
CORSO DI DOTTORATO DI RICERCA

IN INFORMATICA

CICLO XXXI

TESI DI RICERCA

Disciplined Techniques for the
Analysis and Protection of
Security-Critical Systems

SSD: INF/01

COORDINATORE DEL DOTTORATO

Prof. Riccardo FOCARDI

SUPERVISORE

Prof. Riccardo FOCARDI

DOTTORANDO

Mauro TEMPESTA

Matricola 827400

iii

Abstract

In the last years most of our daily activities have moved to the digital world, in-
cluding sensitive operations related to health data management and financial processes.
Security flaws in the systems running these critical operations may seriously impact on
our society, ranging from breaches of citizens privacy to severe economical damages.

Important aspects that must be taken into account when reasoning on the security
of critical systems comprise the security of the networks where they are hosted and that
of the web applications running on these systems. Additional threats are posed by the
improper use of cryptography that may allow unintended disclosure of confidential data.
In this thesis we introduce a set of disciplined techniques for the analysis and protection
of security-critical systems tackling these important aspects.

Regarding network security, we propose a technique to decompile firewall policies
into abstract specifications that provide a high-level description of the firewall behaviour.
Additionally, we face the problem of cross-compiling policies to different firewall sys-
tems. About web security, we survey the techniques proposed in the literature and by
web standards to counter the most common attacks against web sessions and we care-
fully evaluate them in terms of usability, compatibility with existing websites and ease
of deployment. Furthermore, we propose a client-side approach to fortify the security of
Web protocols by monitoring their execution inside the browser. For what concerns cryp-
tography, we provide a detailed analysis of Java keystores, encrypted files used by Java
applications to securely store cryptographic keys. We report novel attacks and weak-
nesses found in the most widespread keystore implementations and discuss the fixes
implemented by Java developers after our responsible disclosure.

v

Acknowledgements
I want to express my most sincere gratitude to my supervisor, Prof. Riccardo Focardi,

for his guidance during this three years-long adventure. I am particularly grateful to Dr.
Stefano Calzavara for many fruitful discussions that deeply contributed in improving
my scientific background. I also want to thank the reviewers of this thesis, Prof. Joshua
D. Guttman and Prof. Andrei Sabelfeld, for accepting this task and for the time spent
reading this manuscript.

During these years I had the pleasure to work with wonderful people both from Ca’
Foscari and different institutions. I am very proud of the achievements we have accom-
plished together and I want to thank them for the sleepless nights while struggling to
meet a deadline. Among them, I am especially grateful to Prof. Matteo Maffei for offer-
ing me the chance to join his research group at TU Wien.

Besides being excellent coauthors, I want to thank Francesco Palmarini, Lorenzo Vero-
nese and Marco Squarcina as part of the c00kies hacking team, along with Andrea Baesso,
Andrea Possemato, Claudio Bozzato, Francesco Benvenuto, Francesco Cagnin, Leonardo
Veronese and Marco Gasparini. Together we managed to achieve outstanding results all
around the world, including the qualification to the long-dreamed DEF CON CTF finals
in Las Vegas.

I consider myself very lucky for having so many friends sharing funny moments with
me during my PhD. In particular, I am grateful to Andrea, Diletta, Gianpietro and Mar-
tina for the awesome time spent together and the countless beers during our habitual
meetings “dallo Zio”.

Finally, I want to thank my parents Armando and Ivana and my sister Claudia for
their unconditional support throughout my entire life. I couldn’t have managed to com-
plete this journey if it hadn’t been for you. Last thing, a huge kiss to my lovely niece
Lucrezia!

Mauro Tempesta
Wien, December 2018

vii

Contents

Preface 1

Introduction 3
Summary of Contributions . 4
Structure of the Thesis . 5

1 Analysis, Maintenance and Cross-Compilation of Firewall Policies 7
1.1 Introduction . 7

1.1.1 Contributions . 9
1.1.2 Structure of the Chapter . 10

1.2 Background . 10
1.2.1 iptables . 11
1.2.2 ipfw . 12
1.2.3 pf . 12

1.3 The Pipeline at Work . 12
1.3.1 Network Structure and Policy Requirements 13
1.3.2 Compliant Configuration in iptables 14

Configuring the Firewall with iptables 14
Decompiling and Analyzing the Configuration 15

1.3.3 Non-Compliant Configuration in ipfw 17
Configuring the Firewall with ipfw 17
Decompiling and Analyzing the Configuration 18

1.3.4 Maintaining Firewall Configurations 19
1.3.5 Transcompiling a Configuration . 20

1.4 IFCL: The Intermediate Firewall Configuration Language 21
1.4.1 Decompiling Real Systems into IFCL 24
1.4.2 Semantics . 26

1.5 Synthesizing Configurations . 29
1.5.1 Unfolding Rulesets . 30
1.5.2 Logical Characterization of Firewalls 31
1.5.3 Synthesis Algorithm . 34
1.5.4 Supported Analyses . 36

1.6 Generating Target Configurations . 36
1.6.1 Compiling a Firewall Specification 37
1.6.2 Correctness of the Compiled Firewall 38

viii

1.7 Experimental Evaluation . 39
1.7.1 DAIS Department Policy . 40
1.7.2 Stanford University Backbone Network 40
1.7.3 Other Real-World Policies . 40
1.7.4 Queries . 41

1.8 Related Work . 42
1.8.1 Analysis of Firewall Configurations 42
1.8.2 Compilation of Firewall Configurations 43

2 Surviving the Web: A Journey into Web Session Security 45
2.1 Introduction . 45

2.1.1 Scope of the Work . 46
2.1.2 Structure of the Chapter . 47

2.2 Background . 47
2.2.1 Languages for the Web . 47
2.2.2 Locating Web Resources . 47
2.2.3 Hyper Text Transfer Protocol (HTTP) 48
2.2.4 Security Cornerstones and Subtleties 48

2.3 Attacking Web Sessions . 49
2.3.1 Security Properties . 50
2.3.2 Threat Model . 50
2.3.3 Web Attacks . 51
2.3.4 Network Attacks . 53

2.4 Protecting Web Sessions . 54
2.4.1 Evaluation Criteria . 54
2.4.2 Content Injection: Mitigation Techniques 55
2.4.3 Content Injection: Prevention Techniques 57
2.4.4 Cross-Site Request Forgery and Login CSRF 62
2.4.5 Cookie Forcing and Session Fixation 65
2.4.6 Network Attacks . 68

2.5 Defenses Against Multiple Attacks . 70
2.6 Perspective . 78

2.6.1 Transparency . 78
2.6.2 Security by Design . 79
2.6.3 Ease of Adoption . 79
2.6.4 Declarative Nature . 80
2.6.5 Formal Specification and Verification 80
2.6.6 Discussion . 81

3 WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring 85
3.1 Introduction . 85

3.1.1 Contributions . 86
3.1.2 Structure of the Chapter . 87

ix

3.2 Security Challenges in Web Protocols . 87
3.2.1 Background on OAuth 2.0 . 87
3.2.2 Challenge #1: Protocol Flow . 88
3.2.3 Challenge #2: Secrecy of Messages 89
3.2.4 Challenge #3: Integrity of Messages 89

3.3 WPSE: Design and Implementation . 90
3.3.1 Key Ideas of WPSE . 90
3.3.2 Discussion . 93

3.4 Fortifying Web Protocols with WPSE . 94
3.4.1 Attacks Against OAuth 2.0 . 94
3.4.2 Attacks Against SAML 2.0 . 96
3.4.3 Out-of-Scope Attacks . 98

3.5 Experimental Evaluation . 98
3.5.1 Experimental Setup . 99
3.5.2 Security Analysis . 99
3.5.3 Compatibility Analysis . 101

3.6 Formal Guarantees . 101
3.6.1 Discussion . 104

3.7 Related Work . 104
3.7.1 Analysis of Web Protocols . 104
3.7.2 Security Automata . 105
3.7.3 Browser-Side Defenses . 105

4 Mind Your Keys? A Security Evaluation of Java Keystores 107
4.1 Introduction . 107

4.1.1 Contributions . 109
4.1.2 Structure of the Chapter . 110

4.2 Related Work . 110
4.3 Security Properties and Threat Model . 111

4.3.1 Security Properties . 111
4.3.2 Design Rules . 112
4.3.3 Threat Model . 114

4.4 Analysis of Java Keystores . 114
4.4.1 Oracle Keystores . 115
4.4.2 Bouncy Castle Keystores . 117
4.4.3 Keystores Adoption . 118
4.4.4 Summary . 118

4.5 Attacks . 119
4.5.1 Attacks on Entries Confidentiality (P1) 121
4.5.2 Attacks on Keystore Integrity (P2) 123
4.5.3 Attacks on System Integrity (P3) . 124
4.5.4 Bad Design Practices . 126

x

4.5.5 Security Considerations . 127
4.6 Estimating Brute-Force Speed-Up . 128

4.6.1 Test Methodology . 128
4.6.2 Results . 130

4.7 Disclosure and Security Updates . 131

Conclusion 133

A Proofs of Chapter 1 135
A.1 Correctness of Unfolding . 135
A.2 Correctness of the Logical Characterization 137
A.3 Correctness of Policy Generation . 140

Bibliography 143

1

Preface

The work presented in this thesis is based on some research papers written during my
Ph.D. studies in Computer Science at Università Ca’ Foscari Venezia from September
2015 to August 2018.

Chapter 1 is the result of a long term project conducted with Chiara Bodei, Pierpaolo
Degano, Riccardo Focardi, Letterio Galletta and Lorenzo Veronese. It is based on two
research papers presented in April 2018 respectively at the 3rd IEEE European Symposium
on Security and Privacy [31] and at the 7th International Conference on Principles of Security
and Trust [33].

Chapter 2 is a joint work with Stefano Calzavara, Riccardo Focardi and Marco Squarcina
that has been published in April 2017 in the ACM Computing Surveys journal [42]. Chap-
ter 3 is the outcome of a collaboration started with Matteo Maffei and Clara Schnei-
dewind during my visits at CISPA (Saarbrücken, Germany) and TU Wien (Vienna, Aus-
tria). This collaboration, which also included Stefano Calzavara, Riccardo Focardi and
Marco Squarcina, resulted in a paper that I have presented in August 2018 at the 27th

Usenix Security Symposium [43].
Finally, Chapter 4 is a joint work with Riccardo Focardi, Francesco Palmarini, Marco

Squarcina and Graham Steel that was presented in February 2018 at the 25th Network and
Distributed Systems Security Symposium [65].

3

Introduction

During the past decades our society has experienced a pervasive digitalization process
that influenced several aspects of our life such as the way we communicate, work or
spend our free time. This phenomenon has also interested delicate topics such as health-
care data management and business processes. Security flaws in the systems running
these critical operations may have a serious impact on our society, ranging from breaches
of the privacy of citizens to severe economical damages.

There are several important aspects that must be taken into account when we reason
on the security of such critical systems. Virtually all systems are connected to computer
networks since they need to communicate with other machines to implement their func-
tionalities. These networks are usually connected to the Internet and firewalls are em-
ployed to protect internal hosts from the other machines. In this context, it is critical to
ensure the correctness of the firewall configuration to guarantee that only the intended
services are exposed to the Internet in order to prevent unauthorized accesses that may
harm the security of the entire network.

The Web is the primary way in which digital services are made available to their
users. The complexity of web applications has grown exponentially during the years
and they are now comparable to native desktop applications in terms of functionalities
and interactivity. To complicate things further, modern websites interact with each other
to implement collaborative scenarios such as e-payments and single sign-on. The rapid
evolution of the Web hindered the enforcement of security on web applications given the
increasingly wider attack surface and the need to implement defense mechanisms that
are compatible with most of the existing websites. Understanding how defenses can be
fruitfully adopted and combined to protect web applications and developing new mecha-
nisms to strengthen the aforementioned collaborative scenarios are important challenges
that must be faced to improve the security of the Web ecosystem.

Critical systems typically manipulate sensitive information, therefore they employ
cryptography to protect the confidentiality or the integrity of such data. The most deli-
cate aspect of cryptography is key management which regards, among other things, how
cryptographic keys are securely stored. Leaking a key voids any benefit of using cryptog-
raphy given that an attacker may use the key to read and modify all the encrypted data
or forge cryptographic signatures. Keys are usually stored either in dedicated hardware
facilities like smartcards and HSMs or inside keystores, i.e., files where keys are stored in
an encrypted form. Differently from hardware solutions, the security of existing keystore
implementations has never been assessed in the literature. Filling this gap is of crucial
importance to understand the actual level of security provided by systems relying on

4 Introduction

keystores as mechanism for key storage.
In this thesis we tackle all the challenges highlighted so far, either by exploiting formal

methods or using techniques that are nevertheless inspired by rigorous and disciplined
principles.

Summary of the Contributions

Regarding the research field related to firewalls, we contribute by proposing a transcom-
pilation pipeline to assist a network administrator in analysing, maintaining and porting
firewall configurations. The peculiarity of our approach is the independence from any
specific firewall system which is achieved thanks to IFCL, our intermediate language for
firewalls configuration. We show how to encode real configurations in IFCL and how
to transform them into first order logic predicates that determine which packets are ac-
cepted by a policy. The model of this predicate is used to construct a table representing
the meaning of the configuration at an abstract level. This abstract specification can either
be analysed by the administrator to reason on the correctness of the underlying specifica-
tion or provided as input to our algorithm that compiles the configuration for a different
system. We have implemented most of our pipeline in FWS and we show how it can be
fruitfully used by an administrator to check several properties of interest including reach-
ability, e.g., see which hosts in a subnet can communicate with hosts in other networks,
verifying whether two policies are equivalent and eventually spot the differences.

In the context of web security, the contributions are twofold. First we provide a sys-
tematic overview of the attacks harming the security of web sessions and we carefully
analyse the defense mechanisms proposed in the literature and by web standards along
four different axes: protection, usability, compatibility with existing websites and ease of
deployment. Additionally, we distill a set of guidelines that should be taken into account
when designing new security solutions. The second contribution is a novel client-side se-
curity mechanism aimed at strengthening the security of web protocols. First we identify
the fundamental challenges in securing web protocols, namely the enforcement of confi-
dentiality and integrity guarantees on the contents of messages as well as the intended
protocol flow. Next we introduce WPSE, a browser-side security monitor (implemented
as a Google Chrome extension) designed to undertake the challenges we have identified.
We prove that WPSE is expressive enough to protect web applications from a wide range
of protocol implementation bugs and web attacks and we discuss concrete examples of
attacks which can be prevented by WPSE on OAuth 2.0 and SAML 2.0, including a novel
attack on the Google implementation of SAML 2.0. Finally, we experimentally assess
the effectiveness of our solution by testing WPSE on 90 websites that use OAuth 2.0 to
implement single sign-on.

About key storage, we define a general threat model for password-protected key-
stores and we distill a set of significant security properties and consequent rules that any
secure keystore should adhere to. We perform an in-depth analysis of seven keystores
from the Oracle JDK and Bouncy Castle, a widespread cryptographic library, highlighting

Introduction 5

undocumented details about their implementations. We present new critical attacks and
weaknesses in the analysed keystores which have been assigned three CVE IDs [123, 124,
125]. We estimate the speed-up in terms of cracking time due to bad cryptographic im-
plementations with respect to the most resistant keystore and to NIST recommendations.
Finally, we discuss the fixes implemented by vendors after our responsible disclosure.

Structure of the Thesis

The thesis is structured as follows:

• Chapter 1 discusses our transcompiling pipeline for the analysis, maintenance and
porting of firewall configurations. Proofs of the theorems are in Appendix A;

• Chapter 2 surveys the most widespread attacks against web sessions and the corre-
sponding defenses from the literature and web standards;

• Chapter 3 introduces WPSE, our novel browser-side mechanism for the protection
of web protocols;

• Chapter 4 presents our analysis on Java keystore implementations.

7

Chapter 1

Analysis, Maintenance and
Cross-Compilation of Firewall
Policies

1.1 Introduction

Firewalls are one of the standard mechanisms for protecting computer networks but, as
any other security mechanism, they become useless when incorrectly configured. Config-
uring and maintaining them is very difficult also for expert system administrators since
configurations typically contain hundreds of rules and it is often hard to figure out the
overall firewall behaviour. Moreover, firewall rules influence each other, e.g., a rule shad-
ows others making them redundant or preventing them to be triggered. When a network
is protected by more than one firewall the situation complicates further since the configu-
rations of the various firewalls need to be kept coherent: enabling or disabling a connec-
tion typically requires to update the configurations of all the firewalls that are potentially
traversed by the considered connection.

Firewall policy languages are varied and usually rather complex, accounting for low-
level system and network details and supporting non trivial control flow constructs, such
as jumps and gotos. Configurations enforce policies in a way that typically depends on
how packets are processed by the network stack of the operating system running on the
firewall machine. Further difficulties for network administrators come from Network
Address Translation (NAT), a pervasive component of IPv4 networking that operates
while packets traverse the firewall. In IPv4, NAT is indispensable for performing port
redirection and translating addresses, e.g., when a single public address is used for a
whole private network.

Over the past few years, there has been a growing interest in high level languages for
programming the network as a whole. The Software Defined Network (SDN) paradigm
decouples network control and forwarding functions, by abstracting the underlying in-
frastructure from applications and network services [66]. A unified, high level paradigm
to configure networks and firewalls is appealing and might, in principle, make firewall
configuration simpler and less error-prone. However, SDN requires a suitable infrastruc-
ture and, even if it seems to be spreading fast, it will take time before “old” technology

8 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

is dismissed in favor of it. In the years to come, we still have to face a variety of firewall
configuration languages, including the ones running on a variety of legacy devices. More
often than nowadays, network administrators will have to face the porting of legacy fire-
wall configurations to fit this new paradigm.

In this work, we propose a transcompilation pipeline to assist a network administra-
tor in analysing, maintaining and porting firewall configurations. Our proposal is indepen-
dent of the specific target firewall system, so administrators are not required to have a
deep knowledge about the internals of the firewall systems and of their languages, rather
they can focus on the policy to enforce. Our transcompiling pipeline is composed of the
following stages:

1. decompile the policy in the source language into an intermediate language;

2. extract the meaning of the policy as a set of non overlapping declarative rules de-
scribing the accepted packets and their translations in logical terms;

3. compile the declarative rules into the target language.

The first stage relies on IFCL, a generic intermediate language that incorporates all the
typical features of firewall languages such as NAT, jumps, invocations to rulesets and
stateful packet filtering. It has been designed so to make it relatively easy to encode in
it real firewall configuration languages. Interestingly, IFCL unveils the bipartite structure
common to real firewall languages: the first component consists of the rulesets determin-
ing the destiny of packets, the second one specifies the steps needed to elaborate packets
and the order in which rulesets are applied. While the format of the rules and the actions
are largely shared by the available firewall languages, apart from minor syntactic differ-
ences, the second component is peculiar to each operating system and each firewall tool
and, intuitively, summarizes the specific low-level behaviour of a particular system.

The second stage transforms a real firewall configuration encoded in IFCL into an
abstract specification that represents the set of allowed connections. This version ab-
stracts from low-level details, e.g., the control flow, duplicated or shadowed rules. In
this way it exposes the meaning of the configuration and makes it easier for system ad-
ministrators to check whether or not the intended security policy is correctly enforced.
Moreover, by comparing two abstract specifications, an administrator can detect the dif-
ferences between configurations and check that updates have the desired effect on the
firewall behaviour.

The last stage supports cross-platform recompilation into different firewall systems.
More precisely, we transform the abstract version back into an IFCL configuration for the
target firewall system and from that we compile the actual configuration.

As a proof of concept, we have developed FWS which is available for download at
[32]. Our tool currently implements the first two steps of the transcompiling pipeline,
while support for the third stage is currently under active development. We support
the most used firewall tools in Linux and Unix [134, 179, 149] and, partially, Cisco IOS
routers. New firewall systems can be easily added to our tool by providing a plug-in

1.1. Introduction 9

for the front-end to our intermediate language. Indeed, once a configuration has been
translated into IFCL, the analysis can be performed independently of the initial firewall
language and system.

1.1.1 Contributions

Our contributions can be summarized as follows.

1. We present FWS, a language-independent tool that translates a real firewall config-
uration into an abstract specification. This specification is a table that declaratively
represents the set of accepted packets with their possible translations. Roughly,
each row corresponds to a configuration rule. However, the resulting table is more
readable than the standard rulesets, because its rows are independent from each
other, while in real firewall configurations the meaning of a rule depends on the
others and on the firewall control flow. As a consequence, the table contains no
anomalies, e.g., shadowing or redundancies.

2. The query language of FWS allows administrators to analyse the behaviour of a
configuration, when translated in its abstract specification. In particular, one can
check reachability properties, e.g., which subnets, hosts and ports are reachable
from other hosts and subnets, as well as policy equivalence, implication and dif-
ference. Furthermore, it helps an administrator in maintaining a configuration by
observing the effects of adding, deleting or modifying some rules, e.g., the admin-
istrator can compute the overall contribution of a given rule in terms of accepted or
dropped packets.

3. We introduce the new language IFCL that decomposes a firewall configuration into
rulesets and a control diagram. Rules determine the destiny of packets and their
form is common to most of the existing languages. The control diagram is specific
of each firewall system and it describes the flow of the packet through the network
stack of the operating system. Our language is the crucial component that makes
FWS language-independent, but it is also of independent interest as a generic fire-
wall configuration language. A relevant aspect of IFCL is its formal semantics (cf.
Section 1.4.2), while real languages usually have none. The formal semantics en-
ables us to prove the correctness of our transcompiling pipeline, i.e., that all its
transformations preserve the meaning of the original firewall policy.

4. We show how FWS transforms a configuration from the intermediate language into
a first order logic predicate that determines which are the packets accepted by the
configuration in hand, with all the possible NAT translations. The model of this
predicate is then used to build the table representing the abstract specification of
the configuration. The logical characterization is, by itself, insightful and provides
the query engine of FWS with a formal, algorithmic basis.

10 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

5. We propose a generic compilation algorithm that distributes the rules of the abstract
specification on the relevant points of the firewall where it decides the destiny of
packets.

6. We present results of experiments performed with FWS on real firewall configura-
tions. The tool synthesizes whole complex policies, analyses them and answers to
queries in a matter of minutes. In some cases for specific queries or simple policies,
it works almost in real-time. Policy implication and equivalence are also checked
very efficiently.

1.1.2 Structure of the Chapter

In Section 1.2, we briefly survey iptables, ipfw and pf, the most widespread real fire-
wall systems which are used in the examples of this chapter. Section 1.3 illustrates FWS
at work on a small yet realistic case study. In particular we focus on how network ad-
ministrators can exploit FWS to check firewall configurations for host reachability, policy
equivalence and difference. Furthermore, we show an example of transcompiling a con-
figuration. In Section 1.4 we present our intermediate language, its formal semantics and
the encodings of iptables, ipfw and pf. The logical characterization of all packets ac-
cepted by a firewall with their possible translations is in Section 1.5. It also describes the
internals of FWS and the algorithm for synthesizing abstract specifications and for policy
analysis. Finally, it proves the correctness of first two stages of our pipeline. Section 1.6
describes the last stage, in particular the compilation strategy for generating target con-
figuration. It also proves the source and target configurations equivalent, so establishing
the correctness of the whole pipeline. In Section 1.7, we apply our tool on various real
firewall policies to assess its effectiveness and scalability. Section 1.8 compares our work
with other proposals in the literature.

1.2 Background

Usually, system administrators classify networks into security domains. Through fire-
walls they monitor the traffic and enforce a predetermined set of access control policies
among the various hosts and subnetworks (packet filtering). System administrators can
also use a firewall to connect a network with private IPs to other (public IP) networks or
to the Internet and to perform connection redirections through NAT.

Firewalls are implemented either as proprietary, special devices, or as software tools
running on general purpose operating systems. Independently of their actual implemen-
tations, they are usually characterized by a set of rules that determine which packets
reach the different subnetworks and hosts and how they are modified or translated.

Below, we briefly review the most widespread firewall systems in Linux and Unix:
iptables [134], ipfw [179] and pf [149].

1.2. Background 11

1.2.1 iptables

It is the default packet filtering tool in Linux distributions and operates on top of Netfilter,
the standard framework for packet processing implemented in the Linux kernel [161].

The basic notions of iptables are tables and chains. Intuitively, a table is a collection
of ordered lists of policy rules called chains. The most commonly used tables are:

• filter for packet filtering;

• nat for network address translation;

• mangle for packet alteration.

There are five built-in chains that are inspected at specific moments of the packet life
cycle [181]:

• PreRouting when the packet reaches the host;

• Forward when the packet is routed through the host;

• PostRouting when the packet is about to leave the host;

• Input when the packet is routed to the host;

• Output when the packet is generated by the host.

Tables do not necessarily contain all the predefined chains and further user-defined chains
can be added.

Each rule specifies a condition and a target. If the packet matches the condition then
it is processed according to the specified target, which can be a built-in target or a user-
defined chain. The most commonly used targets are:

• ACCEPT and DROP to accept and discard packets;

• RETURN to stop examining the current chain and resume the processing of a previous
chain;

• DNAT to perform destination NAT, i.e., translating the destination IP address or port
of the packet;

• SNAT to perform source NAT, i.e., translating the source IP address or port;

• MARK to tag a packet with a numeric value that can be used to identify the packet in
the condition of the following rules (possibly in different chains).

When the target is a user-defined chain, two “jumping” modes are available: call and
goto. The difference between the two arises when a RETURN is executed or the end of the
chain is reached: the evaluation resumes from the rule following the last call. Built-in
chains have a user-configurable default policy (ACCEPT or DROP): if the evaluation reaches
the end of a built-in chain without matches, its default policy is applied.

12 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

1.2.2 ipfw

It is the standard firewall for FreeBSD [179]. A configuration consists of a single ruleset
that is inspected twice, when the packet enters the firewall and before it exits. It is pos-
sible to specify whether a rule should be applied only in one of the two directions using
the keywords in and out.

Similarly to iptables, rules are inspected sequentially until the first match occurs and
the corresponding action is taken. The packet is dropped if there is no matching rule. The
most common actions in ipfw are the following:

• allow and deny are used to accept and reject packets;

• nat applies destination NAT to incoming packets and source NAT to outgoing
packets;

• check-state accepts packets that belong to established connections;

• skipto, call and return allow to alter the sequential order of inspection of the
rules in the ruleset.

Packet marking is supported also by ipfw: if a rule containing the tag keyword is applied,
the packet is marked with the specified identifier and then processed according to the
rule’s action.

1.2.3 pf

It is the standard firewall of OpenBSD [149] and is included in macOS since version 10.7.
Each rule consists of a predicate which is used to select packets and an action that speci-
fies how to process the packets satisfying the predicate. The most frequently used actions
are pass and block to accept and discard packets, rdr and nat to perform destination and
source NAT. Packet marking works as in ipfw.

Differently from other systems, the action taken on a packet is determined by the
last matched rule, unless otherwise specified by using the quick keyword. pf has a single
ruleset that is inspected both when the packet enters and exits the firewall. When a packet
enters the firewall, DNAT rules are examined first and filtering is performed after the
address translation. Similarly when a packet leaves the firewall: first its source address is
translated by the relevant SNAT rules, and then the resulting packet is possibly filtered.
Packets belonging to established connections are accepted by default, thus bypassing the
filters.

1.3 The Pipeline at Work

This section introduces a a small yet realistic scenario through which we exemplify the
three stages of our pipeline, namely:

1. the decompilation of a firewall configuration into the intermediate language IFCL;

1.3. The Pipeline at Work 13

2. the synthesis of the declarative specification;

3. the compilation in the target language.

In addition, we illustrate how our tool FWS supports system administrators in reasoning
on and managing a firewall configuration, spotting mistakes and modifying the configu-
ration so to fix them. In particular, we check the following behavioural properties:

• reachability: verify whether a certain address is reachable from another one, possibly
through NAT;

• policy implication and equivalence: check if the packets accepted by one configuration
are at least/exactly the same accepted by another configuration;

• policy difference: see what packets are accepted by a configuration and denied by
another one. This feature is particularly useful when maintaining a policy to check
how updates affect the firewall behaviour, because one can see which packets are
accepted and which are filtered out when a specific rule is added.

• related rules: understand which configuration rules affect the processing of the pack-
ets identified by a user-provided query.

Finally we show an example of porting a policy produced by a proof-of-concept extension
of FWS based on the theory presented in Section 1.6.

1.3.1 Network Structure and Policy Requirements

As running example, consider the network shown in Figure 1.1. The internal network
consists of two parts:

• network 10.0.1.0/24 contains servers and production machines, including a HTTPS
server (10.0.1.15) that runs the company website on port 443;

• network 10.0.2.0/24 contains the machines of the employees, including the com-
puter of the system administrator (10.0.2.15) where a SSH service is running on
port 22.

The firewall has three network interfaces: eth0 connected to 10.0.1.0/24 with IP 10.0.1.1,
eth1 connected to 10.0.2.0/24 with IP 10.0.2.1 and ext connected to the Internet with
public IP 23.1.8.15.

We want to enforce the following requirements on the traffic:

1. internal networks can freely communicate;

2. connections to the public IP on ports 443 and 22 are translated (DNAT) to 10.0.1.15
and 10.0.2.15, respectively. This condition permits external hosts to access the web-
site by connecting to the public IP address 23.1.8.15 at port 443, that is redirected to
the corresponding internal host (similarly for the SSH server);

14 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

10.0.1.0/24

10.0.1.1510.0.2.15

eth1
10.0.2.1

eth0
10.0.1.1

ext
23.1.8.15

10.0.2.0/24

FIGURE 1.1: Network of our case study.

3. connections from the internal hosts to the Internet are allowed only towards HTTP
and HTTPS web servers, i.e., with destination ports 80 and 443;

4. source addresses of connections from the internal hosts to the Internet are translated
(SNAT) to the external IP address of the firewall. This allows hosts with private IPs
to access the Internet;

5. the firewall can connect to any other host.

1.3.2 Compliant Configuration in iptables

Here we provide a configuration in iptables for the case study of Section 1.3.1 and we
use FWS to decompile and analyse it to check whether it complies with the desired re-
quirements.

Configuring the Firewall with iptables

Figure 1.2 shows the policy for our example in the standard iptables-save format used
to store iptables rules in a configuration file.

The first sequence of commands delimited by *nat and COMMIT keywords sets the
default policies of all nat chains to ACCEPT, inserts into the nat PREROUTING chain the
rules for redirecting the incoming connections to the internal servers (requirement 2) and
adds to the nat POSTROUTING chain the rule for SNAT (requirement 4).

The subsequent block from lines *filter to COMMIT specifies a default DROP policy for
the INPUT and FORWARD chains and a default ACCEPT policy for the OUTPUT chain, letting the
firewall communicate with any host (requirement 5). The first two filtering rules allow
the packets belonging to connections flagged as established to go through and towards
the firewall, i.e., whenever a new connection is allowed any further packet belonging to
the same connection will also be allowed. This is not explicitly required by the policy

1.3. The Pipeline at Work 15

NAT rules
*nat
Default policy ACCEPT in nat chains
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]

Requirement 2: Redirect incoming SSH and HTTPS connections to hosts
10.0.2.15 and 10.0.1.15 (DNAT)
-A PREROUTING -p tcp -d 23.1.8.15 --dport 22 -j DNAT --to 10.0.2.15
-A PREROUTING -p tcp -d 23.1.8.15 --dport 443 -j DNAT --to 10.0.1.15
Requirement 4: Connections towards the Internet exit with source
address 23.1.8.15 (SNAT)
-A POSTROUTING -s 10.0.0.0/16 ! -d 10.0.0.0/16 -j SNAT --to 23.1.8.15

COMMIT

Filtering rules
*filter
Default ACCEPT in output (Requirement 5), DROP in the other chains
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [0:0]

Allow established packets
-A FORWARD -m state --state ESTABLISHED -j ACCEPT
-A INPUT -m state --state ESTABLISHED -j ACCEPT
Requirement 1: Allow arbitrary traffic between internal networks
-A FORWARD -s 10.0.0.0/16 -d 10.0.0.0/16 -j ACCEPT
Requirement 3: Allow HTTP/HTTPS outgoing traffic
-A FORWARD -s 10.0.0.0/16 -p tcp --dport 80 -j ACCEPT
-A FORWARD -s 10.0.0.0/16 -p tcp --dport 443 -j ACCEPT
Requirement 2: Allow SSH/HTTPS incoming traffic to the corresponding
machines in the internal networks
-A FORWARD -p tcp -d 10.0.2.15 --dport 22 -j ACCEPT
-A FORWARD -p tcp -d 10.0.1.15 --dport 443 -j ACCEPT

COMMIT

FIGURE 1.2: Example policy of Section 1.3.1 in iptables.

but is necessary to ensure functionality of connection-oriented protocols. Then we have
ACCEPT rules corresponding to the requirements 1, 3 and 2, respectively. Notice that re-
quirement 2 has also rules in the nat table above.

Decompiling and Analyzing the Configuration

We now use FWS to check that the configuration of Figure 1.2 meets the requirements 1–5
of Section 1.3.1. First, we ask the tool the following query:

((srcIp == 10.0.1.0/24 && dstIp == 10.0.2.0/24) ||

(srcIp == 10.0.2.0/24 && dstIp == 10.0.1.0/24)) && state == NEW

where srcIp, dstIp represent the fields for source and destination address of the IP
packet entering the firewall interfaces, and state tells if a connection is new or estab-
lished. The query checks whether hosts with srcIp 10.0.1.0/24 can start new connections

16 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

TABLE 1.1: Results of FWS when checking the iptables configuration of
Figure 1.2.

(A) Requirement 1.

Src IP Src Port Dst IP Dst Port Protocol State
10.0.2.0/24 * 10.0.1.0/24 * * NEW
10.0.1.0/24 * 10.0.2.0/24 * * NEW

(B) Requirement 2.

Src IP Src Port DNAT IP DNAT Port Dst IP Dst Port Protocol State
* * 10.0.1.15 - 23.1.8.15 443 tcp NEW
* * 10.0.2.15 - 23.1.8.15 22 tcp NEW

(C) Requirements 3 and 4.

Src IP Src Port SNAT IP SNAT Port Dst IP Dst Port Protocol State
10.0.0.0/16 * 23.1.8.15 - * \ {10.0.0.0/16} 80 tcp NEW

443

(D) Requirement 5.

Src IP Src Port Dst IP Dst Port Protocol State
23.1.8.15 * * * * NEW

towards those with dstIp 10.0.2.0/24, or viceversa, as stated by requirement 1. The op-
erator == constrains a variable to be equal to a value or inside a certain interval; the
operators && and || stand for logical conjunction and disjunction. The output we obtain
from the tool is in Table 1.1a, where * denotes any value. The table contains all of the
allowed connections matching the query, confirming that requirement 1 is satisfied.

We now check that external hosts can access the web and the SSH servers only by
connecting to the firewall IP address 23.1.8.15 at ports 443 and 22 respectively (require-
ment 2). To do that, we ask which packets can reach the hosts with addresses 10.0.1.15
and 10.0.2.15:

(dstIp’ == 10.0.1.15 || dstIp’ == 10.0.2.15) && state == NEW

The variable dstIp’ represents the destination address of the packet possibly translated
by a NAT: in the queries, variables with quotes, e.g., dstIp’ above, denote constraints
applied to packets exiting a firewall interface; variables without primes instead constrain
packets entering the firewall. The result in Table 1.1b confirms that requirement 2 is sat-
isfied: indeed, the servers 10.0.1.15 and 10.0.2.15 are reachable from any host connecting
to the public IP address of the firewall on ports 443 and 22 only.

The next query checks requirements 3 and 4 together:

srcIp == 10.0.0.0/16 && not(dstIp’ == 10.0.0.0/16) && state == NEW

Intuitively, the query asks for the new connections that are allowed from an internal
source to an external destination. The answer in Table 1.1c shows that both the require-
ments are met. Indeed, the notation * \ {10.0.0.0/16} represents all destination ad-
dresses except those in the subnet 10.0.0.0/16. Finally, by checking requirement 5 with
the query

1.3. The Pipeline at Work 17

NAT setup. The first line defines the source NAT for packets leaving the
firewall through the interface ext (Requirement 4), the other two lines
specify to perform DNAT on packets arriving to the ports 22 and 443 of
the firewall (Requirement 2)
ipfw -q nat 1 config if ext unreg_only reset \

redirect_port tcp 10.0.1.15:443 443 \
redirect_port tcp 10.0.2.15:22 22

Allow established packets
ipfw -q add 01 check -state
Requirement 1: Allow arbitrary traffic between internal networks
ipfw -q add 10 allow all from 10.0.0.0/16 to 10.0.0.0/16
Requirement 2: Apply DNAT on packets arriving to the external interface
of the firewall
ipfw -q add 20 nat 1 ip from any to 23.1.8.15 in recv ext
Requirement 2: Allow SSH/HTTPS incoming traffic to the corresponding
hosts and responses from these services
ipfw -q add 21 allow tcp from any to 10.0.1.15 443
ipfw -q add 22 skipto 70 tcp from 10.0.1.15 443 to any
ipfw -q add 23 allow tcp from any to 10.0.2.15 22
ipfw -q add 24 skipto 70 tcp from 10.0.2.15 22 to any
Requirements 3 and 4: Allow HTTP/HTTPS outgoing traffic
ipfw -q add 30 skipto 70 tcp from 10.0.0.0/16 to any 80,443 \

setup keep -state
Requirement 5: Allow arbitrary outgoing traffic by the firewall
ipfw -q add 50 allow ip from me to any setup keep -state
Drop all the other packets
ipfw -q add 60 deny all from any to any
Requirement 4: Apply SNAT to outgoing connnections
ipfw -q add 70 nat 1 ip from any to not 10.0.0.0/16 out
ipfw -q add 71 allow ip from any to any

FIGURE 1.3: Policy in ipfw.

srcIp == 23.1.8.15 && state == NEW

we obtain the output of Table 1.1d showing that the firewall can reach any host.
We can thus conclude that the configuration in Figure 1.2 is correct with respect to the

requirements.

1.3.3 Non-Compliant Configuration in ipfw

Figure 1.3 implements the example policy in ipfw. On purpose, we introduce subtle but
realistic differences with respect to the one in iptables and we show how FWS spots
them in a clear and concise way.

Configuring the Firewall with ipfw

The first command declares NAT rules, named nat 1, that will be activated by the fol-
lowing rules. Notice that the next commands have numbers (after the add keyword)
that can be used for jumps, as we will see below. We refer to those numbers in the de-
scription. Command 01 accepts all the packets that belong to already established con-
nections (check-state). As for iptables this is important to ensure functionality of
connection-oriented protocols. Command 10 enables traffic between internal networks

18 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

TABLE 1.2: Results of FWS when checking the ipfw configuration of Fig-
ure 1.3.

(A) Requirement 1.

Src IP Src Port Dst IP Dst Port Protocol State
10.0.2.0/24 * 10.0.1.0/24 * * NEW
10.0.1.0/24 * 10.0.2.0/24 * * NEW

(B) Requirement 2.

Src IP Src Port DNAT IP DNAT Port Dst IP Dst Port Protocol State
* \ { * 10.0.2.15 - 23.1.8.15 22 tcp NEW
10.0.1.0-10.0.2.255
127.0.0.0/8

}
* \ { * 10.0.1.15 - 23.1.8.15 443 tcp NEW
10.0.1.0-10.0.2.255
127.0.0.0/8

}

(C) Requirements 3 and 4.

Src IP Src Port SNAT IP SNAT Port Dst IP Dst Port Protocol State
10.0.2.15 22 23.1.8.15 - * \ {10.0.0.0/16} * tcp NEW
10.0.1.15 443 23.1.8.15 - * \ {10.0.0.0/16} * tcp NEW
10.0.0.0/16 * 23.1.8.15 - * \ {10.0.0.0/16} 80 tcp NEW

443

(D) Requirement 5.

Src IP Src Port Dst IP Dst Port Protocol State
23.1.8.15 * * * * NEW

(requirement 1). Command 20 applies nat 1 to the packets received via the interface ext,
implementing the destination NAT of requirement 2. The actual connections to hosts
10.0.1.15 and 10.0.2.15, respectively on ports 443 and 22, are enabled by the commands
21–24. Notice that packets coming from those hosts are handled by jumping (skipto 70)
to the last but one line, which applies nat 1, translating the source address to 23.1.8.15
(SNAT). Then packets are accepted by command 71. Next line (command 30) imple-
ments the requirements 3 and 4 similarly to previous rules, i.e., by jumping to 70 which
enforces the SNAT on outgoing connections. Option keep-state is the counterpart of
check-state: the connection is saved in the firewall state so that packets belonging to
the same connection will be allowed through the firewall by rule 01. Rule 50 allows the
firewall host to communicate to any host. Finally, command 60 rejects any packet that
does not match any previous rule, implementing a default deny policy.

Decompiling and Analyzing the Configuration

We now use FWS to check if the configuration of Figure 1.3 meets the requirements 1–5 of
Section 1.3.1. We perform exactly the same queries we did for iptables in Section 1.3.2.
In fact, one of the main advantages of our approach is the independence of the analysis
from the particular firewall system in use.

Queries for the requirements 1 and 5 give exactly the same results we got for iptables
(cf. Table 1.2a, 1.2d and 1.1a, 1.1d). For requirement 2, instead, we get an interesting

1.3. The Pipeline at Work 19

difference. In the ipfw configuration we obtain that hosts 10.0.1.15 and 10.0.2.15 cannot
be reached by the internal network and by the firewall host via DNAT (cf. Table 1.2b).
This is because, in the ipfw configuration, rule 20 is applied only for packets coming from
the interface ext, i.e., packets received from the Internet. In fact, requirement 2 could be
interpreted in this stricter way by a system administrator, as hosts 10.0.1.15 and 10.0.2.15
are anyway reachable from internal hosts even without DNAT. FWS is able to spot this
subtle difference in the two configurations. To make the ipfw configuration behave as the
iptables one (for requirement 2), it is enough to remove recv ext from rule 20.

In checking the requirements 3 and 4, FWS reports that hosts 10.0.1.15 and 10.0.2.15
can start new connections from source ports 443 and 22 (respectively) to any other host.
This is due to rules 22 and 24 that enable the two hosts to answer connections done
through the DNAT and constitutes an alternative way to make connection-oriented pro-
tocols work without exploiting the check-state command. In principle, this should be
considered non-compliant with requirement 3 as new connections from 443 and 22 from
the two hosts will access any port and not just 80 and 443, as requested. Again, FWS
spots this difference in the policy. This error can be rectified by removing rules 22 and 24

from the policy and adding the keep-state keyword to the rules 21 and 23.
Interestingly, FWS can compute the equivalence of configurations written for different

firewall systems. In this particular case, FWS outputs that the fixed ipfw configuration
and the iptables one are equivalent, relatively to the five requirements.

1.3.4 Maintaining Firewall Configurations

In this section, we show how FWS can be used to perform maintenance of the iptables

policy presented in Section 1.3.2.
The company has added a new machine to the subnet 10.0.1.0/24, which has been as-

signed the IP address 10.0.1.22. Differently from the other hosts of the network, we want
to allow Internet access (with SNAT) to this machine only over HTTPS. The other require-
ments on the traffic should be preserved. For this purpose, we can add the following rule
to the FORWARD chain, which drops connections to port 80 from host 10.0.1.22:

-A FORWARD -s 10.0.1.22 -p tcp ––dport 80 -j DROP

However, we must be careful about the position where to place this rule in order to fulfill
the desired requirement and avoid to unintentionally block legal traffic.

If we place the new rule at the end of the FORWARD chain, the policy equivalence analysis
implemented in FWS reports that the new policy is equivalent to the previous version.
We can use the related rules analysis to understand which rules are relevant for processing
HTTP packets. We find out that the output of the analysis includes only the following
filtering rule from the FORWARD chain:

-A FORWARD -s 10.0.0.0/16 -p tcp ––dport 80 -j ACCEPT

The above rule accepts all the HTTP traffic from the internal networks and is evaluated
before the new DROP rule. Hence, our new rule should be placed before this one.

20 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

TABLE 1.3: Maintenance of the iptables configuration.

(A) Policy differences after the wrong update.

+/- Src IP Src Port Dst IP Dst Port Protocol State
+ 10.0.0.0/16 \ { * 10.0.0.0/16 80 tcp NEW

10.0.1.22
}

- 10.0.0.0/16 * 10.0.0.0/16 80 tcp NEW

+/- Src IP Src Port SNAT IP SNAT Port Dst IP Dst Port Protocol State
+ 10.0.0.0/16 \ { * 23.1.8.15 - * \ { 80 tcp NEW

10.0.1.22 10.0.0.0/16
} }

- 10.0.0.0/16 * 23.1.8.15 - * \ { 80 tcp NEW
10.0.0.0/16

}

(B) Policy differences after the correct update.

+/- Src IP Src Port SNAT IP SNAT Port Dst IP Dst Port Protocol State
+ 10.0.0.0/16 \ { * 23.1.8.15 - * \ { 80 tcp NEW

10.0.1.22 10.0.0.0/16
} }

- 10.0.0.0/16 * 23.1.8.15 - * \ { 80 tcp NEW
10.0.0.0/16

}

If we add the new rule before those of the other requirements, e.g., after the rules that
allow packets of incoming connections, FWS reports that the policy is not equivalent to
the previous one. We can check the impact of our changes by running the policy difference
analysis projected over the HTTP traffic:

protocol == tcp && dstPort == 80

The output of the analysis is shown in Table 1.3a. The first column is + or - for lines that
appear in the synthesis or disappear after the updates, respectively. We can see that host
10.0.1.22 is now unable to connect to the Internet, as desired (second table of Table 1.3a).
However, our update also prevents communications over HTTP with other machines on
the internal networks, thus violating requirement 1 (first table of Table 1.3a).

The correct place where to add the new rule is between the rule for requirement 1
and those for requirement 3. In this way we allow HTTP traffic from 10.0.1.22 only to the
internal networks. If we repeat the analysis, we see that now the only difference is just in
the HTTP traffic towards the Internet, as desired (cf. Table 1.3b).

1.3.5 Transcompiling a Configuration

Suppose that the system administrator has to migrate the firewall configuration of Fig-
ure 1.2 from iptables to pf. Performing this porting by hand is complex and error
prone because the administrator has to write the pf configuration from scratch and test
its equivalence with respect to the original one. Furthermore, this requires a deep un-
derstanding of the policy meaning, as well as of both iptables and pf and their con-
figuration languages. We apply below the stages of our pipeline to solve this problem,
guaranteeing by construction that the firewall semantics is preserved.

1.4. IFCL: The Intermediate Firewall Configuration Language 21

TABLE 1.4: Synthesis of the iptables configuration in Figure 1.2.

Src IP Src Port SNAT IP DNAT IP Dst IP Dst Port Protocol State
10.0.0.0/16 * - - 10.0.0.0/16 * * NEW
10.0.0.0/16 * 23.1.8.15 - * \ { 443 tcp NEW

10.0.0.0/16 80
}

* * - 10.0.2.15 23.1.8.15 22 tcp NEW
* * - 10.0.1.15 23.1.8.15 443 tcp NEW
23.1.8.15 * - - * * * NEW
* * - - 10.0.2.15 22 tcp NEW
* * - - 10.0.1.15 443 tcp NEW
* * * * * * * ESTABLISHED

First we extract the meaning of the iptables policy in Table 1.4, corresponding to
stage 1 and 2 of our pipeline. The output is almost as expected but for lines 6–7 which
are reporting that the HTTPS server and SSH server can be reached bypassing DNAT.
Technically this is allowed by the firewall policy but it cannot occur in practice since the
two servers have a private IP address that cannot be routed on the Internet.

According to stage 3, we compile the refactored policy in pf, in two steps. First, the
rows are translated in a sequence of IFCL rules, possibly optimized, and then compiled
in pf. The result is in Figure 1.4 and was computed with a proof-of-concept extension of
FWS based on the theory presented in Section 1.6.

rdr proto tcp from any to 23.1.8.15 port 443 tag T1 -> 10.0.1.15
rdr proto tcp from any to 23.1.8.15 port 22 tag T2 -> 10.0.2.15
no rdr proto tcp from 10.0.0.0/16 to {!10.0.0.0/16} port {80, 443} tag T3
nat tagged T3 -> 23.1.8.15

block all
pass from 10.0.0.0/16 to 10.0.0.0/16
pass from me to any
pass proto tcp from any to 10.0.2.15 port 22
pass proto tcp from any to 10.0.1.15 port 443
pass tagged T1
pass tagged T2
pass tagged T3

FIGURE 1.4: The policy of Section 1.3.2 ported to pf.

1.4 IFCL: The Intermediate Firewall Configuration Language

Our intermediate firewall configuration language (IFCL) is parametric with respect to
the notion of state and the steps performed to elaborate packets. For generality, we do
not detail the format of network packets. In the following we only use sa(p) and da(p)
to denote the source and destination addresses of a given packet p; additionally, tag(p)
returns the tag m associated with p. An address a consists of an IP address ip(a) and
possibly a port port(a). An address range n is a pair consisting of a set of IP addresses and
a set of ports, denoted ip(n):port(n). An address a is in the range n (written a ∈ n) if
ip(a) ∈ ip(n) and port(a) ∈ port(n) when port(a) is defined, e.g., for ICMP packets we
only check if the IP address is in the range.

22 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

Firewalls modify packets, e.g., through network address translations. We write p[da ↦→
a] and p[sa ↦→ a] to denote a packet identical to p, except for the destination address da
and source address sa, which is equal to a, respectively. Similarly, p[tag ↦→ m] denotes
the packet with a modified tag m.

Here we consider stateful firewalls that keep track of the state s of network connections
and use this information to process a packet. Any existing network connection can be de-
scribed by several protocol-specific properties, e.g., source and destination addresses or
ports, and by the translations to apply. In this way, filtering and translation decisions are
not only based on administrator-defined rules, but also on the information built by pre-
vious packets belonging to the same connection. We omit a precise definition of a state,
but we assume that it tracks at least the source and destination ranges, NAT operations
and the state of the connection, i.e., established or not. When receiving a packet p one
may check whether it matches the state s or not. We left unspecified the match between a
packet and the state because it depends on the actual shape of the state. When the match
succeeds, we write p ⊢s α, where α describes the actions to be carried on p; otherwise we
write p ̸⊢ s.

A firewall rule is made of two parts: a predicate ϕ expressing criteria over packets,
and an action t, called target, defining the “destiny” of matching packets. Here we con-
sider a core set of actions included in most of the real firewalls. These actions not only
determine whether or not a packet passes across the firewall, but they also control the
flow in which the rules are applied. The list of supported action follows:

ACCEPT a packet passes
DROP a packet is discarded
CALL(R) invoke the ruleset R
GOTO(R) jump to the ruleset R
RETURN exit from the current ruleset
NAT(nd, ns) network translation
MARK(m) marking with tag m
CHECK-STATE(X) examine the state

The targets CALL(_) and RETURN implement a procedure-like behaviour; GOTO(_) is simi-
lar to unconditional jumps. In the NAT action nd and ns are address ranges used to trans-
late the destination and source address of a packet, respectively; in the following we use
the symbol ⋆ to denote an identity translation, e.g., n : ⋆ means that the address is trans-
lated according to n, whereas the port is kept unchanged. The MARK action marks a packet
with a tag m. The argument X ∈ {←,→,↔} of the CHECK-STATE action denotes the fields
of the packets that are rewritten according to the information from the state. More pre-
cisely, → rewrites the destination address, ← the source address and↔ both. A rule is
formally defined as follows:

Definition 1 (Firewall rule). A firewall rule r is a pair (ϕ, t) where ϕ is a logical formula over
a packet and t is the target action of the rule.

1.4. IFCL: The Intermediate Firewall Configuration Language 23

A packet p matches a rule r with target t whenever ϕ holds.

Definition 2 (Rule match). Given a rule r = (ϕ, t) we say that p matches r with target t,
denoted p |=r t, iff ϕ(p). We write p |̸= r when p does not match r.

We can now define how a packet is processed given a possibly empty list of rules (de-
noted with ϵ), hereafter called ruleset. Similarly to real implementations of firewalls, we
inspect the rules in the list, one after the other, until we find a matching one, which es-
tablishes the destiny (or target) of the packet. For sanity, we assume that no GOTO(R) and
CALL(R) occur in the ruleset R, so avoiding self-loops. We also assume that rulesets may
have a default target denoted by td ∈ {ACCEPT, DROP}, which accepts or drops according
to the will of the system administrator.

Definition 3 (Ruleset match). Given a ruleset R = [r1, . . . , rn], we say that p matches the i-th
rule with target t, denoted p |=R (t, i), iff

ri = (ϕ, t) ∧ p |=ri t ∧ ∀j < i . p |̸= rj

We also write p |̸= R if p matches no rules in R, formally if ∀r ∈ R . p |̸= r. Afterwards, we will
omit the index i when immaterial and we simply write p |=R t.

In our model we do not explicitly specify the steps performed by the kernel of the
operating system to process a single packet passing through the host. We represent this
algorithm through a control diagram, i.e., a graph where nodes represent different pro-
cessing steps and the arcs determine the sequence of steps. The arcs are labeled with a
predicate describing the requirements a packet has to meet in order to pass to the next
processing phase. We assume that control diagrams are deterministic, i.e., that every pair
of arcs leaving the same node has mutually exclusive predicates. For generality, we let
these predicates abstract, since they depend on the specific firewall.

Definition 4 (Control diagram). Let Ψ be a set of predicates over packets. A control diagram
C is a tuple (Q, A, qi, q f), where

• Q is the set of nodes;

• A ⊆ Q × Ψ × Q is the set of arcs, such that whenever (q, ψ, q′), (q, ψ′, q′′) ∈ A and
q′ ̸= q′′ then ∀p.¬(ψ(p) ∧ ψ′(p));

• qi, q f ∈ Q are special nodes denoting the start and the end of elaboration.

The firewall filters and possibly translates a given packet by traversing a control dia-
gram accordingly to the following transition function.

Definition 5 (Transition function). Let (Q, A, qi, q f) be a control diagram and let p be a packet.
The transition function δ : Q× Packet ↦→ Q is defined as

δ(q, p) = q′ iff ∃(q, ψ, q′) ∈ A. ψ(p) holds.

24 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

qi

Prem Pren Fwdm Fwd f

Inpm Inpn Inp f

Outm Outn Out f Postm Postn PreM InpM

q f

¬ψ1

ψ1

¬ψ2

ψ2

ψ2

¬ψ2

(A) iptables

qi

Inp

Out

q f

¬ψ1

ψ1

¬ψ2ψ2

ψ2

¬ψ2

(B) ipfw

qi

Inpn Inp f

Outn Out f

q f

¬ψ1

ψ1

ψ2

¬ψ2
¬ψ2

ψ2

(C) pf

FIGURE 1.5: Control diagrams of the different systems.

We can now define a firewall in IFCL.

Definition 6 (Firewall). A firewall F is a triple (C, ρ, c) where

• C is a control diagram;

• ρ is a set of rulesets;

• c : Q ↦→ ρ is the mapping from the nodes of C to the actual rulesets.

1.4.1 Decompiling Real Systems into IFCL

Here we encode the firewalls system considered so far as triples (C, ρ, c) of our framework
(stage 1). The encoding provides a formal semantics for these systems defined in terms
of that of IFCL (see Section 1.4.2).

Modelling iptables

Let L be the set of local addresses of a host; and let ψ1 and ψ2 predicates over packets
defined as follows:

ψ1(p) = sa(p) ∈ L ψ2(p) = da(p) ∈ L.

Figure 1.5a shows the control diagram C of iptables, where unlabeled arcs carry the
label “true”. It also implicitly defines the transition function according to Definition 5. In
iptables there are twelve built-in chains, each of which corresponds to a single ruleset.
So we can define the set ρp ⊆ ρ of primitive rulesets as the one made of Rman

INP , Rnat
INP, Rfil

INP,
Rman

OUT, Rnat
OUT, Rfil

OUT, Rman
PRE, Rnat

PRE, Rman
FOR, Rfil

FOR, Rman
POST and Rnat

POST, where the superscript and

1.4. IFCL: The Intermediate Firewall Configuration Language 25

subscript respectively represent the table name and the chain name. Note that the set
ρ \ρp contains the user-defined chains.

The mapping function c : Q ↦→ ρ is defined as follows:

c(qi) = Rϵ c(q f) = Rϵ c(Prem) = Rman
PRE

c(Pren) = Rnat
PRE c(Inpm) = Rman

INP c(Fwd f) = Rfil
FOR

c(Inpn) = Rnat
INP c(Inp f) = Rfil

INP c(Outm) = Rman
OUT

c(Outn) = Rnat
OUT c(Out f) = Rfil

OUT c(Fwdm) = Rman
FOR

c(Fwd f) = Rfil
FOR c(Postm) = Rman

POST c(Postn) = Rnat
POST

c(PreM) = Rman
PRE c(InpM) = Rman

INP

where Rϵ is an empty ruleset with ACCEPT as default policy.

Modelling ipfw

The control diagram C of ipfw, displayed in Figure 1.5b, is simpler than the one of
iptables. The node Inp represents the procedure executed when a packet reaches the
host from the network. Dually, Out is processed when the packet leaves the host. The
predicates ψ1, ψ2 are defined as for iptables and check whether the packet has been gen-
erated by the host or is addressed to the host itself, respectively. The transition function
δ easily follows from C, according to Definition 5.

We present the construction of the rulesets associated to the node Inp. Let R =

[rid1 , . . . , ridk] be the unique ruleset of ipfw, where the idi’s are the numeric identifiers
associated to the rules and ridk is the rule encoding the default policy set by the user. The
idea is to generate k different rulesets RI

i , one for each rule in R. If the rule ridi contains
the keyword out, i.e., the rule is not considered when the packet enters the firewall, we
let RI

i = [(true, GOTO(RI
i+1))]. Otherwise, we define RI

i = [trs(ridi), (true, GOTO(RI
i+1))],

where the translation trs is defined by cases below:

trs(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ϕ, GOTO(RI

n)) if r is skipto idn ϕ

(ϕ, CALL(RI
n)) if r is call idn ϕ

(ϕ, t) if r is t ϕ

The construction of the rulesets RO
i for the node Out is similar, but in this case the rules

containing the keyword in should be ignored. The mapping function c returns RI
1 for

Inp, RO
1 for Out, and an empty ruleset with ACCEPT as default policy for qi and q f . These

rulesets form the component ρ.

Modelling pf

Differently from iptables, pf has a single ruleset and the rule applied to a packet is the
last matching one, apart from the case of the so-called quick rules: as soon as one of these

26 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

rules matches the packet, its action is applied and the rest of the ruleset is ignored.
Figure 1.5c shows the control diagram C for pf that also defines the transition func-

tion. The nodes Inpn and Inp f represent the procedure executed when a packet reaches
the host from the network. Dually, Outn and Out f are for when the packet leaves the host.
The predicates ψ1 and ψ2 are those defined for iptables. Given the ruleset R representing
the firewall policy, we include the following rulesets in ρ:

• Rdnat contains the rule (state == ESTABLISHED, CHECK-STATE(→)) as the first one,
followed by all the rules rdr of R;

• Rsnat contains the rule (state == ESTABLISHED, CHECK-STATE(←)) as the first one,
followed by all the rules nat of R;

• Rfinp contains the rule (state == ESTABLISHED, ACCEPT) followed by all the quick

filtering rules of Rpf without modifier out, and finally the rule (true, GOTO(Rfinpr));

• Rfinpr contains all the no quick filtering rules of R without modifier out, in reverse
order;

• Rfout contains the rule (state == ESTABLISHED, ACCEPT) followed by all the quick

filtering rules of R without modifier in, and (true, GOTO(Rfoutr)) as last rule;

• Rfoutr includes all the no quick filtering rules of R without modifier in in reverse
order.

Let Rϵ be an empty ruleset with ACCEPT as default policy. The mapping function c is
defined as follows:

c(qi) = Rϵ c(Inpn) = Rdnat c(Outn) = Rsnat

c(q f) = Rϵ c(Inp f) = Rfinp c(Out f) = Rfout

1.4.2 Semantics

Now, we formally define the semantics of ipfw through two transition systems operating

in a master-slave fashion. The master has a labeled transition relation of the form s
p,p′−−→ s′.

The intuition is that the state s of a firewall changes to s′ when a new packet p reaches the
host and becomes p′. The configurations of the slave transition system are triples (q, s, p)
where:

• q ∈ Q is a control diagram node;

• s is the state of the firewall;

• p is the packet.

A transition (q, s, p)→ (q′, s, p′) describes how a firewall in a state s deals with a packet
p and possibly transforms it in p′, according to the control diagram C. Recall that the
state records established connections and other kinds of information that are updated

1.4. IFCL: The Intermediate Firewall Configuration Language 27

after the transition. In the slave transition relation, we rely on the following predicate
that describes an algorithm running a ruleset R on a packet p in the state s:

p, s |=S
R (t, p′)

This predicate searches for a rule in R matching the packet p through p |=R (t, i). If it
finds a matching rule, the target t is applied to p to obtain a new packet p′.

Recall that actions CALL(R), RETURN and GOTO(R) are similar to procedure calls, re-
turns and jumps in imperative programming languages. To correctly deal with them,
our predicate p, s |=S

R (t, p′) uses a stack S to implement a behaviour similar to the one
of procedure calls. We will denote with ϵ the empty stack and with · the concatenation
of elements on the stack. This stack is also used to detect and prevent loops in ruleset
invocation, as it is the case in real firewalls.

In the stack S we overline a ruleset R to indicate that it was pushed by a GOTO(_) action
and it has to be skipped when returning. Indeed, we use the following pop⋆ function in
the semantics of the RETURN action:

pop∗(ϵ) = ϵ pop∗(R · S) = (R, S) pop∗(R · S) = pop∗(S)

In case there is a non-overlined ruleset on the top of S, it behaves as a standard pop
operation; otherwise it extracts the first non-overlined ruleset. When S is empty, we
assume that pop∗ returns ϵ to signal the error.

Furthermore, in the definition of p, s |=S
R (t, p′) the notation Rk indicates the ruleset

[rk, ..., rn] resulting from dropping the first k− 1 rules from the ruleset R = [r1, ..., rn]. We
also assume the function establ that, taken an action α from the state, a packet p and the
fields X ∈ {←,→,↔} to rewrite, returns a possibly changed packet p′, e.g., in case of an
established connection. This function depends on the specific firewall we are modeling
and so it is left unspecified.

Finally, we assume as given a function nat(p, s, dn, sn) that returns the packet p trans-
lated under the corresponding NAT operation in the state s. The arguments dn and sn are
used to modify the destination range and the source range of p, i.e., to perform destina-
tion NAT and source SNAT. Also this function is left abstract.

Figure 1.6 shows the rules defining p, s |=S
R (t, p′). The first inference rule deals with

the case when the packet p matches a rule that says ACCEPT or DROP; in this case the
ruleset execution stops returning the found action and leaving p unmodified. When a
packet p matches a rule with action CHECK-STATE, we query the state s: if p belongs to an
established connection, we return ACCEPT and a p′ obtained by rewriting p. If p belongs
to a new connection, the packet is matched against the remaining rules in the ruleset.
When a packet p matches a NAT rule, we return ACCEPT and the packet resulting by the
invocation of the function nat. There are two cases if a packet p matches a GOTO(_). If
the ruleset R′ is not already in the stack, we push the current ruleset R onto the stack
overlined to record that this ruleset dictated a GOTO(_). Otherwise, if R′ is in the stack,
we detect the loop and discard p. The case when a packet p matches a rule with action

28 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

(1)
p |=R (t, i) t ∈ {ACCEPT, DROP}

p, s |=S
R (t, p)

(2)
p |=R (CHECK-STATE(X), i) p ⊢s α p′ = establ(α, X, p)

p, s |=S
R (ACCEPT, p′)

(3)
p |=R (CHECK-STATE(X), i) p ̸⊢ s p, s |=S

Ri+1
(t, p′)

p, s |=S
R (t, p′)

(4)
p |=R (NAT(dn, sn), i)

p, s |=S
R (ACCEPT, nat(p, s, dn, sn))

(5)
p |=R (GOTO(R’), i) R′ /∈ S p, s |=R·S

R′ (t, p′)

p, s |=S
R (t, p′)

(6)
p |=R (GOTO(R’), i) R′ ∈ S

p, s |=S
R (DROP, p)

(7)
p |=R (CALL(R’), i) R′ /∈ S p, s |=Ri+1·S

R′ (t, p′)

p, s |=S
R (t, p′)

(8)
p |=R (CALL(R’), i) R′ ∈ S

p, s |=S
R (DROP, p)

(9)
p |=R (RETURN, i) pop∗(S) = (R′, S′) p, s |=S′

R′ (t, p′)

p, s |=S
R (t, p′)

(10)
p |=R (RETURN, i) pop∗(S) = ϵ

p, s |=S
R (td, p)

(11)
p |̸= R pop∗(S) = (R′, S′) p, s |=S′

R′ (t, p′)

p, s |=S
R (t, p′)

(12)
p |̸= R (S = ϵ ∨ pop∗(S) = ϵ)

p, s |=S
R (td, p)

(13)
p |=R (MARK(m), i) p[tag ↦→ m], s |=S

Ri+1
(t, p′)

p, s |=S
R (t, p′)

FIGURE 1.6: The predicate p, s |=S
R (t, p′).

CALL(_) is similar, except that the ruleset pushed on the stack is not overlined. When a
packet p matches a rule with action RETURN, we pop the stack and match p against the top
of the stack. When no rule matches, an implicit return occurs: we continue from the top
of the stack, if non empty. Finally, the MARK rule simply changes the tag of the matching
packet to the value m. If none of the above applies, we return the default action td of the
current ruleset.

We can now define the slave transition relation as follows.

c(q) = R p, s |=ϵ
R (ACCEPT, p′) δ(q, p′) = q′

(q, s, p)→ (q′, s, p′)

The rule describes how we process the packet p when the firewall is in state s and per-
forms the step represented by the node q. We match p against the ruleset R associated
with q and if p is accepted as p′, we continue considering the next step of the firewall
execution represented by the node q′. Finally, we define the master transition relation

1.5. Synthesizing Configurations 29

that transforms states and packets as follows, where→+ is the transitive closure of→:

(qi, s, p)→+ (q f , s, p′)

s
p,p′−−→ s ⊎ (p, p′)

This rule says that when the firewall is in the state s and receives a packet p, it elaborates
p starting from the initial node qi of its control diagram. If this elaboration succeeds, i.e.,
it reaches the node q f that accepts p as p′, we update the state s by storing information
about p, its translation p′ and the connection they belong to through the function ⊎, left
unspecified for the sake of generality.

Example 1. Suppose to have the following chains

Chain CB

(ϕ1, DROP)
(ϕ2, CALL(u1))
(ϕ3, ACCEPT)

Chain u1

(ϕ11, ACCEPT)
(ϕ12, CALL(u2))
(ϕ13, DROP)

Chain u2

(ϕ21, ACCEPT)
(ϕ22, RETURN)
(ϕ23, DROP)

and that the condition ¬ϕ1 ∧ ϕ2 ∧ ϕ11 holds for a packet p. Then, the semantic rules (a), (b) and
(c) are applied in order:

(A)
p |=CB (CALL(u1), 2) u1 /∈ S p, s |=CB3 ·ϵ

u1 (ACCEPT, p)

p, s |=ϵ
CB

(ACCEPT, p)

(B)
p |=u1 (ACCEPT, 1)

p, s |=CB3 ·ϵ
u1 (ACCEPT, p)

(C)
c(q) = CB p, s |=ϵ

CB
(ACCEPT, p) δ(q, p) = q′

(q, s, p)→ (q′, s, p)

1.5 Synthesizing Configurations

We now extract the meaning of a firewall written in our intermediate language by trans-
forming it into a declarative, logical presentation that preserves the semantics (stage 2).
This transformation is independent of the real firewall language in hand, and consists of
the following steps:

1. generate an unfolded firewall with a single ruleset for each node of the control
diagram;

2. construct a logical formula that characterizes the packets accepted by the firewall;

3. determine the model for the formula through a SAT solver.

The correctness of stage 2 follows from Theorem 1, which guarantees that the unfolded
firewall is semantically equivalent to the original one, and from Theorem 2, which en-
sures that the derived formula characterizes exactly the accepted packets and their trans-
lations.

30 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

1.5.1 Unfolding Rulesets

Our intermediate language can deal with involved control flows, by using the targets
GOTO(_), CALL(_) and RETURN (see Example 1). The following unfolding operation J_K
rewrites a ruleset into an equivalent one with no control flow rules.

Hereafter, let r; R be a non empty ruleset consisting of a rule r followed by a possibly
empty ruleset R; and let R1@R2 be the concatenation of R1 and R2. The unfolding of a
ruleset R is defined as follows:

JRK = JRKtrue
{R}

JϵK f
I = ϵ

J(ϕ, t); RK f
I = (f ∧ ϕ, t); JRK f

I if t ̸∈ {GOTO(R’), CALL(R’), RETURN}

J(ϕ, RETURN); RK f
I = JRK f∧¬ϕ

I

J(ϕ, CALL(R’)); RK f
I =

⎧⎨⎩JR′K f∧ϕ

I∪{R′}@JRK f
I if R′ /∈ I

(f ∧ ϕ, DROP); JRK f
I otherwise

J(ϕ, GOTO(R’)); RK f
I =

⎧⎨⎩JR′K f∧ϕ

I∪{R′}@JRK f∧¬ϕ
I if R′ /∈ I

(f ∧ ϕ, DROP); JRK f∧¬ϕ
I otherwise

The auxiliary procedure JRK f
I recursively inspects the ruleset R. The formula f accumu-

lates conjuncts of the predicate ϕ; the set I records the rulesets traversed by the procedure
to detect loops. If a rule does not affect control flow, we just substitute the conjunction
f ∧ ϕ for ϕ, and continue to analyse the rest of the ruleset with the recursive call JRK f

I .
In the case of a return rule (ϕ, RETURN) we continue to recursively analyse the rest of

the ruleset, by updating f with the negation of ϕ. For the rule (ϕ, CALL(R’)) we have two
cases: if the callee ruleset R′ is not in I, we replace the rule with the unfolding of R′ with
f ∧ ϕ as predicate, and add R′ to the traversed rulesets. If R′ is already in I, i.e., we have a
loop, we replace the rule with a DROP, with f ∧ ϕ as predicate. In both cases, we continue
unfolding the rest of the ruleset. We deal with the rule (ϕ, GOTO(R’)) as the previous one,
except that the rest of the ruleset has f ∧ ¬ϕ as predicate.

Example 2. Back to Example 1, unfolding the chain CB gives the following rules:

JCBK = (ϕ1, DROP);

(ϕ2 ∧ ϕ11, ACCEPT);

(ϕ2 ∧ ϕ12 ∧ ϕ21, ACCEPT);

(ϕ2 ∧ ϕ12 ∧ ¬ϕ22 ∧ ϕ23, DROP);

(ϕ2 ∧ ϕ13, DROP);

(ϕ3, ACCEPT);

ϵ

1.5. Synthesizing Configurations 31

We just illustrate the first three steps:

JCBK =J(ϕ1, DROP); CB2Ktrue
{CB} = (ϕ1, DROP); J(ϕ2, CALL(u1)); CB3Ktrue

{CB}

=Ju1K
true∧ϕ2
{CB}∪{u1}@JCB3Ktrue

{CB}

Note that our transformation does not change the set of acccepted packets: all the packets satisfying
¬ϕ1 ∧ ϕ2 ∧ ϕ11 are still accepted by the unfolded ruleset.

An unfolded firewall is obtained by repeatedly rewriting the rulesets associated with
the nodes of its control diagram, using the procedure above. Formally,

Definition 7 (Unfolded firewall). Given a firewall F = (C, ρ, c), its unfolded version JFK is
(C, ρ′, c′) where ∀q ∈ C. c′(q) = Jc(q)K and ρ′ = {Jc(q)K | q ∈ C}.

We now prove that a firewall F and its unfolded version JFK are semantically equiv-
alent, i.e., they perform the same action over a given packet p in a state s, and reach the
same state s′. Formally, the following theorem holds:

Theorem 1 (Correctness of unfolding). Let F = (C, ρ, c) be a firewall and JFK its unfolding.

Let s
p,p′−−→X s′ be a step of the master transition system performed by the firewall X ∈ {F , JFK}.

Then, it holds

s
p,p′−−→F s′ ⇐⇒ s

p,p′−−→JFK s′.

1.5.2 Logical Characterization of Firewalls

We construct a logical predicate that characterizes the packets accepted by a ruleset, to-
gether with the relevant translations. Because of Theorem 1, hereafter we will only con-
sider unfolded firewalls.

To deal with NAT, we define the function tr that computes the set of packets result-
ing from all possible translations of a given packet p. The parameter X ∈ {←,→,↔}
specifies if the translation applies to source, destination or both addresses, respectively,
similarly to CHECK-STATE(X).

tr(p, dn, sn,↔) ≜ {p[da ↦→ ad, sa ↦→ as] | ad ∈ dn, as ∈ sn}
tr(p, dn, sn,→) ≜ {p[da ↦→ ad] | ad ∈ dn}
tr(p, dn, sn,←) ≜ {p[sa ↦→ as] | as ∈ sn}

Furthermore, we model the default policy of a ruleset R with the predicate dp, true when
the policy is ACCEPT, false otherwise.

32 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

Given an unfolded ruleset R, we build a predicate PR(p, p̃) that holds when the packet
p can be accepted as p̃ by R. The predicate is defined as follows:

Pϵ(p, p̃) = dp(R) ∧ p = p̃

Pr;R(p, p̃) = (ϕ(p) ∧ p = p̃) ∨ (¬ϕ(p) ∧ PR(p, p̃)) if r = (ϕ, ACCEPT)

Pr;R(p, p̃) = ¬ϕ(p) ∧ PR(p, p̃) if r = (ϕ, DROP)

Pr;R(p, p̃) = (ϕ(p) ∧ p̃ ∈ tr(p, dn, sn,↔)) ∨ (¬ϕ(p) ∧ PR(p, p̃)) if r = (ϕ, NAT(dn, sn))

Pr;R(p, p̃) = (ϕ(p) ∧ p̃ ∈ tr(p, ∗:∗, ∗:∗, X) ∨ (¬ϕ(p) ∧ PR(p, p̃)) if r = (ϕ, CHECK-STATE(X))

Pr;R(p, p̃) = (ϕ(p) ∧ PR(p[tag ↦→ m], p̃)) ∨ (¬ϕ(p) ∧ PR(p, p̃)) if r = (ϕ, MARK(m))

The empty ruleset ϵ applies the default policy dp(R) and does not transform the packet,
encoded by the constraint p = p̃. The rule (ϕ, ACCEPT) considers two cases: when ϕ(p)
holds the packet is accepted as it is; when instead ¬ϕ(p) holds, p is accepted as p̃ only if
the continuation R accepts it. The rule (ϕ, DROP) accepts p only if the continuation does
and ϕ(p) does not hold. The rule (ϕ, NAT(dn, sn)) is like an (ϕ, ACCEPT): the difference is
when ϕ(p) holds, and it gives p̃ by applying to p the NAT translations tr(p, dn, sn,↔).
Finally, (ϕ, CHECK-STATE(X)) is like a NAT that applies all possible translations of kind
X (written as tr(p, ∗ : ∗, ∗ : ∗, X)). The idea is that, since we abstract away from the ac-
tual established connections, we over-approximate the state by considering any possible
translations. At run-time, only the connections corresponding to the actual state will be
possible. The rule (ϕ, MARK(m)) is like a NAT, but when ϕ(p) holds it requires that the
continuation accepts p tagged by m as p̃.

Example 3. Consider again the unfolded chain of Example 2. If dp(CB) = F, the predicate is
defined as:

PJCBK (p, p̃) = ¬ϕ1 ∧ (

(ϕ2 ∧ ϕ11 ∧ p = p̃) ∨ (¬(ϕ2 ∧ ϕ11) ∧ (

(ϕ2 ∧ ϕ12 ∧ ϕ21 ∧ p = p̃) ∨ (¬(ϕ2 ∧ ϕ12 ∧ ϕ21) ∧ (

¬(ϕ2 ∧ ϕ12 ∧ ¬ϕ22 ∧ ϕ23) ∧ (

¬(ϕ2 ∧ ϕ13) ∧ (

(ϕ3 ∧ p = p̃) ∨ (¬ϕ3 ∧ (

F ∧ p = p̃)))))))))

Note that if ¬ϕ1 ∧ϕ2 ∧ϕ11 holds then the formula trivially holds and therefore the formula accepts
the packet as the semantics does.

As a further example, consider the case in which ϕ2, ϕ12, ϕ22, ϕ23, ϕ3 hold for a packet p, while
all the other ϕ’s does not. Then, p is accepted as it is: the rule (ϕ23, DROP) is not evaluated since
ϕ22 holds and the RETURN is performed (cf. Example 1). Indeed, the predicate PJCBK(p, p) evaluates
to:

T ∧ (F ∨ (T ∧ (F ∨ (T ∧ (T ∧ (T ∧ (T ∨ (F ∧ F)))))))) = T

1.5. Synthesizing Configurations 33

Instead, if ϕ13 holds as well, the packet is rejected as expected:

T ∧ (F ∨ (T ∧ (F ∨ (T ∧ (T ∧ (F ∧ (T ∨ (F ∧ F)))))))) = F

The predicate PR(p, p′) is semantically correct, because if a packet p is accepted by a
ruleset R as p′, then PR(p, p′) holds, and viceversa.

Lemma 1. Given a ruleset R we have that

1. ∀p, s. p, s |=ϵ
R (ACCEPT, p′) =⇒ PR(p, p′); and

2. ∀p, p′. PR(p, p′) =⇒ ∃s. p, s |=ϵ
R (ACCEPT, p′)

We define the predicate associated with a whole firewall as follows.

Definition 8. Let F = (C, ρ, c) be a firewall with control diagram C = (Q, A, qi, q f). The
predicate associated with F is defined as

PF (p, p̃) ≜ P∅
qi
(p, p̃) where

P I
q f
(p, p̃) ≜ p = p̃ P I

q (p, p̃) ≜ ∃p′.Pc(q)(p, p′) ∧

⎛⎜⎜⎜⎝ ⋁
(q,ψ,q′)∈A

q′/∈I

ψ(p′) ∧ P I∪{q}
q′ (p′, p̃)

⎞⎟⎟⎟⎠
for all q ∈ Q such that q ̸= q f , and where Pc(q) is the predicate constructed from the ruleset
associated with the node q of the control diagram.

Intuitively, in the final node q f we accept p as it is. In all the other nodes, p is accepted
as p̃ if and only if there is a path in the control diagram starting from the current node
that obtains p̃ from p through intermediate transformations. More precisely, we look for
an intermediate packet p′, provided that:

1. p is accepted as p′ by the ruleset c(q) of node q;

2. p′ satisfies one of the predicates ψ labeling the branches of the control diagram;

3. p′ is accepted as p̃ in the reached node q′.

Note that we ignore paths with loops because firewalls have mechanisms to detect and
discard a packet when its elaboration loops. To this aim, our predicate uses the set I for
recording the nodes already traversed.

We conclude this section by establishing the correspondence between the logical for-
mulation and the operational semantics of a firewall. Formally, F accepts the packet p as
p̃ if the predicate PF (p, p̃) is satisfied, and viceversa:

Theorem 2 (Correctness of the logical characterization). Given a firewall F = (C, ρ, c) and
its corresponding predicate PF we have:

34 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

1. s
p,p′−−→ s ⊎ (p, p′) =⇒ PF (p, p′)

2. ∀p, p′. PF (p, p′) =⇒ ∃s.s
p,p′−−→ s ⊎ (p, p′)

Recall that the logical characterization abstracts away the notion of state, and thus
PF (p, p′) holds if and only if there exists a state s in which p is accepted as p′. In particu-
lar, if the predicate holds for a packet p that belongs to an established connection, p will
be accepted only if the relevant state is reached at runtime. This is the usual interpretation
of firewall rules for established connections.

1.5.3 Synthesis Algorithm

Here we present the module of FWS [32] that syntesizes the declarative specification
of a firewall configuration F expressed in IFCL. In particular, the core of this module
constructs a set of logical predicates P = {P1(p, p̃), . . . ,Pn(p, p̃)} defined over pairs of
packets that characterize the firewall behaviour. In particular, Pi(p, p̃) evaluates to true
if the input packet p is accepted as p̃ by the firewall. The set of pairs that satisfy one of
the predicates in P is exactly the set of pairs satisfying PF presented in Section 1.5.2.

We use the multi-cubes representation introduced in [88] to succinctly enumerate all
the packets accepted by the firewall. From these multi-cubes our tool builds a tabular
representation of the firewall containing only ACCEPT and NAT rules, with no overlapping
rows.

Encoding in Z3

We model packets as tuples of Z3 bit-vector variables of appropriate size

(srcIP, srcPort, dstIP, dstPort, protocol, state)

that represent source and destination IPs and ports, the protocol and the packet state.
Firewall predicates are expressed as logical formulas on those packet variables. For ex-
ample, the constraint

dstIp ≡ 10.0.2.15∧ dstPort = 22

selects packets with destination 10.0.2.15 and port 22. We write dstIp ≡ 10.0.2.15 as a
shortcut for equating dstIp with the numerical representation of the IP address 10.0.2.15.
Intervals are encoded with two ≤ constraints.

In order to succinctly enumerate packets, a multi-cube maps each packet variable v to
a union of disjoint intervals Iv to which the value of v belongs. For instance, the solutions
of the formula

(dstIp ≡ 10.0.2.15 ∨ dstIp ≡ 10.0.1.0/24) ∧ (dstPort = 22∨ dstPort = 443)

can be expressed by the following multi-cube:

dstIp = {10.0.2.15} ∪ [10.0.1.0, 10.0.1.255] dstPort = {22} ∪ {443}

1.5. Synthesizing Configurations 35

Algorithm 1 All-BVSAT⋆

Require: Formula φ over bit-vectors with free variables x⃗
Ensure: Set of multi-cubesM that are models of φ

1: B← φ
2: M← ∅
3: while B is satisfiable do
4: v⃗← a satisfiable assignment to B
5: for each multi-cube M⃗ ∈ M do
6: Extend M⃗ with v⃗ if possible
7: B← B ∧ (x⃗ /∈ M⃗)

8: if B ∧ x⃗ = v⃗ is still satisfiable then
9: C⃗ ← {v1} × ...× {vn}

10: for each i in 1..n do
11: Expand interval Ci

12: M←M∪{C⃗}
13: B← B ∧ (x⃗ /∈ M⃗)

14: returnM

For each formula over bit-vector variables, we compute the satisfying multi-cubes using
Algorithm 1. Intuitively, each iteration of the while loop selects an assignment of vari-
ables v⃗ that is not covered by any of the existing multi-cubes. First the algorithm tries to
extend the existing multi-cubes with the values in v⃗; next, if the formula is still satisfiable,
a new multi-cube is created.

During the extension/creation of multi-cubes, the algorithm performs an expansion
step that extends as much as possible the intervals both downwards and upwards. This
step uses a variant of the binary search algorithm to find the bounds of the maximal
interval that satisfies the given formula. The complexity of this step is linear in the size
in bits of the variable under consideration. We refer the interested reader to [88] for
additional details about the algorithm.

Dealing with NAT

Synthesis gets complicated with NAT because it can introduce many variables in the
formulas, representing intermediate address values for the packet during different pro-
cessing phases. Some variables, however, are not touched by NAT and this needs to be
represented in the predicates, as discussed in the following.

A natural way is to impose equality constraints on variables that are not affected by
NAT. Despite intuitive, this approach has a severe drawback: equality constraints do not
work well with Algorithm 1. For instance, consider the formula 1 ≤ v1 ≤ 5 ∧ v1 = v2:
the algorithm uses the SMT solver to find a solution, e.g., v1 = v2 = {3}, and tries to
expand the intervals associated to v1 and v2, one after the other. However, increasing the
interval of v1 violates the equality constraint with v2. The result of the algorithm are thus
5 distinct multi-cubes, i.e., v1 = v2 = {i} for i ∈ [1..5]}.

36 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

A careful treatement of equality introduces new variables only for the packet features
that are modified by NAT rules and implicitly models equality constraints by sharing the
same variable in the input and in the output packet. For instance, if a NAT rule modifies
the destination address of the input packet p, the output packet p̃ is represented with
the same variables as p with the exception of the destination address that uses a fresh
variable. Since the introduction of these fresh variables is only required for the packets
that are subject to NAT, we consider separate predicates covering the different cases:
DNAT, SNAT and filtering. In DNAT and SNAT all variables will be the same except for
the destination and source addresses/ports, respectively. In filtering, all variables will
coincide, as the input and the output packets are the same.

In principle, this separation could lead to an explosion of the number of predicates.
However, when studying existing firewall systems, we found that the maximum num-
ber of packets to be considered is three: in fact, in real systems NAT is applied at most
twice during packet processing (one SNAT and one DNAT). For this reason, the proposed
approach works very well in practice.

1.5.4 Supported Analyses

Besides synthesizing high-level specifications, once we have a firewall expressed as logi-
cal constraints in Z3, FWS can perform various interesting fully automated analyses:

• Reachability: is a certain address is reachable or not from another one, possibly
through NAT? This analysis is implemented as follows. The query is transformed
in a Z3 constraint on the packet variables and the solver is invoked to check its
satisfiability with respect to the abstract specification;

• Implication: is the policy P1 implied by a policy P2? The answer is obtained by asking
the solver if there exists no pair of packets that is accepted by P2 and rejected by P1;

• Equivalence: are two policies equivalent? Just check double implication;

• Differences: given two policies, we can synthesize them and show the differences in
the extracted multi-cubes, possibly considering some selected packets, only;

• Related rules: to identify the rules affecting the processing of the packets selected by
user-provided query, we remove, one at a time, a rule from the policy and check
whether the new policy is not equivalent to the original one.

1.6 Generating Target Configurations

The last stage of our pipeline compiles the declarative specification extracted from a fire-
wall policy in stage 2. In fact, starting from the specification we easily build a firewall FS

whose control diagram has a single node and a single ruleset containing the ACCEPT and
NAT rules, each corresponding to a line of the declarative specification (since rows do not

1.6. Generating Target Configurations 37

Algorithm 2 Generation of the rulesets Rdnat, Rfil, Rsnat, Rmark from RS

1: Rdnat = Rfil = Rsnat = Rmark = ϵ
2: for r in RS do
3: if r = (ϕ, ACCEPT) then
4: add r to Rfil
5: else if r = (ϕ, NAT(dn, sn)) then
6: generate fresh tag m
7: add (ϕ ∧ tag(p) = •, MARK(m)) to Rmark
8: add (tag(p) = m, NAT(dn, ⋆)) to Rdnat
9: add (tag(p) = m, NAT(⋆, sn)) to Rsnat

10: add (tag(p) ̸= •, ACCEPT) and (true, DROP) to Rfil
11: prepend Rmark to Rdnat, Rfil and Rsnat

overlap they may appear in the ruleset in any order). Then, we compile FS into a firewall
FC in the target language and we prove the two equivalent.

The resulting firewall automatically accepts all the packets that belong to established
connections with the appropriate translations. This is not a limitation, since it is the de-
fault behaviour of some real firewall systems (e.g., pf) and it is quite odd to drop packets
once the initial connection has been established. Moreover, this is consistent with the
over-approximation on the firewall state done in Section 1.5.2.

1.6.1 Compiling a Firewall Specification

We first introduce an algorithm that computes the rulesets of the target firewallFC. Then,
we associate these rulesets with the nodes of its control diagram.

Algorithm 2 expects as input the ruleset RS derived from a synthesized specifica-
tion and splits it in the basic rulesets Rfil, containing filters, and Rdnat, Rsnat (with default
ACCEPT policy) for DNAT and SNAT rules. This separation reflects what is done in all the
real systems we have analysed. Indeed, NAT rules can be placed only in specific nodes
of their control diagrams, e.g., in iptables, DNAT is allowed only in rulesets Rnat

PRE and
Rnat

OUT, while SNAT only in Rnat
INP and Rnat

POST.
The algorithm leaves the filtering rules unchanged (line 4). Also, it produces rules

that assign different tags to packets that must be processed by different NAT rules (lines 6
and 7). Each NAT rule is split in a DNAT (line 8) and a SNAT (line 9), where the predicate
ϕ becomes a check on the tag of the packet. Packets subject to NAT are accepted in Rfil

while the others are dropped (line 10). We prepend Rmark to all rulesets making sure
that packets are always marked, independently of which ruleset will be processed first
(line 11). The empty tag • identifies untagged packets.

Recall that the @ operator combines rulesets in sequence. Note that Rfil drops by
default and shadows any ruleset appended to it. In practice, the only interesting rulesets
are Rϵ, Rfil, Rdnat, Rsnat, Rdnat @ Rfil, Rsnat @ Rfil where Rϵ is the empty ruleset with default
ACCEPT policy. We now introduce the notion of compiled firewall.

38 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

Definition 9 (Compiled firewall). LetR = {Rϵ, Rfil, Rdnat, Rsnat, Rdnat @ Rfil, Rsnat @ Rfil}. A
firewall FC = (C, ρ, c) with control diagram C = (Q, A, qi, q f) is a compiled firewall if

• c(qi) = c(q f) = Rϵ

• c(q) ∈ R for all q ∈ Q

• every path π from qi to q f in the control diagram C traverses a node q ∈ Q such that
c(q) ∈ {Rfil, Rdnat @ Rfil, Rsnat @ Rfil}

Intuitively, the above definition requires that only rulesets in R are associated with
the nodes in the control diagram and that all paths pass at least once through a node with
the filtering ruleset.

Example 4. Now we map the rulesets to the nodes of the control diagrams of the real systems
presented in Section 1.4.1. For iptables we have:

c(Pren) = Rdnat c(Outn) = Rdnat c(Inpn) = Rsnat c(Postn) = Rsnat

c(Fwd f) = Rfil c(Inp f) = Rfil c(Out f) = Rfil

while the remaining nodes get the empty ruleset Rϵ. For pf we have:

c(Inpn) = Rdnat c(Outn) = Rsnat c(Inp f) = Rfil c(Out f) = Rfil

Finally, in ipfw:

c(Inp) = Rdnat @ Rfil c(Out) = Rsnat @ Rfil

1.6.2 Correctness of the Compiled Firewall

We start by showing that a compiled firewall FC accepts the same packets as the original
abstract firewall FS, possibly with a different translation. The differences may show up
because the source and the target firewall systems have dissimilar expressivity, e.g., when
they impose diverse constraints on which kinds of packets can be translated and where.

Lemma 2. Let FC be a compiled firewall of FS and let p be a packet, then

∃p′.PFS(p, p′)⇔ ∃p′′.PFC(p, p′′).

It is convenient introducing a few auxiliary definitions. Let T = {id, dnat, snat, nat}
be the set of translations of a packet while it traverses a firewall. The first, id, represents
the identity, dnat and snat are for DNAT and SNAT, while nat represents both. Also, let
(T ,<) be the partial order such that id < dnat, id < snat, dnat < nat and snat < nat.
Finally, given a packet p and a firewall F , let πF (p) be the unique path in the control
diagram of F along which p is processed. Note that there exists a unique path for each
packet because the control diagram is deterministic.

The following function computes the translation capability of a path π, i.e., which trans-
lations can be performed on packets processed along π.

1.7. Experimental Evaluation 39

Definition 10 (Translation capability). Let π = ⟨q1, . . . , qn⟩ be a path on the control diagram
of a compiled firewall F = (C, ρ, c). The translation capability of π is

tc(π) = lub
⋃

qj∈π

γ(c(qj))

where lub is the least upper bound operator on (T ,<) and γ is defined as

γ(R) = {id} for R ∈ {Rϵ, Rfil}
γ(Rt) = {t} for t ∈ {dnat, snat}

γ(R1 @ R2) = γ(R1) ∪ γ(R2)

Let p ≈ p′ hold iff p′ = p[tag ↦→ m] for some tag m; given a packet p and its translation
p′, let tβ be defined as follows, where β ∈ T :

tid(p, p′) = p tdnat(p, p′) = p[da ↦→ da(p′)]

tnat(p, p′) = p′ tsnat(p, p′) = p[sa ↦→ sa(p′)]

The following theorem describes the relationship between a compiled firewallFC and the
firewall FS. Intuitively, FS accepts a packet p as p′ if and only if FC accepts a packet p as
p′′ where p′ and p′′ only differ on marking and NAT. More specifically, p′′ is derived from
p by applying all the translations available on the path πFC(p) in the control diagram of
FC, along which p is processed.

Theorem 3. Let p be a packet accepted by both FS and FC; let β = tc(πFC(p)); and let p′′ ≈
tβ(p, p′) for some p′. We have that

PFS(p, p′)⇔ PFC(p, p′′)

with p′ = p′′ when β = nat or p = p′.

Example 5. Consider again Example 4. Any path π in iptables has tc(π) = nat, which
implies p′ ≈ p′′, i.e., FC behaves exactly as FS. Interestingly, paths π1 = ⟨qi, Inpn, Inp f , qo⟩
and π2 = ⟨qi, Outn, Out f , qo⟩ in pf have tc(π) equal to dnat and snat, respectively. In fact, pf
cannot perform snat and dnat on packets directed to and generated from the host, respectively.

1.7 Experimental Evaluation

We have used our tool on several policies to assess how FWS scales to real-world scenar-
ios. Our tests focus on the first two stages of our pipeline since the compiler is still under
development. We have performed our tests on a desktop PC (running Ubuntu 16.04.2)
equipped with an Intel i7-3770 CPU and 16 GB of RAM.

40 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

TABLE 1.5: Tests performed on our department policy.

Analysis Multi-cubes Time (m:s.cs)

N1 → N2 35 0:53.73
N1 → N3 28 0:37.77
N1 → Out 25 1:20.65

N2 → N1 45 0:45.32
N2 → N3 39 0:34.27
N2 → Out 31 0:57.40

N3 → N1 47 2:19.16
N3 → N2 17 0:05.68
N3 → Out 8 0:09.45

Out→ N1 52 6:02.08
Out→ N2 10 0:11.41
Out→ N3 8 0:08.12

Complete policy 138 17:09.31

1.7.1 DAIS Department Policy

The network of the DAIS department at Ca’ Foscari is logically partitioned in the main
network N1, the labs network N2 and a mixed network N3. The firewall acts as a router
between these networks and is connected to the Internet via other routers. The policy is
written in iptables, consists of 530 rules (including both SNAT and DNAT) and contains
5 user-defined chains. In Table 1.5 we report the execution times and the sizes of the ob-
tained specifications when running our tool on the policy projected on specific source and
destination networks, as well as the time required to synthesize the entire firewall policy.
The analysis on specific source and destination networks takes less that one minute most
of the times and six minutes in the worst case.

1.7.2 Stanford University Backbone Network

It is a medium-sized network that contains 16 operational zone Cisco routers [174]. From
the configuration files of these routers we have extracted 252 ACL policies containing
1916 filtering rules in total. Our tool separately synthesized all the policies in 2 minutes
and 17.46 seconds; the largest ACL, made of 111 rules, has been analysed in 16.36 seconds
and the corresponding specification consists of 12 multi-cubes. The encoding of the ACL
policies in our framework has required a simple, mechanized syntactic translation from
the Cisco routers configuration syntax into the intermediate language.

1.7.3 Other Real-World Policies

The authors of [54] have collected a set of anonymized iptables configurations from
several institutions and from the Internet. Table 1.6 reports the time needed to perform a
complete synthesis for a selected subset of these policies, together with their size and the
number of multi-cubes of the synthesized specification.

1.7. Experimental Evaluation 41

TABLE 1.6: Tests performed on real-world policies.

Description Rules Multi-cubes Time (m:s.cs)

Policy from Github 15 11 00:00.765
Ticket from OpenWRT 65 11 00:01.519
Kerberos server 8 14 00:01.635
Policy from a blog 28 25 00:02.572
Eduroam laptop 21 15 00:01.018
Memphis testbed 34 15 00:01.233
Kornwall 52 23 00:02.362
Shorewall 77 48 00:28.154
Home router 76 36 00:05.879
Medium-sized company 90 20 00:25.289
veroneau.net 263 7 05:55.690

TABLE 1.7: Tests performed on the Chair for Network Architectures and Ser-
vices firewall policy.

Analysis <1m 1-3m 3-5m 5-10m 10-20m

Subnet→ Subnet 0 405 37 20 0
Subnet→ Internet 14 5 1 1 0
Internet→ Subnet 5 13 1 0 2

The repository also contains the firewall configuration of the lab the authors of [54]
are affiliated to. The firewall has 22 network interfaces and its policy consists of 4841
iptables rules. We have slightly modified the policy to remove checks on MAC ad-
dresses since they are currently not supported by FWS. In Table 1.7 we provide a sum-
mary of the time required to produce a synthesis for each possible pair of input/output
interfaces and to communicate with the Internet. Most of the analyses terminate in less
than 3 minutes and just a couple of cases involving particularly complex subnets take
more than 10 minutes to be completed.

1.7.4 Queries

We have performed some tests to evaluate the expressiveness of the output produced by
FWS. For instance, in the Home router example, we can check which hosts in the private
LAN are reachable via the public IP address of the router by running the query

dstIp == 117.195.222.105 && state == NEW

FWS succinctly reports that external hosts can access the internal server 192.168.1.130 on
ports 22, 80, 443 and 1194 via DNAT. For hosts in the private LAN 192.168.1.0/24, both
SNAT and DNAT are applied to connections towards the public IP address to avoid the
problem of asymmetric routing using a technique known as NAT reflection. Additional
examples are available online [32].

42 Chapter 1. Analysis, Maintenance and Cross-Compilation of Firewall Policies

1.8 Related Work

To the best of our knowledge, ours is the first proposal providing at the same time:

1. a language for analysing multiple firewall systems;

2. an effective technique for synthesizing abstract policies;

3. support for NAT;

4. a formal characterization of firewall behaviour;

5. a technique to generate policies in multiple target languages.

In the following we briefly review the existing approaches for the analysis of existing
configurations and the techniques proposed for compiling abstract filtering policies to
real firewall systems.

1.8.1 Analysis of Firewall Configurations

The literature has many proposals for simplifying and analyzing firewall configurations.
Some are based on formal methods, others consist of ad hoc configuration and analysis
tools. Many works take a top-down approach to facilitate firewall management and de-
tect misconfigurations in existing policies, such as [212, 83, 135, 183, 153, 170, 105, 63,
64]. In our work we follow a dual, bottom-up approach: we synthesize a specification
from the actual firewall configuration. Below, we revise papers that take a bottom-up
approach and adopt formal methods.

Some researchers focused on analyzing iptables: Jeffrey et al.introduce in [92] a for-
mal model of firewall policy, based on iptables, and investigate the properties of reach-
ability and cyclicity of firewall configurations. The proposal by Diekmann et al. [54]
has some similarities with ours. In particular, the authors provide a “cleaned” ruleset
that an automatic tool can easily analyse, using a formal semantics of iptables and a
semantics-preserving ruleset simplification (e.g., chain unfolding) with a treatment of
unknown match conditions, due to a ternary logic. They give a semantics to a subset
of iptables that includes access control flow actions, but not packet modification such
as NAT. Our approach supports NAT and is based on a generic language that can target
languages different from iptables. ITVal [118] is a tool that parses iptables rules and
can be queried to discover host reachability. The tool is specific for iptables and does
not aim at synthesizing an abstract firewall specification.

Other proposals in the literature are more general and target, in principle, various fire-
wall systems. A model-driven approach is proposed in [150] to derive network access-
control policies from real firewall configuration. A proof of concept is given only for
iptables. Moreover, compared to our proposal this paper does not address NAT. In [50]
the authors propose an algorithmic solution to detect and correct specific anomalies on
stateful firewalls. However, the proposed approach does not aim at synthesizing an ab-
stract specification, as we do. FIREMAN [210] is a tool that detects inconsistencies and

1.8. Related Work 43

inefficiencies of firewall policies, but it does not provide support for NAT. In [133] the
Margrave policy analyser is applied to the analysis of IOS firewalls. The approach is
rather general and extensible to other languages, however the analysis focuses on find-
ing specific problems in policies rather then synthesizing a high-level policy specification.
A framework for the static analysis of networks is proposed in [100]. It provides sophis-
ticated insights about network configurations but does not specifically analyse real fire-
wall configurations and, as for the previous papers, there is no synthesis of high-level
specifications. Fang [119] is another tool for querying real policies in order to discover
anomalies. Authors state that it synthesizes an abstract policy that resembles the one
we propose here, but the tool is unavailable and the paper does not describe the tool
internals, making any comparison with our approach impossible.

Jayaraman et al. [88] propose an approach for validating network connectivity poli-
cies, implemented by the tool SECGURU. They extract logical specifications from real
Cisco IOS routers and solve them in Z3. In our paper we have extended their approach
under two main aspects:

1. we provide support for NAT. This is non trivial and required to model logical pred-
icates on pairs of packets as discussed in Section 1.5.2;

2. we perform our analysis on a generic language that can be used to represent various
real configuration languages, by taking into account the platform-depended packet
processing flow.

1.8.2 Compilation of Firewall Configurations

Compared to the analysis of existing configurations, less effort has been devoted to the
development of approaches aimed at compiling high-level policy specifications into real
firewall systems.

In [17] Bartal et al. propose Firmato, a firewall management toolkit that allows to spec-
ify an abstract model of the desired security policy and compiles it into firewall-specific
configuration rules. The authors claim that their approach is general enough to support
multiple existing systems, though they have implemented only a back-end for the Lucent
Managed Firewall. Similarly, Adão et al. [3] present a declarative language to specify fire-
wall policies and a compiler for iptables. More generally, NetKat [5] proposes linguistic
constructs for programming a network as a whole within the SDN paradigm.

All these approaches propose their own high-level language with a formal semantics,
and then compile it to a specific target language (cf. our stage 3). Instead, IFCL intermedi-
ates between real source and target languages. It thus takes from real languages actions
both for filtering/rewriting packets (notably NAT and MARK) and for controlling the
inspection flow, widely used in practice.

45

Chapter 2

Surviving the Web: A Journey into
Web Session Security

2.1 Introduction

The Web is the primary access point to on-line data and applications. It is extremely com-
plex and variegate, as it integrates a multitude of dynamic contents by different parties
to deliver the greatest possible user experience. This heterogeneity makes it very hard
to effectively enforce security, since putting in place novel security mechanisms typically
prevents existing websites from working correctly or negatively affects the user experi-
ence, which is generally regarded as unacceptable, given the massive user base of the
Web. However, this continuous quest for usability and backward compatibility had a
subtle effect on web security research: designers of new defensive mechanisms have been
extremely cautious and the large majority of their proposals consists of very local patches
against very specific attacks. This piecemeal evolution hindered a deep understanding
of many subtle vulnerabilities and problems, as testified by the proliferation of different
threat models against which different proposals have been evaluated, occasionally with
quite diverse underlying assumptions. It is easy to get lost among the multitude of pro-
posed solutions and almost impossible to understand the relative benefits and drawbacks
of each single proposal without a full picture of the existing literature.

In this chapter we take the delicate task of performing a systematic overview of a
large class of common attacks targeting the current Web and the corresponding security
solutions proposed so far. We focus on attacks against web sessions, i.e., attacks which
target honest web browser users establishing an authenticated session with a trusted
web application. This kind of attacks exploits the intrinsic complexity of the Web by
tampering, e.g., with dynamic contents, client-side storage or cross-domain links, so as to
corrupt the browser activity and/or network communication. Our choice is motivated
by the fact that attacks against web sessions cover a very relevant subset of serious web
security incidents [148] and many different defenses, operating at different levels, have
been proposed to prevent these attacks.

We consider typical attacks against web sessions and we systematise them based on:
(i) their attacker model and (ii) the security properties they break. This first classification
is useful to understand precisely which intended security properties of a web session can

46 Chapter 2. Surviving the Web: A Journey into Web Session Security

be violated by a certain attack and how. We then survey existing security solutions and
mechanisms that prevent or mitigate the different attacks and we evaluate each proposal
with respect to the security guarantees it provides. When security is guaranteed only
under certain assumptions, we make these assumptions explicit. For each security so-
lution, we also evaluate its impact on both compatibility and usability, as well as its ease
of deployment. These are important criteria to judge the practicality of a certain solution
and they are useful to understand to which extent each solution, in its current state, may
be amenable for a large-scale adoption on the Web. Since there are several proposals in
the literature which aim at providing robust safeguards against multiple attacks, we also
provide an overview of them in a separate section. For each of these proposals, we dis-
cuss which attacks it prevents with respect to the attacker model considered in its original
design and we assess its adequacy according to the criteria described above.

Finally, we synthesize from our survey a list of five guidelines that, to different ex-
tents, have been taken into account by the designers of the different solutions. We ob-
serve that none of the existing proposals follows all the guidelines and we argue that this
is due to the high complexity of the Web and the intrinsic difficulty in securing it. We
believe that these guidelines can be helpful for the development of innovative solutions
approaching web security in a more systematic and comprehensive way.

2.1.1 Scope of the Work

Web security is complex and web sessions can be attacked at many different layers. To
clarify the scope of the present work, it is thus important to discuss some assumptions
we make and their import on security:

1. perfect cryptography: at the network layer, web sessions can be harmed by net-
work sniffing or man-in-the-middle attacks. Web traffic can be protected using the
HTTPS protocol, which wraps the traffic within a SSL/TLS encrypted channel. We
do not consider attacks to cryptographic protocols. In particular, we assume that
the attacker cannot break cryptography to disclose, modify or inject the contents
sent to a trusted web application over an encrypted channel. However, we do not
assume that HTTPS is always configured correctly by web developers, since this is
quite a delicate task, which deserves to be discussed in the present survey;

2. the web browser is not compromised by the attacker: web applications often rely on the
available protection mechanisms offered by standard web browsers, like the same-
origin policy or the HttpOnly cookie attribute. We assume that all these defenses
behave as intended and the attacker does not make advantage of browser exploits,
otherwise even secure web applications would fail to be protected;

3. trusted web applications may be affected by content injection vulnerabilities: this is a con-
servative assumption, since history teaches us that it is almost impossible to guar-
antee that a web application does not suffer from this kind of threats. We focus
on content injection vulnerabilities which ultimately target the web browser, like

2.2. Background 47

cross-site scripting attacks (XSS). Content injections affecting the backend of the
web application, like SQL injections, are not covered.

2.1.2 Structure of the Chapter

Section 2.2 provides some background on the main building blocks of the Web. Sec-
tion 2.3 presents the attacks. Section 2.4 classifies attack-specific solutions with respect to
their security guarantees, their level of usability, compatibility and ease of deployment.
Section 2.5 carries out a similar analysis for defenses against multiple attacks. Section 2.6
presents five guidelines for future web security solutions.

2.2 Background

We provide a brief overview of the basic building blocks of the web ecosystem and their
corresponding security cornerstones.

2.2.1 Languages for the Web

Documents on the Web are provided as web pages, hypertext files connected to other docu-
ments via hyperlinks. Web pages embody several languages affecting different aspects of
the documents. The Hyper Text Markup Language (HTML) [197] or a comparable markup
language (e.g., XHTML) defines the structure of the page and the elements it includes,
while Cascading Style Sheets (CSS) [190] are used to add style information to web pages
(e.g., fonts, colors, position of elements).

JavaScript [57] is a programming language which allows the development of rich, in-
teractive web applications. JavaScript programs are included either directly in the web
page (inline scripts) or as external resources, and can dynamically update the contents in
the user browser by altering the Document Object Model (DOM) [194, 195, 196], a tree-like
representation of the web page. Page updates are typically driven by user interaction or
by asynchronous communications with a remote web server based on AJAX requests (via
the XMLHttpRequest API).

2.2.2 Locating Web Resources

Web pages and the contents included therein are hosted on web servers and identified by
a Uniform Resource Locator (URL). A URL specifies both the location of a resource and
a mechanism for retrieving it. A typical URL includes: (1) a protocol, defining how the
resource should be accessed; (2) a host, identifying the web server hosting the resource;
and (3) a path, localizing the resource at the web server.

Hosts belong to domains identifying an administrative realm on the Web, typically
controlled by a specific company or organization. Domain names are organised hier-
archically: subdomain names can be defined from a domain name by prepending it a
string, separated by a period. For example, the host www.google.com belongs to the do-
main google.com which is a subdomain of the top-level domain com.

48 Chapter 2. Surviving the Web: A Journey into Web Session Security

Domains that are controlled by domain registrars are known as public suffixes. Inter-
net users can only register names that are subdomains of a public suffix. For instance,
users cannot register the domain co.uk since it is a public suffix, but they can regis-
ter example.co.uk. Browsers vendors maintain a publicly available list to keep track of
all existing public suffixes [129]. Two domains are said to be related if the longest com-
mon suffix they share is not a public suffix. For instance, domains www.example.com and
atk.example.com are related, while example.co.uk and attacker.co.uk are not.

2.2.3 Hyper Text Transfer Protocol (HTTP)

Web contents are requested and served using the Hyper Text Transfer Protocol (HTTP),
a text-based request-response protocol based on the client-server paradigm. The client
(browser) initiates the communication by sending an HTTP request for a resource hosted
on the server; the server, in turn, provides an HTTP response containing the comple-
tion status information of the request and its result. HTTP defines methods to indicate
the action to be performed on the identified resource, the most important ones being
GET and POST. GET requests should only retrieve data and have no other import, while
side-effects at the server-side should only be triggered by POST requests, though web
developers do not always comply with this convention. Both GET and POST requests
may include custom parameters which can be processed by the web server.

HTTP is a stateless protocol, i.e., it treats each request as independent from all the oth-
ers. Some applications, however, need to remember information about previous requests,
for instance to track whether a user has already authenticated and grant her access to her
profile page. HTTP cookies are the most widespread mechanism employed on the Web to
maintain state information about the requesting clients [18]. Roughly, a cookie is a key-
value pair, which is set by the server into the client and automatically attached by it to all
subsequent requests to the server. Cookies can be set via the Set-Cookie HTTP header or
by using JavaScript. Cookies may also have attributes which restrict the way the browser
handles them (cf. Section 2.2.4).

2.2.4 Security Cornerstones and Subtleties

HTTPS

Since all the HTTP traffic flows in the clear, the HTTP protocol does not guarantee several
desirable security properties, such as the confidentiality and the integrity of the commu-
nication, and the authenticity of the involved parties. To protect the exchanged data,
the HTTP Secure (HTTPS) protocol [155] wraps plain HTTP traffic within a SSL/TLS en-
crypted channel. A web server may authenticate itself at the client by using public key
certificates; when the client is unable to verify the authenticity of a certificate, a warning
message is displayed and the user can decide whether to proceed with the communica-
tion or not.

2.3. Attacking Web Sessions 49

Mixed Content Websites

A mixed content page is a web page that is received over HTTPS, but loads some of its
contents over HTTP. The browser distinguishes two types of contents depending on their
capabilities on the including page: passive contents like images, audio tracks or videos
cannot modify other portions of the page, while active contents like scripts, frames or
stylesheets have access to (parts of) the DOM and may be exploited to alter the page.
While the inclusion of passive contents delivered over HTTP into HTTPS pages is al-
lowed by the browser, active mixed contents are blocked by default [198].

Same-Origin Policy

The same-origin policy (SOP) [128] is a standard security policy implemented by all major
web browsers: it enforces a strict separation between contents provided by unrelated
sites, which is crucial to ensure their confidentiality and integrity. SOP allows scripts
running in a first web page to access data in a second web page only if the two pages
have the same origin. An origin is defined as the combination of a protocol, a host and
a port number [19]. SOP applies to many operations in the browser, most notably DOM
manipulations and cookie accesses. However, some operations are not subject to same-
origin checks, e.g., cross-site inclusion of scripts and submission of forms are allowed,
thus leaving space to potential attacks.

Cookies

Cookies use a separate definition of origin, since cookies set for a given domain are nor-
mally shared across all the ports and protocols on that domain. By default, cookies set by
a page are only attached by the browser to requests sent to the same domain of the page.
However, a page may also set cookies for a parent domain via the Domain cookie attribute,
as long as the parent domain is not a public suffix: these cookies are shared between the
parent domain and all its subdomains, and we refer to them as domain cookies.

Cookies come with two security mechanisms: the Secure attribute identifies cook-
ies which must only be sent over HTTPS, while the HttpOnly attribute marks cookies
which cannot be accessed via non-HTTP APIs, e.g., via JavaScript. Perhaps surprisingly,
the Secure attribute does not provide integrity guarantees, since secure cookies can be
overwritten over HTTP [18].

2.3 Attacking Web Sessions

A web session is a semi-permanent information exchange between a browser and a web
server that involves multiple HTTP(S) requests and responses and is bound to a user
identity known to the server. As anticipated, stateful sessions on the Web are typically
identified by one or more cookies stored in the user browser. When the user authenticates
to a website by providing some valid credentials, e.g., a username-password pair, a fresh

50 Chapter 2. Surviving the Web: A Journey into Web Session Security

FIGURE 2.1: Cookie-based User Authentication.

cookie is generated by the server and sent back to the browser. Further requests origi-
nating from the browser automatically include the cookie as a proof of being part of the
session established upon password-based authentication. This common authentication
scheme is depicted in Figure 2.1.

Since the cookie essentially plays the role of the password in all the subsequent re-
quests to the web server, it is enough to discover its value to hijack the session and fully
impersonate the user, with no need to compromise the low level network connection or
the server. We call authentication cookie any cookie which identifies a web session.

2.3.1 Security Properties

We consider two standard security properties formulated in the setting of web sessions.
They represent typical targets of web session attacks:

• Confidentiality: data transmitted inside a session should not be disclosed to unau-
thorized users;

• Integrity: data transmitted inside a session should not be modified or forged by
unauthorized users.

Interestingly, the above properties are not independent and a violation of one might lead
to the violation of the other. For example, compromising session confidentiality might re-
veal authentication cookies, which would allow the attacker to perform arbitrary actions
on behalf of the user, thus breaking session integrity. Integrity violations, instead, might
cause the disclosure of confidential information, e.g., when sensitive data is leaked via a
malicious script injected in a web page by an attacker.

2.3.2 Threat Model

We focus on two main families of attackers: web attackers and network attackers. A web
attacker controls at least one web server that responds to any HTTP(S) requests sent to it
with arbitrary malicious contents chosen by the attacker. We assume that a web attacker

2.3. Attacking Web Sessions 51

can obtain trusted HTTPS certificates for all the web servers under his control and is able
to exploit content injection vulnerabilities on trusted websites. A slightly more powerful
variation of the web attacker, known as the related-domain attacker [35], can host malicious
web pages on a related domain of the target website. This means in particular that the
attacker can set (domain) cookies for the target website [18]. These cookies are indistin-
guishable from other cookies set by the target website and are automatically sent to the
latter by the browser. Hereafter, we explicitly distinguish a related-domain attacker from
a standard web attacker only when the specific setting is relevant to carry out an attack.

Network attackers subsume the capabilities of traditional web attackers and are also
capable to inspect, forge and corrupt all the HTTP traffic sent on the network, as well as
the HTTPS traffic which does not make use of certificates signed by a trusted certification
authority. It is common practice in web security to distinguish between passive and ac-
tive network attackers, with the first ones lacking the ability of forging or corrupting the
unprotected network traffic. From now on, when generically speaking about network
attackers, we implicitly refer to active network attackers.

2.3.3 Web Attacks

Content Injection

This wide class of attacks allows a web attacker to inject harmful contents into trusted
web applications. Content injections can be mounted in many different ways, but they are
always enabled by an improper or missing sanitization of some attacker-controlled input
in the web application, either at the client side or at the server-side. These attacks are tra-
ditionally assimilated to Cross-Site Scripting (XSS), i.e., injections of malicious JavaScript
code; however, the lack of a proper sanitization may also affect HTML contents (markup
injection) or even CSS rules [211, 82].

To exemplify how an XSS works, consider a website vuln.com hosting a simple search
engine. Queries are performed via a GET request including a search parameter which is
shown in the result page headline “Search results for foo:”, where foo is the value
of the search parameter. An attacker can then attempt to inject contents into vuln.com

just by providing to the user a link including a script as the search term. If the search
page does not properly sanitize such an input, the script will be included in the headline
of the results page and it will run on behalf of vuln.com, thus allowing the attacker to
sidestep SOP: for instance, the injected script will be entitled to read the authentication
cookies set by vuln.com.

XSS attacks are usually classified as either reflected or stored, depending on the persis-
tence of the threat. Reflected XSS attacks correspond to cases like the one above, where
part of the input supplied by the request is “reflected” into the response without proper
sanitization. Stored XSS attacks, instead, are those where the injected script is perma-
nently saved on the target server, e.g., in a message appearing on a discussion board. The
script is then automatically executed by any browser visiting the attacked page.

52 Chapter 2. Surviving the Web: A Journey into Web Session Security

Security properties: since content injections allow an attacker to elude SOP, which is
the baseline security policy of standard web browsers, they can have catastrophic conse-
quences on both the confidentiality and the integrity of a web session. Specifically, they
can be used to steal sensitive data from trusted websites, such as authentication cookies
and user credentials, and to actively corrupt the page contents, so as to undermine the
integrity of a web session.

Cross-Site Request Forgery (CSRF)

A CSRF is an instance of the “confused deputy” problem [79] in the context of web brows-
ing. In a CSRF, the attacker forces the user browser into sending HTTP(S) requests to a
website where the user has already established an authenticated session: it is enough for
the attacker to include HTML elements pointing to the vulnerable website in his own
web pages. When rendering or accessing these HTML elements, the browser will send
HTTP(S) requests to the target website and these requests will automatically include the
authentication cookies of the user. From the target website perspective, these forged re-
quests are indistinguishable from legitimate ones and thus they can be abused to trigger
a dangerous side-effect, e.g., to force a bank transfer from the user account to the attacker
account. Notably, the attacker can forge these malicious requests without any user inter-
vention, e.g., by including in a page under his control some tags or a hidden HTML
form submitted via JavaScript.

Security properties: a CSRF attack allows the attacker to inject an authenticated mes-
sage into a session with a trusted website, hence it constitutes a threat to session integrity.
It is less known that CSRFs may also be employed to break confidentiality by sending
cross-site requests that return sensitive user data bound to the user session. Normally,
SOP (Section 2.2.4) prevents a website from reading responses returned by a different
site, but websites may explicitly allow cross-site accesses using the Cross-Origin Request
Sharing (CORS) standard [193] or mechanisms like JSON with Padding (JSONP) [85]
which can be abused to break session confidentiality. For instance, a CSRF attack leaking
the stored files has been reported on the cloud service SpiderOak [13].

Login CSRF

A peculiar instance of CSRF, known as login CSRF, is a subtle attack first described by
Barth et al., where the victim is forced to interact with the target website within the at-
tacker session [20]. Specifically, the attacker uses his own credentials to silently log in the
user browser at the target website, for instance by forcing it into submitting an invisible
login form. The outcome of the attack is that the user browser is forced into an attacker
session: if the user is not careful, she might be tricked into storing sensitive information,
like her credit card number, into the attacker account.

Security properties: though this attack does not compromise existing sessions, it fools
the browser into establishing a new attacker-controlled (low integrity) session with a

2.3. Attacking Web Sessions 53

trusted website. Login CSRFs may enable confidentiality violations in specific applica-
tion scenarios, like in the credit card example given above.

Cookie Forcing

A web attacker exploiting a code injection vulnerability may directly impose his own
authentication cookies in the victim browser, thus forcing it into the attacker session and
achieving the same results of a successful login CSRF, though exploiting a different attack
vector. Related-domain attackers are in a privileged position for these attacks, since they
can set cookies for the target website from a related-domain host.

Security properties: see login CSRF above.

Session Fixation

A session fixation attack allows an attacker to impersonate a user by imposing in the user
browser a known session identifier, which is not refreshed upon successful authentication
with the vulnerable website. Typically, the attacker first contacts the target site and gets
a valid cookie which is then set (e.g., via an XSS attack on the site) into the user browser
before the initial password-based authentication step is performed. If the website does
not generate a fresh cookie upon authentication, the user session will be identified by a
cookie known to the attacker. Related-domain attackers have easy access to these attacks,
since they can set cookies on behalf of the victim website.

Security properties: by letting the attacker fully impersonate the user at the target web-
site, session fixation harms both the confidentiality and the integrity of the user session,
just as if the authentication cookies were disclosed to the attacker.

2.3.4 Network Attacks

Though network attacks are arguably more difficult to carry out on the Web than stan-
dard web attacks, they typically have a tremendous impact on both the confidentiality
and the integrity of the user session. Since the HTTP traffic is transmitted in clear, a
network attacker, either passive or active, can eavesdrop sensitive information and com-
promise the confidentiality of HTTP sessions. Websites which are served on HTTP or on
a mixture of HTTPS and HTTP are prone to expose non-secure cookies or user creden-
tials to a network attacker: in these cases, the attacker will be able to fully impersonate
the victim at the target website. An active network attacker can also mount man-in-the-
middle attacks via e.g., ARP spoofing, DNS cache poisoning or by setting up a fake wi-fi
access point. By interposing himself between the victim and the server, this attacker can
arbitrarily modify HTTP requests and responses exchanged by the involved parties, thus
breaking the confidentiality and the integrity of the session. Also, active network attack-
ers can compromise the integrity of cookies [18].

A notable example of network attack is SSL stripping [117], which is aimed at pre-
venting web applications from switching from HTTP to HTTPS. The attack exploits the

54 Chapter 2. Surviving the Web: A Journey into Web Session Security

fact that the initial connection to a website is typically initiated over HTTP and the pro-
tocol upgrade is done through HTTP redirect messages, links or HTML forms targets. By
corrupting the first server response, an active attacker can force the session in clear by
replacing all the HTTPS references with their HTTP version and then forward the traffic
received by the user to the real web server, possibly over HTTPS. The same operation will
then be performed for each request/response in the session, hence the web application
will work seamlessly, but the communication will be entirely under the control of the
attacker. This attack is particularly subtle, since the user might fail to notice the missing
usage of HTTPS, which is only notified by some components in the user interface of the
browser (e.g., a padlock icon).

2.4 Protecting Web Sessions

2.4.1 Evaluation Criteria

We evaluate existing defenses along four different axes:

1. protection: we assess the effectiveness of the proposed defense against the conven-
tional threat model of the attack, e.g., the web attacker for CSRF. If the proposal
does not prevent the attack in the most general case, we discuss under which as-
sumptions it may still be effective;

2. usability: we evaluate whether the proposed mechanism affects the end-user expe-
rience, for instance by impacting on the perceived performances of the browser or
by involving the user into security decisions;

3. compatibility: we discuss how well the defense integrates into the web ecosystem
with respect to the current standards, the expected functionalities of websites, and
the performances provided by modern network infrastructures. For example, so-
lutions that prevent some websites from working correctly are not compatible with
the existing Web. On the other hand, a minor extension to a standard protocol
which does not break backward compatibility, such as the addition of new HTTP
headers that can be ignored by recipients not supporting them, is acceptable;

4. ease of deployment: we consider how practical would be a large-scale deployment of
the defensive solution by evaluating the overall effort required by web developers
and system administrators for its adoption. If they have to pay an unacceptably
high cost, the solution will likely never be deployed on a large scale.

We deem a negative impact on server-side performances as a compatibility problem
rather than a usability problem when the overall response time can be kept constant by
increasing the computational resources of the server, thus keeping the user experience
unaffected. To provide a concise yet meaningful evaluation of the different proposals,
usability, compatibility and ease of deployment are assigned a score from a three-levels
scale: Low, Medium and High. Table 2.1 provides the intuition underlying these scores.

2.4. Protecting Web Sessions 55

Usability Compatibility Ease of Deployment

Low Users must take sev-
eral security decisions

The correct functioning
of some websites is pre-
cluded

Applications need to be
heavily rewritten, complex
security policies must be
deployed

Medium
Perceivable slowdown
of performances that
affects the client

Moderate increase of
the server workload

Moderate server-side mod-
ifications, small declarative
policies have to be written

High The user experience is
not affected in any way

The defense fits the web
ecosystem, no impact
on server workload

The protection can be en-
abled just by installing an
additional component or by
minimal server-side modifi-
cations

TABLE 2.1: Evaluation Criteria.

We exclude from our survey several solutions which would require major changes to
the current Web, such as new communication protocols or authentication mechanisms
replacing cookies and passwords [96, 77, 171, 52].

2.4.2 Content Injection: Mitigation Techniques

Given the critical impact of content injection attacks, there exist many proposals which
focus on them. In this section we discuss those solutions which do not necessarily prevent
a content injection, but rather mitigate its malicious effects, e.g., by thwarting the leakage
of sensitive data.

HttpOnly Cookies

HttpOnly cookies have been introduced in 2002 with the release of Internet Explorer 6
SP1 to prevent the theft of authentication cookies via content injection attacks. Available
on all major browsers, this simple yet effective mechanism limits the scope of cookies to
HTTP(S) requests, making them unavailable to malicious JavaScript injected in a trusted
page.

The protection offered by the HttpOnly attribute is only limited to the theft of authen-
tication cookies. The presence of the attribute is transparent to users, hence it has no
usability import. Also, the attribute perfectly fits the web ecosystem in terms of compati-
bility with legacy web browsers, since unknown cookie attributes are ignored. Finally, the
solution is easy to deploy, assuming there is no need of accessing authentication cookies
via JavaScript for generic reasons [216].

SessionShield and Zan

SessionShield [137] is a client-side proxy preventing the leakage of authentication cook-
ies via XSS attacks. It operates by automatically identifying these cookies in incoming
response headers, stripping them from the responses, and storing them in a private

56 Chapter 2. Surviving the Web: A Journey into Web Session Security

database inaccessible to scripts. SessionShield then reattaches the previously stripped
cookies to outgoing requests originating from the client to preserve the session. A sim-
ilar idea is implemented in Zan [178], a browser-based defense which (among other
things) automatically applies the HttpOnly attribute to the authentication cookies de-
tected through the usage of a heuristic. As previously discussed, HttpOnly cookies can-
not be accessed by JavaScript and will only be attached to outgoing HTTP(S) requests.

The protection offered by SessionShield and Zan is limited to the improper exfiltration
of authentication cookies. These defenses do not prompt the user with security decisions,
neither slow down perceivably the processing of web pages, hence they are fine from a
usability point of view. However, the underlying heuristic for detecting authentication
cookies poses some compatibility concerns, since it may break websites when a cookie
is incorrectly identified as an authentication cookie and made unavailable to legitimate
scripts that need to access it. Both SessionShield and Zan are very easy to deploy, given
their purely client-side nature.

Request Filtering Approaches

Noxes is one of the first developed client-side defenses against XSS attacks [104]. It is
implemented as a web proxy installed on the user machine, aimed at preserving the
confidentiality of sensitive data in web pages, such as authentication cookies and session
IDs. Instead of blocking malicious script execution, Noxes analyses the pages fetched
by the user in order to allow or deny outgoing connections on a whitelist basis: only
local references and static links embedded into a page are automatically considered safe
with respect to XSS attacks. For all the other links, Noxes resorts to user interaction to
take security decisions which can be saved either temporarily or permanently. Inspired
by Noxes, Vogt et al. introduce a modified version of Firefox [188] where they combine
dynamic taint tracking and lightweight static analysis techniques to track the flow of a
set of sensitive data sources (e.g., cookies, document URLs) within the scripts included in
a page. When the value of a tainted variable is about to be sent to a third-party domain,
the user is required to authorize or deny the communication.

The protection offered by these approaches is not limited to authentication cookies,
but it prevents the exfiltration of arbitrary sensitive data manipulated by web pages. Ac-
cording to the authors, the solutions are not affected by performance problems, however
Noxes still suffers from usability issues, as it requires too much user interaction given the
high number of dynamic links in modern web pages [137]. The modified Firefox in [188]
attempts to lower the number of security questions with respect to Noxes, but still many
third-party domains such as .google-analytics.com should be manually whitelisted to
avoid recurring alert prompts. On the other hand, due to the fine-grained control over the
filtering rules, both mechanisms are deemed compatible, assuming that the user takes the
correct security decisions. Both solutions are easy to deploy, since no server-side modifi-
cation is required and users simply need to install an application on their machines.

2.4. Protecting Web Sessions 57

Critical Evaluation

The exfiltration of sensitive data is a typical goal of content injection attacks. Prevent-
ing authentication cookie stealing is simple nowadays, given that the HttpOnly attribute
is well supported by all modern browsers, and several languages and web frameworks
allow the automatic enabling of the attribute for all the authentication cookies [147]. Con-
versely, solutions aimed at providing wider coverage against general data leakage attacks
never gained popularity, mainly due to their impact on the user experience.

2.4.3 Content Injection: Prevention Techniques

While the proposals discussed in the previous section are designed to block leakages of
sensitive data, the defenses presented in this section attempt to prevent the execution of
malicious contents injected into web pages.

Client-side Filtering

XSS filters like IE XSS Filter [157] and WebKit XSSAuditor [21] are useful to prevent re-
flected XSS attacks. Before interpreting the JavaScript code in a received page, these
client-side filters check whether potentially dangerous payloads included in the HTTP
request are also found within the response body: if a match is detected, the payload is
typically stripped from the rendered page without asking for user intervention. The No-
Script extension for Firefox [116] applies an even stricter policy, since it directly prevents
script execution, thus blocking both stored and reflected XSS attacks. This policy can be
relaxed on selected domains, where only XSS filtering mechanisms are applied.

XSS filtering proved to be quite effective in practice, despite not being always able
to prevent all the attacks. A typical example is a web application which takes a base64

encoded string via a GET variable and includes the decoded result in the generated page:
an attacker may easily bypass the XSS filter by supplying the base64 encoding of a ma-
licious JavaScript which will, in turn, be decoded by the server and included in the re-
sponse body. Additionally, XSS filters have also been exploited to introduce new flaws
in otherwise secure websites, e.g., by disabling legitimate scripts found in the original
pages [132, 94].

The filtering approach against reflected XSS attacks showed no negative impact on
the user experience and a good compatibility with modern web applications. Indeed,
IE XSS Filter and WebKit XSSAuditor have been included in major browsers. The addi-
tional security features offered by NoScript however come at a cost on usability, since the
user is involved in the process of dynamically populating the whitelist of the extension
whenever a blocked script is required to preserve the functionality of the website. Nev-
ertheless, it is possible to relax the behaviour of NoScript to improve the user experience,
by configuring the extension so that it only applies filtering against reflected XSS attacks.

58 Chapter 2. Surviving the Web: A Journey into Web Session Security

Server-side Filtering

An alternative to the in-browser filtering approach is to perform attack detection on the
server-side. Xu et al. present a method based on fine-grained taint tracking analysis [206]
which improves an earlier solution named CSSE [152]. This approach is designed to
prevent a variety of attacks including content injections. The idea is to apply a source-to-
source transformation of server-side C programs to track the flow of potentially malicious
input data and enforce taint-enhanced security policies. By marking every byte of the
user input as tainted, reflected XSS attacks can be prevented by policies that forbid the
presence of tainted dangerous HTML tag patterns inside the web application output.

The protection offered by this approach and its ease of deployment crucially depend
on the enforced security policy. A simple policy preventing user-provided <script> tags
from appearing in the web page is trivial to write, but ineffective against more sophis-
ticated attacks. However, writing a more comprehensive set of rules while maintaining
the full functionalities of websites is considered a challenging task [110]. The existence
of ready-to-use policies would make it easier to apply the security mechanism. Still,
server modifications are required to enable support for the protection mechanism on the
script language engine, which brings a significant performance overhead on CPU inten-
sive applications, reported to be between 50% and 100%. This partially hinders both
compatibility and ease of deployment.

XSS-Guard

The idea of server-side source-to-source program transformation is also employed in
XSS-Guard [28], a solution for Java applications aimed at distinguishing malicious scripts
reflected into web pages from legitimate ones. For each incoming request, the rewritten
application generates two pages: the first includes the original user input, while the sec-
ond is produced using input strings not including harmful characters (e.g., sequences of
A’s). The application checks the equivalence of the scripts contained in the two pages by
string matching or, in case of failure, by comparing their syntactic structure. Additional
or modified scripts found within the real page are considered malicious and stripped
from the page returned to the user.

The protection offered by XSS-Guard is good, but limited to reflected XSS attacks.
Moreover, since the script detection procedure is borrowed from the Firefox browser,
some quirks specific to other browsers may allow to escape the mechanism. However,
XSS-Guard is usable, since the browsing experience is not affected by its server-side adop-
tion. The performance overhead caused by the double page generation ranges from 5%
to 24%, thus increasing the server workload: this gives rise to some concerns about com-
patibility. On the other hand, enabling the solution on existing Java programs is simple,
since no manual code changes are required and web developers only need to automati-
cally translate their applications.

2.4. Protecting Web Sessions 59

BEEP

Browser-Enforced Embedded Policies (BEEP) [93] is a hybrid client-server approach that
hinges on the assumption that web developers have a precise understanding of which
scripts should be trusted for execution. Websites provide a filtering policy to the browser
in order to allow the execution of trusted scripts only, thus blocking any malicious scripts
injected into the page. The policy is embedded in web pages through a specific JavaScript
function which is invoked by a specially-modified browser every time a script is found
during the parsing phase. This function accepts as parameters the code and the DOM el-
ement of the script and returns a boolean value which determines whether the execution
is allowed or not.

The proposed mechanism exhibits some security defects, as shown in [11]. For in-
stance, an attacker may reuse whitelisted scripts in an unanticipated way to alter the be-
haviour of the application. Regarding usability, the adoption of this solution may cause
some slowdowns at the client-side when accessing websites which heavily rely on inline
JavaScript contents. Compatibility however is preserved, since browsers not compliant
with BEEP will still render pages correctly without the additional protection. The de-
ployment of BEEP is not straightforward, since the effort required to modify existing
web applications to implement the security mechanism depends on the complexity of
the desired policy.

Blueprint

Blueprint [110] tackles the problem of denying malicious script execution by relieving
the browser from parsing untrusted contents: indeed, the authors argue that relying on
the HTML parsers of different browsers is inherently unsafe, due to the presence of nu-
merous browser quirks. In this approach, web developers annotate the parts of the web
application code which include a block of user-provided content in the page. For each
block, the server builds a parse tree of the user input, stripped of all the dynamic contents
(e.g., JavaScript, Flash). This sanitized tree is encoded as a base64 string and included
in the page within an invisible <code> block. This base64 data is then processed by a
client-side JavaScript which is in charge of reconstructing the DOM of the corresponding
portion of the page.

Despite providing strong protection against stored and reflected XSS attacks, Blueprint
suffers from performance issues which impact on both usability and compatibility [202].
Specifically, the server workload is increased by a 35%-55% due to the parse tree gen-
eration, while the page rendering time is significantly affected by the amount of user
contents to be dynamically processed by the browser. Also, Blueprint requires a consid-
erable deployment effort, since the web developer must manually identify and update
all the code portions of web applications that write out the user input.

60 Chapter 2. Surviving the Web: A Journey into Web Session Security

Noncespaces

Along the same line of research, Noncespaces [75] is a hybrid approach that allows web
clients to distinguish between trusted and untrusted contents to prevent content injection
attacks. This solution provides a policy mechanism which enables web developers to
declare granular constraints on elements and attributes according to their trust class. All
the (X)HTML tags and attributes are associated to a specific trust class by automatically
enriching their names with a random string, generated by the web application, that is
unknown to the attacker. In case of XHTML documents, the random string is applied
as a namespace prefix (<r617:h1 r617:id=“Title”> Title </r617:h1>), while in the
HTML counterpart the prefix is simply concatenated (<r617h1 r617id=“Title”> Title

</r617h1>). The server sends the URL of the policy and the mapping between trust
classes and random strings via custom HTTP headers. A proxy installed on the user
machine validates the page according to the policy and returns an empty page to the
browser in case of violations, i.e., if the page contains a tag or attribute with a random
string which is invalid or bound to an incorrect trust class.

The solution is an improvement over BEEP in preventing stored and reflected XSS.
Since random prefixes are not disclosed to the attacker, Noncespaces is not affected by
the exploits introduced in [11]. Additionally, the mechanism allows web developers to
permit the inclusion of user-provided HTML code in a controlled way, thus offering pro-
tection also against markup injections. Although the impact on server-side performance
is negligible, the policy validation phase performed by the proxy on the client-side in-
troduces a noticeable overhead which may range from 32% to 80%, thus potentially af-
fecting usability. Furthermore, though Noncespaces can be safely adopted on XHTML
websites, it is affected by compatibility problems on HTML pages, due to the labelling
process which disrupts the names of tags and attributes, and thus the page rendering, on
unmodified browsers. Web developers are required to write security policies and revise
web applications to support Noncespace, hence the ease of deployment depends on the
granularity of the enforced policy.

DSI

In parallel with the development of Noncespaces, Nadji et al. proposed a similar solution
based on the concept of document structure integrity (DSI) [130]. The approach relies
on server-side taint-tracking to mark nodes generated by user-inserted data, so that the
client is able to recognize and isolate them during the parsing phase to prevent unin-
tended modifications to the document structure. Untrusted data is delimited by special
markers, i.e., sequences of randomly chosen Unicode whitespace characters. These mark-
ers are shipped to the browser in the <head> section of the requested page along with a
simple policy which specifies the allowed HTML tags within untrusted blocks. The pol-
icy enforcement is performed by a modified browser supporting the security mechanism
which is also able to track dynamic updates to the document structure.

2.4. Protecting Web Sessions 61

This solution shares with Noncespaces a similar degree of protection. Nevertheless,
from a performance standpoint, the defense introduces only a limited overhead on the
client-side, since the policies are simpler with respect to Noncespaces and the enforce-
ment mechanism is integrated in the browser instead of relying on an external proxy. As
a result, the user experience is not affected. Compatibility is preserved, given that the la-
belling mechanism does not prevent unmodified browsers from rendering correctly DSI-
enabled web applications. Finally, even the deployment is simplified, since no changes
to the applications are required and the policy language is more coarse grained than the
one proposed in Noncespaces.

Content Security Policy

The aforementioned proposals share the idea of defining a client-side security policy [202].
The same principle is embraced by the Content Security Policy (CSP) [191], a web secu-
rity policy standardized by the W3C and adopted by all major browsers. CSP is deployed
via an additional HTTP response header and allows the specification of the trusted ori-
gins from which the browser is permitted to fetch the resources included in the page. The
control mechanism is fairly granular, allowing one to distinguish between different types
of resources, such as JavaScript, CSS and XHR targets. By default, CSP does not allow
inline scripts and CSS directives (which can be used for data exfiltration) and the usage of
particularly harmful JavaScript functions (e.g., eval). However, these constraints can be
disabled by using the ’unsafe-inline’ and the ’unsafe-eval’ rules. With the introduc-
tion of CSP Level 2 [192], it is possible to selectively white-list inline resources without
allowing indiscriminate content execution. Permitted resources can be identified in the
policy either by their hashes or by random nonces included in the web page as attributes
of their enclosing tags.

When properly configured, CSP provides an effective defense against XSS attacks.
Still, general content injection attacks, such as markup code injections, are not prevented.
CSP policies are written by web developers and transparent to users, so their design sup-
ports usability. Compatibility and deployment cost are better evaluated together for CSP.
On the one hand, it is easy to write a very lax policy which allows the execution of inline
scripts and preserves the functionality of web applications by putting only mild restric-
tions on cross-origin communication: this ensures compatibility. On the other hand, an
effective policy for legacy applications can be difficult to deploy, since inline scripts and
styles should be removed or manually white-listed, and trusted origins for content in-
clusion should be carefully identified [202]. As of now, the deployment of CSP is not
particularly significant or effective [204, 40]. That said, the standardization of CSP by the
W3C suggests that the defense mechanism is not too hard to deploy on many websites,
at least to get some limited protection.

62 Chapter 2. Surviving the Web: A Journey into Web Session Security

Critical Evaluation

Content injection is one of the most widespread threats to the security of web sessions [148].
Indeed, modern web applications include contents from a variety of sources, burdening
the task of identifying malicious contents. Few proposals attempt to provide a com-
prehensive defense against content injection and the majority of the most popular solu-
tions are only effective against reflected XSS or have very limited scope. Indeed, among
the surveyed solutions, client-side XSS filters are by far the most widespread protection
mechanisms, implemented by the majority of the web browsers. Under the current state
of the art, achieving protection against stored injections while preserving the application
functionality requires the intervention of web developers.

Although several of the discussed approaches were only proposed in research pa-
pers and never embraced by the industry, some of them contributed to the development
of existing web standards. For instance, the hash-based whitelisting approach of inline
scripts supported by CSP has been originally proposed as an example policy in the BEEP
paper [93]. More research is needed to provide more general defenses against a complex
problem like content injection.

2.4.4 Cross-Site Request Forgery and Login CSRF

We now discuss security solutions which are designed to protect against CSRF and login
CSRF. We treat these two attacks together, since security solutions which are designed to
protect against one of the attacks are typically also effective against the other. In fact, both
CSRF and login CSRF exploit cross-site requests which trigger dangerous side-effects on
a trusted web application.

Purely Client-side Solutions

Several browser extensions and client-side proxies have been proposed to counter CSRF
attacks, including RequestRodeo [95], CsFire [164, 163] and BEAP [115]. All of these solu-
tions share the same idea of stripping authentication cookies from potentially malicious
cross-site requests sent by the browser. The main difference between these proposals con-
cerns the way cross-site requests are deemed malicious: different, more or less accurate
heuristics have been put forward for the task.

These solutions are designed to protect against web attackers who host on their web
servers pages that include links to a victim website, in the attempt of fooling the browser
into sending malicious authenticated requests towards the victim website. Unfortunately,
this protection becomes ineffective if a web attacker is able to exploit a content injection
vulnerability on the target website, since it may force the browser into sending authenti-
cated requests originating from a same-site position.

A very nice advantage of these client-side defenses is their usability and ease of de-
ployment: the user can just install the extension/proxy on her machine and she will be
automatically protected from CSRF attacks. On the other hand, compatibility may be at

2.4. Protecting Web Sessions 63

harm, since any heuristic for determining whenever a cross-site request should be con-
sidered malicious is bound to (at least occasionally) produce some false positives. To the
best of our knowledge, the most sophisticated heuristic is implemented in the latest re-
lease of CsFire [163], but a large-scale evaluation on the real Web has unveiled that even
this approach may sometimes break useful functionalities of standard web browsing: for
instance, it breaks legitimate accesses to Flickr or Yahoo via the OpenID single sign-on
protocol [51].

Allowed Referrer Lists (ARLs)

ARLs have been proposed as a client/server solution against CSRF attacks [51]. Roughly,
an ARL is just a whitelist that specifies which origins are entitled to send authenticated
requests to a given website. The whitelist is compiled by web developers willing to secure
their websites, while the policy enforcement is done by the browser. If no ARL is specified
for a website, the browser behaviour is unchanged when accessing it, i.e., any origin is
authorized to send authenticated requests to the website.

ARLs are effective against web attackers, provided that no content injection vulner-
ability affects any of the whitelisted pages. Their design supports usability, since their
enforcement is lightweight and transparent to browser users. Moreover, compatibility is
ensured by the enforcement of security restrictions only on websites which explicitly opt-
in to the protection mechanism. The ease of deployment of ARLs is acceptable in most
cases. Users must adopt a security-enhanced web browser, but ARLs do not require ma-
jor changes to the existing ones: the authors implemented ARLs in Firefox with around
700 lines of C++ code. Web developers, instead, must write down their own whitelists.
We believe that for many websites this process requires only limited efforts: for instance,
e-commerce websites may include in their ARL only the desired e-payment providers,
e.g., Paypal. However, notice that a correct ARL for Paypal may be large and rather dy-
namic, since it should enlist all the websites relying on Paypal for payment facilities.

Tokenization

Tokenization is a popular server-side countermeasure against CSRF attacks [20]. The idea
is that all the requests that might change the state of the web application should include
a secret token randomly generated by the server for each session and, possibly, each re-
quest: incoming requests that do not include the correct token are rejected. The inclusion
of the token is transparently done by the browser during the legitimate use of the website,
e.g., every security-sensitive HTML form in the web application is extended to provide
the token as a hidden parameter. It is crucial that tokens are bound to a specific session,
otherwise an attacker could legitimately acquire a valid token for his own session and
transplant it into the user browser to fool the web application into accepting malicious
authenticated requests as part of the user session.

Tokenization is robust against web attackers only if we assume they cannot perform
content injection attacks. In fact, a content injection vulnerability might give access to all

64 Chapter 2. Surviving the Web: A Journey into Web Session Security

the secret tokens, given that they are included in the DOM of the web page. The usage of
secret tokens is completely transparent to the end-user, so there are no usability concerns.
However, tokenization may be hard to deploy for web developers. The manual insertion
of secret tokens is tedious and typically hard to get right. Some web development frame-
works offer automatic support for tokenization, but this is not always comprehensive
and may leave room for attacks. These frameworks are language-dependent and may
not be powerful enough for sophisticated web applications developed using many dif-
ferent languages [51].

NoForge

NoForge [98] is a server-side proxy sitting between the web server and the web applica-
tions to protect. It implements the tokenization approach against CSRF on all requests,
without requiring any change to the web application code. NoForge parses the HTTP(S)
responses sent by the web server and automatically extends each hyperlink and form
contained in them with a secret token bound to the user session; incoming requests are
then delivered to the web server only if they contain a valid token.

The protection and the usability offered by NoForge are equivalent to what can be
achieved by implementing tokenization at the server-side. The adoption of a proxy for
the tokenization task significantly simplifies the deployment of the defensive solution,
but it has a negative impact on compatibility, since HTML links and forms which are
dynamically generated at the client side will not be rewritten to include the secret token.
As a result, any request sent by clicking on these links or by submitting these forms
will be rejected by NoForge, thus breaking the web application. The authors of NoForge
are aware of this problem and state that it can be solved by manually writing scripts
which extend links and forms generated at the client side with the appropriate token [98].
However, if this need is pervasive, the benefits on deployment offered by NoForge can
be easily voided. For this reason we argue that the design of NoForge is not compatible
with the modern Web.

Origin Checking

Origin checking is a popular alternative to tokenization [20]. Modern web browsers
implement the Origin header, identifying the security context (origin) that caused the
browser to send an HTTP(S) request. For instance, if a link to http://b.com is clicked on
a page downloaded from http://a.com, the corresponding HTTP request will include
http://a.com in the Origin header. Web developers may inspect this header to detect
whether a potentially dangerous cross-site request has been generated by a trusted do-
main or not.

2.4. Protecting Web Sessions 65

Origin checking is robust against web attackers without scripting capabilities in any
of the domains trusted by the target website. Server-side origin checking is entirely trans-
parent to the end-user and has no impact on the navigation experience, so it may not hin-
der usability. This solution is simpler to deploy than tokenization, since it can be imple-
mented by using a web application firewall like ModSecurity1. Unfortunately, the Origin
header is not attached to all the cross-origin requests: for instance, the initial proposal of
the header was limited to POST requests [20] and current web browser implementations
still do not ensure that the header is always populated [19]. Web developers should be
fully aware of this limitation and ensure that all the state-changing operations in their
applications are triggered by requests bearing the Origin header. In practice, this may be
hard to ensure for legacy web applications [51].

Critical Evaluation

Effectively preventing CSRFs and login CSRFs is surprisingly hard. Even though the
root cause of the security problem is well-understood for these attacks, it is challenging
to come up with a solution which is at the same time usable, compatible and easy to de-
ploy. At the time of writing, Allowed Referrer Lists (ARLs) represent the most promising
defensive solution against CSRFs and login CSRFs. They are transparent to end-users, re-
spectful towards legacy technology and do not require changes to web application code.
Unfortunately, ARLs are not implemented in major web browsers, so in practice tokeniza-
tion and origin checking are the most widespread solutions nowadays. These approaches
however may be hard to deploy on legacy web applications.

2.4.5 Cookie Forcing and Session Fixation

We collect together the defenses proposed against cookie forcing and session fixation.
In fact, both the attacks rely on the attacker capability to corrupt the integrity of the
authentication cookies set by a trusted website.

Cookies Renewal

The simplest and most effective defense against session fixation is implemented at the
server-side, by ensuring that the authentication cookies identifying the user session are
refreshed when the level of privilege changes, i.e., when the user provides her password
to the web server and performs a login [97]. If this is done, no cookie fixed by an attacker
before the first authentication step may be used to identify the user session. Notice that
this countermeasure does not prevent cookie forcing, since the attacker can first authenti-
cate at the website using a standard web browser and then directly force his own cookies
into the user browser.

Renewing authentication cookies upon password-based authentication is a recom-
mended security practice and it is straightforward to implement for new web applica-
tions. However, retrofitting a legacy web application may require some effort, since

1https://www.modsecurity.org/

66 Chapter 2. Surviving the Web: A Journey into Web Session Security

the authentication-related parts of session management must be clearly identified and
corrected. It may actually be more viable to keep the application code unchanged and
operate at the framework level or via a server-side proxy, to enforce the renewal of the
authentication cookies whenever an incoming HTTP(S) request is identified as a login
attempt [97]. Clearly, these server-side solutions must ensure that login attempts are ac-
curately detected to preserve compatibility: this is the case, for instance, when the name
of the POST parameter bound to the user password is known.

Serene

The Serene browser extension offers automatic protection against session fixation at-
tacks [165]. It inspects each outgoing request sent by the browser and applies a heuristic
to identify cookies which are likely used for authentication purposes: if any of these
cookies was not set via HTTP(S) headers, it is stripped from the outgoing request, hence
cookies which have been fixated or forced by a malicious script cannot be used to authen-
ticate the client. The key observation behind this design is that existing websites set their
authentication cookies using HTTP(S) headers in the very large majority of cases.

The solution is designed to be robust against web attackers, since they can only set a
cookie for the website by exploiting a markup/script injection vulnerability. Conversely,
Serene is not effective against related-domain attackers who might use their sites to le-
gitimately set cookies for the whole domain using HTTP headers. The main advantages
of Serene are its usability and ease of deployment: users only need to install Serene in
their browser and it will provide automatic protection against session fixation for any
website, though the false negatives produced by the heuristic for authentication cookies
detection may still leave room for attacks. The compatibility of Serene crucially depends
on its heuristic: false positives may negatively affect the functionality of websites, since
some cookies which should be accessed by the web server are never sent to it. In practice,
it is impossible to be fully accurate in the authentication cookie detection process, even
using sophisticated techniques [41].

Origin Cookies

Origin cookies have been proposed to fix some known integrity issues affecting cook-
ies [35]. We have already discussed that standard HTTP cookies do not provide strong
integrity guarantees against related-domain attackers and active network attackers. The
observation here is that these attackers exploit the relaxation of the same-origin policy
applied to cookies (cf. Section 2.2.4). Origin cookies, instead, are bound to an exact web
origin. For instance, an origin cookie set by https://example.com can only be overwrit-
ten by an HTTPS response from example.com and will only be sent to example.com over
HTTPS. Origin cookies can be set by websites simply by adding the Origin attribute to
standard cookies. Origin cookies are sent by the browser inside a new custom header
Origin-Cookie, thus letting websites distinguish origin cookies from normal ones.

2.4. Protecting Web Sessions 67

Since origin cookies are isolated between origins, the additional powers of related-
domain attackers and active network attackers in setting or overwriting cookies are no
longer a problem. The use of origin cookies is transparent to users and their design
supports backward compatibility, since origin cookies are treated as standard cookies
by legacy browsers (unknown cookie attributes are ignored). Origin cookies are easy to
deploy on websites entirely hosted on a single domain and only served over a single
protocol: for such a website, it would be enough to add the Origin attribute to all its
cookies. On the other hand, if a web application needs to share cookies between different
protocols or related domains, then the web developer is forced to implement a protocol to
link together different sessions built on distinct origin cookies. This may be a non-trivial
task to carry out for existing websites.

Cookie Prefixes

Cookie prefixes [205] are a recent proposal aimed at providing strong integrity guarantees
for cookies whose names start with particular prefixes. When instructed to set a cookie
with a name starting with __Host-, a compliant browser verifies that i) the cookie is set
over HTTPS and the Secure attribute is used; ii) the Domain attribute is omitted; iii) the
Path attribute is equal to /, i.e., the cookie is attached to all requests sent to the host.
The cookie is rejected by the browser if any of these requirements is not satisfied. Thus,
__Host- cookies cannot be set by a related domain or by a network attacker, successfully
preventing both session fixation and cookie forcing.

Although the specification is currently just a draft, cookie prefixes are already sup-
ported by all major browsers except Microsoft Edge and Internet Explorer. Cookie pre-
fixes do not impact in any way the user experience and are designed to be backward com-
patible since non-compliant web browsers will simply treat them as traditional cookies.
Regarding ease of deployment, the same considerations made for origin cookies apply:
adoption is straightforward for websites hosted over HTTPS on a single domain, while
it may require considerable efforts for web applications shared over multiple related do-
mains.

Critical Evaluation

Session fixation is a dangerous attack, but it is relatively easy to prevent. Renewing au-
thentication cookies upon user authentication is the most popular, effective and widespread
solution against these attacks. The only potential issue with this approach is implement-
ing a comprehensive protection for legacy web applications [97]. Cookie forcing, instead,
is much trickier to defend against. Although the integrity problems of cookies are well-
known to security experts [214], only recently browser started supporting protections to
rectify these issues.

68 Chapter 2. Surviving the Web: A Journey into Web Session Security

2.4.6 Network Attacks

HTTPS with Secure Cookies

Though it is obvious that websites concerned about network attackers should make use of
HTTPS, there are some points worth discussing. For instance, while it is well-understood
that passwords should only be sent over HTTPS, web developers often underestimate the
risk of leaking authentication cookies in clear, thus undermining session confidentiality
and integrity. As a matter of fact, many websites are still only partially deployed over
HTTPS, either to increase performances or because only a part of their contents needs
to be secured. However, cookies set by a website are by default attached to all the re-
quests sent to it, irrespectively of the communication protocol. If a web developer wants
to deliver a non-sensitive portion of her website over HTTP, it is still possible to protect
the confidentiality of the authentication cookies by setting the Secure attribute, which
instructs the browser to send these cookies only over HTTPS connections. Even if a web-
site is fully deployed over HTTPS, the Secure attribute should be set on its authentication
cookies, otherwise a network attacker could still force their leakage in clear by injecting
non-existing HTTP links to the website in unrelated web pages [86].

Activating HTTPS support on a server requires little technical efforts, but needs a
signed public key certificate: while the majority of HTTPS-enabled websites employ cer-
tificates signed by recognized certification authorities, a non-negligible percentage uses
certificates that are self-signed or signed by CAs whose root certificate is not included
in major web browsers [59]. Unless explicitly included in the OS or in the browser key-
chain, these certificates trigger a warning when the browser attempts to validate them,
similarly to what happens when a network attacker acts as a man-in-the-middle and pro-
vides a fake certificate: in such a case, a user that proceeds ignoring the warning may be
exposed to the active attacker, as if the communication was performed over an insecure
channel. The adoption of Secure cookies is straightforward whenever the entire website
is deployed over HTTPS, since it is enough to add the Secure attribute to all the cookies
set by the website. For mixed contents websites, Secure cookies cannot be used to au-
thenticate the user on the HTTP portion of the site, hence they may be hard to deploy,
requiring a change to the cookie scheme.

HProxy

HProxy is a client-side solution which protects against SSL stripping by analyzing the
browsing history to produce a profile for each website visited by the user [136]. HProxy
inspects all the responses received by the user browser and compares them against the
corresponding profiles: divergences from the expected behaviour are evaluated through
a strict set of rules to decide whether the response should be accepted or not.

HProxy is effective only on already-visited websites and the offered protection cru-
cially depends on the completeness of the detection ruleset. From a usability perspective,
the browsing experience may be affected by the adoption of the proposed defense mech-
anism, as it introduces an average overhead of 50% on the overall page load time. The

2.4. Protecting Web Sessions 69

main concern however is about compatibility, since it depends on the ability of HProxy
to tell apart legitimate modifications in the web page across consecutive loads from ma-
licious changes performed by the attacker. False positives in this process may break the
functionality of benign websites. HProxy is easy to deploy, since the user only needs to
install the software on her machine and configure the browser proxy settings to use it.

HTTP Strict Transport Security

HSTS is a security policy implemented in all modern web browsers which allows a web
server to force a client to subsequently communicate only over a secure channel [84]. The
policy can be delivered solely over HTTPS using a custom header, where it is possible
to specify whether the policy should be enforced also for requests sent to subdomains
(e.g., to protect cookies shared with them) and its lifetime. When the browser performs
a request to a HSTS host, its behaviour is modified so that every HTTP reference is up-
graded to the HTTPS protocol before being accessed; TLS errors (e.g., self-signed certifi-
cates) terminate the communication session and the embedding of mixed contents (cf.
Section 2.2.4) is prohibited.

Similarly to the previous solution, HSTS is not able to provide any protection against
active network attackers whenever the initial request to a website is carried out over an
insecure channel: to address this issue, browsers vendors include a list of known HSTS
hosts, but clearly the approach cannot cover the entire Web. Additionally, a recently
introduced attack against HSTS [169] exploits a Network Time Protocol weakness found
on major operating systems that allows to modify the current time via a man-in-the-
middle attack, thus making HSTS policies expire. Usability and compatibility are both
high, since users are not involved in security decisions and the HTTP(S) header for HSTS
is ignored by browsers not supporting the mechanism. The ease of deployment is high,
given that web developers can enable the additional HTTP(S) header with little effort by
modifying the web server configuration.

HTTPS Everywhere

This extension for Firefox, Chrome and Opera [58] performs URL rewriting to force access
to the HTTPS version of a website whenever available, according to a set of hard-coded
rules supplied with the extension. Essentially, HTTPS Everywhere applies the same idea
of HSTS, with the difference that no instruction from the website is needed: the hard-
coded ruleset is populated by security experts and volunteers.

HTTPS Everywhere is able to protect only sites included in the ruleset: even if the
application allows the insertion of custom rules, this requires technical skills that a typical
user does not have. In case of partial lack of HTTPS support, the solution may break
websites and user intervention is required to switch to the usual browser behaviour; these
problems can be rectified by refining the ruleset. The solution is very easy to deploy: the
user is only required to install the extension to enforce the usage of HTTPS on supported
websites.

70 Chapter 2. Surviving the Web: A Journey into Web Session Security

Critical Evaluation

HTTPS is pivotal in defending against network attacks: all the assessed solutions try to
promote insecure connections to encrypted ones or force web developers to deploy the
whole application on HTTPS. Mechanisms exposing compatibility problems are unlikely
to be widely adopted, as in the case of HProxy due to its heuristic approach. All the other
defenses, instead, are popular standards or enjoy a large user base. Academic solutions
proved to be crucial for the development of web standards: HSTS is a revised version
of ForceHTTPS [86] in which a custom cookie was used in place of an HTTP header to
enable the protection mechanism.

Summary

We summarize in Table 2.2 all the defenses discussed so far. We denote with ★ those
solutions whose ease of deployment depends on the policy complexity. When the adop-
tion of a security mechanism is much harder on legacy web applications with respect to
newly developed or modern ones, we annotate the score with ✝.

2.5 Defenses Against Multiple Attacks

All the web security mechanisms described so far have been designed to prevent or mit-
igate very specific attacks against web sessions. In the literature we also find proposals
providing a more comprehensive solution to a range of different threats. These proposals
are significantly more complex than those in the previous section, hence it is much harder
to provide a schematic overview of their merits and current limitations.

Origin-Bound Certificates

Origin-Bound Certificates (OBC) [55] have been proposed as an extension to the TLS
protocol that binds authentication tokens to trusted encrypted channels. The idea is to
generate, on the client side, a different certificate for every web origin upon connection.
This certificate is sent to the server and used to cryptographically bind authentication
cookies to the channel established between the browser and that specific origin. The
browser relies on the same certificate when arranging a TLS connection with a previously
visited origin. The protection mechanism implemented by OBC is effective at prevent-
ing the usage of authentication cookies outside of the intended channel: for instance,
a cookie leaked via a content injection vulnerability cannot be reused by an attacker to
identify himself as the victim on the vulnerable website, since the victim certificate is not
disclosed. Similarly, session fixation attacks are defeated by OBC, given that the cookie
value associated to the attacker channel cannot be used within the victim TLS connection.

The presence of OBC is completely transparent to the user and the impact on perfor-
mances is negligible after certificate generation, so the usability of the solution is high.
Compatibility is not at harm, since the browser and the server must explicitly agree on the
use of OBC during the TLS handshake. One problem is represented by domain cookies,

2.5. Defenses Against Multiple Attacks 71

Attack Defense Type Usability Compatibility Ease of
Deployment

Content
injection

mitigation

HttpOnly cookies hybrid H H H
SessionShield/Zan client H L H
Requests filtering client L H H

Content
injection

prevention

Client-side XSS filters client H H H
Server-side filtering server H M L/M★

XSS-Guard server H M H
BEEP hybrid M H L/M★

Blueprint hybrid M M L
Noncespaces hybrid M L L/M★

DSI hybrid H H M
CSP hybrid H H L/M★

CSRF

Login
CSRF

Client-side defenses client H L H
Allowed referrer lists hybrid H H L/M★

Tokenization server H H L/H✝

NoForge server H L H
Origin checking server H H L/H✝

Session
fixation

Cookies renewal server H H M/H✝

Cookie
forcing

Session
fixation

Serene client H L H
Origin cookies hybrid H H M/H✝

Cookie prefixes hybrid H H M/H✝

Network
attacks

HTTPS w. secure cookies hybrid H H M/H✝

HProxy client M L H
HSTS hybrid H H H
HTTPS Everywhere client M H H

TABLE 2.2: Analysis of Proposed Defenses.

i.e., cookies accessed by multiple origins: to overcome this issue, the authors suggested a
legacy mode of OBC in which the client generates certificates bound to the whole domain
instead of a single origin. Being an extension to the TLS protocol, OBC requires changes
to both parties involved in the encrypted channel initiation. The authors successfully
implemented the described mechanism on the open-source browser Chromium and on
OpenSSL by altering approximately 1900 and 320 lines of code, respectively. However,
web developers are not required to adapt their applications to use OBC, which has a
beneficial impact on ease of deployment.

Browser-based Information Flow Control

Browser-based information flow control is a promising approach to uniformly prevent a
wide class of attacks against web sessions. FlowFox [71] was the first web browser imple-
menting a full-fledged information flow control framework for confidentiality policies on
JavaScript code. Later work on the same research line includes JSFlow [81], COWL [175]

72 Chapter 2. Surviving the Web: A Journey into Web Session Security

and an extension of Chromium with information flow control [22], which we refer to as
ChromiumIFC. These solutions explore different points of the design space:

• FlowFox is based on secure multi-execution, a dynamic approach performing mul-
tiple runs of a given program (script) under a special policy for input/output op-
erations ensuring non-interference [53]. To exemplify, assume the existence of two
security levels Public and Secret, then the program is executed twice (once per level)
under the following regime: (1) outputs marked Public/Secret are only done in the
execution at level Public/Secret; and (2) inputs at level Public are fed to both the
executions, while inputs at level Secret are only fed to the execution at level Secret
(a default value for the input is provided to the Public execution). This ensures by
construction that Private inputs do not affect Public outputs;

• JSFlow is based on a dynamic type system for JavaScript. JavaScript values are ex-
tended with a security label representing their confidentiality level and labels are
updated to reflect the computational effects of the monitored scripts. Labels are
then dynamically checked to ensure that computations preserve non-interference;

• COWL performs a compartmentalization of scripts and assigns security labels at the
granularity of compartments encapsulating contents from a single origin. It en-
forces coarse-grained policies on communication across compartments and towards
remote origins via label checking;

• ChromiumIFC implements a lightweight dynamic taint tracking technique to con-
strain information flows within the browser and prevent the leakage of secret infor-
mation. In contrast to previous proposals, this solution is not limited to JavaScript,
but it spans all the most relevant browser components.

The different design choices taken by the reviewed solutions have a clear import on our
evaluation factors. In terms of protection, enforcing information flow control on scripts
is already enough to prevent many web threats. For instance, assuming an appropriate
security policy, web attackers cannot leak authentication cookies using XSS [71] or run
CSRF attacks based on JavaScript [103]. This is true also in presence of stored XSS attacks,
provided that information flow control is performed on the injected scripts. However,
there are attack vectors which go beyond scripts, e.g., a web attacker can carry out a
CSRF by injecting markup elements. Preventing these attacks requires a more extensive
monitoring of the web browser, as the one proposed by ChromiumIFC.

To the best of our knowledge, there has been no thorough usability study for any of
the cited solutions. It is thus unclear if and to which extent users need to be involved
in security decisions upon normal browsing. However, degradation of performances
caused by information flow tracking may hinder the user experience and negatively af-
fect usability. For instance, the performances of FlowFox are estimated to be around 20%
worse than those of a standard web browser, even assuming only policies with two se-
curity levels [71]. Better performances can be achieved by using simpler enforcement

2.5. Defenses Against Multiple Attacks 73

mechanisms and by lowering the granularity of enforcement, for instance the authors of
COWL performed a very promising performance evaluation of their proposal [175].

Compatibility and ease of deployment are better evaluated together, since there is a
delicate balance between the two in this area, due to the flexibility of information flow
policies. On the one hand, inaccurate information flow policies can break existing web-
sites upon security enforcement, thus affecting compatibility. On the other hand, accurate
information flow policies may be large and hard to get right, thus hindering deployment.
We think that a set of default information flow policies may already be enough to stop
or mitigate a wide class of attacks against web sessions launched by malicious scripts:
for instance, cookies could be automatically marked as private for the domain which
set them. Indeed, a preliminary experiment with FlowFox on the top 500 sites of Alexa
shows that compatibility is preserved for a very simple policy which marks as sensitive
any access to the cookie jar [71]. Reaping the biggest benefits out of information flow
control, however, necessarily requires some efforts by web developers.

Security Policies for JavaScript

Besides information flow control, in the literature there are several frameworks for en-
forcing general security policies on untrusted JavaScript code [120, 209, 111, 151, 186]. We
just provide a brief overview on them here and we refer the interested reader to a recent
survey by Bielova [27] for additional details. The core idea behind all these proposals is to
implement a runtime monitor that intercepts the API calls made by JavaScript programs
and checks whether the sequence of such calls complies with an underlying security pol-
icy. This kind of policies has proved helpful for protecting access to authentication cook-
ies, thus limiting the dangers posed by XSS, and for restricting cross-domain communi-
cation attempts by untrusted code, which helps at preventing CSRF attacks. We believe
that other useful policies for protecting web sessions can be encoded in these rather gen-
eral frameworks, though the authors of the original papers do not discuss them in detail.
Since all these proposals assume that JavaScript code is untrusted, they are effective even
in presence of stored XSS attacks, provided that the injected scripts are subject to policy
enforcement.

As expected, security policies for JavaScript share many of the strengths and weak-
nesses of browser-based information flow control in terms of protection, usability and
compatibility. Ease of deployment, instead, deserves a more careful discussion, since it
fundamentally depends on the complexity of the underlying policy language. For in-
stance, in [120] security policies are expressed in terms of JavaScript code, while the
framework in [209] is based on edit automata, a particular kind of state machine with
a formal semantics. Choosing the right policy language may significantly improve the
ease of deployment, though we believe that meaningful security policies require some
efforts by web developers. There is some preliminary evidence that useful policies can
be automatically synthesized by static analysis or runtime training: the idea is to mon-
itor normal JavaScript behaviour and to deem as suspicious all the unexpected script

74 Chapter 2. Surviving the Web: A Journey into Web Session Security

behaviours [120]. However, we believe more research is needed to draw a fair conclusion
on how difficult it is to deploy these mechanisms in practice.

AJAX Intrusion Detection System

Guha et al. proposed an AJAX intrusion detection system based on the combination of
a static analysis for JavaScript and a server-side proxy [74]. The static analysis is em-
ployed by web developers to construct the control flow graph of the AJAX application to
protect, while the proxy dynamically monitors browser requests to prevent violations to
the expected control flow of the web application. The solution also implements defenses
against mimicry attacks, in which the attacker complies with legitimate access patterns
in his malicious attempts. This is done by making each session (and thus each graph)
slightly different than the other ones by placing unpredictable, dummy requests in se-
lected points of the control flow. The JavaScript code of the web application is then auto-
matically modified to trigger these requests which cannot be predicted by the attacker.

The approach is deemed useful to mitigate the threats posed by content injection and
to prevent CSRF, provided that these attacks are launched via AJAX. Since the syntax
of the control flow graph explicitly tracks session identifiers, session fixation attacks can
be prevented: indeed, in these attacks there is a mismatch between the cookie set in the
first response sent by the web server and the cookie which is included by the browser
in the login request, hence a violation to the intended control flow will be detected. The
approach is effective even against stored XSS attacks exploiting AJAX requests, whenever
they are mounted after the construction of the control flow graph.

The solution offers high usability, since it is transparent to users and the runtime
overhead introduced by the proxy is minimal. According to the authors, the adoption of
a context-sensitive static analysis for JavaScript makes the construction of the control flow
graph very precise, which is crucial to preserve the functionality of the web application
and ensure compatibility. The authors claim that the solution is easy to deploy, since the
construction of the control flow graph is totally automatic and the adoption of a proxy
does not require changes to the web application code.

Escudo

Escudo [89] is an alternative protection model for web browsers, extending the standard
same-origin policy to rectify several of its known shortcomings. By noticing a strong
similarity between the browser and an operating system, the authors of Escudo argue for
the adoption of a protection mechanism based on hierarchical rings, whereby different
elements of the DOM are placed in rings with decreasing privileges; the definition of the
number of rings and the ring assignment for the DOM elements is done by web devel-
opers. Developers can also assign protection rings to their cookies, while the internal
browser state containing, e.g., the history, is set by default in ring 0. Access to objects in a
given ring is only allowed to subjects being in the same or lower rings.

2.5. Defenses Against Multiple Attacks 75

Escudo is designed to prevent XSS and CSRF attacks. Untrusted web contents should
be assigned to the least privileged ring, so that scripts crafted by exploiting a reflected
XSS vulnerability would do no harm. Similarly, requests from untrusted web pages
should be put in a low privilege ring without access to authentication credentials, thus
preventing CSRF attacks. Notice, however, that stored XSS vulnerabilities may be ex-
ploited to inject code running with high privileges in trusted web applications and attack
them. The authors of Escudo do not discuss network attacks.

Escudo does not require user interventions for security enforcement and it only leads
to a slight overhead on page rendering (around 5%). This makes the solution potentially
usable. However, deploying ring assignments for Escudo looks challenging. The authors
evaluated this aspect by retrofitting two existing opensource applications: both experi-
ments required around one day of work, which looks reasonable. On the other hand,
many web developers are not security experts and the fine-grained policies advocated
by Escudo may be too much of a burden for them: without tool support for annotating
the DOM elements, the deployment of Escudo may be complicated, especially if a com-
prehensive protection is desired. Escudo is designed to be backward compatible: Escudo-
based web browsers are compatible with non-Escudo applications and vice-versa; if an
appropriate policy is put in place, no compatibility issue will arise.

CookiExt

CookiExt [37] is a Google Chrome extension protecting the confidentiality of authentica-
tion cookies against both web and network attacks. The extension adopts a heuristic to
detect authentication cookies in incoming responses: if a response is sent over HTTP, all
the identified authentication cookies are marked as HttpOnly; if a response is sent over
HTTPS, these cookies are also marked as Secure. In the latter case, to preserve the ses-
sion, CookiExt forces an automatic redirection over HTTPS for all the subsequent HTTP
requests to the website, since these requests would not include the cookies which have
been extended with the Secure attribute. In order to preserve compatibility, the exten-
sion implements a fallback mechanism which removes the Secure attribute automatically
assigned to authentication cookies in case the server does not support HTTPS for some
of the web pages. The design of CookiExt has been formally validated by proving that
a browser with CookiExt satisfies non-interference with respect to the value of the au-
thentication cookies. In particular, it is shown that what an attacker can observe of the
CookiExt browser behaviour is unaffected by the value of authentication cookies. Cook-
iExt does not protect against CSRF and session fixation: it just ensures the confidentiality
of the authentication cookies.

CookiExt does not require any user interaction and features a lightweight implemen-
tation, which guarantees a high level of usability. Preliminary experiments performed
by the authors show good compatibility results on existing websites from Alexa, since
only minor annoyances due to the security enforcement have been found; however, a
large-scale evaluation of the extension is still missing. Being implemented as a browser
extension, CookiExt is very easy to deploy.

76 Chapter 2. Surviving the Web: A Journey into Web Session Security

SessInt

SessInt [38] is an extension for Google Chrome providing a purely client-side counter-
measure against the most common attacks targeting web sessions. The extension pre-
vents the abuse of authenticated requests and protects authentication credentials. It en-
forces web session integrity by combining access control and taint tracking mechanisms
in the browser. The security policy applied by SessInt has been verified against a formal
threat model including both web and network attackers. As a distinguishing feature with
respect to other client-side solutions, SessInt is able to stop CSRF attacks even when they
are launched by exploiting reflected XSS vulnerabilities. On the other hand, no protection
is given against stored XSS.

The protection provided by SessInt is fully automatic: its security policy is uniformly
applied to every website and no interaction with the web server or the end-user is re-
quired. Also, the performance overhead introduced by the security checks of SessInt is
negligible and no user interaction is needed. However, the protection offered by SessInt
comes at a cost on compatibility: the current prototype of the extension breaks several
useful web scenarios, including single sign-on protocols and e-payment systems. The
implementation as a browser extension makes SessInt very easy to deploy.

Same Origin Mutual Approval

SOMA [142] is a research proposal describing a simple yet powerful policy for content
inclusion and remote communication on the Web. SOMA enforces that a web page from
a domain d1 can include contents from an origin o hosted on domain d2 only if both the
following checks succeed: i) d1 has listed o as an allowed source of remote contents; ii) d2

has listed d1 as an allowed destination for content inclusion. SOMA is designed to offer
protection against web attackers: developers can effectively prevent CSRF attacks and
mitigate the threats posed by content injection vulnerabilities, including stored XSS, by
preventing the injected contents from communicating with attacker-controlled pages.

The protection offered by SOMA does not involve user intervention and the perfor-
mances of the solution look satisfactory, especially on cached page loads, where only an
extra 5% of network latency is introduced. This ensures that SOMA can be a usable so-
lution. Moreover, if a SOMA policy correctly includes all the references to the necessary
web resources, no compatibility issues will occur. Writing correct policies looks feasi-
ble in practice, since similar specifications are also used by popular web standards like
CSP. The deployment of SOMA would not be trivial, but acceptable: browsers must be
patched to support the mutual approval policy described above, while web developers
should identify appropriate policies for their websites. These policies are declarative in
nature and expected be relatively small in practice; most importantly, no change to the
web application code is required.

2.5. Defenses Against Multiple Attacks 77

App Isolation

App Isolation [45] is a defense mechanism aimed at offering, within a single browser, the
protection granted by the usage of different browsers for navigating websites at separate
levels of trust. If one “sensitive” browser is only used to navigate trusted websites, while
another “non-sensitive” browser is only used to access potentially malicious web pages,
many of the threats posed by the latter are voided by the absence of shared state between
the two browsers. For instance, CSRF attacks would fail, since they would be launched
from an attacker-controlled web page in the non-sensitive browser, but the authentication
cookies for all trusted web applications would only be available in the sensitive browser.
Enforcing this kind of guarantees within a single browser requires two ingredients: i) a
strong state isolation among web applications; ii) an entry point restriction, preventing the
access to sensitive web applications from maliciously crafted URLs. Indeed, in the exam-
ple above, protection would be voided if the link mounting the CSRF attack was opened
in the sensitive browser. This design is effective at preventing reflected XSS attacks, ses-
sion fixation and CSRF. However, stored XSS attacks against trusted websites will bypass
the protection offered by App Isolation, since the injected code would be directly deliv-
ered from a trusted position.

The usability of App Isolation looks promising, since the protection is applied auto-
matically and the only downside is a slight increase in the loading time of the websites,
due to the additional round-trip needed to fetch the list of allowed entry points. The
compatibility of the solution is ensured by the fact that supporting browsers only enforce
protection when explicitly requested by the web application. Web developers, however,
should compile a list of entry points defining the allowed landing pages of their web ap-
plications. This is feasible and easy to do only for non-social websites, e.g., online banks,
which are typically accessed only from their homepage, but it is prohibitively hard for so-
cial networks or content-oriented sites, e.g., newspapers websites, where users may want
to jump directly to any URL featuring an article. The ease of deployment thus crucially
depends on the nature of the web application to protect.

Summary

We summarize our observations about the described solutions in Table 2.3. Again, we
denote with ★ the solutions where the ease of deployment is affected by the policy com-
plexity. Additionally, we use a dash symbol whenever we do not have any definite evi-
dence about a specific aspect of our investigation based on the existing literature. Most
notably, we leave empty the Usability and Compatibility entries for browser-based infor-
mation flow control and JavaScript security policies, since they depend too much on the
specific implementation choices and the policies to enforce. More research is needed to
understand these important aspects.

78 Chapter 2. Surviving the Web: A Journey into Web Session Security

Attacks Evaluation

Defense Type C
on

te
nt

in
je

ct
io

n

C
SR

F
Lo

gi
n

C
SR

F

Se
ss

io
n

fix
at

io
n

C
oo

ki
e

fo
rc

in
g

N
et

w
or

k
at

ta
ck

s

U
sa

bi
lit

y

C
om

pa
tib

ili
ty

Ea
se

of
D

ep
lo

ym
en

t

OBC hybrid ✓ ✗ ✓ ✓ H H M
Browser IFC hybrid ✓ ✓ ✓ ✗ - - L/M★

JS Policies hybrid ✓ ✓ ✓ ✗ - - L/M★

Ajax IDS server ✓ ✓ ✓ ✗ H H H
Escudo hybrid ✓ ✓ - ✗ H H L/M★

CookiExt client ✓ ✗ ✗ ✓ H M H
SessInt client ✓ ✓ ✓ ✓ H L H
SOMA hybrid ✓ ✓ ✗ ✗ H H M
App Isolation hybrid ✓ ✓ ✓ ✗ H H L/M★

TABLE 2.3: Defenses Against Multiple Attacks.

2.6 Perspective

Having examined different proposals, we now identify five guidelines for the designers
of novel web security mechanisms. This is a synthesis of sound principles and insights
which have, to different extents, been taken into account by all the designers of the pro-
posals we surveyed.

2.6.1 Transparency

We call transparency the combination of high usability and full compatibility: we think
this is the most important ingredient to ensure a large scale deployment of any defensive
solution for the Web, given its massive user base and its heterogeneity. It is well-known
that security often comes at the cost of usability and that usability defects ultimately
weaken security, since users resort to deactivating or otherwise sidestepping the avail-
able protection mechanisms [180]. The Web is extremely variegate and surprisingly frag-
ile even to small changes: web developers who do not desire to adopt new defensive
technologies should be able to do so, without any observable change to the semantics of
their web applications when these are accessed by security-enhanced web browsers; du-
ally, users who are not willing to update their web browsers should be able to seamlessly
navigate websites which implement cutting-edge security mechanisms not supported by
their browsers.

All the security decisions must be ultimately taken by web developers. On the one
hand, users are not willing or do not have the expertise to be involved in security deci-
sions. On the other hand, it is extremely difficult for browser vendors to come up with
“one size fits all” solutions which do not break any website. Motivated web develop-
ers, instead, can be fully aware of their web application semantics, thoroughly test new
proposals and configure them to support compatibility.

2.6. Perspective 79

Examples: Hybrid client/server solutions like ARLs (Section 2.4.4), CSP (Section 2.4.3)
and SOMA (Section 2.5) are prime examples of proposals which ensure transparency,
since they do not change the semantics of web applications not adopting them. Con-
versely, purely client-side defenses like Serene (Section 2.4.5) and SessInt (Section 2.5)
typically present some compatibility issues, since they lack enough contextual informa-
tion to be always precise in their security decisions: this makes them less amenable for a
large-scale deployment.

2.6.2 Security by Design

Supporting the current Web and legacy web applications is essential, but developers of
new websites should be provided with tools which allow them to realize applications
which are secure by design. Our feeling is that striving for backward compatibility often
hinders the creation of tools which could actually improve the development process of
new web applications. Indeed, backward compatibility is often identified with problem-
specific patches to known issues, which developers of existing websites can easily plug
into their implementation to retrofit it. The result is that developing secure web appli-
cations using the current technologies is a painstaking task, which involves actions at
too many different levels. Developers should be provided with tools and methodologies
which allow them to take security into account from the first phases of the development
process. This necessarily means deviating from the low-level solutions advocated by
many current technologies, to rather focus on more high-level security aspects of the
web application, including the definition of principals and their trust relations, the iden-
tification of sensitive information, etc.

Examples: Proposals which are secure by design include the non-interference policies
advocated by FlowFox (Section 2.5) and several frameworks for enforcing arbitrary se-
curity policies on untrusted JavaScript code (Section 2.5). Popular examples of solutions
which are not secure by design include the usage of secret tokens against CSRF attacks
(Section 2.4.4): indeed, not every token generation scheme is robust [20] and ensuring the
confidentiality of the tokens may be hard, even though this is crucial for the effectiveness
of the solution.

2.6.3 Ease of Adoption

Server-side solutions should require a limited effort to be understood and adopted by
web developers. For instance, the usage of frameworks which automatically implement
recommended security practices, often neglected by web developers, can significantly
simplify the development of new secure applications. For client-side solutions, it is im-
portant that they work out of the box when they are installed in the user browser: pro-
posals which are not fully automatic are going to be ignored or misused. Any defensive
solution which involves both the client and the server is subject to both the previous

80 Chapter 2. Surviving the Web: A Journey into Web Session Security

observations. Since it is unrealistic that a single protection mechanism is able to accom-
modate all the security needs, it is crucial to design the defensive solution so that it grace-
fully interacts with existing proposals which address orthogonal issues and which may
already be adopted by web developers.

Examples: Many client-side defenses are easy to adopt, since they are deployed as
browser extensions which automatically provide additional protection: this is the case of
tools like CsFire (Section 2.4.4) and CookiExt (Section 2.5). Server-side or hybrid clien-
t/server solutions are often harder to adopt, for different reasons: some proposals like
Escudo (Section 2.5) are too fine-grained and thus require a huge configuration effort,
while others like FlowFox (Section 2.5) may be hard for web developers to understand.
Good examples of hybrid client/server solutions which promise an easy adoption, since
they speak the same language of web developers, include SOMA (Section 2.5) and HSTS
(Section 2.4.6). Origin checking is often straightforward to implement as a server-side
defense against CSRF attacks (Section 2.4.4).

2.6.4 Declarative Nature

To support a large-scale deployment, new defensive solutions should be declarative in na-
ture: web developers should be given access to an appropriate policy specification lan-
guage, but the enforcement of the policy should not be their concern. Security checks
should not be intermingled with the web application logic: ideally, no code change
should be implemented in the web application to make it more secure and a thorough
understanding of the web application code should not be necessary to come up with
reasonable security policies. This is dictated by very practical needs: existing web appli-
cations are huge and complex, are often written in different programming languages and
web developers may not have full control over them.

Examples: Whitelist-based defenses like ARLs (Section 2.4.4) and SOMA (Section 2.5)
are declarative in nature, while the tokenization (Section 2.4.4) is not declarative at all,
since it is a low-level solution and it may be hard to adopt on legacy web applications.

2.6.5 Formal Specification and Verification

Formal models and tools have been recently applied to the specification and the verifica-
tion of new proposals for web session security [34, 4, 61, 38]. While a formal specification
may be of no use for web developers, it assists security researchers in understanding
the details of the proposed solution. Starting from a formal specification, web security
designers can be driven by the enforcement of a clear semantic security property, e.g., non-
interference [71] or session integrity [38], rather than by the desire of providing ad-hoc
solutions to the plethora of low-level attacks which currently target the Web.

This is not merely a theoretical exercise, but it has clear practical benefits. First, it
allows a comprehensive identification of all the attack vectors which may be used to vi-
olate the intended security property, thus making it harder that subtle attacks are left

2.6. Perspective 81

undetected during the design process. Second, it forces security experts to focus on a rig-
orous threat model and to precisely state all the assumptions underlying their proposals:
this helps making a critical comparison of different solutions and simplifies their possi-
ble integration. Third, more speculatively, targeting a property rather than a mechanism
allows to get a much better understanding of the security problem, thus fostering the
deployment of security mechanisms which are both more complete and easier to use for
web developers.

Examples: To the best of our knowledge, only very few of the proposals we surveyed
are backed up by a solid formal verification. Some notable examples include CookiExt
(Section 2.5), SessInt (Section 2.5), FlowFox (Section 2.5) and CsFire (Section 2.4.4).

2.6.6 Discussion

Retrospectively looking at the solutions we reviewed, we identify a number of carefully
crafted proposals which comply with several of the guidelines we presented. Perhaps
surprisingly, however, we also observe that none of the proposals complies with all the
guidelines. We argue that this is not inherent to the nature of the guidelines, but rather
the simple consequence of web security being hard: indeed, many different problems at
very different levels must be taken into account when targeting the largest distributed
system in the world.

The Challenges of the Web Platform

Nowadays, there is a huge number of different web standards and technologies, and most
of them are scattered across different RFCs. This makes it hard to get a comprehensive
picture of the web platform and, conversely, makes it extremely easy to underestimate
the impact of novel defense mechanisms on the web ecosystem. Moreover, the sheer
size of the Web makes it difficult to assume typical use case scenarios, since large-scale
evaluations often reveal surprises and contest largely accepted assumptions [156, 138,
41].

Particular care is needed when designing web security solutions given the massive
user base of the Web whose popularity heavily affects what security researchers and en-
gineers may actually propose to improve its security. Indeed, one may argue that the
compatibility and the usability of a web defense mechanism may even be more impor-
tant than the protection it offers. This may be hard to accept, since it partially limits
the design space for well-thought solutions tackling the root cause of a security issue.
However, the quest for usability and compatibility is inherently part of the web security
problem and it should never be underestimated.

The Architecture of an Effective Solution

Purely client-side solutions are likely to break compatibility, since the security policy they
apply should be acceptable for every website, but “one size fits all” solutions do not work
in a heterogeneous environment like the Web. The best way to ensure that a client-side

82 Chapter 2. Surviving the Web: A Journey into Web Session Security

defense preserves compatibility is to adopt a whitelist-based approach, so as to avoid
that the defensive mechanism is forced to guess the right security decision. However, the
protection offered by a whitelist is inherently limited to a known set of websites.

Similarly, purely server-side approaches have their limitations. Most of the server-
side solutions we surveyed are hard to adopt and not declarative at all. When this is not
the case, like in NoForge (Section 2.4.4), compatibility is at risk. Indeed, just as client-side
solutions are not aware of the web application semantics, server-side approaches have
very little knowledge of the client-side code running in the browser.

Based on our survey and analysis, we confirm that hybrid client/server designs hold
great promise in being the most effective solution for future proposals [202]. We observe
that it is relatively easy to come up with hybrid solutions which are compliant with the
first four guidelines: SOMA (Section 2.5), HSTS (Section 2.4.6) and ARLs (Section 2.4.4)
are good examples.

A Note on Formal Verification

It may be tempting to think that proposals which comply with the first four guidelines
are already good enough, since their formal verification can be performed a posteriori.
However, this is not entirely true: solutions which are not designed with formal verifica-
tion in mind are often over-engineered and very difficult to prove correct, since it is not
obvious what they are actually trying to enforce. For many solutions, we just know that
they prevent some attacks, but it is unclear whether other attacks are feasible under the
same threat model and there is no assurance that a sufficiently strong security property
can be actually proved for them.

We thus recommend to take formal verification into account from the first phases of
the design process. A very recent survey discusses why and how formal methods can be
fruitfully applied to web security and highlights open research directions [36].

Open Problems and New Research Directions

We have observed that, at the moment, there exist no solution complying with the five
guidelines above and that solutions complying with the first four guidelines still miss a
formal treatment. One interesting line of research would be to try to formally state the
security properties provided by those solutions under various threat models. As we dis-
cussed, proving formal properties of existing mechanisms is not trivial (and sometimes
not even feasible) and requires, in the first place, to come up with a precise statement of
the security goals. SOMA (Section 2.5), HSTS (Section 2.4.6) and ARLs (Section 2.4.4) are
certainly good candidates for this formal analysis.

However, having a single solution covering the five guidelines would be far from
providing a universal solution for web session security. We have seen that most of the
proposals target specific problems and attacks. The definition of a general framework
for studying, comparing, and composing web security mechanisms might help under-
standing in which extent different solutions compose and what would be the resulting

2.6. Perspective 83

security guarantee. Modular reasoning looks particularly important in this respect, since
the web platform includes many different components and end-to-end security guaran-
tees require all of them to behave correctly. This would go in the direction of securing
web sessions in general, instead of just preventing classes of attacks.

For what concerns new solutions, we believe that they should be supported by a for-
mal specification and a clear statement of the security goals and of the threat model. The
development of new, well-founded solutions would certainly benefit from the investiga-
tion and formal analysis of existing, practical solutions. However, new solutions should
try to tackle web session security at a higher level of abstraction, independently of the
specific attacks. They should be designed with all of the above guidelines in mind which,
in turn, suggests a hybrid approach. The formal model would clarify what are the criti-
cal components to control and what (declarative) server-side information is necessary to
implement a transparent, secure by design and easy to adopt solution.

85

Chapter 3

WPSE: Fortifying Web Protocols via
Browser-Side Security Monitoring

3.1 Introduction

Web protocols are security protocols deployed on top of HTTP and HTTPS, most notably
to implement authentication and authorization at remote servers. Popular examples of
web protocols include OAuth 2.0, OpenID Connect, SAML 2.0 and Shibboleth, which
are routinely used by millions of users to access security-sensitive functionalities on their
personal accounts.

Unfortunately, designing and implementing web protocols is a particular error-prone
task even for security experts, as witnessed by the large number of vulnerabilities re-
ported in the literature [177, 12, 13, 215, 106, 107, 207, 199]. The main reason is that web
protocols involve communication with a web browser which does not strictly follow the
protocol specification but reacts asynchronously to any input it receives, producing mes-
sages which may have an import on protocol security. Reactiveness is dangerous because
the browser is agnostic to the web protocol semantics: it does not know when the pro-
tocol starts, nor when it ends, and is unaware of the order in which messages should be
processed, as well as of the confidentiality and integrity guarantees desired for a protocol
run. For example, in the context of OAuth 2.0, Bansal et al. [12] discussed token redirection
attacks enabled by the presence of open redirectors, while Fett et al. [60] presented state
leak attacks enabled by the communication of the Referer header; these attacks are not ap-
parent from the protocol specification, but arise from subtleties of the browser behaviour.

Major service providers try to aid software developers to correctly integrate web pro-
tocols in their websites by means of APIs; however, web developers are not forced to
use them, can still use them incorrectly [200], and the APIs themselves do not necessarily
implement the best security practices [177]. This unfortunate situation led to the prolif-
eration of attacks against web protocols even at popular services.

In this chapter, we propose a fundamental paradigm shift to strengthen the security
guarantees of web protocols. The key idea we put forward is to extend browsers with
a security monitor which is able to enforce the compliance of browser behaviours with
respect to the web protocol specification. This approach brings two main benefits:

86 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

1. web applications are automatically protected against a large class of bugs and vul-
nerabilities on the browser-side, since the browser is aware of the intended protocol
flow and any deviation from it is detected at runtime;

2. protocol specifications can be written and verified once, possibly as a community
effort, and then uniformly enforced at a number of different websites.

Remarkably, though changing the behaviour of web browsers is always delicate for back-
ward compatibility, the security monitor we propose is carefully designed to interact
gracefully with existing websites so that their functionalities are preserved unless they
critically deviate from the intended protocol specification. Moreover, the monitor can be
implemented as a browser extension, thereby offering immediate protection to Internet
users and promising a significant practical impact.

3.1.1 Contributions

We make the following contributions:

1. we identify three fundamental browser-side security properties for web protocols,
that is, the confidentiality and integrity of message components, as well as the compli-
ance with the intended protocol flow. We discuss concrete examples of their import
in the popular authorization protocol OAuth 2.0;

2. we semantically characterize these properties and formally prove that their enforce-
ment suffices to protect web applications from a wide range of protocol implemen-
tation bugs and attacks on the application code running in the browser;

3. we propose the Web Protocol Security Enforcer, or WPSE for short, a browser-side
security monitor designed to enforce the aforementioned security properties, which
we implement as a publicly available Google Chrome extension;

4. we experimentally assess the effectiveness of WPSE by testing it against 90 popular
websites making use of OAuth 2.0 to implement single sign-on at major identity
providers. We identified security flaws in 55 websites (61.1%), including new criti-
cal vulnerabilities caused by tracking libraries such as Facebook Pixel, all of which
fixable by WPSE. We show that WPSE works flawlessly on 83 websites (92.2%),
with the 7 compatibility issues being caused by custom implementations deviating
from the OAuth 2.0 specification, one of which introducing a critical vulnerability;

5. to show the generality of our approach we also considered SAML 2.0, a popular
web authorization protocol: while formalizing its specification, we found a new
attack on the Google implementation of SAML 2.0 that has been awarded a bug
bounty according to the Google Vulnerability Reward Program.1

1 https://www.google.com/about/appsecurity/reward-program/

https://www.google.com/about/appsecurity/reward-program/

3.2. Security Challenges in Web Protocols 87

3.1.2 Structure of the Chapter

Section 3.2 presents the critical challenges for the enforcement of security in web pro-
tocols exemplified in the context of OAuth 2.0. The design and the implementation of
WPSE is discussed in Section 3.3. In Section 3.4 we present the attacks from the liter-
ature that can be successfully defeated by WPSE. Additionally, we introduce a novel
attack against Google implementation of SAML 2.0 that is prevented by our solution.
Section 3.5 reports on the experimental evaluation of WPSE on real websites to assess
our solution in terms of security and compatibility with existing websites. In Section 3.6
we formally characterize the security guarantees provided by our monitoring technique.
Related work is discussed in Section 3.7.

3.2 Security Challenges in Web Protocols

The design of web protocols comes with various security challenges which can often
be attributed to the presence of the web browser that acts as a non-standard protocol
participant. In the following, we discuss three crucial challenges using the OAuth 2.0
authorization protocol as illustrative example.

3.2.1 Background on OAuth 2.0

OAuth 2.0 [78] is a web protocol that enables resource owners to grant controlled access
to resources hosted at remote servers. Typically, OAuth 2.0 is also used for authenticating
the resource owner to third parties by giving them access to the resource owner’s identity
stored at an identity provider. This functionality is known as Single Sign-On (SSO). Using
standard terminology, we refer to the third-party application as relying party (RP) and to
the website storing the resources, including the identity, as identity provider (IdP).2

The OAuth 2.0 specification defines four different protocol flows, also known as grant
types or modes. We focus on the authorization code mode and the implicit mode since they
are the most commonly used by websites.

The authorization code mode is intended for a RP whose main functionality is carried
out at the server-side. The high-level protocol flow is depicted in Figure 3.1. For the sake
of readability, we introduce a simplified version of the protocol abstracting from some
implementation details that are presented in Section 3.4.1. The protocol works as follows:

1⃝ the user U sends a request to RP for accessing a remote resource. The request spec-
ifies the IdP that holds the resource. In the case of SSO, this step determines which
IdP should be used;

2⃝ RP redirects U to the login endpoint of IdP. This request contains the RP’s identity
at IdP, the URI that IdP should redirect U to after successful login and an optional
state parameter for CSRF protection that should be bound to U’s state;

2 The OAuth 2.0 specification distinguishes between resource servers and authorization servers instead of
considering one identity provider that stores the user’s identity as well as its resources [78], but it is common
practice to unify resource and authorization servers as one party [60, 177, 107].

88 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

U RP IdP

RP(redirect URI)

1⃝ IdP

2⃝ RP ID, redirect URI, state

3⃝ Login form

User credentials

4⃝ authorization code, state

5⃝ authorization code, RP ID, redirect URI

6⃝ access token

7⃝ access token

8⃝ resource

FIGURE 3.1: OAuth 2.0 (authorization code mode).

3⃝ IdP answers to the authorization request with a login form and the user provides
her credentials;

4⃝ IdP redirects U to the URI of RP specified at step 2⃝, including the previously re-
ceived state parameter and an authorization code;

5⃝ RP makes a request to IdP with the authorization code, including its identity, the
redirect URI and optionally a shared secret with the IdP;

6⃝ IdP answers with an access token to RP;

7⃝ RP makes a request for the user’s resource to IdP using the access token;

8⃝ IdP answers RP with the user’s resource at IdP.

The implicit mode differs from the authorization code mode in steps 4⃝- 6⃝. Instead of
granting an authorization code to RP, the IdP provides an access token in the fragment
identifier of the redirect URI. A piece of JavaScript code embedded in the page located at
the redirect URI extracts the access token and communicates it to the RP.

3.2.2 Challenge #1: Protocol Flow

Protocols are specified in terms of a number of sequential message exchanges which hon-
est participants are expected to follow, but the browser is not forced to comply with the
intended protocol flow.

Example in OAuth 2.0. The use of the state parameter is recommended to prevent
attacks leveraging this idiosyncrasy. When OAuth is used to implement SSO and RP
does not provide the state parameter in its authorization request to IdP at step 2⃝, it is
possible to force the honest user’s browser to authenticate as the attacker. This attack is
known as session swapping [177].

3.2. Security Challenges in Web Protocols 89

We give a short overview on this attack against the authorization code mode. A web
attacker A initiates SSO at RP with an identity provider IdP, performs steps 1⃝- 3⃝ of the
protocol and learns a valid authorization code for her session. Next, A creates a page
on her website that, when visited, automatically triggers a request to the redirect URI of
RP and includes the authorization code. When a honest user visits this page, the login
procedure is completed at RP and an attacker session is established in the user’s browser.

3.2.3 Challenge #2: Secrecy of Messages

The security of protocols typically relies on the confidentiality of cryptographic keys and
credentials, but the browser is not aware of which data must be kept secret.

Example in OAuth 2.0. The secrecy of the authorization credentials (namely autho-
rization codes and access tokens) is crucial for meeting the protocol security require-
ments, since their knowledge allows an attacker to access the user’s resources. The se-
crecy of the state parameter is also important to ensure session integrity.

An example of an unintended secrets leakage is the state leak attack described in [60].
If the page loaded at the redirect URI in step 4⃝ loads a resource from a malicious server,
the state parameter and the authorization code (that are part of the URL) are leaked in the
Referer header of the outgoing request. The learned authorization code can potentially
be used to obtain a valid access token for U at IdP, while the leaked state parameter
enables the session swapping attack discussed previously.

3.2.4 Challenge #3: Integrity of Messages

Protocol participants are typically expected to perform a number of runtime checks to
prove the integrity of the messages they receive and ensure the integrity of the messages
they send, but the browser cannot perform these checks unless they are explicitly carried
out in a JavaScript implementation of the web protocol.

Example in OAuth 2.0. The naïve RP session integrity attack presented in [60] exploits
this weakness. Suppose that RP supports SSO with various identity providers and uses
different redirect URIs to distinguish between them. In this case, an attacker controlling a
malicious identity provider AIdP can confuse the RP about which provider is being used
and force the user’s browser to login as the attacker.

To this end, the attacker starts a SSO login at RP with an honest identity provider
HIdP to obtain a valid authorization code for her account. If an honest user starts a login
procedure at RP with AIdP, in step 4⃝ AIdP is expected to redirect the user to AIdP’s redi-
rect URI at RP. If AIdP redirects to the redirect URI of HIdP with the authorization code
from the attacker session, then RP mistakenly assumes that the user intended to login
with HIdP. Therefore, RP completes the login with HIdP using the attacker’s account.

90 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

initstart auth access end
ϕ1

¬(ϕ1 ∨ ϕ2 ∨ ϕ3)

ϕ2 :: πS

¬(ϕ1 ∨ ϕ2 ∨ ϕ3)

ϕ3 ∧ πI

¬(ϕ1 ∨ ϕ2 ∨ ϕ3)

ϕ1 ≜ G⟨response_type:code, redirect_uri:^(

origin
(https?://.*?/) .*?)

uri1

(?:\?|$)⟩

ϕ2 ≜ G(Location:[?&]code= (.*?)
authcode

(?:&|$)) ϕ3 ≜ (.*)
uri2

⟨code:([^\s]{40,})⟩

πS ≜ authcode→ {https://accounts.google.com, origin} πI ≜ uri1 = uri2

FIGURE 3.2: Automaton for OAuth 2.0 (authorization code mode) where
G is the OAuth endpoint at Google.

3.3 WPSE: Design and Implementation

The Web Protocol Security Enforcer (WPSE) is the first browser-side security monitor ad-
dressing the peculiar challenges of web protocols. The current prototype is implemented
as an extension for Google Chrome which we make available online [44].

3.3.1 Key Ideas of WPSE

We illustrate WPSE on the authorization code mode of OAuth 2.0 where Google is used
as identity provider and the state parameter is not used (since it is not mandatory at
Google). For simplicity, here we show only the most common scenario where the user
has an ongoing session with the identity provider and the authorization to access the
user’s resources on the provider has been previously granted to the relying party.

Protocol Flow

WPSE describes web protocols in terms of the HTTP(S) exchanges observed by the web
browser, following the so-called browser relayed messages methodology first introduced by
Wang et al. [199]. The specification of the protocol flow defines the syntactic structure
and the expected (sequential) order of the HTTP(S) messages, supporting the choice of
different execution branches when a particular protocol message is sent or received by
the browser. The protocol specification is given in XML but, for the sake of readability,
here we use an equivalent representation in terms of finite state automata, like the one
depicted in Figure 3.2. Intuitively, each state of the automaton represents one stage of
the protocol execution in the browser. By sending an HTTP(S) request or receiving an
HTTP(S) response as dictated by the protocol, the automaton steps to the next state until
it reaches a final state denoting the end of the protocol run. Afterwards, the automaton
moves back to the initial state and a new protocol run can start.

The edges of the automaton are labeled with message patterns, describing the expected
shape of the protocol messages at each state. We represent HTTP(S) requests as e⟨a⟩,

3.3. WPSE: Design and Implementation 91

where e is the remote endpoint to which the message is sent and a is a list of parame-
ters, while HTTP(S) responses are noted e(h), where e is the remote endpoint from which
the message is received and h is a list of headers.3 The syntactic structure of e, a, h can
be described using regular expressions. The message patterns should be considered as
guards of the transitions, which are only enabled for messages matching the pattern. For
instance, the pattern ϕ2 in Figure 3.2 matches a response from the endpoint G with a
Location header that contains a URL with a parameter named code. If an HTTP(S) re-
quest or response does not satisfy any of the patterns of the outgoing transitions of the
current state, it is blocked and the automaton is reset to the initial state, i.e., the protocol
run is aborted. In case of branches with more than one transition enabled at a given state,
we solve the non-determinism by picking the first matching transition according to the
order defined in the XML specification. Patterns can be composed using standard logical
connectives.

Each state of the automaton also allows for pausing the protocol execution in presence
of requests and responses that are unrelated to the protocol. Unrelated messages are not
of the shape of any valid message in the protocol specification. In the automaton, this is
expressed by having a self-loop for each state, labeled with the negated disjunction of all
patterns describing valid protocol messages. This is important for website functionality,
because the input/output behaviour of browsers on realistic websites is complex and
hard to fully determine when writing a protocol specification. Also, the same protocol
may be run on different websites, which need to fetch different resources as part of their
protocol-unrelated functionalities, and we would like to ensure that the same protocol
specification can be enforced uniformly on all these websites.

Security Policies

To incorporate secrecy and integrity policies in the automaton, we allow for binding parts
of message patterns to identifiers. For instance, in Figure 3.2 we bind the identifier origin
to the content of the redirect_uri parameter, more precisely to the part matching the
regular expression group (https?://.*?/). The scope of an identifier includes the state
where it is first introduced and all its successor states, where the notion of successor is
induced by the tree structure of the automaton. For instance, the scope of the identifier
origin introduced in ϕ1 includes the states auth, access, end.

The secrecy policy defines which parts of the HTTP(S) responses included in the pro-
tocol specification must be confidential among a set of web origins. We express secrecy
policies πS with the notation x→ S to denote that the value bound to the identifier x can
be disclosed only to the origins specified in the set S. We call S the secrecy set of identi-
fier x and represent such a policy on the message pattern where the identifier x is first
introduced, using a double colon symbol :: as a separator. For instance, in Figure 3.2 we
require that the value of the authorization code, which is bound to the identifier authcode
introduced in ϕ2, can be disclosed only to Google (at https://accounts.google.com) and

3 Our implementation supports HTTP headers also in requests. Here we omit them since they are not
used in the analysed protocols.

92 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

the relying party (bound to the identifier origin). Confidential message components are
stripped from HTTP(S) responses and substituted by random placeholders, so that they
are isolated from browser accesses, e.g., computations performed by JavaScript. When
the automaton detects an HTTP(S) request including one of the generated placehold-
ers, it replaces the latter with the corresponding original value, but only if the HTTP(S)
request is directed to one of the origins which is entitled to learn it. A similar idea was ex-
plored by Stock and Johns to strengthen the security of password managers [176]. Since
the substitution of confidential message components with placeholders changes the con-
tent of the messages, potentially introducing deviations with respect to the transition
labels, the automaton processes HTTP(S) responses before stripping confidential values
and HTTP(S) requests after replacing the placeholders with the original values. This way,
the input/output behaviour of the automaton matches the protocol specification.

The integrity policy defines runtime checks over the contents of HTTP(S) messages.
These checks allow for the comparison of incoming messages with those received in
previous steps of the protocol execution. If any of the integrity checks fails, the corre-
sponding message is not processed and the protocol run is aborted. To express integrity
policies πI in the automaton, we enrich the message patterns to include comparisons
ranging over the identifiers introduced by preceding messages. In the case of OAuth 2.0,
we would like to ensure that the browser is redirected by the IdP to the redirect URI spec-
ified in the first step of the protocol. Therefore, in Figure 3.2 the desired integrity policy
is modeled by the condition uri1 = uri2.

Enforcing Multiple Protocols

There are a couple of delicate points to address when multiple protocol specifications
P1, . . . , Pn must be enforced by WPSE:

1. if two different protocols Pi and Pj share messages with the same structure, there
might be situations where WPSE does not know which of the two protocols is being
run, yet a message may be allowed by Pi and disallowed by Pj or vice-versa;

2. if WPSE is enforcing a protocol Pi, it must block any message which may be part of
another protocol Pj, otherwise it would be trivial to sidestep the security policy of
Pi by first making the browser process the first message of Pj.

Both problems are solved by replacing the protocol specifications P1, . . . , Pn with a single
specification P with n branches, one for each Pi. Using this construction, any ambigu-
ity on which protocol specification should be enforced is solved by the determinism of
the resulting finite state automaton. Moreover, the self loops of the automaton will only
match the messages which are not part of any of the n protocol specifications, thereby
preventing unintended protocol interleavings. Notice that the semantics of WPSE de-
pends on the order of P1, . . . , Pn, due to the way we enforce determinism on the compiled
automaton: if Pi starts with a request to u including two parameters a and b, while Pj

starts with a request to u including just the parameter a, then Pi should occur before Pj to
ensure it is actually taken into account.

3.3. WPSE: Design and Implementation 93

3.3.2 Discussion

A number of points of the design and the implementation of WPSE are worth discussing
more in detail.

Protocol Flow

WPSE provides a significant improvement in security over standard web browsers, as
we show in the remainder of the paper, but the protection it offers is not for free be-
cause it requires the specification of a protocol flow and a security policy. We think that
it is possible to develop automated techniques to reconstruct the intended protocol flow
from observable browser behaviours, while synthesizing the security policy looks more
difficult. Manually finding the best security policy for a protocol may require signifi-
cant expertise, but even simple policies can be useful to prevent a number of dangerous
attacks, as we demonstrate in Section 3.4.

The specification style of the protocol flow supported by WPSE is simple, because
it only allows sequential composition of messages and branching. As a result, our fi-
nite state automata are significantly simpler than the request graphs proposed by Guha
et al. [74] to represent legitimate browser behaviours (from the server perspective). For
instance, our finite state automata do not include loops and interleaving of messages, be-
cause it seems that these features are not extensively used in web protocols. Like standard
security protocols, web protocols are typically specified in terms of a fixed number of se-
quential messages, which are appropriately supported by our specification language.

Secrecy Enforcement

The implementation of the secrecy policies of WPSE is robust, but restrictive. Since WPSE
substitutes confidential values with random placeholders, only the latter are exposed to
browser-side scripts. Shielding secret values from script accesses is crucial to prevent
confidentiality breaches via untrusted scripts or XSS, but it might also break the website
functionality if a trusted script needs to compute over a secret value exchanged in the
protocol. The current design of WPSE only supports a limited use of secrets by browser-
side scripts, i.e., scripts can only forward secrets unchanged to the web origins entitled
to learn them. We empirically show that this is enough to support existing protocols like
OAuth 2.0 and SAML, but other protocols may require more flexibility.

Dynamic information flow control deals with the problem of letting programs com-
pute over secret values while avoiding confidentiality breaches and it has been applied
in the context of web browsers [71, 80, 26, 154, 22]. We believe that dynamic informa-
tion flow control can be fruitfully combined with WPSE to support more flexible secrecy
policies. This integration can also be useful to provide confidentiality guarantees for val-
ues which are generated at the browser-side and sent in HTTP(S) requests, rather than
received in HTTP(S) responses. We leave the study of the integration of dynamic infor-
mation flow control into WPSE to future work.

94 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

Detected
Violation

Attack

Protocol flow
deviation

Session swapping [177]
Social login CSRF on stateless clients [12]
IdP mix-up attack (web attacker) [60]

Secrecy
violation

Unauthorized login by authentication code
redirection [12]
Resource theft by access token redirec-
tion [12]
307 redirect attack [60]
State leak attack [60]

Integrity
violation

Cross social-network request forgery [12]
Naïve RP session integrity attack [60]

TABLE 3.1: Overview of the attacks against OAuth 2.0.

Extension APIs

The current prototype of WPSE suffers from some limitations due to the Google Chrome
extension APIs. In particular, the body of HTTP messages cannot be modified by exten-
sions, hence the secrecy policy cannot be implemented when secret values are embedded
in the page contents or the corresponding placeholders are sent as POST parameters. Cur-
rently, we protect secret values contained in the HTTP headers of a response (e.g., cookies
or parameters in the URL of a Location header) and we only substitute the correspond-
ing placeholders when they are communicated via HTTP headers or as URL parameters.
Clearly this is not a limitation of our general approach but rather one of the extension
APIs, which can be solved by implementing the security monitor directly in the browser
or as a separate proxy application. Despite these limitations, we were able to test the cur-
rent prototype of WPSE on a number of real-world websites with very promising results,
as reported in Section 3.5.

3.4 Fortifying Web Protocols with WPSE

To better appreciate the security guarantees offered by WPSE, we consider two popular
web protocols: OAuth 2.0 and SAML 2.0. The security of both protocols has already
been studied in depth, so they are an excellent benchmark to assess the effectiveness
of WPSE: we refer to [12, 60, 177] for security analyses of OAuth 2.0 and to [9, 10] for
research studies on SAML. Remarkably, by writing down a precise security policy for
SAML, we were able to expose a new critical attack against the Google implementation
of the protocol.

3.4.1 Attacks Against OAuth 2.0

We review in this section several attacks against OAuth 2.0 from the literature, analysing
whether they are prevented by our extension. We focus in particular on those presented

3.4. Fortifying Web Protocols with WPSE 95

in [12, 60, 177], since they apply to the OAuth 2.0 flows presented in this work. In Ta-
ble 3.1 we provide an overview of the attacks that WPSE is able to prevent, grouped
according to the type of violation of the security properties that they expose.

Protocol Flow Deviations

This category covers attacks that force the user’s browser to skip messages or to accept
them in a wrong order. For instance, some attacks, e.g., some variants of CSRF and session
swapping, rely on completing a login in the user’s browser that was not initiated before.
This is a clear deviation from the intended protocol flow and, as a consequence, WPSE
blocks these attacks.

We exemplify on the session swapping attack discussed in Section 3.2.2. Here the
attacker tricks the user into sending a request containing the attacker’s authorization
credential (e.g., the authorization code) to RP (step 4⃝ of the protocol flow). Since the
state parameter is not used, the RP cannot verify whether this request was preceded by
a login request by the user. Our security monitor blocks the (out-of-order) request since
it matches the pattern ϕ3, which is allowed by the automaton in Figure 3.2 only in state
access. Thus, the attack is successfully prevented.

Secrecy Violations

This category covers attacks where sensitive information is unintentionally leaked, e.g.,
via the Referer header or because of the presence of open redirectors at RP. Sensitive
data can either be leaked to untrusted third parties that should not be involved in the
protocol flow (as in the state leak attack) or protocol parties that are not trusted for a
specific secret (as in the 307 redirect attack). WPSE can prevent this class of attacks since
the secrecy policy allows one to specify the origins that are entitled to receive a secret.

We illustrate how the monitor prevents these attacks in case of the state leak attack
discussed in Section 3.2.3, focusing on the authorization code. In the attack, the autho-
rization code is leaked via the Referer header of the request fetching a resource from the
attacker website which is embedded in the page located at the redirect URI of RP (step
4⃝ of the protocol). When the authorization code (authcode) is received (step 2⃝), the
monitor extracts it from the Location header and replaces it with a random placeholder
before the request is processed by the browser. After step 4⃝, the request to the attacker’s
website is sent, but the monitor does not replace the placeholder with the actual value of
the authorization code since the secrecy set associated to authcode in πS does not include
the domain of the attacker.

Integrity Violations

This category contains attacks that maintain the general protocol flow, but the contents
of the exchanged messages do not satisfy some integrity constraints required by the pro-
tocol. WPSE can prevent these attacks by enforcing browser-side integrity checks.

96 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

U SP IdP
1⃝ URI

2⃝ SAMLRequest=AuthnRequest, RelayState=URI

3⃝ login form

User credentials

4⃝ SAMLResponse=Response, RelayState=URI

5⃝ URI

6⃝ resource

FIGURE 3.3: SAML 2.0 SP-Initiated SSO with Redirect/POST Bindings.

Consider the naïve RP session integrity attack presented in Section 3.2.4. In this attack,
the malicious identity provider AIdP redirects the user’s browser to the redirect URI of
the honest identity provider HIdP at RP during step 4⃝ of the protocol. At step 2⃝, the
redirect URI is provided to AIdP as parameter. This request corresponds to the pattern ϕ1

of the automation and the redirect URI associated to AIdP is bound to the identifier uri1.
At step 4⃝, AIdP redirects the browser to a different redirect URI, which is bound to the
identifier uri2. Although the shape of the request satisfies pattern ϕ3, the monitor cannot
move from state access to state end since the constraint uri1 = uri2 in the integrity policy
πI is violated. Thus, no transition is enabled for the state access and the request is blocked
by WPSE, therefore preventing the attack.

3.4.2 Attacks Against SAML 2.0

The Security Assertion Markup Language (SAML) 2.0 [141] is an open standard for shar-
ing authentication and authorization across a multitude of domains. SAML is based on
XML messages called assertions and defines different profiles to account for a variety of
use cases and deployment scenarios. SSO functionality is enabled by the SAML 2.0 web
browser SSO profile, whose typical use case is the SP-Initiated SSO with Redirect/POST
Bindings [140, 10]. Similarly to OAuth 2.0, there are three entities involved: a user con-
trolling a web browser (U), an identity provider (IdP) and a service provider (SP). The
protocol prescribes how U can access a resource provided by SP after authenticating with
IdP.

The relevant steps of the protocol are depicted in Figure 3.3. In step 1⃝, U requests
from SP the resource located at URI; in 2⃝ the SP redirects the browser to the IdP sending
an AuthnRequest XML message and a RelayState parameter; U provides her credentials
to the IdP in step 3⃝where they are verified; in step 4⃝ the IdP causes the browser to issue
a POST request to the Assertion Consumer Service at the SP containing the SamlResponse
and the RelayState parameters; in 5⃝ the SP processes the response, creates a security

3.4. Fortifying Web Protocols with WPSE 97

context at the service provider and redirects U to the target resource at URI; given that a
security context is in place, the SP provider returns the resource to U.

RelayState is a mechanism for preserving some state information at the SP such as
the resource URI requested by the user [69]. If the RelayState parameter is used within a
request message, then subsequent responses must maintain the exact value received with
the request [139]. A violation of this constraint enables attacks such as [9], in which U
requests a resource URIA hosted by a malicious service provider AP. AP pretends to be U
at the honest SP and requests a different resource at SP located at URIS which is returned
to AP. At step 2⃝ the malicious service provider replies to U by providing URIS in place of
URIA as value of the RelayState parameter. The result is that U forcibly accesses a resource
at SP, while she originally asked for a resource from AP. Interestingly, by using WPSE it
is possible to instruct the browser with knowledge of the protocol in such a way that the
client can verify whether the requests at steps 2⃝, 4⃝ are related to the initial request 1⃝.
We distilled a simple policy for the SAML 2.0 web browser SSO profile that enforces an
integrity constraint on the value of the RelayState parameter, thus blocking requests to
undesired resources due to a violation of the policy.

Furthermore, SAML 2.0 does not specify any way to maintain a contextual bind-
ing between the request at step 2⃝ and the request at step 4⃝. It follows that only the
SAMLResponse and RelayState parameters are enough to allow U to access the resource
at URI. We discovered that this shortcoming in the protocol has a critical impact on real
SPs using the SAML-based SSO profile described in this section. Indeed, we managed to
mount an attack against Google that allows a web attacker to authenticate any user on
Google’s suite applications under the attacker’s account, with effects similar to a Login
CSRF attack. Since Google can act as a Service Provider (SP) with a third party IdP, an
attacker registered to a given IdP can simulate a login attempt with his legitimate cre-
dentials to obtain a valid POST request to the Google assertion consumer service (step
4⃝). Using the learned parameters the attacker can construct a web page that cause the
victim’s browser to automatically issue a request to the Google assertion consumer ser-
vice, thus forcing the victim inside the attacker session. From the browser standpoint,
this attack is clearly caused by a violation of the protocol flow given that steps 1⃝- 3⃝ are
carried out by the attacker and step 4⃝ and subsequent ones involve the victim. WPSE
identifies the outgoing request to the IdP as a protocol flow deviation, thereby preventing
the attack.

The vulnerability can be exploited by any web attacker with a valid account on a third
party IdP that uses Google as SP. In particular, our university uses SAML 2.0 with Google
as a Service provider to offer email and storage facilities to students and employees. We
have implemented the attack by constructing a malicious webpage that silently performs
a login on Google’s suite applications using one of our personal accounts. The vulnerabil-
ity allows the attacker to access private information of the victim that has been saved in
the account, such as activity history, notes and documents. We have responsibly reported
this vulnerability to Google who rewarded us according to their bug bounty program. In-
terestingly, the vulnerability cannot be fixed exclusively at the server-side, but a patch to

98 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

the browser is also required. In particular, Google has modified its browser Chrome to
monitor the execution of SAML 2.0 and prompt a popup window to the user just be-
fore completing the protocol to confirm that she really wanted to authenticate using the
specified account [68].

3.4.3 Out-of-Scope Attacks

We have shown that WPSE is able to block a wide range of attacks on existing web pro-
tocols. However, some classes of attacks cannot be prevented by browser-side security
monitoring. Specifically, WPSE cannot prevent:

1. attacks which do not deviate from the expected protocol flow. An example of such
an attack against OAuth 2.0 is the automatic login CSRF attack presented in [12],
which exploits the lack of CSRF protection on the login form of the relying party
to force an authentication to the identity provider. This class of attacks can be pre-
vented by implementing appropriate defenses against known web attacks;

2. attacks which cause deviations from the expected protocol flow that are not ob-
servable by the browser. In particular, this class of attacks includes network attacks,
where the attacker corrupts the traffic exchanged between the protocol participants.
For instance, a network attacker can run the IdP mix-up attack from [60] when the
first step of OAuth 2.0 is performed over HTTP. This class of attacks can be pre-
vented by making use of HTTPS, preferably backed up by HSTS;

3. attacks which do not involve the user’s browser at all. An example is the imper-
sonation attack on OAuth 2.0 discussed in [177], where public information is used
for authentication. Another example is the DuoSec vulnerability found on several
SAML implementations [112] that exploits a bug in the XML libraries used by SPs
to parse SAML messages. This class of attacks must be necessarily solved at the
server-side.

3.5 Experimental Evaluation

Having discussed how WPSE can prevent several real-world attacks presented in the
literature, we finally move to on-field experiments. The goal of the present section is
assessing the practical security benefits offered by WPSE on existing websites in the wild,
as well as to test the compatibility of its browser-side security monitoring with current
web technologies and programming practices. To this end, we experimentally assessed
the effectiveness of WPSE by testing it against websites using OAuth 2.0 to implement
SSO at high-profile IdPs.

3.5. Experimental Evaluation 99

3.5.1 Experimental Setup

We developed a crawler to automatically identify existing OAuth 2.0 implementations in
the wild. Our analysis is not meant to provide a comprehensive coverage of the deploy-
ment of OAuth 2.0 on the web, but just to identify a few popular identity providers and
their relying parties to carry out a first experimental evaluation of WPSE.

We started from a comprehensive list of OAuth 2.0 identity providers4 and we col-
lected for each of them the list of the HTTP(S) endpoints used in their implementation of
the protocol. Inspired by [185], our crawler looks for login pages on websites to find syn-
tactic occurrences of these endpoints: after accessing a homepage, the crawler extracts a
list of (at most) 10 links which may likely point to a login page, using a simple heuristic.
It also retrieves, using the Bing search engine, the 5 most popular pages of the website.
For all these pages, the crawler checks for the presence of the OAuth 2.0 endpoints in
the HTML code and in the 5 topmost scripts included by them. By running our crawler
on the Alexa 100k top websites, we found that Facebook (1,666 websites), Google (1,071
websites) and VK (403 websites) are the most popular identity providers in the wild.

We then developed a faithful XML representation of the OAuth 2.0 implementations
available at the selected identity providers. There is obviously a large overlap between
these specifications, though slight differences are present in practice, e.g., the use of the
response_type parameter is mandatory at Google, but can be omitted at Facebook and
VK to default to the authorization code mode. For the sake of simplicity, we decided
to model the most common use case of OAuth 2.0, i.e., we assume that the user has an
ongoing session with the identity provider and that authorization to access the user’s
resources on the provider has been previously granted to the relying party. For each
identity provider we devised a specification that supports the OAuth 2.0 authorization
code and implicit modes, with and without the optional state parameter, leading to 4
possible execution paths. Finally, we created a dataset of 90 websites by sampling 30
relying parties for each identity provider, covering both the authorization code mode
and the implicit mode of OAuth 2.0. We have manually visited these websites with a
browser running WPSE both to verify if the protocol run was completed successfully
and to assess whether all the functionalities of the sites were working properly. In the
following we report on the results of testing our extension against these websites from
both a security and a compatibility point of view.

3.5.2 Security Analysis

We devised an automated technique to check whether WPSE can stop dangerous real-
world attacks. Since we did not want to attack the websites, we focused on two classes
of vulnerabilities which are easy to detect just by navigating the websites when using
WPSE. The first class of vulnerabilities enables confidentiality violations: it is found
when one of the placeholders generated by WPSE to enforce its secrecy policies is sent to
an unintended web origin. The second class of vulnerabilities, instead, is related to the

4 https://en.wikipedia.org/wiki/List_of_OAuth_providers

https://en.wikipedia.org/wiki/List_of_OAuth_providers

100 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

use of the state parameter: if the state parameter is unused or set to a predictable static
value, then session swapping becomes possible (see Section 3.2.2). We can detect these
cases by checking which protocol specification is enforced by WPSE and by making the
state parameter secret, so that all the values bound to it are collected by WPSE when they
are substituted by the placeholders used to enforce the secrecy policy.

We observed that our extension prevented the leakage of sensitive data on 4 different
relying parties. Interestingly, we found that the security violation exposed by the tool are
in all cases due to the presence of tracking or advertisements libraries such as Facebook
Pixel,5 Google AdSense,6 Heap7 and others. For example, this has been observed on
ticktick.com, a website offering collaborative task management tools. The leakage is
enabled by two conditions:

1. the website allows its users to perform a login via Google using the implicit mode;

2. the Facebook tracking library is embedded in the page which serves as redirect URI.

Under these settings, right after step 4⃝ of the protocol, the tracking library sends a re-
quest to https://www.facebook.com/tr/ with the full URL of the current page, which
includes the access token issued by Google. We argue that this is a critical vulnerability,
given that leaking the access token to an unauthorized party allows unintended access
to sensitive data owned by the users of the affected website. We promptly reported the
issue to the major tracking library vendors and the vulnerable websites. Library ven-
dors informed us that they are not providing any fix since it is a responsibility of web
developers to include the tracking library only in pages without sensitive contents.8

For what concerns the second class of vulnerabilities, 55 out of 90 websites have been
found affected by the lack or misuse of the state parameter. More in detail, we identified
41 websites that do not support it, while the remaining 14 websites miss the security
benefit of the state parameter by using a predictable or constant string as a value. We
claim that such disheartening situation is mainly caused by the identity providers not
setting this important parameter as mandatory. In fact, the state parameter is listed as
recommended by Google and optional by VK. On the other hand, Facebook marks the
state parameter as mandatory in its documentation, but our experiments showed that it
fails to fulfill the requirement in practice. Additionally, it would be advisable to clearly
point out in the OAuth 2.0 documentation of each provider the security implications of
the parameter. For instance, according to the Google documentation,9 the state parameter
can be used “for several purposes, such as directing the user to the correct resource in
your application, sending nonces, and mitigating cross-site request forgery”: we believe
that this description is too vague and opens the door to misunderstandings.

5 https://www.facebook.com/business/a/facebook-pixel
6 https://www.google.com/adsense
7 https://heapanalytics.com/
8 See, for instance, Google AdSense program policy available at https://support.google.com/adsense/

topic/6162392
9 https://developers.google.com/identity/protocols/OAuth2WebServer

ticktick.com
https://www.facebook.com/tr/
https://www.facebook.com/business/a/facebook-pixel
https://www.google.com/adsense
https://heapanalytics.com/
https://support.google.com/adsense/topic/6162392
https://support.google.com/adsense/topic/6162392
https://developers.google.com/identity/protocols/OAuth2WebServer

3.6. Formal Guarantees 101

3.5.3 Compatibility Analysis

To detect whether WPSE negatively affects the web browser functionality, we performed
a basic navigation session on the websites in our dataset. This interaction includes an
access to their homepage, the identification of the SSO page, the execution of the OAuth
2.0 protocol, and a brief navigation of the private area of the website. In our experiments,
the usage of WPSE did not impact in a perceivable way the browser performance or the
time required to load webpages. We were able to navigate 81 websites flawlessly, but we
found 9 websites where we did not manage to successfully complete the protocol run.

In all the cases, the reason for the compatibility issues was the same, i.e., the presence
of an HTTP(S) request with a parameter called code after the execution of the protocol
run. This message has the same syntactic structure as the last request sent as part of the
authorization code mode of OAuth 2.0 and is detected as an attack when our security
monitor moves back to its initial state at the end of the protocol run, because the message
is indistinguishable from a session swapping attempt (cf. Section 3.2.2). We manually in-
vestigated these cases: 2 of them were related to the use of the Gigya social login provider,
which offers a unified access interface to many identity providers including Facebook
and Google; the other 7, instead, were due to a second exchange of the authorization
code at the end of the protocol run. We were able to solve the first issue by writing a
specification for Gigya (limited to Facebook and Google), while the other cases openly
deviate from the OAuth 2.0 specification, where the authorization code is only supposed
to be sent to the redirect URI and delivered to the relying party from there. These custom
practices are hard to explain and to support and, unsurprisingly, may introduce security
flaws. In fact, one of the websites deviating from the OAuth 2.0 specification suffers from
a serious security issue since the authorization code is first communicated to the website
over HTTP before being sent over HTTPS, thus becoming exposed to network attackers.
We responsibly disclosed this security issue to the website owners.

In the end, all the compatibility issues we found boil down to the fact that a web pro-
tocol message has a relatively weak syntactic structure, which may end up matching a
custom message used by websites as part of their functionality. We think that most of
these issues can be robustly solved by using more explicit message formats for standard-
ized web protocols like OAuth 2.0: explicitness is indeed widely recognized as a prudent
engineering practice for traditional security protocols [1]. Having structured message
formats could be extremely helpful for a precise browser-side fortification of web proto-
cols which minimizes compatibility issues.

3.6 Formal Guarantees

Now we formally characterize the security guarantees offered by our monitoring tech-
nique. Here we provide an intuitive description of the formal result, referring the inter-
ested reader to [44] for a complete account.

The formal result states that given a web protocol that is proven secure for a set of
network participants and an uncorrupted client, by our monitoring approach we can

102 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

filter

secrets

H1

H2

H3

FIGURE 3.4: Visual description of Theorem 4.

achieve the same security guarantees given a corrupted client (e.g., due to XSS attacks).
More precisely this means that all attacks not occurring in presence of an ideally behav-
ing client can be fixed by our monitor. Of course, these security guarantees only span the
run of the protocol that is proven secure and its protocol-specific secrets. So the moni-
tor can, e.g., ensure that the OAuth 2.0 protocol is securely executed in the presence of
compromised scripts which might result in successful authentication and the setting of
a session cookie. However, the monitor cannot prevent that this session cookie is leaked
by a malicious script after the protocol run is over. So other security techniques like the
HttpOnly attribute for cookies have to be in place or the protocol specification must be
extended to include the subsequent application steps (e.g., we can protect session cookies
like we do for access tokens).

Our theory is elaborated within the applied pi calculus [162], a popular process cal-
culus for the formal analysis of cryptographic protocols which is supported by various
automated verifiers such as ProVerif [29]. Bansal et al. [12] have recently presented a
technique to leverage ProVerif for the analysis of web protocol specifications, including
OAuth.

We give an overview on the theorem in Figure 3.4. We assume that the protocol speci-
fication has already been proven secure in a setting where the browser-side application is
well-behaved and, in particular, follows the protocol specification (Sorig). Intuitively, our
theorem says that security carries over to a setting (Snew) where the browser-side applica-
tion is totally under the control of the attacker (e.g., because of XSS attacks or a simple bug
in the code) but the communication between the browser and the other protocol parties is
mediated by our monitor. Specifically, Sorig includes a browser B and an uncompromised
application App that exchange messages via private communication channels bain, baout.

3.6. Formal Guarantees 103

The communication between the browser B and the network N is performed via the pub-
lic channels bsin, bsout that can be observed and infiltrated by the network attacker. Snew

shows the setting in which the application is compromised: channel bain for requests
from the application to the browser is made public, modeling that arbitrary requests can
be performed on it by the attacker. In addition, we assume the channel baout leaks all
messages, thus modeling a compromised application that might disclose these secrets.
Indeed, the compromised application can communicate with the network attacker, who
can in turn use the learned information to attack the protocol. The following theorem
states the correctness of our monitoring approach.

Theorem 4 (Monitor Correctness). Let processes App, N, B and M as defined in Sorig and P be
a property on execution traces against a network attacker. Assume that the following conditions
hold:

(H1) Sorig ⊨ P (“Sorig satisfies P”)

(H2) M ↓ bsin, bsout ≼ Sorig ↓ bsin, bsout (“the set of requests/responses on bsin,bsout allowed
by M are a subset of those produced by Sorig”)

(H3) M does not leak any secrets (i.e., messages initially unknown to the attacker) on baout

Then it also holds that:

(C) Snew ⊨ P (“Snew satisfies P”)

Assumption (H1) states that the process as shown in Sorig satisfies a certain trace prop-
erty. In the applied pi calculus, this is modeled by requiring that each partial execution
trace of Sorig in parallel with an arbitrary network attacker satisfies the trace predicate P.
Assumption (H2) states that the requests/responses allowed by the monitor M on the
channels bsin, bsout, which model the communication between the browser and the net-
work, are a subset of those possibly performed by the process Sorig. Intuitively, this means
that the monitor allows for the intended protocol flow, filtering out messages deviating
from it. Formally this is captured by projecting the execution traces of the corresponding
processes to those components that model the input and output behaviour on bsin and
bsout and by requiring that for every such execution trace of M there is a corresponding
one for Sorig. Finally, assumption (H3) states that the monitor M should not leak any se-
crets on channel baout. In applied pi calculus this is captured by requiring that the outputs
of M on channel baout do not increase the attacker’s knowledge.

Together these assumptions ensure that the monitored browser behaves as the ideal
protocol participant in Sorig towards the network and additionally assure that an attacker
cannot gain any additional knowledge via a compromised application that could enable
her to perform attacks against the protocol over the network. Formally, this is captured
in conclusion (C) that requires the partial execution traces of Snew to satisfy the trace
predicate P.

104 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

3.6.1 Discussion

Our formal result is interesting for various reasons. First, it allows us to establish formal
security guarantees in a stronger attacker model by checking certain semantic conditions
on the monitor, without having to prove from scratch the security of the protocol with the
monitor in place on the browser-side. Second, the theorem demonstrates that enforcing
the three security properties identified in Section 3.2 does indeed suffice to protect web
protocols from a large class of bugs and vulnerabilities on the browser-side: (H2) cap-
tures the compliance with the intended protocol flow as well as data integrity, while (H3)
characterizes the secrecy of messages.

Finally, the three hypotheses of the theorem are usually extremely easy to check. For
instance, let us consider the OAuth protocol. As previously mentioned, this has been
formally analysed in [12], so (H1) holds true. In particular, the intended protocol flow is
directly derivable from the applied pi calculus specification. The automaton in Figure 3.2
only allows for the intended protocol flow, which is clearly contained in the execution
traces analysed in [12]. Hence (H2) holds true as well. Finally, the only secrets in the
protocol specification are those subject to the confidentiality policy in the automaton in
Figure 3.2: as previously mentioned, these are replaced by placeholders, which are then
passed to the web application. Hence no secret can ever leak, which validates (H3).

3.7 Related Work

3.7.1 Analysis of Web Protocols

The first paper to highlight the differences between web protocols and traditional cryp-
tographic protocols is due to Gross et al. [72]. The paper presented a model of web
browsers, based on a formalism reminiscent of input/output automata, and applied it
to the analysis of password-based authentication. The model was later used to formally
assess the security of the WSFPI protocol [73].

Traditional protocol verification tools have been successfully applied to find attacks
in protocol specifications. For instance, Armando et al. analysed both the SAML pro-
tocol and a variant of the protocol implemented by Google using the SATMC model-
checker [10]. Their analysis exposed an attack against the authentication goals of the
Google implementation. Follow-up work by the same group used a more accurate model
to find an authentication flaw also in the original SAML specification [9]. Akhawe et al.
used the Alloy framework to develop a core model of the web infrastructure, geared to-
wards attack finding [4]. The paper studied the security of the WebAuth authentication
protocol among other case studies, finding a login CSRF attack against it. The WebSpi
library for ProVerif by Bansal et al. has been successfully applied to find attacks against
existing web protocols, including OAuth 2.0 [12] and cloud storage protocols [13]. Fett
et al. developed the most comprehensive model of the web infrastructure available to
date and fruitfully applied it to the analysis of a number of web protocols, including
BrowserID [61], SPRESSO [62] and OAuth 2.0 [60].

3.7. Related Work 105

Protocol analysis techniques are useful to verify the security of protocols, but they
assume websites are correctly implemented and do not depart from the specification,
hence many security researchers performed empirical security assessments of existing
web protocol implementations, finding dangerous attacks in the wild. Protocols which
deserved attention by the research community include SAML [172], OAuth 2.0 [177, 107]
and OpenID Connect [106]. Automated tools for finding vulnerabilities in web protocol
implementations have also been proposed by security researchers [199, 215, 207, 114].
None of these works, however, presented a technique to protect users accessing vulnera-
ble websites in their browsers.

3.7.2 Security Automata

The use of finite state automata for security enforcement is certainly not new. The pio-
neering work in the area is due to Schneider [167], which first introduced a formalization
of security automata and studied their expressive power in terms of a class of enforceable
policies. Security automata can only stop a program execution when a policy violation
is detected; later work by Ligatti et al. extended the class of security automata to also
include edit automata, which can suppress and insert individual program actions [109].
Edit automata have been applied to the web security setting by Yu et al., who used them
to express security policies for JavaScript code [209]. The focus of their paper, however, is
not on web protocols and is only limited to JavaScript, because input/output operations
which are not JavaScript-initiated are not exposed to their security monitor.

Guha et al. also used finite state automata to encode web security policies [74]. Their
approach is based on three steps: first, they apply a static analysis for JavaScript to con-
struct the control flow graph of an AJAX application to protect and then they use it to
synthesize a request graph, which summarizes the expected input/output behaviour of
the application. Finally, they use the request graph to instruct a server-side proxy, which
performs a dynamic monitoring of browser requests to prevent observable violations to
the expected control flow. The security enforcement can thus be seen as the computa-
tion of a finite state automaton built from the request graph. Their technique, however,
is only limited to AJAX applications and operates at the server-side, rather than at the
browser-side.

3.7.3 Browser-Side Defenses

Our work positions itself in the popular research line of extending web browsers with
stronger security policies. To the best of our knowledge, this is the first work which
explicitly focuses on web protocols, but a number of other proposals on browser-side se-
curity are worth mentioning. Enforcing information flow policies in web browsers is a
hot topic nowadays and a few fairly sophisticated proposals have been published as of
now [71, 80, 26, 154, 22]. Information flow control can be used to provide confidential-
ity and integrity guarantees for browser-controlled data, but it cannot be directly used
to detect deviations from expected web protocol executions, which instead are naturally

106 Chapter 3. WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

captured by security automata. Combining our approach with browser-based informa-
tion flow control can improve its practicality, because a more precise information flow
tracking would certainly help a more permissive security enforcement.

A number of browser changes and extensions have been proposed to improve web
session security, both from the industry and the academia. Widely deployed indus-
trial proposals include Content Security Policy (CSP) and HTTP Strict Transport Secu-
rity (HSTS). Notable proposals from the academia include Allowed Referrer Lists [51],
SessionShield [137], Zan [178], CSFire [163], Serene [165], CookiExt [37] and SessInt [38].
We refer to Chapter 2 for a comprehensive overview of the existing techniques. None of
these works, however, tackles web protocols.

107

Chapter 4

Mind Your Keys? A Security
Evaluation of Java Keystores

4.1 Introduction

Cryptography is a fundamental technology for IT security. Even if there are well es-
tablished standards for cryptographic operations, cryptography is complex and varie-
gated, typically requiring a non-trivial combination of different algorithms and mecha-
nisms. Moreover, cryptography is intrinsically related to the secure management of cryp-
tographic keys which need to be protected and securely stored by applications. Leaking
cryptographic keys, in fact, voids any advantage of cryptography, allowing attackers to
break message confidentiality and integrity, to authenticate as legitimate users or im-
personate legitimate services. Quoting [168], “key management is the hardest part of
cryptography and often the Achilles’ heel of an otherwise secure system”.

In the recent years we have faced a multitude of flaws related to cryptography (e.g.,
[24, 14, 122, 121]). Some of these are due to the intrinsic complexity of cryptography,
that makes it hard to design applications that adopt secure combinations of mechanisms
and algorithms. For example, in padding oracle attacks, the usage of some (standard)
padding for the plaintext combined with a specific algorithm or mechanism makes it
possible for an attacker to break a ciphertext in a matter of minutes or hours [187, 30,
14]. Most of the time this is not a developer fault as, unfortunately, there are well-known
flawed mechanisms that are still enabled in cryptographic libraries. In other cases, the at-
tacks are due to flaws in protocols or applications. The infamous Heartbleed bug allowed
an attacker to get access to server private keys through a simple over-read vulnerability.
Once the private key was leaked, the attacker could decrypt network traffic or directly
impersonate the attacked server [122].

Thus, breaking cryptography is not merely a matter of breaking a cryptographic al-
gorithm: the attack surface is quite large and the complexity of low-level details requires
abstractions. Crypto APIs offer a form of abstraction to developers that allows to make
use of cryptography in a modular and implementation-independent way. The Java plat-
form, for example, provides a very elegant abstraction of cryptographic operations that
makes it possible, in many cases, to replace a cryptographic mechanism or its implemen-
tation with a different one without modifying the application code.

108 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

Crypto APIs, however, do not usually provide security independently of the low-level
implementation: default mechanisms are often the weakest ones, thus developers have
to face the delicate task of choosing the best mechanism available for their needs. For
example, in the Java Cryptography Architecture (JCA), ECB is the default mode of oper-
ation for block ciphers [87] and PKCS#1 v1.5 is the default padding scheme for RSA [90],
which is well know to be subject to padding oracle attacks [30]. Additionally, crypto
APIs that promise to provide security for cryptographic keys have often failed to do so:
in PKCS#11, the standard API used with cryptographic tokens, it is possible to wrap a
sensitive key under another key and then just ask the device to decrypt it, obtaining the
value of the sensitive key in the clear [47], and violating the requirement that “sensitive
keys cannot be revealed in plaintext off the token” [158].

In this chapter we analyse in detail the security of key management in the Java ecosys-
tem and, in particular, of Java keystores. Password-protected keystores are the standard
way to securely manage and store cryptographic keys in Java: once the user (or the appli-
cation) provides the correct password, the keys in the keystore become available and can
be used to perform cryptographic operations, such as encryption and digital signature.
The KeyStore Java class abstracts away from the actual keystore implementation, which
can be either in the form of an encrypted file or based on secure hardware. As discussed
above, this abstraction is very important for writing code that is independent of the im-
plementation but developers are still required to select among the various keystore types
offered by Java. Unfortunately, the information in the keystore documentation is not
enough to make a reasoned and informed choice among the many alternatives. More
specifically, given that the Java Keystore API does not provide control over the crypto-
graphic mechanisms and parameters employed by each keystore, it is crucial to assess
the security provided by the different implementations, which motivated us to perform
the detailed analysis reported in this Chapter. In fact, our work is the first one studying
the security of keystores for general purpose Java applications.

We have estimated the adoption rate and analysed the implementation details of
seven different Java keystores offered by the Oracle JDK and by Bouncy Castle, a fa-
mous cryptographic library. Keystores are used by hundreds of commercial applications
and open-source projects, as assessed by scraping GitHub, including leading web ap-
plications servers and frameworks, e.g., Tomcat [7], Spring [173], Oracle Weblogic [201].
Additionally, keystores have been found to be widespread among security-critical cus-
tom Java software for large finance, government and healthcare companies.

The security of keystores is achieved by performing a cryptographic operation C un-
der a key derived from a password through a function F called Key Derivation Function
(KDF). The aim of the cryptographic operation C is to guarantee confidentiality and/or
integrity of the stored keys. For example, a Password-Based Encryption (PBE) scheme
is used to protect key confidentiality: in this case C is typically a symmetric cipher, so
that keys are encrypted using the provided password before being stored in the keystore.
In order to retrieve and use that key, the keystore implementation will perform the fol-
lowing steps: i) obtain the password from the user; ii) derive the encryption key from

4.1. Introduction 109

the password using F; iii) decrypt the particular keystore entry through C and retrieve
the actual key material. Notice that different passwords can be used to protect different
keys and/or to achieve integrity. To prevent attacks, it is recommended that C and F are
implemented using standard, state-of-the-art cryptographic techniques [126, 160].

Interestingly, we have found that the analysed keystores use very diverse implemen-
tations for C and F and in several cases they do not adhere to standards or use obsolete
and ad-hoc mechanisms. We show that, most of the time, keystores using weak or cus-
tom implementations for the key derivation function F open the way to password brute-
forcing. We have empirically measured the speed-up that the attacker achieves when
these flawed keystores are used and we show that, in some cases, brute-forcing is three
orders of magnitude faster with respect to the keystores based on standard mechanisms.
We even found keystores using the deprecated cipher RC2 that enables an attacker to
brute-force the 40-bit long key in a matter of hours using a standard desktop computer.

Our analysis has also pointed out problems related to availability and malicious code
execution, which are caused by type-flaws in the keystore, i.e., bugs in which an object of
a certain type is interpreted as one of a different type. In particular, by directly tamper-
ing with the keystore file, an attacker could trigger denial of service (DoS) attacks or even
arbitrary code execution. Interestingly, we also found that the use of standard key deriva-
tion functions can sometimes enable DoS attacks. These functions are parametrized by
the number of internal iterations, used to slow down brute-forcing, which is stored in the
keystore file. If the number of iterations is set to a very big integer, the key derivation
function will hang, blocking the whole application.

Unless stated otherwise, our findings refer to Oracle JDK 8u144 and Bouncy Cas-
tle 1.57, the two latest releases available in August 2017.

4.1.1 Contributions

Our contributions can be summarized as follows:

1. we define a general threat model for password-protected keystores and we distill a
set of significant security properties and consequent rules that any secure keystore
should adhere to;

2. we perform a thoughtful analysis of seven keystores, we report undocumented de-
tails about their cryptographic implementations and we classify keystores based on
our properties and rules;

3. we report on unpublished attacks and weaknesses found in the analysed keystores.
For each attack we point out the corresponding violations of our proposed proper-
ties and rules and we provide a precise attacker model;

4. we empirically estimate the speed-up due to bad cryptographic implementations
and we show that, in some cases, this allows to decrease the guessing time of three
orders of magnitude with respect to the most resistant keystore, and four orders of
magnitude with respect to NIST recommendations; interestingly, the attack on the

110 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

Oracle JKS keystore that we present in this Chapter and previously mentioned in a
blog post [49], has been integrated into the Hashcat password recovery tool;

5. we discuss the advancements on the security of Oracle and Bouncy Castle keystore
implementations following our responsible disclosure. The Oracle Security Team
acknowledged the reported issues by assigning three CVE IDs [123, 124, 125] and
released fixes in October 2017 and April 2018 [144, 145]. Bouncy Castle developers
patched the reported vulnerabilities in version 1.58 and later releases.

4.1.2 Structure of the Chapter

We discuss related work in Section 4.2; in Section 4.3 we define the security properties of
interest, the rules for the design of secure keystores and the threat model; in Section 4.4
we report on our analysis of seven Java keystores; in Section 4.5 we describe unpublished
attacks on the analysed keystores; in Section 4.6 we make an empirical comparison of the
password cracking speed among the keystores; in Section 4.7 we discuss the improve-
ments implemented by Oracle and Bouncy Castle following our responsible disclosure.

4.2 Related Work

Cooijmans et al. [48] have studied various key storage solutions in Android, either pro-
vided as an operating system service or through the Bouncy Castle cryptographic library.
The threat model is very much tailored to the Android operating system and radically
different from the one we consider in our work. Offline brute-forcing, for example, is
only discussed marginally in the paper. Interestingly, authors show that under a root at-
tacker (i.e., an attacker with root access to the device), the Bouncy Castle software imple-
mentation is, in some respect, more secure than the Android OS service using TrustZone
capabilities, because of the possibility to protect the keystore with a user-supplied pass-
word. Differently from our work, the focus of the paper is not on the keystore design and
the adopted cryptographic mechanisms.

Sabt et al. [166] have recently found a forgery attack in the Android KeyStore service,
an Android process that offers a keystore service to applications and is out of the scope
of our work. However, similarly to our results, the adopted encryption scheme is shown
to be weak and not compliant to the recommended standards, enabling a forgery attack
that make apps use insecure cryptographic keys, voiding any benefit of cryptography.

Li et al. [108] have analysed the security of web password managers. Even if the
setting is different, there are some interesting similarities with keystores. In both settings
a password is used to protect sensitive credentials, passwords in one case and keys in
the other. So the underlying cryptographic techniques are similar. However the kind of
vulnerabilities found in the paper are not related to cryptographic issues. Gasti et al. [67]
have studied the format of password manager databases. There is some similarity with
our work for what concerns the threat model, e.g., by considering an attacker that can

4.3. Security Properties and Threat Model 111

tamper with the password database. However, the setting is different and the paper does
not account for cryptographic weaknesses and brute-forcing attacks.

Many papers have studied password resistance to guessing, e.g., [101, 39, 203, 213].
While this is certainly a very important subject, our work takes a complementary perspec-
tive: we analyse whether Java keystores provide a sufficient resistance to brute-forcing,
compared to existing standards and recommendations. Of course, using a tremendously
weak password would make it possible for the attacker to guess it, independently of the
keystore implementation. Similarly, if the password is very long and with high entropy,
the guess would be infeasible anyway. However, when a password is reasonably strong,
the actual implementation makes a difference: brute-force is prevented only when key
derivation is done accordingly to recommendations.

Kelsey et al. introduced the notion of key stretching, a mechanism to increase the time
of brute-forcing for low entropy keys [102]. The basic idea is that key derivation should
iterate the core derivation function l times so to multiply the computational cost of brute-
forcing by l and make it equivalent to the cost of brute-forcing a password with addi-
tional log2l bits. Intuitively, through this strategy, brute-forcing each password requires
the same time as brute-forcing l passwords. Combined with standard random salting (to
prevent precomputation of keys), key stretching effectively slows down brute-forcing,
and prevents guessing the password even when its complexity is not very high. This
idea is at the base of modern, state-of-the-art key derivation functions. In [2, 208, 23],
this mechanism has been formalized and analysed, providing formal evidence of its cor-
rectness. Standard key derivation functions are all based on key stretching and salting to
slow down brute-forcing [126, 160]. In our work we advocate the use of these standard
mechanisms for keystores security.

4.3 Security Properties and Threat Model

In this section, we identify a set of fundamental security properties that should be guar-
anteed by any keystore (Section 4.3.1). We then distill rules that should be followed when
designing a keystore in order to achieve the desired security properties (Section 4.3.2).
Finally, we introduce the threat model covering a set of diverse attacker capabilities that
enable realistic attack scenarios (Section 4.3.3).

4.3.1 Security Properties

We consider standard security properties such as confidentiality and integrity of keys and
keystore entries. Breaking confidentiality of sensitive keys allows an attacker to intercept
all the encrypted traffic or to impersonate the user. Breaking integrity has similar severe
consequences as it might allow an attacker to import fake CA certificates and old expired
keys. Additionally, since the access to a keystore is mediated by a software library or an
application, we also consider the effect that a keystore has on the execution environment.
Thus, we target the following properties:

112 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

P1 Confidentiality of encrypted entries

P2 Integrity of keystore entries

P3 System integrity

Property P1 states that the value of an encrypted entry should be revealed only to au-
thorized users, who know the correct decryption password. According to P2, keystore
entries should be modified, created or removed only by authorized users, who know the
correct integrity password, usually called store password. Property P3 demands that the
usage of a keystore should always be tolerated by the environment, i.e., interacting with
a keystore, even provided by an untrusted party, should not pose a threat to the system,
cause misbehaviours or hang the application due to an unsustainable performance hit.

A keystore file should be secured similarly to a password file: the sensitive content
should not be disclosed even when the file is leaked to an attacker. In fact, it is often the
case that keystores are shared in order to provide the necessary key material to various
corporate services and applications. Thus, in our threat model we will always assume
that the attacker has read access to the keystore file (cf. Section 4.3.3). For this reason
we require that the above properties hold even in the presence of offline attacks. The
attacker might, in fact, brute-force the passwords that are used to enforce confidentiality
and integrity and, consequently, break the respective properties.

4.3.2 Design Rules

We now identify a set of core rules that should be embraced by the keystore design in
order to provide the security guarantees of Section 4.3.1:

R1 Use standard, state-of-the-art cryptography

R2 Choose strong, future-proof cryptographic parameters, while maintaining accept-
able performance

R3 Enforce a typed keystore format

Rule R1 dictates the use of modern and verified algorithms to achieve the desired key-
store properties. It is well-known that the design of custom cryptography is a complex
task even for experts, whereas standard algorithms have been carefully analysed and
withstood years of cracking attempts by the cryptographic community [15]. In this con-
text, the National Institute of Standards and Technology (NIST) plays a prominent role in
the standardization of cryptographic algorithms and their intended usage [16], engaging
the cryptographic community to update standards according to cryptographic advances.
For instance, NIST declared SHA1 unacceptable to use for digital signatures beginning in
2014, and more recently, urged all users of Triple-DES to migrate to AES for encryption
as soon as possible [184] after the findings published in [25]. The KDF function recom-
mended by NIST [182] is PBKDF2, as defined in the PKCS#5 standard, which supersedes

4.3. Security Properties and Threat Model 113

the legacy PBKDF1. Another standard KDF function is defined in PKCS#12, although it
has been deprecated for confidentiality purposes in favour of PBKDF2.

Key derivation functions combine the password with a randomly generated salt and
iteratively apply a pseudorandom function (e.g., a hash function) to produce a cryp-
tographic key. The salt allows the generation of a large set of keys corresponding to
each password [208], while the high number of iterations is introduced to hinder brute-
force attacks by significantly increasing computational times. Rule R2 reflects the need
of choosing parameters to keep pace with the state-of-the-art in cryptographic research
and the advances in computational capabilities. The latest NIST draft on Digital Identity
Guidelines [70] sets the minimum KDF iteration count to 10,000 and the salt size to 32
bits. However, such lower bounds on the KDF should be significantly raised for critical
keys according to [182] which suggests to set the number of iterations as high as can be
tolerated by the environment, while maintaining acceptable performance. For instance,
Apple iOS derives the decryption key for the device from the user password using a KDF
with an iteration count calculated by taking into account the computational capabilities
of the hardware and the impact on the user experience [8].

Finally, rule R3 states that the keystore format must provide strong typing for key-
store content, such that cryptographic objects are stored and read unambiguously. De-
spite some criticism over the years [76], the PKCS#12 standard embraces this principle
providing precise types for storing many cryptography objects. Additionally, given that
keystore files are accessed and modified by different parties, applications parsing the
keystore format must be designed to be robust against malicious crafted content.

Interestingly, not following even one of the aforementioned rules may lead to a vio-
lation of confidentiality and integrity of the keystore entries. For instance, initializing a
secure KDF with a constant or empty salt, which violates R2, would allow an attacker to
precompute the set of possible derived keys and take advantage of rainbow tables [143] to
speed up the brute-force of the password. On the other hand, a KDF with strong param-
eters is useless once paired with a weak cipher, since it is easier to retrieve the encryption
key rather than brute-forcing the password. In this case only R1 is violated.

Additionally, disrespecting Rule R3 may have serious consequences on system in-
tegrity (breaking property P3), which range from applications crashing due to parsing
errors while loading a malicious keystore to more severe scenarios where the host is com-
promised. An attacker exploiting type-flaw bugs could indirectly gain access to the pro-
tected entries of a keystore violating the confidentiality and integrity guarantees. System
integrity can additionally be infringed by violating Rule R2 with an inadequate param-
eter choice, e.g., an unreasonably high iteration count value might hang the application,
slow down the system or prevent the access to cryptographic objects stored in a keystore
file due to an excessive computational load. In Section 4.5 we show how noncompliance
to these rules translates into concrete attacks.

114 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

4.3.3 Threat Model

In our standard attacker model we always assume that the attacker has read access to
the keystore file, either authorized or by means of a data leakage. We also assume that
the attacker is able to perform offline brute-force attacks using a powerful system of her
choice. We now present a list of interesting attacker settings, that are relevant with respect
to the security properties defined in Section 4.3.1:

S1 Write access to the keystore

S2 Integrity password is known

S3 Confidentiality password of an entry is known

S4 Access to previous legitimate versions of the keystore file

Setting S1 may occur when the file is shared over a network filesystem, e.g., in banks and
large organizations. Since keystores include mechanisms for password-based integrity
checks, it might be the case that they are shared with both read and write permissions, to
enable application that possess the appropriate credentials (i.e., the integrity password) to
modify them. We also consider the case S2 in which the attacker possesses the integrity
password. The password might have been leaked or discovered through a successful
brute-force attack. The attacker might also know the password as an insider, i.e., when
she belongs to the organization who owns the keystore. Setting S3 refers to a scenario in
which the attacker knows the password used to encrypt a sensitive object. Similarly to
the previous case, the password might have been accessed either in a malicious or in an
honest way. For example, the password of the key used to sign the apk of an Android
application [6] could be shared among the developers of the team.

In our experience, there exists a strong correlation between S2 and S3. Indeed, sev-
eral products and frameworks use the same password both for confidentiality and for
integrity, e.g., Apache Tomcat for TLS keys and IBM WebSphere for LTPA authentication.
Additionally, the standard utility for Java keystores management (keytool) supports this
practice when creating a key: the tool invites the user to just press the RETURN key to reuse
the store password for encrypting the entry.

To summarize, our standard attacker model combined with S1-S3 covers both reading
and writing capabilities of the attacker on the keystore files together with the possibility
of passwords leakage. On top of these settings, we consider the peculiar case S4 that may
occur when the attacker has access to backup copies of the keystore or when the file is
shared over platforms supporting version control such as Dropbox, ownCloud or Seafile.

4.4 Analysis of Java Keystores

The Java platform exposes a comprehensive API for cryptography through a provider-
based framework called Java Cryptography Architecture (JCA). A provider consists of a
set of classes that implement cryptographic services and algorithms, including keystores.

4.4. Analysis of Java Keystores 115

In this section, we analyse the most common Java software keystores implemented in the
Oracle JDK and in a widespread cryptographic library called Bouncy Castle that ships
with a provider compatible with the JCA. In particular, since the documentation was
not sufficient to assess the design and cryptographic strength of the keystores, we per-
formed a comprehensive review of the source code exposing, for the first time, imple-
mentation details such as on-disk file structure and encoding, standard and proprietary
cryptographic mechanisms, default and hard-coded parameters.

For reader convenience, we provide a brief summary of the cryptographic mecha-
nisms and acronyms used in this section: Password-Based Encryption (PBE) is an en-
cryption scheme in which the cryptographic key is derived from a password through a
Key Derivation Function (KDF); a Message Authentication Code (MAC) authenticates
data through a secret key and HMAC is a standard construction for MAC which is based
on cryptographic hash functions; Cipher Block Chaining (CBC) and Counter with CBC-
MAC (CCM) are two standard modes of operation for block ciphers, the latter is designed
to provide both authenticity and confidentiality.

4.4.1 Oracle Keystores

The Oracle JDK offers three keystore implementations, namely JKS, JCEKS and PKCS12,
which are respectively made available through the providers SUN, SunJCE and SunJSSE
[146]. While JKS and JCEKS rely on proprietary algorithms to enforce both the confiden-
tiality and the integrity of the saved entries, PKCS12 relies on open standard format and
algorithms as defined in [159].

JKS

Java KeyStore (JKS) is the first official implementation of a keystore that appeared in
Java since the release of JDK 1.2. It is the default keystore up to Java 8 when no explicit
choice is made by the developer. It supports encrypted private key entries and public key
certificates stored in the clear. The file format consists of a header containing the magic
file number, the keystore version and the number of entries, which is followed by the list
of entries. The last part of the file is a digest used to check the integrity of the keystore.
Each entry contains the type of the object (key or certificate) and the label, followed by
the cryptographic data.

Private keys are encrypted using a custom stream cipher designed by Sun, as reported
in the OpenJDK source code. In order to encrypt data, a keystream W is generated in
20-bytes blocks with W0 being a random salt and Wi = SHA1(password||Wi−1). The en-
crypted key E is computed as the XOR of the private key K with the keystream W, hence
K and E share the same length. The ciphertext is then prepended with the salt and ap-
pended with the checksum CK = SHA1(password||K). The block diagram for decryption
is shown in Figure 4.1.

The integrity of the keystore is achieved through a custom hash-based mechanism:
JKS computes the SHA1 hash of the integrity password, concatenated with the constant

116 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

FIGURE 4.1: Decryption in the custom stream cipher used by JKS.

string “Mighty Aphrodite” and the keystore content. The result is then checked against
the 20 bytes digest at the end of the keystore file.

JCEKS

Java Cryptography Extension KeyStore (JCEKS) has been introduced after the release of
JDK 1.2 in the external Java Cryptography Extension (JCE) package and merged into the
standard JDK distribution from version 1.4. According to the Java documentation, it is an
alternate proprietary keystore format to JKS “that uses much stronger encryption in the
form of Password-Based Encryption with Triple-DES” [87]. Besides the improved PBE
mechanism, it allows for storing also symmetric keys.

The file format is almost the same of JKS with a different magic number in the file
header and support for the symmetric key type. The integrity mechanism is also bor-
rowed from JKS.

JCEKS stores certificates as plaintext, while the PBE used to encrypt private keys,
inspired by PBES1 [126], is based on 20 MD5 iterations and a 64 bits salt. Given that
Triple-DES is used to perform the encryption step, the key derivation process must be
adapted to produce cipher parameters of the adequate size. In particular, JCEKS splits the
salt in two halves and applies the key derivation process for each of them. The first 192
bits of the combined 256 bits result are used as the Triple-DES key, while the remaining
64 bits are the initialization vector.

PKCS12

The PKCS12 keystore supports both private keys and certificates, with support for secret
keys added in Java 8. Starting from Java 9, Oracle replaced JKS with PKCS12 as the
default keystore type [91].

The keystore file is encoded as an ASN.1 structure according to the specification given
in [159]. It contains the version number of the keystore, the list of keys and the certificates.
The last part of the keystore contains an HMAC (together with the parameters for its
computation) used to check the integrity of the entire keystore by means of a password.

4.4. Analysis of Java Keystores 117

The key derivation process, used for both confidentiality and integrity, is implemented
as described in the PKCS#12 standard [159] using SHA1 as hashing function, 1024 iter-
ations and a 160 bit salt. Private keys and secret keys (when supported) are encrypted
using Triple-DES in CBC mode. Certificates are encrypted in a single encrypted blob,
using the RC2 cipher in CBC mode with a 40-bit key. While each key can be encrypted
with a different password, all the certificates are encrypted reusing the store password.

4.4.2 Bouncy Castle Keystores

Bouncy Castle is a widely used open-source crypto API. As of 2014, it provides the base
implementation for the crypto library used in the Android operating system [48]. It sup-
ports four different keystore types via the BC provider: BKS, UBER, BCPKCS12 and the
new FIPS-compliant BCFKS. Similarly to Oracle keystores, all BC keystores rely on pass-
words to enforce confidentiality over the entries and to verify keystore integrity.

BKS

The Bouncy Castle Keystore (BKS) allows to store public/private keys, symmetric keys
and certificates. BKS relies on a custom file structure to store the entries. The file contains
the version number of the keystore, the list of stored cryptographic entries and an HMAC,
along with its parameters, computed over the entries as integrity check.

Only symmetric and private keys can be encrypted in BKS, with Triple-DES in CBC
mode. The key derivation schema is taken from PKCS#12 v1.0, using SHA1 as hashing
function, a random number of iterations between 1024 and 2047 which is stored for each
entry and a 160 bit salt.

The integrity of the keystore is provided by an HMAC using the same key derivation
scheme used for encryption and applied to the integrity password. For backward com-
patibility, the current version of BKS still allows to load objects encrypted under a buggy
PBE mechanism used in previous versions of the keystore1. If the key is recovered using
an old mechanisms, it is immediately re-encrypted with the newer PBE scheme.

UBER

UBER shares most of its codebase with BKS, thus it supports the same types of entries
and PBE. Additionally, it provides an extra layer of encryption for the entire keystore file,
which means that all metadata around the keys and certificates are encrypted as well.
The PBE mechanism used for encrypting the file is Twofish in CBC mode with a key size
of 256 bits. The KDF is PKCS#12 v1.0 with SHA1 using a 160 bits salt and a random
number of iterations in the range 1024–2047.

The integrity of the keystore is checked after successful decryption using the store
password. The plaintext consists of the keystore entries followed by their SHA1 check-
sum. UBER recomputes the hash of the keystore and compares it with the stored digest.

1https://github.com/bcgit/bc-java/blob/master/prov/src/main/java/org/bouncycastle/jce/
provider/BrokenPBE.java

https://github.com/bcgit/bc-java/blob/master/prov/src/main/java/org/bouncycastle/jce/provider/BrokenPBE.java
https://github.com/bcgit/bc-java/blob/master/prov/src/main/java/org/bouncycastle/jce/provider/BrokenPBE.java

118 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

BCFKS

BCFKS is a new FIPS-compliant [131] keystore introduced in the version 1.56 of Bouncy
Castle2 offering similar features to UBER. This keystore provides support for secret keys
in addition to asymmetric keys and certificates.

The entire keystore contents is encrypted using AES in CCM mode with a 256 bits
key, so to provide protection against introspection. After the encrypted blob, the file
contains a block with a HMAC-SHA512 computed over the encrypted contents to ensure
the keystore integrity. The store password is used to derive the two keys for encryption
and integrity.

All key derivation operations use PBKDF2 with HMAC-SHA512 as pseudorandom
function, 512 bits of salt and 1024 iterations. Each key entry is separately encrypted with
a different password using the same algorithm for the keystore confidentiality, while this
possibility is not offered for certificates.

BCPKCS12

The BCPKCS12 keystore aims to provide a PKCS#12-compatible implementation. It uses
the same algorithms and default parameters for key derivation, cryptographic schemes
and file structure of the Oracle JDK version detailed in Section 4.4.1. Compared to Ora-
cle, the Bouncy Castle implementation lacks support for symmetric keys and the possi-
bility to protect keys with different passwords, since all the entries and certificates are en-
crypted under the store password. The BC provider also offers a variant of the PKCS#12
keystore that allows to encrypt certificates using the same PBE of private keys, that is
Triple-DES in CBC mode.

4.4.3 Keystores Adoption

We have analysed 300 Java projects supporting keystores that are hosted on Github to
estimate the usage of the implementations examined in this work. Applications range
from amateur software to well-established libraries by Google, Apache and Eclipse.

We searched for occurrences of known patterns used to instantiate keystores in the
code of each project. We have found that JKS is the most widespread keystore with over
70% of the applications supporting it. PKCS12 is used in 32% of the analysed repositories,
while JCEKS adoption is close to 10%. The Bouncy Castle keystores UBER and BCPKCS12
are used only in 3% of the projects, while BKS can be found in about 6% of the examined
software. Finally, since BCFKS is a recent addition to the Bouncy Castle library, none of
the repositories is supporting it.

4.4.4 Summary

In Tables 4.1a and 4.1b we summarize the features and the algorithms (rows) offered by
the keystore implementations (columns) analysed in this section. Table 4.1a does not

2 https://github.com/bcgit/bc-java/commit/80fd6825

https://github.com/bcgit/bc-java/commit/80fd6825

4.5. Attacks 119

contain the row “Store Encryption” since none of the JDK keystores provides protection
against introspection.

4.5 Attacks

In the previous section, we have shown that the analysed keystores use very diverse
key derivation functions and cryptographic mechanisms and, in several cases, they do
not adhere to standards or use obsolete and ad-hoc mechanisms. We now discuss how
this weakens the overall security of the keystore and enables or facilitates attacks. In
particular, we show that keystores using weak or ad-hoc implementations for password-
based encryption or integrity checks open the way to password brute-forcing. During the
in-depth analysis of keystores, we have also found security flaws that can be exploited in
practice to mount denial of service and code execution attacks.

Attacks in this section are organized according to the security properties violated, as
defined in Section 4.3.1. For each attack we provide a detailed description discussing
the attacker settings and the rules that are not followed by the keystore implementation
(cf. Section 4.3.2). We conclude with some general security considerations that are not
specific to any particular attack.

Table 4.2 provides a high-level overview of the properties which are guaranteed by
the analysed keystores with respect to the attacks presented in this section. We consider
versions of Oracle JDK and Bouncy Castle before and after disclosing our findings to the
developers. Specifically, we refer to JDK 8u144 and 8u181 for Oracle, while version 1.57
of Bouncy Castle is compared against release 1.59. We use the symbol ➝ to point out
improvements in newer versions. Details of the changes are listed in Section 4.7. The

symbol denotes that a property is satisfied by the keystore under any attacker setting
and the implementation adhere to the relevant design rules listed in Section 4.3.2. We
use when no clear attack can be mounted but design rules are not completely satisfied,
e.g. a legacy cipher like Triple-DES is used. The symbol indicates that the property
is broken under the standard attacker model. When a property is broken only under a
specific setting Sx, we report it in the table as Sx. If a more powerful attack is enabled
by additional settings, we clarify in the footnotes.

As an example, consider the system integrity property (P3) in the JCEKS keystore: up
to JDK 8u144 included, write capabilities (S1) allow to DoS the application loading the
keystore; when integrity and key confidentiality passwords are known (S2 and S3), the
attacker can also achieve arbitrary code execution on the system (cf. note 3 in the table).
The rightmost side of the arrow indicates that the code execution attack has been patched
in JDK 8u181.

120 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

TABLE 4.1: Summary of the keystores.

(A) Oracle JDK 8u144 and below.

JKS JCEKS PKCS12

Provider Sun SunJCE SunJSSE

Support for secret keys *

Keys PBE

KDF Custom (SHA1) Custom (MD5) PKCS12 (SHA1)
Salt 160b 64b 160b
Iterations - 20 1024
Cipher Stream cipher 3DES (CBC) 3DES (CBC)
Key size - 192b 192b

Certificates
PBE

KDF PKCS12 (SHA1)
Salt 160b
Iterations 1024
Cipher RC2 (CBC)
Key size 40b

Store
Integrity

KDF
SHA1 with
password

SHA1 with
password

PKCS12 (SHA1)
Salt 160b
Iterations 1024
Mechanism HMAC (SHA1)

* since Java 8

(B) Bouncy Castle 1.57 and below.

BKS UBER BCFKS BCPKCS12

Provider Bouncy Castle Bouncy Castle Bouncy Castle Bouncy Castle

Support for secret keys

Keys PBE

KDF PKCS12 (SHA1) PKCS12 (SHA1) PBKDF2 (HMAC-SHA512) PKCS12 (SHA1)
Salt 160b 160b 512b 160b
Iterations 1024–2047 1024–2047 1024 1024
Cipher 3DES (CBC) 3DES (CBC) AES (CCM) 3DES (CBC)
Key size 192b 192b 256b 192b

Certificates
PBE

KDF PKCS12 (SHA1)
Salt 160b
Iterations 1024
Cipher RC2 / 3DES (CBC)
Key size 40b / 192b

Store
Encryption

KDF PKCS12 (SHA1) PBKDF2 (HMAC-SHA512)
Salt 160b 512b
Iterations 1024–2047 1024
Cipher Twofish (CBC) AES (CCM)
Key size 256b 256b

Store
Integrity

KDF PKCS12 (SHA1)
SHA1 after
decrypt

PBKDF2 (HMAC-SHA512) PKCS12 (SHA1)
Salt 160b 512b 160b
Iterations 1024–2047 1024 1024
Mechanism HMAC (SHA1) HMAC (SHA512) HMAC (SHA1)

4.5. Attacks 121

TABLE 4.2: Properties guaranteed by keystores with respect to attacks, be-
fore and after updates listed in Section 4.7.

JKS JCEKS PKCS12 BKS UBER BCFKS BCPKCS12

(P1) Entries confidentiality ➝ 1 ➝ 1

(P2) Keystore integrity 2 2 ➝ ➝ ➝

(P3) System integrity 3
S1 ➝ S1 ➝ S1 S1 ➝

1
2
3

Sx

only confidentiality of certificates can be violated
under settings S1 or S4 it might be possible to use rainbow tables
under settings S2 and S3 it is possible to achieve code execution on JDK≤ 8u162
property is always satisfied
no clear attacks but rules not completely satified
property is broken in the standard attacker model
property is broken under a attacker setting Sx

4.5.1 Attacks on Entries Confidentiality (P1)

JKS Password Cracking

The custom PBE mechanism described in Section 4.4.1 for the encryption of private keys
is extremely weak. The scheme requires only one SHA1 hash and a single XOR operation
to decrypt each block of the encrypted entry resulting in a clear violation of rule R1. Since
there is no mechanism to increase the amount of computation needed to derive the key
from the password, also rule R2 is neglected.

Despite the poor cryptographic scheme, each attempt of a brute-force password re-
covery attack would require to apply SHA1 several times to derive the whole keystream
used to decrypt the private key. As outlined in Figure 4.1, a successful decryption is veri-
fied by matching the last block (CK) of the protected entry with the hash of the password
concatenated with the decrypted key. For instance, a single password attempt to decrypt
a 2048 bit RSA private key entry requires over 60 SHA1 operations.

We found that such password recovery attack can be greatly improved by exploiting
the partial knowledge over the plaintext of the key. Indeed, the ASN.1 structure of a key
entry enables to efficiently test each password with a single SHA1 operation. In JKS, pri-
vate keys are serialized as DER-encoded ASN.1 objects, along the PKCS#1 standard [127].
For instance, an encoded RSA key is stored as a sequence of bytes starting with byte 0x30
which represent the ASN.1 type SEQUENCE and a number of bytes representing the length
of the encoded key. Since the size of the encrypted key is the same as the size of the plain-
text, these bytes are known to the attacker. On average, given n bytes of the plaintext it
is necessary to continue decryption beyond the first block only for one password every
256n attempts.

The pseudocode of the attack is provided in Algorithm 3, using the same notation
introduced in Section 4.4.1. We assume that the algorithm is initialized with the salt,
all the blocks of the encrypted key and the checksum. The XOR operation between the
known plaintext and the first encrypted block (line 3) is performed only once for all the

122 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

Algorithm 3 JKS 1-block Crack

1: procedure JKS_1BLOCKCRACK(Salt, E1..n, CK)
2: known_plaintext← 0x30 ∥ length(E)
3: test_bytes← known_plaintext⊕ E1
4: for password in passwords do
5: W1 ← SHA1(password ∥ Salt)
6: if W1 = test_bytes then
7: K ← DECRYPT(Salt, E, password)
8: checksum← SHA1(password ∥K)
9: if CK = checksum then

10: return password

1024 2048 4096 8192 16384
RSA Private Key Size (bits)

103

104

105

106

107

Pa

ss
w

or
ds

 /
se

co
nd

JKS 1-Block
JCEKS 1-Block
JKS Standard
JCEKS Standard

FIGURE 4.2: Performance comparison of password cracking for private
RSA keys on JKS and JCEKS using both the standard and the improved

1-block method on a Intel Core i7 6700 CPU.

possible passwords. As a halt condition, the result is then compared against the digest of
the salt concatenated to the tested password (lines 5-6). To further verify the correctness
of the password, a standard decrypt is performed.

A comparison between the standard cracking attack and our improved version is
depicted in Figure 4.2. From the chart it is possible to see that the cost of the single block
attack (referred to as 1-block) is independent from the size of the encrypted entry, while
the number of operations required to carry out the standard attack is bound to the size
of the DER-encoded key. As an example, for a 4096 bit private RSA key, the 1-block
approach is two orders of magnitude faster than the standard one.

Based on our findings, this attack has been recently integrated into Hashcat 3.6.03

achieving a speed of 8 billion password tries/sec with a single NVIDIA GTX 1080 GPU.

3https://hashcat.net/forum/thread-6630.html

4.5. Attacks 123

JCEKS Password Cracking

The PBE mechanism discussed in Section 4.4.1 uses a custom KDF that performs 20 MD5
iterations to derive the encryption key used in the Triple-DES cipher. This value is three
orders of magnitude lower than the iteration count suggested in [70], thus violating both
rules R1 and R2. Given that keys are DER-encoded as well, it is possible to speed up
a brute-force attack using a technique similar to the one discussed for JKS. Figure 4.2
relates the standard cracking speed to the single block version. Notice that the cost of
a password-recovery attack is one order of magnitude higher than JKS in both variants
due to the MD5 iterations required by the custom KDF of JCEKS.

PKCS#12 Certificate Key Cracking

Oracle PKCS12 and BCPKCS12 keystores allow for the encryption of certificates. The
PBE is based on the KDF defined in the PKCS#12 standard paired with the legacy RC2
cipher in CBC mode with a 40 bit key, resulting in a clear violation of rule R1. Due to
the reduced key space, the protection offered by the KDF against offline attacks can be
voided by directly brute-forcing the cryptographic key. Our serialized tests, performed
using only one core of an Intel Core i7 6700 CPU, show that the brute-force performance
is 8,300 passwords/s for password testing (consisting of a KDF and decryption run), while
the key cracking speed is 1,400,000 keys/s. The worst-case scenario that requires the
whole 40-bits key space to be exhausted, requires about 9 days of computation on our
system. This time can be reduced to about 1 day by using all eight cores of our processor.
We estimate that a modern high-end GPU should be able to perform this task in less than
one hour. Notice, however, that although finding the key so easily makes the encryption
of certificates pointless, an attacker cannot use the key value to reduce the complexity of
cracking the integrity password since the random salt used by the KDF makes it infeasi-
ble to precompute the mapping from passwords to keys.

4.5.2 Attacks on Keystore Integrity (P2)

JKS/JCEKS Integrity Password Cracking

The store integrity mechanism used by both JKS and JCEKS (cf. Section 4.4.1) only relies
on the SHA1 hash digest of the integrity password, concatenated with the constant string
“Mighty Aphrodite” and with the keystore data. In contrast with rule R1, this technique
based on a single application of SHA1 enables to efficiently perform brute-force attacks
against the integrity password. Section 4.6 reports on the computational effort required
to attack the integrity mechanism for different sizes of the keystore file.

Additionally, since SHA1 is based on the Merkle-Damgard construction, this custom
approach is potentially vulnerable to extension attacks [56]. For instance, it may be pos-
sible for an attacker with write access to the keystore (S1) to remove the original digest
at the end of the file, extend the keystore content with a forged entry and recompute
a valid hash without knowing the keystore password. Fortunately, this specific attack

124 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

is prevented in JKS and JCEKS since the file format stores the number of entries in the
keystore header.

JKS/JCEKS Integrity Digest Precomputation

The aforementioned construction to ensure the integrity of the keystore suffers from an
additional problem. Assume the attacker has access to an empty keystore, for example
when an old copy of the keystore file is available under a file versioning storage (S4).
Alternatively, as special case of S1, the attacker may be able to read the file, but the
interaction with the keystore is mediated by an application that allows to remove entries
without disclosing the store password. This file consists only of a fixed header followed
by the SHA1 digest computed using the password, the string “Mighty Aphrodite” and
the header itself. Given that there is no random salting in the digest computation, it
would be possible to mount a very efficient attack to recover the integrity password by
exploiting precomputed hash chains, as done in rainbow tables [143].

4.5.3 Attacks on System Integrity (P3)

JCEKS Code Execution

A secret key entry is stored in a JCEKS keystore as a Java object having type SecretKey.
First, the key object is serialized and wrapped into a SealedObject instance in an en-
crypted form; next, this object is serialized again and saved into the keystore.

When the keystore is loaded, all the serialized Java objects stored as secret key entries
are evaluated. An attacker with write capabilities (S1) may construct a malicious entry
containing a Java object that, when deserialized, allows her to execute arbitrary code in
the application context. Interestingly, the attack is not prevented by the integrity check
since keystore integrity is verified only after parsing all the entries.

The vulnerable code is in the engineLoad method of the class JceKeyStore imple-
mented by the SunJCE provider.4 In particular, the deserialization is performed as fol-
lows:

// read the sealed key
try {

ois = new ObjectInputStream(dis);
entry.sealedKey = (SealedObject) ois.readObject ();
...

Notice that the cast does not prevent the attack since it is performed after the object
evaluation.

To stress the impact of this vulnerability, we provide three different attack scenarios:
i) the keystore is accessed by multiple users over a shared storage. An attacker can re-
place or add a single entry of the keystore embedding the malicious payload, possibly

4http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5534221c23fc/src/share/classes/com/
sun/crypto/provider/JceKeyStore.java

http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5534221c23fc/src/share/classes/com/sun/crypto/provider/JceKeyStore.java
http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5534221c23fc/src/share/classes/com/sun/crypto/provider/JceKeyStore.java

4.5. Attacks 125

gaining control of multiple hosts; ii) a remote application could allow its users to up-
load keystores for cryptographic purposes, such as importing certificates or configuring
SSL/TLS. A crafted keystore loaded by the attacker may compromise the remote sys-
tem; iii) an attacker may even forge a malicious keystore and massively spread it like a
malware using email attachments or instant messaging platforms. Users with a default
application associated to the keystore file extension (e.g., keystore inspection utilities such
as KSE5) have a high probability of being infected just by double clicking on the received
keystore. Interestingly, all the malicious keystores generated during our tests did not
raise any alert on antivirus tools completing a successful scan by virustotal.com.

We checked the presence of the vulnerability from Java 6 onwards. We were able to
achieve arbitrary command execution on the host with JDK ≤ 7u21 and JDK ≤ 8u20 by
forging a payload with the tool ysoserial.6 Newer versions up to 8u162 are still affected
by the vulnerability, but the JDK classes exploited to achieve code execution have been
patched. Since the deserialization occurs within a Java core class, the classpath is re-
stricted to bootstrap and standard library classes. However, by embedding a recursive
object graph in a JCEKS entry, an attacker can still hang the deserialization routine con-
suming CPU indefinitely and thus causing a DoS in the target machine. We were able to
mount this attack on any version of the Oracle JDK ≤ 8u144.

The implementation choice for storing secret keys in JCEKS is a clear violation of
Rule R3, since these entities are essentially stored as Java code. The correct approach is to
adopt standard formats and encodings, such as the PKCS#8 format used in the PKCS12
keystore.

JCEKS Code Execution After Decryption

When the attacker knows the integrity password and the confidentiality password of a
secret key entry (S2, S3) in addition to S1, the previous attack can be further improved
to achieve arbitrary command execution up to JDK 8u162 (released on January 2018).
This variant of the attack assumes that the application loading the JCEKS keystore makes
use of one of the widespread third-party libraries supported by ysoserial, such as Apache
Commons Collections or the Spring framework: such libraries have been found [189] to
contain vulnerable gadget chains that can be exploited by the malicious payload.

When a SealedObject wrapping a secret key is successfully loaded and decrypted, an
additional deserialization call is performed over the decrypted content. The SealedObject
class extends the classpath to allow the deserialization of any class available in the ap-
plication scope, including third-party libraries. By exploiting this second deserialization
step, an attacker may construct more powerful payloads to achieve command execution.

The exploitation scenarios are similar to the ones already discussed in the previous
variant of the attack. Additionally, we point out that even an antivirus trained to detect

5http://keystore-explorer.org
6https://github.com/frohoff/ysoserial

virustotal.com
http://keystore-explorer.org
https://github.com/frohoff/ysoserial

126 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

deserialization signatures would not be able to identify the malicious content since the
payload is stored in encrypted form in the keystore.

DoS by Integrity Parameters Abuse

Many keystores rely on a keyed MAC function to ensure the integrity of their contents.
The parameters of the KDF used to derive the key from the store password are saved
inside the file. Thus, an attacker with write capabilities (S1) may tamper with the KDF
parameters to affect the key derivation phase that is performed before assessing the in-
tegrity of the file. In particular, the attacker may set the iteration count to an unreasonably
high value in order to perform a DoS attack on applications loading the keystore.

We found that Oracle PKCS12, BKS and BCPKCS12 implementations are affected by
this problem. Starting from valid keystore files, we managed to set the iteration count
value to 231− 1. Loading such keystores required around 15 minutes at full CPU usage on
a modern computer. According to [182] the iteration count should not impact too heavily
on the user-perceived performance, thus we argue that this is a violation of Rule R2.

4.5.4 Bad Design Practices

During our analysis we found that some of the keystores suffered from bad design deci-
sions and implementation issues that, despite not leading to proper attacks, could cause
serious security consequences.

Our review of the Oracle PKCS12 keystore code showed that the KDF parameters
are not treated uniformly among MAC, keys and certificates. During a store operation,
the Oracle implementation does not preserve the original iteration count and salt size
for MAC and certificates that has been found at load time in the input keystore file. In-
deed, iteration count and salt size are silently set to the hard-coded values of 1024 and 20
byte, respectively. Since this keystore format is meant to be interoperable, this practice
could have security consequences when dealing with keystores generated by third-party
tools. For instance, PKCS12-compatible keystores generated by OpenSSL default to 2048
iterations: writing out such keystore with the Oracle JDK results in halving the cost of a
password recovery attack.

The Bouncy Castle BCPKCS12 implementation suffers a similar problem: in addition
to MAC and certificate parameters, also the iteration count and the salt size used for pri-
vate keys are reverted to default values when the keystore is saved to disk. Following our
report to the Bouncy Castle developers, this behaviour has been addressed by preserving
the original parameters whenever possible.

Lastly, the construction of the integrity mechanism for the UBER keystore could cause
an information leakage under specific circumstances. After a successful decryption using
the store password, UBER recomputes the hash of the keystore and compares it with the
stored digest. This MAC-then-encrypt approach is generally considered a bad idea, since
it can lead to attacks if, for example, there is a perceptible difference in behaviour (an
error message, or execution time) between a decryption that fails because the padding is

4.5. Attacks 127

invalid, or a decryption that fails because the hash is invalid (a so-called padding oracle
attack [187]).

4.5.5 Security Considerations

We now provide general considerations on the security of Java keystores. The first one is
about using the same password for different purposes. If the integrity password is also
used to ensure the confidentiality of encrypted entries, then the complexity of breaking
either the integrity or the confidentiality of stored entries turns out to be the one of at-
tacking the weakest mechanism. For instance, we consider a keystore where cracking the
integrity password is more efficient than recovering the password used to protect sensi-
tive entries: as shown in Section 4.6, this is the case of PKCS12 and BCPKCS12 keystores.
Under this setting, sensitive keys can be leaked more easily by brute-forcing the integrity
password. Although this is considered a bad practice in general [108], all the keystores
analysed permit the use of the same password to protect sensitive entries and to verify
the integrity of the keystore. This practice is indeed widespread [67] and, as already
stated in Section 4.3.3, prompted by keytool itself. Furthermore, our analysis found that
the BCPKCS12 keystore forcibly encrypts keys and certificates with the store password.
For these reasons, we argue that using the same password for integrity and confidential-
ity is not a direct threat to the security of stored keys when both mechanisms are resistant
to offline attacks and a strong password is used. Still the security implications of this
practice should be seriously considered.

The second consideration regards how the integrity of a keystore is assessed. Indeed,
a poorly designed application may bypass the integrity check on keystores by providing
a null or empty password to the Java load() function. All the Oracle keystores analysed
in the previous section and BouncyCastle BKS are affected by this problem. On the other
hand, keystores providing protection to entries inspection, such as UBER and BCFKS,
cannot be loaded with an empty password since the decryption step would fail. Lastly,
BCPKCS12 throws an exception if an attempt of loading a file with an empty password
is made. Clearly, if the integrity check is omitted, an attacker can trivially violate Prop-
erty P2 by altering, adding or removing any entry saved in the clear. Conversely, the
integrity of encrypted sensitive keys is still provided by the decryption mechanism that
checks for the correct padding sequence at the end of the plaintext. Since the entries
are typically encoded (e.g., in ASN.1), a failure in the parse routine could also indicate a
tampered ciphertext.

We also emphasize that the 1-block cracking optimization introduced in Section 4.5.1
is not limited to JKS and JCEKS. Indeed, by leveraging the structure of saved entries,
all the analysed keystores enable to reduce the cost of the decrypt operation to check
the correctness of a password. However, excluding JKS and JCEKS, this technique only
provides a negligible speed-up given that the KDF is orders of magnitude slower than
the decrypt operation.

Finally, we point out that the current design of password-based keystores cannot pro-
vide a proper key-revocation mechanism without a trusted third-party component. For

128 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

instance, it may be the case that a key has been leaked in the clear and subsequently sub-
stituted with a fresh one in newer versions of a keystore file. Under settings S1 and S4,
an attacker may replace the current version of a keystore with a previously intercepted
valid version, thus restoring the exposed key. The integrity mechanism is indeed not
sufficient to distinguish among different versions of a keystore protected with the same
store password. For this reason, the store password must be updated to a fresh one every
time a rollback of the keystore file is not acceptable by the user, which is typically the case
of a keystore containing a revoked key.

4.6 Estimating Brute-Force Speed-Up

We have discussed how weak PBEs and integrity checks in keystores can expose pass-
words to brute-forcing. In this section we make an empirical comparison of the cracking
speed to bruteforce both the confidentiality and integrity mechanisms in the analysed
keystores. We also compute the speed-up with respect to BCFKS, as it is the only keystore
using a standard and modern KDF, i.e., PBKDF2, which provides the best brute-forcing
resistance. Notice, however, that the latest NIST draft on Digital Identity Guidelines [70]
sets the minimum KDF iteration count to 10,000 which is one order of magnitude more
than what is used in BCFKS (cf. Table 4.1b). Thus all the speed-up values should be
roughly multiplied by 10 if compared with a baseline implementation using PBKDF2
with 10,000 iterations.

It is out of the scope of this work to investigate brute-forcing strategies. Our tests
only aim at comparing, among the different keystores, the actual time to perform the
key derivation step and the subsequent cryptographic operations, including the check
to assess key correctness. Our study is independent of the actual password guessing
strategy adopted by the attacker.

4.6.1 Test Methodology

We developed in C a compatible implementation of the key decryption and the integrity
check for each keystore type. Each implementation is limited to the minimum steps re-
quired to check the correctness of a test password. This procedure is then executed within
a loop to evaluate the cracking speed. Algorithms 4 and 5 show the pseudocode of our
implementations. Note that, in both algorithms, we set the password length to 10 bytes
because it is an intermediate value between trivial and infeasible. Similarly, since the it-
eration count in BKS and UBER is chosen randomly in the range 1024–2047, we set it to
the intermediate value 1536.

Confidentiality

The code for brute-forcing the confidentiality password (Algorithm 4) is logically divided
into three steps: key derivation, decryption and a password correctness check. The last
step is included in the loop only to account for its computational cost in the results. Both

4.6. Estimating Brute-Force Speed-Up 129

Algorithm 4 Confidentiality password cracking benchmark
1: procedure BENCHCONFIDENTIALITY(test_duration)
2: encrypted_entry← (B1, ..., B2000)
3: passwords← (pw1, ..., pwn) ▷ all 10-bytes passwords
4: salt← constant
5: counter ← 0
6: while ELAPSEDTIME < test_duration do
7: password← next(passwords)
8: key← KDFkey(password, salt)
9: iv← KDFiv(password, salt) ▷ not in JKS, BCFKS

10: plaintext← DECRYPTBLOCK(encrypted_entry, key, iv)
11: VERIFYKEY(plaintext)
12: counter ← counter + 1
13: return counter

Algorithm 5 Integrity password cracking benchmark
1: procedure BENCHINTEGRITY(test_duration)
2: keystore_contentsmall ← (B1, ..., B2048)
3: keystore_contentmedium ← (B1, ..., B8192)
4: keystore_contentlarge ← (B1, ..., B16384)
5: passwords← (pw1, ..., pwn) ▷ all 10-bytes passwords
6: salt← constant
7: counter(small,medium,large) ← 0
8: for all keystore_content, counter do
9: while ELAPSEDTIME < test_duration do

10: password← next(passwords)
11: key← KDFmac(password, salt) ▷ not in JKS, JCEKS
12: mac← MAC(keystore_content, key)
13: VERIFYMAC(mac)
14: counter ← counter + 1
15: return counter(small,medium,large)

PBES1 (PKCS#5) and PKCS#12 password-based encryption schemes, used in all keystores
but BCFKS, require to run the KDF twice to derive the decryption key and the IV. On
the other hand, in BCFKS the initialization vector is not derived from the password but
simply stored with the ciphertext. During our tests we set encrypted_entry to a fixed size
to resemble an on-disk entry containing a 2048 bits RSA key. However, in Section 4.5.1 we
have shown how the partial knowledge of the plaintext structure of a JKS key entry can
be leveraged to speed-up brute-forcing. This shortcut can be applied to all the analysed
keystores in order to decrypt only the first block of encrypted_entry. For this reason, the
key size becomes irrelevant while testing for a decryption password.

Integrity

Similarly, the code for cracking the integrity password (Algorithm 5) is organized in three
steps: key derivation, a hash/MAC computation and the password correctness check.
The key derivation step is run once to derive the MAC key in all keystores, with the ex-
ception of JKS and JCEKS where the password is fed directly to the hash function (cf.

130 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

(A) Speed comparison of password recovery at-
tack for key encryption (confidentiality).

(B) Speed comparison of password recovery at-
tack for keystore integrity, considering different

keystore sizes.

FIGURE 4.3: Comparison of keystores password cracking speed. Bar labels
indicate the speed-up compared to the strongest BCFKS baseline.

Section 4.4.1). As described later in this section, the speed of KDF plus MAC calcula-
tion can be highly influenced by the keystore size, thus we performed our tests using a
keystore_content of three different sizes: 2048, 8192 and 16384 bytes.

Test configuration

We relied on standard implementations of the cryptographic algorithms to produce com-
parable results: the OpenSSL library (version 1.0.2g) provides all the needed hash func-
tions, ciphers and KDFs, with the exception of Twofish where we used an implementa-
tion from the author of the cipher.7 All the tests were performed on a desktop computer
running Ubuntu 16.04 and equipped with an Intel Core i7 6700 CPU; the source code of
our implementations has been compiled with GCC 5.4 using -O3 -march=native opti-
mizations. We run each benchmark on a single CPU core because the numeric results can
be easily scaled to a highly parallel systems. To collect solid and repeatable results each
benchmark has been run for 60 seconds.

4.6.2 Results

The charts in Figure 4.3 show our benchmarks on the cracking speed for confidentiality
(Figure 4.3a) and integrity (Figure 4.3b). On the x-axis there are the 7 keystore types:
we group together different keystores when the specific mechanism is shared among
the implementations, i.e., PKCS12/BCPKCS12 for both confidentiality and integrity and
JKS/JCEKS for integrity. On the y-axis we report the number of tested passwords per
second doing a serial computation on a single CPU core: note that the scale of this axis is
logarithmic. We stress that our results are meant to provide a relative, inter-keystore com-
parison rather than an absolute performance index. To this end, a label on top of each bar
indicates the speed-up relative to the strongest BCFKS baseline. Absolute performance

7https://www.schneier.com/academic/twofish/download.html

https://www.schneier.com/academic/twofish/download.html

4.7. Disclosure and Security Updates 131

can be greatly improved using both optimized parallel code and more powerful hard-
ware which ranges from dozens of CPU cores or GPUs to programmable devices such as
FPGA or custom-designed ASICs [99, 46, 113].

Confidentiality

From the attack described in Section 4.5.1, it follows that cracking the password of an
encrypted key contained in JKS, the default keystore up to Java 8, is at least three or-
ders of magnitude faster than in BCFKS. Even without a specific attack, recovering the
same password from JCEKS is over one hundred times faster due to its low (20) iteration
count. By contrast, the higher value (1024 or 1024–2047) used in PKCS12, BKS and UBER
translates into a far better offline resistance as outlined in the chart.

Integrity

Similar considerations can be done for the resistance of the integrity password. Finding
this password in all keystores but JKS is equivalent, or even faster than breaking the con-
fidentiality password. Moreover, the performance of these keystores is influenced by the
size of the file due to the particular construction of the MAC function (cf. Section 4.4.1).
The speed gain (with respect to confidentiality) visible in PKCS12, BKS and UBER is
caused by the missing IV derivation step which, basically, halves the number or KDF
iterations. Interestingly, in BCFKS there is no difference between the two scores: since
the whole keystore file is encrypted, we can reduce the integrity check to a successful
decryption, avoiding the computation overhead of the HMAC on the entire file.

4.7 Disclosure and Security Updates

We have timely disclosed our findings to Oracle and Bouncy Castle developers in May
2017. The Oracle Security Team has acknowledged the reported issues with CVE IDs [123,
124, 125] and has fixed all the vulnerabilities between October 2017 and April 2018 [144,
145]. In the following list, we summarize the changes already published by Oracle:

• keytool suggests to switch to PKCS12 when JKS or JCEKS keystores are used;

• improved KDF strength of the PBE in JCEKS by raising the iteration count to 200,000.
Added a ceiling value of 5 millions to prevent parameter abuse;

• in PKCS12 the iteration count has been increased to 50,000 for confidentiality and
100,000 for integrity. The same upper bound as in JCEKS is introduced;

• fixed the JCEKS deserialization vulnerabilities described in Section 4.5.3 by check-
ing that the objects being deserialized are of the correct type and by imposing a
recursion limit to prevent infinite loops.

In version 1.58 of the library, Bouncy Castle developers fixed the parameter abuse vulner-
ability of BCPKCS12 by adding an optional Java system property that imposes an upper

132 Chapter 4. Mind Your Keys? A Security Evaluation of Java Keystores

(A) Speed comparison of password recovery at-
tack for key encryption (confidentiality).

(B) Speed comparison of password recovery at-
tack for keystore integrity, considering different

keystore sizes.

FIGURE 4.4: Revised password cracking benchmarks after library updates.

bound for the KDF iteration count. In version 1.59 they have implemented the following
changes:

• in BCFKS, the iteration count is raised to 51,200 for both confidentiality and in-
tegrity;

• in BCPKCS12, the iteration count is increased to 51,200 and 102,400 for confiden-
tiality and integrity, respectively.

Table 4.2 outlines the improved security guarantees offered by keystore implementations
following the fixes released by Oracle and Bouncy Castle. Additionally, in Figure 4.4 we
show the updated results of the brute-force resistance benchmarks to reflect the improved
KDF parameters. JCEKS and BCFKS now offer the best resistance to offline brute-force
attacks of the confidentiality password. However, JCEKS still provides the weakest in-
tegrity mechanism. Thus, if the same password is used both for key encryption and for
keystore integrity, then the increased protection level can easily be voided by attacking
the latter mechanism. On the other hand, both the confidentiality and the integrity mech-
anisms have been updated in PKCS12. This keystore, which is now the default in Java 9,
offers a much higher security level with respect to the previous release.

133

Conclusion

In this thesis we have provided significant contributions on three relevant topics related
to the analysis of security-critical systems, namely techniques for the analysis of firewall
configurations, web security and secure storage of cryptographic keys.

In particular, we proposed the first transcompilation pipeline to aid network admin-
istrators during the analysis, maintenance and porting of firewall configurations. Our
approach is particularly interesting because of it is independent from any specific fire-
wall system. Independence is achieved by defining IFCL, an intermediate language for
configuring firewalls with a formal semantics. We implemented the first two stages of
our pipeline in FWS, a tool that analyses real firewall configurations to produce an ab-
stract specification that emphasizes the meaning of the policy and discards all low-level
details. We showed how an administrator can use our tool to simplify maintenance rou-
tines by exploiting the features of FWS and we performed various tests on several firewall
configurations to assess how our solution scales to real-world scenarios.

Regarding web security, we took a retrospective look at different attacks against web
sessions and we surveyed the most popular solutions against them. For each solution, we
discussed its security guarantees against different attacker models, its impact on usability
and compatibility, and its ease of deployment. We then synthesized five guidelines which
can help web security experts in the development of novel solutions that are both more
effective and amenable for a large-scale adoption. Additionally, we presented WPSE,
the first browser-side security monitor designed to address the security challenges of
web protocols, and we showed that the security policies enforceable by WPSE can pre-
vent a large number of real-world attacks. Our work encompasses a thorough review
of well-known attacks reported in the literature and an extensive experimental analysis
performed in the wild, which exposed several undocumented security vulnerabilities fix-
able by WPSE in existing OAuth 2.0 implementations. We also discovered a new attack
on the Google implementation of SAML 2.0 by formalizing its specification in WPSE. In
terms of compatibility, we showed that WPSE works flawlessly on the majority of the
existing websites, with the few compatibility issues being caused by custom implemen-
tations deviating from the OAuth 2.0 specification, one of which introducing a critical
vulnerability.

The last contribution provided in this thesis consists in an exhaustive analysis of the
Java keystore implementations from the Oracle JDK and the Bouncy Castle library. We
have pointed out that several implementations adopt non-standard mechanisms and we
have shown how this affects keystores security in terms of speed required to brute-force

134 Conclusion

the keystore passwords. Additionally, we reported novel attacks that range from break-
ing the confidentiality of stored keys to arbitrary code execution on remote systems and
denial of service. Finally we discuss the improvements on keystore security after the
fixes implemented by Oracle and Bouncy Castle developers following our responsible
disclosure.

135

Appendix A

Proofs of Chapter 1

A.1 Correctness of Unfolding

The following property is used in the proof of Lemma 4 below. Intuitively, it says that if
given a ruleset R a packet p matches no control flow rule, then the packet matches a rule
in the unfolded ruleset JRKtrue

I with the same target.

Property 3. Given a ruleset R, if p |=R (t, i) with t ∈ {ACCEPT, DROP, CHECK-STATE(X),
NAT(n1, n2), MARK} then for all sets I, p |=JRKtrue

I
(t, j) with i ≤ j.

Proof. We know that R = [(ϕ1, t1), . . . , (ϕn, tn)] and that ϕk(p) does not hold for k < i. Fur-
thermore, we know that our unfolding algorithm replaces each rule rk = (ϕk, tk) where
t ∈ {CALL(R’), GOTO(R’)} with a list of rules whose predicates have ϕk as a conjunct if
R′ is not in I; otherwise rk is replaced with (ϕk ∧ true, DROP) = (ϕk, DROP). Since ϕk(p) is
false for k < i, the new rules do not apply, whereas the rule ri still applies. Moreover,
consider the case when a rule rk = (ϕk, RETURN) occurs in the ruleset for k < i. In the
resulting ruleset this rule is canceled and the rules that follow it are rewritten by adding
the conjunct ¬ϕk. Since rk does not apply, we know that ¬ϕk(p) is true, and this does not
affect the evaluation of the other rules, so that the rule ri still matches.

The following lemma shows the correctness of our unfolding procedure. Intuitively,
it tells us that packet p is evaluated in the same way by a ruleset R and by JRK.

Lemma 4. Given a firewall F = (C, ρ, c) and given a ruleset R such that c(q) = R for some
node q of C, we have that for t ∈ {ACCEPT, DROP}

∀p, s.p, s |=ϵ
R (t, p′) ⇐⇒ p, s |=ϵ

JRK (t, p′)

Proof. We prove the following stronger statement from which the lemma follows as a
particular case:

∀p, s, S. p, s |=S
R (t, p′) ⇐⇒ p, s |=S

JRKtrue
I

(t, p′)

with t ∈ {ACCEPT, DROP} and I = flatten(S)∪{R}, where the function flatten is recursively
defined as follows, where X ∈ {R, R, Ri, Ri+1}:

flatten(ϵ) = ∅ flatten(X · S) = flatten(S) ∪ {X}

136 Appendix A. Proofs of Chapter 1

(⇒) We proceed by induction on the derivations of p, s |=S
R and then by cases on the last

rule applied.

• Rule (1). By the premise of the rule, it holds that p |=R t where t ∈ {ACCEPT, DROP}.
The thesis follows by applying Property 3. Note that Property 3 holds for all sets I
and in particular for I = flatten(S) ∪ {R}.

• Rules (2) and (4). Similar to rule (1).

• Rule (3). By the premise of the rule, we have that p |=R (CHECK-STATE(X), i), p ̸⊢ s

and p, s |=S
Ri+1

(t, p′). By Property 3, we have that p |=JRKtrue
I

(CHECK-STATE(X), j)
holds and, by induction hypothesis, that p, s |=S

JRi+1Ktrue
I

(t, p′) for I = flatten(S) ∪
{R}. When recursively unfolding Ri+1 starting from R, we have a generic predicate
ϕ in place of true, i.e., JRi+1K

ϕ
I . According to the unfolding procedure, ϕ may include

the negation of the predicates of rules rj with j < i. Since ri is the first rule matching
p in R we know that ϕ(p) evaluates to true, hence p, s |=S

JRi+1K
ϕ
I

iff p, s |=S
JRi+1Ktrue

I
.

Thus, the thesis holds by applying the rule (3).

• Rule (5). By the premise of the rule, it holds p |=R (GOTO(R’), i), i.e., the rule ri =

(ϕi, GOTO(R’)) matches, R′ ̸∈ S and p, s |=R·S
R′ (t, p′). By induction hypothesis we

have that p, s |=R·S
JR′Ktrue

I′
(t, p′) with I′ = flatten(R · S) ∪ {R′}. From the definition of

the unrolling procedure we know that for all I not including R′ the ruleset JRKtrue
I

includes all the rules of JR′Ktrue
I∪{R′} prefixed by the predicate ϕi as a conjunct. Since

ϕi is true for p, it is not change the validity of the rule matching p in JR′Ktrue
I′ that

continues to match p also in JRKtrue
I . Thus, we have that p |=JRKtrue

I
(GOTO(R’), j) for

some j and for all I not including R′. So we conclude the thesis p, s |=S
JRKtrue

I
(t, p′)

by taking as I = flatten(S) ∪ {R}.

• Rule (7). Similar to rule (5).

• Rule (6). By the premise of the rule, we know that p |=R (GOTO(R’), i), i.e., there
exists ϕi(p) that holds, and R′ ∈ S. Hence, taking I = flatten(S) ∪ {R} we have
that R′ ∈ I, and in JRKtrue

I the rule matching ri is replaced with (true ∧ ϕi, DROP), so
p |=JRKtrue

I
(DROP, j) for some j and by applying rule (1) we obtain the thesis.

• Rule (8). Similar to rule (6).

• Rule (9). By the premise of the rule we know that p |=R (RETURN, i), pop∗(S) =

(R′, S′) and p, s |=S′
R′ (t, p′). In the ruleset JRK the rule ri is skipped and all the

rules after the ri are rewritten by adding the negation of the predicate ϕi of ri as a
conjunct; in these way none of these new rules match p. Thus, p ̸|=JRKtrue

I
for any I.

The thesis follows by applying the induction hypothesis and then rule (11).

• Rule (10). It is essentially as the proof of rule (9) except that at the end the thesis
follows by applying rule (12).

A.2. Correctness of the Logical Characterization 137

• Rule (11). By the premise of the rule we know p |̸= R, pop∗(S) = (R′, S′) and
p, s |=S′

R′ (t, p′). Trivially it holds that if p |̸= R then p ̸|=JRKtrue
I

for all I. Thus, the
thesis follows by applying the induction hypothesis and rule (11).

• Rule (12). By the premise of the rule it holds that p |̸= R and S = ϵ ∨ pop∗(S) = ϵ.
Since if p |̸= R then p ̸|=JRKtrue

I
for all I, the thesis holds by applying rule (12).

• Rule (13). Immediate by induction hypothesis.

(⇐) We proceed by contradiction by assuming that p, s |=S
JRKtrue

I
(t, p′) for I = flatten(S) ∪

{R}, but that p, s |=S
R (t′, p′′) with (t, p′) ̸= (t′, p′′). By applying the just proved case “if”

of the Lemma we know that p, s |=ϵ
JRKtrue

I′
(t′, p′′) for I′ = flatten(S) ∪ {R}. Contradiction.

The following lemma guarantees that the evaluations in the slave transition system
for a firewall and its unfolded version are the same.

Lemma 5. Let F = (C, ρ, c) be a firewall and JFK its unfolding. Let (q, s, p) →X (q′, s, p′) be
a step of the slave transition system performed by the firewall X ∈ {F , JFK}. Given a node q of
C we have that

(q, s, p)→F (q′, s, p′) ⇐⇒ (q, s, p)→JFK (q′, s, p′).

Proof. Assume (q, s, p) →F (q′, s, p′). By definition of the slave transition system we
know that c(q) = R, p, s |=ϵ

R (ACCEPT, p′) and δ(q, p′) = q′. By Definition 7 and by
Lemma 4, we have c′(q) = JRK and p, s |=ϵ

JRK (ACCEPT, p′), so we can prove (q, s, p) →JFK

(q′, s, p′). The case “only if” follows the same schema.

Now we can easily prove Theorem 1.

Theorem 1 (Correctness of unfolding). Let F = (C, ρ, c) be a firewall and JFK its unfolding.

Let s
p,p′−−→X s′ be a step of the master transition system performed by the firewall X ∈ {F , JFK}.

Then, it holds

s
p,p′−−→F s′ ⇐⇒ s

p,p′−−→JFK s′.

Proof. Assume s
p,p′−−→F s′. By the premise of the rule, we know that there exists a sequence

of steps of the slave transition system such that (qi, s, p)→+
F (q f , s, p′). By repeatedly us-

ing Lemma 5 we have that (qi, s, p) →+
JFK (q f , s, p′). Thus, the thesis follows by applying

the rule of the master transition system. The “only if” case follows the same schema.

A.2 Correctness of the Logical Characterization

The following property is an immediate consequence of Definition 3.

Property 6. Given a ruleset R and a rule r′ = (ϕ′, t′), if p |=R (t, i) and ϕ′(p) does not hold then
p |=r′;R (t, i).

138 Appendix A. Proofs of Chapter 1

The following lemma guarantees the correctness of the predicate definition in Sec-
tion 1.5.2.

Lemma 1. Given a ruleset R we have that

1. ∀p, s. p, s |=ϵ
R (ACCEPT, p′) =⇒ PR(p, p′); and

2. ∀p, p′. PR(p, p′) =⇒ ∃s. p, s |=ϵ
R (ACCEPT, p′)

Proof. (1). By induction on the depth of the derivation of p, s |=ϵ
R (ACCEPT, p′) and by

cases on the last rule applied. Since we consider unfolded firewalls, the only relevant
rules are (1), (2), (3), (4), (12) and (13).

• Rule (1). By the premise of the rule, we know that p |=R (ACCEPT, i), i.e., there exists
ri = (ϕi, ACCEPT) and ϕi(p) holds and p = p′. Additionally, we know that the
formula PR has a disjunct ϕi(p) ∧ (p = p′) that holds, proving the thesis.

• Rule (2). By the premise of the rule p |=R (CHECK-STATE(X), i), p ⊢s α and p′ =
establ(α, X, p). The thesis follows because PR contains a disjunct ϕ(p)∧ p′ ∈ tr(p, ∗:
∗, ∗:∗, X) that holds.

• Rules (3) and (13). Trivial using the induction hypothesis.

• Rule (4). By the rule, we have p |=R (NAT(n1, n2), i) and p′ = nat(p, s, ds, sn). We
know that PR contains a disjunct ϕ(p)∧ p′ ∈ tr(p, ds, sn,↔) that holds, thus proving
the thesis.

• Rule (12). This case applies if the default policy of the ruleset is ACCEPT and p′ = p.
We know that the disjunct dp(R) ∧ p′ = p holds, proving the thesis.

(2). By induction on the length of the ruleset R and then by cases on its first rule. When
R is empty, the formula PR is dp(R) ∧ p = p̃ and p |̸= R. Thus, the thesis follows for each
state s by using the rule (12) with an empty stack. If R is not empty we consider all the
possible different cases. Note that apart from the case for DROP our translation procedure
creates mutually exclusive disjunctions.

• Case (ϕ, ACCEPT). If the first disjunct holds, the thesis follows by applying the rule
(1) in any state s. If the second one holds, the thesis follows by induction hypothesis
and by Property 6.

• Case (ϕ, DROP). Just as the second case above.

• Case (ϕ, NAT(ds, sn)). If the first disjunct holds we know that p |=R (NAT(n1, n2), i)
and that p′ is one of the possible translation of p. To prove the thesis it suffices to ap-
ply the rule (4), taking a state s such that p′ = nat(p, s, dn, sn). If the second disjunct
holds, the thesis follows by induction hypothesis and by applying the Property 6.

• Case (ϕ, CHECK-STATE(X)). If the first disjunct holds, we have that ϕ(p) is true and
p′ is obtained by rewriting p. Thus, the thesis follows by applying the rule (2) in a
state s where p ⊢s α and p′ = establ(α, X, p). If the second disjunct holds, the thesis
follows by induction hypothesis and by Property 6.

A.2. Correctness of the Logical Characterization 139

• Case (ϕ, MARK(m)). By induction hypothesis, similarly to the ACCEPT case.

The following auxiliary lemma establishes the correspondence between the execu-
tions in the slave transition system from a node q and the formula built for the same
node q.

Lemma 7. Given a firewall F = (C, ρ, c) and a node q of C, we have that

1. ∀s, p. (q, s, p)→∗ (q f , s, p̃) =⇒ Pq(p, p̃)

2. ∀q, p, p̃. Pq(p, p̃) =⇒ ∃s.(q, s, p)→∗ (q f , s, p̃)

Proof. (1). By induction on the length of the derivation of (q, s, p) →n (q f , s, p̃). In the
case of n = 0 the thesis trivially holds. We assume that the statement holds for deriva-
tion of length n and we prove the case n + 1. Thus, there is a derivation (q, s, p) →
(q′, s, p′) →n (q f , s, p̃). By the premise of the slave transition system, we know that
p, s |=ϵ

c(q) (ACCEPT, p′) and δ(q, p′) = q′. By Lemma 6 (1), we know that Pc(q)(p, p′) is
true and by Definition 5 that ψ(p′) holds. By applying the induction hypothesis we have
Pq′(p, p̃) and the thesis follows.
(2). Note that since Pq(p, p̃) holds there exist n packets pi and a path of length n in the

control diagram of the firewall q1
ψ1(p1)−−−→ q2

ψ(p2)−−−→ . . .
ψ(pn)−−−→ q f such that q1 = q, p1 = p,

pn = p̃ and ∧n
i=1ψi(pi) holds. We proceed by induction on the length n of this path. For

n = 0 the thesis trivially holds. We assume the statement valid for n and consider given

a path of length n + 1: q
ψ(p)−−→ q1

ψ1(p1)−−−→ q2
ψ(p2)−−−→ . . .

ψ(pn)−−−→ q f with pn = p̃. Since Pq(p, p̃)
holds, we know that Pc(q)(p, p′) holds for some p′. By applying Lemma 1 (2), we know
that there exists a state s such that p, s |=ϵ

c(q) (ACCEPT, p′). Since in the path we have the

arc q
ψ(p)−−→ q1 we also know that δ(q, p′) = q1. The thesis follows by taking p′ = p1 and

by induction hypothesis.

Now we can prove the following theorem, which states the correspondence between
the logical formulation and the operational semantics.

Theorem 2 (Correctness of the logical characterization). Given a firewall F = (C, ρ, c) and
its corresponding predicate PF we have:

1. s
p,p′−−→ s ⊎ (p, p′) =⇒ PF (p, p′)

2. ∀p, p′. PF (p, p′) =⇒ ∃s.s
p,p′−−→ s ⊎ (p, p′)

Proof. (1). The thesis follows by taking the premise of the master transition system and
by applying Lemma 7 (1). (2). The thesis follows by applying first the Lemma 7 (2), and
then the rule of the master transition system, using the same state s given by Lemma 7
(2).

140 Appendix A. Proofs of Chapter 1

A.3 Correctness of Policy Generation

Lemma 2. Let FC be a compiled firewall of FS and let p be a packet, then

∃p′.PFS(p, p′)⇔ ∃p′′.PFC(p, p′′).

Proof. (⇒) We show that a packet p accepted by FS never matches a DROP rule in the rule-
sets of FC. Since rulesets have a default ACCEPT policy, we consider only Rfil, Rdnat @ Rfil

and Rsnat @ Rfil which are the only rulesets containing the rule (true, DROP) at the end. We
distinguish two cases:

• p is accepted by rule r = (ϕ, NAT(dn, sn)) ∈ RS inFS. By construction of the rulesets,
in FC the packet will be tagged with some mark m in the first non-empty ruleset in
the path πFC(p); then:

– if processed by Rfil, it is accepted by the rule (tag(p) ̸= •, ACCEPT);

– if processed by Rdnat @ Rfil, it is accepted (and translated) according to the NAT
rule (tag(p) = m, NAT(dn, ⋆)) in Rdnat;

– similarly, if processed by Rsnat @ Rfil, it is accepted by rule (tag(p) = m, NAT(⋆, sn))

in Rsnat.

• p is accepted by rule r = (ϕ, ACCEPT) ∈ RS in FS, hence it is not subject to NAT.
Algorithm 2 places the rule r in Rfil, therefore the packet is accepted when rulesets
Rfil, Rdnat @ Rfil are Rsnat @ Rfil are traversed.

(⇐) Since PFC(p, p′′), there exist a path πFC(p) = ⟨q1, . . . , qn⟩ and n + 1 packets p1, . . . ,
pn+1 such that Pc(qj)(pj, pj+1) for j ∈ [1..n] where p1 = p and pn+1 = p′′. By definition
of compiled firewall, there exists j ∈ [1..n] such that c(qj) ∈ {Rfil, Rdnat @ Rfil, Rsnat @ Rfil}.
Assume c(qj) = Rfil, we distinguish two cases:

• tag(pj+1) ̸= •: by Algorithm 2, there exists a MARK rule in the first non-empty ruleset
of πFC(p) such that ϕ(p) holds. Hence, there exists some rule r = (ϕ, NAT(dn, sn)) ∈
RS that accepts p translated as p′.

• tag(pj+1) = •: packet pj+1 is accepted by some rule r = (ϕ, ACCEPT) ∈ Rfil; we also
have pj+1 = p since the packet is not tagged, thus it is not transformed by any NAT
in FC. Since rule r ∈ RS by construction, FS accepts p without translation.

The cases c(qj) ∈ {Rdnat @ Rfil, Rsnat @ Rfil} follow a similar scheme.

We define an auxiliary function tt that, given two packets p, p′, returns the type of trans-
lation required to transform p into p′. Additionally, we define and prove the following
property about packet marking that is useful in the proof of Theorem 3.

Property 8. Let p be a packet accepted by a compiled firewall FC. We have that:

1. if p is accepted without NATs it is never tagged by the firewall;

A.3. Correctness of Policy Generation 141

2. if p accepted with NATs, it is tagged exactly once in the first non-empty ruleset of πFC(p).

Proof. (1) If a packet is not tagged in the first non-empty ruleset of the path πFC(p), all the
conditions ϕ in the MARK rules do not apply. Thus, none of the (eventual) NAT rules applies
and the packet is left unchanged. Therefore, subsequent evaluations of the marking rules
still do not apply. (2) Straightforward, MARK rules include the check tag(p) = • in their
conditions. Marking occurs in the first node of πFC(p) that contains a non-empty ruleset,
i.e., a ruleset different from Rϵ(p).

Now we can prove Theorem 3.

Theorem 3. Let p be a packet accepted by both FS and FC; let β = tc(πFC(p)); and let p′′ ≈
tβ(p, p′) for some p′. We have that

PFS(p, p′)⇔ PFC(p, p′′)

with p′ = p′′ when β = nat or p = p′.

Proof. (⇒) Assume PFS(p, p′). Let πFC(p) = ⟨q1, . . . , qn⟩ with q1 = qi and qn = q f and
we consider n + 1 intermediate packets p1, . . . , pn+1 with p1 = p and pn+1 = p′′. We
proceed by cases on the translation tt(p, p′).

• If tt(p, p′) = id, by Property 8 we know that p is never tagged by FC. Since NAT
rules are applied only to tagged packets, all rulesets in πFC(p) accept the packet
without translations, i.e., PFC(p, p) holds. We have tβ(p, p′) = p′ = p for all possi-
ble values of β, therefore the thesis hold.

• If tt(p, p′) = nat, by Property 8, we know that p is tagged in the first non-empty
ruleset c(qj) by rule (ϕ ∧ tag(p) = •, MARK(m)), i.e., tag(pj+1) = m.

– If β = id, we have pj+1 = · · · = pn+1 = p′′ since the packet traverses and is
accepted by rulesets that do not contain NAT rules. Therefore p′′ ≈ tid(p, p′)
and the thesis hold.

– If β = nat, let k, l ∈ [j + 1..n] the smallest indexes such that dnat ∈ γ(c(qk))

and snat ∈ γ(c(ql)). Without loss of generality, we assume k < l (the other
case is analogous). We have that pj+1 = · · · = pk. Packet pk is processed
by ruleset c(qk) that applies the DNAT translation associated with tag m, i.e.,
pk+1 ≈ p[da ↦→ da(p′)]. Then we have pk+1 = · · · = pl . Packet pl is processed
by ruleset c(ql) that applies the DNAT translation associated with tag m, thus
we have pl+1 ≈ p′. Finally we have pl+1 = · · · = pn+1 ≈ p′. Since tnat(p, p′) =
p′, the thesis hold.

– For β ∈ {dnat, snat}, the proof is a simplified version of β = nat.

• Proofs for cases tt(p, p′) = snat and tt(p, p′) = dnat are similar to the case tt(p, p′) =
nat.

142 Appendix A. Proofs of Chapter 1

(⇐) Assume PFC(p, p′′). We distinguish two cases, depending on the fact that p′′ is
tagged or not.

• If tag(p′′) = •, we know that p′′ has been accepted without NATs, i.e., p = p′′.
By definition of FC, the path πFC(p) has a node associated with a ruleset R in
{Rfil, Rdnat @ Rfil, Rsnat @ Rfil}. Since p is accepted by R, it means that p is accepted by
one of the filtering rules taken from RS. Therefore we have PFS(p, p), p′′ ≈ tβ(p, p)
for any β and the thesis hold.

• Let tag(p′′) = m. By Property 8 we know that the packet is tagged only once during
its processing and tagging occurs inside the first non-empty ruleset of πFC(p). By
Algorithm 2, we know that there exists a rule r = (ϕ, NAT(dn, sn)) ∈ RS for some
dn, sn that accepts p as p′, i.e., PFS(p, p′). Moreover, the same ranges are used in the
NAT rules that have translated p into p′′ during the traversal of the path πFC(p).
Hence we have p′′ ≈ tβ(p, p′) for any β and the thesis follows.

143

Bibliography

[1] Martín Abadi and Roger M. Needham. “Prudent Engineering Practice for Crypto-
graphic Protocols”. In: IEEE Transactions on Software Engineering 22.1 (1996), pp. 6–
15.

[2] Martín Abadi and Bogdan Warinschi. “Password-Based Encryption Analyzed”.
In: Proceedings of the 32nd International Colloquium on Automata, Languages and Pro-
gramming, ICALP 2005. 2005, pp. 664–676.

[3] Pedro Adão et al. “Mignis: A Semantic Based Tool for Firewall Configuration”. In:
Proceedings of the 27th IEEE Computer Security Foundations Symposium CSF. 2014,
pp. 351–365.

[4] Devdatta Akhawe et al. “Towards a Formal Foundation of Web Security”. In: Pro-
ceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF 2010. 2010,
pp. 290–304.

[5] Carolyn Jane Anderson et al. “NetkAT: Semantic Foundations for Networks”. In:
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2014). 2014, pp. 113–126.

[6] Android Studio User Guide: Sign Your App. URL: https://developer.android.com/
studio/publish/app-signing.html.

[7] Apache Tomcat 7 Documentation: SSL/TLS Configuration. 2017. URL: https://tomcat.
apache.org/tomcat-7.0-doc/ssl-howto.html.

[8] Apple Inc. iOS Security Guide. Tech. rep. Mar. 2017. URL: https://www.apple.
com/business/docs/iOS_Security_Guide.pdf.

[9] Alessandro Armando et al. “An Authentication Flaw in Browser-Based Single
Sign-On protocols: Impact and Remediations”. In: Computers & Security 33 (2013),
pp. 41–58.

[10] Alessandro Armando et al. “Formal Analysis of SAML 2.0 Web Browser Single
Sign-On: Breaking the SAML-Based Single Sign-On for Google Apps”. In: Pro-
ceedings of the 6th ACM Workshop on Formal Methods in Security Engineering (FMSE
2008). 2008, pp. 1–10.

[11] Elias Athanasopoulos, Vasilis Pappas, and Evangelos P. Markatos. “Code-Injection
Attacks in Browsers Supporting Policies”. In: Proceedings of the 2009 IEEE Web 2.0
Security and Privacy Workshop. 2009.

[12] Chetan Bansal et al. “Discovering Concrete Attacks on Website Authorization by
Formal Analysis”. In: Journal of Computer Security 22.4 (2014), pp. 601–657.

https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/studio/publish/app-signing.html
https://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
https://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf

144 Bibliography

[13] Chetan Bansal et al. “Keys to the Cloud: Formal Analysis and Concrete Attacks
on Encrypted Web Storage”. In: Proceedings of the 2nd International Conference on
Principles of Security and Trust, POST 2013. 2013, pp. 126–146.

[14] Romain Bardou et al. “Efficient Padding Oracle Attacks on Cryptographic Hard-
ware”. In: Proceedings of the 32nd Annual Cryptology Conference on Advances in Cryp-
tology, CRYPTO 2012. 2012, pp. 608–625.

[15] Elaine B. Barker. Guideline for Using Cryptographic Standards in the Federal Govern-
ment: Cryptographic Mechanisms. 2016. URL: http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-175B.pdf.

[16] Elaine B. Barker and Allen L. Roginsky. Transitions: Recommendation for Transition-
ing the Use of Cryptographic Algorithms and Key Lengths (Rev. 1). 2015. URL: http://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf.

[17] Yair Bartal et al. “Firmato: A Novel Firewall Management Toolkit”. In: ACM Trans-
actions on Computer Systems 22.4 (2004), pp. 381–420.

[18] Adam Barth. HTTP State Management Mechanism. 2011. URL: http://tools.ietf.
org/html/rfc6265.

[19] Adam Barth. The Web Origin Concept. 2011. URL: http://tools.ietf.org/html/
rfc6454.

[20] Adam Barth, Collin Jackson, and John C. Mitchell. “Robust Defenses for Cross-
Site Request Forgery”. In: Proceedings of the 15th ACM Conference on Computer and
Communications Security, CCS 2008. 2008, pp. 75–88.

[21] Daniel Bates, Adam Barth, and Collin Jackson. “Regular Expressions Considered
Harmful in Client-side XSS Filters”. In: Proceedings of the 19th International Confer-
ence on World Wide Web, WWW 2010. 2010, pp. 91–100.

[22] Lujo Bauer et al. “Run-time Monitoring and Formal Analysis of Information Flows
in Chromium”. In: Proceedings of the 22nd Annual Network and Distributed System
Security Symposium, NDSS 2015. 2015.

[23] Mihir Bellare, Thomas Ristenpart, and Stefano Tessaro. “Multi-instance Security
and Its Application to Password-Based Cryptography”. In: Proceedings of the 32nd
Annual Cryptology Conference on Advances in Cryptology, CRYPTO 2012. 2012, pp. 312–
329.

[24] Benjamin Beurdouche et al. “A Messy State of the Union: Taming the Composite
State Machines of TLS”. In: Proceedings of the 36th IEEE Symposium on Security and
Privacy, S&P 2015. 2015, pp. 535–552.

[25] Karthikeyan Bhargavan and Gaëtan Leurent. “On the Practical (In-)Security of
64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN”. In:
Proceedings of the 23rd ACM Conference on Computer and Communications Security,
CCS 2016. 2016, pp. 456–467.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-175B.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-175B.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/rfc6454
http://tools.ietf.org/html/rfc6454

Bibliography 145

[26] Abhishek Bichhawat et al. “Information Flow Control in WebKit’s JavaScript Byte-
code”. In: Proceedings of the 3rd International Conference on Principles of Security and
Trust (POST 2014). 2014, pp. 159–178.

[27] Nataliia Bielova. “Survey on JavaScript Security Policies and their Enforcement
Mechanisms in a Web Browser”. In: Journal of Logic and Algebraic Programming 82.8
(2013), pp. 243–262.

[28] Prithvi Bisht and V. N. Venkatakrishnan. “XSS-GUARD: Precise Dynamic Preven-
tion of Cross-Site Scripting Attacks”. In: Proceedings of the 5th International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA
2008. 2008, pp. 23–43.

[29] Bruno Blanchet. “An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules”. In: Proceedings of the 14th IEEE Computer Security Foundations Workshop
(CSFW 2001). 2001, pp. 82–96.

[30] Daniel Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols Based on
the RSA Encryption Standard PKCS #1”. In: Proceedings of the 18th Annual Inter-
national Cryptology Conference on Advances in Cryptology, CRYPTO ’98. 1998, pp. 1–
12.

[31] Chiara Bodei et al. “Language-Independent Synthesis of Firewall Policies”. In:
Proceedings of the 3rd IEEE European Symposium on Security and Privacy (EuroS&P
2018).

[32] Chiara Bodei et al. FireWall Synthesizer (FWS): Tool and Examples. URL: https://
github.com/secgroup/fws.

[33] Chiara Bodei et al. “Transcompiling Firewalls”. In: Proceedings of the 7th Interna-
tional Conference on Principles of Security and Trust (POST 2018). 2018, pp. 303–324.

[34] Aaron Bohannon and Benjamin C. Pierce. “Featherweight Firefox: Formalizing the
Core of a Web Browser”. In: USENIX Conference on Web Application Development,
WebApps 2010. 2010.

[35] Andrew Bortz, Adam Barth, and Alexei Czeskis. “Origin Cookies: Session In-
tegrity for Web Applications”. In: Web 2.0 Security & Privacy Workshop (W2SP
2011). 2011.

[36] Michele Bugliesi, Stefano Calzavara, and Riccardo Focardi. “Formal Methods for
Web Security”. In: Journal of Logical and Algebraic Methods in Programming 87 (2017),
pp. 110–126.

[37] Michele Bugliesi et al. “CookiExt: Patching the Browser against Session Hijacking
Attacks”. In: Journal of Computer Security 23.4 (2015), pp. 509–537.

[38] Michele Bugliesi et al. “Provably Sound Browser-Based Enforcement of Web Ses-
sion Integrity”. In: Proceedings of the IEEE 27th Computer Security Foundations Sym-
posium, CSF 2014. 2014, pp. 366–380.

https://github.com/secgroup/fws
https://github.com/secgroup/fws

146 Bibliography

[39] William Burr et al. Electronic Authentication Guideline - Special Publication 800-63-2.
2012.

[40] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. “Content Security Prob-
lems? Evaluating the Effectiveness of Content Security Policy in the Wild”. In:
Proceedings of the 23rd ACM Conference on Computer and Communications Security,
CCS 2016. 2016, pp. 1365–1375.

[41] Stefano Calzavara et al. “Quite a Mess in My Cookie Jar!: Leveraging Machine
Learning to Protect Web Authentication”. In: Proceedings of the 23rd International
World Wide Web Conference, WWW 2014. 2014, pp. 189–200.

[42] Stefano Calzavara et al. “Surviving the Web: A Journey into Web Session Secu-
rity”. In: ACM Computing Surveys 50.1 (2017), 13:1–13:34.

[43] Stefano Calzavara et al. “WPSE: Fortifying Web Protocols via Browser-Side Se-
curity Monitoring”. In: Proceedings of the 27th USENIX Security Symposium. 2018,
pp. 1493–1510.

[44] Stefano Calzavara et al. WPSE: Fortifying Web Protocols via Browser-Side Security
Monitoring - Technical report. URL: https://sites.google.com/site/wpseproject/.

[45] Eric Yawei Chen et al. “App isolation: Get the Security of Multiple Browsers with
Just One”. In: Proceedings of the 18th ACM Conference on Computer and Communica-
tions Security, CCS 2011. 2011, pp. 227–238.

[46] Richard Clayton and Mike Bond. “Experience Using a Low-Cost FPGA Design to
Crack DES Keys”. In: Proceedings of the 4th International Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2002. 2002, pp. 579–592.

[47] Jolyon Clulow. “On the Security of PKCS#11”. In: Proceedings of the 5th Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, CHES 2003. 2003,
pp. 411–425.

[48] Tim Cooijmans, Joeri de Ruiter, and Erik Poll. “Analysis of Secure Key Storage
Solutions on Android”. In: Proceedings of the 4th ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices, SPSM 2014. 2014, pp. 11–20.

[49] Cryptosense S.A. Mighty Aphrodite – Dark Secrets of the Java Keystore. 2016. URL:
https://cryptosense.com/mighty-aphrodite-dark-secrets-of-the-java-

keystore/.

[50] Frédéric Cuppens et al. “Handling Stateful Firewall Anomalies”. In: Proceedings of
the 27th IFIP Conference on Information Security and Privacy Conference (SEC 2012).
2012, pp. 174–186.

[51] Alexei Czeskis et al. “Lightweight Server Support for Browser-Based CSRF Pro-
tection”. In: Proceedings of the 22nd International World Wide Web Conference, WWW
2013. 2013, pp. 273–284.

https://sites.google.com/site/wpseproject/
https://cryptosense.com/mighty-aphrodite-dark-secrets-of-the-java-keystore/
https://cryptosense.com/mighty-aphrodite-dark-secrets-of-the-java-keystore/

Bibliography 147

[52] Italo Dacosta et al. “One-Time Cookies: Preventing Session Hijacking Attacks with
Stateless Authentication Tokens”. In: ACM Transactions on Internet Technology 12.1
(2012), pp. 1–24.

[53] Dominique Devriese and Frank Piessens. “Noninterference through Secure Multi-
execution”. In: Proceedings of the 31st IEEE Symposium on Security and Privacy, S&P
2010. 2010, pp. 109–124.

[54] Cornelius Diekmann et al. “Verified iptables Firewall Analysis”. In: Proceedings of
the 15th IFIP Networking Conference. 2016, pp. 252–260.

[55] Michael Dietz et al. “Origin-Bound Certificates: a Fresh Approach to Strong Client
Authentication for the Web”. In: Proceedings of the 21th USENIX Security Sympo-
sium, USENIX 2012. 2012, pp. 317–331.

[56] Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. “Salvaging Merkle-
Damgard for Practical Applications”. In: Proceedings of the 28th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, EURO-
CRYPT 2009. 2009, pp. 371–388.

[57] ECMA. ECMAScript Language Specification Standard, 5.1 Edition. 2011. URL: http:
//www.ecma-international.org/ecma-262/5.1/.

[58] EFF. HTTPS Everywhere. Electronic Frontier Foundation, 2011. URL: https://www.
eff.org/https-everywhere.

[59] Sascha Fahl et al. “Why Eve and Mallory (Also) Love Webmasters: A Study on
the Root Causes of SSL Misconfigurations”. In: Proceedings of the 9th ACM Sympo-
sium on Information, Computer and Communications Security, ASIA CCS 2014. 2014,
pp. 507–512.

[60] Daniel Fett, Ralf Küsters, and Guido Schmitz. “A Comprehensive Formal Security
Analysis of OAuth 2.0”. In: Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS 2016). 2016, pp. 1204–1215.

[61] Daniel Fett, Ralf Küsters, and Guido Schmitz. “An Expressive Model for the Web
Infrastructure: Definition and Application to the Browser ID SSO System”. In:
Proceedings of the 35th IEEE Symposium on Security and Privacy, S&P 2014. 2014,
pp. 673–688.

[62] Daniel Fett, Ralf Küsters, and Guido Schmitz. “SPRESSO: A Secure, Privacy-Respecting
Single Sign-On System for the Web”. In: Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS 2015). 2015, pp. 1358–1369.

[63] Firestarter. URL: http://www.fs-security.com/.

[64] Firewall Builder. URL: http://www.fwbuilder.org/.

[65] Riccardo Focardi et al. “Mind Your Keys? A Security Evaluation of Java Key-
stores”. In: Proceedings of the 25th Network and Distributed System Security Sympo-
sium, NDSS 2018. 2018.

http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/
https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere
http://www.fs-security.com/
http://www.fwbuilder.org/

148 Bibliography

[66] Open Networking Foundation. Software-Defined Networking (SDN) Definition. URL:
https://www.opennetworking.org/sdn-resources/sdn-definition.

[67] Paolo Gasti and Kasper Bonne Rasmussen. “On the Security of Password Manager
Database Formats”. In: Proceedings of the 17th European Symposium on Research in
Computer Security, ESORICS 2012. 2012, pp. 770–787.

[68] Google. A More Secure Sign-in Flow on Chrome. 2018. URL: https://gsuiteupdates.
googleblog.com/2018/04/more-secure-sign-in-chrome.html.

[69] Google. GSuite Administrator Help, Set up SSO via a third party Identity provider.
2018. URL: https://support.google.com/a/answer/6262987.

[70] Paul A. Grassi et al. Digital Identity Guidelines: Authentication and Lifecycle Manage-
ment. 2017. URL: https://pages.nist.gov/800-63-3/sp800-63b.html\#sec5.

[71] Willem De Groef et al. “FlowFox: a Web Browser with Flexible and Precise Infor-
mation Flow Control”. In: Proceedings of the 19th ACM Conference on Computer and
Communications Security, CCS 2012. 2012, pp. 748–759.

[72] Thomas Groß, Birgit Pfitzmann, and Ahmad-Reza Sadeghi. “Browser Model for
Security Analysis of Browser-Based Protocols”. In: Proceedings of the 10th European
Symposium on Research in Computer Security (ESORICS 2005). 2005, pp. 489–508.

[73] Thomas Groß, Birgit Pfitzmann, and Ahmad-Reza Sadeghi. “Proving a WS-Federation
Passive Requestor Profile with a Browser Model”. In: Proceedings of the 2nd ACM
Workshop On Secure Web Services, SWS 2005. 2005, pp. 54–64.

[74] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. “Using Static Analysis for
Ajax Intrusion Detection”. In: Proceedings of the 18th International Conference on
World Wide Web, WWW 2009. 2009, pp. 561–570.

[75] Matthew Van Gundy and Hao Chen. “Noncespaces: Using Randomization to De-
feat Cross-site Scripting Attacks”. In: Computers & Security 31.4 (2012), pp. 612–
628.

[76] Peter Gutmann. “Lessons Learned in Implementing and Deploying Crypto Soft-
ware”. In: Proceedings of the 11th USENIX Security Symposium. 2002, pp. 315–325.

[77] Per A. Hallgren, Daniel T. Mauritzson, and Andrei Sabelfeld. “GlassTube: A Lightweight
Approach to Web Application Integrity”. In: Proceedings of the 2013 ACM SIG-
PLAN Workshop on Programming Languages and Analysis for Security, PLAS 2013.
2013, pp. 71–82.

[78] Dick Hardt. The OAuth 2.0 Authorization Framework. 2012. URL: http://tools.
ietf.org/html/rfc6749.

[79] Norman Hardy. “The Confused Deputy (or why capabilities might have been in-
vented)”. In: Operating Systems Review 22.4 (1988), pp. 36–38.

[80] Daniel Hedin, Luciano Bello, and Andrei Sabelfeld. “Information-flow Security
for JavaScript and its APIs”. In: Journal of Computer Security 24.2 (2016), pp. 181–
234.

https://www.opennetworking.org/sdn-resources/sdn-definition
https://gsuiteupdates.googleblog.com/2018/04/more-secure-sign-in-chrome.html
https://gsuiteupdates.googleblog.com/2018/04/more-secure-sign-in-chrome.html
https://support.google.com/a/answer/6262987
https://pages.nist.gov/800-63-3/sp800-63b.html\#sec5
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Bibliography 149

[81] Daniel Hedin et al. “JSFlow: Tracking Information Flow in JavaScript and its APIs”.
In: Proceedings of the 29th Symposium on Applied Computing, SAC 2014. 2014, pp. 1663–
1671.

[82] Mario Heiderich et al. “Scriptless Attacks: Stealing the Pie Without Touching the
Sill”. In: Proceedings of the 19th ACM Conference on Computer and Communications
Security, CCS 2012. 2012, pp. 760–771.

[83] High Level Firewall Language. URL: http://www.hlfl.org.

[84] Jeff Hodges, Collin Jackson, and Adam Barth. HTTP Strict Transport Security (HSTS).
2012. URL: http://tools.ietf.org/html/rfc6797.

[85] Bob Ippolito. JSONP. 2015. URL: http://json-p.org/.

[86] Collin Jackson and Adam Barth. “ForceHTTPS: Protecting High-Security Web Sites
from Network Attacks”. In: Proceedings of the 17th International Conference on World
Wide Web, WWW 2008. 2008, pp. 525–534.

[87] Java Cryptography Architecture (JCA) Reference Guide. 2016. URL: https://docs.
oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.

html.

[88] Karthick Jayaraman et al. Automated Analysis and Debugging of Network Connectiv-
ity Policies. Tech. rep. Microsoft, 2014.

[89] Karthick Jayaraman et al. “ESCUDO: A Fine-Grained Protection Model for Web
Browsers”. In: Proceedings of the 2010 International Conference on Distributed Com-
puting Systems, ICDCS 2010. 2010, pp. 231–240.

[90] JDK 7 Security Enhancements. 2016. URL: https://docs.oracle.com/javase/8/
docs/technotes/guides/security/enhancements-7.html.

[91] JDK 9 Early Access Release Notes. 2017. URL: http://jdk.java.net/9/release-
notes.

[92] Alan Jeffrey and Taghrid Samak. “Model Checking Firewall Policy Configura-
tions”. In: Proceedings of the 10th IEEE International Symposium on Policies for Dis-
tributed Systems and Networks (POLICY 2009). 2009, pp. 60–67.

[93] Trevor Jim, Nikhil Swamy, and Michael Hicks. “Defeating Script Injection Attacks
with Browser-enforced Embedded Policies”. In: Proceedings of the 16th International
Conference on World Wide Web, WWW 2007. 2007, pp. 601–610.

[94] Martin Johns, Ben Stock, and Sebastian Lekies. “A Tale of the Weaknesses of Cur-
rent Client-Side XSS Filtering”. In: Blackhat USA 2014. 2014.

[95] Martin Johns and Justus Winter. “RequestRodeo: Client Side Protection against
Session Riding”. In: Proceedings of the OWASP Europe 2006 Conference (2006), pp. 5–
17.

[96] Martin Johns et al. “BetterAuth: Web Authentication Revisited”. In: Proceedings
of the 28th Annual Computer Security Applications Conference, ACSAC 2012. 2012,
pp. 169–178.

http://www.hlfl.org
http://tools.ietf.org/html/rfc6797
http://json-p.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/enhancements-7.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/enhancements-7.html
http://jdk.java.net/9/release-notes
http://jdk.java.net/9/release-notes

150 Bibliography

[97] Martin Johns et al. “Reliable Protection Against Session Fixation Attacks”. In:
Proceedings of the 26th ACM Symposium on Applied Computing, SAC 2011. 2011,
pp. 1531–1537.

[98] Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. “Preventing Cross Site
Request Forgery Attacks”. In: Proceedings of the 2nd International Conference on Se-
curity and Privacy in Communication Networks, SecureComm 2006. 2006, pp. 1–10.

[99] Jens P. Kaps and Christof Paar. “Fast DES Implementations for FPGAs and Its
Application to a Universal Key-Search Machine”. In: Proceedings of the 5th Annual
International Workshop in Selected Areas in Cryptography, SAC’98. 1999, pp. 234–247.

[100] Peyman Kazemian, George Varghese, and Nick McKeown. “Header Space Anal-
ysis: Static Checking for Networks”. In: Proceedings of the 9th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2012. 2012, pp. 113–126.

[101] Patrick Gage Kelley et al. “Guess Again (and Again and Again): Measuring Pass-
word Strength by Simulating Password-Cracking Algorithms”. In: Proceedings of
the 33rd IEEE Symposium on Security and Privacy, S&P 2012. 2012, pp. 523–537.

[102] John Kelsey et al. “Secure Applications of Low-Entropy Keys”. In: Proceedings of
the 1st International Workshop on Information Security, ISW ’97. 1997, pp. 121–134.

[103] Wilayat Khan et al. “Client Side Web Session Integrity as a Non-interference Prop-
erty”. In: Proceedings of the 10th International Conference on Information Systems Se-
curity, ICISS 2014. 2014, pp. 89–108.

[104] Engin Kirda et al. “Noxes: A Client-side Solution for Mitigating Cross-site Script-
ing Attacks”. In: Proceedings of the 2006 ACM Symposium on Applied Computing,
SAC 2006. 2006, pp. 330–337.

[105] KMyFirewall. URL: https://sourceforge.net/projects/kmyfirewall/.

[106] Wanpeng Li and Chris J. Mitchell. “Analysing the Security of Google’s Imple-
mentation of OpenID Connect”. In: Proceedings of the 13th International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA 2016).
2016, pp. 357–376.

[107] Wanpeng Li and Chris J. Mitchell. “Security Issues in OAuth 2.0 SSO Implemen-
tations”. In: Proceedings of the 17th International Conference in Information Security
(ISC 2014). 2014, pp. 529–541.

[108] Zhiwei Li et al. “The Emperor’s New Password Manager: Security Analysis of
Web-based Password Managers”. In: Proceedings of the 23rd USENIX Security Sym-
posium. 2014, pp. 465–479.

[109] Jay Ligatti, Lujo Bauer, and David Walker. “Edit Automata: Enforcement Mecha-
nisms for Run-Time Security Policies”. In: International Journal of Information Secu-
rity 4.1-2 (2005), pp. 2–16.

https://sourceforge.net/projects/kmyfirewall/

Bibliography 151

[110] Mike Ter Louw and V. N. Venkatakrishnan. “Blueprint: Robust Prevention of Cross-
site Scripting Attacks for Existing Browsers”. In: Proceedings of the 30th IEEE Sym-
posium on Security and Privacy, S&P 2009. 2009, pp. 331–346.

[111] Mike Ter Louw et al. “SafeScript: JavaScript Transformation for Policy Enforce-
ment”. In: Proceedings of the 18th Nordic Conference on Secure IT Systems, NordSec
2013. 2013, pp. 67–83.

[112] Kelby Ludwig. Duo Finds SAML Vulnerabilities Affecting Multiple Implementations.
2018. URL: https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-
multiple-implementations.

[113] Ikuo Magaki et al. “ASIC Clouds: Specializing the Datacenter”. In: Proceedings of
the 43rd International Symposium on Computer Architecture, ISCA 2016. 2016, pp. 178–
190.

[114] Christian Mainka et al. “SoK: Single Sign-On Security–An Evaluation of OpenID
Connect”. In: Proceedings of the 2nd IEEE European Symposium on Security and Pri-
vacy (EuroS&P 2017). 2017, pp. 251–266.

[115] Ziqing Mao, Ninghui Li, and Ian Molloy. “Defeating Cross-Site Request Forgery
Attacks with Browser-Enforced Authenticity Protection”. In: Proceedings of the 13th
International Conference on Financial Cryptography and Data Security, FC 2009. 2009,
pp. 238–255.

[116] Giorgio Maone. The NoScript Firefox Extension. 2004. URL: http://noscript.net/.

[117] Moxie Marlinspike. “New Tricks for Defeating SSL in Practice”. In: BlackHat DC
2009. 2009.

[118] Robert M. Marmorstein. “Formal Analysis of Firewall Policies”. PhD thesis. Col-
lege of William and Mary, 2008.

[119] Alain J. Mayer, Avishai Wool, and Elisha Ziskind. “Fang: A Firewall Analysis En-
gine”. In: proc. of the 21st IEEE S&P 2000. 2000, pp. 177–187.

[120] Leo A. Meyerovich and V. Benjamin Livshits. “ConScript: Specifying and Enforc-
ing Fine-Grained Security Policies for JavaScript in the Browser”. In: Proceedings
of the 31st IEEE Symposium on Security and Privacy, S&P 2010. 2010, pp. 481–496.

[121] MITRE. CVE-2012-4929: CRIME attack. 2012. URL: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2012-4929.

[122] MITRE. CVE-2014-0160: Heartbleed bug. 2013. URL: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0160.

[123] MITRE. CVE-2017-10345. 2017. URL: http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2017-10345.

[124] MITRE. CVE-2017-10356. 2017. URL: http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2017-10356.

[125] MITRE. CVE-2018-2794. 2018. URL: http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2018-2794.

https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-multiple-implementations
https://duo.com/blog/duo-finds-saml-vulnerabilities-affecting-multiple-implementations
http://noscript.net/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4929
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4929
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10345
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10345
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10356
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10356
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2794
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2794

152 Bibliography

[126] Kathleen M. Moriarty, Burt Kaliski, and Andreas Rusch. PKCS#5: Password-Based
Cryptography Specification (Version 2.1). 2017. URL: https://www.ietf.org/rfc/
rfc8018.txt.

[127] Kathleen M. Moriarty et al. PKCS#1: RSA Cryptography Specifications (Version 2.2).
2016. URL: https://www.ietf.org/rfc/rfc8017.txt.

[128] Mozilla. Same-Origin Policy. 2015. URL: http://developer.mozilla.org/en-
US/docs/Web/Security/Same-origin_policy.

[129] Mozilla Corporation. Public Suffix List. URL: https://publicsuffix.org.

[130] Yacin Nadji, Prateek Saxena, and Dawn Song. “Document Structure Integrity: A
Robust Basis for Cross-site Scripting Defense”. In: Proceedings of the Network and
Distributed System Security Symposium, NDSS 2009. 2009.

[131] National Institute of Standards and Technology. Annex A: Approved Security Func-
tions for FIPS PUB 140-2, Security Requirements for Cryptographic Modules. 2018.
URL: http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.
pdf.

[132] Eduardo Vela Nava and David Lindsay. “Our Favorite XSS Filters and How to
Attack Them”. In: Blackhat USA 2009. 2009.

[133] Timothy Nelson et al. “The Margrave Tool for Firewall Analysis”. In: Proceedings
of the 24th Large Installation System Administration Conference, LISA 2010. 2010.

[134] Netfilter. URL: https://www.netfilter.org/.

[135] NeTSPoC: A Network Security Policy Compiler. URL: http://netspoc.berlios.de.

[136] Nick Nikiforakis, Yves Younan, and Wouter Joosen. “HProxy: Client-Side Detec-
tion of SSL Stripping Attacks”. In: Proceedings of the 7th International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2010.
2010, pp. 200–218.

[137] Nick Nikiforakis et al. “SessionShield: Lightweight Protection against Session Hi-
jacking”. In: Proceedings of the 3rd International Symposium on Engineering Secure
Software and Systems, ESSoS 2011. 2011, pp. 87–100.

[138] Nick Nikiforakis et al. “You Are What You Include: Large-scale Evaluation of Re-
mote JavaScript Inclusions”. In: Proceedings of the 19th ACM Conference on Computer
and Communications Security, CCS 2012. 2012, pp. 736–747.

[139] OASIS. Bindings for the OASIS Security Assertion Markup Language (SAML) V2.0.
2015. URL: http://www.oasis-open.org/committees/download.php/56779/
sstc-saml-bindings-errata-2.0-wd-06.pdf.

[140] OASIS. Profiles for the OASIS Security Assertion Markup Language (SAML) V2.0.
2005. URL: http : / / docs . oasis - open . org / security / saml / v2 . 0 / saml -
profiles-2.0-os.pdf.

[141] OASIS. Security Assertion Markup Language (SAML) v2.0. 2005. URL: https://www.
oasis-open.org/standards#samlv2.0.

https://www.ietf.org/rfc/rfc8018.txt
https://www.ietf.org/rfc/rfc8018.txt
https://www.ietf.org/rfc/rfc8017.txt
http://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
http://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://publicsuffix.org
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf
https://www.netfilter.org/
http://netspoc.berlios.de
http://www.oasis-open.org/committees/download.php/56779/sstc-saml-bindings-errata-2.0-wd-06.pdf
http://www.oasis-open.org/committees/download.php/56779/sstc-saml-bindings-errata-2.0-wd-06.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
https://www.oasis-open.org/standards#samlv2.0
https://www.oasis-open.org/standards#samlv2.0

Bibliography 153

[142] Terri Oda et al. “SOMA: Mutual Approval for Included Content in Web Pages”.
In: Proceedings of the 15th ACM Conference on Computer and Communications Security,
CCS 2008. 2008, pp. 89–98.

[143] Philippe Oechslin. “Making a Faster Cryptanalytic Time-Memory Trade-Off”. In:
Proceedings of the 23rd Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO 2003. 2003, pp. 617–630.

[144] Oracle Corporation. Critical Patch Updates, Security Alerts and Third Party Bulletin.
2017. URL: http://www.oracle.com/technetwork/security-advisory/cpuoct2017-
3236626.html.

[145] Oracle Corporation. Critical Patch Updates, Security Alerts and Third Party Bulletin.
2018. URL: http://www.oracle.com/technetwork/security-advisory/cpuapr2018-
3678067.html.

[146] Oracle Corporation. Java Cryptography Architecture, Standard Algorithm Name Doc-
umentation for JDK 8. 2014. URL: http://docs.oracle.com/javase/8/docs/
technotes/guides/security/StandardNames.html\#KeyStore.

[147] OWASP. HttpOnly. 2014. URL: https://www.owasp.org/index.php/HttpOnly.

[148] OWASP. Top 10 Security Threats. 2013. URL: https://www.owasp.org/index.php/
Top_10_2013-Top_10.

[149] Packet Filter (PF). URL: https://www.openbsd.org/faq/pf/.

[150] Salvador Martínez Perez et al. “A Model-Driven Approach for the Extraction of
Network Access-Control Policies”. In: Proceedings of the Workshop on Model-Driven
Security (MDsec 2012). 2012, pp. 1–6.

[151] Phu H. Phung, David Sands, and Andrey Chudnov. “Lightweight Self-protecting
JavaScript”. In: Proceedings of the 2009 ACM Symposium on Information, Computer
and Communications Security, ASIA CCS 2009. 2009, pp. 47–60.

[152] Tadeusz Pietraszek and Chris Vanden Berghe. “Defending Against Injection At-
tacks Through Context-Sensitive String Evaluation”. In: Proceedings of the 8th In-
ternational Symposium on Recent Advances in Intrusion Detection, RAID 2005. 2005,
pp. 124–145.

[153] Pyroman. 2011. URL: http://pyroman.alioth.debian.org/.

[154] Vineet Rajani et al. “Information Flow Control for Event Handling and the DOM
in Web Browsers”. In: Proceedings of the 28th IEEE Computer Security Foundations
Symposium (CSF 2015). 2015, pp. 366–379.

[155] Eric Rescorla. HTTP Over TLS. 2000. URL: https : / / tools . ietf . org / html /
rfc2818.

[156] Gregor Richards et al. “The Eval That Men Do - A Large-Scale Study of the Use of
Eval in JavaScript Applications”. In: Proceedings of the 25th European Conference on
Object-Oriented Programming, ECOOP 2011. 2011, pp. 52–78.

http://www.oracle.com/technetwork/security-advisory/cpuoct2017-3236626.html
http://www.oracle.com/technetwork/security-advisory/cpuoct2017-3236626.html
http://www.oracle.com/technetwork/security-advisory/cpuapr2018-3678067.html
http://www.oracle.com/technetwork/security-advisory/cpuapr2018-3678067.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html\#KeyStore
http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html\#KeyStore
https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.openbsd.org/faq/pf/
http://pyroman.alioth.debian.org/
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818

154 Bibliography

[157] David Ross. IE 8 XSS Filter Architecture / Implementation. 2008. URL: http://blogs.
technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-

implementation.aspx.

[158] RSA Laboratories. PKCS#11 v2.30: Cryptographic Token Interface Standard. 2009.

[159] RSA Laboratories. PKCS#12: Personal Information Exchange Syntax Standard (Ver-
sion 1.0). 1999.

[160] RSA Laboratories. PKCS#12: Personal Information Exchange Syntax Standard (Ver-
sion 1.1). 2012.

[161] Rusty Russell. Linux 2.4 Packet Filtering HOWTO. 2002. URL: http://www.netfilter.
org/documentation/HOWTO/packet-filtering-HOWTO.html.

[162] Mark D. Ryan and Ben Smyth. “Applied Pi Calculus”. In: Formal Models and Tech-
niques for Analyzing Security Protocols. IOS Press, 2011. Chap. 6.

[163] Philippe De Ryck et al. “Automatic and Precise Client-Side Protection against
CSRF Attacks”. In: Proceedings of the 16th European Symposium on Research in Com-
puter Security, ESORICS 2011. 2011, pp. 100–116.

[164] Philippe De Ryck et al. “CsFire: Transparent Client-Side Mitigation of Malicious
Cross-Domain Requests”. In: Proceedings of Engineering Secure Software and Sys-
tems, Second International Symposium, ESSoS 2010. 2010, pp. 18–34.

[165] Philippe De Ryck et al. “Serene: Self-Reliant Client-Side Protection against Ses-
sion Fixation”. In: Proceedings of the 2012 Distributed Applications and Interoperable
Systems - 12th IFIP WG 6.1 International Conference, DAIS 2012. 2012, pp. 59–72.

[166] Mohamed Sabt and Jacques Traoré. “Breaking into the KeyStore: A Practical Forgery
Attack Against Android KeyStore”. In: Proceedings of the 21st European Symposium
on Research in Computer Security (ESORICS 2016). 2016, pp. 531–548.

[167] Fred B. Schneider. “Enforceable Security Policies”. In: ACM Transactions on Infor-
mation and System Security 3.1 (2000), pp. 30–50.

[168] Bruce Schneier. Applied Cryptography (2nd Ed.): Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc., 1995.

[169] Jose Selvi. “Bypassing HTTP Strict Transport Security”. In: BlackHat DC 2014. 2014.

[170] Shorewall. URL: http://www.shorewall.net/.

[171] Kapil Singh et al. “Practical End-to-End Web Content Integrity”. In: Proceedings of
the 21st World Wide Web Conference 2012, WWW 2012. 2012, pp. 659–668.

[172] Juraj Somorovsky et al. “On Breaking SAML: Be Whoever You Want to Be”. In:
Proceedings of the 21th USENIX Security Symposium. 2012, pp. 397–412.

[173] Spring Crypto Utils Documentation: Keystore. 2017. URL: http://springcryptoutils.
com/keystore.html.

[174] Stanford University Backbone Network Configuration Ruleset. URL: https://bitbucket.
org/peymank/hassel-public/.

http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://blogs.technet.com/b/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://www.netfilter.org/documentation/HOWTO/packet- filtering-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/packet- filtering-HOWTO.html
http://www.shorewall.net/
http://springcryptoutils.com/keystore.html
http://springcryptoutils.com/keystore.html
https://bitbucket.org/peymank/hassel-public/
https://bitbucket.org/peymank/hassel-public/

Bibliography 155

[175] Deian Stefan et al. “Protecting Users by Confining JavaScript with COWL”. In:
Proceedings of the 11th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2014. 2014, pp. 131–146.

[176] Ben Stock and Martin Johns. “Protecting users against XSS-based password man-
ager abuse”. In: Proceedings of the 9th ACM Asia Conference on Information, Computer
and Communications Security (AsiaCCS 2014). 2014, pp. 183–194.

[177] San-Tsai Sun and Konstantin Beznosov. “The Devil is in the (Implementation) De-
tails: An Empirical Analysis of OAuth SSO Systems”. In: Proceedings of the 19th
ACM Conference on Computer and Communications Security, (CCS’12). 2012, pp. 378–
390.

[178] Shuo Tang, Nathan Dautenhahn, and Samuel T. King. “Fortifying web-based ap-
plications automatically”. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS 2011. 2011, pp. 615–626.

[179] The IPFW Firewall. URL: https://www.freebsd.org/doc/handbook/firewalls-
ipfw.html.

[180] Mary Frances Theofanos and Shari Lawrence Pfleeger. “Guest Editors’ Introduc-
tion: Shouldn’t All Security Be Usable?” In: IEEE Security & Privacy 9.2 (2011),
pp. 12–17.

[181] Traversing of Tables and Chains. URL: http://www.iptables.info/en/structure-
of-iptables.html.

[182] Meltem Sonmez Turan et al. Recommendation for Password-Based Key Derivation.
Part 1: Storage Applications. 2010. URL: http://csrc.nist.gov/publications/
nistpubs/800-132/nist-sp800-132.pdf.

[183] Uncomplicated Firewall. URL: https://help.ubuntu.com/community/UFW.

[184] Update to Current Use and Deprecation of TDEA. 2017. URL: https://beta.csrc.
nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA.

[185] Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. “Measuring Login
Webpage Security”. In: Proceedings of 32nd ACM Symposium on Applied Computing
(SAC 2017). 2017, pp. 1753–1760.

[186] Steven Van Acker et al. “WebJail: Least-privilege Integration of Third-party Com-
ponents in Web Mashups”. In: Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC 2011. 2011, pp. 307–316.

[187] Serge Vaudenay. “Security Flaws Induced by CBC Padding - Applications to SSL,
IPSEC, WTLS ...” In: Proceedings of the 21st International Conference on the Theory and
Applications of Cryptographic Techniques Advances in Cryptology, EUROCRYPT 2002.
2002, pp. 534–546.

[188] Philipp Vogt et al. “Cross Site Scripting Prevention with Dynamic Data Tainting
and Static Analysis”. In: Proceedings of the 14th Network and Distributed System Se-
curity Symposium, NDSS 2007. 2007.

https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
http://www.iptables.info/en/structure-of-iptables.html
http://www.iptables.info/en/structure-of-iptables.html
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
https://help.ubuntu.com/community/UFW
https://beta.csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA
https://beta.csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA

156 Bibliography

[189] Vulnerability Note VU#576313. 2015. URL: https://www.kb.cert.org/vuls/id/
576313.

[190] W3C. Cascading Style Sheets. 2014. URL: http://www.w3.org/Style/CSS/.

[191] W3C. Content Security Policy. 2012. URL: http://www.w3.org/TR/CSP/.

[192] W3C. Content Security Policy Level 2. 2015. URL: http://www.w3.org/TR/CSP2/.

[193] W3C. Cross-Origin Resource Sharing. 2014. URL: http://www.w3.org/TR/cors.

[194] W3C. Document Object Model (DOM) Level 1 Specification. 1998. URL: http://www.
w3.org/TR/REC-DOM-Level-1.

[195] W3C. Document Object Model (DOM) Level 2 Core Specification. 2000. URL: http:
//www.w3.org/TR/DOM-Level-2-Core.

[196] W3C. Document Object Model (DOM) Level 3 Core Specification. 2004. URL: http:
//www.w3.org/TR/DOM-Level-3-Core.

[197] W3C. HTML5: A Vocabulary and Associated APIs for HTML and XHTML. 2014. URL:
http://www.w3.org/TR/html5/.

[198] W3C. Mixed Content. 2015. URL: http : / / www . w3 . org / TR / 2015 / CR - mixed -
content-20151008/.

[199] Rui Wang, Shuo Chen, and XiaoFeng Wang. “Signing Me onto Your Accounts
through Facebook and Google: A Traffic-Guided Security Study of Commercially
Deployed Single-Sign-On Web Services”. In: Proceedings of the 33rd IEEE Sympo-
sium on Security and Privacy (S&P 2012). 2012, pp. 365–379.

[200] Rui Wang et al. “Explicating SDKs: Uncovering Assumptions Underlying Secure
Authentication and Authorization”. In: Proceedings of the 22th USENIX Security
Symposium. 2013, pp. 399–314.

[201] WebLogic Integration 7.0: Configuring the Keystore. URL: http://docs.oracle.com/
cd/E13214_01/wli/docs70/b2bsecur/keystore.htm.

[202] Joel Weinberger, Adam Barth, and Dawn Song. “Towards Client-side HTML Se-
curity Policies”. In: 6th USENIX Workshop on Hot Topics in Security, HotSec 2011.
2011.

[203] Matt Weir et al. “Testing Metrics for Password Creation Policies by Attacking
Large Sets of Revealed Passwords”. In: Proceedings of the 17th ACM Conference on
Computer and Communications Security, CCS 2010. 2010, pp. 162–175.

[204] Michael Weissbacher, Tobias Lauinger, and William K. Robertson. “Why Is CSP
Failing? Trends and Challenges in CSP Adoption”. In: Proceedings of the 17th Inter-
national Symposium on Research in Attacks, Intrusions and Defenses, RAID 2014. 2014,
pp. 212–233.

[205] Mike West. Cookie Prefixes. URL: {https://tools.ietf.org/html/draft-west-
cookie-prefixes-05}.

https://www.kb.cert.org/vuls/id/576313
https://www.kb.cert.org/vuls/id/576313
http://www.w3.org/Style/CSS/
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/CSP2/
http://www.w3.org/TR/cors
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/html5/
http://www.w3.org/TR/2015/CR-mixed-content-20151008/
http://www.w3.org/TR/2015/CR-mixed-content-20151008/
http://docs.oracle.com/cd/E13214_01/wli/docs70/b2bsecur/keystore.htm
http://docs.oracle.com/cd/E13214_01/wli/docs70/b2bsecur/keystore.htm
{https://tools.ietf.org/html/draft-west-cookie-prefixes-05}
{https://tools.ietf.org/html/draft-west-cookie-prefixes-05}

Bibliography 157

[206] Wei Xu, Sandeep Bhatkar, and R. Sekar. “Taint-Enhanced Policy Enforcement: A
Practical Approach to Defeat a Wide Range of Attacks”. In: Proceedings of the 15th
USENIX Security Symposium, USENIX 2006. 2006, pp. 121–136.

[207] Ronghai Yang et al. “Model-based Security Testing: An Empirical Study on OAuth
2.0 Implementations”. In: Proceedings of the 11th ACM Asia Conference on Computer
and Communications Security (AsiaCCS 2016). 2016, pp. 651–662.

[208] Frances F. Yao and Yiqun Lisa Yin. “Design and Analysis of Password-Based Key
Derivation Functions”. In: IEEE Transactions on Information Theory 51.9 (2005), pp. 3292–
3297.

[209] Dachuan Yu et al. “JavaScript Instrumentation for Browser Security”. In: Proceed-
ings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2007. 2007, pp. 237–249.

[210] Lihua Yuan et al. “FIREMAN: A Toolkit for FIREwall Modeling and ANalysis”.
In: Proceedings of the 27th IEEE Symposium on Security and Privacy (S&P 2006). 2006,
pp. 199–213.

[211] Michal Zalewski. Postcards From the Post-XSS World. http://lcamtuf.coredump.
cx/postxss/. 2011.

[212] Bin Zhang et al. “Specifications of a High-Level Conflict-Free Firewall Policy Lan-
guage for Multi-Domain Networks”. In: Proceedings of the 12th ACM Symposium on
Access Control Models and Technologies (SACMAT 2007). 2007, pp. 185–194.

[213] Yinqian Zhang, Fabian Monrose, and Michael K. Reiter. “The Security of Modern
Password Expiration: An Algorithmic Framework and Empirical Analysis”. In:
Proceedings of the 17th ACM Conference on Computer and Communications Security,
CCS 2010. 2010.

[214] Xiaofeng Zheng et al. “Cookies Lack Integrity: Real-World Implications”. In: Pro-
ceedings of the 24th USENIX Security Symposium, USENIX 2015. 2015, pp. 707–721.

[215] Yuchen Zhou and David Evans. “SSOScan: Automated Testing of Web Applica-
tions for Single Sign-On Vulnerabilities”. In: Proceedings of the 23rd USENIX Secu-
rity Symposium. 2014, pp. 495–510.

[216] Yuchen Zhou and David Evans. “Why Aren’t HTTP-only Cookies More Widely
Deployed?” In: Web 2.0 Security and Privacy Workshop, W2SP 2010. 2010.

http://lcamtuf.coredump.cx/postxss/
http://lcamtuf.coredump.cx/postxss/

	Preface
	Introduction
	Summary of Contributions
	Structure of the Thesis

	Analysis, Maintenance and Cross-Compilation of Firewall Policies
	Introduction
	Contributions
	Structure of the Chapter

	Background
	iptables
	ipfw
	pf

	The Pipeline at Work
	Network Structure and Policy Requirements
	Compliant Configuration in iptables
	Configuring the Firewall with iptables
	Decompiling and Analyzing the Configuration

	Non-Compliant Configuration in ipfw
	Configuring the Firewall with ipfw
	Decompiling and Analyzing the Configuration

	Maintaining Firewall Configurations
	Transcompiling a Configuration

	IFCL: The Intermediate Firewall Configuration Language
	Decompiling Real Systems into IFCL
	Semantics

	Synthesizing Configurations
	Unfolding Rulesets
	Logical Characterization of Firewalls
	Synthesis Algorithm
	Supported Analyses

	Generating Target Configurations
	Compiling a Firewall Specification
	Correctness of the Compiled Firewall

	Experimental Evaluation
	DAIS Department Policy
	Stanford University Backbone Network
	Other Real-World Policies
	Queries

	Related Work
	Analysis of Firewall Configurations
	Compilation of Firewall Configurations

	Surviving the Web: A Journey into Web Session Security
	Introduction
	Scope of the Work
	Structure of the Chapter

	Background
	Languages for the Web
	Locating Web Resources
	Hyper Text Transfer Protocol (HTTP)
	Security Cornerstones and Subtleties

	Attacking Web Sessions
	Security Properties
	Threat Model
	Web Attacks
	Network Attacks

	Protecting Web Sessions
	Evaluation Criteria
	Content Injection: Mitigation Techniques
	Content Injection: Prevention Techniques
	Cross-Site Request Forgery and Login CSRF
	Cookie Forcing and Session Fixation
	Network Attacks

	Defenses Against Multiple Attacks
	Perspective
	Transparency
	Security by Design
	Ease of Adoption
	Declarative Nature
	Formal Specification and Verification
	Discussion

	WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring
	Introduction
	Contributions
	Structure of the Chapter

	Security Challenges in Web Protocols
	Background on OAuth 2.0
	Challenge #1: Protocol Flow
	Challenge #2: Secrecy of Messages
	Challenge #3: Integrity of Messages

	WPSE: Design and Implementation
	Key Ideas of WPSE
	Discussion

	Fortifying Web Protocols with WPSE
	Attacks Against OAuth 2.0
	Attacks Against SAML 2.0
	Out-of-Scope Attacks

	Experimental Evaluation
	Experimental Setup
	Security Analysis
	Compatibility Analysis

	Formal Guarantees
	Discussion

	Related Work
	Analysis of Web Protocols
	Security Automata
	Browser-Side Defenses

	Mind Your Keys? A Security Evaluation of Java Keystores
	Introduction
	Contributions
	Structure of the Chapter

	Related Work
	Security Properties and Threat Model
	Security Properties
	Design Rules
	Threat Model

	Analysis of Java Keystores
	Oracle Keystores
	Bouncy Castle Keystores
	Keystores Adoption
	Summary

	Attacks
	Attacks on Entries Confidentiality (P1)
	Attacks on Keystore Integrity (P2)
	Attacks on System Integrity (P3)
	Bad Design Practices
	Security Considerations

	Estimating Brute-Force Speed-Up
	Test Methodology
	Results

	Disclosure and Security Updates

	Conclusion
	Proofs of Chapter 1
	Correctness of Unfolding
	Correctness of the Logical Characterization
	Correctness of Policy Generation

	Bibliography

