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Abstract

In the recent years, cryptocurrencies have become more and more pervasive in

everyday life. Bitcoin is the most famous and the most used one.

This technology is based on the Blockchain, a continuously growing public

list of blocks. Blocks are made up of transactions that describe exchange of

coins among entities that own a Bitcoin wallet.

Since the creation of the currency in 2008, this structure has recorded all

the information about transactions and blocks.

The security of the system is based on a widespread network that prevents

modification at data registered in the blockchain and the use of cryptography

that secures the transactions between two parties.

Bitcoins are created through mining, a process that requires the miners

(users who want to participate actively in the creation of Bitcoins) to solve the

proof of work, a problem of finding a known hash starting from part of the

input.

When the correct hash is found, a new block with the coinbase, or the

starting, transaction is created and added to the blockchain. As a reward, a

certain amount of Bitcoin is given to the miner who solved the hash.

In this dissertation, we will provide an analysis of some interesting aspects

of the blockchain.

The information about blocks and transactions are retrieved by parsing, in-

terpretation by converting raw data into readable data, a section of the blockchain.

In particular we considered the time-span between 1st January 2013 to 11th Oc-

tober 2018.

The most intriguing aspect developed in this thesis is related to the so called

empty blocks, that are characterized by not containing any transaction except

the coinbase, or the starting, one.

We analyzed how empty blocks are mined and when it is profitable not to

add any transaction in a mined block. Moreover, we studied the correlation of

empty block generation with the propagation delay of blocks and transactions

in the bitcoin network.

We propose a model that aims to predict the behaviour of the Bitcoin system

in the setting of an infinite pending transaction queue and test the goodness of

the prediction by comparing the results with the real world data.



Finally, we will address the drawbacks of increasing the actual size limit of

a block and how this change impacts on the energy wasted by the miners and

the goodput of the system.

2



Introduction

Bitcoin is the first and most used type of cryptocurrency, digital coins that

rely on cryptography and a dense network of active members, the miners, to

exist. Initially, we provide a theoretical background on Bitcoin technology,

what differentiates it from the traditional type of currencies and how they have

become so used nowadays. Hence, we examine the blockchain, i.e. the structure

at the base of its activity, and how it is constructed and maintained.

The objective of this dissertation is to study the nature of empty blocks, odd

blocks that do not contain any user transactions and to delve into the question

of the block size limit.

The formation of empty blocks seems to be an unexpected and foolish behav-

ior of miners whose sole aim is to make more profit from a single mined block.

From a system prospective, empty blocks undermine the energy efficiency of

the blockchain, since the computational power used to generate them does not

bring any effective benefit on the reduction of the transaction backlog.

These blocks have become more and more frequent in the chain in latest

times and it is interesting to understand which are the reasons that lead the

miners to create them. To retrieve this information, we download the full ledger

and used a parser to retrieve key statistics. We examine how vacant blocks are

distributed in the blockchain and weather or not the gaps between these unique

blocks are distribute in a known way.

To study the behavior of the Bitcoin system, we propose a predictive queuing

model with the intention of estimating the presence of empty blocks according

to the size of the blocks with the assumption of an infinite buffer for the pending

transaction list.

Finally, we evaluate the drawbacks of expanding the size of blocks with a

particular focus on the energy waste and the goodput of the system.
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Structure of the thesis

This thesis is organized in 4 chapters: The first focuses on providing fundamen-

tal information about Blockchain and Bitcoin, and the way they work. We then

provide an insight on the largest problems that are subsequently addressed: the

construction of empty blocks and low system throughput. The second chap-

ter addresses the issue of creating empty blocks. Starting with evaluating the

problem, we see how information is propagated in the Bitcoin network. Then,

with the assumption that the propagation delay is one of the causes that allow

the creation of empty blocks, attempts to discover a good distribution to fit

the empty block gaps data using a hypothesis test. A queuing model for the

blockchain and its assessment is provided in Chapter 3 after seeing some of the

primary queuing systems. The last chapter discusses the last issue, the draw-

backs of raising the block size restriction specifically on the energy waste and

the system goodput.

The topics covered in this dissertation are:

• What is the blockchain?

• What is bitcoin?

• How bitcoin works?

• The problem of empty blocks

• The issue of bitcoin throughput

• A queuing model for the BTC blockchain

• The drawbacks in increasing the blocksize
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Chapter 1

Blockchain and Bitcoin

Chapter introduction

This chapter focuses on the introduction of Bitcoin technology and the frame-

work on which its operation is based: the blockchain. We will see how blocks are

produced and what is the technology that secures the blockchain. Then, we will

look at a bit of bitcoins history: when they were formed and how they become

such a powerful asset in the world economy. Moreover, we discuss the issue of

empty blocks and see what makes them so special. Finally, we will mention the

Bitcoin system throughput issue relative to other significant payment system.

1.1 Blockchain

1.1.1 What is the Blockchain

The Blockchain is a continuously growing public list of records, called blocks,

which are linked and secured thanks to the use of cryptography.

Bitcoin blockchain is basically an open, distributed, ordered, public ledger

that, since 2009 year in which the system was created, records all the transac-

tions between two parties in an efficient, verifiable and permanent way. This

ensures all those participating in the Bitcoin network to have complete access

to all the transactions occurred and verified until that time and everyone can

agree on the way each of these transactions took place.

Each block of the chain is composed by a hash pointer as link to the previous

block, a time stamp and the transaction data composed by a group of one or
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more transactions starting from the coinbase transaction made by miners.(see

Section 1.1.3) Duplicates of each transaction are hashed, paired, hashed again

until a single hash remains. This is the Merkle root of a Merkle tree, stored

in the block header. When data are registered in the blockchain is unfeasible

to retroactively alter block data without modify all its successive block. This

would require the consensus of the majority of the network.

Figure 1.1: A simplified blockchain schema[1]

The use of blockchain is not limited at cryptocurrencies, instead this technol-

ogy can be used for several other purposes like supply chain[2] or healthcare[3].

1.1.2 Merkle tree

A Merkle tree, or hash tree is a specific type of tree, usually binary but can

be arbitrary, greatly used in cryptography. The peculiarity of this tree data

structure is that:

• Every leaf node is labelled with the hash of a data block

• Every non leaf node is labelled with the hash of its respective children

The top hash, or Merkle root, is the hash of the entire tree. As Merkle tree

uses hash they are used to efficiently and securely verify huge amount of data

as they can be compressed in a single hash.

This structure is named after the American computer scientist Ralph Merkle,

one of the co-inventor of public key cryptography, who published [4] and patented

in 1979 [5]
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Figure 1.2: A Merkle tree

In Bitcoin, hash trees are used to store transactions in a way that optimizes

the space utilization and the security. In our case, the leaves are the transactions

that are consistently hashed and grouped together until the Merkle root is stored

in the block header of each block.

The following Figure from Satoshi’s 2009 paper [6] depicts the way Merkle

trees are built and stored into each blockchain block.
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Figure 1.3: Merkle tree use in bitcoin

Using hash trees in Bitcoin serves to keep data integrity and allows unique

nodes, known as Simple Payment Verification or SVP, not to download the

entire blockchain to work on the network. Instead, they only need to download

the valid chain block header, which is merely the shortest one. Then, SVP node

can determine the status of any transaction using the hash root of a block part

of the longest chain.

1.1.3 Blocks and transactions

Blocks are the ”bricks” of which the blockchain is comprised. A block is mainly

made up of Bitcoin transactions representing an exchange of cash (or in this

case cryptocoins) between two peers.

Other components of Block are the magic number, a fixed hexadecimal value

choosen by Satoshi when Bitcoin was designed, that uniquely identifies a mes-

sage as a Bitcoin block; the blocksize that, as the name suggests, represents the

size in byte of the block; the block header that contains vital data as the hash

of the previous block; and the transaction counter that simply tells how many

transactions are packed inside it.

This structure highlighted in the table below.
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Field Size Description

Magic Number 4 bytes Constant value 0xD9B4BEF9

Blocksize 4 bytes Size of the block in bytes

Block header 80 bytes List of 6 item

Transaction counter 1-9 bytes Number of transaction in block

Tranactions transactions size List of transactions (non empty)

Table 1.1: Bitcoin block structure

As already said, the block header is composed itself from various parts as

shown in Table 1.2.

Field Size Description Updated when

Version 4 bytes Block version number New software update rolls out

HashPrevBlock 32 bytes
Sha-256 hash of the

prevous block header
A new block comes in

HashMerkleRoot 33 bytes
Sha-256 hash of all the

transaction in the block
A transaction is accepted

Time 4 bytes
Current timestamp in

POSIX time format
Every few second

Bits 4 bytes Current difficulty The difficulty changes

Nonce 4 bytes
Incremental number used

to solve the proof of work
An hash is tried

Table 1.2: Block header structure

A transaction is basically a transfer of values among Bitcoin wallets that is

included after being confirmed in a blockchain block. The transaction is signed

with the private key contained in the wallets, giving the mathematical proof

that they come from the wallet of the owner.

Since each customer secretly stores the private key, the signature prevents

some malicious customers from altering a transaction.

Table 1.3 illustrates the composition of a Bitcoin transaction.
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Field Size Description

Version number 4 bytes Currently 1

Flag 2 bytes array
[Optional] If present indicates

the presence of witnesses

In-counter 1-9 bytes Number of input values

Inputs Size of inputs List of inputs

Out-counter 1-9 bytes Number of output values

Outputs Size of outputs List of outputs

Witnesses Size of witnesses
A list of witnesses,

one for each input (SegWit)

Lock time 4 bytes
The earliest time a transaction

can be added to the blockchain

Table 1.3: Bitcoin transaction stucture

1.1.4 Hash and proof of work

Hash is a cryptographic function, a mathematical algorithm mapping arbitrary

length data in a fixed length binary string (the hash value or message digest).

This feature is made to be unidirectional, or rather non-invertible: there is no

way to get the digest from the hash value. The only way to do that is through

a brute-force research / attack.

The most commonly used hashing algorithm in Bitcoin is SHA-256, imple-

mented for both bitcoin address generation and proof-of-work.

With proof-of-work, we indicate the activities of miners that consist of cal-

culating the hash of the block header with regard to certain limits. The block

involves, among other things, a reference to the previous block, a transaction

group hash and a nonce.

In cryptography, the nonce (number used once) denotes a number, random

or pseudo random, used only once. This amount is increased constantly until

the hash value calculated on the block produces value starting with a certain

amount of zero bits.

This operation is performed by each miner millions of times per second.

When a miner computes the nonce that satisfies the presence of the exact num-

ber of zeros, the block is flooded in the network that checks if the solution is

correct. Only when the new block has been validated by certain nodes, named

the validators, this eventually becomes valid and the miner earns its income.
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The quantity of bitcoin that a miner gains as a reward for his job is intended to

halve every 210,000 blocks, or usually four years; when bitcoin began in 2008,

it was set as 50 bitcoins for each mined block, fell to 25 in 2012.

Nowadays the reward is 12.5 BTC, after the third halving that happened in

2016, correspoinding at the actual change to 102.507,56 euros.

To compensate for the natural development of hardware speed and the varia-

tion in the interest of the operating nodes over time, the proof-of-work toughness

/ difficulty is determined by a moving average(ref) that limits block manufac-

turing to about 10 blocks every 10 minutes. If blocks are produced too quickly,

the difficulty will rise and the average amount of mined blocks will stay stable.

A block editing type of attack is preserved by the fact that if a malicious

user wishes to edit an ancient block, he must solve the proof-of-work puzzle of

that block and all its subsequent blocks until the work of legit nodes, which in

the meantime continue to produce fresh blocks, is achieved and surpassed.

The probability of a malicious user reaching the job of honest nodes has been

proved to decline exponentially with the increasing amount of blocks.

1.1.5 Mining

Mining is the process that adds a new block to the blockchain and at the same

time makes the structure hard to change. The entities that realize it are called

miners.

Mining can be solitary or pooled depending on the amount of customers

involved in the process. In solo mining, the miner attempts to generate blocks

himself, whereby the proceeds from the block reward and the transaction fees

flow completely to him. This allows the miner to receive larger payments but

implies harder work.

The software periodically surveys the network for new transactions, then

builds a block and generates a block header that is sent to the mining hardware.

On the other side, in pool mining, miners are grouped into pools and collab-

orate to generate new blocks more frequently. However, in this case the profit

is shared among the pool miners proportionally to the amount of work they

each contributed. This leads every miner to have smaller payments, but more

frequently.
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1.2 Bitcoin

The term Bitcoin is used to indicate both the network and the currency. As

mentioned before, this electronic currency was developed to fix the issues of

trust, transparency and accountability between the parts in exchanging products

and services online without any intermediate.

In fact, Bitcoin is the first payment network to rely on distributed peer-

to-peer technology to operate without a central authority: the entire network

collectively manages the transaction and the issuance of the currency.

Thanks to the distributed nature of the network, all transactions are col-

lected to avoid double spending. All consumers have knowledge of what is

happening in the network, so there is no need to have an entity that manages

the transactions.

Because Bitcoin is an anonymous currency, they can be compared to cash

money: it can be given to another person to buy goods or services and when

spent you does not own it anymore. In addition, everything occurs without a

third party acting as an intermediate.

The bitcoin network works thanks to a combinations of preexisting technolo-

gies: asymmetric cryptography, peer-to-peer network and proof-of-work/hash.

1.2.1 Asymmetric key cryprography

In Asymmetric key Cryptography each user own two pair of keys:

• A public key, used to encrypt information, that is shared with the re-

ceiver;

• A private key, used to decrypt received information, that remain secret

For example, if Alice wants to send a secret message to Bob, she will use Bob’s

public key to encrypt her message and send it to Bob. When Bob receives the

message, use his secret key to decrypt the message. Since he is the only one

in possession of his secret key, he is also the only one able to decrypt Alice’s

message. Bob’s private key must be kept secret to guarantee communication

security.

10



Figure 1.4: Communication secured with asymmetric key cryptografy

In our setting, the bitcoin address that must be exchanged to send and re-

ceive payments is the public key of the asymmetric cryptography cipher. Crypto

is required in bitcoin to ensure the privacy of both the sender and the receiver

making this sensitive information unrecoverable for any unauthorized user.

An example of communication between two users secured by Asymmetric

Key Cryptography is illustrated in Figure 1.4.

1.2.2 Historical Background

Bitcoin is an open source project published in 2008 by Satoshi Nakamoto [6],

an unknown author (or a group of authors). This paper reveals the first effort

to establish a cryptocurrency, a fresh type of currency produced and regulated

using cryptography instead of a central authority (such as a bank) like tradi-

tional currencies. Nakamoto allegedly started working on the Bitcoin project

in 2007 while a first patent was filed on August 2008 concerning the distribu-

tion of encryption keys from N.King, V.Oksman and C.Bry [7], who, however,

rejects any link with Satoshi. The domain Bitcoin.org was registered at anony-

mousspeech.com in the same month. That permitted the creator to remain

anonymous. The first block, also known as the Genesis Block, was mined at

18:15:05 on January 3, 2009. The Bitcoin age had officially started.

To see the first transaction we had to wait until January 12 2009 when in

the block 170 was added the first coins trade between Satoshi and Hal Finney,

cryptography activist and pioneer of the cryptocurrency. Using an equation
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that included the cost of electricity to mine a block, New Liberty Standard on

October 2009 published the first exchange rate establishing a value of 1 USD =

1,309.03 BTC. The first difficulty increase hits the system on December 2009.

The first real-world transaction using bitcoin took place on May 2010 when

a Bitcoin Forum user paid 10,000 BTC, which was worth 25USD at the time,

to buy a pizza. On July 18, 2010, Jed McCaleb established the former largest

bitcoin exchange market. Mt.Gox During that period, Bitcoin system was sus-

ceptible to several attacks, one of which triggered an inappropriate generation

of 184 billion bitcoins. Slush’s Pool, the oldest mining pool, and the first known

to be publicly available. announced on November, 27, 2010 mined their first

block later that year [8].

2011 was the year in which the difficulty achieved and exceeded the limit

of 10,000 and the complete amount of bitcoins produced exceeded 25% of the

predicted sum of nearly 21 million BTC. Bitcoins reached parity in exchange

for US dollars for the first time in the first months of the same year at MtGox

and passed parity with Euro in the middle of 2018. The cost a Bitcoin hits the

all-time high of 31.91 USD in June. That was also the year of the so-called 2011

Great Bubble [9] when the bitcoins exchange rate at MT.Gox plummeted to

10 dollars just four hours after its hitting its peak of $33. In the same month,

the exchange market suffered a massive security breach [10] witch led in a theft

of over 60,000 accounts and a total amount of 500.000$ causing the cost to

plunging at 0.01 $ per bitcoin. Meanwhile, the generation difficulty passes 1

million. The highest fee in a single transaction was recorded in the last month

of the year, 171 BTC transacted in block 157235.

An FBI study [11] on May 2012 concluded that:

”[...]Bitcoin will likely continue to attract cyber criminals who view

it as a means to transfer, launder, or steal funds as well as a means

of making donations to groups participating in illegal activities, such

as hactivists[...]”

and

”[...]Bitcoin might logically attract money launderers, human traf-

fickers, terrorists, and other criminals [...]”

Highlighting the risk of using bitcoins to promote illegal purchases of weapons

and narcotics. The biggest block for that time came to light in June comprising

1322 transactions. One of the main events taking place in 2012 was the first
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halving at block reward, known as the Halving Day, on November 28. On the

same day the price payed to miners for creating a block passed from 50 to 25

BTC. On January 2013 the price of a bitcoin reached back 30 US dollars for

the first moment since the Great Bubble of 2011. The first hard fork on the

blockchain took place on March 24, 2013 following a protocol rule that was

originally unknown to everyone. In mid-year, the bitcoin price rises exceeding

the limit of 100 US dollars achieving the all time high of 266 USD by the first

days of April (the year before was only 13 USD). A big crash impacted the

exchange by the middle of the same month following the hacking of Bitcoin

Central, a famous BTC exchange market. On October 2, FBI closed down the

notorious illegal internet drug marketplace Silk Road [12] capturing a quantity

of 3.6 million USD of bitcoins. After that, the price collapsed from 139 $/BTC

to 109 $/BTC in less than three hours, making it one of the highest cost crashes

to date as higlited in Figure 1.5. In November, the market value skyrocketed

above $1000 after a US Senate hearing about virtual currency legitimacy and

challenges. By the middle of the month, Bitcoin accomplished a volume of

transactions greater than those of Western Union.

2014 began in the worst possible fashion. Mt. Gox, the giant of bitcoin

exchanges, filed for bankruptcy by the end of February [13] amid rumors that

744,000 bitcoins were stolen. As a result, the price dropped to 600 USD and

reached the level of $340–$530 per bitcoin, the smallest value since the Cypriot

crises in 2012-2013. The netework as a whole overcame the computational power

record of 100 petahash / s in June. Microsoft, Dell and Newegg began adopting

bitcoin by the end of the year. The cost dropped to 200-300 USD / BTC for

the first few months of the next year. By the beginning of 2015, the amount of

dealers that accepted bitcoin surpassed 100,000.
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Figure 1.5: Price crash following Silk Road closure in 2013

The network speed has not slowed its growth, ending at 1 exahash / s

(1.000.000 terahash/s) by the end of January 2016. The big online gaming

platform Steam joined the other large enterprises that embrace bitcoin in April

of the same year. August was the month Bitfindex, a leading bitcoin exchange

market, after being hacked hack lost nearly 120,000 BTC, about 60 m $ given

the exchange rate at the moment. Price remained near to $600/BTC. Bitcoins

related academic papers rose in volume year by year from the 36 published in

2012 to over 1500 in 2016 (a detailed chart about publications on Bitcoin by

year is available at [14]).

Nevertheless, the year was known as the year of the second halving. In fact,

on July 10, 2016, the block reward halved from 25 to 12.t bitcoins [15].

In the first months of 2017, many nation legislators and financial companies

began giving Bitcoin more credibility: Russia, Japan, and Norway began leg-

islative processes for recognizing Bitcoin as a traditional method of payment in

multiple forms. Bitcoin cash, the hard bitcoin blockchain fork that brings the

block size limit up to 8 MB released on August 1, 2017 [16]. Steam announced

in December that they would stop receiving bitcoin as payment for their prod-

ucts and services. By the beginning of the year the cost of a bitcoin reaches the

abominable amount of $19,783.06. 2018 was the year in which the price began

to fall to $6,200 in the first months to $3700 per bitcoin at the conclusion of the
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year.

The future of Bitcoin is unsure. The price seems to rebound to lower levels

at the moment of composing this dissertation, settling at around $8,000 as can

be seen from figure 1.6, but any forecast is reckless. The only certainty is that

with the current block mining rate, the third halving will be in 2020 [17].

Figure 1.6: Bitcoin price chart over the year

1.3 Peer to peer network

Peer-to-peer-network denotes the peculiar type of network in which all the users

in the network are equally privileged. In these networks, the workload is dis-

tributed among peers, and the resources are shared without the need of a sep-

arate server machine. In fact, in contrast with the client-server architecture,

each peer acts both as supplier and as consumer.
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Figure 1.7: An example of peer-to-peer network

Bitcoin is the first form of a decentralized, peer-to-peer payment network.

Unlike other payment systems and currencies, it does not rely on a central

authority (usually a bank) to handle user-to-user transactions and to ensures

security. Conversely, as specified by the Bitcoin protocol, this is granted by the

structure on which the currency is based: the blockchain.

Each node is treated equally with the others and has a copy of the blockchain,

physically stored on its drive. Every time a new valid block is added to the chain,

each node receives the data and updates its local version of the ledger without

any centralized distribution and authentication system.

1.4 Empty blocks

An empty block is a unique type of Bitcoin block sometimes found in the

blockchain that is characterized by being devoid of transactions except from

the coinbase transaction, the first transaction in a block used by miners to col-

lect the block reward. The trivial example of an empty block is the block of

genesis, the first block ever mined.

It is important to clarify that empty blocks do not lack data and the effort
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to mine an empty blocks in terms of proof of work is the same as made to mine a

non-empty block. Empty blocks still contain the block header which, as already

seen, are 80 bytes and have the same data structure as non-empty ones. They

still have their transaction list which, by its nature, includes only the coinbase

transaction.

Figure 1.8: The genesis block is the trivial example of an empty block

Miners might have a disparate justification to mine an empty block instead

of a full one. If the list of pending transactions is empty, miners will not just

stop working. The system requires to switch on and mine of empty blocks is

allowed for the blockchain to keep expanding. This occurred frequently when

the Bitcoin system first started back in 2008, the network load was very small

and the list of transactions was often empty. For this reason, the first mined

blocks were mostly empty. The first non-empty block was mined on Jan 12,

2009 as the 170th. Even if miners are advised to bundle as many transactions

as possible inside a block to increase their profit from transaction fees, there is

nothing to prevent them from not including any transaction inside a fresh new
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block. Since both with a full block and with an empty one, they still obtain the

BTC 12.5 award (at the moment of composing this dissertation).

Moreover, the creation of empty blocks is often used as a way to guarantee

profits for miners. As mentioned before, the proof-of-work effort to make empty

blocks or non-empty blocks is the same, but the validation time plays an impor-

tant role in the transmission speed of the information in the network. With only

one transaction, empty blocks are quicker to be verified and this could lead to

a greater probability of solving the block’s puzzle and thus gaining the reward

before others. Furthermore, the calculation of the merkle-tree is much quicker

if a block includes just one transaction since it is calculated only once.

Additionally empty blocks injecting new cash into the system make feasible

an ever-increasing flow of the cryptocurrency among customers that leads the

entire system to expand in notoriety. In parallel, their presence extend the

blockchain and enhance the safety of the ledger by adding more work.

1.5 System throughput

According to many community members, the Bitcoin system has the purpose

of supplanting the classical payment system with a decentralized, middleman-

free model. However, due to its complexity and the restriction imposed by the

Bitcoin protocol, it is certainly suffering from having a low throughput. Bitcoin

protocol is designed to guarantee that blocks are mined every 10 minutes on

average, for security reason, and a block has a maximum size of 1 MB (without

contemplating the enhancement made by introducing SegWit transactions).

It follows that the Bitcoin system’s peak theoretical throughput is restricted

at 6MB / h with an approximate transaction processing capacity between 3.3

and 7 transactions per second.

K.Croman et al. in [18] faced the issue of small Bitcoin system throughput

relative to conventional payment methods such as Visa. The payment giant has

an average process rate of 2000 transactions per second and can sustain a peak of

56,000 transactions/sec in event of heavy load. The authors questioned whether

or not decentralized blockchain could be scaled to at least suit the performance

of a conventional payment processor and what it takes for Bitcoin to get there.

They concluded that ”[...] reparametrization of the block size and interval

in Bitcoin is only a first step toward substantial throughput and latency im-

provements while retaining significant system decentralization.” Therefore, the
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authors suggest that ”More aggressive scaling will in the longer term require

fundamental protocol redesign”.

1.6 Chapter conclusion

In this chapter we have seen the basics of bitcoin technology, like how the

proof-of-works make the blokchain a safe structure that needs most of the total

computational power to be exploitable. We then focused on giving the definition

of an empty block, which contains only the single coinbase transaction, and

began to delve into the reasons that bring miners to produce them at the expense

of normal blocks. This element needs further development since the amount of

empty blocks in the last year has risen a lot.

We then confronted the problem of tiny system throughput that only 6MB /

s made Bitcoin not even comparable to Visa and other large payment systems.

On this we highlighted how according to researchers the change on block size is

only a stopgap.
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Chapter 2

The origin of empty blocks

Chapter introduction

We have already discussed the issue of empty blocks. This section focuses

primarily on an empirical analysis this aspect of the blockchain.

Starting with a closer assessment of the issue of block size, already stated

in Chapter 1.5 about system throughput, we will see how data is propagated

throughout the Bitcoin network. Then, we will address the heart of this chapter,

the study of empty block gaps, i.e., the gap between two empty blocks. We will

examine how this data are distributed and considering a small part we will

attempt to use a hypothesis test to measure how well it fits with a recognized

distribution of probability.

2.1 The block size problem

The Bitcoin system is characterized by two main invariants:

• A block is mined averagely every 10 minutes

• The maximum block size is 1 MB

As mentioned in Chapter 1.5, the Bitcoin system’s maximum throughput is 6

MB / h which is far too small compared to other large payment processors. For

years, therefore, the Bitcoin community has been wondering about the best way

to overcome this problem.
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Since it is impossible to increase the number of blocks mined in 10 minutes

for security reasons or to drop the average time in which a new block is found,

the only possible solution is to raise the maximum block size limit. The average

block time of 10 minutes, was specifically chosen by Satoshi when he introduced

bitcoin [6] as a trade off between first confirmation time and the amount of work

wasted due to chain splits. [19]

The restriction on block size was not always present, or precisely it was not

acknowledged instantly. When Satoshi published his paper in 2008, the limit

was not on the block’s number of bytes, but instead on the number of database

lock required to process it. Quantitatively, the average threshold was around

625k bytes. In 2010, Satoshi himself implemented a real maximum block size

bound in a disguised commit. Because of the complexity of traffic in the system

ago in those days, the restriction was not viewed until March 2013 when the

Bitcoin Core update v0.8.0 was published to impose it on all Bitcoin nodes.

Unfortunately, it had a bad impact since the update contributed to a scenario

where the upgraded nodes split the network in half. From that time on, because

of this accident, the entire community was aware of this limitation. The problem

was settled soon and the network members decided to build a hard fork to

remove the restriction that was approved and successfully enabled in May 2013.

From 2015, as the volume of transactions expands with the vast and increasingly

faster adoption of the Bitcoin as a payment system, the debate on increasing

block size is becoming very popular in the community and according to some

exponents an hard fork to remove, or raise it seems unavoidable.

There are a lot of reasons to change the limit, as the maximum size of the

block will increase more transaction would be packed inside of it and the overall

number of transaction per second will increase, causing an increment of the

system throughput. Moreover since a block will contain more transactions the

total number of fees that miners collect will consequently increase, raising their

total profit. It is important to note that as the number of bitcoins is limited

and so the proof of work reward for the solver is doomed to decrease, the user

fees will become the main source of earning for all the miners. In parallel as the

number of transactions and then fees for block will increase, the average fee will

decrease making Bitcoin system accessible to a wider audience of users.

Some other prominent community exponents claim that the size of the block

should stay so [20] [21] [22]. From their subjective point of view, since the value

of the single transaction charge will be lowered, miners will have fewer incentives

for mine blocks. The hard fork, vital to implementing the shift, will split the
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community creating a ton of trouble and expanding the network magnitude,

and the consequent rise of the system’s cumulative computing power along with

increasing the mining difficulty, will take a handful of small miners to abandon

the network. This, in their opinion, will cause the vast bulk of the network

to be governed by a few large mining organizations and governments. Lastly

they believe that bitcoins should not become an everyday currency and payment

method, but instead stay restricted to a specific use.

SegWit, an acronym for segregated witness, is a soft fork of Bitcoin intro-

duced in August 2017. It needs only a small software update to be adopted as

a soft fork and it can still operate with nodes that use earlier protocol versions.

This fork allows the limit to be raised to a theoretical maximum of 4 MB by de-

taching the witness (the part of the transaction certifying its validity) from the

Merkle-tree, occupying bytes from a different space and allowing more transac-

tions to be packed inside each single block. Hence, with SegWit the concept of

block size has changed to the maximum size that a block can have if it doesn’t

validate inside any single SegWit transaction.

Segwit is now adopted from around the 40% of the total miners.

2.2 Information propagation in the Bitcoin net-

work

2.2.1 Theoretical background

By building a random graph, Bitcoin network is where each node tries to keep

a minimum number of links p to other nodes at all times. When the number

of open connections become below the pool size p, (which default value is 8)

the node randomly selects an address from its list of known node addresses and

pursues to connect.

When a new node attempts to enter the network, it receives a batch of

addresses of nodes, connects to them and retrieves information about the other

participants by requesting addresses from their neighbours. If a node remains

unreachable, it is flagged as disconnected from the network for several hours

and its address is dropped from the list of nodes.
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Figure 2.1: Message propagation in the network

When a node has verified a collection of blocks and transactions and is

prepared to send it to its neighbours by sending a small inv message (most often

of 61B). This message includes a set of ready-to-send transaction hashes and

blocks hashes. When a node receives the message inv for a block or transaction

that is not present in its local blockchain copy, send a getdata message back

to the sender of the inv containing the hashes of the data required, whether

they are blocks or transactions. Finally the real transmission takes place and

messages of blocks and transactions are transmitted to the node in need.

The figure above from [23] explains the scenario completely. Node A received

a block after the validation and is ready to forward to its neighbor, Node B. It

then sends a inv message containing the block hash announcing its accessibility.

Node B after receiving the message inv, considering that this is a new block,

answers with the message getdata. Node A can then send the entire block

message to Node B after receiving the request for getdata.

The message occurs in a propagation delay at each hop in the communication

schema.

Definition 1. The propagation delay is described as the sum of the transmis-

sion time and the block or transaction’s local verification time. Transmission

Time consists of the time to send inv message, getdata message and the

delivery time of the requested data.
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As we have already seen, the size of the inv message is negligible and the

getdata request also has a trivial influence on the transmission time. By contast

block or transaction message could be very large, remember that a block has

a maximum size of 1 MB and all the freshly mined block has a weight around

this value. However, the procedure with the greatest impact on performance is

the block (or transaction) verification performed before the announcement via

the inv message. This is due to the fact that each transaction contained in the

block is fully verified and a single verification involves random disk access which

is the slowest element of a machine which bottlenecks the whole system.

Definition 2. Let Bh be the h height block set. A block height is defined as

the distance between a block b and the origin (or genesis) block g, the first block

in the blockchain hard-coded in the client of each node. Genesis block has a

height of hg = 0.

Definition 3. Blockchain head is described as the block with the maximum

height, i.e. the last block mined in a node perspective, or formally the block

with the highest distance from the origin block hg.

Definition 4. In every node, there can be multiple heads at a time in any

moment, formally this happens when h > 1. When this situation happens, we

are in the presence of a blockchain fork. That implies the system’s inconsistency.
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Figure 2.2: A blockchain fork

If a fresh mined block at height h′ arrives at a node whose head is currently

at height h with h′ > h, the new block becomes the blockchain head for this

node. If the old head, the block bh, is in the same branch of the new one bh′

it recovers all intermediate blocks in the branch and incrementally applies their

changes. Vice versa, if block bh is not an ancestor of bh′ , so it belongs to a

different branch, they share a common ancestor. As h′ > h, bh′ must be in a

longer chain than bh it becomes the new head of the blockchain. From that

node down to the common ancestor all modification are reversed applying the

changes from the branch of bh′ .

Thanks to the partitions of the network a blockchain fork may widespread

with the result of more blocks Bh+1, Bh+2 building on their respective different

heads. The network will reach a point where one branch will ultimately be longer

than the other branches. All the partitions with different branch adoption will

switch over the new found branch. The fork is finally resolved and all ledger

clones are consistent up to the same blockchain head.

Figure 2.2 illustrates the condition of a ledger fork. Due to network condi-

tion, nodes A, B and C have block 4 as their head while nodes D, E, F and G

have already switched to blocks 7 as their new blockchain head since being the

longest chain, composed by 7 blocks, it is considered the valid one. Once nodes
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A, B and C are finally aware of the other branch with block 7, even if they have

just mined block 5, they switched to the longest chain and discard block 5 that

becomes an orphan node. When a fresh new node H joins the network t chooses

the longest chain between the two available branch. This settled the fork and

all the network peer agrees on the same blockchain head, block 7.

2.2.2 Data analysis on literature

Before analyzing the blockchain we propose some compelling works found in the

literature.

The Forschungsgruppe Dezentrale Systeme und Netzdienste, namely the Re-

search Group in Distributed Systems and Network Services, by the Karlsruher

Institut für Technologie collected several blockchain data from July 2015 by

adding a dummy node in the bitcoin network for research purposes only.

They have made their data and statistics available from their web platform

[24] in form of plots and downloadable raw data.

With regard to the delay in the propagation of messages, we have both tthe

transaction and the block propagation delay history, reported in the following

plot for the last year:

Figure 2.3: Block propagation delay history
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Figure 2.4: Transaction delay history

Both plots measure the time it takes until a specific block or transaction

is announced by 50% and 90% of the network nodes. As we can see (for this

work we only take into account data from the last year) in the first months of

2018 block propagation delay fell from 10 seconds to about 2-3 seconds. The

delay fall in the same period is less noticeable on transactions passing from a

propagation delay of 16-15 to 14-13.

Another aspect affected by the fall in early 2018 was the inv per hour as

shown in the figure below.

Figure 2.5: Transaction delay history
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The plot above illustrates the total amount of inv messages received by

network peers per hour, announcing the availability of a fresh set of blocks and

transactions to be transferred. In this case, the value (in the same time interval)

dropped from around 1.5× 107to 7× 107,a difference of a magnitude order.

In 2013, Decker and Wattenhofer [23] implemented the bitcoin network protocol

and linked a large sample of network nodes to evaluate delay in the propagation

of messages. Their implementation acts precisely like a standard node with one

caveat: it does not relay inv messages, transactions or blocks

They measured the impact of message size in terms of delay cost on the

propagation delay, as shown in Figure 2.6.

Definition 5. The delay cost is defined as the time delay each KB causes to

the diffusion of message, i.e. a block or transaction.

Figure 2.6: Plot of the message size versus the delay cost

This plot illustrates delay price for 50, 75 and 90 percentile for different

message size. The clear result is that for messages with a size of less than

20 KB, the significant overhead is due to the round trip delay time or RTT

(the time it takes to send a message plus the length of time it takes to obtain
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the acknowledgement signal) caused in this situation by announcing fresh data

via the inv message and replying to the getdata message. Since 96% of total

transactions (when the paper was written in 2013) were smaller than 20 KB,

the dominant factor for this message was RTT. For sizes greater than 20KB the

cost is constant and each KB of data added supplementary 80ms of delay to

reach the mass of the peers.

In their research, they propose a direct connection between propagation

delay and blockchain forks, and in order to decrease them, they have proposed

three modifications to the Bitcoin protocol: minimizing verification (that as

already stated involves disk access), pipelining block propagation and enhancing

network connectivity. They study the effect of any of these three suggestions,

and the combination of them all, using the application adopted before measuring

the resulting delay time. As a consequence, they were able to decrease the

amount of forks by more than 50%.

Nonetheless they came to the conclusion that [23]:

[...]The root cause of the problem however is intrinsic to the way

information is propagated in the network. The changes may mitigate

the problem in the short term, until a scalable long term solution is

found.[...]

2.3 Blockchain analysis

2.3.1 Methodology

The starting point was to download the entire blockchain to evaluate some

fascinating elements of the bitcoin system. The first issue we faced was the

size of the ledger, which being actually over 200 GB could take a long time

to download due to the restriction of our home internet connection and most

importantly hard to evaluate and parse given the computing power and resource

availability of our home computer.

To fix this issue, we were able to use one of the University servers: daffyduck.

A machine with 32 cores CPU with 96 GB of memory and a large storage

capability. To download the block files we used the classic Bitcoin core launcher

which automatically downloads the entire blockchain from the network. It took

about a day for the whole process to finish. The download started with the older

and lighter blocks and continued to download the newer and heavier blocks to
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keep the chain in sync with the network. Since the blockchain is a continually

growing structure, we choose to stop downloading at 10:45:29 AM on October

11, 2018.

Unfortunately, considering the nature of the chain, the files are not readable

immediately, in fact all the information are stored in raw files to enhance the

space occupancy of the entire structure. Indeed, the solution was to use a parser.

Therefore, the next step was to parse the chain to retrieve the pivotal block

and transaction information. For the purpose of the study conducted in this

dissertation, we considered data from January 1, 2013 which coincide with block

214554 to October 11, 2018, block no. 545286, date when we stopped down-

loading.

The effective parse was done using a simple python script using the parser

library ”python-bitcoin-blockchain-parser” [25] available on Github. (For more

information on the library and the script used to parse the chain see Appendix

A).

We organized the outcome of block files parsing in a csv file to enhance

human readability.

2.3.2 Block size analysis

Once we get block size data by parsing the blockchain, we count the occurrences

for each block size and group them into classes. We plot the data classes along

with their occurrence probability to get a glimpse of the data distribution.
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Distribution of blocks sizes in 2018
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Figure 2.7: Plot of blocks size

It is evident from the plots that the vast majority of blocks are around

one million bytes large. The distribution mean is 550700.8 while the standard

deviation is 409576.7.

2.3.3 Empty block gaps distribution analysis

In this section, we focus on evaluating the time gaps between empty blocks,

identified as the amount of non-empty blocks between two empty blocks.

First, we plotted the trend of empty block gaps over time using the R library

Plottly, given the period between January 2013 and October 2018.
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Figure 2.8: Empty blocks gaps over time

To look at data distribution, we plotted the dataset histogram.
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Figure 2.9: Plot of blocks size distribution

As we saw in previous section (2.2), availability of new blocks is announced

via the inv message and the real data transmission takes place after receiving

the getdata message. We assume the empty blocks to be generated in the time

period between the announcement of the inv message and the actual blocks

transmission (as highlighted in Figure 2.10). This could suggest that empty

blocks are geometrically distributed.

Figure 2.10: Schema of the generation of empty blocks

33



At a first glance Figure 2.9 seems to strengthen our guess. The best way to

demonstrate it is to use a hypothesis test to evaluate the fit’s goodness. There

are plenty of hypothesis test available in the literature, our decision fell back on

the Chi square test as it’s one of the simplest and easiest to achieve.

2.4 Hypothesis test

2.4.1 Theoretical background

The chi square test for goodness of fit is a commonly used hypothesis test to

measure how an observed pool of data/data set is consistent with a given fitted

distribution.

As every hypothesis test it requires to state the null hypothesis H0 and the

alternative hypothesis H1, in a way that are mutually exclusive.

Since the test is used to measure the goodness of the fit the two hypotheses

it use the following structure:

• H0: data are consistent with a certain distribution

• H1: data are not consistent with a certain distribution

The significance level, denoted as alpha or α, define the probability of rejecting

the null hypothesis considering it true. Usually, this value is set as 0.05 or 0.01.

With n observations classified into k mutually exclusive classes with xi (i =

1, 2, ..., k) observed values and the probability pi that an observation is contained

in the i-th class, given by the null hypothesis.

The value:

X2 =

k∑
i=1

(xi −mi)
2

mi

Where mi = npi and
∑k
i=1 pi = 1

and
∑k
i=0mi = n

∑k
i=0 pi =

∑k
i=0 xi

When n becomes large, X2 follows the χ2 distribution with k− 1 degrees of

freedom. Given the χ2 value above and the degree of freedom is it possible to

calculate the p-value.

p-value represents the probability of observing a sample statistic equal or

more extreme than the test statistic , asserting the null hypothesis as true. The

p-value is then compared with the significance level, rejecting the null hypothesis

when the p-value is less than the significance level.
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2.4.2 Geometric distribution

The geometric distribution is informally defined as the distribution of the num-

ber of heads to be flipped before the first using a weighted coin.

There are two distinct formal ways to define a geometric distribution:

Definition 6. The geometric distribution represents the number of Bernoulli

trials before getting a success in a series of Bernoulli trials.

Definition 7. The geometric distribution represents the probability distribu-

tion of the number of failures before the first success.

Clearly, these two definition are equivalent and the choice between one or

the other definition is a matter of convenience, context and convention.

Definition 8. A Bernoulli trial, named after Swiss mathematician Jacob Bernoulli

who introduced it in 1713 [26], is defined as an experiment with two possible

outcome: ”success” and ”failure”. Moreover, in a Bernoulli trial the probability

of success is the same for every repeated experiment.

Concerning the first definition, given a success probability p and x indepen-

dent Bernoulli trial until the first success, the probability mass function (PMF)

is given by :

Pr(X = x) = (1− p)x−1p for x = 0, 1, 2, 3, ... (2.1)

The Cumulative density function (CDF) is:

1− (1− p)x for x = 0, 1, 2, 3, ... (2.2)

The expected value and the variance are represented by:

E(X) =
1

p
(2.3)

V ar(X) =
1− p
p2

(2.4)
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Figure 2.11: Probability mass function for first type geometric distribution

Figure 2.12: Cumulative density function for first type geometric distribution

Considering the second definition, the probability mass function is :

Pr(X = x) = (1− p)xp for x = 0, 1, 2, 3, ... (2.5)

with p as the success probability and x number of failures until the first success.

The Cumulative density function (CDF) is:

1− (1− p)x+1 for x = 0, 1, 2, 3, ... (2.6)

The expected value and the variance are given by:

E(X) =
1− 1

p
(2.7)
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V ar(X) =
1− p
p2

(2.8)

Figure 2.13: Probability mass function for second type geometric distribution

Figure 2.14: Cumulative density function for second type geometric distribution

Note that the geometric distribution is the only discrete distribution (like

its continuous counterpart the exponential distribution) that satisfies the mem-

oryless property.

This property states that the probability distribution of the number of ad-

ditional failures does not depend on the number of failures already observed if
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a success has not yet occurred at a given point.

Definition 9. A discrete random variable X is memoryless w.r.t a variable a

if:

P (X > a+ b|x > a) = P (x > b) for a, b ∈ Z+ (2.9)

Definition 10. A continuous random variable X holds the memoryless prop-

erty if:

P (X > z + k|x > z) = P (x > k) for z, k ∈ R (2.10)

For instance, let us suppose to toss a fair coin until head comes up. If we

know that the coin had already been tossed ten times without observing a head,

the probability distribution of the number of further toss until a head is the

same as it would be without knowing about the ten failure attempts.

2.4.3 Experimental result

Given the problem settings, for this test the hypothesis are:

• H0: data are consistent with a geometric distribution

• H1: data are not consistent with a geometric distribution

The sensibility level, denoted as alpha is set at 0.05.

To perform the test we used R software which thanks to functions fitdist

and gofstat included in the library fitdistrplus allows us to achieve the test

results in a fast and easy way. The fitdist function returns, by applying the

Maximum Likelihood Estimation [27] to the data, the parameters of the selected

distribution i.e. in this case the geometric distribution.

The following plot shows the results of the fitting of our data with the

geometric distribution compared with the theoretical distribution and CDF.
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Figure 2.15: Plot of observed distribution vs theoretical geometric distribution
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Figure 2.16: Plot of observed CDF vs theoretical geometric CDF
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The real hypotesis test is performed by the gofstat function which takes as

input the outcomes of the previous function applies the test and returns some

fundamental results like the p-value, the Chi square value along with its degrees

of freedom.

The results are the following :

Chi-squared statistic: 929.1133

Degree of freedom of the Chi-squared distribution: 41

Chi-squared p-value: 3.455772e-168

Chi-squared table:

obscounts theocounts

<= 0 118.000000 62.474680

<= 1 116.000000 61.615348

<= 2 98.000000 60.767836

<= 3 96.000000 59.931982

<= 4 93.000000 59.107624

<= 5 90.000000 58.294606

<= 6 100.000000 57.492770

<= 8 162.000000 112.623999

<= 10 155.000000 109.547047

<= 12 153.000000 106.554159

<= 14 131.000000 103.643039

<= 16 137.000000 100.811452

<= 18 118.000000 98.057226

<= 20 116.000000 95.378246

<= 23 127.000000 138.203841

<= 25 97.000000 88.996651

<= 27 102.000000 86.565211

<= 30 120.000000 125.433683

<= 33 124.000000 120.328575

<= 36 119.000000 115.431242

<= 39 104.000000 110.733230

<= 42 99.000000 106.226425

<= 46 104.000000 134.940598

<= 50 93.000000 127.668011

<= 55 99.000000 149.953029

<= 60 98.000000 139.919928
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<= 65 107.000000 130.558124

<= 71 100.000000 145.191132

<= 77 102.000000 133.613175

<= 85 92.000000 161.725784

<= 92 93.000000 127.532758

<= 102 102.000000 162.021283

<= 112 102.000000 141.065472

<= 125 91.000000 156.469413

<= 139 92.000000 139.798817

<= 155 94.000000 129.860347

<= 174 92.000000 121.118215

<= 201 91.000000 125.529780

<= 233 90.000000 99.107770

<= 272 90.000000 74.165741

<= 330 90.000000 57.171684

<= 465 90.000000 39.221902

> 465 55.000000 7.148166

Goodness-of-fit criteria

1-mle-geom

Akaike’s Information Criterion 47960.54

Bayesian Information Criterion 47966.96

The outcome p-value is 3.455772e−16. Having set the sensitivity level at 0.05,

since it’s lower than our alpha we have to reject the Null Hypothesis. This

means that the data does not distribute geometrically.

Hence, we decided to change our interval since, as the features of the bitcoin

blockchain have changed drastically during its lifetime, the empty block genera-

tion process is non-homogeneous. For instance, if we think about the early days

when the system started, most mined blocks were empty only because the pend-

ing transactions list was so. For this reason we reformulate the test by selecting

data from a narrowed period of time, considering only data from January to

October 2018.

We re-applied the fitdist R function to the new data-set having the following

findings.
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Figure 2.17: Plot of observed distribution vs theoretical geometric distribution

of new data
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Figure 2.18: Plot of observed CDF vs theoretical geometric CDF of new data
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By applying gofstat function we achieved:

Chi-squared statistic: 23.45346

Degree of freedom of the Chi-squared distribution: 23

Chi-squared p-value: 0.4345676

Finally given the test outcome we can say that, since our alpha is 0,05, the

p-value is greater that the significance level. Which leads us to the conclusion

that data considered in the shrank interval does distributes geometrically.

Since data are geometrically distributed their probability distribution sat-

isfies the memoryless property meaning that the probability of observing an

empty block, knowing that the previous n blocks were not empty, is the same

as it would be if we didn’t know anything about past blocks.

2.5 Chapter conclusion

By concluding this chapter, we have seen how the issue of the rise of the block

size limit is still full of discussion within the Bictoin community and how this

seems inevitable for the future. We then deepened the way messages are propa-

gated in the Bitcoin network. We have seen how bitcoin forks are generated and

from the literature we have seen how this issue has been resolved. With data

from the University of Karlsruhe, we were able to notice that something that

happened in early 2018 caused block propagation delay and, to a lesser extent,

transactions to drop dramatically.

A further analysis on the drawbacks of enlarging block size limit is made in

Chapter 4.

We finally evaluated the distribution of empty blocks gaps. Using the Chi

Square hypothesis test, we attempted to fit data with a geometric distribution.

After an initial failure with data considered in a long span between January

2013 and October 2018, we were only able to fit data from 2018 by narrowing

the interval since the process of generating blocks is not homogeneous as the

characteristics of the ledger have changed over time.

The large accomplishment we get from demonstrating that data are geomet-

rically distributed is provided by the validity of the memoryless property.
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Chapter 3

Queuing model for the

blockchain

Chapter introduction

This chapter is centralized on the proposal of a queuing model for the Bitcoin

system in a case of an infinite transaction queue.

We will initially suggest a basic introduction to the queuing theory: how

queuing systems are denoted, what is a Poisson process and which are the key

fundamental queuing models. We then suggest our model by providing it a

thorough assessment of the outcomes.

3.1 Queuing theory background

3.1.1 Kendall’s notation

To formally describe a queuing model David G. Kendall in 1952 [28] proposes a

set of notation that takes the name of Kendall’s Notation. In the initial script

his notation used three factors generally indicated with A/S/c, namely: A is

the arrival process, S the service time distribution and c the number of servers.

After being assumed as a standard in the literature, his notation was ex-

panded taking the actual form consisting of six factors:

A/S/c/K/N/D (3.1)
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where, along with A,S and c, have been added: K denoting the maximum

capacity of the system, N as the size of the population and D referring to the

queuing discipline.

Each of the factor can be expressed by various letters according to the sig-

nificance of the factor. The arrival process A can assume letters:

• M : Markovian, for Poisson arrival process

• G : General, for general distribution

• D : Degenerate, for deterministic inter-arrival time

Service time S can be indicated with:

• M : Markovian, for Exponential service time process

• G : General, for general service time distribution

• D : Degenerate, for deterministic service time

Servers granularity c, maximum system capacity K and the magnitude N of

the population of which the customer is a part are expressed with a number. S

can indeed assume the value infinity. When K and N are not indicated they

are intended as infinite.

Finally the queuing discipline D can be marked as:

• FIFO/FCFS : First In First Out/ First Come First Served

• LIFO/LCFS : Last In First Out/ Last Come First Served

• PS : Processor Sharing

If not specified the queuing discipline is implied to be FIFO/FCFS.

To sum up, for instance a M/M/3/20/1500/FCFS system has: Poisson ar-

rival process, exponential service time, 3 servers, a maximum number of jobs

in the system of 20, the population size is 1500 and the queuing discipline is

FCFS.

3.1.2 Little’s Law

John D.C. Little, professor at the Massachusetts Institute of Technology (MIT),

published in 1952 the so-called Little’s Law, a theorem that allows us to relate
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the average number of customers in the queue to the product of the average

arrival rate and the average response times of the queuing system.

However, in a second publication in 1961, he demonstrated that the rela-

tionship he developed holds in any scenario.

The most remarkable accomplishment of this theorem is that neither the ser-

vice distribution nor the arrival process distribution influences the relationship,

not even the by the service order. The only assumption is that the system must

be stable (λ < µ) and non-preemptive.

The law is represented by the underlying formula:

N = X ∗R (3.2)

Let N be the average number of customer in the system.

Let X be the average effective arrival rate that in the case of a Poisson

process, is equal to the parameter λ

Let R be the average response time of the system.

3.1.3 Poisson process

Poisson process is a specific type of continuous time counting process. It is

widely used in the fields of computer and telecommunications system perfor-

mance evaluation to model the arrival process of jobs (or customers) in a service

infrastructure. It’s named after French mathematician Siméon Denis Poisson.

A counting process X(t) satisfies the following properties:

1. X(t) ∈ N t ∈ T

where T denotes the time domain.

2. X(s) ≤ X(t) if s ≤ t

A counting process can be seen as a peculiar stochastic process that counts

the number of events observed in the interval (0, t]. Let t1 and t2 be two time

instants such that t1 < t2. Hence, according to the properties pointed out

above, the number of events ensued in the time interval (t1, t2) is given by

X(t2)−X(t1).

If the number of events occurring in the disjoint time interval are indepen-

dent, the counting process is said to have independent increments, while if the

distribution of events, occurred at any time interval, depends only on the inter-

val length, the counting process has stationary increments.

Hereafter, we propose two distinct definition of a Poisson process:
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Definition 11. A Poisson process X(t) with rate (or intensity) λ ∈ R+ is a

continuous time counting process t ∈ R that satisfies the following:

1. X(0) = 0

2. for any pair of disjoint intervals (t1, t2] and (t3, t4] the increments X(t2)−
X(t1) and X(t4)−X(t3) are independent random variables

3. for any t, s ≥ 0 the increment in the disjoint interval (t, t+s] has a Poisson

distribution with mean λs:

Pr{X(t+ s)−X(t) = k} =
(λs)ke−λs

k!
(3.3)

The second proposed definition is the following:

Definition 12. A Poisson process X(t) with rate (or intensity) λ ∈ R+ is a

continuous time counting process that satisfies the following properties:

1. X(0) = 0

2. the process is stationary and has independent increments

3. Pr{X(h) = 1} = λh+ o(h)

4. Pr{X(h) ≥ 2} = o(h)

where we say that a function f is o(h) if:

lim
h→0

f(h)

h
= 0 (3.4)

It is proved that Definition 1 and Definition 2 are equivalent

A Poisson process in addition satisfies some useful properties:

1. Superposition of Poisson processes:

Given two independent Poisson processes X1(t) andX2(t) with rate respec-

tively of λ1 and λ2. Hence the superposition of the two Poisson processes

X(t) = X1(t) +X2(t) is still a Poisson process with rate λ1 + λ2.

2. PASTA property:

PASTA stands for Poisson Arrivals See Time Averages, it states that cus-

tomers arriving in the system characterized by a Poisson process see the

state of the system as if they had entered in any instant of time.
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3. Random selection:

Let X(t) be a Poisson process with intensity λ. If we made a random

selection from X(t) in a way that each arrival is selected independently

with probability p, the resulting process is still a Poisson process with

intensity λp

4. Inter-arrival times distribution:

Let x(t) be a Poisson process with rate λ, the customer inter-arrival times

are independent and exponentially distributed with rate λ distributes

3.1.4 M/M/1 queue

M/M/1 queue is one of the fundamental queuing models. By recalling chapter

3.1.1, it represents a system where customers arrives according to a Poisson

arrival process with rate λ, service times are exponentially distributed with rate

µ and with a single server that serves customer in FIFO/FCFS order, meaning

that they are served following the order of arrival. Since the buffer size is not

explicitly indicated, it is intended to be infinite.

Figure 3.1: An M/M/1 queue

The underlying Continuous Time Markov Chain in which the system can be

described has irreducible and infinite state space. Its space diagram is depicted

in the figure below.
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Figure 3.2: M/M/1 queue correspondent CTMC

This chain is the same as in a birth-death process.

Stability of the system is ensured when λ < µ otherwise if customers arrives

faster than the service capacity, the queue will grow endlessly long. As a con-

sequence to instability the system loses its stationary distribution.

Let ρ be the ratio λ/µ. This is called the load factor of the system. If the

load factor ρ < 1, that is equal to say that λ < µ, the system is stable.

The following system describes the Global Balance Equations for M/M/1 queue

are: π(0)λ = π(1)µ

π(n)(λ+ µ) = π(n− 1)λ+ π(n+ 1)µ n > 0
(3.5)

By fixing π(0) we have that :

π(n) = π(0)(
λ

µ
)n n ≥ 0 (3.6)

By imposing
∑∞
n=0 π(n) = 1

∞∑
n=0

π(0)ρn = π(0)

∞∑
n=0

ρn = π(0)
1

1− ρ
(3.7)

The geometric series converges iff ρ < 1 so when the system is stable.

Computing π(0):

π(0)
1

1− ρ
= 1⇒ π(0) = (1− ρ) (3.8)

Various performance indices can be computed for this queuing model :
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• Utilization

The steady-state probability of finding the server busy is :

U = 1− π(0) = ρ (3.9)

• Expected number of customers in the system :

We have that

N̄ = E[n] =

∞∑
n=0

nπ(n) =

∞∑
n=0

nπ(0)ρn (3.10)

So :

N̄ =

∞∑
i=0

iπ(i) = (1− ρ)

∞∑
i=0

iρi =

(1− ρ)ρ

∞∑
i=0

(i+ 1)ρi =

(1− ρ)ρ

∞∑
i=0

∂ρ(i+ 1)

∂ρ
=

(1− ρ)ρ
∂

∂ρ

∞∑
i=0

ρ(i+ 1) =

(1− ρ)ρ
∂

∂ρ

ρ

1− ρ
=

(1− ρ)ρ
1− ρ+ ρ

(1− ρ)2
=

ρ

1− ρ

(3.11)

That considering ρ = λ/µ is correspondent to:

λ

µ− λ
(3.12)

• Expected number of customers in server :

Knowing that the expected number of customers in the service room is

E[ns] =
∑∞
i=1 1π(i) = 1− π(0) = ρ.

By recalling that E[N ] = E[nq] = E[ns] which straightforwardly means

that the average number of customers in the whole system is given by

the combination of average number of customers in the service room and

average number of customers in the queue:

E[nq] =
ρ

1− ρ
− ρ =

ρ2

1− ρ
(3.13)
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• Expected response time :

Since the system is in stability the throughput X = λ.

By Little’s Theorem we can compute the expected response time:

R̄ = E[r] =
N̄

X
=

1

µ− λ
(3.14)

• Expected waiting time :

Since the expected service time E[s] is 1/µ

E[w] = E[R]− E[s] =
1

µ− λ
− 1

µ
=

1

µ(µ− λ)
(3.15)

A real world example of an M/M/1 queuing system is a big telephone ex-

change. In this case the number of customers in the system is vast, all the

customers are behaves independently from each other and a single user has a

small impact on the system performance. So the telephone calls arrival are

Poisson distributed. Assuming that there is only one exchange, our system has

a single server.

Service times are also generated by a Poisson process since total number of

customer served by the system is huge, performance impact on the system of a

single call is negligible and users decide independently for how long they make

their call last.

3.1.5 M/M/m queue

M/M/m queue can be seen as a generalization of an M/M/1 queue. The ar-

rival process is Poisson process, service time is exponentially distributed and

differently from the previous system we have m independent servers.
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Figure 3.3: An M/M/m queue

As λ(n) = λ and :

µ(n) =

nµ if n ≤ m

mµ otherwise
(3.16)

the steady-state distribution for this queuing system is:

π(n) =

π(0) 1
n! (

λ
µ )n if n ≤ m

π(0) 1
m! (

λ
µ )n 1

mn−m if n > m
(3.17)
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Figure 3.4: The CTMC associated to an M/M/m queue

The stability condition of the system is λ < mµ that is the same condition

for ergodicity. π(o) is computed as

π(0) =

(m−1∑
j=0

(λ
µ

)j 1

j!
+
(λ
µ

)m 1

m!

1

1− λ
mµ

)−1
(3.18)

Like in the specific M/M/1 queue case we can express various performance

indices for this queuing model :

• Probability of finding all the servers busy: This probability is given

by the Erlang-C formula proposed by one of the father of queuing the-

ory the Danish mathematician, statistician and engineer Agner Krarup

Erlang.(inserire se si tova paper erlang)

C
(
m,

λ

µ

)
=

1

1 + (1− ρ)( m!
(mρ)m )

∑m−1
k=0

(mρ)k

k!

(3.19)

If m = 1 we are in the case of an M/M/1 queue and:

C
(
m,

λ

µ

)
=

1

1 + (1− ρ) 1
ρ

= ρ (3.20)

• Expected number of customers in the system

Assuming stability (λ < mµ), we have that the system throughput X = λ

So in steady-state, expected number of customer is given by:

N̄ = E[n] =
ρ

1− ρ
C
(
m,

λ

µ

)
+
λ

µ
(3.21)

• Expected response time

Having the same assumptions made in the previous point, using Little’s

Theorem we can derive:

R̄ = E[r] =
C(m, λµ )

mµ− λ
+

1

µ
(3.22)
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Taking the same example made for the M/M/1 queue, a telephone exchange

with m different exchange units can be modeled as an M/M/m queue having

the same assumption made in the previous section’s example.

For now we have always considered the case of infinite queue capacity. If

this assumption falls and we impose a maximum dimension we we face another

issue.

We are now using an M/M/m/m queue to model our system, and since

not all customers can be served we want to know what is the probability for a

customer,to arrive in the system and not being rejected.

To solve this problem we use the Erlang-B formula made by Agner Krarup

Erlang.

EB =

(
m,

λ

µ

)
=

(λ/µ)m

m!

( m∑
i=0

(λ/µ)i

i!

)−1
(3.23)

Since its computation is difficult and is not numerically stable is preferable

to use the following recursive scheme:EB
(

0, λµ

)
= 1

EB

(
m, λµ

)
= (λ/µ)EB(m−1,λ/µ)

m+(λ/µ)EB(m−1,λ/µ) if m > 0
(3.24)

To use the same example adopted before, if we restrict our telephone lines

to be at most m, our exchange is modelled by an M/M/m/m queue.

3.1.6 M/M/∞ queue

This peculiar queuing model, as the notation should suggest, has: Poisson arrival

process with rate λ, exponential service time with rate and , in contrast to

the other models seen before, infinite number of servers. This queuing system

usually model parallel independent computation.

56



Figure 3.5: An M/M/∞ queue

For the steady state distribution of the model we can show that:

π(n) = π(0)
(λ
µ

)n 1

n!
(3.25)

where π(0) is:

π(0) =

( ∞∑
n=0

(λ
µ

)n 1

n!

)
= e−λ/µ (3.26)

where the series
∑∞
n=0(λ/µ)n 1

n! is always convergent.

Then the steady state distribution π(n) can be rewritten as:

π(n) = e−λ/µ
(λ
µ

)n 1

n!
(3.27)
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Figure 3.6: The CTMC of an M/M/∞ queue

It’s performance measures are:

• Expected response time

Since the response time for each customer arriving at the queue is de-

scribed by an exponential distribution with rate µ, average response time

is:

R̄ =
1

µ
(3.28)

• Expected number of customers

N̄ =
λ

µ
(3.29)

• Throughput

X = λ (3.30)

• Average wait time at the queue

Since the number of servers is infinite, customers does not have wait time,

then the average wait time is zero.

3.1.7 M/G/1 queue

M/G/1 queuing system is characterized by a Poisson arrival process with rate

λ, a general service time distribution that has mean 1/µ and variance σ2
s . Since

is not explicitly written the queuing discipline is FCFS, so the first customer to

be served is the first to arrive. The queue is not restricted on the buffer size

that is infinite and has a single server.
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Figure 3.7: An M/G/1 queue

For this queue the stability condition is given by λ < µ with the load factor

ρ = λ/µ < 1 as seen in the M/M/m queue. In fact this model shares a lot of

features with the model seen in chapter 3.1.5 as has the same arrival process

distribution and the same number of server along with the same buffer size.

Noteworthy performance measures for this model are:

• Average queue length:

This measure can be computed thanks to P-K Formula. P-K is the

acronym of Pollaczek–Khinchine, the names of the two mathematicians

who first propose it. Austrian-French Felix Pollaczek first published it in

1930[29] then two years later the Soviet Aleksandr Khinchin [30]revise the

formula in probabilistic terms.

E[nq] =
ρ2 + λ2σ2

s

2(1− ρ)
(3.31)

If we set σ2
s = 1/µ2 we have:

E[nq] =
ρ2ρ2

2(1− ρ)
=

2ρ2

2(1− ρ)
=

ρ2

1− ρ
(3.32)

that is the value for an M/M/1 queue.

The core of the PK formula is provided by intuition that the queue length

also depends on the variance in service time, in addition to the ratio

between expected service time and arrival rate.

• Expected number of customers in queue:

N̄ = E[n] =
ρ2 + λ2σ2

s

2(1− ρ)
+ ρ (3.33)
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• Expected waiting time:

E[w] =
ρ+ λµσ2

s

2(µ− λ)
(3.34)

• Expected response time:

R̄ = E[r] =
ρ+ λµσ2

s

2(µ− λ)
+

1

µ
(3.35)

3.2 Queuing model for BTC blockchain

Our case study is modeled as an M/MXi/1 queue, the service takes places with

batch of fixed dimension, modeled by a random variable.

An M/MXi/1 queue, by recalling chapter 3.1.1, denotes a model with Pois-

son arrival process, a batch of Xi exponential service times and one server with

FIFO discipline.

Let Xi the r.v. that describes the number of transactions placed in the i − th
block.

We assume Yi be the r.v. that set how many transactions the system would

put in a block if the pending transactions queue had infinite size.

In this case Yi, are i.i.d. random variables, meaning that all the variables

have the same probability distribution and are mutually independent.

Hence,

Yi ∼ P̄ (3.36)

where P̄ is a discrete probability distribution:

P̄ = (P1, ..., Pk) (3.37)

P1 denote the probability that block contains exactly one transaction, Pk is the

probability that the block contains exactly k transactions.

Observation 1. Yi has finite support.

It exists a maximum number of transactions that can be inserted in a block

(since its dimension is finite).

Then P̄ = (p0, p1, p2, ..., pT ) has the following properties:

• T <∞

• pk >= 0,∀ k = 1, ..., T
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•
T∑
k=1

pk = 1

Then we can say that Xi = min(Ni, Yi) Where Ni is the number of trans-

action in the queue at the moment of the creation of the i− th block.

3.2.1 Markovian Analysis

We model the pending transaction list in a way that state n(t) represents the

number of pending transactions at time t > 0.

We know that the time required to mine the i − th block is described by a

r.v. Zi, where zi are i.i.d. and exponentially distributed with a parameter µ.

For the law of rare event [31], we assume the arrival process to be a Poisson

process with parameter λ

The law of rare events, also known as Poisson limit theorem (named af-

ter Siméon Denis Poisson) states that, under certain conditions, the Poisson

distribution can be used as an approximation to the binomial distribution.

By recalling chapter 3.1.3, assuming the arrival process to be Poisson is a

very excellent approximation for real systems where the amount of customers

in the queue is very big, each single client has a tiny, negligible effect on system

performance and customers independence is ensured. This fits perfectly the case

with our scenario.

Hence the following propostions are valid:

Proposition 1. n(t) is a Continuous Tine Markov Chain (CTMC) for any P̄

Proposition 2. The chain n(t) is irreducible.

Proposition 3. The chain n(t) is ergodic then admits one unique stationary

distribution iff :

λ < µE[Y ] (3.38)

Where E[Y ] is the expected value of the r.v. Yi

3.2.2 Stationary distribution computation

Let us consider state i, i > 0. There are two events that make us leave state i :

the arrival of a new transaction and the mining of a new block. With the total

rate of λ+ µ
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State i can be reached from the state i − 1 for the arrival of a transaction

with rate λ or from the state i+ j, j > 0, because a new block of dimension j

has been mined. It follows that the balance equations are:

1.

πi(λ+ µ) = πi−1λ+

T∑
j=0

πi+jµPj , i > 0 (3.39)

In the state 0, blocks are mined anyway, even if empty. This state is

reached from the states j, 0 <= j <= T , with different probabilities.

For instance, if the chain is in the state 3 and the r.v. Y has value 5, the

variable X takes the value 3.

2.

π0(λ+ µ) =

T∑
j=0

πjµ

T∑
h=j

Ph (3.40)

For the Proposition 3 the systemπi(λ+ µ) = πi−1λ+ µ
∑T
j=1 πi+jPj , i > 0

π0(λ+ µ) = µ
∑T
j=0 πj

∑T
h=j Ph

(3.41)

with the normalizing condition:

∞∑
i=0

πi = 1 (3.42)

has an unique solution when the system is stable.

Considering equation (3.39) and assuming that:

3.

πi ∝ ρi (3.43)

We have:

ρi(λ+ µ) = ρi−1λ+ µ

T∑
j=1

ρi+jpj (3.44)

By dividing the latter for ρi−1 we obtain:

ρ(λ+ µ) = λ+ µ

T∑
j=1

ρj+1pj (3.45)

We observe that the equation is independent of i.

Hence, by rewriting the latter we have
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4.

µ

T∑
j=1

ρj+1Pj − ρ(λ+ µ) + λ = 0 (3.46)

For the Fundamental Theorem of Algebra we know that this has j + 1

total solutions and only one of them can be real and such that 0 < ρ < 1

by the ergodicity of the CTMC. Thus this confirms that the assumption

on the geometric distribution of the stationary probabilities is correct.

Assuming (3.43), thanks to the Proposition 3 we know that the series

(3.42) must converge.

Since the series is geometric then 0 < ρ < 1. There cannot be any other

real solution in (0, 1) because the ergodicity of the CTMC implies the

uniqueness of the solution.

Let ρ̂ be the solution of (11) with 0 < ρ̂ < 1. In this settings the stationary

distribution, following the proof of an M/M/1, becomes :

πi = (1− ρ̂)ρ̂i, i > 0 (3.47)

3.2.3 Sanity check

Let suppose p̄ = (0, 1) with T = 1. Then the chain is the same of an M/M/1

queue.

By rewriting equation (3.46) as :

µρ2 − ρ(λ+ µ) + λ = 0 (3.48)

∆ = (λ+ µ)2 − 4λµ = λ2 + µ2 + 2λµ− 4λµ = (µ− λ)2 (3.49)

ρ1,2 =
(λ+ µ)± (µ− λ)

2µ
=

λ
µ

1
(3.50)

The condition of the proposition 3 implies λ < µ, then the unique solution

in the interval (0, 1) is:

ρ̂ =
λ

µ
(3.51)

This reproduces exactly the result of an M/M/1 queue.

πi =
(

1− λ

µ

)(λ
µ

)i
, i > 0 (3.52)
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3.3 Model parameterization

Let’s recall the equation :

µ

T∑
j=1

ρj+1Pj − ρ(λ+ µ)λ = 0 (3.53)

Let T be the maximum number of transaction per block that in our setting

is 4109.

Let Pj be the probability that a block will contains j transactions.

Let µ be the parameter of the r.v that model the time required to mine a

block. µ was set as 1/600 as the Bitcoin system ensures that a block is mined

every 10 minutes in average.

Let λ be the rate of the Poisson arrival process. Since λ < µE[T ] with E[T ]

the average number of transaction per block, that is 1385.51, we have set this

parameter at three different levels to fit the cases of a system with low, middle

and high load.

• λ1 = 0.5 ∗ µ ∗ E[T ]

• λ2 = 0.7 ∗ µ ∗ E[T ]

• λ3 = 0.9 ∗ µ ∗ E[T ]

We solve equation 3.53 with the latter levels of workload with a simple

homotopy implemented in Wolfram Mathematica. The results are the following

for the respective three levels of load:

• ρ1 = 0.999108

• ρ2 = 0.99959

• ρ3 = 0.999945

With an average number of transaction in the queue (given by ρ/1 − ρ)

respectively of 1120.22, 2438 and 18300.

Since we model our pending transaction list as an M/M/1 queue, the average

response time i.e. the time interval between the moment a transaction arrives

in the queue and the instant when it is packed in a block, as we saw in chapter

(3.1.4),is given by:

R̄ =
1

µ− λ
(3.54)

64



Then the response times for the latter levels of load with the service rate µ

set as 1/600, are :

• R̄1 = 0.8661071s

• R̄2 = 1.443512s

• R̄3 = 4.330535s

The figure below depicts the response times for each workload level (green

for low load, yellow for middle load and red for high load).
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Figure 3.8: Plot of the response times for the three levels of workload

3.4 Parameterized model analysis

By investigating the blockchain average transaction rate, i.e. the average num-

ber of Bitcoin transactions added to the mempool per second, turned out to be

2.479515 in the last period.

Its distribution is plotted in the figure below.
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Figure 3.9: Plot of transaction rate

Having this average coincide with having 1488 transactions added to the

mempool every 10 minutes, which, as said before, is the average time to mine a

new block.

The distribution of the number of transactions per block is shown in the

following plot.

66



Figure 3.10: Distribution of number of transactions per block

As we can obviously see, most blocks are empty. The mean of this distribu-

tion is 1385.51 transactions per block.

Considering this average value and the average service rate retrieved before,

we see that the real Bitcoin system can not bundle all transactions in the pending

list, which as a result develops continually. When the list is saturated, old

transactions are dropped in FIFO order to ensure the stability of the system.

Since in our model the pending transaction queue has infinite size, there is

no dropping mechanism. The continuous development of the queue leads the

old transaction to persist in the system for a long time resulting with an average

number of transactions in the system rising with the workload.

3.5 Chapter conclusion

In this chapter we saw an introduction to the queuing theory: beginning with

the notation of the Kendall which gave a formal and uniform way of immediately
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describing a system, through the main type of queuing models M/M/1, M/M/m,

M/M/∞ and M/G/1.

The core of the chapter was the formal definition of a queuing model that

attempts to predict the system mempool saturation accurately, with the only

restriction of having an infinite pending transaction list. Results are pretty com-

pelling as the system could not catch the rate at which transaction is generated

in the real case and a transaction drop is required to keep the system stable. In

the suggested model, we have that the forecast are really precise highlighting

how the pending transactions list grows to infinite causing to old ”unlucky”

transaction to remain unresolved for a long time.

For this reason in the real Bitcoin system customers rely on transaction fees,

which act like a priority level for the single transactions in the pending list.

Miners, when selecting the transactions to add in a new block, behaves with the

only purpose of maximizing their income. Hence, a transaction with the highest

fee is likely to be the next one included in the following new block successfully

added to the chain.
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Chapter 4

Block size impact on

performance

Chapter introduction

As we deepened in chapter 2.1, the bitcoin community has been wondering for

years whether raising the actual block size limit of 1 MB could be the solution to

the problems affecting the network nowadays, which puts it at a disadvantage

compared to other large payment systems. The focus of this chapter is an

analysis of two key aspect, energy waste and goodput, and how they should be

affected by the increased block size. First of all we provide some vital formulas

and definition mandatory for the subsequent analysis of the behavior of the two

indices with variation of block size.

4.1 Definitions

To offer a mathematical formal definition of the energy waste and goodput

indices of our system, we must first point out some preliminary formulas.

As we have already figured out the system throughput in terms of block that

define the rate at which information are produced in our system, indicated with

Tblock, is:

Tblock =
1

600
[blocks/s] (4.1)

As the bitcoin system adjusts the mining difficulty to maintain an average time

of 10 minutes to mine a block.
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With k we indicate the value of delay cost (in terms of delay/size) of a block

which, as we saw in chapter 2.2 about information propagation in the bitcoin

network, measure the time delay each kilobytes causes to the spread of a block

or a transaction in the network.

A significance of this metric can be discovered in Article [23] , but since the

paper is from 2013 we use the most updated value of 12,828 from the BitcoinStat

website [32]

We assume the mining time to be defined by an exponential distribution

X with parameter µ = 600−1 and the propagation time also exponentially

distributed, expressed as Y , with parameter T−1D = kB−1

X ∼ exp(µ) (4.2)

Y ∼ exp(T−1D ) (4.3)

If we specify the average block size with B, the probability of finding an

empty block mined by the miners pool Pe is provided by:

Pe =
TD

TD + 1
µ

(4.4)

which is given by:

Pe = Pr{X < Y }

=
µ

µ+ T−1D

=
µ

TDµ+1
TD

=
TDµ

TDµ+ 1

=
TD

TD + 1
µ

Given the latter concept and the network’s average energy consumption to mine

a block M , we can now lastly describe the energy waste WW as:

WW = PeM (4.5)

We consider as energy waste the amount of energy used to mine an empty block.

Hence given (5.4):

WW = PeM =
µ

µ+ T−1D

M (4.6)
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For clarity purpose only do not indicate the value of M and leave it as unit of

measurement.

We can now straightforwardly define the system’s throughput in terms of

transactions Ttransac as:

Ttransac =
B

kB + 1
µ

(4.7)

which is obtained by:

Ttransac = µB(1− Pe)

= µB(1− TDµ

TD − 1
µ

)

= µB(1− TDµ

µTD + 1
)

= µB(
µTD + 1− µTD

µTD + 1
)

= B(
µ

µTD + 1
)

=
µB

µkB + 1

=
µB

µ(kB + 1
µ )

=
B

kB + 1
µ

This measure the goodput of our system.

Definition 13. The goodput is defined as the number of useful bits of informa-

tion delivered by the network to a specific destination per time unit.

In our case scenario, since we targeted the absence of transaction (or oth-

erwise the presence of empty blocks) as useless information, the transaction

throughput represents the goodput of the system.

4.2 Block size impact analysis

The first element we evaluate is the variation in the waste of energy in the

bitcoin network with the rise of the block size. Let us recall the formula we

derived before:

WW =
TD

TD + 1
µ

[MB/s ∗M ]
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For the latter formula, we first study the limit cases:

lim
TD→∞

WW = lim
TD→∞

TD

TD + 1
µ

= 1 (4.8)

lim
TD→0

WW = lim
TD→0

TD

TD + 1
µ

= 0 (4.9)

This implies that the value of waste varies in a range from 0 to 1.

Then we issued the following plot
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Figure 4.1: Plot of energy versus block size

Moving on to the goodput, the number of useful information (blocks and

transactions) flooded in the network for unit of time, we recall the definition

given before:

Goodput =
B

kB + 1
µ
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As for the energy waste we test the limit cases:

lim
B→∞

Goodput = lim
TD→∞

B

kB + 1
µ

= 1/12 = 0.083[MB/s] (4.10)

lim
B→0

Goodput = lim
TD→0

B

kB + 1
µ

= 0 (4.11)

From this analysis emerge the optimal value for the goodput that is 0.083 that

will be an asymptote for the plot of this index.

Hence, we can also observe that the goodput is severely limited by the net-

work latency.

To study how the value of the goodput changes along with the expanded

block size, we compile a plot for this ratio.
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Figure 4.2: Plot of system goodput versus block size

As we can see both plots 4.1 and 4.2 shows a comparable trend even if

the energy waste has an asymptote at y = 1 while goodput has it at 0.083 as
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emerged from the limit analysis.

4.3 Chapter conclusion

In this section, we focused on two elements that are immediately affected from

the overshoot of the actual size threshold for a 1 MB bitcoin block.

From what arose from the study of the two index’ graphs and their limit

case tests, both indicators rise alongside the block size growth. The energy

wasted in empty blocks mining for the same value of block size takes on larger

value, reaching almost the totality of the energy consumed for blocks larger than

200 MB, than the system goodput that never exceeds 0.083 that result strictly

limited by the network latency.

From an initial analysis, this could suggest that an increase in the block size

limit is not worth the money as the elevated energy wasted in the process, and

the resulting cash loss, not supported by a comparable increase in the goodput,

will prevent a standard miner from starting to create fresh blocks (since it bases

iis earnings mainly on transaction fees).

However, bigger blocks could store more transactions and even if the blocks

throughput is restricted by the system regulations (one block mined every 10

minutes averagely as we saw before), by increasing the amount of transactions

per second, miners will earn much more profit from transaction fees while wast-

ing almost the totality of the energy used in the mining process in creating

empty blocks.

A profitable situation is reached only if we assume that the average transac-

tion fee value does not reduce due to any rise in block size and if we assume that

the average transaction size remains stable. In this context an increase in block

size brings a direct rise in the average amount of transactions and consequently

in the average number of transaction fees. Since the value of transaction fees do

not reduce, owing to the increase in the amount of transactions, the miner has

more profit. Mining is cost-effective only if the earnings, summed up with the

award provided by the block solution, are greater than the price of the energy

wasted in the process of mining empty blocks.

On the other hand, if an increase of the block size limit is followed by a

decrease on the average value of the transactions fee, we will reach a point, for

large sized blocks, where the profit gained by the sum of the transaction fees

and the block reward will not sustain the the expenditure energy wasted from
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mining empty blocks. This causes the miner to lose cash and any interest in

joining the network.
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Chapter 5

Conclusion

The drastic evolution of cryptocurrencies, including Bitcoins, has raised several

issues and questions. In this dissertation, we have developed some of them,

first of all the issue of poor throughput, compared to main payment processors,

that restrict Bitcoin’s potential to become a currency and payment method of

everyday use. Related to this, the problem of block size, which is one of the

variables that leads to lower throughput, that since is limited to 1 MB per block

restricts the amount of transactions that can be loaded into it, given the increase

in the system’s transaction rate.

Both of this problem are still open and have been present since the dawn

of the bitcoin era even if they were not determining factors in the early days

due to the cryptocurrency’s low utilization. The community is still wondering

whether the limit should be exceeded in the future, even if the change seems

imperative.

The most intriguing aspect deepened in this dissertation was the topic of

the presence in the ledger of empty blocks, which have risen in quantities in

recent times. It is interesting to see that from the analysis made with last year

data of the distance of normal blocks from empty blocks they turns out to be

gemoetrically distributed. This implies that due the memoryless property, held

by the geometric distrubution, we can state that information about how many

empty blocks were present in the past does not contribute to the probability

that the next mined block will be devoid of any worthily transactions.

We then suggested a queuing model to attempt to forecast the mempool’s

saturation, assuming there is an infinite size list of pending transactions. The

model forecast conclusions are precise, but only in the event of low workload,
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as otherwise the system result unstable.

The purpose behind generating empty blocks instead of creating normal

transaction-full blocks behavior is still not fully resolved. One of the reasons

for this is undoubtedly the aim of miners to retain at least the portion of the

complete revenue consisting of the proof of work prize (12.5 BTC currently) by

sacrificing the fraction made of the transaction fees. A faster block creation,

i.e. building a block without wrapping in any kind of transaction, gives nodes

a higher security of income due to network latency.

The final study addressed in this dissertation is created by analyzing the

drawbacks of raising the limit at the size of blocks by studying how the waste

of energy and the goodput of the system change alongside the variation of the

size limit.

The result of the examination is quite clear: even if the goodput is limited,

the bigger block size threshold will provide more profit for the miners as there

will be more transaction to fit in a larger block that will reward numerically

more fees. As a drawback miners will waste the vast majority of the energy.

It is news of these days that the blockchain ledger has registered the presence

of a new orphan blocks[33]. Orhpan blocks are blocks that have no identified

parent in the current longest blockchain.

In parallel researchers and blockchain experts noticed a decline in the number

of these particular blocks in the chain[34].

An interesting future works should be a correlation analysis between the

decrease of orphan blocks with the variation of empty blocks
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Appendices
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Appendix A

Libraries

A.1 Python: Blockchain parser

Since the downloaded blockchain files are in a proprietary compressed format to

minimize spatial impact on Bitcoin node drives to interpreting the blockchain

we used the python-bitcoin-blockchain-parser from Antoine Le Calvez. This

Python parser available on Github[25] allows us to read and operate with data

contained in the raw .blk blockchain files.

This library allows us to parse the ledger blocks and transaction in two ways:

• Unordered : with the function getunorderedblocks()

• Ordered: with the function getorderedblocks(< indexpath >)

The second one is indicated in cases where it is useful to maintain blocks tempo-

ral order, but it requires substantially more time since it has to build the whole

block index based on the indicated path, a priori.

Once chosen the parsing method the library makes available Blocks and

Transaction data modeled in distinct objects.

A.2 R: distribution fitting and hypothesis test

To compute the Maximum Likelihood Estimation (MLE) fit and then to test

the result with the Chi Square Hypothesis Test for Goodness of Fit we used

R language. There are several libraries available for this type of statistics, like

the chisq.test from the default R library stat. Indeed one of the most complete
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and simple to use is the fitdistrplus made by Aurélie Siberchicot. This library

provides two functions fitdist and gofstat that suits perfectly our case.

fitdist by taking as inputs a numeric vector of data and a reference distri-

bution, like the geometric in our case, perform a fit of univariate distribution

to the given data. The default method, and the one we used, is the already

mentioned MLE, but are also available Moment Matching Estimation, Quantile

Matching Estimation and Maximum Goodness-of-Fit Estimation. When com-

puted it returns an object containing two useful plots like the ones on Figure

2.11 and 2.12 in addition to the fitted distribution’s parameter.

To perform the Chi Square Test for Goodness of Fit with the gofstat func-

tion we just gave as input the result of the previous fit. The test returns the

measure of the Chi-squared statistic, the degrees of freedom as well at the pivotal

output, the p-value.
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Appendix B

Script

The following is the python script we used to parse the Blockchain:

# Instantiate the Blockchain by giving the path to

the directory

# containing the .blk files created by bitcoind

path = ’/Users/andreasina/Documents/original blocks

copia/’

blockchain = Blockchain(os.path.expanduser(path))

block_file = open("blocks.txt","w")

max_buf_size = 1024

date_threshold = datetime (2018 ,01 ,01)#selecting

blocks from 2018

start = 0

step = 12983 # 545283 / 42

end = step

blocks = blockchain.get_ordered_blocks(path+"index",

start= start , end = end)

date = next(blocks).header.timestamp

blocks_buffer = ""
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while start < end:

for blk in blocks:

if len(blocks_buffer.encode(’utf -8’)) >

max_buf_size:

block_file.write(blocks_buffer) #write

buffer on file

blocks_buffer = None #delete the buffer

blocks_buffer = ""

if blk.header.timestamp > date_threshold:

blocks_buffer +=(str(blk.height)+";"+

str(blk.n_transactions -1)+

";"+str(blk.header.timestamp -

date)+";"+str(blk.size)+"\n")

date = blk.header.timestamp

start = end

end += step

blocks = None

blocks = blockchain.get_ordered_blocks(path

+"index", start = start ,

end = end)

’’’

write the remaining blocks on file

’’’

block_file.write(blocks_buffer)

blocks_buffer = None

block_file.close ()

The results have been saved in a separate text file.
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