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Abstract

Recent years are characterized by an unprecedented quantity of available network
data which are produced at an astonishing rate by an heterogeneous variety of inter-
connected sensors and devices. This high-throughput generation calls for the devel-
opment of new effective methods to store, retrieve, understand and process massive
network data. In this thesis, we tackle this challenge by introducing a framework
to summarize large graphs based on Szemerédi’s Regularity Remma (RL), which
roughly states that any sufficiently large graph can almost entirely be partitioned
into a bounded number of random-like bipartite graphs, called regular pairs. The
partition resulting from the RL gives rise to a summary, called reduced graph, which
inherits many of the essential structural properties of the original graph. Thus,
this lemma provides us with a principled way to summarize a large graph reveal-
ing its main structural patterns, while filtering out noise, which is common in any
real-world network.

We first extend an heuristic version of the RL to improve its efficiency and its
robustness. We use the proposed algorithm to address graph-based clustering and
image segmentation tasks. An extensive series of experiments demonstrated the
effectiveness and the scalability of our approach. Along this path, we show how the
notion of regular partition can provide fresh insights into old pattern recognition and
machine learning problems. In addition, we analyze the practical implication of the
RL in the preservation of metric information contained in large graphs. To do so, we
use graph resistance-based measures to assess the quality of the obtained summaries,
and to study the robustness of the proposed heuristic to natural sparsification of
input proximity graphs.

In the second part of the thesis, we introduce a new heuristic algorithm which
is characterized by an improvement of the summary quality both in terms of re-
construction error and of noise filtering. We use the proposed heuristic to address
the graph search problem defined under a similarity measure. In our approach, all
the graphs contained in a database are compressed off-line, while the query graph
is compressed on-line. Thus, graph search can be performed on the summaries, and
this allows to speed up the search process and to reduce storage space. To the best
of our knowledge, we are the first to devise a graph search algorithm which efficiently
deals with databases containing a high number of large graphs, and, moreover, it is
principled robust against noise, which is always presented in real-world data.



Finally, we study the linkage among the regularity lemma, the stochastic block
model and the minimum description length. This study provide us a principled
way to develop a graph decomposition algorithm based on stochastic block model
which is fitted using likelihood maximization. The RL is used as a prototype of
the structural information which should be preserved, defining a new model space
for graph-data. The minimum description length is exploited to obtain a stopping
criterion which establishes when the optimal regular decomposition is found.



Sommario

Lo scopo di questa tesi è introdurre un metodo per comprimere un grafo separandone
la struttura dal rumore, contenuto comunemente nelle reti del mondo reale. Il
metodo proposto ha un solido fondamento teorico fornito dal Regularity Lemma
introdotto da Szemerédi nel 1975. Nella prima parte della tesi viene migliorata
un’euristica del Regularity Lemma già esistente al fine di aumentarne l’efficienza e
la robustezza al rumore. Tale algoritmo viene poi utilizzato nel clustering e nella
segmentazione di immagini. Queste applicazioni consentono di dimostrare come
il Regularity Lemma permetta di trattare in modo innovativo i problemi classici
afferenti al Pattern Recognition e al Maching Learning. Nella seconda parte della
tesi, viene proposto un nuovo algoritmo euristico in grado di ottenere una maggiore
qualità dei grafi compressi sia in termini di reconstruction error che di filtraggio del
rumore. La nuova euristica viene successivamente applicata alla problematica del
graph search, velocizzando la ricerca e riducendo lo spazio richiesto per memorizzare
il database. L’ultima parte della tesi si focalizza sullo studio del legame tra il
Regularity Lemma, lo Stochastic Block Model ed il Minimum Description Length.
In particolare, viene sviluppato un algoritmo di decomposizione di un grafo basato
sullo Stochastic Block Model, dove il Regularity Lemma è usato come prototipo per
individuare l’informazione relativa alla struttura del grafo da preservare, definendo
quindi un nuovo model space per i grafi.
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Szemerédi compression stage, for all images used. . . . . . . . . . . . 32



viii List of Tables



Preface

Chapter 1 is devoted to the introduction of the regularity lemma and the idea of
using it for summarizing large graphs.

Chapter 2 describes an heuristic algorithm for finding regular partitions and its
application to structural pattern recognition. This lead to a first publication in
Pattern Recognition Letters [3]. Moreover, in this chapter is presented an analysis
of the practical implication of the regularity lemma in the preservation of metric
information contained in large graphs, which is reported in [4].

Chapter 3 introduces a new heuristic to summarize large graphs which is charac-
terized by an improvement of the summary quality both in terms of reconstruction
error and of noise filtering. Here, the proposed heuristic is used to address the graph
search problem in order to speed up the search process and to reduce storage space.
These results are under review on Pattern Recognition journal.

Chapter 4 is devoted to the study of the linkage among the regularity lemma, the
stochastic block model and the minimum description length. It has been conducted
in the last part of my Ph.D. course during a visit to the VTT Technical Research
Centre of Finland. This study has been published in [5].

Finally, the Appendix of this thesis presents a system for beverage product recog-
nition through the analysis of cooler shelf images, which has been published in [6].
This work is not linked to the main topic of the thesis and therefore it is not included
as a chapter of this work.
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Introduction

The only true voyage of discovery,

the only fountain of Eternal Youth,

would be not to visit strange lands

but to possess other eyes, to behold

the universe through the eyes of

another, of a hundred others, to

behold the hundred universes that

each of them beholds, that each of

them is.

Marcel Proust

We are surrounded by systems which exhibit a complex collective behavior that
cannot be inferred only from the knowledge of its components. The twenty-first
century, as Stephen Hawking stated, is the “century of complexity”. Consider for
example our brain which is composed of billions of neurons that, interacting in a
coherent way, allow us to think, walk and feel; or a power grid which is made up
of a huge number of interconnected devices designed to carry energy in our house
and, at the same time, to ensure robustness against component failures. Hence,
understanding and forecasting the behavior of these systems, called complex systems,
is of exceptional relevance both for practical and theoretical reasons.

Beside being the century of complexity, the twenty-first century is also charac-
terized by an unprecedented quantity of available data which are produced at an
astonishing rate by an heterogeneous variety of interrelated sources. Such increas-
ing amount of network data can play a key role in understanding the behavior of
complex systems but, on the other hand, poses formidable computational problems
which call for the development of new effective methods for extracting useful struc-
tural information from these massive network data. One compelling approach that
has attracted increasing interest in recent years is graph summarization: building a
concise representation of an input graph by revealing its main structural patterns.
Applications range from clustering [7], to classification [8], to community detection
[9], to outlier detection [10], to pattern set mining [11], to graph anonymization [12],
just to name a few. The reader can refer to [13] for a survey on the applications of
graph summarization.

Unfortunately, the graph summarization problem is not well-defined, i.e. any
given graph can be summarized in drastically different ways, with the evaluation of
the summary quality that is application dependent. For example, in the context of
clustering, the reconstruction error is minimized; while in the context of retrieving,
the query accuracy and time are optimized. However, Liu et al. [13] highlighted
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that graph summarization has the following main challenges: (a) speeding up graph
analysis by performing them on the summary; (b) revealing interesting information:
”the cut off between interesting and uninteresting can be difficult to determine in a
principled way”; (c) complex and noisy data: noise is often contained in real-world
networks; (d) evaluation of the summary quality is application dependent and it
becomes even more difficult when ”multi-resolution” summaries are considered; (e)
summarizing dynamic graphs, i.e. graphs that change in time.

The aim of this thesis is to introduce a principled graph summarization frame-
work addressing the following question:

How we can separate interesting structural pattern from noise in large graphs?

Graph summarization using regular partitions

In this thesis, we introduce a principled framework to summarize large graphs using
Szemerédi’s regularity lemma [14], which is “one of the most powerful results of
extremal graph theory” [15]. Basically, it states that any sufficiently large (dense)
graph can almost entirely be partitioned into a bounded number of random-like
bipartite graphs, called regular pairs. Komlós et al. [15, 16] introduced an important
result, the so-called key lemma. It states that, under certain conditions, the partition
resulting from the regularity lemma gives rise to a reduced graph, which inherits many
of the essential structural properties of the original graph. In particular, the key
lemma ensures that every small subgraph of the reduced graph is also a subgraph of
the original graph. These results provide us with a principled way to obtain a good
description of a large graph using a small amount of data, and can be regarded as
a manifestation of the all-pervading dichotomy between structure and randomness.

The original proof of the regularity lemma [14] is not constructive, yet this has
not narrowed the range of its applications in such fields as extremal graph theory,
number theory and combinatorics. However, Alon et al. [17] proposed a new formu-
lation of the lemma which emphasizes the algorithmic nature of the result. Later,
other algorithms have been developed which improve the original one in several re-
spects. In particular, we mention an algorithm developed by Frieze and Kannan
(1999) [18], which is based on an intriguing relation between the regularity condi-
tions and the singular values of matrices, and Czygrinow and Rödl’s (2000) [19],
who proposed a new algorithmic version of Szemerédi’s lemma for hypergraphs.
However, the algorithmic solutions developed so far have been focused exclusively
on exact algorithms whose worst-case complexity, although being polynomial in the
size of the underlying graph, has a hidden tower-type dependence on an accuracy
parameter. In fact, Gowers proved that this tower function is necessary in order
to guarantee a regular partition for all graphs [20]. This has typically discouraged
researchers from applying regular partitions to practical problems, thereby confining
them to the purely theoretical realm. To make the algorithm truly applicable, [1],
and later [21], instead of insisting on provably regular partitions, proposed a few
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simple heuristics that try to construct an approximately regular partition.

In the first part of chapter 2, we describe a graph summarization heuristic, based
on Alon et al.’s algorithm 1.3, which is an improvement of the previous algorithms
[1, 21], while in the second part, we analyze the ideal density regime where the
regularity lemma can find useful applications. In particular, since this lemma is
suited to deal only with dense graphs, if we are out of the ideal density regime, we
have to densify the input graph before summarizing it. In the last part of chapter
2, we show how the notion of regular partition can provide fresh insights into old
pattern recognition and machine learning problems by using our summarization
method to address graph-based clustering and image segmentation tasks.

Separating structure from randomness

Chapter 3 is devoted to our second contribution, namely the dichotomy between
structure and randomness. Here, we present a new heuristic, based on Alon et al.’s
algorithm [17], which is characterized by an improvement of the summary quality
both in terms of reconstruction error and of noise filtering. In particular, we first
build the reduced graph of a graph G, and then we ”blow-up” the reduced graph
to obtain a graph G′, called reconstructed graph, which is close to G in term of
the lp-reconstruction error. We study the noise robustness of our approach and
we evaluate the quality of the summaries in term of the reconstruction error, by
performing an extensive series of experiments on both synthetic and real data. As
far as the synthetic data are concerned, we generate graphs with a cluster structure,
where the clusters are perturbed with different levels of noise. In particular, each
graph is generated by adding spurious edges between cluster pairs and by dropping
edges inside the different clusters. The aim of this series of experiments is to assess
if the framework is able to separate structure from noise. In the ideal case, the
distance between G and G′ should be only due to the filtered noise.

Moreover, in the second part of the chapter, we use our summarization algorithm
to address the graph search problem defined under a similarity measure. The aim of
graph search is to retrieve from a database the top-k graphs that are most similar
to a query graph. Since noise is common in any real-world dataset, the biggest
challenge in graph search is developing efficient algorithms suited for dealing with
large graphs containing noise in terms of missing and adding spurious edges. In our
approach, all the graphs contained in a database are compressed off-line, while the
query graph is compressed on-line. Thus, graph search can be performed on the
summaries, and this allows us to speed up the search process and to reduce storage
space. Finally, we evaluate the usefulness of our summaries in addressing the graph
search problem by performing an extensive series of experiments. In particular, we
study the quality of the answers in terms of the found top-k similar graphs, and the
scalability both in the size of the database and in the size of the query graphs.
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Regular decomposition of large graphs

Chapter 4 is devoted to the study of the linkage among the regularity lemma, the
stochastic block model and the minimum description length. This study provide us
with a principled way to develop a graph decomposition algorithm based on stochas-
tic block model, which is fitted using likelihood maximization. The stochastic block
model is an important paradigm in network research [22], and it usually revolves
around the concept of communities, which are well connected sub-graphs with only
few links between each pair of them. We aim to extend stochastic block model-
style concepts to other type of networks, that do not fit well to such a community
structure. The regularity lemma is used as a prototype of the structural informa-
tion which should be preserved, defining a new model space for graph-data. In
particular, we propose an heuristic postulating that in the case of graphs and sim-
ilar objects, a good a priori class of models should be inferred from the regularity
lemma, which points to stochastic block models. The minimum description length
is here exploited to obtain a stopping criterion that establishes when the optimal
regular decomposition is found.
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Szemerédi’s Regularity Lemma

Too much knowledge could be a

bad thing. I was lead to the

Szemerédi theorem by proving a

result, about squares, that Euler

had already proven, and I relied on

an ”obvious” fact, about

arithmetical progressions, that was

unproved at the time. But that

lead me to try and prove that

formerly unproved statement about

arithmetical progressions and that

ultimately lead to the Szemerédi

Theorem.

Endré Szemerédi

In 1941, the Hungarian mathematician P. Turán provided an answer to the fol-
lowing innocent-looking question. What is the maximal number of edges in a graph
with n vertices not containing a complete subgraph of order k, for a given k? This
graph is now known as a Turán graph and contains no more than n2(k−2)/2(k−1)
edges. Later, in another classical paper, T. S. Motzkin and E. G. Straus (1965)
provided a novel proof of Turán’s theorem using a continuous characterization of
the clique number of a graph. Thanks to contributions of P. Erdös, B. Bollobás,
M. Simonovits, E. Szemerédi and others, Turán’s study developed soon into one of
the richest branches of 20th-century graph theory, known as extremal graph theory,
which has intriguing connections with Ramsey theory, random graph theory, alge-
braic constructions, etc. Roughly, extremal graph theory studies how the intrinsic
structure of graphs ensures certain types of properties (e.g., cliques, coloring and
spanning subgraphs) under appropriate conditions (e.g., edge density and minimum
degree) [24].

Among the many achievements of extremal graph theory, Szemerédi’s regularity
lemma is certainly one of the best known [25]. Basically, it states that every graph
can be partitioned into a small number of random-like bipartite graphs, called reg-
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ular pairs, and a few leftover edges. Szemerédi’s result was introduced in the mid-
seventies as an auxiliary tool for proving the celebrated Erdös-Turán conjecture on
arithmetic progressions in dense sets of integers [26]. Over the past two decades,
this result has been refined, extended and interpreted in several ways and has now
become an indispensable tool in discrete mathematics and theoretical computer sci-
ence [15, 16, 27, 28]. Interestingly, an intriguing connection has also been established
between the (effective) testability of graph properties (namely, properties that are
testable with a constant number of queries on a graph) and regular partitions [29].
These results provide essentially a way to obtain a good description of a large graph
using a small amount of data, and can be regarded as a manifestation of the all-
pervading dichotomy between structure and randomness.

Indeed, the notion of separating structure from randomness in large (and pos-
sibly dynamic) data sets is prevalent in nearly all domains of applied science and
technology, as evidenced by the importance and ubiquity of clustering methods in
data analysis. However, unlike standard clustering approaches, regular partitions
minimize discrepancies both within and between clusters in the sense that the mem-
bers of a cluster behave roughly similarly toward members of each (other or own)
cluster [30, 31]. This is a new paradigm for structural decomposition, which distin-
guishes it radically from all prior works in data analysis. This property allows for
exchangeability among members of distinct parts within the partition, which can be
important in a variety of real-world scenarios.

In next section we provide the basic concepts and notations used in the rest of
the thesis as well as the formal definition of graph summary.

1.1 Preliminary definitions

Let G = (V,E) be an undirected graph without self-loop, where V is the set of
vertices and E is the set of edges. The edge density of a pair of two disjoint vertex
sets Ci, Cj ⊆ V is defined as:

d(Ci, Cj) =
e(Ci, Cj)

|Ci| |Cj|
(1.1)

where e(Ci, Cj) denotes the number of edges of G with an endpoint in Ci and an
endpoint in Cj.

Given a positive constant ε > 0, we say that the pair (Ci, Cj) of disjoint vertex
sets Ci, Cj ⊆ V is ε-regular if for every X ⊆ Ci and Y ⊆ Cj satisfying |X| >
ε |Ci| and |Y | > ε |Cj| we have

|d(X, Y )− d(Ci, Cj)| < ε . (1.2)

This means that the edges in an ε-regular pair are distributed fairly uniformly, where
the deviation from the uniform distribution is controlled by the tolerance parameter
ε.
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We are now ready to state the Regularity Lemma which provides us a principled
way to develop a summarization algorithm with the aim of separating structure from
noise in a large graph.

1.2 The Regularity Lemma

In essence, Szemerédi’s Regularity Lemma states that given an ε > 0, every suffi-
ciently dense graph G can be approximated by the union of a bounded number of
quasi-random bipartite graphs, where the deviation from randomness is controlled
by the tolerance parameter ε. In other words, we can partition the vertex set V
into a bounded number of classes C0, C1, ..., Ck, such that almost every pair (Ci, Cj)
behaves similarly to a random bipartite graph (1 ≤ i < j ≤ k).

Theorem 1 (Szemerédi’s regularity lemma (1976)). For every positive real ε and for
every positive integer m, there are positive integers N = N(ε,m) and M = M(ε,m)
with the following property: for every graph G = (V,E), with |V | ≥ N , there is an
ε-regular partition of G into k + 1 classes such that m ≤ k ≤M .

The lemma allows us to specify a lower bound m on the number of classes. A
large value of m ensures that the partition classes Ci are sufficiently small, thereby
increasing the proportion of (inter-class) edges subject to the regularity condition
and reducing the intra-class ones. The upper bound M on the number of partitions
guarantees that for large graphs the partition sets are large too. Finally, it should
be noted that a singleton partition is ε-regular for every value of ε and m.

The strength of the Regularity Lemma is corroborated by the so-called Key
Lemma which is an important theoretical result introduced by Komlos et al. [15]. It
basically states that the reduced graph does inherit many of the essential structural
properties of the original graph. Before presenting its original formulation, another
kind of graph needs to be defined, namely the fold graph . Given an integer t and a
graph R (which may be seen as a reduced graph), let R(t) denote the graph obtained
by “blowing up” each vertex j of V (R) to a set Aj of t independent vertices, and
joining u ∈ Ax to v ∈ Ay if and only if (x, y) is an edge in R. Thus, R(t) is a graph
in which every edge of R is replaced by a copy of the complete bipartite graph Ktt.
The following lemma shows a link between the reduced graph R and R(t).

Theorem 2 (Key Lemma). Given d > ε > 0, a graph R, and a positive integer m,
let us construct a graph G by performing the following steps:

1. replace every vertex of R by m vertices;

2. replace the edges of R with ϵ-regular pairs of density at least d.

Let H be a subgraph of R(t) with h vertices and maximum degree ∆ > 0, and let
δ = d − ε and ε0 = δ∆/(2 + ∆). If ε ≤ ε0 and t − 1 ≤ ε0m, then H is embeddable
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into G (i.e. G contains a subgraph isomorphic to H). In fact, we have:

||H → G|| > (ε0m)h (1.3)

where ||H → G|| denotes the number of labeled copies of H in G.

Hence, the Key Lemma provides us a theoretical guarantee on the quality of the
summary built from an ϵ-regular partition. In particular, if the constraints on the
edge density d and on the subset size t are satisfied, the Key Lemma ensures that
every small subgraph of R is also a subgraph of G. Thus, we can use the Regularity
Lemma to build a summary R of G, and then we can infer structural properties of
G by studying the same properties on R.

Given an r × r symmetric matrix (pij) with 0 ≤ pij ≤ 1, and positive integers
n1, n2, ..., nr, a generalized random graph Rn for n = n1 + n2 + ... + nr is obtained
by partitioning n vertices into classes Ci of size ni and joining the vertices x ∈ Vi,
y ∈ Vj with probability pij, independently for all pairs {x, y}. Now, as pointed out
by Komlós and Simonovits (1996), the regularity lemma asserts basically that every
graph can be approximated by generalized random graphs. Note that, for the lemma
to be useful, the graph has to to be dense. Indeed, for sparse graphs it becomes
trivial as all densities of pairs tend to zero [25].

However, we mention that after the publication of Szemerédi’s original lemma
several variations, extensions and interpretations have been proposed in the liter-
ature. In particular, we have got weaker regularity notions [18, 28] and stronger
ones [32, 27, 28], and we have also got versions for sparse graphs and matrices
[33, 34] and hypergraphs [19, 35]. Interestingly, [27] provided an interpretation of
the lemma in terms of information theory, while [28] offered three different analytic
interpretations.

1.3 The first algorithmic version

The original proof of the Regularity Lemma is not constructive, but during the last
decades different constructive versions have been proposed. In this thesis, we focus
on the Alon et al. [17] work. In particular, they proposed a new formulation of the
Regularity Lemma which emphasizes the algorithmic nature of the result.

Theorem 3. (Alon et al., 1994) For every ε > 0 and every positive integer t there
is an integer Q = Q(ε, t) such that every graph with n > Q vertices has an ε-regular
partition into k + 1 classes, where t ≤ k ≤ Q. For every fixed ε > 0 and t ≥ 1 such
partition can be found in O(M(n)) sequential time, where M(n) = O(n2.376) is the
time for multiplying two n × n matrices with 0,1 entries over the integers. It can
also be found in time O(log n) on an EREW PRAM with a polynomial number of
parallel processors.
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A sketch of the proof is then presented. Let H be a bipartite graph with equal
color classes |A| = |B| = n. Let us define the average degree d̄ of H as:

d̄(A,B) =
1

2n

∑

i∈A∪B

deg(i)

where deg(i) is the degree of vertex i.
For two distinct vertices y1, y2 ∈ B the neighbourhood deviation of y1 and y2 is

defined as:

σ(y1, y2) = |N(y1) ∩N(y2)| −
d̄2

n

where N(x) is the set of neighbours of vertex x. For a subset Y ⊂ B the deviation
of Y is defined as:

σ(Y ) =

∑

y1,y2∈Y
σ(y1, y2)

|Y |2

Let 0 < ε < 1/16, it can be proved that, if there exists Y ⊂ B, |Y | > εn such
that σ(Y ) ≥ ε3

2
n, then at least one of the following cases occurs:

1. d̄ < ε3n (H is ε-regular);

2. there exists in B a set of more than 1
8
ε4n vertices whose degrees deviate from

d̄ by at least ε4n (H is ε-irregular);

3. there are subsets A′ ⊂ A, B′ ⊂ B, |A′| ≥ ε4

n
n, |B′| ≥ ε4

n
n such that

|d̄(A′, B′)− d̄(A,B)| ≥ ε4 (H is ε-irregular).

Note that one can easily check if condition 1 holds in time O(n2). Similarly, it
is trivial to check if condition 2 holds in O(n2) time, and in case it holds to exhibit
the required subset of B establishing this fact. If the first two conditions are not
verified, the third condition must be checked. To this end, we have to find the
subsets A′, B′, called certificates, that witness the irregularity of the bipartite graph
H. To address this task, we first select a subset of B whose vertex degrees “deviate”
the most from the average degree d̄ of H. More formally: for each y0 ∈ B with
|deg(y0) − d̄| < ε4n we find the vertex set By0 = {y ∈ B| σ(y0, y) ≥ 2ε4n}. The
proof provided by Alon et al. guarantees the existence of at least one such y0 for
which |By0 | ≥ ε4

4
n. Thus, the subsets B′ = By0 and A′ = N(y0) are the required

certificates. These two subsets represent the collection of vertices that contribute
more to the irregularity of the pair (A,B). The sets Ā′ = A \ A′

, B̄′ = B \ B′

are
called complements. Since the computation of the quantities σ(y, y′), for y, y′ ∈ B,
can be done by squaring the adjacency matrix of H, the overall complexity of this
algorithms is O(M(n)) = O(n2.376).

In order to understand the final partitioning algorithm we need the following two
lemmas.
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Lemma 1 (Alon et al., 1994). Let H be a bipartite graph with equal classes |A| =
|B| = n. Let 2n− 1

4 < ε < 1
16
. There is an O(n2.376) algorithm which verifies that H

is ε-regular or finds two subsets A′ ⊆ A and B′ ⊆ B such that |A′| ≥ ε4

4
n, |B′| ≥ ε4

4
n,

and |d(A′, B′)− d(A,B)| ≥ ε4.

It is quite easy to check that the regularity condition can be rephrased in terms of
the average degree of H. Indeed, it can be seen that if d < ε3n, then H is ε-regular,
and this can be tested in O(n2) time. Next, it is necessary to count the number of
vertices in B whose degrees deviate from d by at least ε4n. Again, this operation
takes O(n2) time. If the number of deviating vertices is more than ε4n

8
, then the

degrees of at least half of them deviate in the same direction and if we let B′ be
such a set of vertices and A′ = A we are done. Otherwise, it can be shown that
there must exist Y ⊆ B such that |Y | ≥ εn and σ(Y ) ≥ ε3n

2
. Hence, our previous

discussion shows that the required subsets A′ and B′ can be found in O(n2.376) time.
Given an equitable partition P of a graph G = (V,E) into classes C0, C1...Ck,

[14] defines a measure called index of partition:

ind(P ) =
1

k2

k
∑

s=1

k
∑

t=s+1

d(Cs, Ct)
2 . (1.4)

Since 0 ≤ d(Cs, Ct) ≤ 1, 1 ≤ s, t ≤ k, it can be seen that ind(P ) ≤ 1/2.
The following lemma is the core of Szemerédi’s original proof.

Lemma 2 (Szemerédi, 1976). Fix k and γ and let G = (V,E) be a graph with n
vertices. Let P be an equitable partition of V into classes C0, C1, ..., Ck.. Assume
|C1| > 42k and 4k > 600γ−5. Given proofs that more than γk2 pairs (Cr, Cs) are not
γ-regular, then one can find in O(n) time a partition P’ (which is a refinement of
P) into 1 + k4k classes, with the exceptional class of cardinality at most |C0| + n

4k

and such that

ind(P ′) ≥ ind(P ) +
γ5

20
. (1.5)

The idea formalized in the previous lemma is that, if a partition violates the
regularity condition, then it can be refined by a new partition and, in this case,
the index of partition measure can be improved. On the other hand, the new
partition adds only few elements to the current exceptional set so that, in the end,
its cardinality will respect the definition of equitable partition.

We are now in a position to sketch the complete partitioning algorithm. The
procedure is divided into two main steps: in the first step all the constants needed
during the next computation are set; in the second one, the partition is iteratively
created. An iteration is called refinement step, because, at each iteration, the current
partition is closer to a regular one.

Given any ε > 0 and a positive integer t, we define the constants N = N(ε, t)
and T = T (ε, t) as follows; let b be the least positive integer such that

4b > 600(
ε4

16
)−5, b ≥ t. (1.6)
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Let f be the integer valued function defined inductively as

f(0) = b, f(i+ 1) = f(i)4f(i). (1.7)

Put T = f(⌈10( ε4
16
)−5⌉) and N = max{T42T , 32T

ε5
}.

Finally, we can now present Alon et al.’s algorithm, which provides a way to find
an ε-regular partition. The procedure is divided into two main steps: in the first
step all the constants needed during the next computation are set; in the second one,
the partition is iteratively created. An iteration is called refinement step, because,
at each iteration, the current partition is closer to a regular one.

Alon et al.’s Algorithm

1. Create the initial partition: arbitrarily divide the vertices of G into an equi-
table partition P1 with classes C0, C1, · · · , Cb where |Ci| = ⌊nb ⌋.

2. Check Regularity: for every pair (Cr, Cs) of Pi, verify if it is ε-regular or find
two certificates C

′

r ⊂ Cr, C
′

s ⊂ Cs, |C ′

r| ≥ ε4

16
|C1|, |C ′

s| ≥ ε4

16
|C1| such that

|d̄(C ′

r, C
′

s)− d̄(Cr, Cs)| ≥ ε4.

3. Count regular pairs: if there are at most ε
(

ki
2

)

pairs that are not ε-regular,
then stop. Pi is an ε-regular partition.

4. Refine: apply the refinement algorithm and obtain a partition P ′ with 1+ki4
ki

classes.

5. Go to step 2.

The algorithm described above for finding a regular partition was the first one
proposed in the literature. Even if the above mentioned algorithm has polynomial
worst case complexity in the size of G, there is a hidden tower-type dependence on
an accuracy parameter. Unfortunately, Gowers [20] proved that this tower function
is necessary in order to guarantee a regular partition for all graphs. This implies
that, in order to have a faithful approximation, the original graph size should be
astronomically big. This has typically discouraged researchers from applying regular
partitions to practical problems, thereby confining them to the purely theoretical
realm. To make the algorithm truly applicable, [1], and later [21], instead of insisting
on provably regular partitions, proposed a few simple heuristics that try to construct
an approximately regular partition.

In the next chapter, we will describe an improved version of the previous heuristic
algorithms, and we will present a study of the density regime where the regularity
lemma can find useful applications. Moreover, we will show how the notion of regular
partition can provide fresh insights into old pattern recognition and machine learning
problems by using our summarization method to address graph-based clustering and
image segmentation tasks.



2
The Regularity Lemma and Its Use in

Pattern Recognition

In mathematics the primary

subject-matter is not the individual

mathematical objects but rather

the structures in which they are

arranged.

Michael D. Resnik

A crucial role in the development of machine learning and pattern recognition is
played by the tractability of large graphs, which is intrinsically limited by their size.
In order to overcome this limit, the input graph can be summarized into a reduced
version exploiting the regularity lemma, which provides us with a principled way to
obtain a good description of a large graph using a small amount of data.

In the first part of this chapter, we present the main limitations that prevent
the practical applications of the (exact) Alon et al.’s algorithm 1.3. In particular,
even if this algorithm has polynomial worst case complexity in the size of the input
graph, there is a hidden tower-type dependence on an accuracy parameter. To
make the algorithm truly applicable, we then introduce a few heuristics for finding
an approximately regular partition, which will be used to construct a summary of
the input graph. In the second part of this chapter, we analyze the ideal density
regime of the input graph where the regularity lemma can find useful applications.
In particular, since this lemma is suited to deal only with dense graphs, if we are out
of the ideal density regime, we have to densify the input graph before summarizing it.
Finally, we show how the notion of regular partition can provide fresh insights into
old pattern recognition and machine learning problems by using our summarization
method to address graph-based clustering and image segmentation tasks.
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2.1 An heuristic to summarize large graphs

For the sake of clarity, we report the constructive version of the regularity lemma
proposed by Alon et al.’s [17], which has been described in the previous chapter.

Alon et al.’s Algorithm

1. Create the initial partition: arbitrarily divide the vertices of G into an equi-
table partition P1 with classes C0, C1, · · · , Cb where |Ci| = ⌊nb ⌋.

2. Check Regularity: for every pair (Cr, Cs) of Pi, verify if it is ε-regular or find
two certificates C

′

r ⊂ Cr, C
′

s ⊂ Cs, |C ′

r| ≥ ε4

16
|C1|, |C ′

s| ≥ ε4

16
|C1| such that

|d̄(C ′

r, C
′

s)− d̄(Cr, Cs)| ≥ ε4.

3. Count regular pairs: if there are at most ε
(

ki
2

)

pairs that are not ε-regular,
then stop. Pi is an ε-regular partition.

4. Refine: apply the refinement algorithm and obtain a partition P ′ with 1+ki4
ki

classes.

5. Go to step 2.

The main limitations which prevent the application of the above algorithm to
practical problems concern Step 2 and Step 4.

Indeed , in Step 2, the algorithm checks the regularity of all classes pairs, and
outputs the number of irregular pairs (#irr pairs). In particular, to check the
regularity of a pair of classes (Cr, Cs), the following three conditions are used:

1. d̄ < ε3n (H is ε-regular);

2. there exists in Cs a set of more than 1
8
ε4n vertices whose degrees deviate from

d̄ by at least ε4n (H is ε-irregular);

3. there are subsets C ′
r ⊂ Cr, C ′

s ⊂ Cs, |C ′
r| ≥ ε4

n
n, |C ′

s| ≥ ε4

n
n such that

|d̄(C ′
r, C

′
s)− d̄(Cr, Cs)| ≥ ε4 (H is ε-irregular).

where H = (Cr, Cs) is the bipartite graph with equal color classes Cr, Cs such that
|Cr| = |Cs| = n; and d̄ is the average degree of H. Given a pair (Cr, Cs), condition
1 verifies if it is ε-regular, otherwise conditions 2 and 3 are used to obtain the
certificates C

′

r and C
′

s that witness the irregularity. The main obstacle concerning
the implementation of condition 3 is the necessity to scan over almost all possible
subsets of Cs. To make the implementation of condition 3 feasible, given a class
Cs, we select in a greedy way a set Y

′ ⊆ Cs with the highest deviation σ(Y
′

) (the
deviation is defined in 1.3). To do so, the nodes of Cs are sorted by bipartite degree,
and Y

′

is built by adding ε4

4
n nodes with the highest degree. At each iteration of
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the greedy algorithm, the node with a degree that deviates more from the average
degree is added to the candidate certificates. This last operations is repeated until
the subset C ′

s that satisfies condition 3 is found. This almost guarantees to put in a
candidate certificates the nodes that have a connectivity pattern that deviates from
the one characterizing the majority of the nodes which belong to Cs.

As far Step 4 is concerned, here an irregular partition P i
ε is refined by a new

partition such P i+1
ε , such that the index of partition measure (sze idx defined in

1.4) is increased. This step poses the main obstacle towards a practical version
of Alon et al.’s algorithm involving the creation of an exponentially large number
of subclasses at each iteration. Indeed, as we have said, Step 2 finds all possible
irregular pairs in the graph. As a consequence, each class may be involved with
up to (k − 1) irregular pairs, k being the number of classes in the current partition
P i

ε, thereby leading to an exponential growth. To avoid the problem, for each class,
one can limit the number of irregular pairs containing it to at most one, possibly
chosen randomly among all irregular pairs. This simple modification allows one to
divide the classes into a constant, rather than exponential, number of subclasses l
(typically 2 ≤ l ≤ 7). Despite the crude approximation this seems to work well in
practice.

The devised heuristic algorithm takes as input two main parameters, the tolerant
parameter ε and the minimum compression rate c min, that acts as a stopping
criterion in the refinement process. The pseudocode of the proposed algorithm is
reported in Algorithm 1. The overall complexity of our summarization algorithms
is O(M(n)) = O(n2.376), which is dominated by the verification of condition 3.

2.2 Analysis of the ideal density regime

In this section, we analyze the ideal density regime where the regularity lemma can
find useful applications. This ideal density regime is defined as the range of densities
of the input graph G such that our heuristic algorithm outputs an expanded graph
G′ preserving the main topological properties of G. If we are out of this ideal range,
we have to densify the graph before applying the regularity lemma. In particular,
we combine the use of the regularity lemma and the key lemma in the following way:

• Start with a graph G = (V,E) and apply the algorithm 1, finding a regular
partition P ;

• Construct the reduced graph R of G, w.r.t. the partition P ;

• Build a reconstructed graph G′ using the definition of the fold graph (see 1.2).

Among the many topological measures we test the effective resistance (or equiv-
alently the scaled commute time), one of the most important metrics between the
vertices in the graph, which has been very recently questioned. In [36] argued that
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Algorithm 1 The Summarization Algorithm
Input:
- ϵ is the tolerant parameter 1.2;
- G = (V,E) is an undirected simple graph (the input graph);
- c min is the minimum compression rate, expressed as k/|V |
Output:
- P is a regular partition of G, where |P| = k.

1: procedure ApproxAlon(ε, c min, G = (V,E))
2: partitions = empty list
3: P1

ε = Create initial random partition from G
4: while True do

5: #irr pairs = CheckPairsRegularity(P i
ε)

6: if #irr pairs > ε
(

k
2

)

or CompressRate(P i
ε) < c min then

7: break
8: else

9: P i+1
ε = Refinement(P i

ε)
10: if P i+1

ε is ε-regular then
11: partitions.add(P i+1

ε )
12: else

13: break
14: Select best partition P∗ with maximum sze idx from list partitions
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this measure is meaningless for large graphs. However, recent experimental results
show that the graph can be pre-processed (densified) to provide some informative
estimation of this metric [37, 38].

The effective resistance is a metric between the vertices in G, whose stability is
theoretically constrained by the size of G. In particular, von Luxburg et al. [36] de-
rived the following bound for any connected, undirected graph that is not bipartite:

⏐

⏐

⏐

⏐

1
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Cij −

(

1

di
+

1

dj

)⏐

⏐
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⏐

≤ 1

λ2

2

dmin
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where Cij is the commute time between vertices i and j, vol(G) is the volume of the
graph, λ2 is the so called spectral gap and dmin is the minimum degree in G. Since
Cij = vol(G)Rij, where Rij is the effective resistance between i and j, this bound
leads to Rij ≈ 1

di
+ 1

dj
. This means that, in large graphs, effective resistances do

only depend on local properties, i.e. degrees.

However, Escolano et al. [37] showed that densifying G significantly decreases
the spectral gap, which in turn enlarges the von Luxburg bound. As a result, effective
resistances do not depend only on local properties and become meaningful for large
graphs provided that these graphs have been properly densified. As defined in [39]
and revisited in [38], graph densification aims to significantly increase the number
of edges in G while preserving its properties as much as possible.

One of the most interesting properties of large graphs is their fraction of sparse
cuts, that are cuts where the number of pairs of vertices involved in edges is a small
fraction of the overall number of pairs associated with any subset S ⊂ V , i.e. sparse
cuts stretch the graphs, thus leading to small conductance values, which in turn
reduce the spectral gap. This is exactly what is accomplished by the state-of-the-
art strategies for graph densification, including anchor graphs [40].

In light of these observations, our experiments aim to answer two questions:

• Phase transition: What is the expected behavior of our heuristic algorithm
when the input graph is locally sparse?

• Commute times preservation: Given a densified graph G, to what extent does
our algorithm preserve its metrics in the expanded graph G′?

To address them, we perform experiments both on synthetic and real-world datasets.
Experiments on synthetic datasets allow us to control the degree of both intra-
cluster and inter-cluster sparsity. On the other hand, the use of real-world datasets,
such as NIST, leads to understand the so called global density scenario. Reaching
this scenario in realistic data sets may require a proper densification, but once it
is provided, the regularity lemma becomes a powerful structural summarization
method.
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Figure 2.1: Top: experiments 1. Bottom: experiment 2 (n = 200, k = 10 classes).





22 2. The Regularity Lemma and Its Use in Pattern Recognition

Figure 2.3: Reconstruction from R. From left to right: Original similarity matrix W
with σ = 0.0248, its reconstruction after compressing-decompressing, sparse matrix
obtained by densifying W and its reconstruction.



2.2. Analysis of the ideal density regime 23

2.2.1 Experimental results

Since we are exploring the practical effect of combining regularity and key lemmas
to preserve metrics in large graphs, our performance measure relies on the so called
relative deviation between the measured effective resistance and the von Luxburg et
al. local prediction [36]:

RelDev(i, j) =

⏐

⏐

⏐
Rij −

(

1
di
+ 1

dj

)⏐

⏐

⏐

Rij

. (2.2)

The larger RelDev(i, j) the better the performance. For a graph, we retain the
average RelDev(i, j), although the maximum and minimum deviations can be used
as well.

2.2.1.0.1 Synthetic experiments For these experiments we designed a ground
truth (GT) consisting of k cliques linked by O(n) edges. Inter-cluster links in the
GT were only allowed between class k and k + 1, for k = 1, · · · , k − 1. Then,
each experiment consisted of modifying the GT by either removing intra-cluster
edges (sparsification) and/or adding inter-cluster edges and then looking at the
reconstructed GT after the application of our heuristic partition algorithm followed
by the expansion of the obtained reduced graph (key lemma). We refer to this two
stage approach as SZE.

2.2.1.0.2 Experiment 1 (Constant global density). We first proceeded to in-
crementally sparsify the cliques while adding the same amount of inter-cluster edges
that are removed. This procedure assures the constancy of the global density. Since
in these conditions the relative deviation provided by the expanded graph is quite
stable, we can state the our heuristic algorithm produces partitions that preserve
many of the structural properties of the input graph. However, the performances of
the uncompressed-decompressed GT decay along this process Fig.2.1(top).

2.2.1.0.3 Experiment 2 (Only sparsification). Sparsifying the cliques without
introducing inter-cluster edges typically leads to an inconsistent partition, since it
is difficult to find regular pairs. So SZE RelDev is outperformed by that of the GT
without compression. This is an argument in favor of using graph densification with
approximate cut-preservation as a preconditioner of the regularity lemma. However,
this is only required in cases where the amount of inter-cluster noise is negligible.
In Fig. 2.1 (bottom), we show two cases: deleting inter-cluster edges (solid plots)
vs replacing these edges by a constant weight w = 0.2 (dotted plots). Inter-cluster
completion (dotted-plots) increases the global density and this contributes to signif-
icantly increase the performances of our heuristic algorithm, although it is always
outperformed by the uncompressed corrupted GT.
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2.2.1.0.4 Experiment 3 (Selective increase of the global density). In this ex-
periment, we increase the global density of the GT as follows. For Fig. 2.2 (top),
each noise level x means the fraction of intra-cluster edges removed, while the same
fraction of inter-cluster edges is increased. Herein, the density of x is D(x) =
(1 − x)#In + x#Out, where #In is the maximum number of intra-cluster links and
#Out is the maximum number of inter-cluster links. Since #Out ≫ #In, we have
that D(x) increases with x. However, only moderate increases of D(x) lead to a
better estimation of commute times with SZE, since adding many inter-cluster links
destroys the cluster structure.

However, in Fig. 2.2 (bottom), we show the impact of increasing the fraction x′

of inter-cluster noise (add edges) while the intra-cluster fraction is fixed. We overlay
three results for SZE: after retaining 50%, 75% and 100% of #In. We obtain that
SZE contributes better to the estimation of commute times for small fractions on
#In, which is consistent with Experiment 2. Hence, the optimal configuration for
SZE is given by low inter-cluster noise and moderate sparsified clusters.

As a conclusion of the synthetic ex periments, we can state that our heuristic
algorithm is robust against a high amount of intra-clustering sparsification provided
that a certain number of inter-cluster edges exists. This answers the first question
(phase transition). It also partially ensures the preservation of commute times pro-
vided that the density is high enough or it is kept constant during a sparsification
process, which answers to the second question (commute times preservation).

2.2.1.0.5 Experiments with real-world dataset (NIST). When analyzing
real datasets, NIST (herein we use 10, 000 samples with d = 86) provides a nice
amount of intra-cluster sparsity and inter-cluster noise (both due to ambiguities).
We compare our two stage approach (SZE) either applied to the original graph (for
a given σ) or to an anchor graph obtained with a nested MDL strategy relying on
our EBEM clustering method [41]. In Fig. 2.3, we show a NIST similarity matrix W
(with O(107) edges) obtained using the negative exponentiation method. Even with
σ = 0.0248 we obtain a dense matrix due to inter-cluster noise. Let R(W ) be the
reduced graph of W . After expanding this graph we obtain a locally dense matrix,
which suggests that our algorithm plays the role of a cut densifier. We also show the
behaviour of compression-decompression for densified matrices in Fig. 2.3. The third
graph in this figure corresponds to D(W ), namely the selective densification of W
(with O(2 × 106) edges). From R(D(W )) the key lemma leads to a reconstruction
with a similar density but with more structured inter-cluster noise. Finally, it is
worth noting that the compression rate in both cases is close to 75%.

2.2.2 Concluding remarks

In this section, we have explored the interplay between regular partitions and graph
densification. Our synthetic experiments show that the proposed heuristic version
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• Analyze the properties of R, in particular its subgraphs;

• As it is assured by Theorem 2, every small subgraph of R is also a subgraph
of G.

In summary, a direct consequence of the key lemma is that it is possible to
search for significant substructures in a reduced graph R in order to find common
subgraphs of R and the original graph.

Now, returning to the clustering problem, the approach developed in [1] consists
in a two-phase procedure. In the first phase, the input graph is decomposed into
small pieces using Szemerédi’s partitioning process and the corresponding (weighted)
reduced graph is constructed, the weights of which reflect edge-densities between
class pairs of the original partition. Next, a standard graph-based clustering proce-
dure is run on the reduced graph and the solution found is mapped back into original
graph to obtain the final groups. Experiments conducted on standard benchmark
datasets confirmed the effectiveness of the proposed approach both in terms of qual-
ity and speed.

Note that this approach differs from other attempts aimed at reducing the com-
plexity of pairwise grouping processes, such as [43, 44, 45], as the algorithm performs
no sampling of the original data but works instead on a derived structure which does
retain the important features of the original one.

The ideas put forward in [1] were recently developed and expanded by [21] and
[46], who confirmed the results obtained in the original paper. [47] have recently
applied these ideas to improve the efficiency of edge detection algorithms. They
compared the accuracy and the efficiency obtained using the regularity-based ap-
proach with that obtained with a combination of a factorization-based compression
algorithm and quantum walks. They achieved a huge speed up, from an average of 2
hours for an image of 125×83 pixels (10375 vertices) to 2 minutes with factorization-
based compression and of 38 seconds with regularity compression.

2.3.1 An example application: Image segmentation

To give a taste of how the two-phase strategy outlined in the previous section
works, here we present some fresh experimental results on the problem of seg-
menting gray-level images. Each image is abstracted in terms of an edge-weighted
graph where vertices represent pixels and edge-weights reflect the similarity be-
tween pixels. As customary, the similarity between pixels, say i and j, is measured
as a function of the distance between the corresponding brightness values, namely,
w(i, j) = exp(−((I(i) − I(j))2/σ2), where I(i) is the normalized intensity value of
pixel i and σ is a scale parameter.

We took twelve images from Berkeley’s BSDS500 dataset [48] and, after resizing
them to 81 × 121 pixels, we segmented them using two well-known clustering al-
gorithms, namely Dominant Sets (DS) [49] and Spectral Clustering (SC) [50]. The
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results obtained were then compared with those produced by the two-phase strategy,
which consists of first compressing the original graph using regular partitions and
then using the clustering algorithm (either DS of CS) on the reduced graph [1].

Two well-known measures were used to assess the quality of the corresponding
segmentations, namely the Probabilistic Rand Index (PRI) [51] and the Variance of
Information (VI) [52]. The PRI is defined as:

PRI(S, {Gk}) =
1

T

∑

i<j

[cijpij + (1− cij)(1− pij)] (2.3)

where S is the segmentation of the test image, {Gk} is a set of ground-truth segmen-
tations, cij is the event that pixels i and j have the same label, pij its probability, and
T is the total number of pixel pairs. The PRI takes values in [0, 1], where PRI = 1
means that the test image segmentation matches the ground truths perfectly.

The VI measure is defined as:

V I(S, S ′) = H(S) +H(S ′)− 2I(S, S ′) (2.4)

where H and I represent the entropy and mutual information between the test
image segmentation S and a ground truth segmentation S ′, respectively. The VI is
a metric which measures the distance between two segmentations. It takes values in
[0, log2n], where n is the total number of pixels, and V I = 0 means a perfect match.

The results are shown in Figures 2.5 and 2.6, while Figure 2.7 shows the actual
segmentations obtained for a few representative images. Note that the results of the
two-stage procedure are comparable with those obtained by applying the correspond-
ing clustering algorithms directly on the original images, and sometimes are even
better. Considering that in all cases, the Szemerédi algorithm obtained a compres-
sion rate well above 99% (see Table 2.1 for details), this is in our opinion impressive.
Note that these results are consistent with those reported in [1, 21, 46, 47].

We also investigated the behavior of the index of partition ind(P ) defined in
(1.4), during the evolution of the Szemerédi compression algorithm. Remember that
this measure is known to increase at each iteration of Alon et al.’s (exact) algorithm
described in Section 1.3, and it is precisely this monotonic behavior which guarantees
the correctness of the algorithm (and, in fact, of Szemerédi’s lemma itself). With
our heuristic modifications, however, there is no such guarantee, and hence it is
reassuring to see that in all cases the index does in fact increase at each step,
as shown in Table 2.2, thereby suggesting that the simple heuristics described in
[1, 21] appear not to alter the essential features of the original algorithm. A similar
behavior was also reported in [21].

2.3.2 Related works

Besides the use of the regularity lemma described above, in the past few years there
have been other algorithms explicitly inspired by the notion of a regular partition
which we briefly describe below.







30 2. The Regularity Lemma and Its Use in Pattern Recognition

Figure 2.7: Comparing the segmentation results of plain clustering (DS/CS) and
the two-phase approach. First row: original images. Second row: results of plain
Dominant Set (DS) clustering. Third row: results of the two-phase Szemerédi+DS
strategy. Fourth row: results of plain Spectral Clustering (SC). Fifth row: results
of the two-phase Szemerédi+SC strategy.

algorithm detected some hidden statistical properties of the network. They pointed
out that for larger systems, sharper results could be expected, although for larger
networks an algorithmic version of Szemerédi’s Regularity Lemma could be more
plausible solution.

More recently, Szemerédi’s lemma inspired [55], who developed a variant of
stochastic block models [56] for clustering multivariate discrete time series. To
this end, they introduced a counterpart of Szemerédi regular partition, called reg-
ular decomposition, which is a partition of vertices into k sets is such a way that
structure between sets and inside sets are random-like. In particular, the number



2.3. Using the regularity lemma for pairwise clustering 31

Image Original Size of Compression
size reduced graph rate

Tiger 9801 16 99.84%
Lake 9801 4 99.96%

Elephant 9801 64 99.35%
Airplane 9801 16 99.84%
Ostrich 9801 16 99.84%
Face 9801 32 99.67%
Eagle 9801 64 99.35%
Wolf 9801 16 99.84%
Wall 9801 8 99.92%
Horse 9801 8 99.92%

Pantheon 9801 8 99.92%
Church 9801 4 99.96%

Table 2.1: Sizes of the reduced graphs after running the Szemerédi compression
algorithm, and corresponding compression rates, for all images used.

of clusters k increases at each iteration of their algorithm as long as large clusters
are created. The stopping criterion is provided by means of Rissanen’s minimum
description length (MDL) principle. This choice is driven by the regularity lemma:
the algorithm searches for large regular structure, corresponding to a local MDL
optimum with the smallest value of k. The application of their method to real-life
electric smart meter customer has given structures which are more informative than
of the structures which are obtained by means of a traditional clustering method as
k-means.

Finally, we mention the recent work of [57] who have introduced a local algorithm
for correlation clustering to deal with huge datasets. In particular, they took inspi-
ration from the PTAS for dense MaxCut of [58] and used low-rank approximations
to the adjacency matrix of the graph. The algorithm searches a weakly regular
partition for the graph in sub-linear time to get a good approximate clustering.
They pointed out that their algorithm could be naturally adapted to distributed
and streaming systems to improve their latency or memory usage. Thus, it can be
used to detect communities in large-scale evolving graphs.

2.3.3 Concluding remarks

In this section, we discussed the relevance of the regularity lemma in the context of
structural pattern recognition. We focused, in particular, on graph-based clustering
and image segmentation, and we showed how the notion of a regular partition and
associated algorithms can provide fresh insights into old pattern recognition and
machine learning problems. Preliminary results on some real-world data seem to
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Image ind(P1) ind(P2) ind(P3) ind(P4)

Tiger 0.142 0.217 0.272 0.317
Lake 0.004 0.085 0.129 0.173

Elephant 0.071 0.154 0.204 0.248
Airplane 0.205 0.306 0.363 0.408
Ostrich 0.154 0.231 0.279 0.319
Face 0.006 0.061 0.102 0.135
Eagle 0.213 0.318 0.376 0.417
Wolf 0.014 0.103 0.181 0.215
Wall 0.201 0.304 0.362 0.399
Horse 0.078 0.169 0.214 0.252

Pantheon 0.049 0.101 0.151 0.179
Church 0.009 0.081 0.126 0.167

Table 2.2: Behavior of the index of partition (1.4) in the first four steps of the
Szemerédi compression stage, for all images used.

suggest that, although Szemerédi’s lemma is a result concerning very large graphs,
’regular-like’ structures can appear already in suprisingly small-scale graphs. The
strength of regular partitions, though, is expected to reveal itself in larger and
larger graphs and, if confirmed, this would pave the way for a principled approach
to big data analysis. Presently, virtually all standard methods for dealing with
big data are based on classical clustering techniques, such as k-means or variations
thereof. Regular-like partitions could offer a different, more principled perspective
to the problem by providing more informative structures than traditional clustering
methods.



3
Separating Structure from Noise in

Large Graphs

There is no property absolutely

essential to any one thing. The

same property which figures as the

essence of a thing on one occasion

becomes a very inessential feature

upon another.

William James

How can we separate structural information from noise in large graphs? To
address this fundamental question, we present a new heuristic algorithm which is
characterized by an improvement of the summary quality both in terms of recon-
struction error and of noise filtering. In this chapter, we use our new heuristic to
first build a summary of a graph G, and then we ”blow-up” the summary to ob-
tain a graph G′, called reconstructed graph, which is close to G in terms of the
lp-reconstruction error. We study the noise robustness of our approach in terms of
the reconstruction error by performing an extensive series of experiments on both
synthetic and real-world data. As far as the synthetic data are concerned, we gener-
ate graphs with a cluster structure, where the clusters are perturbed with different
levels of noise. As far as the real-world data are concerned, we add spurious edges
in accord with different noise probabilities. The aim of this series of experiments is
to assess if the framework is able to separate structure from noise. In the ideal case,
the distance between G and G′ should be only due to the filtered noise.

Moreover, in the second part of the chapter, we use our summarization algorithm
to address the graph search problem defined under a similarity measure. The aim of
graph search is to retrieve from a database the top-k graphs that are most similar
to a query graph. Since noise is common in any real-world dataset, the biggest
challenge in graph search is developing efficient algorithms suited for dealing with
large graphs containing noise in terms of missing and adding spurious edges. In our
approach, all the graphs contained in a database are compressed off-line, while the
query graph is compressed on-line. Thus, graph search can be performed on the
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summaries, and this allows us to speed up the search process and to reduce storage
space. Finally, we evaluate the usefulness of our summaries in addressing the graph
search problem by performing an extensive series of experiments. In particular, we
study the quality of the answers in terms of the found top-k similar graphs and the
scalability both in the size of the database and in the size of the query graphs.

3.1 Related works

The first contribution presented in this chapter is the introduction of a principled
framework for summarizing large graphs with the aim of preserving their main struc-
tural patterns. Previous related works presented methods which mainly built sum-
maries by grouping the vertices into subsets, such that the vertices within the same
subset share some topological properties. The works in [59, 60] introduced methods
for partitioning the vertices into non-overlapping clusters, so that vertices within
the same cluster are more connected than vertices belonging to different clusters. A
graph summary can be constructed by considering each cluster as a supernode, and
by connecting each pair of supernodes with a superedge of weight equals to the sum
of the cross-cluster edges. However, since graph summarization and clustering have
different goals, this approach is suited only if the input graph has a strong commu-
nity structure. In [61], the summary is generated by greedily grouping vertices, such
that the normalized reconstruction error between the adjacency matrix of the input
graph and the adjacency matrix of the reconstructed graph is minimized. Since in
their work they exploited heuristic algorithms, they can not give any guarantees on
the quality of the summary. The work in [2] proposed a method of building a sum-
mary with quality guaranty by minimizing the lp-reconstruction error between the
adjacency matrix of the input graph and the adjacency matrix of the reconstructed
graph. Since both approaches aim to minimize a distance measure between the in-
put and the reconstructed graph, they are not the best choice for summarizing noise
graphs. By contrast, our goal is to develop a graph summarization algorithm which
is robust against noise. For a more detailed picture on how the field has evolved
previously, we refer the interested reader to the survey of Liu et al. [13].

The second contribution presented in this chapter consists in addressing the
graph search problem using the proposed summarization framework. Locating the
occurrences of a query graph in a large database is a problem which has been ap-
proached in two main different ways, based on subgraph isomorphism and approx-
imate graph matching respectively. Ullman [62] posed one of the first milestones
in subgraph isomorphism. He proposed an algorithm which decreases the com-
putational complexity of the matching process by reducing the search space with
backtracking. Recently, Carletti et al. [63] introduced an algorithm for graph and
subgraph isomorphism which scales better than Ullmann’s one. In particular, Car-
letti et al’s algorithm, which may be considered as the state-of-the-art in exact
subgraph matching, can process graphs of size up to ten thousand nodes. However,
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since subgraph isomorphism is a NP-complete problem, the algorithms based on
exact matching are prohibitively expensive for querying against a database which
contains large graphs. Moreover, due to the noise contained in real-world data, it is
common to mismatch two graphs which have the same structure but different levels
of noise. Indeed, these contributions are focused on exact matching and, even if
they proposed efficient solutions, they are not noise robust. By contrast, our goal is
to develop an efficient graph search algorithm which is robust against noise. Hence,
approaches based on approximate graph matching are more suitable for addressing
the graph search problem. Indeed, in this category lies the most effective graph
similarity search algorithms. Most of the time, the searching phase is conducted un-
der the graph edit distance (GED) constraint [64, 65, 66]. The graph edit distance
GED(g1, g2) is defined as the minimum number of edit operations (adding, deletion
and substitution) that modify g1 step-by-step to g2 (or vice versa). In [65] and in [67]
the authors underline the robustness of GED against noise due to its error-tolerant
capability. Unfortunately, the GED computation is NP-hard, and most existing
solutions adopt a filtering-verification technique. In particular, first, they use a
pruning strategy to filter out false positive matches, and then verify the remaining
candidates by computing GED. In this context, the work of Liang and Zhao [64]
represents the state-of-the-art. They provide a partition-based GED lower bound
to improve the filter capability, and a multi-layered indexing approach to filter out
false positives in an efficient way. Their algorithm can deal with databases with a
high number of graphs, but cannot handle large graphs due to the complexity of
GED computation. Instead, our algorithm is designed to scale both in the size of
the databases and in the size of the graphs.

3.2 The summarization algorithm

In chapter 2, we have pointed out that the main limitations which prevent the
application of Alon et al.’s algorithm to practical problems concern Step 2 and Step
4. To make the algorithm truly applicable, we introduced a greedy algorithm that
allow us to overcome the limitations posed by Step 2. For the sake of clarity, we
report briefly the heuristic for finding the certificates that witness the irregularity of
a pair of classes. Given a class Cs, we select in a greedy way a set Y

′ ⊆ Cs with the
highest deviation σ(Y

′

) (the deviation is defined in 1.3). To do so, the nodes of Cs

are sorted by bipartite degree, and Y
′

is built by adding ε4

4
n nodes with the highest

degree. At each iteration of the greedy algorithm, the node with a degree that
deviates more from the average degree is added to the candidate certificates. This
last operation is repeated until the subset C ′

s that satisfies condition 3 is found. This
almost guarantees to put in a candidate certificate the nodes that have a connectivity
pattern that deviates from the one characterizing the majority of the nodes which
belong to Cs.

As far Step 4 is concerned, we provided a simple heuristic to deal with the tower-
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type dependence on the accuracy parameter ϵ. In particular, for each class, one can
limit the number of irregular pairs containing it to at most one, possibly chosen
randomly among all irregular pairs.

In this chapter, we introduce a new refinement algorithm (Refinement in Al-
gorithm 2) with the aim of refining irregular pairs into more regular new pairs.
In particular, the refinement heuristic starts by randomly selecting a class, then
iteratively processes all the others.

• If Ci is ε-regular with all the others, the procedure sorts the nodes of Ci by their
internal degree, i.e. the degree calculated with respect to the nodes of the same
class, obtaining the following sorted sequence of nodes v1, v2, v3, v4, v5, v6, · · · ,
v|Ci|. The next step splits (Unzip) this sequence into two sets C1

i = {v1, v3, v5,
· · · , n|Ci|−1} and C2

i = {v2, v4, v6, · · · , v|Ci|}. The latter sets are part of the
refined partition P i+1

ε .

• If Ci forms an irregular pair with other classes, the heuristic selects the candi-
date Cj that shares the most similar internal structure with Ci by maximizing
S = d(Ci, Cj) + (1− |d(Ci, Ci)− d(Cj, Cj)|), where d(Ci, Ci) = e(Ci, Ci)/|Ci|2
is the internal density.

After selecting the best matching class Cj, we are ready to split the pair
(Ci, Cj) in 4 new classes C1

i , C
2
i , C

1
j , C

2
j based on the internal densities of the

certificates C ′
i and C ′

j.

– In particular, a Sparsification procedure is applied when the inter-
nal density of a certificate is below a given threshold. This procedure
randomly splits the certificate into two new classes. In order to match
the equi-cardinality property, the new classes are filled up to |Ci|/2 by
adding the remaining nodes from the corresponding complement. We
choose the nodes that share the minimum number of connections with
the new classes.

– On the other hand, if the internal density of a certificate is above a given
threshold, then a Densification procedure is applied. In particular,
the heuristics sorts the nodes of the certificate by their internal degree
and Unzip the set into two new classes. Also in this case, we fill the new
sets up to |Ci|/2 by adding the remaining nodes from the corresponding
complement by choosing the nodes which share the major number of
connections with the new classes.

The pseudocode of the summarization algorithm is reported in Algorithm 2, while
the procedure Refinement is reported in Algorithm 3. The overall complexity of
our summarization algorithms is O(M(n)) = O(n2.376), which is dominated by the
verification of Condition 3.
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Algorithm 2 The Summarization Algorithm
Input:
- ϵ is the tolerant parameter 1.2;
- G = (V,E) is an undirected simple graph (the input graph);
- c min is the minimum compression rate, expressed as k/|V |
Output:
- P is a regular partition of G, where |P| = k.

1: procedure ApproxAlon(ε, c min, G = (V,E))
2: partitions = empty list
3: P1

ε = Create initial random partition from G
4: while True do

5: #irr pairs = CheckPairsRegularity(P i
ε) (see 2.1)

6: if #irr pairs > ε
(

k
2

)

or CompressRate(P i
ε) < c min then

7: break
8: else

9: P i+1
ε = Refinement(P i

ε)
10: if P i+1

ε is ε-regular then
11: partitions.add(P i+1

ε )
12: else

13: break
14: Select best partition P∗ with maximum sze idx from list partitions
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Algorithm 3 Refinement step performed at the i-th iteration of the summarization
algorithm 1. Statements 5,10 and 12 may add a node to C0. P i

ε is the partition at
iteration i of the summarization algorithm

1: procedure refinement(P i
ε)

2: for each class Ci in P i
ε do

3: if Ci is ε-regular with all the other classes then
4: Ci = sort by indegree(Ci)
5: C1

i , C
2
i =unzip(Ci)

6: else

7: Select Cj with most similar internal structure
8: Get certificates (A

′

, B
′

) and complements (Ā′ , B̄′) of Ci, Cj

9: if d(A
′

, A
′

) < 0.5 then

10: C1
i , C

2
i = sparsification(A

′

, Ā′ ∪ B̄′)
11: else

12: C1
i , C

2
i = densification(B

′

, B̄′ ∪ B̄′)

13: Perform step 9,10,11,12 for B
′

14: if |C0| > εn and |C0| > |P i+1
ε | then

15: Uniformly distribute nodes of C0 between all the classes
16: else

17: return (P i+1
ε , irregular)

18: return (P i+1
ε , regular)
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3.3 Graph search using summaries

In this section, we discuss how to use our summarization framework to efficiently
address the graph search problem defined under a similarity measure. The aim of
graph search is to retrieve from a database the top-k graphs that are most similar
to a query graph.

Problem definition We consider a graph database D containing a high number
of simple undirected graphs gj ∈ D, j = 1 · |D|, and, for the sake of generality, we
allow the edges to be weighted.

Problem 1 (Graph search). Given a graph database D = {g1, g2, ·, g|D|}, a query
graph q, and a positive integer k, the graph similarity search problem is to find the
top-k graphs in D that are most similar to q according to a similarity measure.

As far as the similarity measure is concerned, the most used one is the graph
edit distance (GED) due to its generality, broad applicability and noise robustness
[64, 67]. However, since the GED computation is NP-hard, it is not suited to deal
with large graphs. To overcome this limitation, we use the spectral distance [68],
which is computed by comparing the eigenvalues of the two graphs being matched.
The choice of this measure is motivated by the work of Van Dam and Haemers
[69], who show that graphs with similar spectral properties generally share similar
structural patterns. In this thesis, we introduce a slightly modified version of the
spectral distance with the aim of increasing its range of applicability to pair of
graphs that violates the assumption of the Theorem 1 in [69], which states a precise
order between the eigenvalues of the two graphs being matched.

Definition 3 (Spectral distance). Given two simple undirected weighted graphs G1 =
(V1,W1) with |V1| = n1, and G2 = (V2,W2) with V2 = n2. Let us denote the

corresponding spectras as 0 = λ
(1)
1 ≤ λ

(1)
2 ,≤ · ≤ λ

(1)
n1

and 0 = λ
(2)
1 ≤ λ

(2)
2 ,≤ · ≤ λ

(2)
n2
.

We may assume without loss of generality that n2 > n1. The spectral distance is
then defined as

SD(G1, G2, l) =
1

k

(

l
∑

i=1

|λ(2)
i − λ

(1)
i |+

n1
∑

i=l+1

|λ(2)
i+n2−k − λ

(1)
i |
)

(3.1)

Using the summaries In our approach, all the graphs contained in a database
are summarized off-line, while the query graph is summarized on-line by means of
our summarization framework. Thus, graph search can be performed on graph sum-
maries, and this allows us to speed up the search process and to reduce storage space.
In particular, for each graph gj of a database D, we store two different informations:
the summary rj of gj and the eigenvalues eigrj of rj. We then summarized on-line
the query graph q obtaining its summary rq. Finally, we compute the spectral dis-
tance between rq and each graphs summaries rj ∈ D. The desired top-k graphs will
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be obtained by selecting, from D, the k graphs corresponding to the k smallest value
of the spectral distance previously computed. The pseudocode of our approach to
graphs search is reported in Algorithm 4.

Algorithm 4 Graph Search Using The Summary

1: procedure AddGraphToDatabase(g,D)
2: r = Summarize g
3: eigr = Calculate the eigenvalues of the adj. matrix of r
4: Store (r, eigr) in D
5: procedure 2-StageGraphSearch(q,D)
6: rq = Summarize q
7: eigrq = Calculate the eigenvalues of the adj. matrix of rq
8: sd array = ∅
9: for rj in D do

10: sd = Spectral Distance(rj, rq, eigrj , eigrq)
11: Append sd to sd array

12: Order sd array
13: return first k results of sd array and their relative graphs.

3.4 Experimental Evaluation

In this section, we evaluate our summarization algorithm both on synthetic graphs
and on real-world networks to assess:

• the ability of the proposed algorithm to separate structure from noise;

• the usefulness of the summaries in retrieving from a database the top-k graphs
that are most similar to a query graph.

3.4.1 Experimental Settings

In our experiments we used both synthetic graphs and real-world networks. We
generated synthetic graphs with a cluster structure, where the clusters are perturbed
with different levels of noise. In particular, each graph is generated by adding
spurious edges between cluster pairs and by dropping edges inside each cluster.
Figure 3.1 provides a concrete example with a visual explanation. The pseudocode
of the algorithm used to generate the synthetic datasets is reported in Algorithm 5.

As far as the real-world networks are concerned, we used two different datasets
which have been taken from two famous repositories: the Stanford Large Network
Dataset Collection SNAP [70] and the Konect repository of the University Koblenz-
Landau Konect [71]. In particular, we used the following networks: Facebook [72],
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Algorithm 5 Synthetic graph generator.
Input parameters:
- n is the size of the desired graph G;
- num c is the number of clusters contained in G;
- η1 is the probability of adding a spurious edge between a pair of clusters (inter-
cluster noise probability);
- η2 is the probability of dropping an edge inside a cluster (intra-cluster noise prob-
ability).
Output: G.

1: procedure SynthGraphGen(n, num c, η1, η2)
2: G = Generate Erdős Rényi graph of size n using η1 as edge probability
3: clust dim = n/num c
4: for i in num c do
5: Select clust dim nodes from G and create cluster ci with them
6: For each edge in ci drop it with probability η2

7: return G

these measures. This choice is due to the fact that their algorithm summarizes
a graph by minimizing the reconstruction error. However, they pointed out that
the reconstruction error has some shortcomings. In particular, given an unweighted
graph G, it is possible to produce an uninteresting summary with only one supenode
corresponding to the vertex set and l1 reconstruction error at most n2. On the other
hand, if we obtained an useful summary, where each pair of vertices belonging to
a supernode share an high number of common neighbors, then we get a low (say
o(n2)) l1 reconstruction error: this is a desirable behavior because low values of
l1 correspond to high quality summaries. Unfortunately, such low values are often
obtained only with summaries having an high number of supernodes. This prevents
to adopt the reconstruction error as a general measure to assess the summary quality.

As far the summarization and reconstruction steps are concerned, we proceeded,
in all the experiments, in the following way: we applied our summarization algorithm
(see Algorithm 2) to summarize an input graph G. We then “blow-up” the summary
in order to obtain the reconstructed graph G′, which preserves the main structure
carried by the input graph (Figure 3.2).

3.4.2.0.1 Noise Robustness Evaluation We study the ability of the proposed
algorithm to separate structure from noise in graphs performing an extensive series
of experiments on both synthetic graphs and real-world networks. As far synthetic
graph experiments are concerned, we generated a graph G by corrupting the clusters
of GT in the following way: we added spurious edges between each cluster pair with
probability η1, and we dropped edges inside each cluster with probability η2 (see
Algorithm 5). As far as the real-world networks experiments are concerned, we
added spurious edges with probability noise probability to a original graph GT
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Figure 3.2: We summarized an input graph G by using the proposed algorithm 0.
We then ”blow up” the summary to obtain the reconstructed graph G′.

obtaining an input graph G.
In the ideal case, the distance between G and the corresponding reconstructed

graph G′ should be only due to the filtered noise, while the distance between GT an
G′ should be closed to zero. Hence, we computed the reconstruction error l2(G

′, GT )
to assess the robustness of our summarization framework against noise.

Experiment 1. We generated synthetic graphs of different sizes, spanning from
103 up to 104 nodes. We synthesized 250 graphs by considering, for each of the 10
different sizes, all the 25 combinations of the following noise probabilities:

• the probability η1 of adding a spurious edge between a pair of clusters, called
inter-cluster noise probability, which assumes values in {0.1, 0.2, 0.3, 0.4, 0.5};

• the probability η2 of dropping an edge inside each cluster, called intra-cluster
noise probability, which assumes values in {0.1, 0.2, 0.3, 0.4, 0.5}.

Let’s consider a synthetic graph Gn,(η1,η2), where n is its size, and (η1, η2) corre-
sponds to one of the 25 pairs of noise probabilities. For each Gn,(η1,η2) we obtained
the reconstructed graph G′

n,(η1,η2)
, and we then computed the reconstruction error

l2(G
′
n,(η1,η2)

, GT ). Given a size n, we computed the median mn of {l2(G′
n,(0.1,0.1), GT ),

l2(G
′
n,(0.1,0.2), GT ), · · · , l2(G′

n,(0.5,0.5), GT )}. We reported in figure 3.3 the 10 medi-
ans computed using our summarization framework and the corresponding medians
obtained by applying Riondato et al.’s algorithm [2]. We can see how our framework
outperforms the state-of-the-art summarization algorithm in terms of robustness
against noise.

Experiment 2. The aim of this experiment is to study separately the ro-
bustness against the inter-cluster and the intra-cluster noise. Let’s consider the
probability of dropping an edge inside each cluster η2 equals to 0.2 and the graph
size n equals to 104. To asses the inter-cluster noise robustness, we generated
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3.4.3 Graph Search

We performed extensive experiments on synthetic datasets to assess the usefulness
of the summaries in retrieving, from a database, the top-k graphs that are most
similar to a query graph. To this end, we evaluate the quality of the answer in
terms of the found top-k similar graphs, and we evaluate the scalability both in the
size of the database and in the size of the graphs.

3.4.3.0.1 Quality Evaluation We conducted the following experiment: we
compared graph search on the summaries with the baseline approach, in which
the spectral distance is computed between no preprocessed graphs. The aim of the
experiment is to show that pre-summarizing the graphs in the databases increases
the noise robustness of search process. We created a database D contained synthetic
graphs, which have different structures corrupting with different levels of noise (see
algorithm 5). In particular, each graph is generated by combining the following
three factors: five different possible number of clusters {4, 8, 12, 16, 20}, six different
possible levels of intra-cluster noise probability {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and
six different possible levels of inter-cluster noise probability {0.05, 0.1, 0.15, 0.2, 0.25,
0.3}. Given a size n, we generated 180 graphs considering all the possible combi-
nations of these three parameters. As described in Algorithm 3.3, we stored in D:
the eigenvalues of the 180 synthetic graphs, their summaries and the corresponding
eigenvalues. Finally, we then grouped the graphs in D into five groups. Each group
ωi, with i = 1, 2, 3, 4, 5, is composed by 36 graphs that are generated by corrupting
the same cluster structure with different combinations of intra-cluster and inter-
cluster noise probability. Hence, all the graphs belonging to a given group ωi are
similar, since they have the same main structure.

More formally, we constructed a set Q of five query graphs by randomly sampling
one graph from each group ωi. Then, we first computed the spectral distance be-
tween qi ∈ Q and every graph in the database D. We then calculated the AP@k for
each query qi by considering relevant the graphs belonging to ωi i.e. the same group
of qi. Finally, we computed the MAP@k score by averaging the average precision
AP@k(qi) of the five graphs in Q.

We repeated the same procedure using the summaries of the 180 synthetic graphs
contained in D. The aim of this experiment is to compare the quality obtained us-
ing our approach with that obtained by computing the spectral distance between
original graphs. We performed the experiment by considering the following graph
sizes n = 1500, 2000, 3000, 7000.

The AP@k(qi) and the MAP@k are defined as follows.

Definition 5 (Average precision). Given a query q ∈ Q, a set of relevant graphs
ωi (graphs that share the same structure with q). Let us consider the output top-k
graphs in a database D ordered by crescent spectral distance. We define the average
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precision at k as follows.

AP@k(q) =
1

|wi|
·

k
∑

j=1

Precision(j) ·Relevance(j) (3.2)

where Precision(j) is the relevant proportion of the found top-k graphs, while Rele-
vance(j) is 1 if the considered graph is part of ωi and is 0 otherwise. Finally, |ωi| is
the number of relevant graphs.

Definition 6 (Mean average precision). Given a query set Q, the mean average
precision is defined as follows.

MAP (Q) =
1

|Q| ·
∑

qi∈Q

AP@k(qi) (3.3)

In particular, the higher is the value of the MAP ∈ [0, 1], the higher is the
quality of the proposed graph search algorithm. Figure 3.6 shows that the proposed
summarization based approach improved the query quality.

3.4.3.0.2 Scalability In order to evaluate the scalability of our approach, we
conducted two different experiments. In the first one, we investigated the time
required to perform a single query as the dimension of the database D grows. In
the second one, we investigated the query time in function of the size of the query
graph.

In the first experiment, we fixed the size of all the graphs to be n = 2000. We
then generated the graphs in D using all the possible combinations of the following
factors: three different numbers of clusters {4, 12, 20}, six different levels of intra-
cluster noise probability {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, and six different levels of
inter-cluster noise probability {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The combination of
these three parameters allow us to generate 108 graphs. We then copied them
enough times to reach a database cardinality spanning from 103 up to 104 graphs.

The query time is calculated as follows:

t = t s(q) + t eig(rq) + t SD(eigrq , eigrj) j = 1, ·, |D|. (3.4)

where t s(q) is the time required to summarize the query graph q giving us rq;
t eig(rq) is the time required to calculate the eigenvectors of rq; and t SD(eigrq , eigrj)
is the time required to calculate the spectral distances between rq and each graph
summary rj contained in D. We reported, on the left part of figure 3.7, the computed
ti versus the cardinality of Di.

In the second experiment, we generated different databases Di, containing 10000
graphs. All the graphs in Di have the same size and have been created analogously
as the previous experiment. We then constructed a query graph qi of the same size
of the graphs in Di, and we measured the query time ti as we did for the previous
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and finally resolution of the crisis
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Ian Hacking

Graphs are a useful abstraction of data sets with pairwise relations. In case of
very large graph data sets, extracting structural properties and performing basic
data processing tasks may be computationally infeasible using raw data stored as
edge list, whereas the adjacency matrix may be too large to be stored in central
memory. One obvious problem with sampling is the sparsity. The sparsity means
that if we pick up two nodes at random, we usually observe no relation between them
and it is impossible to create any meaningful low-dimensional model of the network.
This prevents using uniform sampling as a tool for learning large and sparse graph
structures.

To address this problem, we suggest to use, instead of the sparse adjacency ma-
trix, the shortest path length matrix, whose elements are the shortest paths between
pair of nodes. Hence, we map a sparse adjacency matrix to a still informative dense
matrix. Of course, also in this case, it is not possible to construct the whole matrix
for a very large network. However, it sufficient to get a relatively good estimate
of the distance between any pair of nodes which belong to a given sample. In-
deed, in recent experiments good estimates for distance matrix were reported for a
billion-node graphs [77].

In this chapter, we study the linkage among the Regularity Lemma, the Stochas-
tic Block Model (SBM) and the Minimum Description Length (MDL) with the aim
of developing a graph decomposition algorithm suited to deal with sparse graphs.
The SBM is an important paradigm in network research [22], which usually revolves
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around the concept of ’communities’. We aim to extend SBM-style concepts to other
type of networks that do not fit well to such a community structure. For instance,
in case of web graphs, Internet and p2p networks, we would expect a quite different
structure, which is likely characterized by a power-law degree distributions and by
hierarchy of sub-networks forming ’tiers’.

It would desirable to have a decomposition of such networks into some sub-
networks different from communities, yet helping in having a big-picture of such
networks. In particular, our aim is to find other, more general, type of redundancy
in large sparse networks. In case of dense networks, we could search for a ’regular
structure’ in the sense of Szemerédi’s Regularity Lemma. As we said in the previous
chapters, this lemma indicates that large dense graphs have a decomposition of nodes
into bounded number of groups, where most of the pairs are almost like dense random
bipartite graphs. However, since the network distance matrix of a sparse network is
a kind of dense weighted graph, the Regularity Lemma can be exploited to develop
the desired decomposition algorithm. In particular, the Regularity Lemma is used
as a prototype of the structural information which should be preserved, defining a
new model space for graph-data. The best model is selected by fitting a SBM using
likelihood maximization, while the MDL is exploited to obtain a stopping criterion
which establishes when the optimal regular decomposition is found. This chapter is
organized as follows. We first provide an overview of the Stochastic Block Model and
of the Minimum Description Length. We then move to describe the decomposition
algorithm and, finally, we present some experimental results on real-world networks.

4.1 Related works

Considerable progress towards statistical inference of sparse graphs has recently
been achieved, cit. [78, 79] and references therein. Most of these methods are based
on counting cycles and paths in the observed graph, possibly with some added
randomness to split data and reduce noise sensitivity. Instead of cycle and path
counts, here we suggest an alternative approach based on observed graph distances
from a set of reference nodes to a set of target nodes. Such distances form a dense
matrix. Of course, also in this case it may not be possible to have a complete
matrix for very large networks. What is required is that for any given pair of nodes
belonging to a sample, it is possible to have a relatively good estimate of distance
between nodes. This is also a nontrivial task requiring an efficient solution, see
e.g. [80]. In recent experiments good estimates for distance matrices were reported
for a billion-node graphs [81]. Our sampling based approach only requires a sparse
sample of the full distance matrix. When the number of reference nodes is bounded,
the overall computational complexity of the proposed algorithm is linear in number
of target nodes. We discuss two different sampling schemes of the reference nodes.
The first is uniform sampling, which is a feasible method for graphs with light-
tailed degree distributions such as those generated by stochastic block models. The
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second sampling scheme is nonuniform and biased towards sampling nodes with high
betweenness centrality, designed to be suitable for scale-free graphs with heavy-
tailed degree distributions. A crucial step is to obtain a low-rank approximation
of the distance matrix based on its sample. For this we suggest to use a suitable
variant of the regular decomposition (RD) method developed in [53, 54, 55, 82].
RD can be used for dense graphs and matrices and it shows good scalability and
tolerance to noise and missing data. Because the observed distance matrix is dense,
RD should work. The method permutes the rows of the matrix into few groups
so that each column within each group of the matrix is close to a constant. We
call such row groups regular. The regular groups form a partition of the node set.
Each group of the partition induces a subgraph, and together these subgraphs form a
decomposition of the graph into subgraphs and connectivity patterns between them.
This decomposition is the main output of the method. The hypothesis of this paper
is that the graph decomposition reveals structure of the sparse and large graphs.
For instance, it should reveal small but dense subgraphs in sparse graphs as well as
sets of similar nodes that form communities.

As a theoretical latent model we consider stochastic block models (SBM). SBM
is an important paradigm in network research, see e.g.[22]. Usually SBM revolves
around the concept of communities that are well connected subgraphs with only few
links between the communities. We also look for other types of structures different
from the community structure. For instance, in case of web graphs, Internet, peer-to-
peer networks etc., we would expect quite different structure characterized, say, by
a power-law degree distribution and hierarchy of subnetworks forming tiers that are
used in routing messages in the network. The proposed distance based structuring
might give valuable information about the large scale structure of many real-life
networks and scale into enormous network sizes.

Our approach is stimulated by the Regularity Lemma which indicates that large
dense graphs have decomposition of nodes into a bounded number of groups where
most of the pairs are almost like random bipartite graphs. The structure encoded by
the Regularity Lemma ignores all intra-group relations. In our regular decomposition
both of these aspects are used and both inter-group and intra-group relations matter.

As a benchmark we consider the famous planted bipartition model [83]. It is
a random graph and a special case of SBM. As ground truth, there are two com-
munities of nodes with equal number of nodes in each and with two parameters.
First parameter is the link probability between nodes inside each community and
the second one, the link probability between nodes in different communities. The
links are drawn randomly and independently from each other. For such a model,
it is known that there is a sharp transition, or ’critical point’, of detectability of
such a structure depending on the difference between the two parameters [83, 84].
The critical point is also located in the area of very sparse graphs, when expected
degree is bounded. This example is suitable for testing our method because: hav-
ing a ground truth, graph sparsity, bounded average degree and the proven sharp
threshold. The preliminary results we report here, are promising. It seems that our
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algorithm is effective right up to the threshold in the limit of large scale. More-
over simulations indicate that such a structure can be found from very sparse and
bounded size samples of the distance matrix.

Besides this benchmark, we demonstrate our method using real-life sparse net-
works. The first example is a Gnutella peer-to-peer file sharing network, and the
second is an undirected Internet’s autonomous system network. Both of them heavy-
tailed degree distributions [85]. These graphs are not enormous. However, we treat
them as if they were very large. Meaning that they are analyzed by using only
a small fraction of the full information in the distance matrix. The computations
were run in few nodes of a HPC cluster. Using this facility with 2000 cores and 40
terabytes of memory, it is possible to run experiments with much bigger data sets
in the near future.

4.2 The Stochastic Block Model

The notion of an ϵ-regular partition is purely combinatorial. The stochastic block
model closest to this notion is the following.

Definition 7. Let V be a finite set and ξ = {A1, · · · , Ak} a partition of V . A
stochastic block model is a random graph G = (V,E) with the following structure:

• There is a symmetric k × k matrix D = (dij)
k
i,j=1 of real numbers dij ∈ [0, 1]

satisfying the irreducibility condition that no two rows are equal, i.e.

for all i, j, i < j, there is qij ∈ {1, · · · , k} such that diqij ̸= djqij ; (4.1)

• For every pair {v, w} of distinct nodes of V such that v ∈ Ai, w ∈ Aj, let
evw = ewv be a Bernoulli random variable with parameter dij, assuming that
all evw’s are independent. The edges of G are

E = {{v, w} : v, w ∈ V, v ̸= w, evw = 1}.

Note that the case of the trivial partition ξ = {V } yields to the classical random
graph with edge probability d11. A graph sequence Gn = (Vn, En), presenting copies
of the same stochastic block model in different sizes, can be constructed as follows.

Construction 1. Let γ1, . . . , γk be positive real numbers such that
∑k

i=1 γi = 1.
Divide the interval (0, 1] into k segments

I1 = (0, γ1], I2 = (γ1, γ1 + γ2], · · · , Ik =
(

k−1
∑

i=1

γi, 1

]

,

and denote Γ = {I1, . . . , Ik}. For n = 1, 2, · · · , let the vertices of Gn be

Vn = { i
n
}, i ∈ {1, · · · , n}.
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For each n, let ξn be the partition of Vn into the blocks

A
(n)
i = Ii ∩ Vn, i = 1, · · · , k.

For small n, we may obtain several empty copies of the empty set numbered as
blocks. However, from some n0 on, all blocks are non-empty and ξn = {A(n)

1 , . . . ,

A
(n)
k } is a genuine partition of Vn. We can then generate stochastic block models

based on (Vn, ξn, D) according to Definition 7.

Remark 1. A slightly different kind of stochastic block model can be defined by
drawing first the sizes of blocks A

(n)
i as independent Poisson(γin) random variables

and proceeding then with the matrix D as before. The additional level of randomness,
regarding the block sizes, is however of no interest in the present paper.

Next, we define the notion of a Poissonian block model in complete analogy with
Definition 7.

Definition 8. Let V be a finite set of vertices, n = |V |, and let ξ = {A1, · · · , Ak}
be a partition of V . The symmetric Poissonian block model is a symmetric random
n× n matrix E with the following structure:

• There is a symmetric k× k matrix Λ = (λij)
k
i,j=1 of non-negative real numbers

satisfying the irreducibility condition that no two rows are equal, i.e.,

for all i, j, i < j, there is qij ∈ {1, . . . , k} such that λiqij ̸= λjqij ; (4.2)

• For every unordered pair {v, w} of distinct nodes of V such that v ∈ Ai,
w ∈ Aj, let evw = ewv be a Poisson random variable with parameter λij,
assuming that all evw’s are independent. The matrix elements of E are evw for
v ̸= w, and evv = 0 for the diagonal elements.

Thanks to the independence assumption, the sums
∑

u∈A

∑

v∈B euv are Poisson
distributed for any A,B ∈ ξ.

Remark 2. The rest of the technical contents of this chapter focus on the sim-
ple binary and Poissonian models of Definitions 7 and 8. However, the following
extensions are straightforward:

• bipartite graphs: this is just a subset of simple graphs;

• m × n matrices with independent Poissonian elements: a matrix can be seen
as consisting of edge weights of a bipartite graph, where the parts are the index
sets of the rows and columns of the matrix, respectively;

• directed graphs: a directed graph can be presented as a bipartite graph consist-
ing of two parts of equal size, presenting the input and output ports of each
node.
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The following construction is the key to extend the minimum description length
methodology for data that has the most common form of a large non-negative matrix.

Construction 2. Let C = (cij) be a non-negative m×n matrix. Let N be a (rather
large) integer and denote J = {1, . . . , N}. Let

V = J
(1)
1 ∪ · · · ∪ J (1)

m , W = J
(2)
1 ∪ · · · ∪ J (2)

n ,

J
(ι)
i = {(ι, i)} × J . Define a bipartite Poissonian block model PN(C) = (V ∪

W, {J (·)
· }, C) with blocks J

(·)
· and mean matrix C.

Although we have not studied this at the technical level, it is natural to expect
that, with large N , a partition of PN(C) with minimum description length would

with high probability keep the blocks J
(·)
· unbroken. Because the regular decompo-

sition algorithm for Poissonian block models operates only on means over blocks,
Construction 2 is a strong heuristic argument that this algorithm applies as such to
regular decomposition of non-negative matrices.

4.3 The Minimum Description Length

The Minimum Description Length (MDL) Principle was introduced by Jorma Ris-
sanen, inspired by Kolmogorov’s complexity theory, and an extensive presentation
can be found in Grünwald’s monography [86], and in [87]. The basic idea is the
following: a set D of data is optimally explained by a model M, when the com-
bined description of the (i) model and (ii) the data as interpreted in this model is
as concise as possible. By description we mean here a code that specifies an object
uniquely. The principle is best illustrated by our actual case, simple graphs. A
graph G = (V,E) with |V | = n can always be encoded as a binary string of length
(

n
2

)

= n(n−1)/2, where each binary variable corresponds to a node pair and a value
1 (resp. 0) indicates an edge (resp. absense of an edge). Thus, the MDL of G is
always at most

(

n
2

)

. However, G may have a structure whose disclosure would allow
a much shorter description.

Our heuristic postulate is that in the case of graphs and similar objects a good
a priori class of models should be inferred from the regularity lemma, which points
to stochastic block models.

Definition 9. Denote byMn/k the set of irreducible stochastic block models (V, ξ,D)
with

• |V | = n,

• |ξ| = k, and, denoting ξ = {V1, . . . , Vk},
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• for i, j ∈ {1, . . . , k},

dij =
hij

|Vi||Vj|
, hij ∈ N, dii =

hii
(

|Vi|
2

) , hii ∈ N.

The condition in the last bullet entails that each modeling spaceMn/k is finite.

Remark 3. Without the irreducibility condition (4.1), there would not be a bijection
between stochastic block models and their parameterizations.

The models in Mn/k are parameterized by Θk = (ξ,D). A good model for a
graph G is the one that gives maximal probability for G and is called the maximum
likelihood model. We denote the parameter of this model

Θ̂k(G) := argmax
Θk∈Mn/k

(P (G | Θk)), (4.3)

where P (G | Θk) denotes the probability that the probabilistic model specified
by Θk produces G. One part of likelihood optimization is trivial: when a partition ξ
is selected for a given graph G, the optimal link probabilities are the empirical link
densities:

dij =
e(Vi, Vj)

|Vi||Vj|
, ı ̸= j, dii =

e(Vi)
(

|Vi|
2

) . (4.4)

Thus, the nontrivial part is to find the optimal partition for the given graph.
This is the focus of the next sections.

4.3.1 Two-part MDL for simple graphs

Let us denote the set of all simple graphs with n nodes as

Ωn = {G : G = (V,E) is a graph, |V | = n}.

A prefix (binary) coding of a finite set Ω is an injective mapping

C : Ω→ ∪s≥1{0, 1}s (4.5)

such that no code is a prefix of another code. Recall the following theorem from
information theory:

Theorem 4. (Kraft’s Inequality) For an m-element alphabet there exists a bi-
nary prefix coding scheme with code lengths l1, l2, · · · , lm iff the code lengths satisfy:
∑

i=1,··· ,m 2−li ≤ 1.
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An important application of Theorem 4 is the following: if letters are drawn
from an alphabet with probabilities p1, p2, · · · , pm, then there exists a prefix coding
with code lengths ⌈− log p1⌉, · · · , ⌈− log pm⌉, and such a coding scheme is optimal in
the sense that it minimizes the expected code length (in this section, the logarithms
are in base 2). In particular, any probability distribution P on the graph space Ωn

indicates that there exists a prefix coding that assigns codes to elements of G ∈ Ωn

with lengths equal to ⌈− logP ({G})⌉. The code length l(·) is the number of binary
digits in the code of the corresponding graph. In case of a large set Ω, most such
codes are long and as a result the ceiling function can be omitted, a case we assume
in sequel. A good model results in good compression, meaning that a graph can
be described by much less bits than there are elements in the adjacency matrix.
An incompressible case corresponds to the uniform distribution on Ωn and results
in code length − log (1/ | Ω |) =

(

n
2

)

, equivalent to writing down all elements of
the adjacency matrix. For every graph G from Ωn and model P we can associate
an encoding with code length distribution − logP (· | Θ̂k(G)). However, this is not
all, since in order to be able to decode we must know what particular probabilistic
model P is used. This means that also Θ̂k(G) must be prefix encoded, with some
code-length L(Θ̂k(G)). We end up with the following description length:

l(G) = ⌈− logP (G | Θ̂k(G))⌉+ L(Θ̂k(G)). (4.6)

Eq. (4.6) presents the so-called two-part MDL, [86]. In an asymptotic regime
with n → ∞, we get an analytic expression of the refined MDL. A simple way of
estimating L(Θ̂k(G)) is just to map injectively every model in Mn/k to an integer
and then encode integers with l∗(| Mn/k(G) |) as an upper bound of the code-length.
Here

l∗(m) = max(0, log (m)) + max(0, log log(m)) + · · · , m ∈ N, (4.7)

gives, as shown by Rissanen, the shortest length prefix coding for integers (see
[86, 88]). The size of the graph must also be encoded with l∗(n) bits (it is assumed
that there is a way of defining an upper bound of the models with given n). In this
point, it is necessary that the modeling space is finite. This results in

Theorem 5. For any graph G ∈ Ωn, there exists a prefix coding with code-length

l(G) = ⌈− logP (G | Θ̂k(G))⌉+m

≤ mk := l∗(n) + l∗

(

S2(n, k)

((

n− k + 2

2

)

+ 1

)(k
2
)+k

+ 1

)

+ 1,

where S2(n, k) is the Stirling number of the second kind.

Proof. The expression in (4.6) corresponds to a concatenation of two binary codes.
The L-part is the length of a code for maximum likelihood parameters (in the
case of a non-unique maximum, we take, say, the one with smallest number in the
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enumeration of all such models). The corresponding code is called the parametric
code. The parametric code uniquely encodes the maximum-likelihood model. To
create such an encoding, we just enumerate all possible models, given in Definition
9, and use the integer to fix the model. The length of a prefix code corresponding
to an integer is the l∗-function computed for that integer, and we add 1 to handle
the ceiling function. To obtain an upper bound for the parametric code length mk,
we find an upper bound for the number of models in the modeling space. The
number of models is upper-bounded by the product of the integers, each presenting
the number of partitions of an n-element set into k non-empty sets (blocks), which
equals S2(n, k). We can view the blocks of a partition as the nodes of a ‘reduced
multi-graph’ (in a multi-graph, there can be several links between a node pair, as
well as self-loops). The range of multi-links is between zero and

(

n−k+2
2

)

: if we
consider a pair of blocks (or one block internally), there can be at most n− (k − 2)
nodes in such a pair (in one set, slightly less), since there must be at least k−2 nodes
in the other blocks of the partition. Obviously, in such a subgraph of n − (k − 2)
nodes there can be at most

(

n−k+2
2

)

links. Thus, the number of values each multi-

link can take is upper-bounded by
(

n−k+2
2

)

+ 1. Since the number of node pairs in

the reduced multi-graph is
(

k
2

)

+ k, we obtain the second multiplier in the argument
of l∗ in the proposition. Finally, we should show that the coding of the graph is
prefix. We concatenate both parts into one code that has the prescribed length and
put first the prefix code of the integer that defines the parameters of the maximum
likelihood model. When we start to decode from the beginning of the entire code,
we first obtain a code of an integer, because we used a prefix coding for integers. At
this stage we are able to define the probabilistic model that was used to create the
other part of the code, corresponding to the probability distribution P (· | Θ̂k(G)).
Using this information we can decode the graph G. It remains to show that the
concatenated code itself is prefix. Assume the opposite: some prefix of such a code
is prefix to some other similar code, say, the first code is a prefix to the second one.
However, the parametric code was prefix, so both codes must correspond to the
same model. Since the first two-part code is a prefix to the second, they both share
the same parametric part, and the code for the graph of the first is a prefix of the
second one. But this is impossible, since the encoding for graphs within the same
model is prefix. This contradiction shows that the two-part coding is prefix.

Finally, we call

Mn :=
⋃

1≤k≤n

Mn/k (4.8)

the full regular decomposition modeling space of Ωn.

4.3.2 Two-part MDL for matrices

In this section, we consider input data in the form of a n×m matrix A = (aij) with
non-negative entries. With such a matrix we associate a random bipartite multi-
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graph. The set of rows and the set of columns form a bipartition. Between row i and
column j there is a random number of links that are distributed according to Poisson
distribution with mean ai,j. Such a model was introduced in [89] and it has been
used in various tasks in complex network analysis. The aim of this model is to back
up, heuristically, a corresponding practical algorithm for regular decomposition of
matrices. Our approach is closely related to but slightly different from the Poissonian
block model. Assume that A is used to generate random n × m matrices X with
independent integer-valued elements following Poisson(aij) distributions. The target
is to find a regular decomposition model that minimizes the expected description
length of such random matrices.

We propose the following modeling spaces:

Definition 10. For integers k1, k2 from ranges 1 ≤ k1 ≤ n and 1 ≤ k2 ≤ m, the
parameters of a model Θk1,k2 in the modeling space Mk1,k2 for an integer matrix
X are partition of rows into k1 non-empty sets V = (V1, · · ·Vk1) and partition of
columns into k2 non-empty sets U = (U1, · · · , Uk2) and k1× k2 block average matrix
P , with elements (P )α,β :=

∑

i∈Vα,j∈Uβ

xi,j

|Vα||Uβ |
.

Thanks to the addition rule of Poisson distributions, the likelihood of X in a
model Θk1,k2 ∈Mk1,k2 , corresponds to probabilistic models where the elements of X
are independent and Poisson distributed with parameters xi,j ∼ Poisson(Pα(i),β(j)),
where i ∈ Vα(i), j ∈ Uβ(j) in the model Θk1,k2 . The corresponding likelihood is
denoted as P (X | Θk1,k2), the actual probability of X is denoted as P (X | A). The
maximum likelihood model is found from the program that maximizes the expected
log-likelihood:

Θ∗
k1,k2

= argmax
Θk1,k2

∈Mk1,k2

∑

X

P (X | A) logP (X | Θk1,k2)

= argmax
Θk1,k2

∈Mk1,k2

(

∑

X

P (X|A) log P (X|Θk1,k2)

P (X|A) + P (X|A) logP (X|A)
)

= argmax
Θk1,k2

∈Mk1,k2

(−D(PA || PΘk1,k2
)−H(PA))

where D is the Kullback-Leibler divergence between distributions, H denotes
entropy and, PA and PΘk1,k2

are the two families of Poisson distributions for the
matrix elements of X. Since H(PA) is independent on Θk1,k2 , it does not affect the
identification of the maximum likelihood model. Thus, the final program for finding
the optimal model is

Θ∗
k1,k2

= argmin
Θk1,k2

∈M
(D(PA || PΘk1,k2

)). (4.9)

The description length of a model l(Θk1,k2 ∈ Mk1,k2) consists of the description
length l(V ) + l(U) of the two partitions and the description length of the block
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average matrix l(P (X)). For the latter, we need to know only the integers presenting
the block sums of X, since the denominator is known for a fixed partition (U, V ).
The code lengths of such integers are, for large matrices, simply the logarithms of
the integers. As a result, we end up with the following expression for the description
length of the random multi-graph model A using the modeling spaceMk1,k2 :

lk1,k2(A) = D(PA || PΘ∗

k1,k2
) + l(V ∗) + l(U∗)

+
∑

1≤α≤k1;1≤β≤k2

E(log(eα,β + 1 | P ∗
Θk1,k2

),

where

eα,β =
∑

i∈V ∗

α ,j∈U∗

β

xi,j.

The star superscript refers to parameters corresponding to the solution of the
program (4.9). The expectation of logarithm is not explicitly computable. However,
we assume large matrices and blocks, and then Jensen’s inequality provides a tight
upper bound that can be used in practical computations. Thus, the final expression
for the description length of A is

lk1,k2(A) = D(PA || PΘ∗

k1,k2
) + l(V ∗) + l(U∗) +

∑

1≤α≤k1;1≤β≤k2

log(aα,β + 1), (4.10)

where

aα,β =
∑

i∈V ∗

α ,j∈U∗

β

ai,j.

The full two-part MDL would now be realized by finding the global minimum of
this expression over various (k1, k2). Although a heuristic one, we believe that our
method for matrices is both reasonable and easy to use and implement, see [55].

4.3.3 Refined MDL and asymptotic model complexity

Let us next consider Rissanen’s refined MDL variant (see [86]). The idea is to
generate just one distribution on Ωn, called the normalized maximum likelihood
distribution Pnml. Then a graph G ∈ Ωn has the description length − logPnml(G)
which is at most as large as the one given by the two-part code in (4.6). The function
P (· | Θ̂k(·)) maps graphs of size n into [0, 1], and it is not a probability distribution,
because

∑

G∈Ω P (G|Θ̂k(G)) > 1. However, a related true probability distribution
can be defined as

Pnml(·) =
P (· | Θ̂k(·))

∑

G∈Ω P (G|Θ̂k(G))
. (4.11)
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The problem with this is that a computation of the normalization factor in (4.11)
is far too involved: finding a maximum likelihood parametrization for a single graph
is a ‘macroscopic’ computational task by itself and it is not possible to solve such a
problem explicitly for all graphs. Therefore, the two-part variant is a more attractive
choice in a practical context. However, the refined MDL approach is useful as an
idealized target object for justifying various approximations implementations of the
basic idea. It appears that in an asymptotic sense the problem is solvable for large
simple graphs. The logarithm of the normalization factor in (4.11) is called the
parametric complexity of the model spaceMn/k:

COMP (Mn/k) := log

(

∑

G∈Ωn

P (G | Θ̂k(G))

)

. (4.12)

In a finite modeling space case, like in ours, this can be considered as a definition
of model complexity. We have now the following simple bounds:

Theorem 6.

log (S2(n, k)) ≤ COMP (Mn/k) ≤ mk + 1,

where we use the same notation as in Theorem 5.

Proof. The lower bound follows from the fact that we can have at least this number
of graphs that have likelihood 1 in Mn/k. This corresponds to graphs for which
the nodes can be partitioned into k non-empty sets and inside each set we have a
full graph and no links between the sets. Thus, for every partition there is at least
one graph that has likelihood one and all such graphs are different from each other
since there is a bijection between those graphs and partitions. For the upper bound,
we notice that according to Theorem 5, there is a prefix coding with code lengths
that correspond to the two-part code. As a result, Kraft’s inequality yields that
∑

G∈Ωn
2−lk(G) ≤ 1, or

1 ≥
∑

G∈Ωn

2−⌈− logP (G|Θ̂k(G))⌉−mk ≥
∑

G∈Ωn

2logP (G|Θ̂k(G))−1−mk ,

from which we get

∑

G∈Ωn

P (G | Θ̂k(G)) ≤ 2mk+1.

Taking logarithms, we arrive at the claimed upper bound.

When considering large-scale structures corresponding to moderate k, the upper
and lower bounds in Theorem 6 are asymptotically equivalent, and we have

Theorem 7. Assume that k > 1 is fixed. Then

COMP (Mn/k) ∼ n log k, n→∞.
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Proof. Denoting the lower and upper bound of parametric complexity in Theorem
6 respectively by bl and bu, we argue that bu ∼ bl ∼ n log k asymptotically when
n → ∞. This follows from the fact that the dominant asymptotic component of
both bu and bl is log S2(n, k). Indeed, S2(n, k) ∼ kn

k!
for fixed k, the asymptotic of

log S2(n, k) is linear in n, and all other terms of the asymptotics of both bounds are
additive and at most logarithmic in n.

Remark 4. The speed of convergence of the upper and lower bounds in Theorem 6
is of type log n/n.

4.4 Regular decomposition

The previous sections developed both the two-part and refined variants of the MDL
theory, as presented in [86], for the model space of stochastic block models. In the
following, we describe a variant of regular decomposition (RD) algorithm, which was
developed in works [90, 53, 54, 55, 82] for a generic matrix.

Consider a connected (finite, undirected) graph1 G. If the original graph is not
connected, we can first do a rough partitioning using the connected components.
Here we assume that this simple task has already been carried out. Our goal is to
partition a subset V of n nodes of the graph into k disjoint nonempty sets called
communities. Such a partition can be represented as an ordered list (Z1, · · · , Zn)
where Zi ∈ [k] indicates the community of the i-th node in V . For convenience, we
will also use an alternative representation of the partition as an n-by-k matrix with
entries

Riu =

{

1 if the i-th node of V is in community u,

0 else.

Such a matrix has binary entries, unit rows sums, and nonzero columns, and will be
here called a partition matrix.

4.4.1 Statistical model for the distance matrix

The partitioning algorithm presented here is based on observed distances from a set
of m reference nodes to a (possibly overlapping) set of n target nodes. Let Dij be
the length of the shortest path from the i-th reference node to the j-th target node
in the graph. The target is to find such a partition of nodes such that distances from
any particular reference node i to nodes in community u are approximately similar,
with minimal stochastic fluctuations. This modeling assumption can be quantified
in terms of an m-by-k matrix (Λiu) with nonnegative integer entries representing
the average distance from the i-th reference node to nodes in community u. A

1Or strongly connected directed graph in a directed setting.



64 4. Graph Decomposition Using Stochastic Block Model

simple model of a distance matrix in this setting is to assume that all distances
are stochastically independent random integers such that the distance from the i-th
reference node to a node in community u follows a Poisson distribution with mean
Λiu. This statistical model is parametrized by the m-by-k average distance matrix
Λ and the n-by-k partition matrix R, and corresponds to the discrete probability
density function2

fΛ,R(D) =
m
∏

i=1

n
∏

j=1

e−ΛiZj

Λ
Dij

iZj

Dij!
, D ∈ Z

m×n
+ ,

having logarithm

log fΛ,R(D) =
m
∑

i=1

n
∑

j=1

k
∑

v=1

Rjv (Dij log Λiv − Λiv)

−
m
∑

i=1

n
∑

j=1

log(Dij!).

Such modeling assumption does not assume any particular distribution of dis-
tance matrix, question is about approximating the given distance matrix with a
random matrix with parameters that give the best fitting. Such particular models
are used because it results in a simple program, as we see in Algorithm 1. We
have also tested it in our previous works with various data, showing good practical
performance, [54, 55].

Having observed a distance matrix D, standard maximum likelihood estimation
looks for Λ and R such that the above formula is maximized. For any fixed R,
maximizing with respect to the continuous parameters Λiv is easy. Differentiation
shows that the map Λ ↦→ log fΛ,R(D) is concave and attains its unique maximum at

Λ̂ = Λ̂(R) where

Λ̂iv(R) =

∑n
j=1 DijRjv
∑n

j=1 Rjv

(4.13)

is the observed average distance from the i-th reference to nodes in community v. As
a consequence, a maximum likelihood estimate of (Λ, R) is obtained by minimizing
the function

L(R) =
m
∑

i=1

n
∑

j=1

k
∑

v=1

Rjv

(

Λ̂iv(R)−Dij log Λ̂iv(R)
)

(4.14)

subject to R ∈ {0, 1}n×k having unit row sums and nonzero column sums, where
Λ̂iv(R) is given by (4.13).

2We could omit terms with i = j from the product because of course Dii = 0, but this does not

make a big difference for large graphs.
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4.4.2 Recursive algorithm

Minimizing (4.14) is a nonlinear discrete optimization problem with an exponen-
tially large input space of order Θ(kn). Hence an exhaustive search is not compu-
tationally feasible. The objective function can alternatively be written as L(R) =
∑n

j=1 ℓjZj
(R), where

ℓjv(R) =
m
∑

i=1

(

Λ̂iv(R)−Dij log Λ̂iv(R)
)

. (4.15)

This suggests a way to find local maximum by selecting a starting value R0 for R at
random, and greedily updating the rows of R one by one as long as the value of the
objective function decreases. A local update rule for R is achieved by a mapping
Φ : {0, 1}n×k → {0, 1}n×k defined by Φ(R)jv = δZ∗

j v
where

Z∗
j = arg min

v∈[k]

ℓjv(R). (4.16)

Algorithm 6 describes a way to implement this method. This is in spirit of the EM
algorithm where the averaging step corresponds to an E-step and the optimization
step to an M-step. The algorithm iterates these steps by starting from a random
initial partition matrix R0, and recursively computing Rt = Φ(Rt−1) for t ≥ 1.
The runtime of the local update is O(km + kn), so that as long as the number of
communities k and the parameters smax, tmax are bounded, the algorithm finishes
in linear time with respect to m and n and is hence well scalable for very large
graphs. The output of Algorithm 6 is a local optimum. To approximate a global op-
timum, parameter smax should be chosen as large as possible, within computational
resources.

Finally, we describe how the rest of nodes are classified into k groups or commu-
nities, after the optimal partition R∗ for a given target group and reference group
is found. Let i denote a node out of original target group. First we must obtain
distances of this node to all reference nodes

(Di,j)1≤j≤m

Then the node i is classified into group number α according to

α = arg min
1≤β≤k

m
∑

j=1

(

Λ̂jβ(R)−Dji log Λ̂jβ(R
∗)
)

.

The time complexity of this task is dominated by the computations of distances of
all nodes to the reference nodes, because for bounded m the above optimization is
done in a constant time. According to Dijkstra-algorithm computation of distances
from all N nodes to the target nodes takes mO(|E| +N logN). In a sparse graph,
that we assume, |E| ∼ N . Thus, if m is bounded, the overall time complexity is
O(N logN), which is only slightly over the best possible O(N), which is needed just
to enlist a partition. This is because the classification phase takes only O(N) time
for all nodes.
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Algorithm 6 Regular decomposition algorithm

Require: Distance matrix D ∈ Z
m×n
+ , integers k, smax, tmax

Ensure: Partition matrix R∗ ∈ {0, 1}n×k

1: function RegularDecomposition(D, k, smax, tmax)
2: Lmin ←∞
3: for s in 1, · · · , smax do

4: R←random n-by-k partition matrix
5: for t in 1, · · · , tmax do

6: R← LocalUpdate(R,D)

7: L← L(R) given by equation (4.14)
8: if L < Lmin then

9: R∗ ← R
10: Lmin ← L

11: return R∗

12: function LocalUpdate(R,D)
Averaging step

13: for v in 1, · · · , k do

14: nv ←
∑n

j=1 Rjv

15: for i in 1, · · · ,m do

16: Λ̂iv ←
∑n

j=1 DijRjv/nv

17: for j in 1, · · · , n do

18: ℓjv ←
∑m

i=1(Λ̂iv −Dij log Λ̂iv)

Optimization step
19: for j in 1, · · · , n do

20: Z∗
j ← arg min

v∈[k]

ℓjv

21: for v in 1, · · · , k do

22: R∗
jv ← 1(Z∗

j = v)

23: return R∗
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4.4.3 Estimating the number of groups

The regular decomposition algorithm presented in the previous section requires the
number of groups k as an input parameter. However, in most real-life situations
this parameter is not a priori known and needs to be estimated from the observed
data. The problem of estimating the number of groups k can be approached by
recasting the maximum likelihood problem in terms of the minimum description
length (MDL) principle [88, 86] where the goal is to select a model which allows
the minimum coding length for both the data and the model, among a given set of
models.

When the set of models equasl the Poisson model described in Sec. 4.4.1, then
the R-dependent part of the coding length equals the function L(R) given by (4.14),
and a MDL-optimal partition R∗, given k, corresponds to the minimal coding length

R∗ = arg min
R

L(R).

It is not hard to see that L(R∗) is monotonously decreasing as a function of k, and
in MDL a balancing term, the model complexity, is added to select the model that
best explains the observed data. However, in all of our experiments, the negative
log-likelihood as a function of k becomes essentially a constant above some value k∗.
Such a knee-point k∗ is used as an estimate for the number of groups in this work.
Thus, we are using a very simplified version of MDL, since it was found sufficient in
our cases of examples. In a more accurate analysis one should use model complexity
in higher detail. Some early work towards this direction includes [82].

4.5 Theoretical considerations

4.5.1 Planted partition model

A stochastic block model (SBM) with n nodes and k communities is a statistical
model parametrized by a nonnegative symmetric k-by-k matrix (Wuv) and a n-vector
(Zi) with entries in [k]. The SBM generates a random graph where each node pair
{i, j} is linked with probability W (Zi, Zj), independently of other node pairs. For
simplicity, we restrict the analysis to the special case with k = 2 communities where
the link matrix is of the form

W =

[

a/n b/n
b/n a/n

]

for some constants a, b > 0. This model, also known as the planted partition
model, produces sparse random graphs with link density Θ(n−1), and is a de facto
benchmark for testing the performance of community detection algorithms. As
usual, we assume that the underlying partition is such that both communities
are approximately of equal size, so that the partition matrix Riu = δZi,u satisfies
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∑n
i=1 Riu = (1 + o(1))n

2
. If a > b, there are two communities that have larger inter-

nal link density than link density between them. A well-known result states that for
n≫ 1, partially recovering the partition matrix from an observed adjacency matrix
is possible if

(a− b)2 > 2(a+ b), (4.17)

and impossible if the above inequality is reversed. This result, called Kesten–Stigum
threshold, was obtained in semi-rigorous way [83] and then proved rigorously in [84].

4.5.2 Expected and realized distances

Our aim is to have analytical formulas for distances Dij in a large graph generated
from SBM. This question was addressed in [91] using spectral approach, where
limiting average distances were found. We need the next to the leading term of the
average distance. Although these calculations are not rigorous, it is well-known that
in case of classical random graph similar approach produces a distance estimate that
is asymptotically exact. That is why we believe that such an analysis makes sense
in case of SBM as well.

To analyze distances, let us first investigate the growth of the neighborhoods from
a given node as a function of the graph distance. Let us denote the communities
by Vu = {i : Zi = u} for u = 1, 2. Fix a node i ∈ V1 and denote by nu(t) the
expected number of nodes in community u at distance t from i. Note that each
node has approximately a/2 neighbors in the same community and approximately
b/2 neighbors in the other community. Moreover, due to sparsity, the graph is locally
treelike, and therefore we get the approximations

n1(t) ≈
1

2
an1(t− 1) +

1

2
bn2(t− 1)

n2(t) ≈
1

2
bn1(t− 1) +

1

2
an2(t− 1).

Writing N(t) = (n1(t), n2(t))
T , this can be expressed in matrix form as N(t) ≈

AN(t− 1), where

A =
1

2

(

a b
b a

)

.

As a result, N(t) ≈ AtN(0) with N(0) = (1, 0)T . The matrix A has a pair of
orthogonal eigenvectors with eigenvalues:

e1 =
1√
2

(

1
1

)

, λ1 =
a+ b

2

and

e2 =
1√
2

(

−1
1

)

, λ2 =
a− b

2
.
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According to the spectral theorem, we can diagonalize the matrix A and conclude
that its powers are given by

At = λt
1e1e

T
1 + λt

2e2e
T
2 .

As a result, the expected numbers of nodes of types u = 1, 2 at distance t from a
node of type 1 are approximated by

N(t) ≈ AtN(0) =
1

2

(

λt
1 + λt

2

λt
1 − λt

2

)

.

Moreover, if mu(t) =
∑t

s=1 nu(s), then

m1(t) ≈
1

2

(

−2 + λ1

λ1 − 1
λt
1 +

λ2

λ2 − 1
λt
2

)

,

m2(t) ≈
1

2

(

−2 + λ1

λ1 − 1
λt
1 −

λ2

λ2 − 1
λt
2

)

.

Next we want to find and estimate for the average distance d1 (resp. d2) from a
node in V1 to another node in V1 (resp. V2). We use the heuristic that the distances
from a node to all nodes in the same group are well concentrated and close to each
other. Under this assumption, we expect that d1 and d2 approximately solve the
equations m1(d1) = n/2 and m2(d2) = n/2.

We get the equations for the distances:

λd1+1
1

λ1 − 1
+

λd1+1
2

λ2 − 1
− 2 = n (4.18)

λd2+1
1

λ1 − 1
− λd2+1

2

λ2 − 1
− 2 = n.

We are interested in leading order of difference of d2 − d1 for n → ∞. Because
λ1 > λ2 due to a > b, and d1, d2 → ∞, we can use following iterative solution
scheme. For d1, we have:

λd1
1 =

λ1 − 1

λ1

n+ 2
λ1 − 1

λ1

− λ2(λ1 − 1)

λ1(λ2 − 1)
λd1
2 .

as a result, the equation we want to iterate is:

d1 log λ1 = log

(

λ1 − 1

λ1

n

)

+ log

(

1 +
2

n
− λ2

λ2 − 1

λd1
2

n

)

.

By expanding the second logarithm in series of powers of 1/n, we get the leading
terms of the solution:

d1 ≈
log
(

λ1−1
λ1

n
)

log λ1

− cnα−1,
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where c > 0 is a constant and

α =
log λ2

log λ1

, c =
1

log λ1

λ2

λ2 − 1
λβ
2 , β =

log λ1−1
λ1

log λ1

.

A similar procedure yields:

d2 ≈
log
(

λ1−1
λ1

n
)

log λ1

+ cnα−1.

Because α < 1, both d1/ log n and d2/ log n have the same limit 1/ log λ1.

We conjecture that above the Kesten–Stigum threshold (4.17) the cost function,
used in RD to partition graph distance matrix of the giant component of the graph
generated from two part SBM, has a deep minimum corresponding to correct par-
tition. More precisely, the cost of misplacing one node from the correct partition
grows to infinity as n→∞.

First we conjecture that the found distance estimates of d1 and d2 are asymptot-
ically equal to expected distances in a random graph corresponding to the Planted
Partition model. For a node i ∈ V1 and nodes j ∈ V1 \ {i} and j′ ∈ V2,

EDi,j ≈ d− δ, EDi,j′ ≈ d+ δ,

where d =
log

(

λ1−1

λ1
n
)

log λ1

and δ = cnα−1, corresponding to the approximations in the
previous section.

We also conjecture that for any i ∈ V1, we have with high probability,

∑

j∈V1

Di,j =
n

2
(d− δ) +O(

√
n),

∑

j∈V2

Di,j =
n

2
(d+ δ) +O(

√
n),

which is quite plausible if the first conjecture is true. The error term O(
√
n) can be

neglected if α > 1
2
, which is equivalent to being above the Kesten–Stigum threshold

(4.17), which we assume from now on. If all nodes of the graph are partitioned
correctly, then the cost (4.15) of target node j in community V1 is approximately

ℓj ≈
n

2
(d+ δ − (d+ δ) log(d+ δ) + d− δ − (d− δ) log(d− δ)).

If we switch the community j to be V2 then this cost changes into

ℓ′j ≈
n

2
(d+ δ − (d− δ) log(d+ δ) + d− δ − (d+ δ) log(d− δ)).
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As a result,

ℓ′j − ℓj ≈ nδ log

(

d+ δ

d− δ

)

≈ 2n
δ2

d
= 2 log(λ1)c

2nn2α−2/ log n

=
2 log(λ1)c

2

log n
n2α−1.

As a result if α > 1
2
or equivalently (4.17), the difference has infinite limit. This

heuristic derivation suggests that the regular decomposition algorithm is capable of
reaching the fundamental limit of resolution of the planted bipartition model.

4.6 Experiments with simulated data

4.6.1 Planted partition model

We investigate empirically the performance of the regular decomposition algorithm
to synthetic data sets generated by the planted partition model described in Sec. 4.5.1.
This is an instance of a very sparse graph with bounded degrees and with only two
groups. In this case we argue that uniform random sampling of reference nodes will
do. Here it is possible to compute full distance matrix up to sizes of 10000 nodes
and sampling is not necessary.

For our test, we generated a graph with parameters n = 2000, a = 20, and
b = 2. Another similar experiment was done with 10000 nodes. Next we computed
the shortest paths between all pairs of nodes and formed a distance matrix D. RD
was able to detect the structure with around 1 percent error rate. The average of one
regular group shows that the distance has quite high level of noise, see Fig. 4.1. The
reason why the communities become indistinguishable is probably in the increasing
level of the variance. Below the threshold it is always too large, no matter how large
n is and above the threshold the communities can be detected provided n is large
enough. This is the conclusion of experiments not shown in this work.

Next we did experiments with 10000 nodes. In this particular case it looks
that our method works better than a standard community detection algorithm of
Girvan-Newman type. See Fig. 4.2 for graphical presentation.

As a sanity check we also used a usual community detection algorithm found
in Wolfram Mathematica library. It was not capable of finding the true commu-
nities, see Fig. 4.4. The RD algorithm using the D-matrix, was able to find the
communities correctly, with only a handful of misclassified nodes.
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Figure 4.9: Subgraphs induced by the 10 regular groups of the Gnutella network.
The subgraphs are structurally significantly different from each other. For instance,
the directed cycle counts of the subgraphs (ordered row by row from left to right)
are 139045, 0, 0, 2, 0, 15, 3, 0, 0, 0. The first community might be identified as a
core of the network. Corresponding sizes of regular groups can be seen in Fig. 4.8
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4.8 Concluding remarks

This chapter introduced a new approach for partitioning graphs using observed
distances instead of usual path and cycle counts. By design, the algorithm easily
scales to very large data sets, linear in the number of target nodes to be partitioned.
First experiments presented here with real and synthetic data sets suggest that this
method might be quite accurate, and possibly capable of reaching the Kesten-Stigum
threshold. However, to be convinced about this, more detailed theoretical studies
and more extensive numerical experiments are needed. We also need to estimate
quantitatively accuracy of the low-dimensional approximation in synthetic cases like
the random power-law graphs.

Spectral methods utilizing the distance matrix as a basis of network analysis
are of broader interest, see [94]. We are also interested in finding relations of our
concept with graph limits in the case of sparse networks [95], and extending the
analytical result to sparse random graph models with nontrivial clustering. We aim
to study stochastic block models with more than two groups and the actual distance
distributions in such random graphs [96].

We will also find real-life applications for our method in machine learning such as
highly topical multilabel classification, [97, 98, 99]. For instance, in case of natural
language documents like news release, we can use deep-learning to embed words
or paragraphs into points in a vector space. Our graph method could be used to
analyze networks of large volumes of such documents. Each document has usually
more than one meaningful labeling. We will study possibilities of aiding such a
multilabel classification using RD of the training data.



Conclusions

This is not the end. It is not even

the beginning of the end. But it is,

perhaps, the end of the beginning.

Winston Churchill

In this thesis we introduced a principled framework for summarizing large graphs,
which has been founded on Szemerédi’s regularity lemma[14]. The key idea of this
work has been to harness the power of the regularity lemma to tackle two of the main
challenges of graph summarization: determine in a principled way the cut off between
interesting and uninteresting information, and separate the interesting structural
information from noise, which is often contained in real-word networks. The strength
of the regularity lemma is corroborated by the key lemma [15, 16], which states that,
under certain conditions, the partition resulting from the regularity lemma gives
rise to a summary, which inherits many of the essential structural properties of the
original graph. In particular, the key lemma ensures that every small subgraph of
the summary is also a subgraph of the original graph. Hence, these results provide us
with a principled way to obtain a concise representation of a large graph by revealing
its interesting structural patterns, while filtering out the noise which corrupts these
structures.

The original proof of the regularity lemma [14] is not constructive and the algo-
rithmic solutions developed so far have been focused exclusively on exact algorithms
which have a hidden tower-type dependence on an accuracy parameter. Therefore,
with this thesis we describe a new heuristic algorithm based on the exact Alon et
al.’s algorithm [17], who proposed the first constructive version of the regularity
lemma. The proposed heuristic is an improvement, in terms of the summary quality
and noise robustness, of the one introduced by Sperotto and Pelillo [1]. An ex-
tensive series of experiments demonstrated the effectiveness and the scalability of
our approach. Along this path, we show how the notion of regular partition can
provide fresh insights into old pattern recognition and machine learning problems
by using our summarization method to address graph-based clustering and image
segmentation tasks. In addition, we have successfully validated our framework both
on synthetic and real-world graphs showing that it surpasses the state-of-the-art in
term of noise robustness.

Being able to build a concise representation of a large graph, we also addressed
the graph similarity search problem exploiting our summaries. Since noise is com-
mon in any real-world dataset, the biggest challenge in graph search is developing
efficient algorithms suited for dealing with large graphs containing noise in terms of
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missing and adding spurious edges. In our approach, all the graphs contained in a
database are compressed off-line, while the query graph is compressed on-line. Thus,
graph search can be performed on the summaries, and this allows us to speed up the
search process and to reduce storage space. The experimental results showed that
our framework is tailored for efficiently dealing with databases containing a high
number of large graphs, and, moreover, it is principled robust against noise. This
achievement seems of particular interest since, to the best of our knowledge, we are
the first to devise a graph search algorithm which satisfies all the above requirements
together.

In the last part of the thesis, we studied the linkage among the regularity lemma,
the stochastic block model and the minimum description length with the aim of de-
vising an algorithm for analyzing sparse large networks. To this end, we decomposed
a sparse graph fitting a stochastic block model by means of the likelihood maxi-
mization method. Stochastic Block Model is an important paradigm in network
research, see e.g.[22], which is usually resolved around the concept of ’communities’.
Our method is able to deal with other type of networks that do not fit well to such
a community structure. In particular, we found that our algorithm seems to cir-
cumvent a famous problem in community detection: in a sparse network there is a
well defined region on graph parameters where it is impossible to find communities,
even in the limit of infinite graph size, although definite communities exist by con-
struction [83]. Using a distance matrix-approach, we can find communities even in
the case of modest graph sizes. In our approach distances within communities tend
to be shorter than distances between communities. This may open a more effective
new way for finding strong and even weak communities in large networks.

Strengths and weaknesses

Although the topic addressed by this thesis, namely a graph summarization frame-
work, is very practical, the foundation of our work is instead deep theoretical. In
effect, we harness the power of the regularity lemma, which is one of the great tri-
umphs of the “Hungarian approach” to mathematics: ”pose very difficult problems,
and let deep results, connections between different areas of math, and applications,
come out as byproducts of the search for a solution”. From our point of view this
is a strength of this work, since it shows that our framework is built on solid foun-
dations. Further points of strength are the ability of our algorithm to determine in
a principled way the cut off between interesting and uninteresting information, and
the ability of separate structural information from randomness, which are two major
challenges of graph summarization. Any weak point of our work should instead be
sought in the applications of our framework. Indeed, a weakness of our method is
that it is designed to deal only with dense graphs, since the regularity lemma re-
quired a dense graph as input. However, the experimental results obtained on sparse
real-world networks show that our method performed as well as the stat-of-the-art.
Furthermore, it is worth noting that we introduce a principled regular decomposi-
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tion algorithm which is suited to reveal the main structural pattern even in sparse
graphs. Another weak point is related to the time complexity of our algorithms
which required a pre-sampling strategy in order to deal with networks of millions of
nodes. This demands for the development of a distributed version of the proposed
heuristic algorithms.

Future work

The work of this thesis makes room for further applications in the contexts of struc-
tural pattern recognition and of graph mining. In chapter 2, we proposed a two-
stage strategy to address the clustering and image segmentation problem. It would
be interesting to study how to use our framework for addressing the problem of
graph isomorphism for large graphs. The problem of graph search under a simi-
larity measure was addressed in chapter 3 by using the obtained summaries. As
future work, it would be a good idea to extend our summarization algorithm to deal
with labeled large graphs. Furthermore, we think that it is important to develop
an efficient algorithm suited to deal with sparse graphs based on the version of the
weak regularity lemma introduce by Fox et al. [100]. In chapter 4, we introduced
a principled regular decomposition framework based on the interplay among the
regularity lemma, the stochastic block model and the minimum description length.
It would be interesting to theoretically study why the distance matrix based ap-
proach seems to be very efficient. Finally, it would be a good idea to study how to
extend the proposed summarization and regular decomposition algorithms to deal
with time-evolving graphs.
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A
A Computer Vision System for the

Automatic Inventory of a Cooler

In this chapter, we describe a system for beverage product recognition through the
analysis of cooler shelf images. The extreme objects occlusion, the strong light
influence and the poor quality of the images make this task a challenging one. To
overcome these limitations, we rely on simple computer vision algorithms, like cham-
fer and color histogram matching and we introduce simple 3D modeling techniques.

A.1 Introduction

This chapter is devoted to the description of a computer vision system for the
automatic inventory of a commercial cooler. The goal is to count, for each brand,
the number of beverage products (bottles and cans) contained in the cooler at any
given moment in order to efficiently schedule a refill if necessary. This is done
through the continuous analysis of the images of the cooler’s shelves taken by (low-
cost) wide-angle cameras.

Although at first glance the task looks trivial, as the objects to be recognized are
clearly distinguishable, rigid and in a well-known static environment, it is in fact a
challenging one due to a combination of several factors. In particular, a first difficulty
arises from the severe occlusion conditions under which the system has to work. In
fact, in a typical scenario involving densely packed shelves, visibility decreases row
by row, the rear products being almost completely hidden from the front ones (see
Figure A.1 for some typical examples). The items are also typically very close to each
other and this makes segmentation and detection more difficult. Recognition is also
complicated by the lighting conditions: light is not uniform in the images, not only
due to the shadows generated by the shelves and by the products themselves, but also
due to the influence of external light. As a result, our images have typically poorly
defined edges and distorted color representation, thereby making segmentation and
brand classification more difficult. Also, the system has to be flexible enough to
recognize new products after software installation. These difficulties are exacerbated
by the need to cut off production costs and by the consequent use of low-quality
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Figure A.1: Typical images analyzed by our system.

cameras and limited computational resources. Indeed the whole system has to run
on an embedded low-performance computer and this poses serious limitations as to
the kind of algorithms that can be used, as computationally intensive techniques are
clearly not feasible.

The proposed system uses a combination of simple techniques to address these
limitations. It is implemented into a pipeline of simple modules, as shown in Figure
A.2. The pipeline begins with an edge detector which extracts the features that
will be used by the distance transform module to construct a distance image. The
next step in the pipeline is chamfer matching [101], which detects the shape of
beverage products by shifting their templates at various locations of the distance
image. A matching measure is used to detect a candidate beverage shape, which
is then checked by a false positive elimination module. Finally, the brand of the
beverage products is recognized using simple color histogram matching. The color
histogram of the pixels which lie under a detected shape is compared with the color
histograms build from the images of reference products. Despite the simplicity of the
used techniques, preliminary results show the effectiveness of the proposed system
in terms of both detection accuracy and computational time.

A.2 The pipeline

The proposed pipeline is based on simple techniques applied in a cascaded way to
enhance the recognition accuracy and to provide robustness. As previously men-
tioned, the pipeline begins with a learning-based edge detector [102] which extracts
the most useful product edges that will be used to construct a distance image. This
is used by the chamfer matching module [101] in order to detect candidate product
shapes which will be checked by the false positive elimination module. The last
module is the histogram matching that allows brand recognition. The algorithm is
optimized by using 3D modeling techniques for template generation and by a space
management system which allows faster image scan and avoids the need of a non-
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maximum suppression. Further accuracy is achieved by splitting a beverage into its
main characterizing parts, processing them independently and considering the re-
sults as a whole. Occlusion is dealt by building an occlusion mask which keeps track
of the image portions occupied by the detected beverages and masks the templates
occluded parts. Figure A.2 shows the flow chart of the proposed pipeline.

Figure A.2: Flow-chart of the proposed system.

A.2.1 Edge detection

Edge detection is the preprocessing stage of the pipeline. It relies on the OpenCV
3.2.0 [103] implementation of the fast edge detector proposed by Dollár and Zitnick
[102], which is inspired by the work of Kontschieder et al [104]. It exploits the high
interdependence of the edges in a local image patch. In particular, edges exhibit well-
known patterns that can be used to train a structured learning model. Dollár and
Zitnick’s algorithm segments an image into local patches used to train a structured
random forest model. This model provides a local edge mask which is applied to
extract edges in an accurate and efficient way. Figure A.3 shows edge detection
results obtained from Dollár and Zitnick’s algorithm.

A.2.2 Shape detection

Template matching is the first stage of the proposed system in which beverage
candidates are evaluated and discarded if they do not satisfy the shape requirements.
It relies on a chamfer template matching [105] for the shape detection, on a 3D
modeling for the template generation, on a smart sliding window for the space
management and on a simple yet essential mechanism for the occlusion management.

Chamfer matching is a simple template matching algorithm which offers high
performance and a robust detection as it is very flexible and more tolerant to low
quality edges than other algorithms of the same kind. First, a morphological trans-
formation, known as distance transform [106], is applied to the previously extracted
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Figure A.3: Example of the edge detection results: the original shelf image on the
left and the edge image on the right.

edges. The resulting picture will be a gray-scale image in which each pixel will
have the value of the distance from that pixel to the nearest edge. Finally, a query
template is slided onto the distance image. At each position, a matching measure
is computed by summing the pixel values of the distance transform image which lie
under the edge pixels of the template. If the computed matching measure lies below
a certain threshold, the target beverage shape is considered detected. The template
threshold should be chosen to achieve a desired trade-off between false positives and
false negatives.

Chamfer matching is very inefficient as all beverage templates of varying shape
and size have to be tested at each locations of the distance image. Thus, a 3D
model of the shelf is introduced to speed-up the matching process. It allows to
check only one template per product at each location of the distance image avoiding
to check, for each products, a bunch of templates of varying shape and size. To
achieve this aim, we exploit the available information related to the objects, the
cooler and the camera in order to render the shelf and to build the template for the
shape matching. In particular, each object is accurately measured as follows: first
the bottom diameter is measured, then, going up, for each change in the shape the
value of the height and the corresponding diameter are collected. In this way we sum
up the product contour as a collection of diameter discontinuities and their relative
heights. The beverage partition into contour and horizontal parts can reproduce well
most of the bottles and cans, even those which are not circular based, with a little
error. Furthermore, camera’s intrinsic parameters are collected, while real position
of the camera and rotation angles are measured. For this purpose we introduce
an artificial reference points in the picture: a special sheet of paper with a printed
grid is laid on the shelf, while the same grid is rendered in a 3D representation of
that shelf, using the cooler information. At the beginning the virtual grid is in a
random position but, using special buttons on the keyboard, a user is able to modify
the camera position and the rotation angles in order to match as close as possible
the virtual grid with the real grid. When the grids match, we obtain the camera
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Figure A.4: Calibration procedure: the goal is to match the grid on the shelf. (1):
Real grid in the shelf. (2): Starting virtual grid with predefined camera position and
orientation. (3): Close match of the grids. (4): Good grid match; now the camera
parameters are known.

position and the orientation with a good accuracy. This whole process should be
done only once, when the camera is installed. Figure A.4 shows the calibration
process. Finally, after the calibration step, the template of each product is rendered
at any desired point of the shelf (Figure A.5).

To further speed-up the matching process, a smart sliding window for the space
management, named smart scan module, is introduced. It relies on a 3D shelf model
which allows to switch from virtual coordinates (pixels of the image) to physical ones
(millimeters of the real shelf) (Figure A.6). The scan is then performed referring to
the physical shelf position (x, z) so that the spatial information can be exploited to
avoid points in which the template cannot fit due to the lack of space. In particular,
the scan starts from the lowest right angle (x = maxLength, z = 0) and goes up
column-wise: at each detection step we keep the x fixed and we increase the z by
stepz, until the innermost part is reached; then we reset z to 0, we shift left by stepx
(x = x − stepx) and we start increasing the z again; this procedure goes over until
the left highest corner is reached. Thus, the 3D model and the smart scan allow to
check only one template per product at each permissible position (x, z) speeding up
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Figure A.5: Examples of templates generated by the 3D modeling.

Figure A.6: Real shelf and camera coordinate systems.

the template matching phase.

To deal with the occlusion conditions, a binary image, called occlusion mask (see
figure A.7), keeps track of the detections found at every step. The occlusion mask
has the same size of the shelf image, and it can be thought as a sort of shelf shadow
doublet: each time a detection is confirmed in an image point, the occlusion mask is
updated accordingly by setting to zero all the pixels belonging to the filled template
shape at that same point. In this way the occlusion mask will be a binary image
in which black pixels denote the scan image space occupied by the products found
until that moment, while white pixels denote the free space left. We then update
the query template by masking it with the occlusion mask, so that only the visible
template portion is used in the subsequent matching. If the remaining template



A.2. The pipeline 91

Figure A.7: Example of the mask image during an ongoing detection. The source
image is on the left, the occlusion mask is in the middle and the objects found until
that moment are on the right.

portion is under a certain threshold, it is discarded as not reliable enough. This
solution offers good performance while keeping the problem at a very simple level,
but it is not always accurate enough as it is based on a strong assumption which
sometimes does not hold: products are considered to be picked in order from the
visible ones to the most occluded.

Finally, to achieve better accuracy, a procedure known as false positive elimina-
tion is performed: each beverage part of a candidate detection is compared against
the results achieved by the chamfer matching applied to a reference background im-
age. If the results are too close to each other, the algorithm states that the match
is a fake one (the match is a part of the background which is wrongly detected as a
real object).

A.2.3 Color classification

Histogram matching is the second and last stage of the proposed pipeline in which
the brand of a previously detected shape is recognized. In particular, the histogram
matching module exploits all the elements defining a visual beverage, i.e. shape and
color, to enhance the correctness of the shape detection and to recognize the brand
of previously detected shapes.

This module relies on the same distinction between the product parts done in
the template matching one: a product is split into its main components (cap, bottle
liquid and logo for the bottles, the top part of the can and the can surface for the
cans) so that it is possible to focus on simple algorithms while keeping the spatial
color information (as an example, the cap should be blue while the liquid is green,
and not the opposite). It is worth nothing that in the same product part the color
is often uniform, so there is no need to split the objects further.

The color analysis is based on simple color histograms [107, 108, 109] guided by
the 3D model: only the image portion under the filled template is used to build
the histogram. The color space is divided into n sub-parts, called bins, covering
specific color ranges. Three normalized color histograms, one for each channel, are
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then computed. Finally, the histogram of each product part is compared against
histograms build from the products database in order to decide the fitness of the
detection.

The product database contains reference photos of each product the algorithm
should recognize. In particular, for each product, a series of photos are snapped in
controlled conditions: the middle shelf of the reference fridge is divided into 9 zones
and for each zone four pictures are snapped using 90 degrees rotation.

Histogram comparison is based on the following measure:

d(H(I), H(I ′)) = dmode(H(I), H(I ′))(1−H(I) ∩H(I ′)) (A.1)

where H(I) and H(I ′) is a pair of normalized histograms, each containing n
bins; dmode is the distance between the bins of each histogram having the highest
frequency indexes and H(I) ∩ H(I ′) is the sum of the smallest corresponding bins
between two histograms, i.e. the histogram intersection.

The measure (A.1) is a weighted distance which is robust against color distortion
because of the modes, while keeping a deeper histogram comparison because of the
intersection.

A.3 Experimental results

We have performed a series of experiments to verify the performances and the ac-
curacy level that can be obtained by our system. All the module of the pipelines
have been implemented using GNU C++ and have been run on dual core CPU with
1.6GHz/core and 1 GB of RAM.

The results here presented are divided into two sections:

• the first section shows examples of products placed at random in the shelf;

• the second section shows examples of real cooler cases, where a shelf is filled
by columns and each column will contain only bottles/cans of the same brand.

The experiments have been conducted in a 654 × 594 mm cooler shelf with 10
beverage brands. For each test it is shown: the original shelf image (on the left); the
beverage edge image where detected caps are highlighted in red (in the middle) and,
finally, the 3D rendering of the products detected by the pipeline (on the right).

A.3.1 Random shelf configurations

Figure A.8 shows some examples of products randomly placed in the shelf and a few
products placed at the rear. The recognition is high, even if some Lipton cans are
seen as Kickstarter, since they are very similar; we can also note that the difference
between the cans themselves is very little, as just a little part of the logo is different.
It is worth to note that Gatorade are detected despite having a different shape



A.3. Experimental results 93

from the one in our database: this highlights the algorithm is flexible enough to
recognize even unknown products sharing similar properties to the known ones. As
for the cans, the Lipton bottle brands (brown bottles) are so similar that it is almost
impossible to distinguish between them. Finally, Pepsi and MtnDew (green bottles)
have a distinctive color, hence we can achieve a good accuracy on them.

Figure A.8: Examples of products randomly placed in the shelf and a few products
placed at the rear.

A.3.2 Ordered shelf configurations

Figure A.9 shows some examples of real cooler cases, where a shelf is filled by
columns and each column will contain only bottles/cans of the same brand. In the
first row there are two tea bottles placed in the rear of an almost empty fridge
which are correctly recognized, while the second row there are two Gatorade and
three Lipton cans which are correctly recognized too. The cooler is recognized to be
almost empty in both cases. In the third row there are some missed Pepsi. This is
due to weak edges which are not recognized by the template matching. In the last
row, there is a shelf full of bottles and, in this case, some products are missed.

From the analysis of 100 experiments we can state that:

• the overall average accuracy level we have obtained is over 80%. In particu-
lar, an empty shelf can be identified with 100% precision, while the accuracy
decreases to 70% if the shelf is almost full, because of the product occlusion
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Figure A.9: Examples of real cooler cases.

that forces the algorithm to rely only on the top part of the product instead
of considering it in its entirety.

• Since the system should send a cooler inventory every 10 minutes, the perfor-
mances are quite satisfactory, as the whole scan of a 654×594 mm cooler shelf
takes approximatively 100 seconds.

• Some products are more easily detectable than others since the colors of bev-
erages like Pepsi, MtnDew, Gatorade create a well defined contrast with the
background and are very different from the colors of other products. By con-
trast, Aquafina is very difficult to be identified because of its transparent bottle
and its white cap which blends into the background.

A.4 Concluding remarks

We have described a simple yet effective system for monitoring the content of a com-
mercial cooler through the visual analysis of the shelves’ images taken with low-cost
wide-angle cameras. The difficulty of this task lies mainly in the challenging set-up
in which it has to be carried out, such as severe or almost complete occlusion, un-
even lighting conditions, poor image quality, and low-cost hardware. The proposed
solution combines simple techniques which effectively work under these challenging
conditions.

Despite the simplicity of the used techniques, we achieved a satisfactory accuracy
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level, being able to detect from 70% to 95% of the whole shelf in 100 images. Since
the system should send a cooler inventory every 10 minutes, the computational
performances are acceptable as a full shelf scan takes approximately 100 seconds
using limited computational resources. Finally, the system is very flexible, as it
needs just a simple and quick learning phase to add new products.

In future, we are planning to better handle irregular light intensity and color
distortion in order to improve the recognition accuracy.
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[27] T. Tao. Szemerédi’s regularity lemma revisited. Contrib. Discr. Math., 1(1):8–
28, 2006.

[28] L. Lovász and B. Szegedy. Szemerédi’s lemma for the analyst. Geom. Func.
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