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Università Ca’ Foscari Venezia, Italy

Software Dependability and Cyber Security

Dario Burato 843238

Supervisor Prof.Andrea Marin

Academic year 2018/2019





Abstract

Apache Kafka is a publish-subscribe message system, producers publish data

on a cluster, from which clients subscribe to receive data. The messages

are sent by their producers and stored in partitions. The load balancing is

performed thanks to the data distribution among each cluster’s node. The

component that assigns a message to a partition is called partitioner, and

every producer contains one partitioner. When partitions lack intrinsic mean-

ing, and are used purely for load-balancing purposes, the default partitioner

available with Apache Kafka aims only to get the same amount of messages

shared among partitions. The most common Apache Kafka cluster configu-

ration is based on multiple identical systems that can be changed, even at

run-time, on purpose or by faults. Even if re-balancing tools exist, it would

take time to properly adapt to an heterogeneous cluster configuration. The

balancing issue is caused by the partitioners focus on partition’s data amount,

rather than node’s. The problem could be solved by changing the amount

of partitions in each node, to level the data/node ratio, thus tricking the

default partitioner logic, however this may actually hurt client performance.

A proper partitioner that infers the performance of each node is the desirable

solution. This work presents an algorithm to detect problematic scenarios

and customs partitioners that adapt to them.
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Introduction

The core function of Apache Kafka is very ”simple”: it handles receiving,

storing and delivering messages from multiple producers to multiple con-

sumers [17]. The data which transit through Apache Kafka, is saved within

topics (logical feed name/labels). The producer decides the target topic, and

the consumer decides which to read from [10]. Producers see the cluster

running Apache Kafka as queues to append message. The consumers, on

the other hand, see queues to pull data from. Indeed this is the reason why

software with these functionalities are commonly called Message Queuing

Services [36].
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In software architecture this communication model is called publish-subscribe

pattern, referring to the act of topic selection performed by the entities at

both ends of the system.

Even for a relatively young software, eight years (first release January 2011)

Apache Kafka is widely used, even by big names of IT, like Cisco [27],

Linkedin [1], Twitter [8], Cloudfare [5], Netflix [25] [38], the New York Times

[33], Apple [22], PayPal, Spotify [3] and Uber [41]. Apache Kafka has rapidly

defeated the competitors thanks to its simplicity, scaling possibilities and ease

to adopt. The high adaptability comes with a cumbersome drawback, work-

ing out-of-the-box in almost any situation force the existence of a tuning

phase to configure every installation (or expect non-optimal performance).

Objective of the thesis

This thesis will discuss how Apache Kafka, a software written by The Apache

Software Foundation, works, how it performs under high stress or partial fail-

ure, and how to improve it. Edge use cases [6] reveal problems on how Kafka

perform data load balancing, analysing its internal structure and design will

make clear where the issue is located. The only available solution to data

distribution problems is to setup correctly a cluster from the start, planning

how it will react to topology changes.

The Partitioner, the key component in charge of splitting data between each

node, will be isolated, studied and compared with new implementations. The

comparison of each solution is done by benchmarking, with a test cluster of

dedicated machines, by code-logic reviews and asymptotic analysis (classifi-

cation by Big O notation). The final objective is to show how more complex

partitioners, and so producers, can solve the balancing problem without los-

ing the configuration ”simplicity” that Apache Kafka is known for.
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Structure of the thesis

This thesis is split in three sections:

• Chapter 1, 2 and 3, explain what Apache Kafka is, how it works, which

problems it has and how to detect them in the early configuration stage

of a project.

• Chapter 4, 5 and 6, explore the state of the art regarding resource

management, scheduling and load balancing and ways to apply bits of

it to Apache Kafka specific case.

• Chapter 7 will compare the performance of the default settings found

in the Apache Kafka software with two new policies implemented on

the basis laid in Chapter 6.

In specific, the first Chapter explains the Apache Kafka features, its design

structure and introduces the data distribution problem. The second Chapter

is focused on the only partitioner shipped by default within Apache Kafka,

and analyses its behaviour in unhealthy clusters. The third Chapter shows

how set theory formalizes the problematic cluster topologies found in the

second Chapter, and how to detect them before a cluster goes live.

The final chapter compares the current Apache Kafka software with each

new policy proposed. A test cluster was set up, used as benchmarking to

drawn parallels to real world bigger scenarios. The results will confirm the

hypothesis formulated in Chapter 6, having advanced and smarter producers

ease the difficult configuration process of clusters and improves the overall

Apache Kafka performance, especially when faults occur.
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Chapter 1

The Kakfa Infrastructure

1.1 Introduction

This chapter will explore how Apache Kafka has been implemented, and for

which reasons it has been designed in that way. To satisfy the high demand

of premiues on load balancing and performance problems, only the basic Pro-

ducer/Consumer paradigm will be explored and discussed. More advanced

APIs [31] exposed/offered by Kafka are aimed for specific programs/cases,

but use the same base structure and core-concepts, so they will not be taken

into consideration.

A specific component, the partitioner, reveals that Apache Kafka has a load

balancing problem rooted in the overly simplistic nature of its structure.
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1.2 Features

Apache Kafka provides all enterprise level features [26] [37] [12] expected in

any modern message system solution:

• Redundancy. Data replications capabilities for handling failures, even

on a big scale if the cluster is configured to expect them.

• High-Volume data handling. There is no difference between small

data bursts and long big streams, the software has been designed to

cover any kind of data flow. Hardware bottlenecks should be hit before

software ones.

• Communication Scalability. The cluster, as single entity, manage

to have a PTMP (Point to Multi-Point) communication with both pro-

ducers and consumers, this is possible since multiple node resides in

the cluster, sharing a split of the workload.

• Durability. The usage of distributed, and replicated, commit logs

ensure persistence of data on disks.

• Fault Tolerance. When faults occur, designated backup nodes take

the role of leaders getting zero, or negligible, downtime, invisible to

users.

Figure 1.1: Cluster with a faulty node recovers thanks to a backup node
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• Event Replication. A cluster can act as producer itself, to collect,

replicate, modify and/or create new events.

Figure 1.2: Events replication basic schema

• Dynamic topology updates. Any change in the cluster topology

causes updates to be forwarded live to each entity of the system. Hence

the system automatically adapt to them.

• Work Auto-Save. Producers and consumers remember how far in the

log they went. In the unlucky case of a crash, the position information

is not lost since is also tracked by the cluster.

Figure 1.3: A producer waits cluster stability before trying to re-send data

• Reliability comes as consequence of all the previously listed features.
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1.3 Use Cases

Covering all the possible ways in which Apache Kafka can be, and is, used

is not the aim of this thesis, but it is useful to know how is deployed in

production environments, to better understand how it works internally.

• Message Delivery from multiple sources to multiple destinations [36],

the core functionality of Apache Kafka. Common alternative solutions

in this field are RabbitMQ [16] [11] or Active MQ (MQ is an acronym

for Message Queue).

• Metrics collection of multiple monitoring apps, aggregated in a single

coherent feed [14].

• Stream processing. The act of transforming incoming data, making

Apache Kafka acting as aggregator and translator of information, later

forwarded into other applications for further processing [16].

• Commits/Events log. The ability to store any step of a process to

later recreate the same event for replay purposes. Important where the

state of an application is stored as a chronologically ordered sequence of

records [16], like a text editor ”undo” and ”redo” functions or a DBMS

diff. history after each database update.

4



1.4 Code Design

A big set of feature is not a synonym with ”code heaviness” (and with ”code

bloated performance”), Apache Kafka code provides each promised function-

ality without renouncing to high performance. Aside from the simple data

replication and distribution, good performance is possible thanks to few key

design choices, not always implemented by the competitors [16] [11]:

• Zero-Copy, a programming technique used to avoid useless middle

buffers in application memory, when the work is already backed by

kernel/OS level buffers [32]. It must be supported by the full stack

of technology were the code runs (hardware, kernel, OS, API, ...), but

it drastically improves latency and throughput in both local I/O (to

ram, to disk, ...) and network communications. This approach is also

capable of DMA-esque (Direct Memory Access) features, getting the

data delivered with no CPU interaction, eliminating context switches

and additional data copies [28].

Figure 1.4: Usage of buffers comparison with and without Zero-Copy
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• Sequential operation pervades the whole system, negating the real

need of dedicated coded cache mechanism, relying on the built-in OS

cache features, more tested, robust, highly configurable and with ex-

ploitable features in ordered reading scenarios (like read/cache-ahead).

• Queue data structure, used to represent the logs that store data in

Apache Kafka. Everything new is always appended.

• Batch processing of multiple data, lowering the overall number of

network requests. Batch compression can achieve good compression

ratios without hurting latency if the data split sweet spot is found.

Figure 1.5: Single batch of multiple message example

• Standard binary format perfectly fitted for batch processing and se-

quential I/O operation, leveraging completely the Zero-Copy approach.

No transformation needed when switching communication channel/me-

dia (to network, to disk, to memory).
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1.5 System Design and Structure

Now that we know the basic entities that compose an Apache Kafka system,

we must understand how they interact among each other. Three concepts

should be kept in mind to understand why Apache Kafka is built in this way:

• The common and ideal configuration of a cluster assumes that each

node has the same performance (same machine). Heterogeneous con-

figuration are allowed but require some tuning.

• Producers and consumers are part of the system, designed together with

it, and not external foreign entities that interacts with unpredictable

behaviors.

• The cluster topology is shared and known by each entity (and dynamic

updates to it, both by legit changes or random failures).

1.5.1 Storing Data

A topic is a logical label or feed name used to group records, and are divided

in one or more partitions, that is why Apache Kafka is said to maintain a

so-called partitioned log [39]. Records are published to a selected partition,

appended to it and marked with an incremental offset.

Topic Logs with #offset

Partition 0 0 1 2 3 4

Partition 1 0 1 2 3

Partition 2 0 1 2 5 6 7

Partition 3 0 1 2

Older → Newer
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Apache Kafka has two policy for log retention, deletion and compaction,

but they work with the same base parameter, a configurable maximum age

that records can have (by default set to two days). The retention policies

tackles storage capacity problems that each node may have, but they are in

place mainly because there is no consume-on-read action by any consumer.

Topics are multi-subscriber, and so partitions, which are defined to be im-

mutable. This is why consumers only read and never delete afterwards, since

it would cause conflicts with other consumers reading next/previous records.

Apache Kafka keeps track of each consumer offset (with an internal topic

hidden by the user), but it is the consumer itself controlling it. Thus jumps

between records are permitted.

1.5.2 Distributed Data Store

While the topics can be, and commonly are, assigned/shared by multiple

nodes, partitions cannot. Partitions can be entirely copied/replicated be-

tween nodes (with the same topic), but any single partition cannot be split

between different nodes. Per se data distribution (usage of partitions) achieve

consumer and producer load balancing, while redundant data distribution

(partition replication) gives fault tolerance.
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The following figure helps to visualize different cluster configurations

(with only two servers for drawing simplicity). Not all combinations are

shown, but most can be derived by mixing the first examples.

Focusing on each single

topic configuration:

Topic A - 2 servers, 2 parti-

tions, 1 replica per partition

Topic B - 2 servers, 2 par-

titions, no replicas (no fault

tolerance)

Topic C - 2 servers, 2 parti-

tions, originals all on same

server (no load balancing)

Topic X - Assigned only to

one server, one or more par-

titions and no replicas (B

and C cons. combined)

Topic Y - This cannot be

done

In production environments

we rarely see B, and almost

never C or X, but neverthe-

less those are still valid con-

figurations.
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1.5.3 Fault Tolerance

As previously stated, in Apache Kafka partitions replication on multiple dif-

ferent nodes is possible and achieve fault tolerance. Each partition has, at

any given time, only one leader node (the node holding the original parti-

tion) and as many followers (the nodes holding a replica) as specified by the

replication factor. The replication factor of a cluster cannot be greater than

the total number of nodes assigned to a single topic (it makes no sense to

replicate a partition X times with less than X nodes).

When a cluster is healthy and all nodes are properly working, a leader is

the only handler of read/write requests coming from consumers/producers.

Followers communicate with the leader to update their content to the last

available, follower which have already completed this task are called ISR (In-

Sync Replica).

A producer, depending on its configuration, considers a record to be suc-

cessfully sent only when it has received one, some or all (another cluster

configurable variable) write confirmations from the leader and the followers.

When a node stops working the whole cluster is notified, for each partition

he was leader of a new election is made between its followers. Any topology

change is communicated also to each consumer and producer, so they know

where to send requests.
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1.5.4 Load Balancing

In Apache Kafka the data generated by the producers affect the whole system

in two phases. First the servers receive the workload from the producers, and

later the consumers request it from the servers. Analyzing the full life flow

of data helps understand where the hard work is being done. Partitions are

the key to achieve a good load balancing [20].

Figure 1.6: Complete view of a simple Apache Kafka system

The simple cluster shown in the figure has only three nodes with just one

topic assigned to all of them. Each server is leader (p.10) of just one partition

of the only topic.
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The producer, knowing the whole cluster topology, asks its partitioner

in which partition to write. Then, it contacts only the leader node of the

selected partition. The leader node does the first phase of work by receiving

data (from multiple sources concurrently), writing it to disk and handling

replicas updates (as illustrated in previous paragraphs).

Before sending new data, the producer waits for a configurable number of

successful write acknowledgments from the replicas (by default all).

The second work phase is done by each consumer inside its consumer group,

by receiving only a split of the requested data from the server. While read-

ing from any topic, groups with less consumer than partition will have some

consumer more loaded (in the image ”Group A - Consumer 2”), while on the

other hand surplus of consumer leads to partial group idling, but provides

consumer fault tolerance (in the image ”Group B - Consumer 4”).

Consumption is balanced among the consumers assuming that a ”fair share”

of data reach each consumer, this is possible only with the ”design every-

thing together” mentality; producers, consumers, nodes and partitions are

engineered together, by design highly unbalanced scenarios should not be

conceived in production environments.

To get the best performance the data distribution fairness assumption must

be granted (between partitions), the component responsible for it is the par-

titioner.
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1.6 Assumption on the Data Distribution

The official guide on Apache Kafka does not have any peculiar focus on how

to obtain the perfect balance, even if it is implicitly intended that has to be

pursued. Thanks to its simplicity and easiness of use and code for, Apache

Kafka has the advantage to have been quickly adopted and adjusted in any

production scenario, but, on the other hand, leaves uncovered areas on how

tuning its performance for various situations.

There is no AI or statistical process that automate the value selection for

every possible variable which controls how Apache Kafka behaves. Manual

testing is needed to perfectly fit a cluster to any specific circumstance, and

this can be seen by the wide broad of powerful testing tools provided out-of-

the-box with any Apache Kafka installation.

Perfect adaptation must be discussed on case-by-case basis, but this should

not lead to believe that there is no common ground for improvements. A

shared problematic reality comes from failures and recovery from it. The

assumption that data is evenly distributed between each node is often not

true in reality, and not by having unpredictable producer behavior (which is

excluded a priori from the official guide), but by not taking in consideration

topology updates, mainly from failures.

Even the most distributed cluster can be greatly affected by small random

failures. A shift in the topology could cause a node to handle more partitions

and work than what can handle, possibly reaching its hardware limits and

bottlenecking every topics touched by it.
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How can an advanced system, with shared known topology, fail to balance

data distribution? Performance issues related to wrong balancing can be

originated by the following conditions:

• The node which will receive the unbalanced quantity of work is not

properly scaled to handle fault scenarios. This could reveal a flaw in

the initial design phase, but actually is only a matter of scale. How big

a fault has to be to cripple a topic performance?

• The partitioning policy does not take in consideration any metric from

which can infer single node performance.

The first condition could be solved by adding more nodes to a cluster or

improving the power of each one, but this solution may be completely wrong

(and possibly have a considerable financial impact). It is imperative to re-

member that performance does not always scales linearly with the unit of

parallelism in a system, or its power. Doubling the power of each node does

not ensure that a cluster can handle double the work with the same results,

for the same reason there is no certainty on being able to handle half the

load when half the nodes go offline.

The second condition is always met. The only partitioning policy shipped

with Apache Kafka, has the benefit to be fast and has close to zero mem-

ory impact, but does not consider any performance metrics, relies only on

assumed good health of the cluster and fast recovery from faults. The next

chapter (p.17) is dedicated to the Apache Kafka partitioner and deeply illus-

trates its caveats.
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1.7 Keywords

Working with Kafka require a basic knowledge of its most common terms.

The following list help the comprehension of this document.

• Cluster - Group of one or more Nodes running an instance of Apache

Kafka.

• Node - One server/machine running an instance of Apache Kafka and

participating in a Cluster. When all nodes are online and no faults

occur the Cluster is said to be ”healthy”.

• Record - Data/Message consisting of key, value and timestamp, that

will be sent, received and stored in a Cluster.

• Topic - Category/Label/Feed/Name to which Records are published.

Stored in a Cluster.

• Partition - Partition of a Topic.

• Consumer Group - Who will subscribe to one or more Topics in a

Cluster. Even if this entity is a group of Consumers, in the ”common

client-server logic” this is seen as a single client, with each Consumer

acting like a separate worker/thread/process. A group is composed of

one or more machines running one ore more threads, joined together

by the same group ID.

• Consumer - Each entity of a Consumer Group. It receives a split

of the data (and so work/load) coming to its Consumer Group.

• Producer - Sends Records to a specific Topic inside a Cluster.

• Partitioner - Tells the Producer in which partition each Record

should be sent.
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1.8 Conclusion

Apache Kafka fundamentals have been explored, it is clear what this software

has to offer and why is appealing to big companies in the IT filed, richness

of features, fast adaptability and outstanding performance makes anything

a top tier choice.

The main weakness that pervades the whole approach to Apache Kafka, is

to put too much faith in good and proper configuration of each installation.

Operating on real systems may reveal new previously unknown problems that

the theory would have never encountered.

The logic which controls were to send data is called Partitioner, is a compo-

nent inside each Producer and is queried by them before sending any records.

Assuming that the data is always well distributed and balanced is wrong as

assuming that faults can always be controlled no matter the scale and impact.
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Chapter 2

Apache Kafka Partitioner

2.1 Introduction

This chapter will explain how the only partitioner shipped by default in Kafka

distribute data within a cluster. Analyzing the default policy reveals why

some early code design choices were made and which configurations suffers

from said choices.

Faults are the big overlooked problematic that can drastically change the

distribution of data within a cluster, and the default partitioner does not

take them into consideration [40].
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2.2 The Default Partitioner

Any test tool, app, code or, more in general, producer can control which

partitioner to use, no value is present it fallback to the default partitioning

logic. When a producer asks to a partitioner which partition to send a specific

record to, it provides a fixed set of elements:

• The data to be sent.

• The key associated with that record (if any, could also be null).

• To which topic the data belongs to.

• To which cluster the data must be sent. From a coding point of view,

not having a partitioner chained to a specific cluster (and producer)

permits more advanced programs to be develop, and allows a single

producer to connect to different clusters and/or to have multiple pro-

ducers sharing the same partitioner instance.

The default partitioner handles records with key differently form key-less

ones, but the aim is the same, spreading them between partitions as equally

as possible. The logic path/sequence of operations executed by the default

partitioner to select a partition (based on its index, 0, 1, ...) is rather simple:
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Figure 2.1: Flow chart representing the logic of the default partitioner
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With an available key, its hash decides which partition to select, the

pseudo-randomicity of the hashing result helps the algorithm to achieve a

good data per-partition distribution (for the given topic).

If no key is available, a counter is retrieved, which tracks how many records

have been sent by this partitioner to a specific topic, and its value is used to

select a partition, based only on the available ones if possible. In the diagram,

all the final (green) processes of selection require basic modulo arithmetic,

but any action that relies on gathering data regarding a topic (blue with as-

terisks) requires the usage of lookup tables (implemented with hash-maps).

The counter for each partition is updated after every request. Its value

changes with modular arithmetic selects every partition in order to achieve a

maximum difference in the total number of records sent to the topic partitions

of 1 (assuming working healthy cluster). This implements the Round Robin

discipline (p.51) for the distribution of the records among the partitions.
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2.3 Failing Data Distribution Assumption

Aside from code logic optimizations, the paritioner needs to be improved, it

fails to perfectly complete its job by not covering fault scenarios, assuming

that recovery from them would be fast enough. Faults happens at node level

but the paritioner distribute data at partition level.

The easiest way to visualize where the Default Partitioner fails, is to set

up a three node cluster with only one topic and three partitions perfectly

split between nodes with one of them going offline.

Figure 2.2: Partition 3 leader election result after a node went offline
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Node 3 fails and Node 1 becomes the new leader for Partition 3, dif-

ferent problematic scenarios emerges depending on were the system hardware

design has been scaled incorrectly:

• Producer network line overload when sending record to Node 1.

• Consumer network line overload when requesting record from Node 1.

• Both the above if producers and consumers shares the channel to com-

municate with the cluster.

• Disk on Node 1 may become overloaded, depending on sync policies

(waiting for every replica to be in-sync or carry-on with new data send

as soon the leader has confirmed a correct write).

The first consequence is to slow down the incoming requests to other nodes,

since both producers and consumers are maybe waiting response from over-

loaded nodes. A secondary issue is harder overload detection if poor metrics

are used to judge the cluster health, failure could be detected but overall

metrics (average) may fail to show the single node overload in action.

Trying to keep equals per-partition data distribution unbalance per-node

request distribution in fault scenarios. A simple approach would be to have

one (or more) idling nodes dedicated to fast swapping with crashing one.
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Figure 2.3: What a backup node would have done in 2.3

Dedicated failover servers are costly and may introduce new challenges.

• A new server is needed for every new grade of failure that is want to

be avoided, multiplied for each topic touched by each faulty node.

• Failover server should have the same computational power as the other

nodes.

• There is no complete idling since replicas must be kept in-sync.

• May require a more powerful network, caused by the increased replica

synchronization traffic
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2.3.1 Bad Configurations

A fault in not necessary the only way to get bad data distribution. Especially

with multiple independent producers, mixing node assignments, unevenly

among topics can easily results in unbalanced data amounts. The next chap-

ter explains what a bad configurations is, and will show a common point

with faults. The issues of both unhealthy and wrongly configured clusters

are rooted in the cluster topology. When we speak about cluster topology we

meant the whole structure, the assignments and the dependencies between

nodes, topics and partitions.

2.4 Conclusion

Good balancing in Kafka is rather simple when dealing with easily predictable

workloads and ideally reliable nodes. In practice, these conditions are hardly

met. The fault tolerance of Kafka assumes the functionality of the system,

but we have shown that there is not any mechanism to handle the unbalanc-

ing caused by the failures.

The scale of a fault is not the issue of bad partitioner performance and data

balancing, disastrous events can put offline even the best configured cluster.

The problem is how partitioners react to faults, which is completely over-

looked. Too much faith is put into believing that every fault can be solved in

reasonable time, and that any instantaneous sporadic minor impact on the

distribution will gradually decrease its severeness with data aging.

Feature marketing could have been done differently to account for the simple

partitioning policy. Being capable to continue to work even after major faults

does not comes with a minimum QoS level. Apache Kafka, as is now, does

not always have high fault tolerance, but instead it always has high fault

survivability.
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Chapter 3

Set Theory Prospective

3.1 Introduction

In the previous chapter we saw how failures are not the main reason that

degrades the performance of any Apache Kafka system, the resulting cluster

topologies (nodes, topics and partitions arrangements) actually are.

A cluster can be configured from start with a failing topology [2], even on

purpose or by human inexperience [42]. Having an automatic detection mech-

anism helps the user to avoid such scenarios [15].

This chapter approaches Apache Kafka clusters with set theory. Labels are

given to nodes, topics and partitions, and rules are set to relate them. A

parallel is drawn between bad cluster topologies and specifics ways to group

topics and nodes together. We also show an algorithm that can detect those

scenarios.
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Bad Cluster Configuration Example

Figure 3.1: Cluster with an obvious asymmetry (thus unbalance, thus issue)

In this test cluster, it is unknown how the shown topology has been formed

but, assuming equal distribution of load per topic, the first node is indeed

much more relaxed compared to the others. It is not important to know if

the bad cluster topology is caused by failures or bad configurations. In both

cases thanks to a formal method these situations can be promptly detected.

Uneven topics/partitions count per node is not a prerogative of bad config-

urations. Complex dependencies between topics, nodes and partitions may

create situations where the producers data flows can affect multiple nodes

even if not directly touched by those partitioners. This other cluster (Fig.3.1)

have even distribution of partitions and topics per nodes but suffers from data

distribution unbalancing if the rate of each producers is not perfectly equal.
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Figure 3.2: Bad data distribution if producers do not send at equals rates

If just one producer send less or more data than the others, its nodes,

where it writes to, will experience less or more load. As example if λX =

λY = 1 (send rate of producers X and Y ) and λZ = 2 (send rate of producer

Z), Node 1 and 3 will see an incoming rate of 1.5 while Node 2 only 1. As

result both Node 1 and Node 3 experience 50% more write requests from

the producers and 50% more read request from the consumers (compared to

Node 2).

This document gives an set theory approach to detect faults and avoid some

lazy and bad Apache Kafka installations, while the official guide simply dis-

courage it and favours manual tweaking. Obvious bad configurations of single

topics, assigning an amount of partitions of the same topic to less nodes of

said amount, are not explored until the end of this chapter.
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3.2 Clusters as Sets

We introduce some mathematical objects that will be used in this chapter.

CT set of all topics in a given Apache Kafka cluster.

CN set of all nodes in a given Apache Kafka cluster.

CP set of all partitions, no replicas, in a given Apache Kafka cluster.

Replica information is only considered later in this chapter.

tα represents Topic α and tα ∈ CT .

nβ represents Node β and nβ ∈ CN .

pγαβ γ-th partition of tα with nβ as leader

where pγαβ ∈ CP ∧ tα ∈ CT ∧ nβ ∈ CN .

N(tα) set of nodes, leaders of at least one partition of tα.

N(tα) = {nβ ∈ CN | ∃ pγαβ ∈ CP}

N(T ) set of nodes, leaders of at least one partition of any topics in T .

N(T ) =
⋃
tα∈T N(tα) where T ⊆ CT

Definition 1. Node-Topic Groups

A set of topics T ⊆ CT is a Node-Topic Group, written as T ∗, if and only if

every topic in it has the same set of nodes. All writes requests to topics on

the same group, are sent to the same set of nodes. Hence data distribution

within a group is ensured even if producers have different send rates when

the Default Partitioner is used (when producers perfectly split data among

the partitions of a topic).

T = T ∗ ⇐⇒ N(tα) = N(tβ) ∀ tα, tβ ∈ T
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From which follows

t ∈ T ∧ T = T ∗ =⇒ t ∈ T ∗

t ∈ T ∗ =⇒ N(t) = N(T ∗) ∀ t ∈ T ∗

#T ≤ 1 =⇒ T = T ∗

S ⊆ T ∗ =⇒ S = S∗

N(T ∗) = N(t) =⇒ T ∗ ∪ {t} = U∗

t ∈ S∗ ∧N(T ∗) = N(t) =⇒ T ∗ ∪ S∗ = U∗

Definition 2. Node-Topic Max Group

T ∗ is a Node-Topic Max Group, TM , of CT , if and only if, any topic in CT \T ∗

merged with T ∗ would not form a new NTG.

T ∗ = TM ⇐⇒ T ∗ ∪ {tα} 6= S∗ ∀ tα ∈ CT \ T ∗

Which is the impossibility to find a new topic assigned to any nodes of T ∗.

T ∗ = TM ⇐⇒ N(T ∗) 6= N(tα) ∀ tα ∈ CT \ T ∗

This concept is used to identify those groups where we are sure that adding

any other topic may break the assumption of correct data distribution when

the Default Partitioner is used (when producers perfectly split data among

the partitions of a topic).

Example: Basic cluster with three max-groups (Fig.3.2).

CT = {tA, tB, tC , tD} CN = {1, 2, 3}

CP = {p1A1, p2A2, p3A3, p1B2, p
2
B3, p

1
C2, p

2
C3, p

1
D1}

N(tA) = {n1, n2, n3} N(tB) = N(tC) = {n2, n3} N(tD) = {n1}

TM1 = {tA} TM2 = {tB, tC} TM3 = {tD}
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Figure 3.3: Visual representation of the example

Definition 3. Node-Topic Group Overlapping

Overlapping defined between two NTG sets, T ∗ ◦_ S∗, occurs when the leader

node set of T ∗ shares some elements with the one of S∗.

T ∗ ◦_ S∗ ⇐⇒ N(T ∗) ∩N(S∗) 6= ∅

No overlapping is easily defined by negating the previous statement.

T ∗ ◦_/ S∗ ⇐⇒ N(T ∗) ∩N(S∗) = ∅

The overlapping combined with the definition of max-group, identifies

entire groups of topics that may (or may not) have distribution problems

once the cluster goes live.
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3.3 Overlapping and Cluster Topology

In any given Apache Kafka cluster, all node-topic max groups can be in only

two overlapping statuses:

Cluster No overlapping.

All max groups do not overlap between themselves.

TM ◦_/ SM ∀ TM 6= SM ⊆ CT

This covers all clusters where every max group has its own set of nodes

assigned and does not share it, even just partially, with any other group.

Cluster Partial overlapping.

At least one non-empty max group overlap with a different one.

∃ TM 6= SM ⊆ CT ∧ TM 6= ∅ ∧ SM 6= ∅ | TM ◦_ SM

Detecting partial overlapping not only tells if a cluster have topology

problems but also can pin-point where they are located, if a program

is designed to keep an history of every pair (TM , SM) that satisfied the

partial overlapping relation.
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Figure 3.4: Clusters with no overlapping issues

Cluster X and Y does not suffers from partial overlapping, X has only one

big max-group (TM = {tA, tB, tC}), Y has two, dividing tB from the other

topics (TM1 = {tA, tC} and TM2 = {tB}).
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Figure 3.5: Cluster with clear overlapping issues

Cluster Z has the same max group configuration of cluster Y , only two

max-groups TM1 = {tA, tC} and TM2 = {tB}, but the overlapping problem is

obvious. Following the overlapping definition (p. 30):

N(TM1 ) = {1, 2}

N(TM2 ) = {2}

N(TM1 ) ∩N(TM2 ) = {2} 6= ∅ =⇒ TM1 ◦_ TM2

Which satisfies the definition of cluster partial overlapping (p. 31), since

exist a pair of distincts not-empty overlapping max-groups.
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3.4 Cluster Worst Case Scenarios

Before moving to algorithms that handle overlapping is imperative to early

distinguish which theoretical cluster will be the benchmarks of said test.

Sticking to an undefined number of nodes CN , the only variable that needs

more clarity is the number of topic inside any given cluster.

Each cluster defining overlapping has its own worst case scenarios, which

should be used has lower and upper bounds to evaluate the complexity of

those algorithms that works with set theory applied to Apache Kafka clusters.

Both situations just helps estimating the possible number of max-groups in a

cluster, but there is no information about topic per-group which vary based

on each application specs.

On next worst case analysis , to ”keep them real” (and meaningful), topic

distribution will be assumed to be evenly spitted between max-groups

#N(TM) ∝ #CN
#M︸︷︷︸

set of all max-groups ⊆CT

∀ TM ⊆ CT ∧M = {
⊆CT⋃
SM

{SM}}

or to have just one topic per max-group #N(TM) = 1 ∀ TM ⊆ CT .

Cluster No overlapping.

Every max group can not overlap with any other group. Regardless

the overall amount of max group in the cluster, which can be just one

and tops out at CN , every node has at most one max group covering it.

In a cluster with no overlapping N−1 exists (the inverse function of N ,

mapping nodes to sets of topics) and is always equals to a max-group

∃ N−1 ∧N−1(n) = TM ⊆ CT ∀ n ∈ CN
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Figure 3.6: Clusters with one max-group

Cluster X has one max-group for every node, Y have one big max-

group covering the whole cluster, both have no overlapping issues and,

as expected, both have just one max-group assigned to each node.
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Cluster Max Overlapping.

This case require more explanation. With no overlapping constraints,

and aiming to achieve as much overlapping sets as possible, the journey

to find out how many max-groups we can fit in a cluster becomes more

conflicted. Since a node-topic group to be a max-group, by definition

(p.29), must have at least one different assigned node from every other

max-group, computing the amount of max-groups is counting all pos-

sible different un-ordered sets, with cardinality going from 1 to CN ,

that can be formed with CN nodes. By directly translating words to

formulas, the amount of all combinations of sets with size k in a pool

of CN elements is the definition of binomial coefficient, making k range

from 1 to CN gives the final result.

#CN∑
k=1

(
#CN
k

)
= 2#CN − 1

That is a specific use of the famous [9] binomial expansion

n∑
k=0

(
n

k

)
xn−kyk = (x+ y)n

n∑
k=0

(
n

k

)
= 2n x = y = 1

n∑
k=1

(
n

k

)
+

(
n

0

)
= 2n k starts from 1

n∑
k=1

(
n

k

)
= 2n − 1 since

(
n

0

)
= 1 ∀ n ∈ N

An easier way to think about this is to count how many binary numbers

can be written with CN bits (−1 to not count 000...000, a topic with

no nodes assigned), the i-th bit tells if the i-th node is assigned or not

to the related max-group of the binary number taken into exam.
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Figure 3.7: Cluster with 3 nodes and max overlapping

This is the visual representation of how a cluster with maximum over-

lapping looks like, only max-groups are kept and topics in them are

removed for image clarity. Each group has been labelled with a binary

number to highlight which nodes is assigned to.

As expected with 3 nodes, #CN = 3, the cluster has 7 max-groups

3∑
k=1

(
3

k

)
= 23 − 1 = 8− 1 = 7
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Complexity of function N()

A simplification can be introduced to more easily estimate the topic popu-

lation while running the function N(), which maps sets of topics to sets of

nodes (p. 28). N() retrieve contents in constant time while dealing with a

node-topic group, since every topic in it has the same set of nodes assigned

(in Apache Kafka basic topology information are mapped so it is fair to as-

sume this). Having infinite number of topics inside every node-topic group,

or just one, makes no difference while executing N() (if it is aware that it

has been executed on a node-topic group) because N(T ∗) = N(t) ∀ t ∈ T ∗

(by p. 28).

N() returns a set of nodes, if represented as list of integers exploring it

can be easily done in linear time compared to the size of the set itself. Since

nodes are either assigned or not to a topic (set of topics, node-topic group,

max-group, ...) representing the mapping from topic to nodes with bit-masks

instead of lists of integers greatly reduce the overall number of operations.

On a cluster with 2n nodes and 2x-bits arch. the list of bit-masks will be

d2n−xe long (d2n/32e = d2n−5e with 32-bits, d2n−6e on 64-bits, ...).

3.5 Overlapping Detection

Overlapping detection can be implemented by first gradually building each

node-topic max groups, and later find which ones overlaps.
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3.5.1 Gather max-groups information

Algorithm 1 Builds M, the sets of every node-topic max groups.

procedure getMaxGroups(CT ) . CT set of topics in a cluster

M ← ∅ . Starts with no max groups found

for t ∈ CT do . For every topic

for T ∈M do . For every max group found until now

if N(T ) = N(t) then . T and t are in the same max group

T ← T ∪ {t}
continue outer for-loop . Directly goes to fetch next t

end if

end for . Next instruction is skipped if inner if is triggered

M ←M ∪ {{t}} . Add a new max group

end for

return M

end procedure

Complexity analysis

One topic

per max-group

#T = 1 ∀ T ∈M

Even topic dist.

#T = #CT/#M

∀ T ∈M

No

Overlapping

Single Max-Group

#M = 1

Case 1.

O(1)

Case 2.

O(#CT#CN)

#CN Max-Groups

#M = #CN

Case 3.

O(#C2
N)

Case 4.

O(#CT#CN)

Max Overlapping

#M = 2#CN − 1 Max-Groups

Case 5.

O(4#CN#CN)

Case 6.

O(#CT2#CN#CN)
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Case 1 - O(1)

One max-group with just one topic leads to #CT = 1, makes the first

loop to be executed only once, and the second to be skipped to populate

M with just the only available max-group.

Case 2 - O(#CT#CN)

All topics are placed inside the same, and only, max-group, #CT dic-

tates how many times the first loop is executed and second run only

once for every topic. The inner, and only, if statement will always

compare to identical list of nodes, the whole set CN , since the only

max-group, and so every topic, spans on the entire set.

Case 3 - O(#CT#CN) = O(#C2
N) since #CT = #CN

Same as Case 1, one topic per max group forces a fixed number of

topics, but this time having #CN max groups leads to #CT = #CN

topics. The second loop will gradually cycles more for every new topic

which will form its own max-group, since no overlapping will be found

with the already existing max-groups. The comparison is N(T ) = N(t)

linear on the number of nodes per max-group so its O(1) in this case.

Case 4 - O(#CT = #CN)

Having more topics per max-groups does not change the performance

of N(T ) = N(t) comparison. The only difference with Case 3 is that

#CT is a free variable and not depends on #CN .

Case 5 - O(#CT2#CN#CN) = O(4#CN#CN) since #CT = 2#CN

#CT depends on #CN , by its chain to #M , with one topic for each of

the 2#CN max-groups, #CT = 2#CN − 1. Both for-loops are executed

2#CN − 1 times, the if check needs at most #CN operations.

Case 6 - O(#CT2#CN#CN)

Same as Case 5, but CT can not be derived from CN , so it is left as

free variable.
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3.5.2 Detect Partially Overlapping Max-Groups

Algorithm 2 Detect Partial Overlapping by filling the set P with max

groups pairs that causes topological problems.

procedure DPO(M) . M Sets of max groups {MM
1 ,MM

2 , ...}
P ← ∅ . Begins with no conflicts found

for i← 1 to #M do

for j ← i+ 1 to #M do

if N(MM
i ) ∩N(MM

j ) 6= ∅ then . if MM
i ◦_ MM

j

P ← P ∪ {(MM
i ,M

M
j )} . Records partial overlap

end if

end for

end for

return P

end procedure

Complexity analysis

One topic

per max-group

#T = 1 ∀ T ∈M

Even topic dist.

#T = #CT/#M

∀ T ∈M

No

Overlapping

Single Max-Group

#M = 1

Case 1.

O(1)

#CN Max-Groups

#M = #CN

Case 3.

O(#C2
N)

Max Overlapping

#M = 2#CN − 1 Max-Groups

Case 5.

O(4#CN#CN)
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Writing an algorithm that does not consider single topic exploration, as

expected, does not expose #CT in the final complexity computation. Having

one or an infinite amount of topics does not affect performance since the

algorithm handle only max-groups and max-group aware N() function (p.

38).

Saving only the pair (MM
i ,M

M
j ) does not tells directly which nodes are shared

between MM
i and MM

j , changing the inner loop body solves the issue but

also require P to not store pairs but triples, adding N(MM
i ) ∩N(MM

j ).

...

I = N(MM
i ) ∩N(MM

j ) . Saves possible overlap information

if I 6= ∅ then . if MM
i ◦_ MM

j

P ← P ∪ {(MM
i ,M

M
j , I)} . Records partial overlap

end if

...

This small change may actually significantly impact performance because

just telling if two sets completely differs needs less memory and is faster in

few lucky cases, while, instead, recording each conflict must always fully scan

both sets. A possible smarter real world implementation could rely on the

basic code and fully compute the set intersection N(MM
i )∩N(MM

j ) only on

user request.
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3.5.3 Improving Detection Results Readability

The basic DPO algorithm produce a list/set of max groups pairs, it may be

hard to pin-point where the issues is located on complex clusters. This new

detection algorithm returns a list of pairs, matching each node with the set

of max groups that touch it, if the sets contains more than one element, all

those max group overlaps on at least that node.

Algorithm 3 Detect Partial Overlapping with improved readability

procedure DPO2(M,#CN) . M Sets of max groups {MM
1 ,MM

2 , ...}
. #CN number of nodes in the cluster

R← {R1 = {} ... R#CN = {}} . Init. R, maps nodes to max groups

for TM ∈M do . Fill R

for n ∈ N(TM) do

Rn ← Rn ∪ {TM}
end for

end for

P ← ∅ . Init. P, starts with no conflicts found

for Rn ∈ R do . Fill P

if #Rn > 1 then . Keep only pairs with overl. max groups

P = P ∪ {(n,Rn)}
end if

end for

return P

end procedure

This more readable output needs more data structures and memory but

is not slower to obtain. The algorithm is divided in three sections, initializing

R, filling R and, at the end, striping R of useless information (nodes with no

overlapping issues) to obtain P . Both building of P and R require O(#CN)

operations, filling R needs O(#M#CN) operations.
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3.5.4 Early Overlapping Detection

This whole chapter has been focused only on examine a given cluster topology

and test for overlapping issues, while taxing performance-wise these opera-

tions may also fall short to give the complete evaluation since replicas are not

considered (definition of set CP p. 28). Replicas are not considered in over-

lapping detection since the worst case scenario is meaningless, with no real

limit on replica creation, and even ”real”-worst case scenarios require to con-

sider some degree of exponential growth crippling algorithms performance.

An advanced take on overlapping detection, that also considers replicas in-

formation, could be implemented as aid during cluster configuration, to limit

computation only each new topology change. Fault simulation may also be

considered but could result unfeasible on large clusters. New, but naive,

algorithms are also necessary to detect all those cases were no overlapping

occurs but partitions-per-node counter differs too much.

Figure 3.8: Uneven partitions amount per topic in the same max group

This cluster has no overlapping issue but Topic B has four partitions

split in three nodes leaving Node 3 more loaded than the others. A simple

automatic check can notify the cluster admin about this kind of issues.
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3.6 Conclusion

Cluster Partial Overlapping Detection require two algorithms with similar

execution time, both achieve O(k#CN), where k can be either #CT , #CN

or #M . In any given #CT and #CN are known values, #M instead, the

number of max-groups, must be computed (with the first presented algo-

rithm) and is not always derivable directly from #CT or #CN , as happened

in few peculiar cases.

The proposed algorithms have the advantage of being simple but at the

same time, looking at their raw complexity analysis, are bad performing.

Smart programs can be implemented to delay computation only when is nec-

essary and/or on user request, but the undeniable worst case scenario casts

its shadow of exponential complexity growth. While it is still correct to

assert that even real cluster topologies can range from trivial to incredible

exponential structures, obtaining these last ones for meaningful dimension

on #CN can not be done without the help of automatic procedures conceived

exactly to build bad performing clusters.

Replicas were not considered, doing so results in less demanding analysis

but also leaves unchecked simpler topologies with easier issues, like having

more partitions than node assigned. Overlapping detection helps to reconfig-

ure clusters to remove conflicting node dependencies between multiple nodes,

but everything can still fails with no advanced logic in load distribution. The

default partitioner shipped with Kafka has already shown its problems han-

dling whatever topology issue emerged in these first chapters, in the next

ones more advanced partitioner will be presented to gradually tackle each

challenge.
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Chapter 4

Scheduling Theory Disciplines

4.1 Introduction

Before diving into advanced implementations that solve Apache Kafka prob-

lems, it is imperative to explore the theory behind the partitioning mech-

anism. It is possible to draw a parallel from the act of deciding to which

partition to send a specific message and scheduling theory [20]. Therefore a

fast direct conversion can not be applied, units of measure change and ac-

tive/passive components may switch while adapting an algorithm.

Any scheduling algorithm allocates resources to an incoming list of tasks

while trying to achieve the same goals [35] [21] [40]:

• No starvation. No job should be left in the queue without never being

processed.

• High fairness/average-utilization. If jobs are available no process

unit should be left idling, and the load between them should be bal-

anced.

• Low latency. Jobs waiting in queue should be scheduled promptly.
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Apache Kafka can be seen as a relaxation of the scheduling problem where

the jobs are represented by the records in queue and the shared resource is

the cluster.

• No starvation can happen. Records are always sent in order, they can

be batched together, but ultimately only when the write acknowledg-

ment is received the next records can be served. Once a record has

been successfully sent to the cluster and written, no re-queue happen.

• High utilization and fairness (between nodes) is accomplished by satis-

fying the data distribution assumption.

• Latency is how much time a record is expected to wait to see its state

transitioning from ”queued” to ”written-in-the-cluster”. Obviously,

from the partitioner prospective the overall waiting time can be tack-

led only with a swift decision in assigning a record to a partition, other

tasks, like network and disk I/O, cannot be controlled directly. Here it

returns one of the oldest problem programming ever had, and always

will have, trading accuracy, precision and/or grades of correctness with

computing time. Apache Kafka achieve extremely low latency by hav-

ing, as this thesis shows, an almost decision-less default partitioner

[40], which by design does not cover all use cases publicized by Apache

Kafka feature-marketing (high fault tolerance).

This chapter will analyse the most common algorithms that can be found

in literature, often categorized by separating the ones which works indepen-

dently from the jobs size and the ones that do not.
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4.2 Preemption and Time Slots

Before diving into some different scheduling policies, other concepts must also

be known. Preemption and time slots are basic well established scheduling

techniques usually boundled together, one often implies the other but they

are completely different.

Preemption

The act of temporally removing a job from its assigned processing unit,

putting it back to whatever data structure, if any, were used to group

waiting processes, and continuing the scheduling operations with the

newly freed resource. It can be a voluntary choice of a process, to

suspend itself, useful when the waiting is necessary and/or known to

happen, really helps only if an high portion of running applications

were implemented with this feature in mind.

Time slots

Represented as a simple limit which dictates the maximum continuous

time a task can spend been processed, when the virtual timer expires

the preempt mechanism takes place.

Both are not one-size-fits-all algorithms, with special pre-computed fixed val-

ues that solve any issue, they can and must be tweaked to perfectly adapt to

the wide range of systems which require scheduling practices. Most advanced

implementations may include non-static parameters that change by learning

from past behaviors. Modern systems mostly exploit these features with the

wide presence of multicore hardware and thread-oriented software.
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4.3 Size Independent

Often labelled as the easiest to implement, the decision making process do

not take into account one particular metric. Ease in programming should

not be confused with overall algorithm complexity, as we will see, even this

category of algorithms may require some degree of data structure and/or

have at least linear time complexity.

4.3.1 FIFO

Its acronym stands for First In First Out, which underlines the simplistic

nature of this policy, a fact also notable with its I/O scheduler counterpart

called No-Op, literally a short version of ”No Operations”. Its extended name

tells how following the FIFO policy to schedule jobs does not need advanced

decision making, it simply puts each incoming job in a queue data structure

in the exact order of arrival.

4.3.2 Priority Queue

Evolution of the FIFO policy keeps the simple data structure but improves

the logic and so performance. Serving jobs in the incoming order is still

the basic logic but there is also a declared or assigned priority that dictates

its placement inside the queue, this is done to ensure a minimum QoS to

any high-priority task. Starvation is a big risk every time priority-ordering

is involved, more important jobs could continue to come, forcing the low

priority ones to never leave the queue. To avoid starvation there might be

implemented mechanisms of modifiable soft-priorities, jobs that spend too

much time in the queue can increase or decrease their virtual priority, per-

manently or not, to move their location inside the queue itself. Of course

reordering, also called Priority Demotion/Promotion, increases the overall

algorithm complexity.
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This simple mutation of the base algorithm does not fit the Apache Kafka

use case. All records have the same importance and are sensitive to order,

this may seems to contradicts the case where multiple producer are acting on

the same Kafka cluster, but this tempting intuition is false since the initial

statement has to be true only within a single partitioner. It is imperative

to remember while adapting already existing algorithms from the theory to

Apache Kafka, that its specific use cases require specific solutions or ad-hoc

modifications (that could also simplify the overall problem).

Multi-Queue

The multi-queue variant is a much more widely adopted version, with a

queue for each priority level available. Other non-priority based grouping

classes/criteria could be used, but the basic idea of having different fun-

nel/buckets to categorize jobs still applies. Having multiple data structures

facilitates and speeds up all operations needed to manage priorities changes.

This solution naturally allows advanced parallelism mechanisms, but must

keep in check synchronization between working active entities/units in the

system.

In Apache Kafka all records are considered equal, there is no priority, their

categorization is based on their intrinsic meaning. Nodes in the cluster can

be seen as multiple queues structures by grouping up producers and desti-

nation nodes based on data type handled, and, for the sake of simplicity,

assuming that no entity handle multiple distinct types of data.
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4.3.3 Round Robin

This policy directly tackles fairness by cycling/assigning jobs through the

available processing unit. The limit of maximum continuous processing time,

called quantum, is applied to each task being actively processed, once the

timer expires the job is suspended and puts back at the end of the queue.

Time slots and circular queues are the reasons why this algorithm is so widely

used, it also solves starvation problems since every job is bound to be com-

pleted even if it would take multiple time slots.

The length of the quantum is variable [24] inside the Round Robin scheduler:

• Set big enough to cause a major portion of jobs to finish within one

or few time slots. No starvation/locks occurs but the system may feel

unresponsive when a long process is been served.

• Setting the quantum so big, to a virtual infinity, that any process is

going to end its computation without letting the timers run out, will

emulate the FIFO policy.

• If set too low, timers would run out too often and, by that, swapping out

jobs from processing state would be too aggressive, the processing unit

will spend more time switching context instead of computing. Changing

task is not instantaneous, it requires handling data structures, context

switching and the next to-be-processed jobs could also have warm-up

times that may be smaller than the slot length chosen.

• Can not be set to 0, its the degenerate case of the ”too short time slot”,

fascinating to be considered only in theory. The processing unit will

only perform swap process operations without actually letting any job

to advance to its computation.
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Figure 4.1: Quantum length effect on different task sizes

This example shows how the quantom choice has an impact the final

result, with a large quantum the 3rd and 5th process may have to wait a

lot to reach their ends, instead the 1st and 2nd would terminate earlier.

Continuous, or periodic, performance sampling is an efficient widely adopted

solution to tweak the quantum length, not only to pursue an ”overall best”

but also to follow the jobs flow evolution.
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4.4 Size Dependent

Previously explored policies have shown some degree of metrics collection to

improve the resulting scheduling, why grouping together all schedulers that

consider jobs length in a different category? The size of any given task is not

known before the end of the task itself. Any algorithm that takes decisions

based directly on size, or other metrics derived from it, must implement

dynamic assessment techniques and can not use only hard-coded constant

evaluations.

4.4.1 Shortest Job First

A priority queue where the priority is decided based on the time required for

each jobs to end. This policy maintains the starvation problems that priority

queue had and amplifies it, since jobs in real-time systems does not have a

declared process time. Even on non-realtime system (like batch systems),

were the users declare the amount of time in which theirs jobs can operate,

the starvation problem is still relevant when a never ending stream of incom-

ing new short jobs is present [30].

This scheduler does not contemplate preemption, the only basic improve-

ment available, without deep changes in the schedule logic, is a new pointer

to the rear of the queue. Having direct access to both the head and the

tail of an ordered queue, allows the scheduler to periodically change the lo-

cation to from where to pick jobs. The small enchantment does not solves

starvation, combined burst of big and small jobs can still starve middle sized

ones, and arguably defeat the motives behind the name chosen for this policy.

By the nature of the parameter we need to analyze, jobs length, any im-

plementation based on its estimation, either by system average, history or

any metrics, is, and will always be, an approximation of this policy.
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4.4.2 Shortest Remaining Time First

Adding preemption capabilities to the SJF algorithms, partially solves la-

tency related problems. SJF fails in all those timing sensitive scenarios,

where a long task arrives first before a long burst of small ones, lacking the

ability to see the future and evaluate perfectly the process time tremendously

aggravate the average jobs latency. While still relying mainly on an accurate

jobs size estimation [4], preemption helps to adapt to the evolving state of

the incoming jobs flow, at any given time the running task is the one with

less remaining process time [29].

4.4.3 Size Based Priority Multi-Queue

Multiple queues are used in this policy, ordered by decreasing priority level

and increasing threshold to job demotion, also called service limit.

Higher Prioirty Queue 1 Lower Service Limit

↑ Queue 2 ↓
↑ Queue 3 ↓
↑ ... ↓

Lower Prioirty Queue X Higher Service Limit

This policy moves a job to the next structure with lower priority based

on the amount of service provided, the complementary criteria of SRTF. To

select the next job to process, the highest not-empty priority queue is taken

and the control is given to its assigned scheduling policy. Each queue can have

any scheduling policy, it only must be modified to include the preemption

mechanism once a job has received enough service and need to be demoted

to a lower queue.
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4.5 Conclusion

Apache Kafka does not directly implement its own version of any scheduling

policy, modifications are required to fulfil the specification of its use case.

The scheduling to Apache Kafka translation follow these mappings:

• Jobs are represented by records collected by the produces.

• The nodes are the resource to be shared, both for producers and con-

sumers.

• Nodes do not perform computation related to records, only to handle

and store them. The service time can be represented by the summation

of network latencies and time to be handled by the server.

• Since records are order sensitive within the same partition and sizes

should not vary within the same topic, records based priority policies

are not meaningful.

Regardless of the policy chosen, in scheduling theory the performance are

mainly dictated by the incoming flow of jobs and theirs sizes, in Apache

Kafka this is not applicable, performance depends on the load acting on each

Kafka node. Exploring the basics of scheduling and few simple partitioners

gives the needed preparation for the next chapter: load balancing multiple

resources represented as queues.
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Chapter 5

Multiple-Queue Load Balancing

5.1 Introduction

This chapter deals with the state of the art regarding load balancing in

queues, this differs from the simple scheduling theory and shifts the focus

from the jobs size to the queue length.

Multiple queues is the fastest representation of modern CPUs and software.

With multiple processing cores available and programs built more and more

around parallelism, the job size becomes less important (thought still is) and

the average queue length diminish.
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Figure 5.1: Effect of Multiple Queues Round Robin policy

Making the Round Robin policy multi-queue aware is a simple and fast

solution to achieve better performance and overall lower job waiting time to

be served.

Showing that single core CPUs are slower than multiple cores ones may

seems obvious, but evaluating what ”speed” is, may not be so trivial and is

not the only metric that justifies or negates a possible money investment on

a system hardware upgrade.
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5.2 Single vs. Multiple Dispatcher Systems

Before introducing different balancing policies applied to multi-queues sys-

tems it is imperative to define a model of those system and locate a real

world counterpart. There are two groups of multi-queue systems

• Single Dispatcher

• Multiple Dispatcher

As the names suggest, the categorization is based on the number of structures

that handle the load before queues, those are the active component which

enacts the balancing policy. Apache Kafka is by nature a multiple dispatcher

system, where producers are dispatchers, and nodes are queues.

5.3 Parallelism Common Issues

Parallelism adoption requires a deep analysis of the system, there are multiple

common problems that can arise apart from achieving proper load balancing

[13]:

• Overall Performance, with stress on ”overall”. Not all systems need

the same treatment, judging a system speed must not boil down to

evaluating only one variable. The most common performance indexes

are throughput and latency, but, as most network related tests teach,

there may be considered also packet loss, synchronization delays, resend

ratios, overhead-vs-real data ratios ...

• Complexity in implementation. Most parallel systems are modelled by

the same theoretical model, load balancing algorithms follows the same

principle but, at the end of the line, will always require some adjust-

ment to adapt to every situation. More complex an algorithm is, more

difference may be observed between real and theoretical performance.
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Assuming instantaneous information propagation, disregarding I/O op-

erations times and data structure memory impact are the most com-

mon practices that, as we will see, condemned perfect/top-performing

algorithms to be declared as theory-only.

5.4 Dispatching Policies

Load balancing between multiple queues is often addressed as dispatching

or routing problem to move the spotlight from each single message to the

decision of where to move it.

5.5 Round-Robin & Random Selections

This algorithm differs from the scheduling counterpart introduced in the pre-

vious chapter (p. 51), each job must be considered atomically executable,

no re-queueing process takes place once the job reaches its destination. The

simplest implementation just needs to cycle between each queue, this is typi-

cally done by using the incremental jobs counter in conjunction with modulo

arithmetic on queues number. The analysis on the default partitioner clearly

revealed that this policy, mixed with some node/topic code handling, is the

chosen one by Apache Kafka, obtaining an almost instant decision-less dis-

patching but sacrificing performance in not optimal situation exposing its

limitation:

• Trust on the well being of the system, faults may and will result in

unpredictable behaviour.

• Trust on good configuration from the system is applied to (each queue

is independent from the other and it is run on a different machine).

• The only additional knowledge external to the jobs list is the number

of queues.
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A different approach to round-robin polices is to rely on random selection,

the better the randomness used, the fairer the load distribution is. The final

goal is the same, obtaining a equal split of jobs solely based on the number

of queues. While random selection may not obtain optimal distribution (true

perfect randomness does not exist) the main advantage on the naive rotation

of selected queue is to avoid issues with localized sequential failures (assuming

queue index/label is also related to topological and/or functional proximity,

ence justifying that failures on queue X may also affect queues in the interval

of X).

5.5.1 Expected Waiting Time

Sticking to simple systems, and emulating an Apache Kafka cluser, the ideal

situation would require N equals queues and perfect distribution of the in-

coming jobs. Modelling the incoming flow of jobs with a Poisson process

with parameter Nλ, the ”seen” arrival rate of each queue, assuming N total

queues, is λ. Choosing a Poisson process also for the outgoing flow, rate µ,

let us consider each queue as on M/M/1 queue [18] [34].

Analyzing the stability scenarios, were the departure rate is enough to avoid

infinite queue length (arrival rate is less than service rate), the estimated

waiting time of each single queue is

E[W ] =
λ

µ(µ− λ)

Considering the whole system almost as a black box, thus observing only the

incoming Nλ and outgoing Nµ flows, a new task approaching the system

will see that its expected service time is, as trivially expected, inversely

proportional to the number of queues (nodes/servers/...).

E[W ] =
Nλ

Nµ(Nµ−Nλ)
=

Nλ

N2µ(µ− λ)
=

1

N

λ

µ(µ− λ)
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5.5.2 More Complex Systems

When this policy is applied in multiple dispatcher scenarios, it strongly relies

on each specific system configuration. In all those situations (Chapter 3, p.

25) where the queues are partially shared between multiple dispatchers, the

system performance is at risk when the incoming flow was not designed to

accommodate that specific topology, or viceversa.

5.6 Join Shortest Queue

To solve the adaptation problems of the previous policy, the pool of infor-

mation used for decision making has to be changed, instead on internal met-

rics now each dispatcher has also access to the current state of each queue.

Knowing exactly the current load of each queue, ence the current waiting

time, allows this algorithm to select the best location to where send the next

message, even where multiple dispatcher are present and working concur-

rently.

JSQ effectively minimizes the average queue length, since it chooses always

the shortest one, which means that in a sustainable scenarios, faster service

(out flow) than incoming rate (in flow), it optimally minimizes the overall

mean delay.

5.6.1 Message Exchange

JSQ is the algorithm which achieve the optimal performance, but why it is

not widely adapted, being the way to go when tackling a scheduling problem?

JSQ needs the constantly updated information about the waiting time and/or

length of each queue, which can not be implemented as simple in-memory

sent-packets counters array, since, to work it would require
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• Knowing exactly how each queue will react to any kind of incoming

task

• Multiple dispatchers systems would have to work at unison

For this to work, without sharing any information between queues and dis-

patchers, the behavior of each queue and dispatcher to every possible flow

of jobs must be predictable. In most real systems, the status of the queues

or dispatchers can not be known at any given time without first querying

the single component. The final real implementations use one of these two

techniques, or a mix of them:

• Each dispatcher has to periodically share is own metrics array describ-

ing the status of each queue, saw from its own prospective. O(d2)

messages (number of dispatchers squared) sent at every periodic up-

date. The status arrays from other dispatchers are used to fine tune

the queue selection until the next update.

• Each dispatcher periodically query each queue, tracking directly the

load status. O(d ∗ q).

Information is not shared instantaneously, the metrics array update frequency

is what mainly governs the effectiveness of this policy. Too few updates

would obtain an algorithm always late in adapting to systems hiccups and

changes, too much updates would waste more time communicating state

vectors instead of actual data. Dynamically adapting the message frequency

is a nice idea that might work in some systems, but it may result in a infinite

search for a sweet spot that may not exist, and if it does, the performance

are still affected by the presence of message exchange.
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5.6.2 Join Shortest of Queue Selection - JSQ(d)

This policy keeps the JSQ performance in non-limit scenarios (when the

queue is sable, the number of job arrival is lower than the queue serving

time) while lowering the overhead impact [23]. The continuous exchange of

messages in the basic JSQ policy is avoided by considering only a restricted

number of queues to determine the less loaded one. When a message has to

be sent only d queues will be queried instead of the whole set.

5.7 Join Idle Queue

Another theoretical policy that achieve optimal performance, but still later

requires reality checks, is the JIQ (Join Idle Queue), which use a notify sys-

tem to tell the dispatcher which queue is currently idling. Each dispatcher

will hold the chronologically ordered list of incoming messages until a queue

is flagged to be free, the notify process is handled by the queues themselves

which, once idling, notify each dispatcher of their status.

This policy improves the overall message utility, each message has more

importance and will change the state of at least one entity in the system,

compared to pull-based polices where a queue may periodically ask an empty

dispatcher if it has available data (worse message utility, messages may be

sent even if no data is available).

As in JSQ policy there is a message overhead to be paid, but the load created

is handled by the dispatcher (by being the receiving end of the notify system)

and not the queues.
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5.8 Conclusion

This chapter explains the theory behind the basic and only partitioner im-

plemented in Kafka, a simple cycling selection on the available partitions.

The negative sides of the simplest policy are made less impactful by the spe-

cial use case represented by an Apache Kafka cluster, which, when properly

configured, expects to have:

• message size variability per topic is zero or virtually zero.

• balanced ratios of partitions per topic/nodes, weighted by the expected

incoming traffic, through all node

• less conflicting topics as possible, assigned to the same nodes

• dispatchers acting on the same topic as equal as possible

While not binding these rules are neither impossibly strict or extremely per-

missive, and when not all are met the default partitioning policy may still

perform badly.

All the shown solutions rely on status information from each queues. Those

policies are prohibitive to implement, most of the times, considering the over-

head that comes with moving that information.

The first real fix to the paritioner will be, as shown in the next chapter,

to move its focus from partitions to nodes, and once that is done, adopting

a restricted version of the JSQ policy. The final goal is to achieve similar

performance without tampering with the adaptability of Apache Kafka by

imposing stricter configuration rules than needed.
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Chapter 6

Design of new Partitioners

6.1 Introduction

Implementing an in-house partitioner is the common solution adapted by

advanced users and companies with specific needs. Ad-hoc implementations

can also depend on specific data or configurations with their own particular-

ities and issues, not the scope of this document which, instead, wants have

a broader approach by proposing partitioners which adapts to most cases.

Three new partitioner have been implemented, which step by step stray away

from the original concept proposed by The Apache Software Foundation to

tackle the data distribution assumption introduced in chapter 2 (p.17). Com-

parison with both healthy cluster situations and edge cases are necessary to

understand the impact of the current available solution compared to new

proposed policies.

Balancing records with a given key will not be considered, since in real pro-

duction environments when a key is present is also already combined with

a purposely built partitioner with specific balancing needs. Relying on the

default partitioner omitting record keys also avoid additional computations.
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6.2 New Partitioners

6.2.1 Improved Default Partitioner

The first step is to improve the basic partitioner without changing its overall

policy. There are three areas where adjustments can be made:

• Code paths logic

• Data structure used

• Thread synchronization mechanisms

These changes will not solve the data distribution assumption problem but

makes its effect slightly less performance taxing on the producer side.

By recalling how the default partitioner works (Fig. 2.2 p. 19) it is clear

that only three cases has to be handled:

• The record to be sent has a key specified.

• The record has no key, the destination topic have at least one partition

online.

• The record has no key, the destination topic have no partition available.

This is an indicator of severe cluster faults.

The common path that most records will go through require no key to be

specified and the cluster not to be completely offline. Since the central path

does not need to know the complete list of available partitions which is re-

trieved anyway, re-arranging instructions gets a bigger code but requires one

less use of lookup tables (blue in the image) in the most common case.
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Figure 6.1: Default Partitioner logic compared to reorganized logic
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The look-up table, which gets the record counter for each topic, is the only

data structure located inside the partitioner. A special hash map (Concur-

rentHashMap, built-in Java SDK 8) is used to support concurrent operations,

since the same partitioner instance is designed to be called concurrently by

different producers. The only concurrency sensitive code section in the orig-

inal partitioner implementation is:

// Hash map that can be accessed/updated atomically.

ConcurrentMap <String , AtomicInteger > topicToCounter

= new ConcurrentHashMap ();

// Get the new counter value for given topic

int nextValue(String topic) {

// Try to get counter ...

AtomicInteger counter

= topicToCounter.get(topic);

// ... if still does not exist ...

if (null == counter) {

// ... create a new one with a random value

counter = new AtomicInteger(

ThreadLocalRandom.current ().nextInt ()

);

// Try to put the new counter in the map

AtomicInteger currentCounter =

topicToCounter.putIfAbsent(

topic , counter

);

// If someone did it before me ...

if (currentCounter != null) {

// ... save the correct counter (theirs)

counter = currentCounter;

}

}

// get the counter value and increment it

return counter.getAndIncrement ();

}
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Without diving to deep on code design and meaning, everything is set up

to handle rare, but possible, cases where two (or more) producer query the

same partitioner instance, passing the same new topic name never used be-

fore as parameter. The whole process can be speed up with low level thread

synchronization primitives and much simpler data structures. The final up-

dated code will be:

// Simple Hash Map

HashMap <String , AtomicInteger > topicToCounter =

new HashMap ();

int nextValue(String topic) {

// Fast Weak -get. Do not care about sync.

AtomicInteger counter =

topicToCounter.get(topic);

if (null == counter) {

As before the code checks if the counter does not exist or the weak-get failed

(tried to get the counter just before someone else put it there). The opera-

tions on the synchronization-less data structure are said to be ”weak”, but

are faster.

The next block is executed only if no counter is retrieved, the whole block is

synchronized on the same object, so there will always be at most one thread

running it. The only set operation can be found in this block, making all

writes to the hash-map concurrency free. Reads are not always concurrency

safe, but null-safe checks are in place to avoid issues and to keep the code fast.

Another null-check is performed to guess if the thread running this block

is the first to reach that instruction (given the same topic). The first if is

needed only to avoid synchronization all together when the hash-map filled.
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synchronized (topicToCounter) {

// Perform another weak -get

counter = topicToCounter.get(topic);

// if still does not exist ...

if (null == counter) {

// ... I’m the first to get here

// create a new counter

counter = new AtomicInteger(

ThreadLocalRandom.current ()

.nextInt ()

);

// add it in the map

topicToCounter.put(topic , counter);

}

}

Now that a counter has been finally retrieved, increment it and continue with

the partitioning policy.

}

// get the counter value and increment it

return counter.getAndIncrement ();

}
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6.2.2 Node Partitioner

The first substantial modification that transition from partition balancing to

node balancing, is to adapt the default partitioner to keep the same Round

Robin policy but making it act on nodes rather than partitions. Missing data

structures must to be implemented in the Apache Kafka codebase. Contin-

uing with the lookup-table approach:

• A main hash map is needed to pair each topic to the list of nodes which

handles at least one partition of that specific topic

• An hash map for each node, that pair each topic to a partition list only

for those partitions present in that node.

The first hash-map is used to select which node to send the request to, ro-

tation between nodes is achieved with the same counter-based Round Robin

technique as the improved partitioner. Once the node is selected, its rep-

resentation in partitioner memory is accessed to retrieve the second level

hash-map, which will finally select the partition within the selected node.

Unseen by the partitioner the node object representation has another per-

topic counter selection, it helps the node internal rotation of selected parti-

tion, but it does not need another dedicated lookup table since this special

counter can be saved together with its own partition list.

Keeping the Round Robin selection policy for partitions with the same leader

node is extremely important, when a fault is resolved some of those partitions

will return to its original owner.
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Figure 6.2: Code exectuion flow of the Node Partitioner

This new partitioner implements also the first simple workaround to

lower hashing operations, double valued maps. Is pointless to have two

maps with the same sets of keys and with the read/write operations al-

ways happening on the same key. Having a structure mapping topics to

pairs (nodes list, counter) reduce the needed hashing computation by 1. In

this work the main hash-maps used by the original partitionier have been

kept also in the improved partitioners, because the final performance com-

parison would have been more about coding tricks and not about meaningful

algorithms changes.
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6.2.3 SQF Partitioner

The name is the acronym of ”Shortest Queue First”, hinting that, when a

record has to be sent, the node selection is based on usage metrics, trying

to choose the most unused node which will take less time to compute our

request. The final partitioner evolution to achieve per-node data distribution

balancing requires to ditch the Round Robin policy and implement a tracking

mechanism on node usage. When a producer want to send data to a topic

the less used node will be found with a simple linear search.

Figure 6.3: Code exectuion flow of the SQF Partitioner
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Integer overflow protections are in place to avoid wrong selection of nodes

once binary representation limits are hit. Since both the linear search and

the overflow checks are bound by the number of nodes in the cluster, the

overall performance is not affected as common logic suggests.

The node population in real environments is never huge enough to raise con-

cerns on linear operations performances, and the topics spreading between

nodes makes it even less meaningful.

Trading simplicity with more advanced programming may actual results in

speed losses caused by cache misses and/or directly handling improved data

structures.
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6.3 Advanced Proposed Improvements

In both Node and SQF partitioner the hash key is ignored because it de-

feats the whole node rotation policy, it could be used to rotate partition

selection within a node, but it may have negative impacts when a cluster is

healthy and well distributed. Applying hash-based node internal partition

rotation selection is useless when the number of available partition per-node

per-topic is close to one, which is the expected and suggested configuration

of any healthy cluster.

Apache Kafka code maintains a coherent memory representation of the clus-

ter topology, when it changes no operation is performed until the representa-

tion is properly up to date. Having a reliable, trustworthy and unchangeable

representation of the cluster can be used to improve the overall usage of that

information:

• Most hash map describing topology could be pre-computed only when

a cluster changes, not while the partitioner is running (thus removing

any need of synchronization).

• Some hash maps are created knowing already which elements will con-

tains and be never changed. With some minimum hash key collision

checks perfect hash maps could be built, when possible, wasting less

memory and improving performances

• Double value hash-maps (Node and SQF partitioner use a basic imple-

mentation of that concept) would lower the amount of hashing compu-

tation by one.

• Currently topics are represented as simple string objects, making them

more complex and capable to store topology information, related to

themselves, could eliminate the need of some look-ups mechanism en-

tirely.
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All of these proposed code innovations need deep changes on how Apache

Kafka works, requiring big code restructuring and possibly switch currently

adopted programming standards.

More reasons that condemned the implementation of more advanced pro-

gramming techniques are:

• Not focused on performance, but more on code utility. Complete im-

plementation dependent on single company choice.

• That requires a small overhaul of many different sections of Apache

Kafka code. Correct and proper performance evaluation needs at least

a small programming team with deep knowledge of Apache Kafka code

standards.

• That requires Advanced data structures purposely built for Apache

Kafka specific problems.

• The resulting code would be visibly different, making the comparisons

more like a code design competition and not a performance evaluation.

• Pre-computing lots of information will result in faster code but will

slow down topology change adaptation, since its where pre-computing

would take place.

• Extensive tests must be performed on both small and big scale failures.
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6.4 Comparisons between Default and New

Partitioners

Data Distribution Comparison

At first both Node and SQF partitioner does not solve the data distribution

assumption problem, emerged with the default partitioner. A producer which

simply split data between nodes does not always achieve the perfect distri-

bution when other producers are in place, asymmetrically assigning multiple

topics between nodes is enough to void most improvements provided by the

advanced partitioners.

To better understand the common partitioning issue shared between all

partitioner, imagine this prototype Apache Kafka cluster with an evident

Node/Topic-Group overlapping problem:

• Two topics, Topic A and Topic B.

• Three nodes, Node 1, Node 2 and Node 3.

• Topic A has one partition in Node 1 and two in Node 2.

• Topic B is evenly split between Node 2 and Node 3

• Two producers, Producer X and Producer Y, adopts the same node

based partitioning policy but are executed by different machines.

• Producer X sends α records to Topic A

• Producer Y sends β records to Topic B
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Figure 6.4: Prototype Cluster with any node based partitioner

The first Node/Topic-Group, made by Topic A with Node 1 and Node 2,

clearly overlaps on Node 2 with the second group, made by Topic B with

Node 2 and Node 3.

Both producers (and their partitioners) are running on different machines,

thus not sharing any node metrics data, by their point of view the data is

perfectly split, but the real data count differs from node to node. Switching

to the default partitioner will get even more unbalanced partitions.
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This test cluster has been designed to easily expose two main caveats that

real systems could have:

1. It is the resulting configuration after a fault or a bad initial setup.

Either the node dedicated to handing Partition A3 crashed and Node

2 became the new leader of it, or the whole Topic A has been badly

designed from the beginning, with three partitions assigned to only two

nodes.

2. Producers of different data have, as expected, different topic to write

to, but the sets of assigned nodes of each topic partially overlaps.

Both conditions may come from bad cluster design, resulting in partially

overlapping of the assigned nodes sets of different topics, complete or no

overlapping would have solved the issue.
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Figure 6.5: Prototype cluster with no partial overlapping

Figure 6.6: Prototype cluster without node-topic overlap
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Both solutions require changes in cluster topology by creating new par-

titions, changing partitions assignments or adding new nodes to the cluster.

The complete overlapping may reduce the performance of those topics which

were previously handled by dedicated nodes, they would have to share com-

pute power, I/O and network time with other topics. When possible, com-

plete node separation of topics is the suggested Apache Kafka configuration,

and if not applicable cluster-wide to each topic and least try with sub-sets.

Configurations built purposely wrong to get bad performance are allowed but

not contemplated in the official documentation, and so neither in this thesis.

It has to be noted that the no-overlap configuration (p.80) did not required a

complete partition reassessment. Topic A still have three partitions on just

two nodes, assuming this situation to be the result of a fault, only by using

the Node or SQF partitioner the data balance can been kept. The default

partitioner would not have adapted to the topology change and wrongly bal-

anced Node 1 and Node 2 with a 1:2 ratio.

Any partitioner that relies on any kind of metrics suffers from the same

structural limit, the memory is not shared with other instances running on

different machines. Having a global state shared between each separated

partitioner instance would be the perfect theoretical solution, but impossible

since the overall system would waste more time sharing updated state data

than working on the data itself.

When partial overlapping can not be eliminated, if all the producers which are

sending data to those partially overlapping topics sub-sets run on the same

machines, the SQF partitioner still solves the distribution problem. The SQF

partitioner is less performing, since it needs a linear search to obtain results,

but allow more flexible cluster configurations.
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Figure 6.7: An SQF partitioner instance shared between two producers
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Keeping the bad cluster topology, but forcing the producers to share the

SQF partition instance, still helps distribution. The flow outgoing from both

producers is combined, but the data is still correctly dispatched, records com-

ing from Producer X still goes only to Topic A, same goes for Producer

Y and Topic B, the single flow to each node is simply weighted to keep the

overall balance assumption valid. Partition rotation within a specific topic

and node is still in place, whatever amount of data is sent to Topic A inside

Node 2 is perfectly split between Partition A2 and Partition A3.

Complexity Comparison

Hash maps are the ever-presents data structure in the Apache Kafka code,

the used implementation is the default one built-in inside Java SDK, with

worst case scenarios requiring O(log n) operations to access the data, but

in most real applications this is not the case. The amount of elements in

any map is bounded by overall number of nodes, topics or partitions, and

usually only subsets of them, a collision is really unlikely to happen, multi-

ple collisions on the same values even less, making the theoretical worst case

scenarios not meaningful.

Focusing only on the Apache Kafka use case, hash maps access time can

be considered to be O(1), leading to this time complexity comparison:

Default
Improved

Node SQF
Some

partitions

available

All

partitions

OFFLINE

Hash Map

#access
3 2 3 3 2

Linear

search
- - - - O(n)
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• n is the maximum number of nodes acting as leaders of any partition

belonging to any given topic. In a perfect cluster n equals p (parti-

tions number of any topic), because any node is leader of at most one

partition of any given topic.

• Each hash map access counter can be reduced by at least one unit,

either by implementing the proposed solutions described in section 6.3

(p.75), or by replacing the partition Round Robing policy with records

hash key based selection.

Space complexity is not as concerning as time complexity, the explosion of

asymptotic behaviors is possible in theory but impossible in real world appli-

cations. The total number of topics, nodes and partitions is bounded, usually

by financial costs associated with designing overpowered systems for a given

tasks, nevertheless the complete space complexity analysis is:

• Default and Improved PartitionerO(t)+2∗O(t∗p) = O(t∗p). One

mapping topics to counter, and two mapping topics to list of partitions.

• Node Partitioner O(t) + O(t) + n ∗ O(t ∗ (p + 1)) = O(n ∗ t ∗ p).
One mapping topics to nodes, one mapping topic to counter, and n

mapping topics to pair (list of partitions, counter).

• SQF Partitioner O(t) + n ∗ O(t ∗ (p+ 1)) = O(n ∗ t ∗ p). One map-

ping topics to nodes, and n mapping topics to pair (list of partitions,

counter).

A similar approach used to improve the time complexity can be applied also

here, implementing advanced data structure proposed in previous sections

(2.3.4) or replacing the partition Round Robing policy with records hash key

based selection, remove the need of counters (and the space used by to store

them).

84



6.5 Halfway Cluster Collectors

The message life cycle in Apache Kafka is the chain of process that start with

the data generated from a producer, the data sent to the cluster, stored in

the cluster and finally received by a consumer.

Trying to balance data distribution early in the producer side of the mes-

sage life cycle, permanently improves performance regardless of how many

consumers will to access that data and it require only one computation per

message. In those systems where modifying the cluster structure is pro-

hibitive and multiple numerous producers do not have additional computa-

tional power, switching partitioner may not be possible, but adding collectors

that implements advanced partitioning may help. This solution is adopted

by Netflix to provide its service [38].

Figure 6.8: One main cluster that sees only two producer which are actually

another two clusters handling four producers each.
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A collector is small cluster placed between the real cluster and a subset

of its producers, it needs more power than a singles producer but not as

much as the main cluster. The role of a collector is to gather a fraction of

the messages that would have been sent to the cluster, apply the advanced

partitioning policies and forward the data to the main cluster. If possible

the usage of a cluster comes with lots of benefits:

• Minimal configuration on the producers side (they have to point to a

collector instead of the main cluster).

• Plugging a new machines into a system is cheaper than renewal of

already existing components.

• No need to change the cluster node/topics/partitions structure if there

are enough collectors to balance the previously unbalanced incoming

message flow.

• No consumer logic is present. The halfway cluster is seen as a normal

cluster from its producers, and acts as one while sending data to the

main cluster.

• The subset of producers assigned to a collector may be grouped together

following a geographical location criteria.

• Having to deal with less producers, the collector cluster structure con-

figuration is much more simple compared to the main cluster (and must

be, to successfully fulfill its role).
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Using additional clusters also comes with its drawbacks:

• Single point of failure, losing a collector will cut the communication

with the main cluster (if no redundancy or fallback mechanics are in

place).

• The time, for a message, to be generated from the producer and stored

into the main cluster is inevitability increased. It may be impossible

to use collector in all those realities were absurdly strict timings are

necessary, like when Apache Kafka is used to replicate or react to events.

• Steepest learning curve to adopt it properly, require precise and specific

tweaking to each scenario.

87



6.6 Conclusion

The Apache Kafka codebase has lot of room for improvements, the imple-

mented proposed partitioners discussed in this thesis are just an initial ap-

proach to optimizing the whole project.

The default partitioner can not adapt to every topology changes caused by

faults or bad cluster configurations, making time spent recovering from those

unbalanced typologies even more critical. Node and SQF partitioners solve

the fair data distribution assumption for different fault realities, but still re-

lies on good cluster configuration.

The perfect solution with a global shared state between different instances,

running on different machines and thus memory, of the same partitioner pol-

icy is not possible, it would require too messages exchange. To get closer

to perfection, a good cluster design has to be studied early with no partial

node-topic overlapping issues, and to avoid crippled distribution a node based

partitioner must be used. If node-topic overlapping can not be avoided but

the producers acting on the same colliding sets run on a single machine, the

SQF partitioner is a good choice to properly distribute data. In the extreme

cases where big changes cannot be made to a running Kafka system, adding

midway clusters, with an advanced partitioner, that group producers and act

as funnels to the main cluster is another possible solution.
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Chapter 7

Performance Evaluation

7.1 Introduction

Testing every possible scenarios and use case is, of course, impossible. Find-

ing a common ground is the necessary step to properly evaluate any new

partitioning policy. The partitioner is the key component to be tested, di-

rectly or indirectly the whole system performance depends on it.

The publicly distributed release package of Apache Kafka provides a built-in

tool suite with a wide range of tests that evaluate any system component.

A test cluster should switch between different configuration to simulate fault

scenarios, where the common partitioner does not perform at its best.

The results does not crown a partitioner as absolute best, differences are

actually expected, the final choice should be weighted by what kind of usage

and configuration the real target cluster will have.
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7.2 Focusing on the partitioner

The final user is only interested in the metrics focused on the consumers,

the first component in a performance dependency chain which connect, in

sequence, the consumer, the cluster, the data distribution assumption and

the partitioner policy.

1. The consumers get data from the cluster.

2. The power of the cluster depends on the data-node distribution quality.

3. The data is distributed by following a specific partitioning policy.

The partitioner is the key component that drives how the whole cluster will

perform.

Regardless of the macro system configuration, bottlenecks and hardware

performance, the only common problem between any real production en-

vironments is how the partitioner works in healthy cluster situation and how

it reacts to big faults.

It should also be noted that the fault state of a cluster should be transient,

any serious company is expected to aid any problematic offline node in short

time and/or provide enough backup nodes ready. Even if speed and latency

will be our main final yardstick, to evaluate when and which partitioner sat-

isfy our needs, the results should be not be read just as raw performance

indexes but more as overhead to pay for features we want to have.
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7.3 Cluster Configuration

Since a change in behavior has to be tested, a multiple-scenarios model must

be followed. No artificial ”fault” event will be created, instead different con-

figurations will represent different states of an hypothetical cluster, this avoid

any data contamination coming from the fault-reassessment process. Reac-

tions to faults are influenced by the partitioning policies chosen but mainly

dependent by disks I/O and internal network performances, this is not true

in intentionally highly unbalanced clusters or in catastrophic fault scenarios,

that is why the fault recovery process will not be simulated or tested.

To avoid any interference external to the mere partitioning process, the most

basics cluster configurations, which still take advantage of parallelism, are the

only possible choices. Two main configuration will be set up, balanced and

unbalanced, both with only one topic and two nodes, but different partitions

amount.
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Figure 7.1: Balanced and Unbalanced replication-less clusters

These base cases, while helpful to clearly compare the raw overhead a

policy might have, does not shed enough light on how real clusters are im-

pacted. Real working environments make use of replication, one of the flag

features of Apache Kafka. Two new test clusters need to be created with

replication active.
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Figure 7.2: Balanced and Unbalanced cluster with replication

Replication is considered off only when the replication factor is sets to one,

its minimum. Assign only one node to each partition means allowing only

the leader node to be created. The first two simple test cluster configurations

have a replication factor of 1, while the others use the biggest value available,

2.
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Switching between every different configuration for every test, which the

cluster will go through, can results in time loss, to avoid it, a single con-

figuration was chosen with multiple topics representing all the four possible

distinct clusters.

Figure 7.3: How the test cluster has been configured

Each topic represent a different simulated scenario:

• B1 - Balanced partitions/node ratios with no replication.

• B2 - Balanced partitions/node ratios with full replication.

• U1 - Unbalanced partitions/node ratios with no replication.

• U2 - Unbalanced partitions/node ratios with full replication.

The unbalanced topics represent a possible failure on larger clusters, both

U1 and U2 act as cluster where the node leader of partition 3 failed and

everything fell back on the only available replica.
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Figure 7.4: What real world case U2 is ment to represents

The U2 case carry the most significance because its the closer to the

real world context, a cluster with some degree of redundancy and replicas is

having an offline node.
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Figure 7.5: What real world case U1 is ment to represents

U1 is almost never present in real world applications, but is useful to

repeat the test U2 without the possibility to tamper the results with the

impact of replicated partitions.

The remaining balanced topics, B1 and B2, are used to test algorithms

overhead when the system is healthy. B1 is not meaningful for real imple-

mentations, since removing replication and renouncing to fault tolerance is

foolish, but is useful to compare it with B2, like U1 for U2.
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7.4 Test Software Configuration

When using the full suite, included with any of Apache Kafka

package, there is no need to build ad-hoc tools or simulation for

testing any major components. The tool ”kafka-run-class.sh

org.apache.kafka.tools.ProducerPerformance” became a de facto

standard to benchmark producer performance, that command, executed

within the Apache Kafka binary directory, dynamically start a program

which acts as producer and stress a specified topic with custom parameters

that shape the generated load. Properly use the available test tools is the

main focus of this section, a correct parameter selection is the key cover as

much production environment realities as possible.

Mocking real environments does not just needs partitions and repli-

cas, it should also mimics possible synchronization functionalities. The

two replication enabled configurations could be split again to take into

account blocking synchronization or not, this is not needed since is the

single producer decide whether or not wait for the replica synchronization

process to finish. Testing clusters with only two nodes does not allows to

evaluate the impact of partitioning policy on gradually increasing blocking

synchronization, the producer either waits for all nodes, two, to acknowledge

the successful write to a partition or waits only for its leader.
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Aside from the acknowledgment rate no other exotic settings are needed

to test Apache Kafka, as Jay Kreps, one of the main developers, wrote [19]:

[...] For benchmarks that are going to be publicly reported, I like

to follow a style I call ”lazy benchmarking”. When you work on a

system, you generally have the know-how to tune it to perfection

for any particular use case. This leads to a kind of benchmarket-

ing where you heavily tune your configuration to your benchmark

or worse have a different tuning for each scenario you test. I

think the real test of a system is not how it performs when per-

fectly tuned, but rather how it performs ”off the shelf”. This is

particularly true for systems that run in a multi-tenant setup with

dozens or hundreds of use cases where tuning for each use case

would be not only impractical but impossible. As a result, I have

pretty much stuck with default settings [...]

The tests performed in that blog article were used as base for the tests in

this document, keeping most settings (changing only cluster configurations

and amount of packet sent, 100 million instead of 50).

The single prototype command that will launch a specific instance of

out battery of tests is:

<KAFKA_DIR >/bin/kafka -producer -perf -test.sh \

--num -records 100000000 --throughput -1 \

--record -size 100 --producer -props \

partitioner.class=<POLICY_NAME > acks=<ACKS > \

--topic <TOPIC_NAME >
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Those commands describe a continuous flow of 100 million packets of 100

bytes each with no set cap on the throughput (mimicking the original Kafka

benchmark settings), limited only by the hardware and the policy chosen.

The placeholder values in the previously shown code are:

KAFKA DIR - Install location of any Apache Kafka suite.

POLICY NAME - Selected partitioner.

ACKS - Wait for replica sync (1 = OFF or -1 = ON).

TOPIC NAME - Topic name (U1, U2, B1 or B2).

As presented, the previous command do nothing by itself and needs other

parameters to properly function (cluster IPs, JVM args, ...), manual config-

uration is needed to to replicate the tests.
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7.5 Hardware

Two identical machines have been setup to represent each node.

CPU - Intel Pentium Dual-Core E6300, clocked at 2.8 GHz, NO

Hyper-threading, Cache 64 KB L1, 2 MB L2.

HDD - 500 GB, 5400 RPM, 16 MB cache.

Motherboard - FUJITSU D3011-A1 (Chipset Q43).

RAM - 2 x 2 GB of DDR3 RAM, clocked at 1067 MHz (Dual Channel

enabled).

SO - Customized Debian based Linux distribution, tuned to focus

on network data transfer and with a minimal software in-

stallation impact, just the basics to run Apache Kafka and

diagnostics tools.

The individual performance of each single node is not important, the

components list reveals multiple possible bottlenecks, which is actually the

whole point. Changing partitioner is not the universal solution to avoid any

kind of bottleneck, but rather a way to move said bottleneck closer to the

real hardware limits.

Without a bigger amount of machines more complex clusters were im-

possible to setup, but the low specs compensate for it, making it easy to

rapidly approach the cluster breakpoints, and possible to analyze various

policy impacts even on small sets of tests. An excessively powerful cluster

would have required a proportionate amount of producer power, to avoid

overshadowing the partitioning policy differences by perfectly handling

everything thrown at the test cluster.
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7.6 Results

To evaluate each partitioner five main metrics are recorded during each ses-

sion:

• Throughput, MB per second sent by the producer.

• Average Network Latency (milliseconds), experienced by the pro-

ducer for a single packet. The averages considering only the 50th, 95th,

99th and 99.9th percentiles are also shown.

• Maximum Network Latency (milliseconds), not excessively mean-

ingful or accurate, gives a quick hint on spikes or hiccups issues.

• Average I/O Latency (nanoseconds), caused by the cluster storage

solution.

• Time to completion (TTC) (seconds) a single test on the selected

topic.

Each test is run multiple times to compute a 99% confidence interval, which

can tell how stable a partitioner is (considering a specific metric).
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7.6.1 Default Partitioner

This is the out-of-the-box experience given by the software that comes with

the Apache Kafka suite. In the launch command line the partitioner param-

eter can be omitted and this policy will be selected as fallback.

Throughput 62.48 [ 60.56, 64.41] MB/s

Average

Net. Latency
116.99 [ 94.67, 139.32] ms

Latency 50th

Percentile
1.78 [ 1.53, 2.03] ms

Latency 95th

Percentile
688.67 [ 556.15, 821.18] ms

Latency 99th

Percentile
1347.44 [ 1162.41, 1532.48] ms

Latency 99.9th

Percentile
1732.39 [ 1504.69, 1960.09] ms

Max Net.

Latency
2571.00 [ , ] ms

Average

I/O Latency
12 008.24 [ 11 078.40, 12 938.08] ns

TTC 154.50 [ 149.55, 159.45] sec.

Table 7.1: Default Partitioner - Topic B1 - Balanced cluster without replica-

tion
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Throughput 15.79 [ 13.01, 18.56] MB/s

Average

Net. Latency
1917.82 [ 1730.55, 2105.09] ms

Latency 50th

Percentile
1617.50 [ 1048.11, 2186.89] ms

Latency 95th

Percentile
2667.90 [ 2094.32, 3241.48] ms

Latency 99th

Percentile
3418.95 [ 2745.13, 4092.77] ms

Latency 99.9th

Percentile
4356.25 [ 3666.40, 5046.10] ms

Max Net.

Latency
6624.00 [ , ] ms

Average

I/O Latency
23 077.06 [ 21 610.39, 24 543.73] ns

TTC 638.20 [ 576.43, 699.97] sec.

Table 7.2: Default Partitioner - Topic B2 - Balanced cluster with replication

where producers wait for replica synchronization
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Throughput 37.61 [ 35.88, 39.34] MB/s

Average

Net. Latency
641.77 [ 560.39, 723.15] ms

Latency 50th

Percentile
425.65 [ 220.63, 630.67] ms

Latency 95th

Percentile
1294.15 [ 1195.98, 1392.32] ms

Latency 99th

Percentile
1872.45 [ 1593.22, 2151.68] ms

Latency 99.9th

Percentile
2431.15 [ 2087.50, 2774.80] ms

Max Net.

Latency
3736.00 [ , ] ms

Average

I/O Latency
17 516.85 [ 15 830.56, 19 203.15] ns

TTC 256.60 [ 243.32, 269.88] sec.

Table 7.3: Default Partitioner - Topic B2 - Balanced cluster with replication

where producers do not wait for replica synchronization
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Throughput 63.17 [ 60.79, 65.56] MB/s

Average

Net. Latency
116.70 [ 88.33, 145.08] ms

Latency 50th

Percentile
3.44 [ 0.96, 5.93] ms

Latency 95th

Percentile
685.83 [ 578.35, 793.32] ms

Latency 99th

Percentile
1163.50 [ 1024.00, 1303.00] ms

Latency 99.9th

Percentile
1531.56 [ 1307.44, 1755.67] ms

Max Net.

Latency
2725.00 [ , ] ms

Average

I/O Latency
11 683.05 [ 10 071.40, 13 294.71] ns

TTC 152.72 [ 146.64, 158.81] sec.

Table 7.4: Default Partitioner - Topic B2 - Unbalanced cluster without repli-

cation
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Throughput 13.61 [ 13.08, 14.13] MB/s

Average

Net. Latency
2117.20 [ 2039.17, 2195.24] ms

Latency 50th

Percentile
2992.94 [ 2724.68, 3261.21] ms

Latency 95th

Percentile
4070.72 [ 3958.65, 4182.79] ms

Latency 99th

Percentile
4833.50 [ 4708.17, 4958.83] ms

Latency 99.9th

Percentile
5667.39 [ 5273.73, 6061.05] ms

Max Net.

Latency
7780.00 [ , ] ms

Average

I/O Latency
41 934.19 [ 40 519.12, 43 349.26] ns

TTC 704.94 [ 679.63, 730.26] sec.

Table 7.5: Default Partitioner - Topic U2 - Unbalanced cluster with replica-

tion where producers wait for replica synchronization
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Throughput 44.82 [ 40.90, 48.74] MB/s

Average

Net. Latency
402.23 [ 270.76, 533.70] ms

Latency 50th

Percentile
255.42 [ 82.16, 428.68] ms

Latency 95th

Percentile
1079.32 [ 987.08, 1171.55] ms

Latency 99th

Percentile
1633.32 [ 1461.28, 1805.35] ms

Latency 99.9th

Percentile
3605.47 [ 2488.80, 4722.15] ms

Max Net.

Latency
8243.00 [ , ] ms

Average

I/O Latency
16 402.79 [ 13 213.75, 19 591.84] ns

TTC 219.74 [ 197.15, 242.32] sec.

Table 7.6: Default Partitioner - Topic U2 - Unbalanced cluster with replica-

tion where producers do not wait for replica synchronization
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7.6.2 Improved Partitioner

This partitioner does not change the algorithm logic at the base of the de-

fault policy, but it uses localized low-level synchronization and less complex

data structures, compared to concurrency-ready ones with always-preset

synchronization. The less sophisticated code is actually an advantage, since,

after an initial warm up, its easier for the JVM (Java Virtual Machine) to

improve it at run-time if needed [7].

The results for this partitioner are not shown since they follow the

values of the default policy, with just stricter confidence intervals, this was

caused by limited complexity of the simulated clusters, which did not stress

enough the intrersted sections in the improved code.
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7.6.3 Node Partitioner

The focus on nodes rather than partitions favors this new policy while dealing

with the unbalanced tests, turning synchronization on or off accentuate the

impact. Looking at the balanced scenarios sheds light on the overhead when

working in normal/common situations (no faults or bad cluster topology

configuration).

Throughput 60.69 [ 59.10, 62.28] MB/s

Average

Net. Latency
131.79 [ 110.26, 153.31] ms

Latency 50th

Percentile
2.10 [ 1.50, 2.70] ms

Latency 95th

Percentile
765.20 [ 640.87, 889.53] ms

Latency 99th

Percentile
1411.60 [ 1226.70, 1596.50] ms

Latency 99.9th

Percentile
1844.95 [ 1644.08, 2045.82] ms

Max Net.

Latency
2641.00 [ , ] ms

Average

I/O Latency
12 461.02 [ 11 527.49, 13 394.55] ns

TTC 158.90 [ 154.52, 163.28] sec.

Table 7.7: Node Partitioner - Topic B1 - Balanced cluster without replication
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Throughput 14.17 [ 14.07, 14.27] MB/s

Average

Net. Latency
2027.04 [ 2012.76, 2041.32] ms

Latency 50th

Percentile
1690.00 [ 1169.33, 2210.67] ms

Latency 95th

Percentile
2707.60 [ 2163.74, 3251.46] ms

Latency 99th

Percentile
3630.25 [ 3004.46, 4256.04] ms

Latency 99.9th

Percentile
4610.50 [ 4025.32, 5195.68] ms

Max Net.

Latency
7197.00 [ , ] ms

Average

I/O Latency
24 560.92 [ 23 675.61, 25 446.23] ns

TTC 674.40 [ 669.83, 678.97] sec.

Table 7.8: Node Partitioner - Topic B2 - Balanced cluster with replication

where producers wait for replica synchronization
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Throughput 39.01 [ 37.20, 40.83] MB/s

Average

Net. Latency
577.65 [ 494.84, 660.46] ms

Latency 50th

Percentile
489.75 [ 282.76, 696.74] ms

Latency 95th

Percentile
1356.25 [ 1215.68, 1496.82] ms

Latency 99th

Percentile
1965.45 [ 1696.11, 2234.79] ms

Latency 99.9th

Percentile
2557.40 [ 2230.67, 2884.13] ms

Max Net.

Latency
4273.00 [ , ] ms

Average

I/O Latency
16 930.01 [ 14 581.28, 19 278.75] ns

TTC 247.20 [ 236.96, 257.44] sec.

Table 7.9: Node Partitioner - Topic B2 - Balanced cluster with replication

where producers do not wait for replica synchronization
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Throughput 59.95 [ 56.04, 63.86] MB/s

Average

Net. Latency
161.30 [ 97.25, 225.36] ms

Latency 50th

Percentile
2.20 [ 1.84, 2.56] ms

Latency 95th

Percentile
435.20 [ 220.97, 649.43] ms

Latency 99th

Percentile
1194.47 [ 796.53, 1592.40] ms

Latency 99.9th

Percentile
1483.60 [ 1113.20, 1854.00] ms

Max Net.

Latency
2564.00 [ , ] ms

Average

I/O Latency
11 465.13 [ 9669.87, 13 260.39] ns

TTC 162.00 [ 150.51, 173.49] sec.

Table 7.10: Node Partitioner - Topic U1 - Unbalanced cluster without repli-

cation
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Throughput 15.52 [ 15.45, 15.59] MB/s

Average

Net. Latency
1847.48 [ 1839.22, 1855.75] ms

Latency 50th

Percentile
16.40 [ 16.00, 16.80] ms

Latency 95th

Percentile
406.70 [ 316.13, 497.27] ms

Latency 99th

Percentile
1159.90 [ 1085.72, 1234.08] ms

Latency 99.9th

Percentile
1641.30 [ 1513.96, 1768.64] ms

Max Net.

Latency
6442.00 [ , ] ms

Average

I/O Latency
29 475.75 [ 27 259.62, 31 691.87] ns

TTC 615.80 [ 612.96, 618.64] sec.

Table 7.11: Node Partitioner - Topic U2 - Unbalanced cluster with replication

where producers wait for replica synchronization
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Throughput 41.67 [ 41.31, 42.02] MB/s

Average

Net. Latency
651.79 [ 637.81, 665.77] ms

Latency 50th

Percentile
3.00 [ 3.00, 3.00] ms

Latency 95th

Percentile
218.00 [ 176.83, 259.17] ms

Latency 99th

Percentile
706.33 [ 591.21, 821.45] ms

Latency 99.9th

Percentile
1045.11 [ 891.76, 1198.46] ms

Max Net.

Latency
3400.00 [ , ] ms

Average

I/O Latency
18 045.37 [ 16 456.60, 19 634.15] ns

TTC 230.33 [ 228.48, 232.19] sec.

Table 7.12: Node Partitioner - Topic U2 - Unbalanced cluster with replication

where producers do not wait for replica synchronization
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7.6.4 SQF Partitioner

The available cluster used as test was not complex enough to completely jus-

tify the use of an SQF partitioner, multiple producers should have been used,

with varying topic arrangements and possibly node failure at runtime (caused

on purpose). As with the improved vs. default partitioner comparison, this

policy does not drastically drift from its counterpart, the Node partitioner,

and the tests just show the impact of a slightly different code that pursues

the same goal.

Throughput 61.99 [ 60.28, 63.70] MB/s

Average

Net. Latency
122.42 [ 103.97, 140.87] ms

Latency 50th

Percentile
2.00 [ 1.64, 2.36] ms

Latency 95th

Percentile
741.70 [ 649.56, 833.84] ms

Latency 99th

Percentile
1347.25 [ 1189.37, 1505.13] ms

Latency 99.9th

Percentile
1832.50 [ 1625.77, 2039.23] ms

Max Net.

Latency
2996.00 [ , ] ms

Average

I/O Latency
11 491.45 [ 10 478.43, 12 504.47] ns

TTC 155.60 [ 151.12, 160.08] sec.

Table 7.13: SQF Partitioner - Topic B1 - Balanced cluster without replication
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Throughput 14.12 [ 14.04, 14.19] MB/s

Average

Net. Latency
2035.37 [ 2023.80, 2046.95] ms

Latency 50th

Percentile
1923.15 [ 1438.47, 2407.83] ms

Latency 95th

Percentile
3428.55 [ 2957.90, 3899.20] ms

Latency 99th

Percentile
4300.20 [ 3705.37, 4895.03] ms

Latency 99.9th

Percentile
5176.35 [ 4597.25, 5755.45] ms

Max Net.

Latency
7543.00 [ , ] ms

Average

I/O Latency
24 120.92 [ 23 116.33, 25 125.50] ns

TTC 676.90 [ 673.11, 680.69] sec.

Table 7.14: SQF Partitioner - Topic B2 - Balanced cluster with replication

where producers wait for replica synchronization
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Throughput 38.48 [ 37.18, 39.79] MB/s

Average

Net. Latency
610.00 [ 529.06, 690.95] ms

Latency 50th

Percentile
488.60 [ 308.71, 668.49] ms

Latency 95th

Percentile
1324.00 [ 1250.66, 1397.34] ms

Latency 99th

Percentile
2090.50 [ 1892.43, 2288.57] ms

Latency 99.9th

Percentile
2522.70 [ 2310.40, 2735.00] ms

Max Net.

Latency
3581.00 [ , ] ms

Average

I/O Latency
17 204.29 [ 14 937.87, 19 470.71] ns

TTC 250.00 [ 241.86, 258.14] sec.

Table 7.15: SQF Partitioner - Topic B2 - Balanced cluster with replication

where producers do not wait for replica synchronization
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Throughput 54.65 [ 51.39, 57.91] MB/s

Average

Net. Latency
291.27 [ 201.19, 381.36] ms

Latency 50th

Percentile
2.00 [ 2.00, 2.00] ms

Latency 95th

Percentile
228.40 [ 152.94, 303.86] ms

Latency 99th

Percentile
749.05 [ 566.03, 932.07] ms

Latency 99.9th

Percentile
1213.80 [ 935.90, 1491.70] ms

Max Net.

Latency
3104.00 [ , ] ms

Average

I/O Latency
18 139.45 [ 13 250.12, 23 028.78] ns

TTC 177.75 [ 166.96, 188.54] sec.

Table 7.16: SQF Partitioner - Topic U1 - Unbalanced cluster without repli-

cation
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Throughput 15.45 [ 15.19, 15.70] MB/s

Average

Net. Latency
1857.56 [ 1827.09, 1888.03] ms

Latency 50th

Percentile
16.75 [ 15.99, 17.51] ms

Latency 95th

Percentile
2397.25 [ 1054.02, 3740.48] ms

Latency 99th

Percentile
3068.00 [ 1738.28, 4397.72] ms

Latency 99.9th

Percentile
3759.88 [ 2218.49, 5301.26] ms

Max Net.

Latency
6040.00 [ , ] ms

Average

I/O Latency
29 973.12 [ 27 326.99, 32 619.25] ns

TTC 618.75 [ 608.67, 628.83] sec.

Table 7.17: SQF Partitioner - Topic U2 - Unbalanced cluster with replication

where producers wait for replica synchronization
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Throughput 42.06 [ 41.25, 42.88] MB/s

Average

Net. Latency
630.82 [ 584.78, 676.85] ms

Latency 50th

Percentile
3.00 [ 3.00, 3.00] ms

Latency 95th

Percentile
258.25 [ 172.73, 343.77] ms

Latency 99th

Percentile
684.85 [ 534.92, 834.78] ms

Latency 99.9th

Percentile
1312.85 [ 735.59, 1890.11] ms

Max Net.

Latency
5715.00 [ , ] ms

Average

I/O Latency
17 948.38 [ 16 760.71, 19 136.04] ns

TTC 228.25 [ 224.22, 232.28] sec.

Table 7.18: SQF Partitioner - Topic U2 - Unbalanced cluster with replication

where producers do not wait for replica synchronization
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7.7 Conclusions

Consumers do not have any advanced logic and simply request data when

they needed it, sequentially based on the record index. If the records are

evenly distributed between partitions and nodes the resulting performance

of both producers and cluster will improve, the nodes in the cluster will be

equally stressed (and equally far from the overloading point) and consumers

will experience less latency.

Until now, the producer performance were out of the equation while

looking at any Kafka system, some focus was put into latency, and, from

there, the default partitioner was implemented with almost no advanced

logic whatsoever. Adding more load balancing logic into the partitioner is

an efficient way to improve the overall cluster performance.

The most advanced new partitoner, the SQF (p.73), may not be seen

as really applicable since it require more computational power, but nowa-

days even the smallest embedded devices can handle simple linear searches

if the data collection is small enough, and this is exactly the case of Apache

Kafka. The theory allows for indefinitely populated clusters, with the

highest imaginable topics and partitions density. In the real world, not only

it will be hard to find a scenario where the numbers were high enough to

matter, but having also an impactful amount of nodes, topics-per-nodes and

nodes-per-topic all at the same time is unpractical and unreal.
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I would be easy to think that the tested scenarios may have been too

simple too properly evaluate each partitioner (actually true only for the im-

proved partitioner), instead they are perfectly placed in a sweetspot where:

• B1 and B2 with sync. does not care about the selected partitioner, the

below average hardware is enough to handle a simple good configured

cluster regardless of the chosen partitioning policy.

• B2 without synchronization is the only balanced scenarios where the

node-oriented partitioners slightly improve the average latency, thanks

to simpler code paths and less hash-maps look-ups, which hurts the

unstoppable continuous data streams. The absence of a partitioner-

to-cluster synchronization did not made the producer wait a replica

cluster-wide write acknowledgment, thus stressing the code more. B1

did not have replicas, ence had less stress on the cluster, and B2 with

sync. lets the producers ”relax” while the replicas aligned themselves

with their leaders.

• U1 puts the default partitioner under the spotlight with a substantial

gain in throughput, but it must be remembered that a cluster with no

replicas partitions and unbalanced node-topic/partition ratio is one of

the worst possible configuration, no fault-tolerance and prone to higher

latency spikes (has shown bye the 99th and 99.9th latency percentiles).

A cluster configuration like this would be risky and unpredictable to

actually use.

• U2 without sync. falls in the same case of B2 without sync., where

the absence of pauses lets the default partitioner gain an edge on av-

erage latency and throughput, but it experiences high latency spikes

compared to node based partitioners, as happend with U1.
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• U2 with synchronization is the main point of this document, represent-

ing a fault-tolerant cluster that just experienced one, the simulation of

a real world case. Both node-based partitioners perform almost the

same (SQF have slightly higher latency spikes) and beat the default

partitioner in throughput and average latency. The difference in speed

is also noticeable by the big difference in I/O latency experienced by

the cluster.

All proposed new partitioners in this thesis gradually improve the per-

formance metrics in the simulated real world scenarios, U2 and B2 with

synchronization, and fails in degenerate cases that should never be deployed

in productions environments (no fault tolerance whatsoever).

Choosing a node-based partitioner is a place-and-forgot choice in all

those cluster that can withhold the negligible performance impact and needs

more robust fault tolerance. Using multiple-level sub-clusters can also help

the adaptation of more advanced partitioners, but the key feature, that

any Apache Kakfa cluster needs, is good node/topic/partition configuration

which is done in the initial setup of the cluster itself. The cluster admins

are not left alone and can be helped with possible-fault detection algorithms

during the topology planning process.

The proposed partitioners bring an impactful but basic approach on

improving Apache Kafka performance by having powerful producers. As

explored in chapter 6.3 (p.75) advanced techniques can be used further

evolve the current code-base, which can later be used as starting point to

implement even smarter producers.
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