Chapter 3 

Particle Swarm Optimization 

In this chapter Particle Swarm Optimization (PSO) is discussed. PSO algorithm 

belongs to the so-called bio-inspired metaheuristics. Some basic knowledge of 

heuristics, metaheuristics and swarm intelligence is provided in order to better 

describe the environment in which we are operating. 

3.1 Heuristics and Metaheuristics 

In many optimization problems, from combinatorial optimization to mathematical 

programming, we can find a variety of exact methods to compute the optimal 

solution. In some cases, however, problem’s features such as real-world 

requirements, size or limited computational time, make exact methods not 

appropriate for finding the solution. In these scenarios, practitioners and 

researchers adopt approximate methods, which require less time and are known 

as heuristics and metaheuristics. 

Definition. Heuristic. It means “to discover” or “to find” by trial and error. 

Heuristic methods give a suitable solution to a complex optimization problem in a 

reasonable time, even though not assuring the discovery of optimal solutions. 

They are suitable when there is not the necessity to have the best solutions but 

there is the need to have sufficiently good solutions in a reasonable amount of 

time. A heuristic is usually an iterative algorithm, which, at each iteration, searches 

for the new best of the best solutions found until that instant. When the given 

stopping criterion is satisfied, the algorithm stops and gives an optimal solution, 

the best one determined from all the iterations performed. Heuristics are usually 

problem-specific since they are developed exploiting the properties of the 
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problem to solve a specific problem. In order to find a more general solution to 

these problems, in the last years metaheuristic methods have been developed. 

Definition. Metaheuristic. It is a further development of heuristic methods. The 

term was coined by Glover in 1986: meta means “beyond” or “high level”, while 

heuristic “to find” by trial and error, as mentioned above. In Glover’s and Laguna’s 

words, a metaheuristic is a “master strategy that guides other heuristics to 

produce solutions beyond those that are normally generated in a quest for local 

optimality” (Laguna M. and Glover F. 1999). 

In fact, guidelines and strategies provided by metaheuristics’ problem-

independent techniques have the aim of developing heuristic methods that can 

be adapted to fit the needs of most real-world optimization problems. The ability 

to find “good enough” solutions in a time that is “small enough” has made 

metaheuristics the method of choice to solve the majority of large real-life 

optimization problems, both in practical applications and in academic research. 

Two main features which determine the behaviour of any metaheuristic algorithm 

are: 

• Intensification or exploitation: to focus the search in a local region knowing 

that a current good solution is found in that region; 

• Diversification or exploration: to generate different solutions in order to 

explore the search space on a global scale. 

In an optimization problem, a good metaheuristic should provide a balance 

between exploitation and exploration to individuate regions with high quality 

solutions. 

Based on exploitation and exploration, metaheuristics can be gathered in two 

different classes: 

 

• Trajectory methods: metaheuristics that start from an initial solution and 

describe a trajectory in the search space: at each step of the search, a new 
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solution – often the best with respect to the alternative ones found in its 

neighbourhood until that moment – replaces the current solutions. These 

algorithms are called exploitation-oriented since they allow to find locally 

optimal solutions, fostering intensification in the research space. The main 

metaheuristic families belonging to this class are Simulated Annealing (SA), 

Tabu Search (TA) and Variable Neighbourhood Search (VNS); 

• Population methods: metaheuristics that consider a population of 

solutions. Initial populations are created randomly and then improved 

through an iterative process: at each step of the process the entire 

population, or just a part of it, is substituted by newly generated elements, 

which are often the best ones. Given their main feature of diversification 

in the search space, these algorithms are called exploration-oriented. The 

main metaheuristics families belonging to this class are Evolutionary 

Algorithms (EAs), Artificial Bee Colony (ABC), Ant Colony Optimization 

(ACO), Differential Evolution (DE) and Particle Swarm Optimization (PSO). 

 

To conclude the definition of metaheuristic, we outline its fundamental features: 

 

▪ It is a strategy that guides the search process; 

▪ Its goal is to explore the search space in order to find the best near optimal 

solution; 

▪ Metaheuristic algorithms can range from simple local search procedures 

to complex learning processes; 

▪ They are approximate and usually non-deterministic; 

▪ They might include mechanisms to avoid getting trapped in limited areas 

of the search space; 

▪ They are not problem-specific; 
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▪ They might employ domain-specific knowledge38 in the form of heuristics 

that are managed by the upper level strategy; 

▪ Todays most advanced metaheuristics take into consideration search 

experience (incorporated in some form of memory) to guide the search. 

3.2 A bio-inspired metaheuristic: PSO 

Particle Swarm Optimization is a bio-inspired, population-based metaheuristic. 

The initial idea underlying particle swarms, as originally conceived by Kennedy and 

Eberhart (1995), had the aim of creating artificial intelligence (AI)39 exploiting 

analogies with social interaction and individual cognitive abilities. It was initially 

thought to graphically simulate the choreography formed by birds’ flocks in flight; 

however, it was soon discovered that it was also a valid tool for solving 

mathematical optimization problems. 

Swarm intelligence systems are usually constituted by a population of agents able 

to accomplish simple actions, known as particles. Each particle: 

- Represents a possible solution belonging to the set of feasible solutions; 

- Interacts both with other particles and the surrounding environment; 

- Is provided with a position (location in the search space) and a velocity. 

The solution to an optimization problem through the use of this approach derives 

from the agents’ social interaction: singularly, they do not possess the capacity to 

face the problem; while as a group (swarm) and with the deriving collaboration 

they are able to find a solution. 

 

 
38 Heuristics are usually problem-specific. While dealing with a domain, a certain heuristic, 
which works specifically in that domain, may be used. 
39 Artificial Intelligence (AI) can be defined as the science and engineering of making 
intelligent machines. The concept of AI is linked to computational science, which is the 
study of the design of intelligent agents. The latter can be described as a system that 
perceives its environment and takes actions to maximize its chance of success. 
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A swarm can be identified by three characteristics: 

 

• Robustness: if for any reason an agent exits from the swarm (a solution is 

too far away from the others), the remainder of the group is in any case 

able to reach their task; 

• Flexibility: with the employment of the same interactions rules between 

individuals it is possible to solve problems of different nature; 

• Self-organization: there is no need for a supervisor that assigns the tasks; 

from simple rules it derives a complex and well-structured behaviour. 

 

The analysis of swarms’ behaviour, taking into account the previous three aspects, 

has led to the development of effective algorithms. 

From a qualitative point of view, the research of the optimal solution, if discovered 

(being a metaheuristic, it is not always the case), is declined in the following way. 

A previously fixed number of particles is randomly positioned in the search space40 

and each particle is assigned with a random velocity. Each swarm member 

explores a specific zone of the search area, keeping track of the best position 

reached – the most promising – and exchanging this information with the 

neighbourhood particles. How much a determined position is valid as solution to 

the optimization problem, is measured by the so-called fitness function. Since 

information gradually spreads between all members, we can expect that at the 

end the whole swarm converges towards the best position globally identified 

between the ones explored by each single agent. 

Connecting the reasoning to the animal world, a bird that locates a source of food 

may move away from the group to reach it, showing its individualism; 

alternatively, it might remain in the flock, showing a more social character. 

 
40 It is favourable that the particles are sufficiently spread out in the search area, in order 
to avoid them being trapped in local optimum points. 
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Translating this behaviour into mathematical terms, it is possible to describe the 

research strategy as a balance between an exploration phase and an exploiting 

one: the former is linked to the individualism of the single member that search the 

solution far from the swarm, the latter is related to the successful information 

exchanged from the other individuals. 

To give a quantitative and more formal representation of the process, we can 

formulate the algorithm in the following way. 

Let M be the number of particles – thus, the number of possible solutions to the 

problem – and N the number of variables of the problem, then, each of the M 

particles is constituted by a point in the N-dimensional space. At the k-th 

algorithm’s step, each particle will be characterized by the following three N-

dimensional vectors: 

• 𝒙𝒋
𝒌: represents the current position of the j-th particle at step k; 

• 𝒗𝒋
𝒌: represents the current velocity of the j-th particle at step k; 

• 𝒑𝒋
 : represents the best position (𝑝𝑏𝑒𝑠𝑡) reached so far by the j-th particle; 

• 𝒑𝒈
 : represents the best position (gbest) reached globally between all 

particles. 

Moreover, 𝑝𝑏𝑒𝑠𝑡𝑗 = 𝑓(𝑝𝑗) denotes the fitness function’s value observed in the 

best personal position by the j-th particle until that step. At each algorithm’s 

iteration, current position 𝑥𝑗
𝑘 of each particle is considered as possible solution to 

the optimization problem. In case fitness function’s value associated to the current 

position is the best one registered until that moment by the same particle, the 

position is saved in vector 𝑝𝑗 and the value of the fitness function associated is 

known as 𝑝𝑏𝑒𝑠𝑡𝑗. The final aim consists in researching new positions able to 

improve as much as possible the value of the fitness function. Since in this work 

PSO is treated in general terms as tool for the solution to a generic non-

constrained minimization problem, when referring to “best” values of the fitness 

function it is appropriate to expect that the function assumes the smallest values 
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if facing a minimization problem; conversely, the greatest values if facing a 

maximization problem. 

 (Eberhart J., Kennedy R.C. 1995) proposed a simple algorithm executable through 

few rows of code. To find the solution, it requires the specification of the problem 

in addition to the setting of some parameters that are soon going to be discussed 

more in details. 

The original algorithm develops as follows: 

 

1. Initialize randomly a population of particles, in terms of initial position, initial 

velocity and best position visited in the search space; 

2. Start of the loop (iteration): 

2.1. For each particle evaluate fitness function 𝑓(𝑥𝑗
𝑘) in correspondence of the 

current position 𝑥𝑗
𝑘; 

2.2. Compare the observed value with 𝑝𝑏𝑒𝑠𝑡𝑗: if the former is better, the best 

personal position 𝑝𝑗 needs to be updated with the current one 𝑥𝑗
𝑘; 

2.3. Identify particles in the neighbourhood with the best fitness value among 

all and assign it to a vector 𝑝𝑔 called 𝑔𝑏𝑒𝑠𝑡 and defined as the vector 

constituted by the best global positions, not only local ones; 

2.4. Update position and velocity of all particles following the system of 

equations: 

 

{
𝑣𝑗
𝑘+1 = 𝑣𝑗

𝑘 + 𝑈(0, 𝜙1) ⊗ (𝑝𝑗
𝑘 − 𝑥𝑗

𝑘) + 𝑈(0, 𝜙2) ⊗ (𝑝𝑔 − 𝑥𝑗
𝑘)

𝑥𝑗
𝑘+1 = 𝑥𝑗

𝑘 + 𝑣𝑗
𝑘+1  
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where: 

▪ 𝑈(0, 𝜙1), 𝑈(0, 𝜙2)  ∈  ℝ
𝑛 and their components are uniformly 

distributed respectively in intervals [0; 𝜙1] and [0;𝜙2]41, where 

𝜙1 and 𝜙2 are acceleration coefficients and will be discussed later; 

▪ The operator ⊗ is the tensor product42; 

▪ 𝑝𝑔 is the best position in the neighbourhood of the j-th particle; 

2.5. If the given stop criterion, usually a maximum number of iterations or a 

determined value of the fitness function, is reached, go to step 3; 

otherwise update the iterations counter and go back to step 2.1; 

3. End of the loop. 

Referring to the first equation: 

• 𝑣𝑗
𝑘 is the current velocity, accountable for making the particle move in the 

same direction it was headed before; 

• 𝑈(0, 𝜙1) ⊗ (𝑝𝑗 − 𝑥𝑗
𝑘) is called cognitive component. It can be thought of 

as particle’s memory, reason for which the particle tends to return to the 

areas of the search space in which it has experienced best individual fitness 

values. 𝑈(0, 𝜙1) ∈ [0, 𝜙1] is a random number with uniform distribution; 

• 𝑈(0, 𝜙2) ⊗ (𝑝𝑔 − 𝑥𝑗
𝑘) is called social component. It can be seen as the 

exchange of information that coming from the other particles and causes 

the particle to move to the best area the swarm has found until that 

moment. 𝑈(0, 𝜙2) ∈ [0, 𝜙2]  is a random number with uniform 

distribution. 

 
41 ℝ𝑛 is the objective function domain. 
42 The tensor product is a bilinear operator, a function that combines two vectorial spaces 
in the same field to produce an element of a third vectorial space, which is linear in every 
argument. 
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3.2.1 Parameter selection 

When executing particle swarm algorithm, several aspects has to be taken into 

consideration in order to facilitate convergence and prevent dispersion – or 

explosion – of the swarm. These aspects include the selection of certain 

parameters. The original version of PSO has a restrained number of parameters 

that has to be determined: the first one is constituted by the number of particles 

and is determined prevalently given the level of algebraic complexity of the 

problem to solve. Blackwell et al. (2007) highlighted that numbers between 20 and 

50 are the most widespread in practice. The other parameters that need to be set 

are present in the velocity update equation and are acceleration parameters and 

maximum velocity. 

Acceleration parameters 

The two acceleration parameters 𝜙1 and 𝜙2 are respectively known as cognitive 

coefficient and social coefficient. They influence PSO’s behaviour since they 

determine in a relevant portion the intensity of forces that attract each particle, 

at each iteration, respectively towards its best position found in the past (𝑝𝑗 − 𝑥𝑗
𝑘) 

and towards the best position visited previously by all particles in the 

neighbourhood (𝑝𝑔 − 𝑥𝑗
𝑘). Changes in 𝜙1 and 𝜙2 value can make PSO more o less 

responsive and even unstable when particles’ speed increases without control: 

small values restrict the movement of particles, while big values might cause the 

divergence of particles. It has to be highlighted that the sum of 𝜙1 and 𝜙2 should 

not be greater than 4 and they should not have equal value, since the weights of 

the personal and group coefficients differ according to the characteristics of the 

problem. Given the acceleration parameters’ influence on the particles’ velocity, 

the latter needs to be managed as well. 

Maximum velocity 

Velocity of particles is updated at each iteration of the algorithm. It is a stochastic 

variable and has, thus, the characteristic to create an uncontrolled trajectory, 

making particles undertake wider cycles in the search space. With the aim of 
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avoiding these “explosions” or, on the contrary, a strong convergence, upper and 

lower bounds for velocity has been set and can be briefly described as follows: 

 

𝑣𝑗𝑛 = {

−𝑉𝑚𝑎𝑥, 𝑖𝑓 𝑣𝑗𝑛 < −𝑉𝑚𝑎𝑥
𝑉𝑚𝑎𝑥, 𝑖𝑓 𝑣𝑗𝑛 > 𝑉𝑚𝑎𝑥
𝑣𝑗𝑛,                    𝑒𝑙𝑠𝑒 𝑖𝑓

 

 

The general method for preventing explosions is to determine a maximum velocity 

parameter 𝑉𝑚𝑎𝑥 to block velocity from exceeding it on each dimension n for each 

particle j. Usually value 𝑉𝑚𝑎𝑥 is chosen empirically based on the features of the 

problem. It is important to underline that this constriction allows particles to 

fluctuate between the bounds without the tendency of the swarm to collapse 

towards a point or to scatter too much in the search space. 

This constraint solution is object of some criticism since the bound parameter 𝑉𝑚𝑎𝑥 

has shown to have influence on the balance between exploration (cognitive 

aspect) and exploitation (social aspect). Coherently, there have been proposed 

some alternative solutions to improve the algorithm, that are going to be 

explained in the following paragraph. 

3.2.2 Adjustments of PSO 

As said earlier, despite being one of the most relevant method to solve an 

optimization problem, PSO has the shortcoming of premature convergence. 

Indeed, converging too fast to a certain point may cause the swarm to be trapped 

into a local optimum and it would not allow to explore other promising regions. 

Consequently, when dealing with complex problems, PSO might fail to find the 

global optimum. To overcome the issue of premature convergence, improving 

algorithm’s performance, PSO as originally stated has to be modified: in this 

paragraph we will describe the most relevant adjustments. 
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Inertia Weight Approach (IWA) 

Motivated by the willing to improve the solving capacity of the metaheuristic, 

limiting as much as possible – until eliminating – the influence of maximum 

velocity parameter 𝑉𝑚𝑎𝑥, Shi and Eberhart (1998) introduced an important 

modification to the velocity updating equation through the insertion of a new 

parameter called inertia weight (wk). This parameter has the objective of 

managing the exploration and exploitation capabilities of the swarm and to allow 

the swarm to converge in a more accurate and efficient way with respect to the 

traditional PSO update equation. 

The updating system become: 

 

{
𝑣𝑗
𝑘+1 = 𝑤𝑘𝑣𝑗

𝑘 + 𝑈(0, 𝜙1) ⊗ (𝑝𝑗
𝑘 − 𝑥𝑗

𝑘) + 𝑈(0, 𝜙2) ⊗ (𝑝𝑔 − 𝑥𝑗
𝑘)

𝑥𝑗
𝑘+1 = 𝑥𝑗

𝑘 + 𝑣𝑗
𝑘+1  

 

Inertia weight may be either implemented as a fixed or dynamic value. With 𝑤 =

0, particles’ precedent velocity goes out of the equation, meaning that all particles 

will move without knowledge of the previous velocity at each step. With 0 < 𝑤 ≤

1 particles will tend to change direction, while conversely, with 𝑤 ≥ 1 velocity will 

increase over time, hardly changing direction and the swarm will diverge and 

scatter. Even if for fixed values of 𝑤, PSO algorithm performs well, the 

employment of a dynamic inertia weight parameter is more common, due to its 

capacity of controlling and managing exploration and exploitation abilities.  

When choosing a dynamic value for the parameter, a linearly decreasing inertia 

weight has empirically shown good results in optimization problems. Aiming at a 

good balance between exploration and exploitation and ultimately at finding an 

optimum, parameter 𝑤’s value, which is linearly decreasing in time, is set with the 

following equation: 
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𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛

𝐾
× 𝑘 

 

where: 

▪ 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are pre-determined maximum and minimum values of the 

inertia weight parameter; 

▪ 𝐾 is the given possible maximum number of iterations, chosen by the user; 

▪ 𝑘 is the current number of iterations. 

 

The use of inertia weight parameter to control the balance between cognitive and 

social aspects and to ensure convergence results valid; nevertheless, once the 

parameter has decreased, it is not able to recover the exploration mode – hence 

increase again – if, for instance, the swarm needs to search in new areas. 

Contextually, other methods to control inertia weight behaviour have been 

adopted. For example, Blackwell et al. (2007) found that PSO’s performance 

significantly improves with the employment of 𝑤 using a fuzzy system. Other 

effective strategies, as well proposed by Blackwell et al. (2007), include the use of 

inertia weight with a random component or the use of an increasing inertia 

weight; both methods showed good results. 

Constriction Factor Approach (CFA) 

A widespread alternative to the introduction of inertia weight which allows to 

achieve the triple objective of controlling the convergence of particles, prevent 

explosiveness of velocity and eliminate the troublesome presence of 𝑉𝑚𝑎𝑥, is the 

application of a constriction coefficient 𝜒 on the entire velocity update equation. 

Hence, it is a factor that facilitates particles’ convergence operating on all 

equation’s addenda, instead of influencing only previous velocity as inertia weight. 

The constriction factor approach was proposed by Clerc (1999) and the resulting 

velocity update equation is as follows: 
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{
𝑣𝑗
𝑘+1 = 𝜒[𝑣𝑗

𝑘 + 𝑈(0, 𝜙1) ⊗ (𝑝𝑗
𝑘 − 𝑥𝑗

𝑘) + 𝑈(0, 𝜙2) ⊗ (𝑝𝑔 − 𝑥𝑗
𝑘)]

𝑥𝑗
𝑘+1 = 𝑥𝑗

𝑘 + 𝑣𝑗
𝑘+1  

 

where: 

▪ 𝜒 =
2

𝜙−2+√𝜙2−4𝜙
  is the equation that determines the constriction factor; 

▪ 𝜙 > 4,     𝑤𝑖𝑡ℎ 𝜙 = 𝜙1 + 𝜙2. 

 

Given the constriction factor equation, this approach only works for 𝜙 values 

greater than 4. Under this approach, 𝜙 is usually set to 4.1 with 𝜙1 = 𝜙2; 

consequently resulting in a constriction factor 𝜒 ≈ 0.7298. 

Fully informed Particle Swarm 

The sources of influence on particles in the classical PSO version are prevalently 

two: personal best and global best. This means that for the j-th particle, the 

remaining information coming from the other particles in its neighbourhood are 

not exploited. Kennedy and Mendes (2002 and 2003) have proposed some 

modifications on how particles interact with their neighbours, introducing a new 

variant of PSO, the so-called Fully Informed Particle Swarm (FIPS). While in the 

original algorithm each PSO particle is influenced by its own previous performance 

and the single best position of its neighbours, the fully informed particle swarm 

establish that the particle is influenced by all of its neighbours. FIPS will then be 

formulated as follows: 

 

{
 

 𝑣𝑗
𝑘+1 = 𝜒[𝑣𝑗

𝑘 +
1

𝑀𝑗
∑ 𝑈𝑘⊗ (𝑝𝑛𝑏𝑟𝑚𝑘 − 𝑥𝑗

𝑘)

𝑀

𝑚=1

]

𝑥𝑗
𝑘+1 = 𝑥𝑗

𝑘 + 𝑣𝑗
𝑘+1
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where: 

▪ 𝑀𝑗 is the number of neighbours for particle 𝑗; 

▪ 𝑛𝑏𝑟𝑚 is particle 𝑗’s 𝑚 − 𝑡ℎ neighbour. 

 

Comparing traditional PSO with FIPS, it has been shown that the latter appears to 

find better solutions in relatively fewer iterations than the former. However, FIPS 

has a main relevant shortcoming: it is much more dependent on population 

topology. This feature of the metaheuristic is the subject of the next paragraph. 

3.2.3 Population topology 

Population topology defines how particles interact with each other. The nature of 

communication between particles is affected by the adopted topology structure, 

hence, it significantly influences their behaviour. Possible topologies are divided 

into two groups: static and dynamic. In the latter case, particles belonging to the 

neighbourhood change at each iteration. 

Considering the fact that in the traditional version of this metaheuristic, topology 

was conceived as static, we can notice how also this aspect of the algorithm was 

object of modifications and evolutions during the years. First topologies were 

based on proximity between particles within the search space. However, this 

communicative structure presented some feature of convergence less desirable, 

along with being computationally demanding. The following development was 

oriented toward a double direction, defining two general kinds of 

neighbourhoods: 

• Global best (gbest): particles are influenced by the best solution found by 

any member of the swarm. It corresponds to a fully connected network in 

which each individual has access to information of all the other individuals 

in the swarm; 

• Local best (lbest): each individual has access to information exchanged by 

its immediate neighbours, according to some swarm topology. 
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The main topologies are the following three, with the first two belonging to the 

local best neighbourhood and the third one belonging to the global best 

neighbourhood: 

➢ Star topology: in this kind of topology there is only one central particle that 

is connected to all the others: all the information is exchanged through it. 

This specific particle compares the best positions of all members of the 

swarm and update its position towards the particle that has found the best 

position so far. Afterwards, the central particle’s new position is 

communicated to all the members. 

➢ Ring topology: each particle exchanges information to exactly two other 

particles, creating a single pathway, defined as a ring. With this topology 

the particle that finds a better solution than its two neighbours, send them 

the information which is going to be spread to their immediate neighbours 

and so on until it reaches the last particle. Following this approach, the 

solution is spread slowly around the pathway by all members. However, 

despite the slower convergence, larger areas of the search space are 

covered than with the previous topology. 

➢ Fully connected topology: in this topology, the source of social information 

to a particle is the best-performing element in the whole population. All 

the particles are linked with each other and can receive information from 

every other member of the population. It has of course a global best kind 

of neighbourhood. 
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Figure 1. Fully connected or global best (left), Local best or Ring (middle) and Star (right) topology. 

Ugolotti et al. (2019) 

 

 

 

In conclusion of this segment dedicated to PSO, it is considered relevant to 

highlight what explained by Blackwell et al. (2007) with regard to the current 

absence of theoretical results able to describe in a didactic way the foundations of 

this process. Such unavailability is mainly attributable to four reasons. In first 

place, PSO is constituted by a large number of elements that interact between 

themselves but, in spite of the relatively easy comprehension of particles’ nature 

and of iterations, it cannot be said the same for the dynamics that involve the 

swarm in its totality. In second place, the concerns regard particles’ memory and 

their ability to update it. This means that between iterations a particle could be 

attracted towards a new personal best, towards a global best or towards a balance 

of the two given by a function that depends on both aspects. The third cause is the 

fact that forces operating on particles have stochastic nature, impeding the 

employment of mathematical tools usually used in the analysis of dynamic 

systems. Lastly, knowing that PSO behaviour depends on the structure of the 

fitness function and being the choice of possible objective function very wide, to 

provide crosswise applicable results is highly complicated. 
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Chapter 4 

Application on FTSE MIB and discussion 

In this chapter we will apply the model introduced in chapter 2. We will consider 

real data, in particular daily closing prices of a set of selected assets on FTSE MIB 

index. The time length of historical data considered is 5 years: from July 2014 to 

December 2018. 

4.1 Preliminary information 

With the aim of assessing the capability of our portfolio selection model, we 

provided an application on real data. In order to keep the computation light and 

less time-consuming, just a set of FTSE MIB assets has been considered in our 

analysis. Moreover, to maintain our set representative of the index and well 

diversified across sectors, we have considered one asset for each sector that 

composes the index. FTSE MIB is the main benchmark index of Italian securities 

markets and it comprehends 40 companies of primary importance and with high 

liquidity in the different sectors. 

Our set is constituted by 10 securities, which are listed in the following table. 

 

 

 

FTSE MIB 

SECTOR SECURITY 

Industrials Atlantia 

Healthcare Diasorin 
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Utilities Enel 

Energy Eni 

Consumer staples Fiat Chrysler Automobiles 

Financials Generali 

Consumer discretionary Juventus Football Club 

Technology Stmicroelectronics 

Materials Tenaris 

Telecom Telecom Italia 

Table 1. Subset of FTSE MIB securities and relative sector. 

 

In the present analysis, historical data of assets’ closing prices, from 1st July 2014 

to 28th December 2018, are considered and divided into several subsets. In 

particular, 3 different periods are studied, each divided into two sections: a so-

called in-sample part of 12 months and a so-called out-of-sample part of 6 months. 

The first section of data will be employed, with the exploitation of the 

metaheuristic algorithm, to estimate the solution to our optimization problem; 

while the second one, also known as virtual future, will be employed to verify the 

accuracy of the estimation provided by the first set of data. 

The general concepts behind this choice is that portfolio’s risk and expected return 

of the out-of-sample period should follow approximately the trend of the in-

sample period on which the model is based. Following the reasoning, it is assumed 

that the optimal percentages of investment on each asset, obtained by the in-

sample-based model, produce the best portfolio model also for the near-after 

periods. Hence, it is possible to consider being in the last day of the in-sample 

period and having the will to invest a certain amount of wealth for the following 6 

months, exploiting the optimal percentages of investment provided by the in-

sample observations analysis. Finally, comparing the results of this artificial 

investment with the expectations at the end of the twelfth month, it is possible to 

evaluate the effectiveness of the method. 
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The three periods and their sections are divided as follows: 

 

Period N. In-sample Out-of-sample 

1 July 2014 – June 2015 July 2015 – December 2015 

2 January 2016 – December 2016 January 2017 – June 2017 

3 July 2017 – June 2018 July 2018 – December 2018 

Table 2. Periods analysed. 

 

As regards to returns, logarithmic returns are preferred over percentage returns. 

Daily log returns for each asset considered are computed from the observed daily 

close prices with the following formula: 

 

𝑟𝑖,𝑡 = ln (
𝑝𝑖,𝑡
𝑝𝑖,𝑡−1

) 

 

4.2 Problem specific parameters setting 

First of all, before applying the model to real data, it is important to define and 

describe the parameters introduced as inputs in the model: both with regard to 

the portfolio selection problem’s constraints and to the PSO algorithm. 

With what concerns the portfolio model constraints, the chosen parameters for 

our application are the following: 

 

• The desired minimum daily return is set equal to the portfolio mean return 

over the in-sample period, considering assets as equally weighted: 𝜋 =
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∑ �̂�𝑖
𝑁
𝑖=1 , with �̂�𝑖 being 𝑖 − 𝑡ℎ asset’s mean return over the in-sample period 

and �̂�𝑖 =
1

𝑇
∑ 𝑟𝑖,𝑡
𝑇
𝑡=1 ; 

• The minimum number of assets that can be held in the portfolio is: 𝐾𝑑 =

3; 

• The maximum number of assets that can be held in the portfolio is equal 

to all securities considered in this work: 𝐾𝑢 = 10; 

• The minimum percentage of investment in each asset is: 𝑑 = 2%; 

• The maximum percentage of investment in each asset is: 𝑢 = 20%; 

 

As mentioned in the introduction of this dissertation, results from our mean-EvaR 

portfolio selection model will be discussed and compared with results from the 

same model, but substituting EVaR risk measure with the more common Expected 

Shortfall (or CVaR) one. Parameters that need to be introduced for such risk 

measures are: 

 

• The level of significance, common to both measures of risk, is defined by: 

𝛼 = 95%; 

• The arbitrary parameter 𝑡 of EVaR measure is set as advised by the author 

Ahmadi-Javid (2017) in its paper on portfolio optimization with the 

employment of EVaR: 𝑡 = 1. 

The choices concerning assets number and percentage of investment constraints 

are made with the intent of maintaining an appropriate minimum level of 

diversification within the portfolio. 
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4.3 PSO parameters setting 

It is decided to employ inertia weight to slow down pre-mature convergence of 

the algorithm. Taking into consideration what suggested by literature, the 

following PSO parameters are considered: 

 

• Number of particles: 50; 

• Number of iterations: 1000; 

• Inertia weight: 𝜔 = 0.7298; 

• Individual acceleration coefficient: 𝜙1 = 1.49618; 

• Social acceleration coefficient: 𝜙2 = 1.49618; 

• Penalty parameter: 𝜖 = 10−7. 

 

The penalty parameter 𝜖 is relevant, since it guarantees correspondence between 

the original constrained optimization problem and the unconstrained one. 

4.4 Application, comparison and discussion 

As mentioned before, in order to give more significance to our results and 

comparisons, the application of our model is implemented in three different 

periods. In each period, the portfolio selection model is applied individually with 

both EvaR and ES as risk measures. The metaheuristic algorithm is run 5 times for 

each measure of risk; each run starting from different random positions and 

velocities. After the evaluation of constraints violations and the comparison 

between fitness values, the percentages of investment from the best run are taken 

as approximation of portfolio’s optimal shares. Optimal results obtained in this 

way are then applied to logarithmic returns of the respective out-of-sample set of 

observations. Performances of the portfolio deriving from the mean-EVaR 
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portfolio model will then be analysed and compared to the results computed with 

expected shortfall and to a benchmark. The benchmark is represented by an 

equally weighted portfolio composed by the same 10 assets. 

 

Period 1 

The first period considered is comprehended between 1st July 2014 and 30th 

December 2015. The in-sample section is constituted by the first 12 months, while 

the out-of-sample is represented by the last 6 months of 2015. 

PSO algorithm has been launched on the in-sample observations five times: the 

outputs of the computations are displayed in the following table. 

 

OUTPUTS RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 

Best fitness value 8.506679 0.051333 1.092878 0.181599 2.000e+06 

Num. of selected assets 7.999999 5 8.000000 8.000000 4 

Budget constraint 9.008e-07 0 1.259e-08 2.405e-09 0.031330 

Return constraint 0 0 0 0 0 

Min. num. of assets 
constraint 

0 0 0 0 0 

Max. num. of assets 
constraint 

0 0 0 0 0 

Min. investment % 
constraint 

2.848e-09 9.595e-20 1.879e-11 5.694e-11 1.178e-19 

Max. investment % 
constraint 

0 0 6.103e-10 2.284e-11 0.168669 

z constraint 8.336e-07 4.797e-18  9.092e-08 1.308e-08 1.243e-17 

Table 3. PSO outputs on mean-EVaR portfolio selection problem. 

 

In the description of the functioning of the penalty parameter, in chapter 2, it has 

been explained that constraints values are equal to zero or near zero if there are 

no violations in the process. As we can see from Table 3, the majority of the five 

runs’ constraints are indeed equal to zero or significantly near to zero, with the 

exception of Run 5 in which budget and maximum percentage of investment 
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constraints are too relevant to be approximated to zero. As a proof of that, we can 

observe that the constraints violations lead to a higher and less favourable fitness 

value. 

Having to deal with a minimization problem, it is important to choose the lowest 

fitness value; therefore, for this period we have selected Run 2 – with a best fitness 

value of 0.05 – as best solution. 

The same procedure has been followed for the portfolio selection problem 

adopting expected shortfall as risk measure. However, with the purpose of not 

weighing the reading down, we just provide the best solution between the five 

runs. In the following table it is possible to observe the optimal weights for each 

asset given by the employment of the two risk measures. 

 

Security EVaR ES 
 Optimal weights 

Atlantia 0.200000000000000 0.120291542835261 

Diasorin 0.200000000000000 0.125935424522847 

Enel 0.200000000000000 0.063566196597037 

Eni 0.000000000000000 0.029938581101640 

FCA -0.000000000000000 0.184483652072605 

Generali 0.200000000000000 -0.000000000000000 

Juventus 0.000000000000000 0.101720658347452 

Stmicroelectronics 0.000000000000000 0.166996514683626 

Tenaris -0.000000000000000 0.164902854228434 

Telecom 0.200000000000000 0.042164575807293 

 Number of assets held in the portfolio 

 5 9 

Table 4. Assets' optimal weights. 

 

We simulated an investment with a capital of € 10.000 in the relative out-of-

sample period. The investment is made on the same 10 assets three different 
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times: one with EVaR optimal weights, one with ES optimal weights and one with 

equal weights (benchmark). In the following graph we can observe the behaviour 

of each portfolio in time. 

 

 

Figure 2. Period 1 – Portfolios daily values from an initial investment of €10.000. 

 

As it can be seen, our portfolio seems to perform significantly better than both the 

portfolio computed with ES and the benchmark. Given that EVaR portfolio is 

constituted by 5 assets with respect to the 9 and 10 of ES portfolio and benchmark 

respectively, the first portfolio may have invested in riskier assets with a higher 

expected return. To study more in details the three portfolios, two important 

indexes are provided. 
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Table 5. Performance ratios. 

Portfolio *Sharpe ratio43 *Sortino ratio44 

EVaR 0,03070348 0,04450178 

ES -0,006831 -0,01332989 

Benchmark -0,0098515 -0,00938271 

*Risk-free rate is set equal to zero. 

 

Period 2 

The second period considered is comprehended between 4th January 2016 and 

30th June 2017. The in-sample section is constituted by the entire year 2016, while 

the out-of-sample is represented by the first 6 months of 2017. 

PSO algorithm has been launched on the in-sample observations five times: the 

outputs of the computations are displayed in the following table. 

 

Table 6. PSO outputs on mean-EVaR portfolio selection problem. 

OUTPUTS RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 

Best fitness value 3.802e+03 0.051389 2.206e+03 2.785e+03 0.051391 

Num. of selected assets 7.999996 6.999999 5 7.999999 5.999999 

Budget constraint 2.651e-07 1.887e-14 0 2.397e-08 1.075e-12 

Return constraint 3.717e-04 0 2.206e-04 2.785e-04 0 

Min. num. of assets 
constraint 

0 0 0 0 0 

Max. num. of assets 
constraint 

0 0 0 0 0 

Min. investment % 
constraint 

1.158e-09 3.480e-15 8.017e-22 2.702e-11 0 

Max. investment % 
constraint 

4.237e-08 3.005e-14 2.775e-17 3.369e-09 2.602e-13 

z constraint 8.265e-06 1.261e-12 4.226e-20 3.626e-08 2.422e-12 

 
43 Sharpe ratio is the average return gained in excess of the risk-free rate per unit of 

standard deviation (volatility). It is defined by the following formula: 𝑆𝑅 =
𝑅𝑃−𝑅𝑓

𝜎𝑃
, where 

𝑅𝑃is the portfolio return, 𝑅𝑓 is the risk-free rate and 𝜎𝑃 is portfolio return’s standard 

deviation. 
44 Sortino ratio differentiates from Sharpe ratio by considering only the standard deviation 
of negative returns – downside deviation – instead of standard deviation. 
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We can observe that the majority of constraints values are equal to zero or really 

near to zero, whereas violations of the constraint on the minimum desired return 

are relatively significant in runs 1, 3 and 4. It is decided to consider Run 2 as best 

solution to the optimization problem, since it has the lowest best fitness value, 

slightly lower than Run 5’s one. Between the runs with the lowest fitness values, 

Run 2’s portfolio is also more diversified since it considers more assets. 

In the following table we display the optimal weights for each asset given by the 

employment of the two risk measures. 

 

Security EVaR ES 
 Optimal shares 

Atlantia -0.000000000000000 0.000000000000000 

Diasorin 0.193366378398991 0.198972706272491 

Enel 0.055942842714043 -0.000000000000000 

Eni 0.178643610305862 0.000000000000000 

FCA 0.000000000000000 0.104093925230620 

Generali 0.195293341217322 0.186940704323086 

Juventus 0.000000000000000 0.000000000000000 

Stmicroelectronics 0.191657999722274 0.195328909026544 

Tenaris 0.165073018393120 0.122130423236571 

Telecom 0.020022809248410 0.192533331921531 

 Number of assets held in the portfolio 

 7 6 

     Table 7. Assets' optimal weights. 

 

The same investment is simulated on this period’s out-of-sample section. The 

following graph shows the behaviour of each portfolio in time. 
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Figure 3. Period 2 – Portfolios daily values from an initial investment of €10.000. 

 

From Figure 3 we can observe how EVaR portfolio seems to perform worse than 

the others. An explanation could be the caution that EVaR has as a risk measure: 

being an upper bound for VaR and CVaR, it should measure risk higher than the 

other two measures. In other words, a portfolio selection model with EVaR will 

choose less riskier investments with consequently lower expected returns. This 

could explain the general worse performance of EVaR portfolio. To obtain a clearer 

vision on the portfolios we are considering, we provide two important indexes: 

Sharpe ratio and Sortino ratio. 

 

Table 8. Performance ratios. 

Portfolio Sharpe ratio Sortino ratio 

EVaR 0,006872349 0,009638447 

ES 0,034197827 0,048292247 

Benchmark 0,065733318 0,095712466 
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Period 3 

The third period considered is comprehended between 3rd July 2017 and 28th 

December 2018. The in-sample section is constituted by the first 12 months, while 

the out-of-sample is represented by the last 6 months of 2018. 

PSO algorithm has been launched on the in-sample observations five times: the 

outputs of the computations are displayed in the following table. 

 

Table 9. PSO outputs on mean-EVaR portfolio selection problem. 

OUTPUTS RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 

Best fitness value 0.051375 1.367e+02 1.483044 0.053499 2.483e+03 

Num. of selected assets 5 5.999999 7.999999 7.000000 5 

Budget constraint 0 3.273e-12 1.289e-07 2.368e-11 0 

Return constraint 0 1.367e-05 0 0 2.483e-04 

Min. num. of assets 
constraint 

0 0 0 0 0 

Max. num. of assets 
constraint 

0 0 0 0 0 

Min. investment % 
constraint 

6.421e-20 1.733e-13 6.835e-12 1.287e-14 3.064e-20 

Max. investment % 
constraint 

2.809e-17 1.626e-12 0 9.370e-13 1.493e-19 

z constraint 4.932e-18 4.424e-11 1.384e-07 2.112e-10 2.278e-18 

 

As the previous period, the return constraint is the one whose violations are the 

more significant, in this case in Run 2 and 5. Being all other constraints values near 

to zero, it is decided to consider Run 1 solutions as optimal weights for our 

portfolio. 

We show these results together with the ones obtained from the mean-ES 

portfolio selection model in the following table. 

 

Security EVaR ES 

 Optimal shares 

Atlantia 0.000000000000000 -0.000000000000000 
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Diasorin 0.200000000000000 -0.000000000000000 

Enel 0.000000000000000 0.198546963465654 

Eni 0.000000000000000 0.133550476495022 

FCA 0.200000000000000 0.136388654254785 

Generali 0.200000000000000 0.197511079147359 

Juventus -0.000000000000000 0.000000000000000 

Stmicroelectronics 0.200000000000000 0.136628773787093 

Tenaris 0.000000000000000 0.197374052850480 

Telecom 0.200000000000000 0.000000000000000 

 Number of assets held in the portfolio 

 5 6 

       Table 10. Assets' optimal weights. 

 

The investment simulation with these optimal weights lead us to the following 

graph, where portfolios’ behaviour is described during the 6 months out-of-

sample period. 

 

 

Figure 4. Period 3 – Portfolios daily values from an initial investment of €10.000. 

 

Figure 4 shows a relevant loss for all three portfolios. In this situation, a more 

moderate EVaR measure should lose less as a consequence of choosing less riskier 
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assets. However, it is observable that mean-EvaR portfolio is the one which 

encountered the worst loss. As explained in period 1 discussion, the cause may be 

related to the number of assets held in the portfolio – 5 out of 10. While in period 

1 the choice of selecting only 5 specific assets resulted as a successful strategy, in 

this period the 5 assets selected faced more serious losses with respect to the 

entire population of 10 assets (benchmark). 

Performance indexes are provided in the next table. 

 

Table 11. Performance ratios. 

Portfolio Sharpe ratio Sortino ratio 

EVaR -0,150118405 -0,1849375 

ES -0,134676284 -0,1655194 

Benchmark -0,110888982 -0,1396759 
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Conclusions 

In the present dissertation a Particle Swarm Optimization algorithm has been 

applied to a complex portfolio selection model, considering Entropic Value-at-Risk 

as a measure of risk. 

The problem was defined in chapter 2, considering several constraints that 

investors and fund managers could encounter in real world practice. Moreover, it 

has been decided to employ EVaR in defining a risk function, which needs to be 

minimized to obtain our best portfolio. In order to solve this constrained 

optimization problem in a reasonable amount of time, we relied on a bio-inspired 

metaheuristic algorithm, PSO, which have been discussed in chapter 3. It is worth 

mentioning that Particle Swarm Optimization is born as an unconstrained 

optimization method, hence it is usually necessary to make adaptations to deal 

with constrained optimization problems. We overcame this problem by employing 

a penalty parameter, which linearized our objective function while, at the same 

time, penalizing constraints violations. 

In the last chapter we made the computations and applied the results to a 

portfolio of 10 real assets chosen from FTSE MIB index. To give more reliability to 

our application, we considered three distinct periods of time and implemented 

the algorithm several times to obtain a reasonably low fitness value and, thus, a 

good optimization. 

Ahmadi-Javid (2012) introduced EVaR as a new coherent risk measure which can 

be defined as the tightest upper bound for Value-at-Risk and Conditional Value-

at-Risk. We would have expected EVaR to be a more conservative and cautious 

measure, causing the portfolio model to choose less riskier investments and 

guaranteeing a more constant and less volatile return. However, we were proven 

wrong by the results of our work: in all three cases the EVaR model selected 

portfolios with a relatively small number of assets, compared to ES model and to 

the total number of assets (10), thus not exploiting the diversification’s property 
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of lowering the overall portfolio risk. Moreover, portfolios computed with EVaR 

seemed to be riskier since they tended to over-react to market oscillations: when 

all three portfolios – the one computed with EVaR, the one computed with ES and 

the benchmark one – suffered a loss, EVaR portfolio was subject to the biggest 

loss; when all three portfolios obtained a profit, EVaR portfolio was the one to 

make the greatest profit. 

In conclusion, despite the computational study showed that the EVaR approach to 

the portfolio selection model resulted in very different portfolios, EVaR is a 

coherent risk measure and was proved to own appropriate properties to be 

considered as a promising risk measure both from a computational and a financial 

standpoint. Relevant future studies should involve the introduction of new risk 

measures that could outperform the current measures adopted in real practice 

and represent better the risk borne by investors and practitioners. 
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Appendix 

In this section we provide the developed Matlab code, adopted for this 

dissertation. 

 

Code applied to the EVaR-based portfolio selection model: 

clc; 
format long 
 

%% Input of the problem 
 

% Uploading historical data and computing logarithmic returns 
[prices] = importdata("file_name.xlsx"); 
[t,n_asset] = size(prices); % t is the period of time, n_asset is 
the number of assets considered 
returns = log(prices(2:end,:)./prices(1:end-1,:)); % log returns 
C = 10000; % capital invested 
% Differentiation between in-sample and out-of-sample 
oos = 127; % number of returns out-of-sample +1 
ris = returns(1:t-oos,:); %returns in-sample 
ros = returns(t-oos+1:(t-1),:); %returns out-of-sample 
rm_is = nanmean(ris); % In-sample mean returns 
rm_oos = nanmean(ros); % Out-of-sample mean returns 
% Data input 
pi = mean(rm_is); % desired daily minimum return, set equal to the 
portfolio mean return over the in-sample period 
alpha = 0.95; % significance level of EVaR 
Kl = 3; % minimum number of assets 
Ku = 10; % maximum number of assets 
l = ones(1,n_asset)*0.02; % minimum percentage of investment in each 
asset 
u = ones(1,n_asset)*0.20; % maximum percentage of investment in each 
asset 
t_evar = 1; % constant t linked to EVaR computation, set arbitrarily 
equal to 1 
% PSO parameters inizialization 
P = 50; % particles number 
niter = 1000; % iterations number 
c1 = 1.49618; % individual acceleration coefficient 
c2 = 1.49618; % social acceleration coefficient 
iw = 0.7298 ; % inertia weight 
vmaxx = zeros(1,n_asset); 
vmaxz = zeros(1,n_asset); 
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epsilon = 1e-07; % parameter that penalizes violations of 
constraints 
% Creation of vectors useful for objective function 
% Risk measure 
EVaR_p = zeros(P,1); % vector of EVaR values for each particle 
(portfolio) 
rmp_is = zeros(P,n_asset); % P x n_asset matrix 
 

% Constraints 
constr_1 = zeros(P,1); % budget constraint 
constr_2 = zeros(P,1); % desired minimum return constraint 
constr_3 = zeros(P,1); % minimum number of asset constraint (z>=Kl) 
constr_4 = zeros(P,1); % maximum number of asset constraint (z<=Ku) 
app_5 = zeros(P,n_asset); 
constr_5 = zeros(P,1); % minimum percentage of investment constraint 
(x>=l) 
app_6 = zeros(P,n_asset); 
constr_6 = zeros(P,1); % maximum percentage of investment constraint 
(x<=u) 
app_7 = zeros(P,n_asset); 
constr_7 = zeros(P,1); % z is either 0 or 1 
 

 

%% Computation 
 

% 1-Generation of position and velocity vectors and setting of 
fitness 
% function 
x = rand(P,n_asset); 
vx = rand(P,n_asset); 
z = rand(P,n_asset); 
vz = rand(P,n_asset); 
 

f = ones(P,1)*1.0e+255; % fitness function 
x1 = zeros(P,n_asset); % matrix which state if the asset is in the 
portfolio (x*z) 
% pb=pbest: vector with the best position of particles in previous 
iterations 
pbx = [x f]; 
pbz = z; 
 

% g=gbest: vector with the best global position and the associated 
objective function's value 
gx = zeros(1,n_asset+1); 
gz = zeros(1,n_asset); 
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% Beginning of the loop 
tic; % measuring time spent in the computation 
for k=1:niter 
% Identifying dynamic range for maximum velocity 
for i=1:n_asset 
vmaxx(i) = abs(max(x(:,i))-min(x(:,i))); 
vmaxz(i) = abs(max(z(:,i))-min(z(:,i)));  
end 
 

% 2-Objective function computation 
for p=1:P 
for i=1:n_asset 
x1(p,i) = x(p,i)*z(p,i); 
app_5(p,i) = max(0,l(i)*z(p,i)-x(p,i)); 
app_6(p,i) = max(0,x(p,i)-u(i)*z(p,i)); 
app_7(p,i) = abs(z(p,i)*(1-z(p,i))); 
end 
% Computing assets' weighted mean return for particle p 
rmp_is(p,:) = x(p,:).*rm_is; 
% Computation of historical EVaR for particle p 
EVaR_p(p) = t_evar*(log(sum(exp(rmp_is(p,:)*t_evar^-1))/n_asset)-
log(alpha)); 
 

 

% Sum of investment percentages equal to 1 
constr_1(p) = abs(sum(x1(p,:))-1); 
% Expected return at least equal to pi 
constr_2(p) = max(0,(pi-sum(x1(p,:)*rm_is'))); 
% Minimum number of assets Kl 
constr_3(p) = max(0,Kl-sum(z(p,:))); 
% Maximum number of assets Ku 
constr_4(p) = max(0,sum(z(p,:))-Ku); 
% Minimum percentage l 
constr_5(p) = sum(app_5(p,:)); 
% Maximum percentage u 
constr_6(p) = sum(app_6(p,:)); 
% z is either 0 or 1 
constr_7(p) = sum(app_7(p,:)); 
 

end 
 

% Objective funciton 
f = 
(EVaR_p+(1/epsilon)*(constr_1+constr_2+constr_3+constr_4+constr_5+co
nstr_6+constr_7)); 
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% 3-Comparing objective function's value with pbest 
for p=1:P 
if f(p)<pbx(p,n_asset+1) 
pbx(p,n_asset+1) = f(p); 
for i=1:n_asset 
pbx(p,i) = x1(p,i); 
pbz(p,i) = z(p,i);  
end 
end 
end 
 

 

% 4-Identifying the particle with the best position (g) 
[minimum,position] = min(pbx(:,n_asset+1)); 
gx(n_asset+1) = minimum; 
for i=1:n_asset 
gx(i) = pbx(position,i); 
gz(i) = pbz(position,i); 
 

end 
 

% 5-Updating velocity and position 
for p=1:P 
for i=1:n_asset 
vx(p,i) = iw*vx(p,i)+c1*rand*(pbx(p,i)-x(p,i))+c2*rand*(gx(i)-
x(p,i)); 
vz(p,i) = iw*vz(p,i)+c1*rand*(pbz(p,i)-z(p,i))+c2*rand*(gz(i)-
z(p,i)); 
 

if vx(p,i)>vmaxx(i) % maximum velocity limitation 
vx(p,i) = vmaxx(i); 
end 
if vz(p,i)>vmaxz(i) % maximum velocity limitation 
vz(p,i) = vmaxz(i); 
end 
 

x(p,i) = x(p,i)+vx(p,i); 
z(p,i) = z(p,i)+vz(p,i); 
 

end 
end 
converg(k,:) = gx(:,end); 
  
% 6-Go back to Step 2 until stop condition 
end 
% End of loop 
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% Results of the optimization problem 
optimum_shares = gx(1,1:n_asset)' 
best_fitness = gx(1,n_asset+1) 
  
rmp_in_sample = rm_is.*optimum_shares';%assets' weighted mean 
returns in sample 
rmp_out_of_sample = rm_oos.*optimum_shares'; %assets' weighted mean 
returns out of sample 
EVaR_oos = t_evar*(log(sum(exp(t_evar^-
1*rmp_out_of_sample(:)))/n_asset)-log(alpha)); %historical EVaR out 
of sample 
 

%% Output of the problem 
 

%Results 
n_selected_assets = sum(z(position,:)) 
constr_budget = constr_1(position) 
constr_return = constr_2(position) 
constr_Kl = constr_3(position) 
constr_Ku = constr_4(position) 
constr_min_share = constr_5(position) 
constr_max_share = constr_6(position) 
constr_z = constr_7(position) 
 

EVaR_is = EVaR_p*C; 
EVaR_in_sample = EVaR_is(position) 
rm_in_sample = sum(rmp_in_sample) 
rm_out_of_sample = sum(rmp_out_of_sample) 
EVaR_oos = EVaR_oos*C  
 

toc; 
  
% Graph comparing the behaviour of the fitness function (Y axis) in 
relation to the number of iterations made (X axis) 
plot(converg) 
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Code applied to the ES-based portfolio selection model: 

clc; 
format long 
 

%% Input of the problem 
 

% Uploading historical data and computing logarithmic returns 
[prices] = importdata("3rd_period.xlsx"); 
[t,n_asset] = size(prices); % t is the period of time, n_asset is 
the number of assets considered 
returns = log(prices(2:end,:)./prices(1:end-1,:)); % log returns 
C = 10000; % capital invested 
% Differentiation between in-sample and out-of-sample 
oos = 127; % number of returns out-of-sample +1 
ris = returns(1:t-oos,:); %returns in-sample 
ros = returns(t-oos+1:(t-1),:); %returns out-of-sample 
TT = (t-oos); 
rm_is = nanmean(ris); % In-sample mean returns 
rm_oos = nanmean(ros); % Out-of-sample mean returns 
 

% Data input 
pi = mean(rm_is); % desired daily minimum return, set equal to the 
portfolio mean return over the in-sample period 
alpha = 0.95; % significance level of EVaR 
Kl = 3; % minimum number of assets 
Ku = 10; % maximum number of assets 
l = ones(1,n_asset)*0.02; % minimum percentage of investment in each 
asset 
u = ones(1,n_asset)*0.20; % maximum percentage of investment in each 
asset 
% PSO parameters inizialization 
P = 50; % particles number 
niter = 1000; % iterations number 
c1 = 1.49618; % individual acceleration coefficient 
c2 = 1.49618; % social acceleration coefficient 
iw = 0.7298 ; % inertia weight 
vmaxx = zeros(1,n_asset); 
vmaxz = zeros(1,n_asset); 
 

epsilon = 1e-07; % parameter that penalizes violations of 
constraints 
% Creation of vectors useful for objective function 
% Risk measure 
ES_port = zeros(P,1); 
R_is = zeros(TT,P); 
sorted_R_is = zeros(TT,P); 
VaR = zeros(P,1); 
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% Constraints 
constr_1 = zeros(P,1); % budget constraint 
constr_2 = zeros(P,1); % desired minimum return constraint 
constr_3 = zeros(P,1); % minimum number of asset constraint (z>=Kl) 
constr_4 = zeros(P,1); % maximum number of asset constraint (z<=Ku) 
app_5 = zeros(P,n_asset); 
constr_5 = zeros(P,1); % minimum percentage of investment constraint 
(x>=l) 
app_6 = zeros(P,n_asset); 
constr_6 = zeros(P,1); % maximum percentage of investment constraint 
(x<=u) 
app_7 = zeros(P,n_asset); 
constr_7 = zeros(P,1); % z is either 0 or 1 
 

 

%% Computation 
 

% 1-Generation of position and velocity vectors and setting of 
fitness 
% function 
x = rand(P,n_asset); 
vx = rand(P,n_asset); 
z = rand(P,n_asset); 
vz = rand(P,n_asset); 
 

f = ones(P,1)*1.0e+255; % fitness function 
x1 = zeros(P,n_asset); % matrix which state if the asset is in the 
portfolio (x*z) 
% pb=pbest: vector with the best position of particles in previous 
iterations 
pbx = [x f]; 
pbz = z; 
 

% g=gbest: vector with the best global position and the associated 
objective function's value 
gx = zeros(1,n_asset+1); 
gz = zeros(1,n_asset); 
 

% Beginning of the loop 
tic; % measuring time spent in the computation 
for k=1:niter 
% Identifying dynamic range for maximum velocity 
for i=1:n_asset 
vmaxx(i) = abs(max(x(:,i))-min(x(:,i))); 
vmaxz(i) = abs(max(z(:,i))-min(z(:,i)));  
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end 
 

% 2-Objective function computation 
for p=1:P 
for i=1:n_asset 
x1(p,i) = x(p,i)*z(p,i); 
app_5(p,i) = max(0,l(i)*z(p,i)-x(p,i)); 
app_6(p,i) = max(0,x(p,i)-u(i)*z(p,i)); 
app_7(p,i) = abs(z(p,i)*(1-z(p,i)));  
end 
% Calculate portfolio returns for each particle (at its position) 
R_is(:,p)=ris*x(p,:)'; % TTxP matrix 
% Sort portfolio returns 
sorted_R_is = sort(R_is); % TTxP matrix 
% Store the number of returns 
num_returns_is = numel(R_is(:,1)); 
% Calculate the index of the sorted return that will be VaR 
VaR_index_is = ceil((1-alpha)*num_returns_is); 
% Use the index to extract VaR from sorted returns 
VaR(p) = -sorted_R_is(VaR_index_is,p); 
% Calculate historical ES 
ES_port(p) = -mean(sorted_R_is(1:VaR_index_is,p));  
 

 

% Sum of investment percentages equal to 1 
constr_1(p) = abs(sum(x1(p,:))-1); 
% Expected return at least equal to pi 
constr_2(p) = max(0,(pi-sum(x1(p,:)*rm_is'))); 
% Minimum number of assets Kl 
constr_3(p) = max(0,Kl-sum(z(p,:))); 
% Maximum number of assets Ku 
constr_4(p) = max(0,sum(z(p,:))-Ku); 
% Minimum percentage l 
constr_5(p) = sum(app_5(p,:)); 
% Maximum percentage u 
constr_6(p) = sum(app_6(p,:)); 
% z is either 0 or 1 
constr_7(p) = sum(app_7(p,:)); 
 

end 
 

% Objective funciton 
f = 
(ES_port+(1/epsilon)*(constr_1+constr_2+constr_3+constr_4+constr_5+c
onstr_6+constr_7)); 
 

% 3-Comparing objective function's value with pbest 
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for p=1:P 
if f(p)<pbx(p,n_asset+1) 
pbx(p,n_asset+1) = f(p); 
for i=1:n_asset 
pbx(p,i) = x1(p,i); 
pbz(p,i) = z(p,i);  
end 
end 
end 
 

 

% 4-Identifying the particle with the best position (g) 
[minimum,position] = min(pbx(:,n_asset+1)); 
gx(n_asset+1) = minimum; 
for i=1:n_asset 
gx(i) = pbx(position,i); 
gz(i) = pbz(position,i); 
 

end 
 

% 5-Updating velocity and position 
for p=1:P 
for i=1:n_asset 
vx(p,i) = iw*vx(p,i)+c1*rand*(pbx(p,i)-x(p,i))+c2*rand*(gx(i)-
x(p,i)); 
vz(p,i) = iw*vz(p,i)+c1*rand*(pbz(p,i)-z(p,i))+c2*rand*(gz(i)-
z(p,i)); 
 

if vx(p,i)>vmaxx(i) % maximum velocity limitation 
vx(p,i) = vmaxx(i); 
end 
if vz(p,i)>vmaxz(i) % maximum velocity limitation 
vz(p,i) = vmaxz(i); 
end 
 

x(p,i) = x(p,i)+vx(p,i); 
z(p,i) = z(p,i)+vz(p,i); 
 

end 
end 
converg(k,:) = gx(:,end); 
  
% 6-Go back to Step 2 until stop condition 
end 
% End of loop 
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% Results of the optimization problem 
optimum_shares = gx(1,1:n_asset)' 
best_fitness = gx(1,n_asset+1) 
  
R_oos=ros*optimum_shares; 
sorted_R_oos = sort(R_oos); % TTxP matrix  
num_returns_oos = numel(R_oos); 
VaR_index_oos = ceil((1-alpha)*num_returns_oos);  
VaR_oos = -sorted_R_oos(VaR_index_oos); 
% Calculate historical ES 
ES_oos = -mean(sorted_R_oos(1:VaR_index_oos)); 
rm_out_of_sample= gx(1,1:n_asset)*rm_oos';  
rm_in_sample= gx(1,1:n_asset)*rm_is';  
 

%% Output of the problem 
 

%Results 
n_selected_assets = sum(z(position,:)) 
constr_budget = constr_1(position) 
constr_return = constr_2(position) 
constr_Kl = constr_3(position) 
constr_Ku = constr_4(position) 
constr_min_share = constr_5(position) 
constr_max_share = constr_6(position) 
constr_z = constr_7(position) 
 

rm_port_oos = gx(1,1:n_asset)*(mean(ros))'; 
ES_is = ES_port*C; 
Es_in_sample = ES_is(position) 
rm_in_sample = rm_in_sample 
rm_out_of_sample = rm_out_of_sample 
ES_oos = ES_oos*C  
 

toc; 
  
% Graph comparing the behaviour of the fitness function (Y axis) in 
relation to the number of iterations made (X axis) 
plot(converg) 
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