
PH.D PROGRAMMEE

IN COMPUTER SCIENCE

CYCLE 31TH

PH.D THESIS

Analysis of Threats and Design Flaws
in Hardware and Software

Cryptographic Systems
SSD: INF/01

COORDINATOR OF THE PH.D PROGRAMME

Prof. Riccardo FOCARDI

SUPERVISOR

Prof. Riccardo FOCARDI

CANDIDATE

Francesco PALMARINI

Matricola 823027

iii

Abstract

In the last two decades the use of cryptography in computer systems has con-
stantly increased. Ranging from personal devices to cloud services and critical in-
frastructures, cryptography is pervasive and variegated. It is thus of crucial impor-
tance to conduct security evaluations of existing cryptographic design and imple-
mentations, both at the software level and based on secure hardware.

Since cryptography is closely related to the secure management of cryptographic
keys, in this thesis we first investigate on the design and implementation of Java key-
stores, the standard password-protected facility to handle and securely store keys in
Java applications. We define a general threat model and distil a set of significant
security properties. We report on undocumented details about the implementation
and disclose novel attacks and weaknesses in keystores that do not adhere to state-
of-the-art standards or use obsolete and ad-hoc cryptographic mechanisms.

Typically, security sensitive applications adopt protected and tamper-resistant
cryptographic hardware. To this end, we study the low-level APDU protocol used to
communicate with PKCS#11 devices such as USB tokens, smartcards and Hardware
Security Modules. We present a new threat model for the PKCS#11 middleware and
discuss new attacks that exploit proprietary implementation weaknesses allowing
attackers to leak, as cleartext, sensitive cryptographic keys in devices that were pre-
viously considered secure.

Complex cryptographic implementations is also found in the firmware of em-
bedded systems and interconnected Internet-Of-Things (IoT) devices. The research
for security flaws in the firmware by means of reverse-engineering can be blocked
by security mechanisms which prevent unauthorized flash memory readout to pro-
tect the intellectual properties contained. In this work we present novel attacks for
extracting the firmware from six protected microcontrollers of three different man-
ufacturers and, in particular, we present a new voltage glitching technique for im-
proving the attack performance. Finally, we conduct a thorough evaluation of the
results against the state-of-the-art in voltage glitching.

v

Acknowledgements
First of all I would like to express my deep and sincere gratitude to my supervisor
prof. Riccardo Focardi for his valuable and friendly guidance over the years. I owe
a debt of gratitude to prof. Matteo Maffei and prof. Stefano Zanero who accepted to
devote their time to reading and reviewing this work.

I am grateful to a number of people I had the pleasure to collaborate with during
the past few years, in particular dr. Stefano Calzavara, dr. Graham Steel, dr. Marco
Squarcina, prof. Flaminia Luccio, Claudio Bozzato and Mauro Tempesta. I thank
Claudio, Marco and Mauro again as part of the c00kies@venice hacking team, along
with Andrea Baesso, Francesco Benvenuto, Francesco Cagnin, Marco Gasparini, An-
drea Possemato, and Lorenzo Veronese. All these people are not just colleagues and
team mates, but first of all they are friends and comrades in our great adventures.

I would like to thank my soulmate Jessica who has always been ready to give
me the strength to accomplish all of this. Finally, thanks to everyone who believe in
me day-by-day and put their trust in me, in particular my parents and my family,
my old friends Laura and Maria Luisa and every single wonderful individual for
inspiring me and lighting up my life.

Without you this journey would not have been possible, so I dedicate this to you.

vii

Contents

Preface 1

Introduction 3
Structure of the Thesis . 9
Summary of Contributions . 9

1 Background 11
1.1 Architecture of the Cryptographic Hardware API 11

1.1.1 The PKCS#11 Layer . 12
1.1.2 The APDU Layer . 13

1.2 Voltage Fault Injection . 15
1.2.1 Microcontroller Programming Interfaces 16

2 Software Keystores 17
2.1 Security Properties and Threat Model 19

2.1.1 Security Properties . 19
2.1.2 Design Rules . 20
2.1.3 Threat Model . 21

2.2 Analysis of Java Keystores . 22
2.2.1 Oracle Keystores . 23
2.2.2 Bouncy Castle Keystores . 25
2.2.3 Keystores Adoption . 26
2.2.4 Summary . 27

2.3 Attacks . 27
2.3.1 Attacks on Entries Confidentiality (P1) 30
2.3.2 Attacks on Keystore Integrity (P2) 33
2.3.3 Attacks on System Integrity (P3) 34
2.3.4 Bad Design Practices . 36
2.3.5 Security Considerations . 37

2.4 Estimating Brute-Force Speed-Up . 38
2.4.1 Test Methodology . 39
2.4.2 Results . 41

2.5 Disclosure and Security Updates . 42
2.6 Discussion and Related Work . 43

viii

3 Cryptographic Hardware API 45
3.1 Threat Model . 46

3.1.1 Administrator Privileges . 47
3.1.2 User Privileges . 47
3.1.3 Physical Access . 48
3.1.4 Summary of the Threat Model 48

3.2 APDU-level Attacks on Real Devices . 49
3.2.1 Authentication . 49
3.2.2 Sensitive symmetric keys . 51
3.2.3 Bypassing Attribute Values . 53
3.2.4 RSA Session Keys . 54

3.3 Security Analysis . 55
3.3.1 Fixes and Mitigations . 57

3.4 Discussion and Related Work . 58

4 Physical Attacks in Embedded Systems 61
4.1 Experimental Setup . 64
4.2 Arbitrary Waveform Voltage Glitch . 65

4.2.1 Parameter Search and Optimization 66
Supervised Search . 66
Unsupervised Genetic Algorithm 67

4.3 Scattered-glitch Attacks . 68
4.3.1 Case Study 1: STMicroelectronics 69

STM32 F1 . 69
STM32 F3 . 69

4.3.2 Case Study 2: Texas Instruments 71
MSP430 F5xx ultra-low power 71
MSP430 FRxx FRAM nonvolatile memory 71

4.3.3 Experimental Results and Considerations 72
4.4 Complex Attacks . 73

4.4.1 Case Study 3: Renesas Electronics 74
FMPI Vulnerabilities . 74
Mounting the Attacks . 75

4.4.2 Experimental Results and Considerations 77
Injection Timing . 78
Ambient Temperature . 78

4.5 Evaluation . 79
4.5.1 Performance Analysis and Comparison 79

Firmware Extraction Time . 81
Glitch Waveform Characterization 82

4.5.2 Limitations and Further Improvements 82
4.6 Discussion and Related Work . 83

ix

Conclusion 87

Bibliography 89

1

Preface

The work presented in this thesis is based on the research that I conducted during my
Ph.D. studies in Computer Science at Università Ca’ Foscari, Venezia from Septem-
ber 2015 to September 2018. In this time frame, my research has primarily focused
on the topics of applied cryptography, security of embedded systems, network and
systems security. My research has also developed after several collaborations and
consultancies that I conducted for private companies.

3

Introduction

We are facing an incredibly fast phenomenon of digitalization and interconnection of
everyday devices, ranging from computers and smartphones to critical devices such
as control units of self-driving vehicles, health devices (e.g., defibrillators, heart rate
monitors, insulin pumps), payment and ID cards. We live in the so called Internet-
Of-Things (IoT) era where devices, connected to each other, to the cloud and con-
trolled by digital units permeate our lives and, at the same time, physically interact
with humans. Digitalization has increased the need for technologies that enable for
securely storing, managing and transmitting sensitive data as well as strong and reli-
able authentication mechanisms. As a result, cryptography has become a fundamen-
tal and pervasive component of the software and hardware development process.
Cryptography is however still complex and variegate, often requiring engineers and
developers to combine different algorithms, schemes and mechanisms in non triv-
ial ways. Furthermore, the increasing market of small, relatively cheap, electronic
devices imposes trade-off and limitations on the available resources, for instance
associated to the energy consumption for battery-powered devices [6], making it in-
convenient to adopt computation-intensive security mechanisms such as standard
cryptographic protocols.

The attack surface of cryptographic implementations is quite large, ranging from
an incidental bad parameter choice, to major design flaws, software bugs and low-
level hardware attacks. As an example, in the last two decades several timing [58]
and cache [85] side-channels targeting cryptographic software and libraries have
been made public. In particular, the Spectre [59], Meltdown [64] and SGX [27]
vulnerabilities affecting modern microprocessors proved that even sound crypto-
graphic implementations can be successfully attacked. It is thus of crucial impor-
tance to conduct studies on existing cryptographic designs and implementations,
accounting for the entire attack surface. In this thesis we address this tangled prob-
lem from three different perspectives: software, hardware and physical.

Software Keystores

First, we address the problem of the secure management of cryptographic keys in
software which need to be protected and securely stored by applications. Leaking
cryptographic keys, in fact, diminishes any advantage of cryptography, allowing
attackers to break message confidentiality and integrity, to authenticate as legitimate
users or impersonate legitimate services. Quoting [102], “key management is the

4 Contents

hardest part of cryptography and often the Achilles’ heel of an otherwise secure
system”.

In the recent years we have faced a multitude of flaws related to cryptography
(e.g., [18, 11, 69, 68]). Some of these are due to the intrinsic complexity of cryp-
tography, that makes it hard to design applications that adopt secure combinations
of mechanisms and algorithms. For example, in padding oracle attacks, the usage
of some (standard) padding for the plaintext combined with a specific algorithm
or mechanism makes it possible for an attacker to break a ciphertext in a matter
of minutes or hours [122, 21, 11]. Most of the time this is not a developer fault
as, unfortunately, there are well-known flawed mechanisms that are still enabled
in cryptographic libraries. In other cases, the attacks are due to flaws in protocols
or applications. The infamous Heartbleed bug allowed an attacker to get access to
server private keys through a simple over-read vulnerability. Once the private key
was leaked, the attacker could decrypt encrypted traffic or directly impersonate the
attacked server [69]. Thus, breaking cryptography is not merely a matter of break-
ing a cryptographic algorithm: the attack surface is quite large and the complexity of
low-level details requires abstractions. Crypto APIs offer a form of abstraction to de-
velopers that allows to make use of cryptography in a modular and implementation-
independent way. The Java platform, for example, provides a very elegant abstrac-
tion of cryptographic operations that makes it possible, in many cases, to replace a
cryptographic mechanism or its implementation with a different one without modi-
fying the application code.

Crypto APIs, however, do not usually provide security independently of the low-
level implementation: default mechanisms are often the weakest ones, thus develop-
ers have to face the delicate task of choosing the best mechanism available for their
needs. For example, in the Java Cryptography Architecture (JCA), ECB is the default
mode of operation for block ciphers [52] and PKCS#1 v1.5 is the default padding
scheme for RSA [53], which is well know to be subject to padding oracle attacks [21].
Additionally, crypto APIs that promise to provide security for cryptographic keys
have often failed to do so: in PKCS#11, the standard API to cryptographic tokens, it
is possible to wrap a sensitive key under another key and then just ask the device to
decrypt it, obtaining the value of the sensitive key in the clear [32], and violating the
requirement that “sensitive keys cannot be revealed in plaintext off the token” [97].

In this thesis we analyse in detail the security of key management in the Java
ecosystem and, in particular, of Java keystores. Password-protected keystores are,
in fact, the standard way to securely manage and store cryptographic keys in Java:
once the user (or the application) provides the correct password, the keys in the key-
store become available and can be used to perform cryptographic operations, such as
encryption and digital signature. The KeyStore Java class abstracts away from the
actual keystore implementation, which can be either in the form of an encrypted file
or based on secure hardware. As discussed above, this abstraction is very important
for writing code that is independent of the implementation but developers are still

Contents 5

required to select among the various keystore types offered by Java. Unfortunately,
the information in the keystore documentation is not enough to make a reasoned
and informed choice among the many alternatives. More specifically, given that the
Java Keystore API does not provide control over the cryptographic mechanisms and
parameters employed by each keystore, it is crucial to assess the security provided
by the different implementations, which motivated us to perform the detailed anal-
ysis reported in this thesis. In fact, our work is the first one studying the security of
keystores for general purpose Java applications.

We have estimated the adoption rate and analysed the implementation details
of seven different Java keystores offered by the Oracle JDK and by Bouncy Castle,
a widespread cryptographic library. Keystores are used by hundreds of commer-
cial applications and open-source projects, as assessed by scraping the GitHub code
hosting service including leading web applications servers and frameworks, e.g.,
Tomcat [4], Spring [112], Oracle Weblogic [126]. Additionally, keystores have been
found to be widespread among security-critical custom Java software for large fi-
nance, government and healthcare companies audited by the authors.

The security of keystores is achieved by performing a cryptographic operation
C under a key which is derived from a password through a function F called Key
Derivation Function (KDF). The aim of the cryptographic operation C is to guarantee
confidentiality and/or integrity of the stored keys. For example, a Password-Based
Encryption (PBE) scheme is used to protect key confidentiality: in this case C is
typically a symmetric cipher, so that keys are encrypted using the provided pass-
word before being stored in the keystore. In order to retrieve and use that key, the
keystore implementation will perform the following steps: (a) obtain the password
from the user; (b) derive the encryption key from the password using F; (c) decrypt
the particular keystore entry through C, and retrieve the actual key material. Notice
that different passwords can be used to protect different keys and/or to achieve in-
tegrity. To prevent attacks, it is highly recommended that C and F are implemented
using standard, state-of-the-art cryptographic techniques [73, 99].

Interestingly, we have found that the analysed keystores use very diverse imple-
mentations for C and F and in several cases they do not adhere to standards or use
obsolete and ad-hoc mechanisms. We show that, most of the time, keystores using
weak or custom implementations for the key derivation function F open the way
to password brute-forcing. We have empirically measured the speed-up that the at-
tacker achieves when these flawed keystores are used and we show that, in some
cases, brute-forcing is three orders of magnitude faster with respect to the keystores
based on standard mechanisms. We even found keystores using the deprecated ci-
pher RC2 that enables an attacker to brute-force the 40-bit long cryptographic key in
a matter of hours using a standard desktop computer.

Our analysis has also pointed out problems related to availability and malicious
code execution, which are caused by type-flaws in the keystore, i.e., bugs in which
an object of a certain type is interpreted as one of a different type. In particular, by

6 Contents

directly tampering with the keystore file, an attacker could trigger denial of service
(DoS) attacks or even arbitrary code execution. Interestingly, we also found that the
use of standard key derivation functions can sometimes enable DoS attacks. These
functions are parametrized by the number of internal iterations, used to slow down
brute-forcing, which is stored in the keystore file. If the number of iterations is set to
a very big integer, the key derivation function will hang, blocking the whole appli-
cation.

Cryptographic Hardware API

Cryptographic hardware such as USB tokens, smartcards and Hardware Security
Modules has become a standard component of any system that uses cryptography
for critical activities requiring a higher degree of protection compared to software-
based solutions. Cryptographic hardware allows operations to be performed inside
a protected, tamper-resistant environment, without the need for the application to
access the (sensitive) cryptographic keys. In this way, if an application is compro-
mised the cryptographic keys are not leaked, since their value is stored securely in
the device.

Cryptographic hardware is accessed via a dedicated API. PKCS#11 defines the
RSA standard interface for cryptographic tokens and is now administered by the
Oasis PKCS11 Technical Committee [89, 90]. In PKCS#11, fresh keys are directly
generated inside devices and can be shared with other devices through special key
wrapping and unwrapping operations, that allow for exporting and importing keys
encrypted under other keys. For example, a fresh symmetric key k can be encrypted
(wrapped) by device d1 under the public key of device d2 and then exported out of
d1 and imported (unwrapped) inside d2 that will perform, internally, the decryption.
In this way, key k will never appear as cleartext out of the devices. One of the funda-
mental properties of PKCS#11 is, in fact, that keys marked as sensitive should never
appear out of a device unencrypted.

In the last 15 years, several API-level attacks on cryptographic keys have ap-
peared in literature [1, 22, 23, 26, 32, 39, 65]. As pioneered by Clulow [32], the
attributes of a PKCS#11 key might be set so to give the key conflicting roles, con-
tradicting the standard key separation principle in cryptography. For example, to
determine the value of a sensitive key k1 given a second key k2, an attacker simply
wraps k1 using k2 and decrypts the resulting ciphertext using k2 once again. The fact
that a key should never be used to perform both the wrapping of other keys and the
decryption of arbitrary data (including wrapped keys) is not explicitly stated in the
specification of PKCS#11 and many commercial devices have been recently found
vulnerable to Clulow’s attack [26].

In this thesis, we describe new attacks that work at a different API-level. The
PKCS#11 API is typically implemented in the form of a middleware which trans-
lates the high-level PKCS#11 commands into low-level ISO 7816 Application Proto-
col Data Units (APDUs) and exposes results of commands in the expected PKCS#11

Contents 7

format. In our experiments, we noticed that this translation is far from being a 1-
to-1 mapping. Devices usually implement simple building blocks for key storage
and cryptographic operations, but most of the logic and, in some cases, some of the
sensitive operations are delegated to the middleware.

We have investigated how five commercially available devices implement vari-
ous security-critical PKCS#11 operations, by analysing in detail the APDU traces. Our
findings show that APDU-level attacks are possible and that four out of the five anal-
ysed devices leak symmetric sensitive keys in the clear, out of the device. We also
show that, under a reasonable attacker model, the authentication phase can be bro-
ken, allowing for full access to cryptographic operations. Interestingly, we found
that most of the logic of PKCS#11 is implemented at the library level. Key attributes
that regulate the usage of keys do not have any importance at the APDU-level and can
be easily bypassed. For example, we succeeded performing signatures under keys
that do not have this functionality enabled at the PKCS#11 level. For one device, we
also found that RSA session keys are managed directly by the library in the clear vi-
olating, once more, the PKCS#11 basic requirement that sensitive keys should never
leave the token unencrypted.

In this thesis we focus primarily on USB tokens and smartcards, so our threat
model refers to a typical single-user desktop/laptop configuration. In particular, we
consider various application configurations in which the PKCS#11 layer and the au-
thentication phase are run at different privileges with respect to the user application.
Protecting the PKCS#11 middleware turns out to be the only effective way to pre-
vent the APDU-level attacks that we discovered, assuming that the attacker does not
have physical access to the token. In fact, physical access would enable USB sniffing,
revealing any key communicated in the clear from/to the token. Separating authen-
tication (for example using a dialog running at a different privilege) offers additional
protection and makes it hard to use the device arbitrarily through the PKCS#11 API.
However, an attacker might still attach to the process and mount a Man-In-The-
Middle attack at the PKCS#11 layer, injecting or altering PKCS#11 calls.

Physical Attacks in Embedded Systems

Side-channel attacks are considered among the most powerful physical attacks against
embedded devices and secure (e.g., smartcards) or specialized hardware (e.g., FPGAs
or ASICs). There exist two classes of side-channel attacks: passive and active [111].
Passive attacks exploit information that is spontaneously leaked by the device such
as power consumption [28], timing information [58], electromagnetic emissions [41]
or even acoustic emanations [8]. Active attacks (also known as fault injection at-
tacks), instead, influence the system with internal or external stimuli. For instance,
optical fault injection is a powerful technique that exposes the silicon to high in-
tensity light sources, e.g., laser and UV, to induce errors or tamper with the data.
Since this technique involves decapsulating [110] the chip from its package, techni-
cal expertise and specialized equipment are required. Electromagnetic fault attacks

8 Contents

(EM-FI) avoid the need of chip decapsulation since faults are injected through the
package using an EM injector [101]. However, some degree of specialized equip-
ment, e.g., a high precision positioning system [84] or an RF amplifier, can still be
necessary to conduct complex attacks.

Given the level of sophistication required by some fault injection attacks, capabil-
ities and performance are not the only relevant factors for classifying and evaluating
them: the cost also plays a crucial role. In [12] Barenghi et al. consider as low cost
the injection methods requiring less than $3000 of equipment, which are within the
means of a single motivated attacker. The authors point out that “these fault in-
jection techniques should be considered as a serious threat to the implementations
of secure chips that may be subjected to them”. Moreover, the Common Criteria
provides a rating for evaluating the attack potential [34], that assigns higher severity
scores to side-channel and fault injection attacks that require little special equipment
and can be mounted under lower cost and expertise. This metric is used in practice
by testing laboratories, in order to quantify the resistance of secure devices against
these classes of attacks.

In this thesis, we focus on power supply fault injection, also called voltage fault
injection (V-FI), a technique that involves creating disturbances, namely voltage glit-
ches or spikes, on an otherwise stable power supply line. V-FI is a widely used
technique because of its effectiveness and, in particular, its low cost. Both in the
literature and in industry, efforts have been made to ease mounting complex V-FI
attacks [78, 76]. For instance, commercial tools and open source frameworks such as
the ChipWhisperer1 provide an abstraction layer for controlling the attack param-
eters at the software level, reducing the electronic skills required. This allows for
scientists with different background (e.g., algorithms, statistics, machine learning) to
focus on the attack logic and apply their own expertise to the hardware side-channel
field. A recent study [131] shows that the disturbances induced in the chip via V-
FI are effectively caused by the rising and falling edges of the injected glitch. In
the literature however, the injected pulses are typically generated as a squared or
v-shaped voltage signal, described by a limited set of parameters such as supply
voltage, glitch lowest voltage and pulse duration.

In this work, we move one step forward and propose a new V-FI technique which
is based on fully arbitrary voltage glitch waveforms. We analyse the attack perfor-
mance, repeatability and feasibility, in terms of generating this type of glitches using
off-the-shelf and low cost equipment. In order to experimentally assess the effective-
ness of the arbitrary glitch waveform approach, we present six unpublished attacks
against general purpose microcontrollers from three manufacturers. The injected
faults are used to alter the execution-flow of the integrated serial bootloader, skip-
ping security checks or generating side-channels that can, in turn, be exploited to
gradually leak sensitive data, including the firmware code. We divide the firmware

1https://newae.com/tools/chipwhisperer

https://newae.com/tools/chipwhisperer

Contents 9

extraction case studies in two classes based on the design and runtime complex-
ity. In the former, the number of successful faults required is from low to moderate
(≤ 100 k) with a straightforward attack logic. On the contrary, the second class repre-
sents particularly challenging attacks that require several days to complete, exploit
multiple vulnerabilities and inject over one million glitches. Finally, we perform a
thorough evaluation of arbitrary glitch waveforms by comparing the attack perfor-
mance against two popular V-FI techniques in the literature.

We selected firmware extraction for our case studies since firmware protection
plays a crucial role in several industrial applications, e.g., for IP and sensitive data
protection. Moreover, firmware extraction is a fundamental part of the reverse en-
gineering process performed by researchers to assess the security of embedded sys-
tems, ranging from domestic appliances to critical devices such as automotive con-
trol units and health devices (e.g., defibrillators, heart rate monitors, implants). In
this respect, the six unpublished attacks presented in this thesis contribute, by them-
selves, to the state of the art, demonstrating the unsuitability of the attacked devices
for security sensitive applications. Along a responsible disclosure policy, all the vul-
nerabilities that we have found and the firmware extraction attacks have been timely
reported to the manufacturers: STMicroelectronics, Texas Instruments and Renesas
Electronics.

Structure of the Thesis

The following is an overview of the thesis organization and the topic of each chapter.

• Chapter 1 explains the terminology and provides some background on the top-
ics presented in the thesis;

• Chapter 2 analyses the security provided by Java keystores, the standard stor-
age facilities that allow for storing and managing cryptographic keys securely
in Java applications;

• Chapter 3 focuses on the security of tamper-resistant cryptographic hardware.
In particular, we examine the low-level APDU protocol which is used to commu-
nicate with five commercially available PKCS#11 smartcards and USB secure
tokens;

• Chapter 4 studies fault injection, a class of powerful physical attacks targeting
secure hardware and embedded systems.

Summary of Contributions

For what concerns the analysis of Java keystores, in Chapter 2 we define a gen-
eral threat model for password-protected keystores and we distil a set of significant
security properties, and consequent rules, that any secure keystore should adhere

10 Contents

to. We conduct a thoughtful analysis of seven keystores, report undocumented de-
tails about their cryptographic implementations, and provide a detailed description
of the mechanisms used by each keystore to enforce confidentiality and integrity
of the stored keys and certificates. We also evaluate the strength of the password-
based cryptography used to protect the keystores and we report on several attacks
on implementations that do not adhere to state-of-the-art cryptographic standards.
Finally, we empirically estimate the brute-force speed-up due to bad cryptographic
implementations with respect to the most resistant keystore and also to the NIST
recommendations.

In the context of secure cryptographic hardware, we contribute in Chapter 3 by
examining the low-level APDU protocol which is used to communicate with PKCS#11
smartcards and USB secure tokens. We show that the PKCS#11 API is typically im-
plemented in the form of a software, called middleware, which translates the high-
level PKCS#11 commands into the low-level APDU protocol. We devise the first threat
model for PKCS#11 middleware and we show that APDU-level attacks are possible.
We present, in particular, new attacks for leaking symmetric sensitive keys in the
clear and bypass the authentication from five commercially available tokens and
smartcards, some of which were previously considered secure. Moreover, we pro-
vide a detailed security analysis of the vulnerabilities with respect to the attacker
model and suggest a series of fixes and mitigations.

In Chapter 4 we contribute on physical attacks against secure hardware and em-
bedded systems. Specifically, we investigate on voltage fault injection, a class of
powerful active side-channel attacks. We study the effect of different glitch wave-
forms and, in particular, we propose a new method for the generation of arbitrary
glitch waveforms using a low-cost and software-managed setup. We describe an
unsupervised method based on genetic algorithms for identifying the set of pa-
rameters that maximize the attack performance. We report on unpublished vulner-
abilities and weaknesses in six microcontrollers from three major manufacturers.
Then, by combining these vulnerabilities, we describe novel attacks for extracting
the firmware from the internal read-protected flash memory. Finally, we assess the
effectiveness of our proposed approach by conducting an extensive experimental
campaign in which we compare the speed, efficiency and reliability of our solution
against two other major V-FI techniques.

11

Chapter 1

Background

In this section we explain the terminology and provide some background on the
topics presented in the following chapters. Readers familiar with the PKCS#11 and
ISO 7816 standards, microcontrollers and the principles of voltage fault injection
attacks can safely skip this section.

1.1 Architecture of the Cryptographic Hardware API

PKCS#11 defines the RSA standard interface for cryptographic tokens and is now
developed by the Oasis PKCS11 Technical Committee [89, 90]. The PKCS#11 API
is typically implemented in the form of a middleware which translates the high-
level PKCS#11 commands into low-level ISO 7816 Application Protocol Data Units
(APDUs) and exposes results of commands in the expected PKCS#11 format. Thus,
from an architectural perspective, the PKCS#11 middleware can be seen as the com-
bination of two layers: the PKCS#11 API and the device API. All of the devices we
have analysed are based on the PC/SC specification for what concerns the low-level
device API.1 This layer is the one that makes devices operable from applications and
allows for communication with the device reader, exposing both standard and pro-
prietary commands, formatted as ISO 7816 APDUs. In the following, we will refer to
this layer as the APDU layer.

The PKCS#11 and the APDU layer are usually implemented as separate libraries.
As an example, in Windows systems PC/SC is implemented in the winscard.dll
library. Then, a separate, device-specific PKCS#11 library links to winscard.dll in
order to communicate with the device.

It is important to notice that, even if PC/SC provides a standard layer for low-
level communication, different devices implement the PKCS#11 API in various, sub-
stantially different ways. As a consequence, each device requires its specific PKCS#11
library on top of the PC/SC one. Figure 1.1 gives an overview of a typical PKCS#11
middleware architecture with two cards requiring two different PKCS#11 libraries
which communicates with the cards using the same PC/SC library. In Section 1.1.1
and 1.1.2 we illustrate the PKCS#11 and the APDU layers more in detail.

1http://www.pcscworkgroup.com/

http://www.pcscworkgroup.com/

12 Chapter 1. Background

FIGURE 1.1: PKCS#11 middleware for two PC/SC (winscard.dll)
cards with different PKCS#11 libraries.

1.1.1 The PKCS#11 Layer

As well as providing access to cryptographic functions – such as encryption, decryp-
tion, sign and authentication – PKCS#11 is designed to to provide a high degree of
protection of cryptographic keys. Importing, exporting, creating and deleting keys
stored in the token should always be performed in a secure way. In particular, the
standard requires that even if the token is connected to an untrusted machine, in
which the operating system, device drivers or software might be compromised, keys
marked as sensitive should never be exported as cleartext out of the device.

In order to access the token, an application must authenticate by supplying a PIN
and initiate a session. Notice, however, that if the token is connected to an untrusted
machine the PIN can be easily intercepted, e.g., through a keylogger. Thus, the PIN
should only be considered as a second layer of protection and it should not be possi-
ble to export sensitive keys in the clear even for legitimate users, that know the PIN
(cf. [90], section 7).

PKCS#11 defines a number of attributes for keys that regulate the way keys should
be used. We briefly summarize the most relevant ones from a security perspective
(see [89, 90] for more detail):

CKA_SENSITIVE the key cannot be revealed as plaintext out of the token. It should
be impossible to unset this attribute once it has been set, to avoid trivial attacks;

CKA_EXTRACTABLE the key can be wrapped, i.e. encrypted, under other keys and ex-
tracted from the token as ciphertext; unextractable keys cannot be revealed out
of the token even when encrypted. Similarly to CKA_SENSITIVE, it should not
be possible to mark a key as extractable once it has been marked unextractable;

CKA_ENCRYPT, CKA_DECRYPT the key can be used to encrypt and decrypt arbitrary
data;

1.1. Architecture of the Cryptographic Hardware API 13

0 /* Session initialization and loading of DESkey has been omitted ... */
1

2 CK_BYTE_PTR plaintext = "AAAAAAAA"; /* plaintext */
3 CK_BYTE iv[8] = {1, 2, 3, 4, 5, 6, 7, 8}; /* initialization vector */
4 CK_BYTE ciphertext[8]; /* ciphertext output buffer */
5 CK_ULONG ciphertext_len; /* ciphertext length */
6 CK_MECHANISM mechanism = {CKM_DES_CBC, iv, sizeof(iv)}; /* DES CBC mode with given iv */
7

8 /* Initialize the encryption operation with mechanism and DESkey */
9 C_EncryptInit(session, &mechanism, DESkey);

10

11 /* Encryption of the plaintext string into ciphertext buffer */
12 C_Encrypt(session, plaintext, strlen(plaintext), ciphertext, &ciphertext_len);

LISTING 1.1: PKCS#11 DES/CBC encryption under key DESkey.

CKA_WRAP, CKA_UNWRAP the key can be used to encrypt (wrap) and decrypt (unwrap)
other CKA_EXTRACTABLE, possibly CKA_SENSITIVE keys. These two operations
are used to export and import keys from and into the device;

CKA_SIGN, CKA_VERIFY the key can be used to sign and verify arbitrary data;

CKA_PRIVATE the key can be accessed even if the user is not authenticated to the
token when it is set to false;

CKA_TOKEN the key is not stored permanently on the device (discarded at the end of
the session) when it is set to false.

Example 1 (PKCS#11 symmetric key encryption). Listing 1.1 reports a fragment of C
code performing symmetric DES/CBC encryption of plaintext "AAAAAAAA" with ini-
tialization vector 0x0102030405060708. PKCS#11 session has already been initiated
and session contains a handle to the active session. We also assume that DESkey is
a valid handle to a DES encryption key.

We can see that C_EncryptInit initializes the encryption operation by instan-
tiating the DES/CBC cryptographic mechanism and the cryptographic key DESkey.
Then, C_Encrypt performs the encryption of the string plaintext and stores the
result and its length respectively in ciphertext and ciphertext_len. In order to
keep the example simple, we skipped checks for errors that should be performed
after every PKCS#11 API call (cf. [90], section 11). In the following we show how
this example is mapped in APDUs on one token.

1.1.2 The APDU Layer

The ISO/IEC 7816 is a standard for identification, integrated circuit cards. Organi-
zation, security and commands for interchange are defined in part 4 of the standard
[50]. The communication format between a smartcard and an off-card application
is defined in terms of Application Protocol Data Units (APDUs). In particular, the
half-duplex communication model is composed of APDU pairs: the reader sends a
Command APDU (C-APDU) to the card which replies with a Response APDU (R-APDU).
The standard contains a list of inter-industry commands whose behaviour is specified

14 Chapter 1. Background

0 # The challenge-response authentication is omitted. For details see Section 3.2.1
1

2 # ISO-7816 SELECT FILE command to select the folder (DF) where the key is stored
3 APDU: 00 a4 04 0c 00 00 06 50 55 42 4c 49 43
4 SW: 90 00
5 # ISO-7816 SELECT FILE command to select the file (EF) containing the encryption key
6 APDU: 00 a4 02 0c 00 00 02 83 01
7 SW: 90 00
8 # Encryption of the plaintext (red/italic) using the selected key and the given IV (green/overlined)
9 # The ciphertext is returned by the token (blue/underlined).

10 APDU: 80 16 00 01 00 00 10 01 02 03 04 05 06 07 08 41 41 41 41 41 41 41 41 00 00
11 SW: d2 ef a5 06 92 64 44 13 90 00

LISTING 1.2: APDU session trace of the PKCS#11 symmetric key
encryption.

and standardized. Manufacturers can integrate these standard commands with their
own proprietary commands.

A C-APDU is composed of a mandatory 4-byte header (CLA,INS,P1,P2), and an
optional payload (Lc,data,Le), described below:

CLA one byte referring to the instruction class which specifies the degree of compli-
ance to ISO/IEC 7816 and whether the command and the response are inter-
industry or proprietary. Typical values are 0x00 and 0x80, respectively for
inter-industry and proprietary commands;

INS one byte representing the actual command to be executed, e.g. READ RECORD;

P1,P2 two bytes containing the instruction parameters for the command, e.g. the
record number/identifier;

Lc one or three bytes, depending on card capabilities, containing the length of the
optional subsequent data field;

data the actual Lc bytes of data sent to the card;

Le one or three bytes, depending on card capabilities, containing the length (pos-
sibly zero) of the expected response.

The R-APDU is composed of an optional Le bytes data payload (absent when Le is 0),
and a mandatory 2-bytes status word (SW1,SW2). The latter is the return status code
after command execution (e.g. FILE NOT FOUND).

Example 2 (Symmetric key encryption in APDUs). We show how the PKCS#11 code of
Example 1 is mapped into APDUs on the Athena ASEKey USB token. Notice that this
token performs a challenge-response authentication before any privileged command
is executed. For simplicity, we omit the authentication part in this example but will
discuss it in detail in Section 3.2.1.

The encryption operation begins by selecting the encryption key from the right
location in the token memory: at line 3, the token selects the directory (called Dedi-
cated File in ISO-7816) and, at line 6, the file (Elementary File) containing the key. At
line 10, the encryption is performed: the Initialization Vector and the plaintext are
sent to the token which replies with the corresponding ciphertext.

1.2. Voltage Fault Injection 15

We describe in detail the the APDU format specification of SELECT FILE com-
mand at line 3:

CLA value 0x00 indicates that the command is ISO-7816 inter-industry;

INS value 0xA4 corresponds to inter-industry SELECT FILE (cf. [50], section 6);

P1 value 0x04 codes a direct selection of a Dedicated File by name;

P2 value 0x0C selects the first record, returning no additional information about
the file;

Lc the tokens is operating in extended APDU mode, thus this field is 3 bytes long.
Value 0x000006 indicates the length 6 of the subsequent field;

data contains the actual ASCII-encoded name (“PUBLIC”) of the DF to be selected;

SW1,SW2 the status word 0x90 0x00 returned by the token indicates that the com-
mand was successfully executed.

It is important to notice that the C_EncryptInit function call sends no APDU to the
token: we can infer that the low level protocol of the encryption operation is state-
less and the state is managed inside the PKCS#11 library. This example shows that
the mapping between the PKCS#11 layer and the APDU layer is not 1-to-1 and the
PKCS#11 library is in some cases delegated to implement critical operations, such
as maintaining the state of encryption. We will see how this leads to attacks in Sec-
tion 3.2.

1.2 Voltage Fault Injection

Voltage fault injection is a non-invasive2 class of attacks [7, 108] that focuses on cre-
ating disturbances on an otherwise stable power supply line in order to cause a
misbehaviour in the target. This is the result of setup time violations3 that can cause
incorrect data to be captured [131, 105, 130], allowing an attacker to tamper with the
regular control flow, e.g., by skipping instructions, influencing a branch decision,
corrupting memory locations, or altering the result of an instruction or its side ef-
fects. The disturbances that are induced in the power supply line are called voltage
glitches or simply glitches. A glitch is a transient voltage drop with a duration typi-
cally in the ns to µs range, that occurs at a specific instant of time. Glitch timing (also
glitch trigger or trigger) is usually calculated as a delay from a specific triggering
event such as I/O activity or power-up.

There exist multiple techniques for generating and injecting a voltage glitch into
the power supply line of the target device. One of the most commonly used V-FI
setup [76, 129], also supported by commercial tools such as the well-known Chip-
Whisperer [78], is represented in Figure 4.2a. A transistor, typically MOS-FET, is

2Voltage fault injection requires no physical opening and no chemical preparation of the package.
3In digital designs the setup time indicates the minimum time required for an input data to be stable

before the active edge clock.

16 Chapter 1. Background

placed in parallel to the power supply line and it is used to briefly short-circuit Vcc
to ground.4 Then, the glitch is triggered by a microcontroller (MCU) or a Field Pro-
grammable Gate Array (FPGA) managing the attack timing. The main limitations of
this technique are the reduced control over the attack parameters: for instance, ad-
ditional equipment is required for controlling the voltage levels, and the generated
glitch can be unpredictable, (cf. Figure 4.2b) due to variations in both MOS-FET and
target electronic properties.

MCUs integrate processor, flash memory and other peripherals in a single pack-
age. However, some microcontrollers also integrate a voltage regulator for provid-
ing a fixed and stable power supply to the internal processor and memory, indepen-
dently from the actual input voltage. Depending on the regulator technology, an
external filtering capacitor can be required: in this setting, the voltage glitch source
can be connected directly to the capacitor pin in order to bypass the internal regula-
tor and avoid any interference of this component during the attack.

1.2.1 Microcontroller Programming Interfaces

The software running on the MCU, namely the firmware, can typically be loaded
(also programmed) to the internal flash memory using a debug interface exposed by
the MCU: the most common is the standard JTAG / SWD interface as it can also be
used for debugging the code, inspecting RAM content and accessing the integrated
peripherals. Often a serial bootloader, pre-programmed by the manufacturer, ex-
poses a set of API that can be used for, e.g., write, erase or verify the firmware from
a computer.

4Voltage glitches below 0 V are common for particular targets, e.g., smartcards [88, 30].

17

Chapter 2

Software Keystores

18 Chapter 2. Software Keystores

In this chapter we address the problem of the secure management of crypto-
graphic keys in software, which need to be protected and securely stored by applica-
tions. If an attacker manages to leak cryptographic keys, in fact, she has the ability to
break message confidentiality and integrity, to authenticate as legitimate users or to
impersonate legitimate services, thus vanishing any advantage of cryptography. In
this context we analyse in detail the security of key management in the Java ecosys-
tem and, in particular, of Java keystores. In Java, password-protected keystores are
the standard facility to securely manage and store cryptographic keys: once the user
(or the application) provides the correct password, the keys in the keystore become
available and can be used to perform cryptographic operations, such as encryption
and digital signature.

Unless stated otherwise, our findings refer to Oracle JDK 8u144 and Bouncy Cas-
tle 1.57, the two latest releases at the time of the first submission of this work in
August 2017.

Contributions. The contributions found in this chapter can be summarized as fol-
lows:

(i) we define a general threat model for password-protected keystores and we dis-
til a set of significant security properties and consequent rules that any secure
keystore should adhere to;

(ii) we perform a thoughtful analysis of seven keystores, we report undocumented
details about their cryptographic implementations and we classify keystores
based on our proposed properties and rules;

(iii) we report on novel attacks and weaknesses in the analysed keystores. For each
attack we point out the corresponding violations of our proposed properties
and rules and we provide a precise attacker model;

(iv) we empirically estimate the speed-up due to bad cryptographic implementa-
tions and we show that, in some cases, this allows to decrease the guessing
time of three orders of magnitude with respect to the most resistant keystore,
and four orders of magnitude with respect to NIST recommendations; inter-
estingly, the attack on Oracle JKS keystore that we present in this chapter, and
we previously mentioned in a blog post [37], has been recently integrated into
the Hashcat password recovery tool;

(v) we discuss the advancements on the security of Oracle and Bouncy Castle key-
store implementations following our responsible disclosure. The Oracle Secu-
rity Team acknowledged the reported issues by assigning three CVE IDs [70,
71, 72] and released the fixes between the October 2017 and the April 2018 Crit-
ical Patch Updates [81, 82]. Bouncy Castle developers patched some of the re-
ported vulnerabilities in version 1.58 and the remaining issues were addressed
in the following releases.

2.1. Security Properties and Threat Model 19

Structure of the chapter. In Section 2.1 we define the security properties of inter-
est, the rules for the design of secure keystores and the threat model; in Section 2.2
we report on our analysis of seven Java keystores; in Section 2.3 we describe new
attacks on the analysed keystores; in Section 2.4 we make an empirical comparison
of the password cracking speed among the keystores; in Section 2.5 we discuss the
improvements implemented by Oracle and Bouncy Castle following our responsible
disclosure; finally, in Section 2.6 we draw some concluding remarks and present the
related work.

2.1 Security Properties and Threat Model

In this section, we identify a set of fundamental security properties that should be
guaranteed by any keystore (Section 2.1.1). We then distil rules that should be fol-
lowed when designing a keystore in order to achieve the desired security properties
(Section 2.1.2). Finally, we introduce the threat model covering a set of diverse at-
tacker capabilities that enable realistic attack scenarios (Section 2.1.3).

2.1.1 Security Properties

We consider standard security properties such as confidentiality and integrity of
keys and keystore entries. Breaking confidentiality of sensitive keys allows an at-
tacker to intercept all the encrypted traffic or to impersonate the user. Breaking
integrity has similar severe consequences as it might allow an attacker to import
fake CA certificates and old expired keys. Additionally, since the access to a key-
store is mediated by a software library or an application, we also consider the effect
that a keystore has on the execution environment. Thus, we require the following
properties:

P1 Confidentiality of encrypted entries

P2 Integrity of keystore entries

P3 System integrity

Property P1 states that the value of an encrypted entry should be revealed only to
authorized users, who know the correct decryption password. According to P2, key-
store entries should be modified, created or removed only by authorized users, who
know the correct integrity password, usually called store password. Property P3 de-
mands that the usage of a keystore should always be tolerated by the environment,
i.e., interacting with a keystore, even when provided by an untrusted party, should
not pose a threat to the system, cause misbehaviours or hang the application due to
an unsustainable performance hit.

A keystore file should be secured similarly to a password file: the sensitive con-
tent should not be disclosed even when the file is leaked to an attacker. In fact, it is

20 Chapter 2. Software Keystores

often the case that keystores are shared in order to provide the necessary key mate-
rial to various corporate services and applications. Thus, in our threat model we will
always assume that the attacker has read access to the keystore file (cf. Section 2.1.3).
For this reason we require that the above properties hold even in the presence of of-
fline attacks. The attacker might, in fact, brute-force the passwords that are used to
enforce confidentiality and integrity and, consequently, break the respective proper-
ties.

2.1.2 Design Rules

We now identify a set of core rules that should be embraced by the keystore design
in order to provide the security guarantees of Section 2.1.1:

R1 Use standard, state-of-the-art cryptography

R2 Choose strong, future-proof cryptographic parameters, while maintaining ac-
ceptable performance

R3 Enforce a typed keystore format

Rule R1 dictates the use of modern and verified algorithms to achieve the desired
keystore properties. It is well-known that the design of custom cryptography is a
complex task even for experts, whereas standard algorithms have been carefully
analysed and withstood years of cracking attempts by the cryptographic commu-
nity [16]. In this context, the National Institute of Standards and Technology (NIST)
plays a prominent role in the standardization of cryptographic algorithms and their
intended usage [17], engaging the cryptographic community to update standards ac-
cording to cryptographic advances. For instance, NIST declared SHA1 unacceptable
to use for digital signatures beginning in 2014, and more recently, urged all users of
Triple-DES to migrate to AES for encryption as soon as possible [119] after the find-
ings published in [19]. The KDF function recommended by NIST [118] is PBKDF2,
as defined in the PKCS#5 standard, which supersedes the legacy PBKDF1. Another
standard KDF function is defined in PKCS#12, although it has been deprecated for
confidentiality purposes in favour of PBKDF2.

Key derivation functions combine the password with a randomly generated salt
and iteratively apply a pseudorandom function (e.g., a hash function) to produce a
cryptographic key. The salt allows the generation of a large set of keys correspond-
ing to each password [127], while the high number of iterations is introduced to
hinder brute-force attacks by significantly increasing computational times. Rule R2
reflects the need of choosing parameters to keep pace with the state-of-the-art in
cryptographic research and the advances in computational capabilities. The latest
NIST draft on Digital Identity Guidelines [45] sets the minimum KDF iteration count
to 10,000 and the salt size to 32 bits. However, such lower bounds on the KDF should
be significantly raised for critical keys according to [118] which suggests to set the
number of iterations as high as can be tolerated by the environment, while maintain-
ing acceptable performance. For instance, Apple iOS derives the decryption key for

2.1. Security Properties and Threat Model 21

the device from the user password using a KDF with an iteration count calculated by
taking into account the computational capabilities of the hardware and the impact
on the user experience [5].

Finally, rule R3 states that the keystore format must provide strong typing for
keystore content, such that cryptographic objects are stored and read unambigu-
ously. Despite some criticism over the years [46], the PKCS#12 standard embraces
this principle providing precise types for storing many cryptography objects. Ad-
ditionally, given that keystore files are supposed to be accessed and modified by
different parties, applications parsing the keystore format must be designed to be
robust against malicious crafted content.

Interestingly, not following even one of the aforementioned rules may lead to a
violation of confidentiality and integrity of the keystore entries. For instance, ini-
tializing a secure KDF with a constant or empty salt, which violates only R2, would
allow an attacker to precompute the set of possible derived keys and take advantage
of rainbow tables [80] to speed up the brute-force of the password. On the other hand,
a KDF with strong parameters is useless once paired with a weak cipher, since it is
easier to retrieve the encryption key rather than brute-forcing the password. In this
case only R1 is violated.

Additionally, disrespecting Rule R3 may have serious consequences on system
integrity (breaking property P3), which range from applications crashing due to
parsing errors while loading a malicious keystore to more severe scenarios where
the host is compromised. An attacker exploiting type-flaw bugs could indirectly
gain access to the protected entries of a keystore violating the confidentiality and in-
tegrity guarantees. System integrity can additionally be infringed by violating Rule
R2 with an inadequate parameter choice, e.g., an unreasonably high iteration count
value might hang the application, slow down the system or prevent the access to
cryptographic objects stored in a keystore file due to an excessive computational
load. In Section 2.3 we show how noncompliance to these rules translate into con-
crete attacks.

2.1.3 Threat Model

In our standard attacker model we always assume that the attacker has read access
to the keystore file, either authorized or by means of a data leakage. We also as-
sume that the attacker is able to perform offline brute-force attacks using a powerful
system of her choice.

We now present a list of interesting attacker settings, that are relevant with re-
spect to the security properties defined in Section 2.1.1:

S1 Write access to the keystore

S2 Integrity password is known

S3 Confidentiality password of an entry is known

22 Chapter 2. Software Keystores

S4 Access to previous legitimate versions of the keystore file

Setting S1 may occur when the file is shared over a network filesystem, e.g., in banks
and large organizations. Since keystores include mechanisms for password-based
integrity checks, it might be the case that they are shared with both read and write
permissions, to enable application that possess the appropriate credentials (i.e., the
integrity password) to modify them. We also consider the case S2 in which the at-
tacker possesses the integrity password. The password might have been leaked or
discovered through a successful brute-force attack. The attacker might also know
the password as an insider, i.e., when she belongs to the organization who owns the
keystore. Setting S3 refers to a scenario in which the attacker knows the password
used to encrypt a sensitive object. Similarly to the previous case, the password might
have been accessed either in a malicious or in honest way. For example, the pass-
word of the key used to sign the apk of an Android application [3] could be shared
among the developers of the team.

In our experience, there exists a strong correlation between S2 and S3. Indeed,
several products and frameworks use the same password both for confidentiality
and for integrity, e.g., Apache Tomcat for TLS keys and IBM WebSphere for LTPA
authentication. Additionally, the standard utility for Java keystores management
(keytool) supports this practice when creating a key: the tool invites the user to just
press the RETURN key to reuse the store password for encrypting the entry.

To summarize, our standard attacker model combined with S1-S3 covers both
reading and writing capabilities of the attacker on the keystore files together with the
possibility of passwords leakage. On top of these settings, we consider the peculiar
case S4 that may occur when the attacker has access to backup copies of the keystore
or when the file is shared over platforms supporting version control such as Dropbox,
ownCloud or Seafile.

2.2 Analysis of Java Keystores

The Java platform exposes a comprehensive API for cryptography through a provider-
based framework called Java Cryptography Architecture (JCA). A provider consists
of a set of classes that implement cryptographic services and algorithms, including
keystores. In this section, we analyse the most common Java software keystores
implemented in the Oracle JDK and in a widespread cryptographic library called
Bouncy Castle that ships with a provider compatible with the JCA. In particular,
since the documentation was not sufficient to assess the design and cryptographic
strength of the keystores, we performed a comprehensive review of the source code
exposing, for the first time, implementation details such as on-disk file structure and
encoding, standard and proprietary cryptographic mechanisms, default and hard-
coded parameters.

For reader convenience, we provide a brief summary of the cryptographic mech-
anisms and acronyms used in this section: Password-Based Encryption (PBE) is

2.2. Analysis of Java Keystores 23

FIGURE 2.1: Decryption in the custom stream cipher used by JKS.

an encryption scheme in which the cryptographic key is derived from a password
through a Key Derivation Function (KDF); a Message Authentication Code (MAC)
authenticates data through a secret key and HMAC is a standard construction for
MAC which is based on cryptographic hash functions; Cipher Block Chaining (CBC)
and Counter with CBC-MAC (CCM) are two standard modes of operation for block
ciphers, the latter is designed to provide both authenticity and confidentiality.

2.2.1 Oracle Keystores

The Oracle JDK offers three keystore implementations, precisely JKS, JCEKS and
PKCS12, which are respectively made available through the providers SUN, SunJCE
and SunJSSE [83]. While JKS and JCEKS rely on proprietary algorithms to enforce
both the confidentiality and the integrity of the saved entries, PKCS12 relies on open
standard format and algorithms as defined in [98].

JKS

Java KeyStore (JKS) is the first official implementation of a keystore that appeared
in Java since the release of JDK 1.2. To the time, it is still the default keystore in
Java 8 when no explicit choice is made. It supports encrypted private key entries
and public key certificates stored in the clear. The file format consists of a header
containing the file magic number, the keystore version and the number of entries,
which is followed by the list of entries. The last part of the file is a digest used to
check the integrity of the keystore. Each entry contains the type of the object (key or
certificate) and the label, followed by the cryptographic data.

Private keys are encrypted using a custom stream cipher designed by Sun, as re-
ported in the OpenJDK source code. In order to encrypt data, a keystream W is gen-
erated in 20-bytes blocks with W0 being a random salt and Wi = SHA1(password||Wi−1).
The encrypted key E is computed as the XOR of the private key K with the keystream
W, hence K and E share the same length. The ciphertext is then prepended with the
salt and appended with the checksum CK = SHA1(password||K). The block diagram
for decryption is shown in Figure 2.1.

24 Chapter 2. Software Keystores

The integrity of the keystore is achieved through a custom hash-based mech-
anism: JKS computes the SHA1 hash of the integrity password, concatenated with
the constant string “Mighty Aphrodite” and the keystore content. The result is then
checked against the 20 bytes digest at the end of the keystore file.

JCEKS

Java Cryptography Extension KeyStore (JCEKS) has been introduced after the re-
lease of JDK 1.2 in the external Java Cryptography Extension (JCE) package and
merged later into the standard JDK distribution from version 1.4. According to the
Java documentation, it is an alternate proprietary keystore format to JKS “that uses
much stronger encryption in the form of Password-Based Encryption with Triple-
DES” [52]. Besides the improved PBE mechanism, it allows for storing also symmet-
ric keys.

The file format is almost the same of JKS with a different magic number in the
file header and support for the symmetric key type. The integrity mechanism is also
borrowed from JKS.

JCEKS stores certificates as plaintext, while the PBE used to encrypt private keys,
inspired by PBES1 [73], is based on 20 MD5 iterations and a 64 bits salt. Given that
Triple-DES is used to perform the encryption step, the key derivation process must
be adapted to produce cipher parameters of the adequate size. In particular, JCEKS
splits the salt in two halves and applies the key derivation process for each of them.
The first 192 bits of the combined 256 bits result are used as the Triple-DES key, while
the remaining 64 bits are the initialization vector.

PKCS12

The PKCS12 keystore supports both private keys and certificates, with support for
secret keys added in Java 8. Starting from Java 9, Oracle replaced JKS with PKCS12
as the default keystore type [54].

The keystore file is encoded as an ASN.1 structure according to the specification
given in [98]. It contains the version number of the keystore, the list of keys and
the certificates. The last part of the keystore contains an HMAC (together with the
parameters for its computation) used to check the integrity of the entire keystore by
means of a password.

The key derivation process, used for both confidentiality and integrity, is imple-
mented as described in the PKCS#12 standard [98] using SHA1 as hashing function,
1024 iterations and a 160 bit salt. Private keys and secret keys (when supported) are
encrypted using Triple-DES in CBC mode. Certificates are encrypted as well in a sin-
gle encrypted blob, using the RC2 cipher in CBC mode with a 40-bit key. While each
key can be encrypted with a different password, all the certificates are encrypted
reusing the store password.

2.2. Analysis of Java Keystores 25

2.2.2 Bouncy Castle Keystores

Bouncy Castle is a widely used open-source crypto API. As of 2014, it provides
the base implementation for the crypto library used in the Android operating sys-
tem [35]. It supports four different keystore types via the BC provider: BKS, UBER,
BCPKCS12 and the new FIPS-compliant BCFKS. Similarly to the Oracle keystores,
all the BC keystores rely on passwords to enforce confidentiality over the entries and
to verify the integrity of the keystore file.

BKS

The Bouncy Castle Keystore (BKS) allows to store public/private keys, symmetric
keys and certificates. The BKS keystore relies on a custom file structure to store the
entries. The file contains the version number of the BKS keystore, the list of stored
cryptographic entries and an HMAC, along with its parameters, computed over the
entries as integrity check.

Only symmetric and private keys can be encrypted in BKS, with Triple-DES in
CBC mode. The key derivation schema is taken from PKCS#12 v1.0, using SHA1 as
hashing function, a random number of iterations between 1024 and 2047 which is
stored for each entry and a 160 bit salt.

The integrity of the keystore is provided by an HMAC using the same key deriva-
tion scheme used for encryption and applied to the integrity password. For back-
ward compatibility, the current version of BKS still allows to load objects encrypted
under a buggy PBE mechanism used in previous versions of the keystore1. If the
key is recovered using an old mechanisms, it is immediately re-encrypted with the
newer PBE scheme.

UBER

UBER shares most of its codebase with BKS, thus it supports the same types of en-
tries and PBE. Additionally, it provides an extra layer of encryption for the entire
keystore file, which means that all metadata around the keys and certificates are en-
crypted as well. The PBE mechanism used for encrypting the file is Twofish in CBC
mode with a key size of 256 bits. The KDF is PKCS#12 v1.0 with SHA1 using a 160
bits salt and a random number of iterations in the range 1024 and 2047.

The integrity of the keystore is checked after successful decryption using the
store password. The plaintext consists of the keystore entries followed by their SHA1
checksum. UBER recomputes the hash of the keystore and compares it with the
stored digest.

1https://github.com/bcgit/bc-java/blob/master/prov/src/main/java/org/
bouncycastle/jce/provider/BrokenPBE.java

https://github.com/bcgit/bc-java/blob/master/prov/src/main/java/org/bouncycastle/jce/provider/BrokenPBE.java
https://github.com/bcgit/bc-java/blob/master/prov/src/main/java/org/bouncycastle/jce/provider/BrokenPBE.java

26 Chapter 2. Software Keystores

BCFKS

BCFKS is a new FIPS-compliant [121] keystore introduced in the version 1.56 of
Bouncy Castle2 offering similar features to UBER. This keystore provides support
for secret keys in addition to asymmetric keys and certificates.

The entire keystore contents is encrypted using AES in CCM mode with a 256
bits key, so to provide protection against introspection. After the encrypted blob, the
file contains a block with a HMAC-SHA512 computed over the encrypted contents
to ensure the keystore integrity. The store password is used to derive the two keys
for encryption and integrity.

All key derivation operations use PBKDF2 with HMAC-SHA512 as pseudoran-
dom function, 512 bits of salt and 1024 iterations. Each key entry is separately en-
crypted with a different password using the same algorithm for the keystore confi-
dentiality, while this possibility is not offered for certificates.

BCPKCS12

The BCPKCS12 keystore aims to provide a PKCS#12-compatible implementation.
It shares the same algorithms and default parameters for key derivation, crypto-
graphic schemes and file structure of the Oracle JDK version detailed in Section 2.2.1.
Compared to Oracle, the Bouncy Castle implementation lacks support for symmet-
ric keys and the possibility to protect keys with different passwords, since all the
entries and certificates are encrypted under the store password. The BC provider
also offers a variant of the PKCS#12 keystore that allows to encrypt certificates using
the same PBE of private keys, that is Triple-DES in CBC mode.

2.2.3 Keystores Adoption

We have analysed 300 Java projects supporting keystores that are hosted on Github
to estimate the usage of the implementations examined in this work. Applications
range from amateur software to well-established libraries developed by Google,
Apache and Eclipse.

We searched for occurrences of known patterns used to instantiate keystores in
the code of each project. We have found that JKS is the most widespread keystore
with over 70 % of the applications supporting it. PKCS12 is used in 32 % of the
analysed repositories, while JCEKS adoption is close to 10 %. The Bouncy Castle
keystores UBER and BCPKCS12 are used only in 3 % of the projects, while BKS can
be found in about 6 % of the examined software. Finally, since BCFKS is a recent
addition to the Bouncy Castle library, none of the repositories is supporting it.

2https://github.com/bcgit/bc-java/commit/80fd6825

https://github.com/bcgit/bc-java/commit/80fd6825

2.3. Attacks 27

2.2.4 Summary

In Tables 2.1 and 2.2 we summarize the features and the algorithms (rows) offered
by the keystore implementations (columns) analysed in this section. Table 2.1 does
not contain the row “Store Encryption” since none of the JDK keystores provides
protection against introspection.

To exemplify, by reading Table 2.1 we understand that the JCEKS keystore of
the SunJCE provider relies on a custom PBE mechanism based on MD5 using only
20 iterations to derive the Triple-DES key for the encryption of keys. The mark
shows that the keystore supports secret keys, while denotes that certificates cannot
be encrypted.

2.3 Attacks

In the previous section, we have shown that the analysed keystores use very diverse
key derivation functions and cryptographic mechanisms and, in several cases, they
do not adhere to standards or use obsolete and ad-hoc mechanisms. We now dis-
cuss how this weakens the overall security of the keystore and enables or facilitates
attacks. In particular, we show that keystores using weak or ad-hoc implementa-
tions for password-based encryption or integrity checks open the way to password
brute-forcing. During the in-depth analysis of keystores, we have also found se-
curity flaws that can be exploited in practice to mount denial of service and code
execution attacks.

Attacks in this section are organized according to the security properties vio-
lated, as defined in Section 2.1.1. For each attack we provide a detailed description
discussing the attacker settings and the rules that are not followed by the keystore
implementation (cf. Section 2.1.2). We conclude with some general security consid-
erations that are not specific to any particular attack.

Table 2.3 provides a high-level overview of the properties which are guaranteed
by the analysed keystores with respect to the attacks presented in this section. We
consider versions of Oracle JDK and Bouncy Castle before and after disclosing our
findings to the developers. Specifically, we refer to JDK 8u144 and 8u152 for Oracle,
while version 1.57 of Bouncy Castle is compared against the development repository
as of November 28, 2017.3 We use the symbol ➝ to point out improvements in
newer versions. Details of the changes are listed in Section 2.5. The symbol
denotes that a property is satisfied by the keystore under any attacker setting and
the implementation adhere to the relevant design rules listed in Section 2.1.2. We use

when no clear attack can be mounted but design rules are not completely satisfied,
e.g. a legacy cipher like Triple-DES is used. The symbol indicates that the property
is broken under the standard attacker model. When a property is broken only under

3https://github.com/bcgit/bc-java/tree/8ed589d

https://github.com/bcgit/bc-java/tree/8ed589d

28 Chapter 2. Software Keystores

JK
S

JC
EK

S
PK

C
S12

Provider
Sun

SunJC
E

SunJSSE

Supportfor
secretkeys

*

K
eys

PBE

K
D

F
C

ustom
(SH

A
1)

C
ustom

(M
D

5)
PK

C
S12

(SH
A

1)

Salt
160b

64b
160b

Iterations
-

20
1024

C
ipher

Stream
cipher

3D
ES

(C
BC

)
3D

ES
(C

BC
)

K
ey

size
-

192b
192b

C
ertificates

PBE

K
D

F
PK

C
S12

(SH
A

1)

Salt
160b

Iterations
1024

C
ipher

R
C

2
(C

BC
)

K
ey

size
40b

Store
Integrity

K
D

F
SH

A
1

w
ith

passw
ord

SH
A

1
w

ith
passw

ord

PK
C

S12
(SH

A
1)

Salt
160b

Iterations
1024

M
echanism

H
M

A
C

(SH
A

1)

*
since

JD
K

1.8

T
A

B
L

E
2.1:Sum

m
ary

ofO
racle

JD
K

keystores
(O

racle
JD

K
8u144

and
below

).

2.3. Attacks 29

BK
S

U
BE

R
BC

FK
S

BC
PK

C
S1

2

Pr
ov

id
er

Bo
un

cy
C

as
tl

e
Bo

un
cy

C
as

tl
e

Bo
un

cy
C

as
tl

e
Bo

un
cy

C
as

tl
e

Su
pp

or
tf

or
se

cr
et

ke
ys

K
ey

s
PB

E

K
D

F
PK

C
S1

2
(S

H
A

1)
PK

C
S1

2
(S

H
A

1)
PB

K
D

F2
(H

M
A

C
-S

H
A

51
2)

PK
C

S1
2

(S
H

A
1)

Sa
lt

16
0b

16
0b

51
2b

16
0b

It
er

at
io

ns
10

24
–2

04
7

10
24

–2
04

7
10

24
10

24

C
ip

he
r

3D
ES

(C
BC

)
3D

ES
(C

BC
)

A
ES

(C
C

M
)

3D
ES

(C
BC

)

K
ey

si
ze

19
2b

19
2b

25
6b

19
2b

C
er

ti
fic

at
es

PB
E

K
D

F
PK

C
S1

2
(S

H
A

1)

Sa
lt

16
0b

It
er

at
io

ns
10

24

C
ip

he
r

R
C

2
/

3D
ES

(C
BC

)

K
ey

si
ze

40
b

/
19

2b

St
or

e
En

cr
yp

ti
on

K
D

F
PK

C
S1

2
(S

H
A

1)
PB

K
D

F2
(H

M
A

C
-S

H
A

51
2)

Sa
lt

16
0b

51
2b

It
er

at
io

ns
10

24
–2

04
7

10
24

C
ip

he
r

Tw
ofi

sh
(C

BC
)

A
ES

(C
C

M
)

K
ey

si
ze

25
6b

25
6b

St
or

e
In

te
gr

it
y

K
D

F
PK

C
S1

2
(S

H
A

1)
SH

A
1

af
te

r
de

cr
yp

t

PB
K

D
F2

(H
M

A
C

-S
H

A
51

2)
PK

C
S1

2
(S

H
A

1)

Sa
lt

16
0b

51
2b

16
0b

It
er

at
io

ns
10

24
–2

04
7

10
24

10
24

M
ec

ha
ni

sm
H

M
A

C
(S

H
A

1)
H

M
A

C
(S

H
A

51
2)

H
M

A
C

(S
H

A
1)

TA
B

L
E

2.
2:

Su
m

m
ar

y
of

Bo
un

cy
C

as
tl

e
ke

ys
to

re
s

(b
c

1.
57

an
d

be
lo

w
).

30 Chapter 2. Software Keystores

Algorithm 1 JKS 1-block Crack

1: procedure JKS_1BLOCKCRACK(Salt, E1..n, CK)
2: known_plaintext← 0x30 ∥ length(E)
3: test_bytes← known_plaintext⊕ E1
4: for password in passwords do
5: W1 ← SHA1(password ∥ Salt)
6: if W1 = test_bytes then
7: K ← DECRYPT(Salt, E, password)
8: checksum← SHA1(password ∥K)
9: if CK = checksum then

10: return password

a specific setting Sx, we report it in the table as Sx. If a more powerful attack is
enabled by additional settings, we clarify in the footnotes.

As an example, consider the system integrity property (P3) in the JCEKS key-
store: up to JDK 8u144 included, write capabilities (S1) allow to DoS the application
loading the keystore; when integrity and key confidentiality passwords are known
(S2 and S3), the attacker can also achieve arbitrary code execution on the system (cf.
note 3 in the table). The rightmost side of the arrow indicates that JDK 8u152 does
not include mitigations against the code execution attack.

2.3.1 Attacks on Entries Confidentiality (P1)

JKS Password Cracking

The custom PBE mechanism described in Section 2.2.1 for the encryption of private
keys is extremely weak. The scheme requires only one SHA1 hash and a single XOR
operation to decrypt each block of the encrypted entry resulting in a clear violation
of rule R1. Since there is no mechanism to increase the amount of computation
needed to derive the key from the password, also rule R2 is neglected.

Despite the poor cryptographic scheme, each attempt of a brute-force password
recovery attack would require to apply SHA1 several times to derive the whole
keystream used to decrypt the private key. As outlined in Figure 2.1, a successful
decryption is verified by matching the last block (CK) of the protected entry with
the hash of the password concatenated with the decrypted key. For instance, a sin-
gle password attempt to decrypt a 2048 bit RSA private key entry requires over 60
SHA1 operations.

We found that such password recovery attack can be greatly improved by ex-
ploiting the partial knowledge over the plaintext of the key. Indeed, the ASN.1
structure of a key entry enables to efficiently test each password with a single SHA1
operation. In JKS, private keys are serialized as DER-encoded ASN.1 objects, along
the PKCS#1 standard [74]. For instance, an encoded RSA key is stored as a sequence
of bytes starting with byte 0x30 which represent the ASN.1 type SEQUENCE and a
number of bytes representing the length of the encoded key. Since the size of the

2.3. Attacks 31

JK
S

JC
EK

S
PK

C
S1

2
BK

S
U

BE
R

BC
FK

S
BC

PK
C

S1
2

(P
1)

En
tr

ie
s

co
nfi

de
nt

ia
lit

y
➝

1
➝

1

(P
2)

K
ey

st
or

e
in

te
gr

it
y

2
2

➝
➝

➝

(P
3)

Sy
st

em
in

te
gr

it
y

3 S1
➝

S1
-3

S1
➝

S1
S1

➝

1
on

ly
co

nfi
de

nt
ia

lit
y

of
ce

rt
ifi

ca
te

s
ca

n
be

vi
ol

at
ed

2
un

de
r

ad
di

ti
on

al
se

tt
in

gs
S1

or
S4

it
m

ig
ht

be
po

ss
ib

le
to

us
e

ra
in

bo
w

ta
bl

es
3

un
de

r
ad

di
ti

on
al

se
tt

in
gs

S2
an

d
S3

it
is

po
ss

ib
le

to
ac

hi
ev

e
ar

bi
tr

ar
y

co
de

ex
ec

ut
io

n
on

JD
K
≤

8u
15

2

Le
ge

nd
:

Sx

pr
op

er
ty

is
al

w
ay

s
sa

ti
sfi

ed
no

cl
ea

ra
tt

ac
ks

bu
tr

ul
es

no
tc

om
pl

et
el

y
sa

t-
ifi

ed
pr

op
er

ty
is

br
ok

en
in

th
e

st
an

da
rd

at
ta

ck
er

m
od

el
pr

op
er

ty
is

br
ok

en
un

de
r

a
at

ta
ck

er
se

tt
in

g
Sx

TA
B

L
E

2.
3:

Pr
op

er
ti

es
gu

ar
an

te
ed

by
ke

ys
to

re
s

w
it

h
re

sp
ec

tt
o

at
ta

ck
s,

be
fo

re
an

d
af

te
r

up
da

te
s

lis
te

d
in

Se
ct

io
n

2.
5.

32 Chapter 2. Software Keystores

1024 2048 4096 8192 16384
RSA Private Key Size (bits)

103

104

105

106

107

Pa

ss
w

or
ds

 /
se

co
nd

JKS 1-Block
JCEKS 1-Block
JKS Standard
JCEKS Standard

FIGURE 2.2: Performance comparison of password cracking for pri-
vate RSA keys on JKS and JCEKS using both the standard and the

improved 1-block method on a Intel Core i7 6700 CPU.

encrypted key is the same as the size of the plaintext, these bytes are known to the
attacker. On average, given n bytes of the plaintext it is necessary to continue de-
cryption beyond the first block only for one password every 256n attempts.

The pseudocode of the attack is provided in Algorithm 1, using the same notation
introduced in Section 2.2.1. We assume that the algorithm is initialized with the salt,
all the blocks of the encrypted key and the checksum. The XOR operation between
the known plaintext and the first encrypted block (line 3) is performed only once for
all the possible passwords. As a halt condition, the result is then compared against
the digest of the salt concatenated to the tested password (lines 5-6). To further verify
the correctness of the password, a standard decrypt is performed.

A comparison between the standard cracking attack and our improved version
is depicted in Figure 2.2. From the chart it is possible to see that the cost of the single
block attack (referred to as 1-block) is independent from the size of the encrypted
entry, while the number of operations required to carry out the standard attack is
bound to the size of the DER-encoded key. As an example, for a 4096 bit private
RSA key, the 1-block approach is two orders of magnitude faster than the standard
one.

Based on our findings, that we previously mentioned in a blog post [37], this
attack has been recently integrated into Hashcat 3.6.04 achieving a speed of 8 billion
password tries/sec with a single NVIDIA GTX 1080 GPU.

4https://hashcat.net/forum/thread-6630.html

2.3. Attacks 33

JCEKS Password Cracking

The PBE mechanism discussed in Section 2.2.1 uses a custom KDF that performs
20 MD5 iterations to derive the encryption key used in the Triple-DES cipher. This
value is three orders of magnitude lower than the iteration count suggested in [45],
thus violating both rules R1 and R2. Given that keys are DER-encoded as well,
it is possible to speed up a brute-force attack using a technique similar to the one
discussed for JKS. Figure 2.2 relates the standard cracking speed to the single block
version. Notice that the cost of a password-recovery attack is one order of magnitude
higher than JKS in both variants due to the MD5 iterations required by the custom
KDF of JCEKS.

PKCS#12 Certificate Key Cracking

Oracle PKCS12 and BCPKCS12 keystores allow for the encryption of certificates.
The PBE is based on the KDF defined in the PKCS#12 standard paired with the
legacy RC2 cipher in CBC mode with a 40 bit key, resulting in a clear violation of
rule R1. Due to the reduced key space, the protection offered by the KDF against
offline attacks can be voided by directly brute-forcing the cryptographic key. Our
serialized tests, performed using only one core of an Intel Core i7 6700 CPU, show
that the brute-force performance is 8,300 passwords/s for password testing (consist-
ing of a KDF and decryption run), while the key cracking speed is 1,400,000 keys/s.
The worst-case scenario that requires the whole 40-bits key space to be exhausted,
requires about 9 days of computation on our system. This time can be reduced to
about 1 day by using all eight cores of our processor. We estimate that a modern
high-end GPU should be able to perform this task in less than one hour.

Notice, however, that although finding the key so easily makes the encryption of
certificates pointless, an attacker cannot use the key value to reduce the complexity
of cracking the integrity password since the random salt used by the KDF makes it
infeasible to precompute the mapping from passwords to keys.

2.3.2 Attacks on Keystore Integrity (P2)

JKS/JCEKS Integrity Password Cracking

The store integrity mechanism used by both JKS and JCEKS (cf. Section 2.2.1) only
relies on the SHA1 hash digest of the integrity password, concatenated with the
constant string “Mighty Aphrodite” and with the keystore data. In contrast with
rule R1, this technique based on a single application of SHA1 enables to efficiently
perform brute-force attacks against the integrity password. Section 2.4 reports on the
computational effort required to attack the integrity mechanism for different sizes of
the keystore file.

Additionally, since SHA1 is based on the Merkle-Damgärd construction, this cus-
tom approach is potentially vulnerable to extension attacks [40]. For instance, it may

34 Chapter 2. Software Keystores

be possible for an attacker with write access to the keystore (S1) to remove the orig-
inal digest at the end of the file, extend the keystore content with a forged entry and
recompute a valid hash without knowing the keystore password. Fortunately, this
specific attack is prevented in JKS and JCEKS since the file format stores the number
of entries in the keystore header.

JKS/JCEKS Integrity Digest Precomputation

The aforementioned construction to ensure the integrity of the keystore suffers from
an additional problem. Assume the attacker has access to an empty keystore, for
example when an old copy of the keystore file is available under a file versioning
storage (S4). Alternatively, as special case of S1, the attacker may be able to read the
file, but the interaction with the keystore is mediated by an application that allows
to remove entries without disclosing the store password. This file consists only of a
fixed header followed by the SHA1 digest computed using the password, the string
“Mighty Aphrodite” and the header itself. Given that there is no random salting
in the digest computation, it would be possible to mount a very efficient attack to
recover the integrity password by exploiting precomputed hash chains, as done in
rainbow tables [80].

2.3.3 Attacks on System Integrity (P3)

JCEKS Code Execution

A secret key entry is stored in a JCEKS keystore as a Java object having type Se-
cretKey. First, the key object is serialized and wrapped into a SealedObject in an
encrypted form; next, this object is serialized again and saved into the keystore.

When the keystore is loaded, all the serialized Java objects stored as secret key
entries are evaluated. An attacker with write capabilities (S1) may construct a ma-
licious entry containing a Java object that, when deserialized, allows her to execute
arbitrary code in the application context. Interestingly, the attack is not prevented
by the integrity check since keystore integrity is verified only after parsing all the
entries.

The vulnerable code can be found in the engineLoadmethod of the class JceKey-
Store implemented by the SunJCE provider.5 In particular, the deserialization is
performed at lines 837-838 as follows:

0 // read the sealed key
1 try {
2 ois = new ObjectInputStream(dis);
3 entry.sealedKey =
4 (SealedObject) ois.readObject();
5 ...

5http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5534221c23fc/src/share/classes/
com/sun/crypto/provider/JceKeyStore.java

http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5534221c23fc/src/share/classes/com/sun/crypto/provider/JceKeyStore.java
http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5534221c23fc/src/share/classes/com/sun/crypto/provider/JceKeyStore.java

2.3. Attacks 35

Notice that the cast does not prevent the attack since it is performed after the object
evaluation.

To stress the impact of this vulnerability, we provide three different attack scenar-
ios: (i) the keystore is accessed by multiple users over a shared storage. An attacker
can replace or add a single entry of the keystore embedding the malicious payload,
possibly gaining control of multiple hosts; (ii) a remote application could allow its
users to upload keystores for cryptographic purposes, such as importing certificates
or configuring SSL/TLS. A crafted keystore loaded by the attacker may compro-
mise the remote system; (iii) an attacker may even forge a malicious keystore and
massively spread it like a malware using email attachments or instant messaging
platforms. Users with a default application associated to the keystore file extension
(e.g., keystore inspection utilities such as KSE 6) have a high probability of being
infected just by double clicking on the received keystore. Interestingly, all the mali-
cious keystores generated during our tests did not raise any alert on antivirus tools
completing a successful scan by virustotal.com.

We checked the presence of the vulnerability from Java 6 onwards. We were
able to achieve arbitrary command execution on the host with JDK ≤ 7u21 and
JDK ≤ 8u20 by forging a payload with the tool ysoserial.7 Newer versions are
still affected by the vulnerability, but the JDK classes exploited to achieve code exe-
cution have been patched. Since the deserialization occurs within a Java core class,
the classpath is restricted to bootstrap and standard library classes. However, by
embedding a recursive object graph in a JCEKS entry, an attacker can still hang the
deserialization routine consuming CPU indefinitely and thus causing a DoS in the
target machine. We were able to mount this attack on any version of the Oracle
JDK ≤ 8u144.

The implementation choice for storing secret keys in JCEKS is a clear violation of
Rule R3, since these entities are essentially stored as Java code. The correct approach
is to adopt standard formats and encodings, such as the PKCS#8 format used in the
PKCS12 keystore.

JCEKS Code Execution After Decryption

When the attacker knows the integrity password and the confidentiality password
of a secret key entry (S2, S3) in addition to S1, the previous attack can be further
improved to achieve arbitrary command execution even on the latest, at the time
of writing, Java 8 release (8u152). This variant of the attack assumes that the appli-
cation loading the JCEKS keystore makes use of one of the widespread third-party
libraries supported by ysoserial, such as Apache Commons Collections or the Spring
framework: such libraries have been found [124] to contain vulnerable gadget chains
that can be exploited by the malicious payload.

6http://keystore-explorer.org
7https://github.com/frohoff/ysoserial

http://keystore-explorer.org
https://github.com/frohoff/ysoserial

36 Chapter 2. Software Keystores

When a SealedObject wrapping a secret key is successfully loaded and de-
crypted, an additional deserialization call is performed over the decrypted content.
The SealedObject class extends the classpath to allow the deserialization of any
class available in the application scope, including third-party libraries. By exploiting
this second deserialization step, an attacker may construct more powerful payloads
to achieve command execution.

The exploitation scenarios are similar to the ones already discussed in the previ-
ous variant of the attack. Additionally, we point out that even an antivirus trained to
detect deserialization signatures would not be able to identify the malicious content
since the payload is stored in encrypted form in the keystore.

DoS by Integrity Parameters Abuse

Many keystores rely on a keyed MAC function to ensure the integrity of their con-
tents. The parameters of the KDF used to derive the key from the store password
are saved inside the file. Thus, an attacker with write capabilities (S1) may tamper
with the KDF parameters to affect the key derivation phase that is performed before
assessing the integrity of the keystore file. In particular, the attacker may set the
iteration count to an unreasonably high value in order to perform a DoS attack on
applications loading the keystore.

We found that Oracle PKCS12, BKS and BCPKCS12 implementations are affected
by this problem. Starting from valid keystore files, we managed to set the iteration
count value to 231 − 1. Loading such keystores required around 15 minutes at full
CPU usage on a modern computer. According to [118] the iteration count should not
impact too heavily on the user-perceived performance, thus we argue that this is a
violation of Rule R2.

2.3.4 Bad Design Practices

During our analysis we found that some of the keystores suffered from bad de-
sign decisions and implementation issues that, despite not leading to proper attacks,
could lead to serious security consequences.

Our review of the Oracle PKCS12 keystore code showed that the KDF param-
eters are not treated uniformly among MAC, keys and certificates. During a store
operation, the Oracle implementation does not preserve the original iteration count
and salt size for MAC and certificates that has been found at load time in the input
keystore file. Indeed, iteration count and salt size are silently set to the hard-coded
values of 1024 and 20 byte, respectively. Since this keystore format is meant to be in-
teroperable, this practice could have security consequences when dealing with key-
stores generated by third-party tools. For instance, PKCS12-compatible keystores
generated by OpenSSL default to 2048 iterations: writing out such keystore with the
Oracle JDK results in halving the cost of a password recovery attack.

2.3. Attacks 37

The Bouncy Castle BCPKCS12 implementation suffers a similar problem: in ad-
dition to MAC and certificate parameters, also the iteration count and the salt size
used for private keys are reverted to default values when the keystore is saved to
disk. Following our report to the Bouncy Castle developers, this behaviour is cur-
rently being addressed in the next release by preserving the original parameters
whenever possible.8

Lastly, the construction of the integrity mechanism for the UBER keystore could
cause an information leakage under specific circumstances. After a successful de-
cryption using the store password, UBER recomputes the hash of the keystore and
compares it with the stored digest. This MAC-then-encrypt approach is generally
considered a bad idea, since it can lead to attacks if, for example, there is a percepti-
ble difference in behaviour (an error message, or execution time) between a decryp-
tion that fails because the padding is invalid, or a decryption that fails because the
hash is invalid (a so-called padding oracle attack [122]).

2.3.5 Security Considerations

We now provide general considerations on the security of Java keystores. The first
one is about using the same password for different purposes. If the integrity pass-
word is also used to ensure the confidentiality of encrypted entries, then the com-
plexity of breaking either the integrity or the confidentiality of stored entries turns
out to be the one of attacking the weakest mechanism. For instance, we consider a
keystore where cracking the integrity password is more efficient than recovering the
password used to protect sensitive entries: as shown in Section 2.4, this is the case of
PKCS12 and BCPKCS12 keystores. Under this setting, sensitive keys can be leaked
more easily by brute-forcing the integrity password.

Although this is considered a bad practice in general [63], all the keystores anal-
ysed permit the use of the same password to protect sensitive entries and to verify
the integrity of the keystore. This practice is indeed widespread [42] and, as already
stated in Section 2.1.3, prompted by keytool itself. Furthermore, our analysis found
that the BCPKCS12 keystore forcibly encrypts keys and certificates with the store
password. For these reasons, we argue that using the same password for integrity
and confidentiality is not a direct threat to the security of stored keys when both
mechanisms are resistant to offline attacks and a strong password is used. Still the
security implications of this practice should be seriously considered.

The second consideration regards how the integrity of a keystore is assessed. In-
deed, a poorly designed application may bypass the integrity check on keystores
by providing a null or empty password to the Java load() function. All the Oracle
keystores analysed in the previous section and BouncyCastle BKS are affected by
this problem. On the other hand, keystores providing protection to entries inspec-
tion, such as UBER and BCFKS, cannot be loaded with an empty password since the

8https://github.com/bcgit/bc-java/commit/ebe1b25a

https://github.com/bcgit/bc-java/commit/ebe1b25a

38 Chapter 2. Software Keystores

decryption step would fail. Lastly, BCPKCS12 throws an exception if an attempt of
loading a file with an empty password is made. If the integrity check is omitted, an
attacker can trivially violate Property P2 by altering, adding or removing any entry
saved in the clear. Conversely, the integrity of encrypted sensitive keys is still pro-
vided by the decryption mechanism that checks for the correct padding sequence at
the end of the plaintext. Since the entries are typically encoded (e.g., in ASN.1), a
failure in the parse routine could also indicate a tampered ciphertext.

We also emphasize that the 1-block cracking optimization introduced in 2.3.1 is
not limited to JKS and JCEKS. Indeed, by leveraging the structure of saved entries,
all the analysed keystores enable to reduce the cost of the decrypt operation to check
the correctness of a password. However, excluding JKS and JCEKS, this technique
only provides a negligible speed-up on the remaining keystores given that the KDF
is orders of magnitude slower than the decrypt operation.

Finally, we point out that the current design of password-based keystores cannot
provide a proper key-revocation mechanism without a trusted third-party compo-
nent. For instance, it may be the case that a key has been leaked in the clear and
subsequently substituted with a fresh one in newer versions of a keystore file. Un-
der settings S1 and S4, an attacker may replace the current version of a keystore with
a previously intercepted valid version, thus restoring the exposed key. The integrity
mechanism is indeed not sufficient to distinguish among different versions of a key-
store protected with the same store password. For this reason, the store password
must be updated to a fresh one every time a rollback of the keystore file is not ac-
ceptable by the user, which is typically the case of a keystore containing a revoked
key.

2.4 Estimating Brute-Force Speed-Up

We have discussed how weak PBEs and integrity checks in keystores can expose
passwords to brute-forcing. In this section we make an empirical comparison of
the cracking speed to bruteforce both the confidentiality and integrity mechanisms
in the analysed keystores. We also compute the speed-up with respect to BCFKS,
as it is the only keystore using a standard and modern KDF, i.e., PBKDF2, which
provides the best brute-forcing resistance. Notice, however, that the latest NIST draft
on Digital Identity Guidelines [45] sets the minimum KDF iteration count to 10,000
which is one order of magnitude more than what is used in BCFKS (cf. Table 2.2).
Thus all the speed-up values should be roughly multiplied by 10 if compared with
a baseline implementation using PBKDF2 with 10,000 iterations.

It is out of the scope of this work to investigate brute-forcing strategies. Our tests
only aim at comparing, among the different keystores, the actual time to perform
the key derivation step and the subsequent cryptographic operations, including the
check to assess key correctness. Our study is independent of the actual password
guessing strategy adopted by the attacker.

2.4. Estimating Brute-Force Speed-Up 39

Algorithm 2 Confidentiality password cracking benchmark
1: procedure BENCHCONFIDENTIALITY(test_duration)
2: encrypted_entry← (B1, ..., B2000)
3: passwords← (pw1, ..., pwn) ▷ all 10-bytes passwords
4: salt← constant
5: counter ← 0
6: while ELAPSEDTIME < test_duration do
7: password← next(passwords)
8: key← KDFkey(password, salt)
9: iv← KDFiv(password, salt) ▷ not in JKS, BCFKS

10: plaintext← DECRYPTBLOCK(encrypted_entry, key, iv)
11: VERIFYKEY(plaintext)
12: counter ← counter + 1
13: return counter

Algorithm 3 Integrity password cracking benchmark
1: procedure BENCHINTEGRITY(test_duration)
2: keystore_contentsmall ← (B1, ..., B2048)
3: keystore_contentmedium ← (B1, ..., B8192)
4: keystore_contentlarge ← (B1, ..., B16384)
5: passwords← (pw1, ..., pwn) ▷ all 10-bytes passwords
6: salt← constant
7: counter(small,medium,large) ← 0
8: for all keystore_content, counter do
9: while ELAPSEDTIME < test_duration do

10: password← next(passwords)
11: key← KDFmac(password, salt) ▷ not in JKS, JCEKS
12: mac← MAC(keystore_content, key)
13: VERIFYMAC(mac)
14: counter ← counter + 1
15: return counter(small,medium,large)

2.4.1 Test Methodology

We developed a compatible C implementation of the key decryption and the in-
tegrity check for each keystore type. Each implementation is limited to the mini-
mum steps required to check the correctness of a test password. This procedure is
then executed in a timed loop to evaluate the cracking speed. Algorithms 2 and 3
show the pseudocode of our implementations. Note that, in both algorithms, we set
the password length to 10 bytes because it is an intermediate value between triv-
ial and infeasible. Similarly, since the iteration count in BKS and UBER is chosen
randomly in the range 1024 and 2047, we set it to the intermediate value 1536.

Confidentiality

The confidentiality password brute-forcing loop (Algorithm 2) is divided into three
steps: key derivation, decryption and a password correctness check. The last step is
included in the loop only to account for its computational cost in the results. Both
PBES1 (PKCS#5) and PKCS#12 password-based encryption schemes, used in all key-
stores but BCFKS, require to run the KDF twice to derive the decryption key and the

40 Chapter 2. Software Keystores

(A) Speed comparison of password recovery
attack for key encryption (confidentiality).

(B) Speed comparison of password recovery
attack for keystore integrity, considering dif-

ferent keystore sizes.

FIGURE 2.3: Comparison of keystores password cracking speed. Bar
labels indicate the speed-up to the strongest BCFKS baseline.

IV. On the other hand, in BCFKS the initialization vector is not derived from the
password but simply stored with the ciphertext. During our tests we set encrypted_-
entry to a fixed size to resemble an on-disk entry containing a 2048 bits RSA key.
However, in Section 2.3.1 we have shown how the partial knowledge of the plain-
text structure of a JKS key entry can be leveraged to speed-up brute-forcing. This
shortcut can be applied to all the analysed keystores in order to decrypt only the
first block of encrypted_entry. For this reason, the key size becomes irrelevant while
testing for a decryption password.

Integrity

Similarly, the integrity password cracking code (Algorithm 3) is divided into three
steps: key derivation, a hash/MAC computation and the password correctness check.
The key derivation step is run once to derive the MAC key in all keystores, with the
exception of JKS and JCEKS where the password is fed directly to the hash function
(cf. Section 2.2.1). As described later in this section, the speed of KDF plus MAC cal-
culation can be highly influenced by the keystore size, thus we performed our tests
using a keystore_content of three different sizes: 2048, 8192 and 16384 bytes.

Test configuration

We relied on standard implementations of the cryptographic algorithms to produce
comparable results: the OpenSSL library (version 1.0.2g) provides all the needed
hash functions, ciphers and KDFs, with the exception of Twofish where we used an
implementation from the author of the cipher.9 All the tests were performed on a
desktop computer running Ubuntu 16.04 and equipped with an Intel Core i7 6700
CPU; source code of our implementations has been compiled with GCC 5.4 using
-O3 -march=native optimizations. We run each benchmark on a single CPU core

9https://www.schneier.com/academic/twofish/download.html

https://www.schneier.com/academic/twofish/download.html

2.4. Estimating Brute-Force Speed-Up 41

because the numeric results can be easily scaled to a highly parallel systems. To
collect solid and repeatable results each benchmark has been run for 60 seconds.

2.4.2 Results

The charts in Figure 2.3 show our benchmarks on the cracking speed for confiden-
tiality (Figure 2.3a) and integrity (Figure 2.3b). On the x-axis there are the 7 keystore
types: we group together different keystores when the specific mechanism is shared
among the implementations, i.e., PKCS12/BCPKCS12 for both confidentiality and
integrity and JKS/JCEKS for integrity. On the y-axis we report the number of tested
passwords per second doing a serial computation on a single CPU core: note that the
scale of this axis is logarithmic. We stress that our results are meant to provide a rel-
ative, inter-keystore comparison rather than an absolute performance index. To this
end, a label on top of each bar indicates the speed-up relative to the strongest BCFKS
baseline. Absolute performance can be greatly improved using both optimized par-
allel code and more powerful hardware which ranges from dozens of CPU cores or
GPUs to programmable devices such as FPGA or custom-designed ASICs [56, 31,
66].

Confidentiality

From the attack described in Section 2.3.1, it follows that cracking the password of an
encrypted key contained in JKS - the default Java keystore - is at least three orders of
magnitude faster than in BCFKS. Even without a specific attack, recovering the same
password from JCEKS is over one hundred times faster due to its low (20) iteration
count. By contrast, the higher value (1024 or 1024-2047) used in PKCS12, BKS and
UBER translates into a far better offline resistance as outlined in the chart.

Integrity

Similar considerations can be done for the integrity password resistance. Finding
this password in all keystores but JKS is equivalent, or even faster than breaking
the confidentiality password. Moreover, the performance of these keystores is influ-
enced by the size of the file due to the particular construction of the MAC function
(cf. Section 2.2.1). The speed gain (w.r.t. confidentiality) visible in PKCS12, BKS and
UBER is caused by the missing IV derivation step which, basically, halves the num-
ber or KDF iterations. Interestingly, in BCFKS there is no difference between the two
scores: since the whole keystore file is encrypted, we can reduce the integrity check
to a successful decryption, avoiding the computation overhead of the HMAC on the
entire file.

42 Chapter 2. Software Keystores

2.5 Disclosure and Security Updates

We have timely disclosed our findings to Oracle and Bouncy Castle developers in
May 2017. The Oracle Security Team has acknowledged the reported issues with
CVE IDs [70, 71, 72] and has released most of the fixes in the October 2017 Critical
Patch Update (CPU) [81]. The fix for the second JCEKS deserialization vulnerability
was later released in the April 2018 CPU [82]. In the following list, we summarize
the changes already published by Oracle:

• keytool suggests to switch to PKCS12 when JKS or JCEKS keystores are used;

• improved KDF strength of the PBE in JCEKS by raising the iteration count to
200,000. Added a ceiling value of 5 millions to prevent parameter abuse;

• in PKCS12 the iteration count has been increased to 50,000 for confidentiality
and 100,000 for integrity. The same upper bound as in JCEKS is introduced;

• fixed the first JCEKS deserialization vulnerability described in Section 2.3.3 by
checking that the object being deserialized is of the correct type, i.e.,
SealedObjectForKeyProtector, and by imposing a recursion limit to prevent
infinite loops;

• corrected the second JCEKS deserialization vulnerability by introducing a built-
in Java serialization filtering mechanism [51] which provides a way to narrow
down the classes that can be deserialized, and a set of metrics for evaluating
the deserialization graph size and complexity.

In version 1.58 of the library, Bouncy Castle developers fixed the parameter abuse
vulnerability of BCPKCS12 by adding an optional Java system property that imposes
an upper bound for the KDF iteration count. Moreover, the following changes ap-
peread in version 1.59:

• in BCFKS, the iteration count is raised to 51,200 for both confidentiality and
integrity;

• in BCPKCS12, the iteration count is increased to 51,200 and 102,400 for confi-
dentiality and integrity, respectively.

Table 2.3 outlines the improved security guarantees offered by keystore implementa-
tions following the fixes released by Oracle and Bouncy Castle. Additionally, in Fig-
ure 2.4 we show the updated results of the brute-force resistance benchmarks to re-
flect the improved KDF parameters. JCEKS and BCFKS now offer the best resistance
to offline brute-force attacks of the confidentiality password. However, JCEKS still
provides the weakest integrity mechanism. Thus, if the same password is used both
for key encryption and for keystore integrity, then the increased protection level can
easily be voided by attacking the latter mechanism. On the other hand, both the
confidentiality and the integrity mechanisms have been updated in PKCS12. This
keystore, which is now the default in Java 9, offers a much higher security level with
respect to the previous release.

2.6. Discussion and Related Work 43

(A) Speed comparison of password recovery
attack for key encryption (confidentiality).

(B) Speed comparison of password recovery
attack for keystore integrity, considering dif-

ferent keystore sizes.

FIGURE 2.4: Revised password cracking benchmarks after library up-
dates.

2.6 Discussion

Keystores are the standard way to store and manage cryptographic keys and certifi-
cates in Java applications. In the literature there is no in-depth analysis of keystore
implementations and the documentation does not provide enough information to
evaluate the security level offered by each keystore. Thus, developers cannot make
a reasoned and informed choice among the available alternatives.

In this chapter we have thoroughly analysed seven keystore implementations
from the Oracle JDK and the Bouncy Castle library. We have described all the cryp-
tographic mechanisms used to guarantee standard security properties on keystores,
including offline attacks. We have pointed out that several implementations adopt
non-standard mechanisms and we have shown how this can drastically speed-up
the brute-forcing of the keystore passwords. Additionally, we reported new and un-
published attacks and defined a precise threat model under which they may occur.
These attacks range from breaking the confidentiality of stored keys to arbitrary code
execution on remote systems and denial of service. We also showed how a keystore
can be potentially weaponized by an attacker to spread malware.

We have reported the security flaws to Oracle and Bouncy Castle. The issues
in the Oracle JDK have been fixed between the October 2017 and the April 2018
Critical Patch Updates [81, 82] following CVE IDs [70, 71, 72]. Similarly, Bouncy
Castle developers committed changes to address several problems discussed in this
work.

Following our analysis and succeeding fixes, it appears evident that the security
offered by JKS, the default keystore in Java 8 and previous releases, is totally inad-
equate. Its improved version JCEKS still uses a broken integrity mechanism. For
these reasons, we favourably welcome the decision of Oracle to switch to PKCS12 as
the default keystore type in the recent Java 9 release. After the previously discussed
updates this keystore results quite solid, although certificate protection is bogus and

44 Chapter 2. Software Keystores

key encryption relies on legacy cryptography.
Alternatives provided by Bouncy Castle have been found to be less susceptible

to attacks. Among the analysed keystores, the updated BCFKS version clearly sets
the standard from a security standpoint. Indeed, this keystore relies on modern al-
gorithms, uses adequate cryptographic parameters and provides protection against
introspection of keystore contents. Moreover, the development version of Bouncy
Castle includes preliminary support for scrypt [86, 87] in BCFKS, a memory-hard func-
tion that requires significant amount of RAM. Considering the steady nature of key-
store files, we argue that in addition to approved standard functions, it would be
advisable to consider future-proof cryptographic primitives so to be more resistant
against parallelized attacks [20, 24].

Related Work

Cooijmans et al. [35] have studied various key storage solutions in Android, either
provided as an operating system service or through the Bouncy Castle cryptographic
library. The threat model is very much tailored to the Android operating system and
radically different from the one we consider in this chapter. Offline brute-forcing,
for example, is only discussed marginally in the paper. Interestingly, authors show
that under a root attacker (i.e., an attacker with root access to the device), the Bouncy
Castle software implementation is, in some respect, more secure than the Android
OS service using TrustZone’s capabilities, because of the possibility to protect the
keystore with a user-supplied password. Differently from our work, the focus of the
paper is not on the keystore design and the adopted cryptographic mechanisms.

Sabt et al. [100] have recently found a forgery attack in the Android KeyStore
service, an Android process that offers a keystore service to applications and is out
of the scope of our work. However, similarly to our results, the adopted encryption
scheme is shown to be weak and not compliant to the recommended standards,
enabling a forgery attack that make apps use insecure cryptographic keys, voiding
any benefit of cryptography.

Li et al. [63] have analysed the security of web password managers. Even if the
setting is different, there are some interesting similarities with keystores. In both
settings a password is used to protect sensitive credentials, passwords in one case
and keys in the other. So the underlying cryptographic techniques are similar. How-
ever the kind of vulnerabilities found in the paper are not related to cryptographic
issues. Gasti et al. [42] have studied the format of password manager databases.
There is some similarity with our work for what concerns the threat model, e.g., by
considering an attacker that can tamper with the password database. However, the
setting is different and the paper does not account for cryptographic weaknesses
and brute-forcing attacks.

45

Chapter 3

Cryptographic Hardware API

46 Chapter 3. Cryptographic Hardware API

In this chapter we investigate on the security of dedicated cryptographic hard-
ware which, with respect to software-based cryptography, is recognized as a practi-
cal solution for ensuring stronger protection against attacks. For this reason tamper-
resistant devices such as smartcards, USB tokens and Hardware Security Modules
are often adopted for critical activities, e.g., in financial and large organizations. In
this respect, we focus on cryptographic devices that are accessible via the PKCS#11
API and, in particular, we study the translation from the PKCS#11 API to the low-
level communication protocol, namely APDU, which is used to interact with the de-
vice. We analysed five commercially available devices and investigated on how
these devices implement various security-critical PKCS#11 operations, by studying
in detail the APDU traces. We found that the PKCS#11 API is typically implemented
in the form of a middleware translating the high-level PKCS#11 commands into low-
level ISO 7816 Application Protocol Data Units (APDUs) and exposing the results of
commands in the expected PKCS#11 format. In our experiments, we noticed that
this translation is far from being a 1-to-1 mapping. Devices usually implement sim-
ple building blocks for key storage and cryptographic operations, but most of the
logic and, in some cases, some of the sensitive operations are delegated to the mid-
dleware.

Contributions. In this chapter we present:

(i) a new threat model for PKCS#11 middleware used by cryptographic hardware;

(ii) novel APDU-level attacks on commercially available tokens and smartcards,
some of which were considered secure;

(iii) a security analysis of the vulnerabilities with respect to the threat model.

Structure of the chapter. The chapter is organized as follows: in Section 3.1 we
present the threat model; in Section 3.2 we illustrate in detail our findings on five
commercially available devices; in Section 3.3 we analyse the attacks with respect to
the threat model and in Section 3.4 we draw some concluding remarks and present
the related work.

3.1 Threat Model

In this section we analyse various threat scenarios and classify them based on the
attacker capabilities.

We consider a typical scenario in which the target token is connected to a desktop
or laptop computer running in a single-user configuration. We describe the threat
model by focusing on the following sensitive targets:

PIN If the attacker discovers the PIN he might be able to perform cryptographic
operations with the device when it is connected to the user’s host or in case he
has physical access to it;

3.1. Threat Model 47

Cryptographic operations The attacker might try to perform cryptographic opera-
tions with the token, independently of his knowledge of the PIN;

Cryptographic keys The attacker might try to learn sensitive keys either by exploit-
ing PKCS#11 API-level attacks such as Clulow’s wrap-and-decrypt [32] (cf.
Section 1.1.1) or by exploiting the new APDU-level vulnerabilities we will dis-
cuss in Section 3.2.

3.1.1 Administrator Privileges

If the attacker has administration privileges, he basically has complete control of the
host. He can modify the driver, replace the libraries, intercept any input for the users
and attach to any running process1. As such, he can easily learn the PIN when it is
typed or when it is sent to the library, use the PIN to perform any cryptographic
operations and exploit any PKCS#11 or APDU level attacks to extract cryptographic
keys in the clear.

3.1.2 User Privileges

The most common situation is when the attacker has user privileges. In this case we
have different scenarios:

Monolithic. The application is run by the same user as the attacker and directly
links both the PKCS#11 and the APDU library. The attacker can easily sniff and alter
data by attaching to the application process and by intercepting library calls. The
attacker can trivially learn the PIN when it is sent to the library, use the PIN to per-
form any cryptographic operations and exploit any PKCS#11 or APDU level attacks
to extract cryptographic keys in the clear.

Separate authentication mechanism. The application is run by the same user as
the attacker and directly links the PKCS#11 library but authentication is managed
by a separate software or hardware which is not directly accessible with user privi-
leges. Examples could be a separate dialog for entering the PIN running at different
privileges or some biometric sensor integrated in a USB token. The attacker cannot
directly log into the token but can still sniff and alter data by attaching to the appli-
cation process and by intercepting library calls. If the attacker is able to place in the
middle and alter data, he could additionally exploit PKCS#11 or APDU-level attacks
to extract cryptographic keys in the clear. Notice that, knowing the PIN, this can be
done by simply opening a new independent session. Without knowledge of the PIN,
instead, the attacker needs a reliable Man-In-The-Middle (MITM) attack.

Separate privileges. If the middleware layer is run as separate process at a differ-
ent privilege level, the attacker cannot attach to it and observe or alter APDUs. The

1This is typically done by using the operating system debug API to instrument or inspect the target
process memory. Examples are the Event Tracing API for Windows and the Linux ptrace() syscall.

48 Chapter 3. Cryptographic Hardware API

Attacker Application Attacker can
access

Attacker can exploit

PKCS#11 APDU PIN PKCS#11 APDU
passive

APDU
active

Admin Any

User

Monolithic

Sep. Auth. 1 1

Sep. Privileges

Sep. Auth.&Priv. 1

Physical Any 2 1 3 1,3

1 Requires MITM.
2 Through a keylogger or a USB sniffer.
3 Only APDU payloads, cannot access middleware memory.

TABLE 3.1: Threats versus attackers and applications.

attacker can still try to access the token directly, so if there are ways to bypass authen-
tication he might be able to perform cryptographic operations and exploit PKCS#11
or APDU-level attacks.

3.1.3 Physical Access

If the attacker has physical access to the user host he might install physical key-
loggers and USB sniffers. This is not always feasible for example if the devices are
integrated, as in laptops. In the case of a key-logger, the attacker can easily discover
the PIN if it is typed through the keyboard. The case of directly sniffing APDUs pass-
ing, e.g., through USB, is interesting and more variegated since different sensitive
data could be transmitted through the APDU layer, as we will illustrate in Section 3.2.

3.1.4 Summary of the Threat Model

Table 3.1 summarizes what the various attackers can access and exploit in different
settings. We distinguish between passive APDU attacks, where the attacker just sniffs
the APDU trace, and active APDU attacks, where APDUs are injected or altered by the
attacker. In some cases active APDU attacks require mounting a MITM, e.g., when the
PIN is now known or when the attacker does not have access to the middleware, as
in physical attacks.

We point out that, if the application is monolithic, an attacker with user privi-
leges is as powerful as one with administrative privileges. The maximum degree
of protection is when the application offers separate authentication and the middle-
ware runs with different privileges. We notice that the attacker can still perform
PKCS#11-level attacks without knowing the PIN by mounting a MITM and alter-
ing or hijacking the API calls. Finally, physical attacker can in principle perform all
the attacks, except the ones that are based on inspecting process (or middleware)
memory and assuming, in some cases, MITM capabilities.

3.2. APDU-level Attacks on Real Devices 49

3.2 APDU-level Attacks on Real Devices

We have tested the following five devices from different manufacturers for possible
APDU-level vulnerabilities.

• Aladdin eToken PRO (USB)

• Athena ASEKey (USB)

• RSA SecurID 800 (USB)

• Safesite Classic TPC IS V1 (smartcard)

• Siemens CardOS V4.3b (smartcard)

For readability, in the following we will refer to the above tokens and smartcards as
eToken PRO, ASEKey, SecurID, Safesite Classic and Siemens CardOS, respectively.
These five devices are the ones tested in [26] for which we could find APDU-level
attacks. It is worth noticing that we could not inspect the APDU traces of some other
devices analysed in [26] because they encrypt the APDU-level communication. We
leave the study of the security of encrypted APDUs as a future work.

We have systematically performed various tests on selected sensitive operations
and we have observed the corresponding APDU activity. We have found possible
vulnerabilities concerning the login phase (Section 3.2.1), symmetric sensitive keys
(Section 3.2.2), key attributes (Section 3.2.3), private RSA session keys (Section 3.2.4).

Quite surprisingly we have found that, in some cases, cryptographic keys ap-
pear as cleartext in the library which performs cryptographic operations in software.
Moreover, we have verified that the logic behind PKCS#11 key attributes is, in most
of the cases, implemented in the library. We have also found that all devices are vul-
nerable to attacks that leak the PIN if the middleware is not property isolated and
run with a different privilege (which is usually not the case). Moreover, attackers
with physical access could sniff an authentication session through the USB port and
brute-force the PIN once the authentication protocol has been reverse-engineered.

Our findings have been timely reported to manufacturers following a responsible
disclosure process and are described in detail in the following sections.2

3.2.1 Authentication

In PKCS#11 the function C_Login allows a user to authenticate, in order to activate
a session and perform cryptographic operations. For the five devices examined,
we found that authentication is implemented in two different forms: plaintext and
challenge-response.

2Official answers from manufacturers, if any, will be made available at https://secgroup.dais.
unive.it/projects/apduattacks/.

https://secgroup.dais.unive.it/projects/apduattacks/
https://secgroup.dais.unive.it/projects/apduattacks/

50 Chapter 3. Cryptographic Hardware API

C_Login session trace Device
0 # Custom Get challenge:
1 APDU: 80 17 00 00 08
2 SW: df 89 61 34 62 05 13 36 90 00
3 # Custom External authenticate:
4 APDU: 80 11 00 11 0a 10 08 64 d5 97 15 4a 44 eb 23
5 SW: 90 00

Aladdin
eToken PRO

0 # Standard ISO-7816 Get challenge:
1 APDU: 00 84 00 00 00 00 08
2 SW: bb 8b ec f8 a3 a8 62 63 90 00
3 # Standard ISO-7816 External authenticate:
4 APDU: 00 82 02 00 00 00 18 00 00 11 12 8f e3 fa a6 a8 a8 07 10 47

e0 af 90 65 20 42 43 2d f0 47 16
5 SW: 90 00

Athena ASEKey USB

0 # Send 8 random bytes:
1 APDU: 80 50 81 01 08 c9 ff 3c d6 63 a2 13 b0
2 SW: 61 1c
3 # Standard ISO-7816 Get response:
4 APDU: 00 c0 00 00 1c
5 SW: 35 34 95 09 14 02 1d 3a 03 2a 81 01 03 2a ec a5 97 cc d0 ea

8a cb 05 59 94 78 e1 04 90 00
6 # Custom External authenticate:
7 APDU: 84 82 03 00 10 fb bb dd 65 5f 0d 70 cc 41 a7 23 47 1d af b0

72
8 SW: 90 00

RSA SecurID 800

0 # Standard ISO-7816 Select file:
1 APDU: 00 a4 04 00 0c a0 00 00 00 18 0a 00 00 01 63 42 00
2 SW: 90 00
3 # Standard ISO-7816 Verify:
4 APDU: 00 20 00 01 08 31 32 33 34 00 00 00 00
5 SW: 90 00

Safesite Classic TPC
IS V1

0 # Standard ISO-7816 Select file:
1 APDU: 00 a4 04 0c 0c a0 00 00 00 63 50 4b 43 53 2d 31 35
2 SW: 90 00
3 # Standard ISO-7816 Verify:
4 APDU: 00 20 00 81 05 31 32 33 34 35
5 SW: 90 00

Siemens CardOS
V4.3b

TABLE 3.2: APDU session trace of the PKCS#11 C_Login function for
the five devices.

Plain authentication. This authentication method is used by Safesite Classic and
Siemens CardOS. When the function C_Login is called, the PIN is sent as plaintext
to the token to authenticate the session. This operation does not return any session
handle at the APDU level, meaning that the low level protocol is stateless: a new
login is transparently performed by the library before any privileged command is
executed. The fact the PIN is sent as plaintext allows to easily sniff the PIN even
without having control of the computer, for example using a hardware USB sniffer.

In Table 3.2 we report an excerpt of a real APDU session trace of the C_Login
function. We can see that Safesite Classic and Siemens CardOS tokens use (line 4) the
standard ISO-7816 VERIFY command to authenticate: the PIN, in red colour/italic,
is sent as a ASCII encoded string (“1234” and “12345”, respectively).

Challenge-Response authentication. In the eToken PRO, ASEKey and SecurID to-
kens the function C_Login executes a challenge-response protocol to authenticate
the session: the middleware generates a response based on the challenge provided
by the token and the PIN given by the user. At the APDU level, eToken PRO and

3.2. APDU-level Attacks on Real Devices 51

ASEKey do not return any session handle thus, as for the previous devices, the low
level protocol is stateless and a new login is transparently performed by the library
before executing any privileged command. Instead, on the SecurID the challenge-
response routine is executed only once for each session as it returns a session handle.

PKCS#11 standard allows PIN values to contain any valid UTF8 character, but
the token may impose restrictions. Assuming that the PIN is numeric and short
(4-6 digits), which is the most common scenario, an attacker is able to bruteforce
the PIN offline, i.e. without having access to the device, as it is enough to have
one APDU session trace containing one challenge and one response. As a proof of
concept, we have reverse engineered the authentication protocol of eToken PRO and
ASEKey implemented in the PKCS#11 library. This allowed us to try all possible
PINs and check whether or not the response computed from the challenge and the
PIN matches the one in the trace.

In Table 3.2 we can see that eToken PRO makes use of proprietary commands
to request the challenge and provide the response, while ASEKey uses the standard
ISO-7816 GET CHALLENGE and EXTERNAL AUTHENTICATE commands. We have not
reverse engineered the challenge-response protocol of the SecurID token but, look-
ing at the APDU session trace, we can identify a three-steps authentication protocol.
At line 1 eight random bytes are sent to the token; then, a standard ISO-7816 GET
RESPONSE command is issued to retrieve the challenge (highlighted in red and italic
at line 5) and the identifier of the PKCS#11 session (highlighted in green and over-
lined). Line 7 contains the response generated by the middleware.

On both plain and challenge-response authentication, we have found that to-
kens implement no protection against MITM: if an attacker can place himself in the
middle of the connection he could exploit an authentication exchange to alter user
commands or inject his own ones.

3.2.2 Sensitive symmetric keys

We discovered that in Siemens CardOS, eToken PRO and SecurID encryption and
decryption under a sensitive symmetric key is performed entirely by the middle-
ware. As a consequence, the value of the sensitive key is sent out of the token
as plaintext. This violates the basic PKCS#11 property stating that sensitive keys
should never be exported in the clear. We also found that ASEKey surprisingly
reuses the authentication challenge (sent in the clear) as the value of freshly gen-
erated DES keys.

In the following, we describe the four devices separately.

Siemens CardOS V4.3b. This smartcard does not allow to create symmetric keys
with CKA_TOKEN set to true, meaning that symmetric keys will always be session
keys. According to PKCS#11 documentation, session keys are keys that are not
stored permanently in the device: once the session is closed these keys are destroyed.
Notice that this does not mean that sensitive session keys should be exported in the

52 Chapter 3. Cryptographic Hardware API

APDU session trace Token
0 # DES Key generation: red/italic = plain key value sent to the

token
1 APDU: 80 16 01 00 2b 01 01 02 02 02 40 01 03 02 00 18 04 04 11

11 11 11 10 18 17 3f ff ff ff ff 01 08 3f 44 5f c4 eb 76
f1 86 06 64 65 73 6b 65 79 00

2 SW: 90 00

C_GenerateKey
sample on Aladdin

eToken PRO

0 # Fetch the key: green/overlined = attributes, red/italic =
plain key value, blue/underlined = label

1 APDU: 80 18 00 00 04 0e 02 00 00 18
2 SW: 17 3f ff ff ff ff 01 08 3f 44 5f c4 eb 76 f1 86 06 64 65

73 6b 65 79 00 90 00

C_WrapKey sample on
Aladdin

eToken PRO

0 # 3DES Secret key generation
1 APDU: 80 16 00 00 1a 72 35 be 4e aa de 2d 47 72 b2 8b 47 5f de

63 4d 7e 30 a5 f0 ac 5f c0 56 c6 90
2 SW: 90 00

C_GenerateKey
sample on RSA

SecurID 800

0 # 3DES key is read in the clear even if CKA_SENSITIVE is set to
true

1 APDU: 00 c0 00 00 18
2 SW: 36 90 fa c9 4e 82 55 b1 71 1d 81 e4 3c d1 bd fa 44 9c bb

c3 b1 8b 1e 8d 90 00

C_GetAttribute-
Value sample on RSA

SecurID 800

0 # Get challenge (Standard ISO-7816):
1 APDU: 00 84 00 00 00 00 08
2 SW: b7 c8 14 4b 4e 5f e6 3e 90 00
3 # External authenticate (Standard ISO-7816):
4 APDU: 00 82 02 00 00 00 18 00 00 11 12 95 fa da de 0d 70 42 d9

21 c2 27 a4 8b af 7a 8b 90 47 ae 54
5 SW: 90 00
6 # Get an RSA modulus (in red/italic)
7 SW: 79 23 57 33 9a be 2a dd ba ae 2e 09 4c d0 3d 57 8b d0 07

e4 ... (omitted) ... 19 6d 15 ea b6 aa cc 2b e8 30 c3 e8
cf 90 00

8 # Send the encrypted key to the token
9 APDU: 80 24 00 80 00 00 a0 20 5b f1 f9 cd 67 c8 3d e0 cf 9b 1b

c7 ... (omitted) ... 33 0b 85 1a 27 7e cd 69 95 71 ca 2e
88 33 a7 f6 4a 97 22 a0

10 SW: 90 00

C_GenerateKey
sample on Athena

ASEKey

TABLE 3.3: Leakage of sensitive symmetric keys during PKCS#11 op-
erations.

clear out of the token. What distinguishes a session key from a token key is persis-
tence: the former will be destroyed when the session is closed while the latter will
persist in the token.

We observed that encryption under a sensitive key sends no APDUs to the token.
This gives evidence that encryption takes place entirely in the middleware. More-
over, we verified that even C_GenerateKey function does not send any APDU: in fact,
it just calls the library function pkcs11_CryptGenerateRandom to generate a ran-
dom key value whose value is stored (and used) only inside the library.

Aladdin eToken PRO. In Table 3.3 (first row), we show that symmetric key gener-
ation in eToken PRO is performed by the middleware. We can see, in red and italic,
a DES key value sent to the token in the clear.

The value of symmetric keys stored in the eToken PRO can be read by using the
proprietary APDU command 0x18. No matter which attributes are set for the key, its
value can be read. We tested it over a DES key with attributes CKA_TOKEN, CKA_-
PRIVATE, CKA_SENSITIVE set to true. In order to perform this attack a valid login

3.2. APDU-level Attacks on Real Devices 53

is required. Since symmetric key operations are performed by the library, this APDU
command is used to retrieve the key from the token before performing operations in
software.

As an example, in Table 3.3 (second row) we see part of a C_WrapKey operation
that retrieves a the DES cryptographic key from the token. We can see the value of
the key in the clear.

RSA SecurID 800. In Table 3.3 (third row), we show that symmetric key generation
in SecurID is also performed by the middleware. We can see, in red and italic, a 3DES
key value sent to the token in the clear.

We were also able to retrieve the value of a sensitive key stored inside the Se-
curID by just issuing the correct APDU command. In fact, when trying to use the
C_GetAttributeValue function, the library correctly returns the CKR_ATTRIBUTE_-
SENSITIVE error. However, what really happens is that the key is read from the
token but the library just avoids to return it. In Table 3.3 (fourth row) we can see (in
red and italic) the value of the sensitive key leaked by the token.

Athena ASEKey. The most surprising behaviour is shown by the ASEKey: the
value of token sensitive symmetric keys cannot be read arbitrarily via APDU com-
mands, as they are stored in a separated Dedicated File (DF) which requires au-
thentication. Nonetheless the key value is unnecessarily leaked when the key is
generated.

In Table 3.3 (fifth row) we report an excerpt of APDU session for the C_Gener-
ateKey function. We notice that C_GenerateKey sends (line 9) the key encrypted
under RSA with a modulus (line 7), using the public exponent 0x010001. In fact,
the library encrypts the whole Elementary File (EF) containing the key value, that
is going to be written in the token. This means that special care was taken to avoid
leaking the value as plaintext when importing it in the token. Unfortunately the key
value already appeared in the clear: quite surprisingly, key generation re-uses the 8-
bytes random string which is used by the authentication step (line 2) as the sensitive
key value.

As a proof of concept, we encrypted a zero-filled 8-bytes buffer using the C_-
Encrypt function with the generated key and a null initialization vector. We then
performed the same encryption using the 8-bytes challenge as the DES key value
obtaining the same value.

3.2.3 Bypassing Attribute Values

In all five tokens examined, PKCS#11 attributes are interpreted by the middleware
and do not have any import on the internal behaviour of the token. We performed a
simple test by signing a text using an RSA key having the attribute CKA_SIGN set to
false:

1. take a private RSA key with CKA_SIGN false;

2. verify that it cannot sign a message via the PKCS#11 API, as expected;

54 Chapter 3. Cryptographic Hardware API

0 # Manage security environment
1 APDU: 00 22 41 b6 06 80 01 12 84 01 07
2 SW: 90 00
3 # Custom perform security operation
4 APDU: 80 2a 9e ac 16 90 14 59 b7 b5 0c 2e 69 4e 3f 7e 2f 06 7f 07 1d 8e dd de ba 8c c0
5 SW: 61 80
6 # Custom getData
7 APDU: 80 c0 00 00 80
8 SW: 9d 70 aa 8d c4 af 7a 88 ba e4 6c ab 47 3e 02 19 81 e5 85 53 8a 6a 1b 83 8c 73 39

29 9e 49 bb 24 a7 27 4f 8e 38 60 b6 d1 71 c6 92 75 58 fe 33 78 d2 fe 99 5c 96 4e
3e 43 15 9d 67 f9 db 7b 8b 3c 29 d4 97 d5 ec 2e 46 7e 2b c9 c4 92 0f 38 eb 65 11
2b e1 ba 61 33 7c a1 03 62 f4 2c 2c f2 52 85 2a ee ab 77 ca 6e 37 8e 3b 5a 57 dd
c1 64 ea d0 76 71 2a 46 0b bc d4 2a ef c0 6c 32 77 c3 5e 79 90 00

LISTING 3.1: Forced signature sample

>>> signed = 0x9d70aa8dc4af7a88bae46cab473e021981e585538a6a1b838c7339299e49bb24a7274f8e3860b6d171c6927558f
e3378d2fe995c964e3e43159d67f9db7b8b3c29d497d5ec2e467e2bc9c4920f38eb65112be1ba61337ca10362f42c2cf252852
aeeab77ca6e378e3b5a57ddc164ead076712a460bbcd42aefc06c3277c35e79

>>> modulus = 0xc1886b5f26ad5349426b8e8bfc9f73385d14f6cf2b2f1d95b080ae2df7a1db11b91d36db33f3b98f1687177471
1c03b22d7d97939062031df2d15371173b468f9986701d144f315005ec99a71b226fc71b956608c60747ceb4ac0c3725b7d044
84ac286196975f18911361e28ec50b661273362131b4a4183e01667b090c96f9

>>> pubkey = 0x010001
>>> hex(pow(signed, pubkey, modulus))
’0x1ff
ff
ff0059b7b50c2e694e3f7e2f067f071d8edddeba8cc0L’

LISTING 3.2: Signature verification in Python

3. perform the sign operation manually, via APDU, using the private key and the
message. Some tokens use the standard ISO-7816 command PERFORM SECU-
RITY OPERATION and some others use a proprietary command but, in both
cases after sniffing, it is easy to replicate any valid APDU trace for a signature.

This confirms that the low-level behaviour of the token is not compliant to PKCS#11
specification as it allows to perform signature under a key that has CKA_SIGN at-
tribute set to false. Since the behaviour of all five tokens is similar, in Listing 3.1
we illustrate the case of Safesite Classic as a representative APDU example trace. At
line 4 the message is sent to the token and, at line 8, the corresponding signature is
returned.

We can verify that signature corresponds using Python shell, as shown in List-
ing 3.2. In particular, notice that the obtained message corresponds to the one we
signed.

3.2.4 RSA Session Keys

When using session RSA keys on the eToken PRO, we discovered that key gener-
ation, encryption and decryption operations are performed inside the library. This
means that the value of the private key is exposed in the clear out of the token.

Even if one might regard to session keys as less important than long-term keys,
as we already discussed in Section 3.2.2 for Siemens CardOS, PKCS#11 still requires
that if such keys are sensitive they should not be exported out the token in the clear.
For example we can generate a session key which, at some point before the end of the

3.3. Security Analysis 55

Token Auth.
Sensitive

symmetric keys
Bypassing
attribute
values

RSA session keys

PKCS#111 APDU PKCS#111 APDU

eToken PRO 2 4

ASEKey 2 3

SecurID 2 5

Safesite Classic

Siemens CardOS 4

1 PKCS#11-level attacks discovered in [26], for comparison.
2 Requires reverse engineering of the authentication algorithm and bruteforcing.
3 Leakage occurs only during generation.
4 Requires access to middleware memory.
5 Possible for RSA Authentication Client version < 3.5.3.

TABLE 3.4: Summary of the vulnerabilities found .

session, is persisted in the token’s memory by calling the C_CopyObject function.
Clearly this newly created object cannot be considered secure as the value of the
private RSA key has already been leaked in the clear out of the token.

3.3 Security Analysis

In Table 3.4 we summarize the APDU-level attacks we found on the five devices. In the
columns labelled PKCS#11 we also report the PKCS#11 attacks from [26], for com-
parison. In particular, the only token that allows for PKCS#11 Clulow-style attack
extracting a sensitive key in the clear is eToken PRO. For SecurID we reported that
it was possible to directly read the value of sensitive symmetric keys and RSA re-
leased a fix starting from RSA Authentication Client version 3.5.3.3 In the literature
we found no known API-level attacks on sensitive keys for the remaining devices.

All devices are affected by attacks on the PIN, some of which requiring reverse
engineering and brute forcing, and by attacks bypassing key attributes. For what
concerns sensitive keys, only Safesite Classic is immune to attacks. For the remaining
four tokens we have reported new attacks that compromise sensitive keys that are
instead secure when accessed from the PKCS#11 API.

In order to clarify under which conditions the attacks are possible we cross-
compare Table 3.1 with Table 3.4 producing table Table 3.5. In particular, for each
device we take the vulnerabilities reported in Table 3.4 and we check from Table 3.1
if the combination attacker / application offers the necessary conditions for the at-
tack. We omit the Admin attacker as it is in fact equivalent to the User attacker
when the application is monolithic. In particular, we observe that:

3See https://secgroup.dais.unive.it/projects/tookan/

https://secgroup.dais.unive.it/projects/tookan/

56 Chapter 3. Cryptographic Hardware API

Attacker Application Auth.

Sensitive
symmetric keys Bypass

attribute
values

RSA session keys

PKCS#114 APDU PKCS#114 APDU

Aladdin eToken PRO

User

Monolithic

Sep. Auth. 1 1

Sep. Privileges

Sep. Auth.&Priv. 1

Physical Any 2,5 1 1

Athena ASEKey

User

Monolithic

Sep. Auth. 6 1

Sep. Privileges

Sep. Auth.&Priv.

Physical Any 2,5 1

RSA SecurID 800

User

Monolithic 7

Sep. Auth. 1,7 1

Sep. Privileges 7

Sep. Auth.&Priv. 1,7

Physical Any 2,5 1,7 1

Safesite Classic TPC IS V1

User

Monolithic

Sep. Auth. 1

Sep. Privileges

Sep. Auth.&Priv.

Physical Any 2 1

Siemens CardOS V4.3b

User

Monolithic

Sep. Auth. 1

Sep. Privileges

Sep. Auth.&Priv.

Physical Any 2 1

1 Requires MITM.
2 Through a keylogger or a USB sniffer.
3 Only APDU payloads, cannot access middleware memory.
4 PKCS#11-level attacks discovered in [26], for comparison.
5 Requires reverse engineering of the authentication algorithm and bruteforcing.
6 Leakage occurs only during generation.
7 Possible for RSA Authentication Client version < 3.5.3.

TABLE 3.5: Summary of vulnerabilities with respect to attackers and
applications.

3.3. Security Analysis 57

User / Monolithic the attacker can attach to the process and eavesdrop the PIN at
the PKCS#11 level. Knowing the PIN the attacker can perform any operation
and inspect the process memory. So all attacks of Table 3.4 are enabled;

User / Separate authentication mechanism the attacker cannot eavesdrop the PIN
directly. Interestingly PKCS#11-level attacks and attribute bypass are still pos-
sible through a MITM on the middleware. Moreover, APDU-level attacks on
keys are still valid as they only require to eavesdrop the APDUs;

User / Separate privileges the attacker can still eavesdrop the PIN and work at the
PKCS#11 level but all APDU-level attacks are prevented. In this setting the only
insecure token is eToken PRO since it allows for PKCS#11-level attacks on sen-
sitive keys;

User / Separate authentication and privileges this is the more secure setting: the
attacker con only perform PKCS#11-level attacks on eToken PRO through a
MITM, since he cannot learn the PIN. All the other tokens are secure;

Physical / Any application through a keylogger or a USB sniffer the attacker can
learn the PIN. In case of a USB sniffer, for the tokens adopting challenge-
response it is also necessary to reverse-engineer the protocol in the library and
perform brute-forcing on the PIN. APDU-level attacks are possible only when
the keys are transmitted from / to the device. So, for eToken PRO RSA session
keys and Siemens CardOS symmetric keys the attacks are prevented, as keys
are directly handled by the library and are never transmitted to the device.
Other attacks can be performed only through a MITM at the USB level.

3.3.1 Fixes and Mitigations

Compliant PKCS#11 devices should implement all the cryptographic operations in-
side the hardware. This would prevent all of the attacks we have discussed so far,
except for the ones on authentication. However, fixing this at the hardware level
requires to redesign the device and is probably just not affordable, in general.

We have seen, however, that having separate authentication and privileges is
a highly secure setting that fixes the problem of cryptographic operations imple-
mented at the library level and, at the same time, protects PIN authentication. It is
worth noticing that running the middleware with separate privileges can be done
transparently to the application while having separate authentication requires to
modify the application so that the login step is managed by separate software or
hardware.

An alternative solution to mitigate attacks on PIN, with no changes in appli-
cations, could exploit the OTP functionality of the devices with a display, such as
SecurID. A one-time PIN might be generated by the token and shown on the display
asking the user to combine it with the secret token PIN. In this way, offline brute-
forcing would be slowed down by the longer, combined PIN and, even if successful,

58 Chapter 3. Cryptographic Hardware API

would require physical access to the token in order to re-authenticate since part of
the PIN is freshly generated by the token each time the user authenticates.

3.4 Discussion

We have presented a new threat model for the PKCS#11 middleware and we have
analysed the APDU-level implementation of the PKCS#11 API for five commercially
available devices. Our findings show that all devices present APDU-level attacks that,
for four of them, make it possible to leak sensitive keys in the clear. The only smart-
card immune to attacks to keys is Safesite Classic. We have also found that all de-
vices are vulnerable to attacks that leak the PIN if the middleware is not property
isolated and run with a different privilege (which is usually not the case). More-
over, attackers with physical access could sniff an authentication session through the
USB port and brute-force the PIN once the authentication protocol has been reverse-
engineered.

We have reported our finding to manufacturers following a responsible disclo-
sure principle and we have interacted with some of them to provide further infor-
mation and advices.

Related Work

Many cryptographic API-level attacks have been published in the last 15 years. The
first one is due to Longley and Rigby [65] on a device that was later revealed to be
a Hardware Security Module manufactured by Eracom and used in the cash ma-
chine network. In 2000, Anderson published an attack on key loading procedures
on another similar module manufactured by Visa [1] and presented more attacks in
two subsequent papers [22, 23]. Clulow published the first attacks on PKCS#11 in
[32]. All of these attacks had been found manually or through ad-hoc techniques.
A first effort to apply general analysis tools appeared in [128], but the researchers
were unable to discover any new attacks and could not conclude anything about the
security of the device. The first automated analysis of PKCS#11 with a formal state-
ment of the underlying assumptions was presented in [39]. When no attacks were
found, the authors were able to derive precise security properties of the device. In
[26], the model was generalized and provided with a reverse-engineering tool that
automatically refined the model depending on the actual behaviour of the device.
When new attacks were found, they were tested directly on the device to get rid of
possible spurious attacks determined by the model abstraction. The automated tool
of [26] successfully found attacks that leak the value of sensitive keys on real devices.

Low-level smartcard attacks have been studied before but no previous APDU-level
attacks and threat models for PKCS#11 devices have been published in literature.
In [10], the authors showed how to compromise the APDU buffer in Java Cards

3.4. Discussion and Related Work 59

through a combined attack that exploits both hardware and software vulnerabili-
ties. In [61], the authors presented a tool that gives control over the smart card com-
munication channel for eavesdropping and man-in-the-middle attacks. In [75], the
authors illustrated how a man-in-the-middle attack can enable payments without
knowing the card PIN.

In [43] a subset of the authors investigated an automated method to systemati-
cally reverse-engineer the mapping between the PKCS#11 and the APDU layers. The
idea is to provide abstract models in first-order logic of low level communication,
on-card operations and possible implementations of PKCS#11 functions. The ab-
stract models are then refined based on the actual APDU trace, in order to suggest
the actual mapping between PKCS#11 commands and APDU traces. The two papers
complement each other: the present one illustrates real attacks with a threat model
and a security analysis, while [43] focuses on automating the manual, non-trivial re-
verse engineering task. All of the attacks presented here have been found manually
and some of them have been used as test cases for the automated tool of [43].

Finally, for what concerns the threat model, in the literature we find a number of
general methodologies (e.g., [106, 115, 125]) that do not directly apply to our setting.
In [38] the authors discussed threat modelling for security tokens in the setting of
web application while [103] described in details all the actors and threats for smart
cards, but none of these papers considered threats at the PKCS#11 middleware layer.
To the best of our knowledge, the threat model we propose in this work is the first
one in the setting of PKCS#11 tokens and smartcards which takes into account the
APDU layer as an attack entry point.

61

Chapter 4

Physical Attacks in
Embedded Systems

62 Chapter 4. Physical Attacks in Embedded Systems

Attackers with physical access to a target device can exploit hardware side-chan-
nels to leak data, even under the assumption of sound cryptographic designs and
implementations. In this chapter we investigate on voltage fault injection, a class of
active side-channel attacks that induces faults by creating disturbances, namely volt-
age glitches, in the power supply of a device. We study how variations in the glitch
waveform influence the attack performance and describe a new technique for gen-
erating this type of faults using low-cost equipment. As a case study for assessing
the effectiveness of our approach, we present unpublished attacks that allow for ex-
tracting the firmware from the internal protected memory of six popular microcon-
trollers. Interestingly, this is the result of several consultancies for the analysis and
reverse-engineering of cryptographic implementations that we operated in the au-
tomotive field. Cryptography is, in fact, widely used in the read-protected firmware
found in on-board electronics of modern vehicles.1

Contributions. Our contributions can be summarized as follows:

(i) We investigate the effect of different glitch waveforms in the setting of voltage
fault injection attacks and, in particular, we propose a new method for the gen-
eration of arbitrary glitch waveforms using a low-cost and software-managed
setup;

(ii) we report on unpublished vulnerabilities and weaknesses in six microcon-
trollers from three major manufacturers: STMicroelectronics, Texas Instruments
and Renesas Electronics. We combine these vulnerabilities and describe the at-
tacks for extracting the firmware from the internal read-protected flash mem-
ory. All the attacks are non-destructive and can be performed with a black-box
approach, i.e., without any knowledge of the firmware code;

(iii) we evaluate the attack performance of our method by comparing the speed,
efficiency and reliability of our solution against two popular V-FI techniques.

Structure of the chapter. In Section 4.1 we describe our experimental setup and
equipment; in Section 4.2 we introduce our arbitrary glitch waveform technique and
we show how to automatically identify and optimize the glitch shape; in Section 4.3
and 4.4 we report on unpublished vulnerabilities of six microcontrollers and de-
scribe the attacks for extracting the firmware; in Section 4.5 we empirically evaluate
our technique by comparing it with two popular V-FI techniques, we discuss lim-
itations and propose possible improvements; finally, in Section 4.6 we draw some
concluding remarks and present the related work.

4.1. Experimental Setup 63

FIGURE 4.1: Picture of the actual experimental setup, including the
arbitrary voltage glitch generator.

(A) 0 25 50 75 100 125 150 175 200
Glitch duration (ns)

−500

0

500

1000

1500

2000

2500

G
lit
ch

 v
ol
ta
ge

 (m
V
)

(B)

Arbitrary Waveform Generator

Glitch Amplifier

Python
Framework

STM32F407

I / O & Timing

Controller

Trigger
Analogue
Waveform

Digital

Waveform

Target
uC

Attack Logic

Bootloader
Protocol

Genetic
Algorithm

Glitch injection
USB

API

I / O

(C)

0 200 400 600 800 1000 1200
Glitch duration (ns)

0

500

1000

1500

G
lit
ch

 v
ol
ta
ge

 (m
V
)

(D)

FIGURE 4.2: A typical transistor-based V-FI setup (4.2a) and a gener-
ated glitch (4.2b). The oscillations depend on the target, components
in use, and electronic properties of the power supply line. Our V-FI
setup for generating arbitrary glitch waveforms (4.2c) and a gener-

ated glitch (4.2d).

64 Chapter 4. Physical Attacks in Embedded Systems

4.1 Experimental Setup

Based on the work in [57], we developed a low-cost programmable V-FI setup that
enables us to overcome the limitations of the transistor-based glitch generation cir-
cuit (cf. Section 1.2). Our setup, depicted in Figure 4.1, is designed around the
Digital Direct Synthesis (DDS, cf. [36]) technology: a DDS signal generator out-
puts an arbitrary waveform from a software-defined set of parameters. Similarly
to the generation of analogue audio from a digital source, the digital waveform is
fed to a Digital-to-Analog Converter (DAC) for producing the equivalent analogue
signal. Since in this work we target general purpose microcontrollers that operate
at sub-GHz speed, we chose an off-the-shelf DDS device with a reasonable trade-
off between performance and price: the FeelTech FY3200S, a very low cost (about
50 $) Arbitrary Waveform Generator with 6 MHz analog bandwidth and ±10 V out-
put range. This model has an internal waveform memory of 2048 points and allows
for controlling the output waveform with 12-bit vertical resolution, using a publicly
available protocol over USB.2 We use this device as a source of both glitch signal and
constant voltage for regular MCU operation: the transition from a constant voltage
to the glitch is controlled by an external input trigger. As depicted in Figure 4.2c, we
wired the generator to a custom designed board which has has three major function-
alities: (i) provide the glitch amplification stage and signal path from the generator
to the target MCU; (ii) interface with the target MCU, handling the low-level com-
munication and time-critical operations; (iii) expose a convenient API to control any
aspect of the attack from a computer.

The amplification stage is designed after the arbitrary waveform generator band-
width and the power requirements of a general purpose, low-speed MCU. We used
a THS30623 current-feedback, high slew rate operational amplifier with 150 mA out-
put current capability working in a 2-stage, non-inverting configuration. A reed re-
lay is placed in-between the amplifier output and the target, allowing to fully cut off
the device power supply when needed, without any intervention on the generator
output.

An ARM STM32F407 microcontroller operating at 168 MHz is responsible for
running the firmware that controls the board. We designed the firmware using the
minimum code required for handling the low-level communication with the target
MCU (e.g., UART, I2C, SPI) and glitch triggering. Upon detection of an external
event, the built-in hardware timer guarantees a 10 ns resolution for signalling the
generator to inject the glitch after a specific time delay. An API allows for controlling
the board and interacting with the target MCU from a computer via a USB link.

1Due to non disclosure agreements, we are not allowed to disclose further details about the specific
vehicle manufacturers and cryptographic algorithms that we reverse-engineered.

2Notice that, since the waveform upload speed is low, we modified the generator to bypass the
built-in upload mechanism, improving the upload speed from about 30 s to 200 ms

3http://www.ti.com/lit/ds/symlink/ths3062.pdf

http://www.ti.com/lit/ds/symlink/ths3062.pdf

4.2. Arbitrary Waveform Voltage Glitch 65

(A) STM32F373 (B) TI MSP430F5172 (C) Renesas 78K0R

FIGURE 4.3: Oscilloscope trace of the voltage glitch for the
STM32F373 (4.3a), the TI MSP430F5172 (4.3b) and the Renesas 78K0R
(4.3c). The red (upper) trace represents the waveform of the voltage

glitch, while the yellow (lower) is the trigger.

All the complex tasks or algorithms, the attack logic and the specific communica-
tion protocol used by the target are implemented in a custom Python framework that
assists the design and execution of an attack. As a result, the task of mounting an
attack and switching to a different target is substantially simplified. The framework
is also responsible for commanding the waveform generation and for controlling the
attack parameters, including the search and optimization phase (cf. Section 4.2.1).

4.2 Arbitrary Waveform Voltage Glitch

The DAC-based voltage glitch generator described in Section 4.1 enables high flexi-
bility by allowing the attacker to control all typical V-FI parameters (i.e., power sup-
ply voltage, glitch voltage, timing and duration) in software and to produce both
negative and positive voltage spikes. Up to minor variations due to trace capac-
itance and impedance, the generated waveform is also repeatable and predictable
and it is not influenced by the characteristics of the particular MOS-FET transistor
in use, e.g., on-state resistance, capacitance, rise and fall times. However, the most
important feature of this setup that we are interested in, is the ability to generate
glitch waveforms with arbitrary shape.

In the literature it has been shown (see [131]) that rising and falling edges of a
voltage glitch play a crucial role in producing oscillations of the core voltage of a
FPGA. Since these oscillations cause computation errors that amount to setup time
violations in the circuit, in the present work we move a step forward and experiment
on the effectiveness of using non-standard glitch waveforms for fault injection on
general purpose microcontrollers. In the literature (cf. [117, 57]) Digital-to-Analog
converters have already been proven effective for V-FI. However, to the best of our
knowledge this work is the first that investigates on using a DAC as a source of
arbitrary glitch waveforms, which range from sharp pulses to smooth and varie-
gate waveforms, as exemplified in Figure 4.3. Depending on its characteristic, the
generated waveform can induce effects resembling regular voltage glitches or, for

66 Chapter 4. Physical Attacks in Embedded Systems

instance, a combination of underpowering [14, 105, 130], negative, positive or mul-
tiple voltage glitches. Our experiments (cf. Section 4.5) suggest that, when perform-
ing a fault injection attack, the attack success is strongly influenced by the particular
waveform of the glitch. However, we point out that thorough investigations are
still necessary to identify the precise, low-level effects of different waveforms on the
setup time of combinational logic. We leave this as a future work.

Parameter space. Typically, the set of attack parameters that need to be adjusted
are timing, glitch length, glitch voltage and possibly power supply voltage [30, 88,
76]. Our technique adds extra parameters for defining the glitch waveform, de-
scribed as a function of time where the result is the instantaneous voltage generated.
This function is translated into the parameter space as a finite set (from 4 to 10) of
(x, y) coordinates that are interpolated by cubic interpolation on a 2048-by-4096 grid,
and fed into the DAC. Then, the glitch length is encoded as frequency or period of
the arbitrary waveform generated.

4.2.1 Parameter Search and Optimization

We define parameter search as the task of finding one set of parameters that suc-
cessfully induces one or more faults, implementing a given attack logic. To improve
the attack performance, a further optimization phase can be employed for identify-
ing the set of injection parameters that maximize the probability of a successful fault.
The search phase is mandatory for designing and mounting an attack while the op-
timization step is subject to the specific requirements and complexity of the attack.

In the following we summarize the the steps performed by the attacker for de-
signing and optimizing a V-FI attack: (i) perform an initial parameter search; (ii)
implement the attack scheme and identify Nglitches and Tglitch, that is the amount of
successful faults required and the time spent for injecting one fault, respectively;
(iii) define a target time Tattack representing the duration under which the attack
is considered practical. This can vary from hours to days depending on the at-
tack complexity and attacker’s expectations; (iv) define a maximum time Ttimeout

for the optimization step, typically as a fraction of Tattack; (v) iterate the optimiza-
tion step until the success rate Rsuccess of the fault attack is such that Rsuccess ≥
(Tglitch · Nglitches) / Tattack, or the timeout Ttimeout is reached.

Given the increased number of parameters introduced by our technique, it is im-
portant to devise efficient techniques that make optimization feasible and practical.
In the following, we describe a semi-automated supervised search (cf. Section 4.2.1)
and a fully automated unsupervised search based on genetic algorithms (cf., Sec-
tion 4.2.1).

Supervised Search

Since finding the correct parameter setting is a highly nondeterministic process [88],
during our early experiments we used a human-supervised random search approach

4.2. Arbitrary Waveform Voltage Glitch 67

inspired by the Adaptive zoom & bound method proposed by Carpi et al. in [30]. First,
we randomly generate and interpolate the set of (x, y) points describing the candi-
date arbitrary glitch waveform. Then, we iteratively select a random sample from
each parameter interval and test the obtained combination. This process is repeated
and the results are manually evaluated, reducing the parameter space accordingly
until one solution is found. Clearly this approach is slow to converge and requires
expertise for evaluating the results. Additionally, the parameters are not indepen-
dent: for instance, altering the glitch waveform or duration can affect the glitch trig-
ger position.

Unsupervised Genetic Algorithm

Based on the work of Picek et al. [88], we developed a framework that enables for
identifying and optimizing the attack parameters in an unsupervised way. It is de-
signed over a classic genetic algorithm (GA) structure, where an initial population
of candidate solutions (the attack parameters) is randomly sampled and an iterative
process is responsible for finding a solution that maximizes a fitness value F. The fit-
ness value is typically represented by the number of successful glitches produced by
a specific set of parameters, but it can be further improved by accounting for addi-
tional factors, e.g., the success / failure ratio and the amount of target hangs or reset,
as a penalty factor. As an example, in Section 4.4.1 we assign a negative score to the
fitness value in the case of a false positive, i.e., an incorrect byte extracted. A solution
is composed of one combination of all the members in the parameter space and, at
each generation, the solutions evolve and the attack results are used to evaluate the
new fitness value. Since our goal is to find a working solution which is also opti-
mal, i.e., the parameters providing the best attack performance, we repeatedly test
one candidate solution and calculate F(solution) = S

T , where S is the number of suc-
cessful attacks and T the total number of tests. We start with 50 tests per candidate
and increment this value at each generation: as a result, the first generations enable
to test more solutions, while the last are more accurate in evaluating the candidates
performance.

At each generation, the population of solutions is improved through repetitive
application of the selection, mutation, crossover, and replacement operators. We
tuned these operators to the specific characteristics of our V-FI technique:

Selection we tested both the fitness proportionate selection and the tournament selection
standard GA methods of selecting an individual from the population of individu-
als, and found that both produce acceptable results;

Crossover we use a uniform crossover so that, in particular, every single (x, y) point
in the glitch waveform can be mixed between two parents with a 0.5 probability;

68 Chapter 4. Physical Attacks in Embedded Systems

Mutation every parameter has a different mutation probability. The glitch duration
parameter has the highest probability; the glitch waveform has a greater proba-
bility in the first generations, together with a higher likelihood of mutating by a
small extent;

Replacement a replace-worst strategy is adopted, which replaces the worst individ-
ual of the current population.

Results. With respect to the parameters optimized by an expert using the super-
vised approach of Section 4.2.1, our experimental results show that the solutions
identified by this algorithm produce the same, or higher attack performance. For
each case study presented in this chapter, in fact, the attack parameters (cf. Sec-
tion 4.3.3 and Section 4.4.2) have been automatically optimized using GA. As de-
scribed above in Section 4.2.1, item (v), the optimization converges when a solution
that delivers an acceptable performance level is found, i.e., when the success rate
Rsuccess is good enough to make the attack complete within time Tattack; otherwise it
is stopped when the timeout Ttimeout is reached. During our experiments the aver-
age time to converge was in the range of 30 minutes to 10 hours, depending on the
target device, the vulnerability and the size of the parameter search space. Finally,
we point out that the attack and the parameter optimization can be interleaved so
to achieve a continuous performance improvement, avoiding unnecessary voltage
glitches dedicated exclusively to the optimization phase.

4.3 Scattered-glitch Attacks

In this section, we assess the effectiveness of arbitrary glitch waveforms described
in Section 4.2 against two case studies of low/moderate complexity (Section 4.3.1
and Section 4.3.2). Specifically, the presented attacks exploit a single vulnerability,
require a limited amount of glitches (≤ 100 k) and can be completed in a short time
frame: from minutes to a few hours. All the presented attacks are novel and ex-
tract the firmware from the internal flash memory of the target microcontroller, by
exploiting vulnerabilities either in the bootloader or in the debug interface.

In Section 4.4 we will consider a third case study of increased complexity.

Attacker model. We assume the attacker knows the MCU model under attack and
has physical access to the target device. As such, the attacker can directly connect
to the exposed pins of the chip, desolder it from the PCB or tamper with the PCB
in order to isolate the chip from the other electronic components, minimizing inter-
ference. The attacker has no information about the running firmware and the flash
memory content but, although not mandatory, she has the ability to inspect the boot-
loader code in order to identify a suitable instruction to fault.

4.3. Scattered-glitch Attacks 69

4.3.1 Case Study 1: STMicroelectronics

We consider two STM32 ARM MCUs belonging to the F1 and F3 series and manu-
factured by STMicroelectronics. We select this microcontroller family since it is one
of the most widespread in consumer electronics, with over 1 billion units sold be-
tween 2007 and 2015 [114]. Most STM32 can be programmed either via JTAG / SWD
or via the integrated serial bootloader. On USB-enabled MCUs the standard Device
Firmware Upgrade (DFU) protocol [120] is often available.

STM32 F1

We select the STM32F103 as a representative of the F1 series. This model is equipped
with a 32-bit ARM Cortex-M3 core operating at 72 MHz.

Security mechanisms. The bootloader offers a security mechanism to lock the de-
vice and prevent any read or write operations on the flash memory. In particular,
we are interested in the Readout Protect command that enables the read protection
(RDP) feature. If enabled, the bootloader returns a negative response (NACK) when
a Read Memory command is issued. The Readout Unprotect command disables the
read protection at the cost of a complete flash memory erasure.

Attack. We easily bypass this protection mechanism by attacking the Read Memory
command. After the user requests a read operation, the CPU checks the RDP value
and returns the positive (ACK) or negative (NACK) response. By injecting a fault
during the RDP checking phase, the bootloader can be deceived into returning an
ACK despite the active read protection mechanism. Thus, it is enough to issue a Read
Memory command over a memory block followed by a voltage glitch, and repeat this
until an ACK is received and the content of the selected memory block is returned.
The attack is then iterated over the subsequent memory blocks.

STM32 F3

We select the STM32F373 as a representative of the F3 series, equipped with an ARM
Cortex-M4 core.

Security mechanisms. A hardware memory protection unit (MPU) implements
runtime access control to memory and the SRAM parity errors are checked in hard-
ware. The CPU power supply is provided by an internal voltage regulator and a
power supply supervision (PVD) circuit is responsible for holding the device in re-
set state while the input voltage is outside the working range. Compared to the F1
series (cf. Section 4.3.1), the flash memory read protection mechanism is enhanced by
using a configurable RDP with three levels of protection. At Level-0 the MCU is un-
protected. Level-1 grants access to main memory only when in user mode. i.e., when
executing regular firmware code. If, instead, the CPU is running the bootloader or is
in debug mode (e.g., via JTAG / SWD), then the flash memory is inaccessible. Finally,
the Level-2 protection disables the bootloader and any CPU debugging capability.

70 Chapter 4. Physical Attacks in Embedded Systems

RDP Level RDP RDP Security Features

Level-0 0xAA 0x55 None (unprotected)

Level-1 Any other value Debug w/o flash memory access

Level-2 0xCC 0x33 No debug (maximum protection)

TABLE 4.1: Values of RDP and complement (RDP) bytes with respect
to the RDP protection levels in the STM32 F3. Notice how a single bit

flip can downgrade the protection mechanism to Level-1.

Moreover, programming the RDP to Level-2 is an irreversible operation both for the
user and for STMicroelectronics. Interestingly, the reference manual [113] points out
that the RDP is not a software protection mechanism but it is rather implemented
at the hardware level, possibly in the MPU, since any access to protected memory
generates a bus error and a hard fault.

Attack. In a recent paper [79], the Level-2 protection of a STM32 F0 microcontroller
has been bypassed by decapsulating the chip and using UV-C light to alter the value
of RDP byte stored in flash memory.

We bypass the Level-2 protection by glitching the MCU during the power-up
phase, in order to interfere with the RDP security mechanism. The first step of the at-
tack is to identify the correct timing. Since the bootloader is disabled, the glitch trig-
ger cannot be synchronized to a bootloader command as in the case of the STM32F1.
The reference manual [113] suggests that the RDP loading takes place at the begin-
ning of the boot process thus, ideally, the glitch should be triggered right after the
start of the boot process. In fact, the MCU can be successfully downgraded to Level-
1 by injecting a glitch at just 11 µs after the boot starts. The attack is repeatable and
makes both the bootloader and the JTAG / SWD accessible. Notice that detecting
the start of the boot process in not immediate: the presence of a Power-On Reset cir-
cuit4 makes it necessary to observe the reset pin in order to recognize when the CPU
effectively starts booting.

Security implications. The attack can effectively downgrade the RDP from Level-2
to Level-1 but not to Level-0. This can be explained by observing the RDP values for
the various levels, reported in Table 4.1. Since Level-1 is enabled by any value differ-
ent from 0xCC33 (Level-2) and 0xAA55 (Level-0), it is enough to corrupt a single bit
to switch to Level-1 from the other levels. Instead, downgrading to Level-0 would
require to precisely alter the value to 0xAA55 which might not be feasible through
voltage glitching. At Level-1, the flash memory is not accessible when in debugging
mode. However, the debugger is still allowed to read any RAM address or register
value. This feature enables an attacker to dump sensitive data (e.g., encryption keys
and passwords) by attaching the debugger when a particular firmware routine is
being executed. Additionally, an automatic checksum verification of the firmware is

4This circuit holds the microcontroller in reset state for 1.5 ms to 4.5 ms after power on, allowing the
power supply to stabilize.

4.3. Scattered-glitch Attacks 71

often used by vendors to ensure flash data integrity: for instance, the ARM applica-
tion note 277 [67] suggests to perform a CRC-based ROM self-test as part of the boot
process. In such a scenario an attacker could extract the firmware by iteratively at-
taching the debugger and dumping RAM and registers content while the checksum
code is being executed. In [79] the authors have successfully mounted this attack
against a microcontroller of the STM32 F0 series.

4.3.2 Case Study 2: Texas Instruments

The MSP430 line from Texas Instruments (TI) integrates a 16-bit CPU and it is opti-
mized for low power applications. These microcontrollers can be found in a large
number of consumer and industrial devices [116], ranging from utility meters and
burglar alarms, to safety-critical applications such as fire detectors, medical equip-
ments and physical access control systems. Similarly to the STM MCUs (see Sec-
tion 4.3.1), the MSP430 integrates a software bootloader (BSL) that allows the user to
program and verify the firmware.

MSP430 F5xx ultra-low power

The first device under test is the MSP430F5172.

Security mechanisms. The main security mechanism is a user-defined password
that guards every data access command. The BSL can also be set to automatically
erase the flash memory whenever an incorrect password is provided. The microcon-
troller has a Supply Voltage Supervisor (SVS) and a Brownout Reset (BOR) circuit
that reset the device in the case of low voltage.

Attack. We have found that the user is asked to authenticate only when the first
read command is issued. Every subsequent command is executed without asking
for the password again. We suppose that an authentication flag is stored in RAM
and checked before the execution of every read operation; for this reason, we target
the flag check routine of the TX Data Block command, which can read up to 250 bytes.
However, the attack allows us to only dump a single byte, and a subsequent analysis
of the BSL code has confirmed that the authentication flag is checked for every byte
read.

The attack iterates over the following steps, for all addresses addr that need to
be dumped: (i) request a single byte at address addr; (ii) the BSL responds with
ACK (byte 0x00) indicating that the command is well formatted; (iii) apply a delay
Ttrig starting from the ACK reception, to align with the instruction that checks the
authentication flag; (iv) inject a voltage glitch in the power supply line; (v) if the
BSL responds positively, it also returns the value of requested address from flash
memory.

MSP430 FRxx FRAM nonvolatile memory

We consider a second target manufactured by Texas Instruments, the MSP430FR5725.

72 Chapter 4. Physical Attacks in Embedded Systems

Extraction time Total glitches Successes Parameter search Repeatability

STM32F103 1 m (128 kB) 9 k 5 % 20 m High

STM32F373∗ N/A ∼25 ∼4 % 2 h Moderate

MSP430F5172 16 m (32 kB) 34 k 98 % 1 h High

MSP430FR5725 50 m (8 kB) 100 k 8 % 3 h Moderate

∗STM32F373: results for one Level-2 to Level-1 downgrade; complete firmware dump not feasible using fault injection only.

TABLE 4.2: Results of the attacks on STMicroelectronics and Texax
Instruments microcontrollers described in Section 4.3.1 and Sec-

tion 4.3.2.

Security mechanisms. This microcontroller adopts a Ferromagnetic RAM (FRAM)
non-volatile memory technology, instead of the regular flash memory. In particular,
the presence of an integrated FRAM error correction coding (ECC) circuit makes
this MCU family an interesting case study to assess the effectiveness of our voltage
glitching technique. Similarly to MSP430F5172 (cf. Section 4.3.2), the BSL of this
microcontroller is password-protected.

Attack. We successfully applied the same attack logic used for the MSP430F5172,
described in Section 4.3.2.

4.3.3 Experimental Results and Considerations

The results for the attack performance of the two case studies are highlighted in Ta-
ble 4.2. In the table we indicate, for each microcontroller model: the extraction time,
which is the total time required to dump the firmware of the target MCU (the flash
memory size is reported in parenthesis); the total number of injected glitches dur-
ing the attack; the percentage of successful faults over the total injected glitches; the
time required for the genetic algorithm to search for optimal parameters (including
the glitch waveform) used during the attack (see Section 4.2.1); the repeatability,5 i.e.,
the effort for reproducing the attack against a different microcontroller of the same
model, loosely indicated as High or Moderate. Higher repeatability scores indicate,
in particular, that switching MCU do not require a full parameter search and opti-
mization, since the attack parameters can be largely reused for attacking the new
target.

Since the STM32F103 is quite sensitive to voltage glitches, and the maximum
length for a read operation is 256 bytes, we managed to dump a 128 kB firmware
in under 60 seconds. On average, the attack requires a total of just 9000 glitches,
which corresponds to a success ratio of about 5 %. We did not manage to perform a
flash dump of the STM32F373 using fault injection only, thus the result represents a
single triggering of the Level-2 to Level-1 downgrade vulnerability. As an example,

5We point out that this term is also used in the literature (cf. [107]) as metric for the ability to inject
a specific fault and obtain the same result.

4.4. Complex Attacks 73

in the case of the CRC32 attack (cf. Section 4.3.1) the downgrade must be successfully
performed once for every extracted byte.

The performance of the attack against the MSP430F5172 microcontroller is excel-
lent and we managed to dump over 2 kB per minute. Since the ratio of successful
glitches over the total is above 98 %, the attack speed is limited only by the low data
rate (9600 bps) of the BSL serial interface. On the contrary, the MSP430FR5725 at-
tack success rate is noticeably lower than the previous target, despite the prolonged
parameter search phase. As a result, 1 kB of FRAM memory is dumped every 6
minutes, thus one order of magnitude slower.

The MSP430 microcontrollers have a Supply Voltage Supervisor (SVS) and a
Brownout Reset (BOR) circuit that resets the device in the case of low voltage. In-
terestingly, the genetic algorithm (cf. Section 4.2.1) managed to identify the correct
set of parameters that are sufficient to induce a fault in the computation, without
triggering any of the two monitoring circuits. Note that the resulting waveform (see
Figure 4.3b), does not resemble the typical squared glitch shape and cannot be gen-
erated using the MOS-FET V-FI setup described in Section 4.1. The power supply
voltage identified by the algorithm is close to the minimum working value, which
makes this MCU exceedingly sensitive to minimal power disturbances. As a result,
the waveform voltage range is extremely compressed and, moreover, the smooth
transitions from the power supply voltage (1400 mV) to the lower glitch voltage
(880 mV) allow for injecting the glitch undetected.

4.4 Complex Attacks

The result of the attacks discussed in Section 4.3 indicates that arbitrary glitch wave-
forms can help to automatically bypass on-chip protection mechanisms such as bro-
wnout detectors or voltage supervisors. In this section we investigate the usage of
voltage glitching against particularly challenging attacks, where the total time re-
quired is in the range of several days and the number of successful glitches is mea-
sured in the order of 100 k to over 1 M.

In Section 4.4.1 we present a third case study that we conducted on two MCU
families manufactured by Renesas Electronics. Similarly to those presented in Sec-
tion 4.3, these attacks are novel and unpublished and enable for extracting the firm-
ware from the read-protected internal flash memory. We point out that the firmware
can only be dumped if multiple vulnerabilities of the on-chip serial bootloader are
combined and exploited; the data leaked by each vulnerability alone is indeed in-
sufficient. The attacker model is similar to the one described in Section 4.3, although
with an interesting distinction: the attack is conducted following a full black-box ap-
proach, i.e., with no information about the running firmware or the flash memory
content and, in particular, without reverse engineering the bootloader code.6

6During regular operation the bootloader code is not memory mapped and thus cannot be dumped.

74 Chapter 4. Physical Attacks in Embedded Systems

In Section 4.4.2 we show the attack results and discuss the issues and the chal-
lenges that have emerged and that are specifically related to this class of complex
attacks.

4.4.1 Case Study 3: Renesas Electronics

We tested two microcontrollers from the 78K family manufactured by Renesas Elec-
tronics, specifically series 78K0/Kx2 (8-bit core) and 78K0R/Kx3-L (16-bit core). The
manufacturer suggests that these MCUs are suitable for a wide range of applications,
from home appliances to more critical ones such as healthcare and automotive. A
2016 document from Renesas [94] reports that 920 millions MCUs / SoCs have been
sold in 2015 and, on average, every new vehicle contains 11 Renesas MCUs installed
in the onboard Electronic Control Unit.

The attacks described in this section target the 78K Flash Memory Programming
Interface (FMPI) [92, 93], i.e., the bootloader used to load a firmware into the internal
flash memory. The microcontroller can be set to boot from the FMPI, exposing the
common programming functionalities, e.g., write, erase, verify, to the user.

Security mechanisms. As opposed to what found in Section 4.3.1 and Section 4.3.2,
this interface does not provide a command to directly read a memory address. All
the commands that could potentially leak the flash memory content (e.g., checksum,
verify) are enforced to operate on 256 bytes aligned memory segments. This con-
straint disallows, for instance, a one byte increment of the checksum segment or to
perform an efficient brute-force by verifying a single byte at a time. Additionally, the
78K offers a mechanism to further protect the content of the flash memory in pro-
duction devices: a security flag field, controlled by the Security set command, can be
set to disallow Boot block rewrite, Programming, Block erase and Chip erase commands.
Since the security flag can be reverted only with a full memory erase, disabling the
Chip erase command is an irreversible operation.

FMPI Vulnerabilities

In this section we provide a description of the vulnerabilities that we found in the
FMPI interface. In Section 4.4.1 we combine these vulnerabilities to mount three
different attacks for dumping the flash memory content.

FlagBypass Restrictions on program, erase and chip erase commands can be bypassed
by injecting a fault while the Security flag value is being evaluated. We have found
that in order to attack this command two separate glitches are required and thus the
rate of success is very low, i.e., about one per minute or lower.

ShortVerify and ShortChecksum By glitching the routine that checks start and end
parameters sent to the verify and checksum commands, we are able to force these
commands to operate on 4 bytes rather than the intended 256 bytes.

4.4. Complex Attacks 75

ChecksumLeak The checksum command can be exploited as a side-channel by caus-
ing an error during its calculation, which amounts to iteratively subtracting each
byte from the starting value 0x10000. An error introduced by the glitch could cause
the checksum routine to miss one byte during its calculation, making it possible to
compute the value of this byte through a subtraction from the correct checksum. We
point out that this vulnerability can produce false positives (i.e., bytes that are not
actually in memory) and that it can be difficult to precisely recover the position of
the leaked byte in the flash memory.

Bitflip In flash memories, the write operation changes the state of a bit from 1 to 0
while, on the contrary, the erase operation switches it back to 1 (see [29]). Since the
bootloader does not enforce a flash erase before writing, the program command can
be used to alter existing flash memory content. As a consequence, by using solely
the program command we are able to turn 101 into, e.g., 100 or 000 but not into 111.

Mounting the Attacks

By combining the vulnerabilities of Section 4.4.1 we mounted three different attacks
for dumping the read-protected internal flash memory of the 78K 8-bit and 16-bit
MCUs.

SequentialDump By combining the ShortVerify, ShortChecksum and Checksum-
Leak vulnerabilities it is possible to discover four bytes from the flash. The process,
depicted in Algorithm 4, works as follows: (i) use the ShortChecksum vulnerability
(line 2) to obtain the checksum value of the target 4 bytes; (ii) use ShortChecksum
and ChecksumLeak vulnerabilities to leak 4 different byte values (lines 5 and 6) (iii)
process and combine (line 8) leaked bytes to obtain a new set of candidates for the 4
bytes that has not been checked already; (iv) perform a first check (line 10) for the va-
lidity of the candidate by comparing its checksum with the known bytesChecksum.
This does not require any interaction with the hardware; (v) verify the candidate
using the ShortVerify vulnerability (line 11).

The attack is feasible thanks to the ShortVerify and ShortChecksum vulnerabili-
ties, that allow to selectively work on 4 bytes. The API would only allow to perform
verify and checksum for blocks of 256 bytes.

Erase & Write We inject a custom software routine in the firmware that directly
dumps the firmware through a serial communication channel with a computer. The
attack is mounted as follows: (i) use Algorithm 5 to dump the first n bytes of the
flash;7 (ii) use the FlagBypass vulnerability to erase the first n bytes; (iii) use the
FlagBypass vulnerability once more to write the custom routine into the erased
memory; (iv) set the microcontroller to boot from the custom routine and receive
the dump from the serial interface.

This translates into a considerable performance improvement: a full flash dump
can be performed in about three to five hours, while the number of required glitches

7Since the minimum erase size is 1024 bytes, then n ≥ 1024.

76 Chapter 4. Physical Attacks in Embedded Systems

Algorithm 4 Attack for extracting 4 bytes.
1: function FOURBYTESDUMP(addr)
2: bytesChecksum← SHORTCHECKSUM(addr)
3: oldCandidates← ∅
4: leak← ∅
5: while |leak| < 4 do
6: leak← leak ∪ CHECKSUMLEAK(addr)
7: while True do
8: newCandidates← COMBINE(leak) \ oldCandidates
9: for all guess ∈ newCandidates do

10: if CHECKSUM(guess) = bytesChecksum then
11: if SHORTVERIFY(addr, guess) then
12: return guess
13: oldCandidates← oldCandidates ∪ newCandidates
14: leak← leak ∪ CHECKSUMLEAK(addr)

Algorithm 5 Memory dump using the SequentialDump attack.
1: function FLASHDUMP(startAddr, endAddr)
2: data← ∅
3: while startAddr ̸= endAddr do
4: data← data ∥ FOURBYTESDUMP(startAddr)
5: startAddr = startAddr + 4
6: return data

is about one order of magnitude lower with respect to the full attack. This attack was
tested on 78K0R only. Attacking the 78K0 series might also be possible, although our
preliminary tests have been unsuccessful.

Bitflip & Write We found that the firmware of several commercial devices does not
fill the available flash space completely. For instance, the unused blank8 memory
segment could be left for future firmware updates. A checksum or verify command
is sufficient to locate any blank segment in the flash memory. We exploit these empty
segments to further optimize the firmware extraction strategy.

The attack is mounted as follows: (i) use the Bitflip vulnerability to store the
firmware-dump routine of the Erase & Write attack in an unused memory area; (ii)
use Algorithm 4 to dump the first 4 bytes to identify the location of the boot section;9

(iii) use Algorithm 5 to dump the first 256 bytes of the boot section; (iv) analyse
the dumped bytes to identify a suitable candidate for bit-flipping: for instance, a
FFFF sequence is sufficient for encoding a branch instruction; (v) use the Bitflip
vulnerability to replace all the instructions up to the FFFF sequence with NOPs (byte
0x00) followed by a branch instruction to the firmware dump routine; (iv) set the
microcontroller to boot from the custom routine and receive the dump from the serial
interface.

8A segment is considered blank if all bytes have value 0xFF, i.e., the block is erased.
9In the 78K architecture the first 4 bytes of the flash memory hold the address of the firmware boot

section (i.e., the entry point).

4.4. Complex Attacks 77

1108 μs 1110 μs 1112 μs 1114 μs 1116 μs 1118 μs
Trigger to glitch injection delay

0 %

2 %

4 %

6 %

8 %

10 %

12 %
R
at
e
of
 su

cc
es
s

byte #1
byte #2
byte #3
byte #4

(A)

20 °C 21 °C 22 °C 23 °C 24 °C 25 °C 26 °C
Ambient temperature

−4 μs

−2 μs

0 μs

2 μs

4 μs

In
je
ct
io
n
tim

in
g
va

ria
tio

n

(B)
FIGURE 4.4: Frequency distribution of 4 bytes leaked by the Renesas
ChecksumLeak vulnerability (4.4a): on the x-axis the delay between the
trigger and glitch injection, on the y-axis the rate of successful faults.
The effect of ambient temperature variations on the optimal injection

timing (4.4b). The reference measurement is at 23 ◦C and 1110 µs.

Extraction time Total glitches Successful glitches Parameter search Repeatability

SequentialDump 2 d 12 h 3.3 M 549 k 5 h Moderate

Erase & Write ∼3 h 513 k 45 k 1 h High

Bitflip & Write <1 h 204 k 15 k 30 m High

TABLE 4.3: Results of the three attacks on Renesas 78K microcon-
trollers described in Section 4.4.1. The values are obtained by averag-

ing the results of three complete firmware extractions.

4.4.2 Experimental Results and Considerations

In Table 4.3 we summarize the results of the Renesas attacks described in Section 4.4.1.
As one would expect, the SequentialDump attack is the slowest one as it dumps all the
flash memory by using fault injection only, thus requiring a very high glitch count.
On the contrary, the software dump routine loaded using the Erase & Write and Bit-
flip & Write attacks leads to a major improvement in firmware extraction time. To
this end, since these attacks extract few bytes using fault injection, a trade-off can
be achieved between the bare extraction speed (i.e., the glitch success ratio) and the
time required for the parameter optimization phase. However, we point out that to
trigger the FlagBypass vulnerability, required by the Erase & Write and Bitflip & Write
attacks, two repeated glitches are necessary, resulting in an extremely low success
ratio: we managed to achieve one success in about 15 to 30 minutes.

The SequentialDump attack can run fully automated and unsupervised with a rea-
sonable degree of repeatability. Indeed, we performed several full firmware dumps
from different 78K0 and 78K0R microcontrollers. Typically, switching MCU requires
a re-optimization phase of the attack parameters, including the glitch waveform, in
order to achieve good glitch success ratio. Interestingly, we experienced that each
exploited vulnerability best performs with a specific glitch waveform. Although a

78 Chapter 4. Physical Attacks in Embedded Systems

single glitch waveform can be sufficient to trigger multiple vulnerabilities, the suc-
cess ratio of such a waveform is low.

Our tests revealed also that, even with the correct parameters, both the attack
performance and the repeatability of long-running attacks can be influenced by tim-
ing errors and external variables such as the ambient temperature.

Injection Timing

Fault injection aims at causing an error during the computation of a specific task, so
the timing is a critical parameter. We refer to injection timing as the delay that we
introduce between an external trigger event and the injection of the glitch. During
our experiments we experienced glitch timing inaccuracy that affected the attack
performance. In general, this could be caused by external and physical variables
such as temperature, clock stability, trigger precision or interferences. As an exam-
ple, Figure 4.4a depicts the effect of timing variations on the output of the Renesas
ChecksumLeak vulnerability presented in Section 4.4.1: it appears evident the correla-
tion between injection delay and the probability of leaking one of the four bytes. The
±2 µs error is introduced by the inaccurate trigger event (i.e., the command transmis-
sion to the bootloader) combined with the fluctuation in the checksum computation
time caused by small variations in the internal oscillator frequency. As a result, this
timing error makes it difficult to recover the exact position of the leaked byte because
of the overlapping probability distributions. We point out that timing errors could
be minimized with the use of synchronization techniques such as frequency locking
[109, 77] or side-channel power analysis [78].

Ambient Temperature

Extreme temperatures are known to facilitate fault injection and side channel attacks
on several targets [47, 48, 91]. In fact, we have found that also small variations
in the ambient temperature can affect the attack performance, requiring multiple
adjustments of the injection parameters and thus affecting the attack repeatability.
When targeting microcontrollers that are running on the integrated oscillator, attacks
using long injection delays (≥ 100 µs) can be particularly sensitive to temperature
changes. This is particularly interesting when performing attacks that span over
more than one day: for instance, heating or cooling systems can be turned off during
the night causing a noticeable temperature variation. To verify our observations
we measured the impact of a ±3 ◦C ambient temperature excursion on the Renesas
ChecksumLeak vulnerability. We repeated the attack for one hour by using, at each
iteration, a different injection timing that is randomly sampled in the range 1100±
5µs. The box plot in Figure 4.4b collects all the glitch timings that lead to a successful
attack: the plot suggests that the value of the glitch delay is proportional to the
ambient temperature.

4.5. Evaluation 79

This behaviour is caused by slight variations in the frequency of the internal
oscillator (cf. [96, 123]). In particular, an increase in ambient temperature causes a
decrease of execution speed in the Renesas 78K microcontroller, which misaligns the
target instruction with respect to the injected glitch. We managed to reduce the error
caused by temperature variations by applying a ∼ 0.1 %/◦C compensation factor to
the injection timing. This factor can be easily calculated from the results of the above
test.

4.5 Evaluation

In order to evaluate the attack performance of our approach, referred to as AGW in this
section, we conducted a series of tests against the two other main voltage glitching
techniques: an ubiquitous transistor-based setup, namely Mosfet, and its general-
ization using a DAC-generated pulse that we will refer to as Pulse.

4.5.1 Performance Analysis and Comparison

In the following we describe the three setups that we used during the tests:

Mosfet This is the classic configuration often adopted in the literature [78, 76], sim-
ilar to the one described in Section 1.2 and depicted in Figure 4.2a. Specifically,
we use a VN2222 N-channel MOS-FET paired with an ADP3623 driver to en-
sure fast and sharp switching times. This setup allows for configuring glitch
duration and timing. The MCU power supply voltage can be varied manu-
ally and the glitch voltage (i.e., the peak low voltage of the glitch waveform) is
fixed at 0 V since the source pin of the MOS-FET is tied to ground.

Pulse With respect to the previous setup, this allows for improved configurability
and control over the generated glitch. The glitch is, in fact, more predictable
and it is not influenced by the characteristics of the specific MOS-FET in use.
We implemented this setup using our arbitrary function generator (cf. Sec-
tion 4.1), enabling us additional control over the power supply voltage and the
glitch voltage, duration, timing and, in particular, the rise and fall times of the
glitch edges. To the best of our knowledge, this setup resembles the behaviour
of the industry standard Riscure VC Glitcher [95] which is, however, missing
the ability to alter the rise and fall times of the generated glitch.

AGW Our proposed setup (cf. Section 4.1) enhances the output capabilities of the
Pulse method, allowing the attacker to produce fully arbitrary glitch wave-
forms. Moreover, this setup is capable of producing voltage glitches with 20 V
peak-to-peak amplitude and ±10 V output range, for supporting a broad vari-
ety of targets.

80 Chapter 4. Physical Attacks in Embedded Systems

Vulnerability Technique Success False Positive Reset Reset⁄Success Glitch Count

ShortVerify
Mosfet 668 (2.6 %) 1 1780 (6.9 %) 2.66 25701

Pulse 969 (3.7 %) 0 1685 (6.4 %) 1.74 26180

AGW 1291 (6.8 %) 1 2786 (14.6 %) 2.16 19044

ShortChecksum
Mosfet 474 (2.1 %) 1 1862 (8.3 %) 3.93 22322

Pulse 689 (2.8 %) 1 1632 (6.6 %) 2.37 24931

AGW 728 (4.4 %) 2 2912 (17.7 %) 4.01 16475

ChecksumLeak
Mosfet 412 (4.9 %) 254 (3.0 %) 2481 (29.8 %) 6.02 8329

Pulse 455 (5.6 %) 158 (1.9 %) 2510 (30.9 %) 5.52 8136

AGW 687 (8.6 %) 42 (0.5 %) 2515 (31.5 %) 3.66 7977

TABLE 4.4: Performance comparison of three vulnerabilities de-
scribed in Section 4.4.1 using different voltage glitching techniques.
Results are obtained by averaging 4 independent runs of 10 minutes
each. Values inside the parenthesis indicate the percentage relative to

the total glitch count.

The high runtime complexity of the Renesas attacks (cf. Section 4.4.1) makes the
ShortVerify, ShortChecksum and ChecksumLeak vulnerabilities an interesting bench-
mark for evaluating the performance of these three V-FI techniques. The experi-
ments were conducted by attacking a microcontroller of the 78K0/Kx2 family, pre-
programmed with known memory content so to verify the correctness of the ex-
tracted data. All the attack parameters were computed by running the algorithm
described in Section 4.2.1 for 8 hours.10 In Table 4.4 we present the performance
results obtained by averaging 4 independent runs of 10 minutes each that we con-
ducted for every combination of vulnerability and technique. Between each run,
the glitch timing was adjusted to compensate for temperature variations (cf. Sec-
tion 4.4.2).

In the table we indicate: (i) the number of successes, e.g., the amount of glitches
that lead to a successful verify operation or to extract the correct byte; (ii) the number
of false positives, such as an incorrect byte extracted or a bad short-checksum; (iii)
how often we reset the microcontroller for becoming unresponsive after a glitch; (iv)
the total glitch count, injected during the 10 minutes run. The results show that AGW
outperforms the other techniques. In particular we observe that the absolute number
of successful glitches is noticeably higher. Similarly, AGW presents a higher ratio of
success over the total injected glitches, thus our technique is both faster and more
efficient. The false positive count for the ChecksumLeak vulnerability is 6 times and
almost 4 times lower with respect to Mosfet and Pulse techniques; interestingly, in
Section 4.5.1 we show how this enables a major reduction in the firmware extraction
time. When a glitch makes the microcontroller non-responsive, a reset operation is
performed at the cost of additional overhead, due to the bootloader re-initialization.
The results show that, in general, our technique induces more resets in the target,

10Although in some cases the optimal set of parameters could have been found in a shorter period,
we forced the algorithm to run for 8 hours in order to guarantee fairness and comparability of the
results.

4.5. Evaluation 81

0 ns 200 ns 400 ns 600 ns 800 ns 1000 ns 1200 ns
-500 mV

0 mV

500 mV

1000 mV

1500 mV

2000 mV

2500 mV

Mosfet
Pulse
AGW

(A) ShortVerify
0 ns 200 ns 400 ns 600 ns 800 ns 1000 ns 1200 ns

-500 mV

0 mV

500 mV

1000 mV

1500 mV

2000 mV

2500 mV

Mosfet
Pulse
AGW

(B) ShortChecksum
0 ns 200 ns 400 ns 600 ns 800 ns 1000 ns 1200 ns

-500 mV

0 mV

500 mV

1000 mV

1500 mV

2000 mV

2500 mV

Mosfet
Pulse
AGW

(C) ChecksumLeak

FIGURE 4.5: Comparison of the voltage glitch waveforms for the
three V-FI techniques and vulnerabilities evaluated in Table 4.4.

Technique Tested
combinations # ShortVerify # ChecksumLeak # ShortChecksum Total

glitch count
Total

dump time

Mosfet 351 k 13.9 M 3.1 M 699 k 18.1 M 6 d 19 h

Pulse 142 k 3.8 M 2.6 M 582 k 7.1 M 3 d 16 h

AGW 105 k 1.5 M 1.5 M 351 k 3.3 M 2 d 12 h

TABLE 4.5: Full firmware extraction from a 60 kB flash memory us-
ing the Renesas SequentialDump attack. Overview of the performance

variation among different voltage glitching technologies.

thus limiting the number of glitches injected in the 10 minutes run. This limitation
is, however, compensated by a higher fault efficiency, which contributes in rising the
overall attack performance.

Finally, in Figure 4.5, for each vulnerability we plot the glitch waveforms of the
three V-FI techniques. The Mosfet setup shows the shorter glitch duration and the
maximum voltage amplitude as a consequence of both undershooting below 0 V and
overshooting above VCC. While the edge rise time is sharp for all the three vulnera-
bilities, the fall time in the Pulse setup appears to be much longer, about 400 ns in
the case of Figure 4.5b. Interestingly, the duration of the low-end (close to 0 V) part
of the AGW glitch is similar to those of the other two techniques.

Firmware Extraction Time

After evaluating the performance of the single vulnerabilities, we tested the Sequen-
tialDump attack presented in Section 4.4.1. The results, depicted in Table 4.5, repre-
sent a full 60 kB flash memory dump. Notice that, for the sake of brevity, each tech-
nique was tested on 5 consecutive 256-bytes memory blocks only; the 60 kB result
was obtained after calculations. Our technique managed to dump the firmware 32 %
and 63 % faster than Pulse and Mosfet, respectively. Interestingly, our approach is
also very efficient, reducing the total number of glitches required to complete the
attack: the Mosfet produced about five time the number of glitches, followed by
the Pulse method which doubled the value of AGW. In fact, since these techniques
show a higher false positives ratio in the ChecksumLeak vulnerability, the number of
extracted combinations that require to be verified (cf. Algorithm 4) is also higher.

82 Chapter 4. Physical Attacks in Embedded Systems

0 ns 100 ns 200 ns 300 ns 400 ns 500 ns 600 ns 700 ns
Glitch length

0 mV

500 mV

1000 mV

1500 mV

2000 mV

2500 mV

G
lit
ch
 v
ol
ta
ge

A

B

C

D

E

Injected glitch
Supply voltage level
Modified points

(A) Points of perturbation

Point Variation Success / minute

A +200 mV −22 %

A +550 mV −58 %

B −260 mV −16 %

C −170 mV Not working

C +140 mV +7 %

D −510 mV −33 %

E +480 mV −1 %

(B) Performance variation

FIGURE 4.6: Voltage glitch waveform for the Renesas ShortVerify vul-
nerability (4.6a). Red points are shifted in the y-axis (voltage), report-

ing the performance effect of each variation in the table (4.6b).

Glitch Waveform Characterization

We conducted a final experiment to characterize how minor perturbations in the
ShortVerify waveform would impact the success rate. This waveform, used for the
AGW tests and depicted in Figure 4.6a, is capable of producing about 130 success-
ful verify operations per minute. The test is performed as follows: a point of local
minimum or maximum, labelled with letters from A to E, is selected and moved
along the y-axis so to lower or raise its voltage; after interpolating the 5 points, the
resulting waveform is tested for 10 minutes and the number of successful verify op-
erations is collected. The results of Figure 4.6b highlight a correlation between a
specific perturbation and the attack success rate. As an example, if point A is raised
by 200 mV, then the performance decreases by about 22 %. Interestingly, lowering
point C by 170 mV does not produce any success at all, while raising this point by
140 mV increases the number of successful verify operations by 7 %. This particu-
lar result indicates that refinements in the parameter optimization algorithm (see
Section 4.2.1) could leave room for further performance improvements of the AGW
technique.

4.5.2 Limitations and Further Improvements

The experimental campaign conducted proved that the success rate of an attack can
be improved by selecting specific glitch waveforms and, as described in Section 4.3.3,
some countermeasures such as integrated voltage supervisors can be automatically
bypassed. However, this improvement comes at the cost of increased complexity
in the glitch parameter search (cf. Section 4.2.1). In particular, searching and opti-
mizing the glitch waveform might be time consuming, possibly requiring numerous
glitches. The choice of the voltage fault injection technique should, thus, account for
both the security mechanisms employed by the target (if any) and the overall attack
complexity. As a compromise between attack performance and parameter search
duration, it might in fact be advantageous to reduce the degrees of freedom of the

4.6. Discussion and Related Work 83

waveform generation. For instance, starting the glitch waveform optimization from
a small, predefined set of shapes, could substantially ease the task of the optimiza-
tion algorithm.

We plan to conduct more experiments on new microcontrollers and other classes
of fault attacks, e.g., against cryptographic implementations, and to target secure mi-
crocontrollers or hardware (e.g., smartcards, USB tokens) and high speed Systems-
on-a-Chip (SoCs). To this end, our low cost generator (see Section 4.1), which is lim-
ited to produce arbitrary waveforms with a maximum frequency of about 6 MHz,
will be upgraded to increase both bandwidth and output sampling rate. Finally, we
also leave as a future work the study of an improved version of the genetic algorithm
presented in Section 4.2.1, and the investigation of other classes of optimization al-
gorithms.

4.6 Discussion

In this chapter we have studied, for the first time, how voltage glitches with arbi-
trary waveforms affect the success and efficiency of an attack. We have also inves-
tigated the feasibility of identifying a valid set of attack parameters, including the
glitch waveform, in an automated and unsupervised way, and showed the feasibil-
ity of generating these type of glitches using low cost equipment. Furthermore, we
have presented novel attacks on six widely used microcontrollers from three manu-
facturers. These attacks target the bootloader interface and allow for extracting the
firmware from the internal protected flash memory. Following a responsible disclo-
sure policy, we have timely reported the security flaws to STMicroelectronics, Texas
Instruments and Renesas Electronics. Finally, we have evaluated the performance
improvement provided by the arbitrary glitch waveforms against two other major
voltage glitching techniques. The results showed an increment in the firmware ex-
traction speed and, in particular, a significantly lower amount of injected glitches
required to complete the attack.

Regardless of the arbitrary glitch waveform technique, we believe that the pre-
sented attacks are valuable. They provide evidence that an attacker, even with lim-
ited resources, can use voltage fault injection to bypass the protection mechanisms
offered by the microcontrollers under test. Thus, we certainly discourage the adop-
tion of this kind of microcontrollers for security or safety-involved systems. Even
when microcontrollers come with some basic protection mechanisms and voltage
supervisors, we have shown how these can be easily and systematically bypassed,
allowing for efficient firmware extraction. Moreover, firmware extraction is prob-
lematic by itself for intellectual property. So, independently of the criticality of the
application, companies should be aware that the protections implemented in budget
microcontrollers are insufficient to protect the know-how in the firmware and, con-
sequently, devices could be cloned or tampered by criminals with a low effort and
investment.

84 Chapter 4. Physical Attacks in Embedded Systems

Related Work

One of the first attacks exploiting the idea of hardware faults was described (but not
tested) by Boneh, DeMillo and Lipton in [25]: it recovered the secret factors p and
q of an RSA modulus from a correct signature and an hypothetical faulty one. In
the same year, Anderson and Kuhn investigated low cost attacks to tamper resistant
devices, focussing on a fault injection attack on pay-TV smartcards [2]. Then, in [60]
Kömmerling and Kuhn described an extensive range of invasive and non-invasive
tampering techniques and mitigations. As such, the paper is considered a milestone
in the setting of hardware fault attacks, highlighting power supply glitching attacks
as the most practical ones. In [7], authors combined voltage fault injection and power
analysis to compromise the confidentiality of cryptographic computations and sug-
gested possible countermeasures. In the following decade, numerous articles (e.g.,
[9, 49, 44, 57, 62]) have further investigated the feasibility of applying voltage glitch-
ing to attack both microcontrollers and secure hardware, such as smartcards. In
particular, an extensive survey of the current state-of-the-art is provided in [55] and
[12]. The power supply fault injection mechanism has been extensively studied and
explained as the result of setup time violations in the combinatorial logic [104, 105,
130, 131].

Fault attacks against cryptographic implementations is also a very active re-
search topic and, in particular, several papers [104, 13, 14, 15] studied the effect of
constantly underfeeding a circuit to cause faults. In recent years, fault injection has
also been proven effective for achieving privilege escalation on a locked-down ARM
processor that was running a Linux-based OS [117] and, in the same year, a paper
[33] by Cojocar et al. proved that two widely used software countermeasures to fault
attacks do not provide strong protection in practice.

Firmware extraction from read-protected microcontrollers is a relatively less ex-
plored field: in [44] Goodspeed defeated the password protection mechanism found
in older Texas Instruments MSP430 microcontrollers. The author used a timing-
based side-channel attack to exploit an unbalanced code in the password check rou-
tine and, by using voltage glitching, he bypassed the security feature that allows
for disabling the serial bootloader (BSL) completely. In [79] authors showed that
it is possible to downgrade hardware-enforced security restrictions and dump the
internal firmware of an STM32F0 MCU, but the attack is invasive as it requires to
decapsulate the chip and expose the silicon to UV-C light. For what concerns the
characterization of V-FI attack parameters, in [30] and [88] authors have successfully
applied genetic algorithms and other optimization techniques. Finally, the glitch
generation using FPGA combined with Digital-to-Analog converters has been stud-
ied in the literature (cf. [117, 57]) and adopted by V-FI commercial tools, such as the
well-known Riscure VC Glitcher [95].

Our work continues this line of research by focusing on the voltage glitch gen-
eration step, in order to optimize the glitching effects that can be exploited by the
adversary. In particular we investigate, for the first time, the impact of arbitrary

4.6. Discussion and Related Work 85

glitch waveforms on the success, performance and repeatability of V-FI attacks. We
show that our approach improves on the state of the art by evaluating the attack
performance with specific glitch waveforms against the two most popular V-FI gen-
eration techniques [49, 57].

87

Conclusion

In this thesis we have studied existing cryptographic designs and implementations
from the software, hardware and physical perspectives. We have assessed the secu-
rity provided by Java keystores, focusing on seven of these cryptographic storage
facilities found in the Oracle JDK and the Bouncy Castle library. We have analysed
all the cryptographic mechanisms, including undocumented ones, adopted by key-
stores to enforce standard security properties. We have also disclosed new attacks
that range from breaking the confidentiality of stored keys, to denial of service of
the target system and arbitrary code execution. Moreover, we have shown how a
keystore can be potentially weaponized by an attacker to spread malware. Finally,
we have discussed the advancements on the security of Oracle and Bouncy Castle
keystore implementations after our findings.

Then, we have thoroughly analysed tamper-resistant cryptographic hardware,
accounting for the low-level APDU communication protocol as a new attack surface.
We have presented a new threat model for the PKCS#11 middleware and we have
analysed the APDU-level implementation of the PKCS#11 API for five commercially
available smartcards and USB tokens. In particular, we have shown that these de-
vices present APDU-level attacks that allow for bypassing the authentication and, for
four of them, make it possible to leak sensitive keys in the clear. We have also dis-
cussed a series of fixes and mitigations to prevent all the attacks we have presented.

Finally, we have investigated on voltage fault injection, a physical class of attacks
that targets cryptographic hardware and embedded systems. We have studied, for
the first time, the effect of voltage glitches with arbitrary waveforms on the attack
success and efficiency. We have also investigated on the feasibility of identifying a
valid set of attack parameters, including the glitch waveform, in an automated and
unsupervised way using genetic algorithms, and showed the possibility of gener-
ating these type of glitches using low cost equipment. We have presented novel
attacks on six widely used microcontrollers from three manufacturers, allowing the
attacker to extract the firmware from the internal protected flash memory. To evalu-
ate the performance improvement provided by our approach, we have conducted an
experimental campaign showing a measurable increment in the firmware extraction
speed and a substantial difference in the total number of injected glitches required
to complete the attack.

During the development of this work, we realized that there is a general lack of
attention to security in many commercial products. Although in recent years large

88 Chapter 4. Physical Attacks in Embedded Systems

companies have raised the investments for, e.g., bug bounties, vulnerability assess-
ments and security analyses, software is still often developed by engineers with little
to no background in security and, in particular, in cryptography. Interestingly, some
of the vulnerabilities related to poor design practices that we found in cryptographic
hardware, suggest that this practice might hold for security oriented products too.
Computer security is frequently perceived as an additional cost rather than a strate-
gic asset. This policy pose a threat not only to the end user, but also to the company
itself, e.g., by damaging the reputation as the result of data breaches or by the loss
of intellectual property. Furthermore, securing existing systems that were devel-
oped without sound design principles can require extensive re-engineering: legacy
libraries, standards and formats, such as the JKS Keystore, are still widespread and
difficult to patch while maintaining backward compatibility. In conclusion, although
we acknowledge that advancing the state-of-the-art is the primary objective of aca-
demic research, we believe that our mission is also to raise the awareness of both the
public and the industry with regards to the major role of IT security.

89

Bibliography

[1] R. Anderson. “The Correctness of Crypto Transaction Sets (Discussion)”. In:
Revised Papers from the 8th International Workshop on Security Protocols. London,
UK: Springer-Verlag, 2001, pp. 128–141.

[2] R. J. Anderson and M. G. Kuhn. “Low Cost Attacks on Tamper Resistant De-
vices”. In: Security Protocols, 5th International Workshop, Paris, France, April 7-9,
1997, Proceedings. 1997, pp. 125–136.

[3] Android Studio User Guide: Sign Your App. URL: https://developer.android.
com/studio/publish/app-signing.html.

[4] Apache Tomcat 7 Documentation: SSL/TLS Configuration. 2017. URL: https://
tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html.

[5] Apple inc. iOS Security Guide. Tech. rep. Mar. 2017. URL: https : / / www .
apple.com/business/docs/iOS_Security_Guide.pdf.

[6] M. Armand and J.-M. Tarascon. “Building better batteries”. In: Nature 451.7179
(2008), p. 652.

[7] C. Aumüller et al. “Fault Attacks on RSA with CRT: Concrete Results and
Practical Countermeasures”. In: Cryptographic Hardware and Embedded Systems
- CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-
15, 2002, Revised Papers. 2002, pp. 260–275.

[8] M. Backes et al. “Acoustic Side-Channel Attacks on Printers”. In: 19th USENIX
Security Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings.
2010, pp. 307–322.

[9] H. Bar-El et al. “The Sorcerer’s Apprentice Guide to Fault Attacks”. In: IACR
Cryptology ePrint Archive 2004 (2004), p. 100.

[10] G. Barbu, C. Giraud, and V. Guerin. “Embedded Eavesdropping on Java Card”.
In: Information Security and Privacy Research - 27th IFIP TC 11 Information Se-
curity and Privacy Conference, SEC 2012, Heraklion, Crete, Greece, June 4-6, 2012.
Proceedings. 2012, pp. 37–48.

[11] R. Bardou et al. “Efficient Padding Oracle Attacks on Cryptographic Hard-
ware”. In: Proceedings of the 32nd Annual Cryptology Conference on Advances in
Cryptology, CRYPTO 2012. 2012, pp. 608–625.

[12] A. Barenghi et al. “Fault Injection Attacks on Cryptographic Devices: The-
ory, Practice, and Countermeasures”. In: Proceedings of the IEEE 100.11 (2012),
pp. 3056–3076.

https://developer.android.com/studio/publish/app-signing.html
https://developer.android.com/studio/publish/app-signing.html
https://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
https://tomcat.apache.org/tomcat-7.0-doc/ssl-howto.html
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf

90 Bibliography

[13] A. Barenghi et al. “Low Voltage Fault Attacks on the RSA Cryptosystem”. In:
Sixth International Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2009, Lausanne, Switzerland, 6 September 2009. 2009, pp. 23–31.

[14] A. Barenghi et al. “Low Voltage Fault Attacks to AES”. In: HOST 2010, Pro-
ceedings of the 2010 IEEE International Symposium on Hardware-Oriented Secu-
rity and Trust (HOST), 13-14 June 2010, Anaheim Convention Center, California,
USA. 2010, pp. 7–12.

[15] A. Barenghi et al. “Low Voltage Fault Attacks to AES and RSA on General
Purpose Processors”. In: IACR Cryptology ePrint Archive 2010 (2010), p. 130.

[16] E. Barker. Guideline for Using Cryptographic Standards in the Federal Govern-
ment: Cryptographic Mechanisms. http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-175B.pdf. Aug. 2016.

[17] E. Barker and A. Roginsky. Transitions: Recommendation for Transitioning the
Use of Cryptographic Algorithms and Key Lengths (Rev. 1). http://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf.
Nov. 2015.

[18] B. Beurdouche et al. “A Messy State of the Union: Taming the Composite
State Machines of TLS”. In: Proceedings of the 36th IEEE Symposium on Security
and Privacy, S&P 2015. 2015, pp. 535–552.

[19] K. Bhargavan and G. Leurent. “On the Practical (In-)Security of 64-bit Block
Ciphers: Collision Attacks on HTTP over TLS and OpenVPN”. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS 2016. 2016, pp. 456–467. URL: http://doi.acm.org/10.1145/
2976749.2978423.

[20] A. Biryukov, D. Dinu, and D. Khovratovich. “Argon2: New Generation of
Memory-Hard Functions for Password Hashing and Other Applications”. In:
Proceedings of the 1st IEEE European Symposium on Security and Privacy, Eu-
roS&P 2016. 2016.

[21] D. Bleichenbacher. “Chosen Ciphertext Attacks Against Protocols Based on
the RSA Encryption Standard PKCS #1”. In: Proceedings of the 18th Annual In-
ternational Cryptology Conference on Advances in Cryptology, CRYPTO ’98. 1998,
pp. 1–12.

[22] M. Bond. “Attacks on Cryptoprocessor Transaction Sets.” In: Proceedings of
the 3rd International Workshop on Cryptographic Hardware and Embedded Systems
(CHES’01). Vol. 2162. LNCS. Paris, France: Springer, 2001, pp. 220–234.

[23] M. Bond and R. Anderson. “API Level Attacks on Embedded Systems”. In:
IEEE Computer Magazine 34.10 (Oct. 2001), pp. 67–75.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-175B.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-175B.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
http://doi.acm.org/10.1145/2976749.2978423
http://doi.acm.org/10.1145/2976749.2978423

Bibliography 91

[24] D. Boneh, H. Corrigan-Gibbs, and S. Schechter. “Balloon Hashing: A Memory-
Hard Function Providing Provable Protection Against Sequential Attacks”.
In: Proceedings of the 22nd Annual International Conference on the Theory and Ap-
plications of Cryptology and Information Security, ASIACRYPT 2016. 2016.

[25] D. Boneh, R. A. DeMillo, and R. J. Lipton. “On the Importance of Check-
ing Cryptographic Protocols for Faults (Extended Abstract)”. In: Advances in
Cryptology - EUROCRYPT ’97, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Pro-
ceeding. 1997, pp. 37–51.

[26] M. Bortolozzo et al. “Attacking and fixing PKCS#11 security tokens”. In: Pro-
ceedings of the 17th ACM Conference on Computer and Communications Security
(CCS’10). ACM, 2010, pp. 260–269.

[27] F. Brasser et al. “Software Grand Exposure: SGX Cache Attacks Are Practi-
cal”. In: 11th USENIX Workshop on Offensive Technologies, WOOT 2017, Van-
couver, BC, Canada, August 14-15, 2017. 2017.

[28] E. Brier, C. Clavier, and F. Olivier. “Correlation Power Analysis with a Leak-
age Model”. In: Cryptographic Hardware and Embedded Systems - CHES 2004:
6th International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceed-
ings. 2004, pp. 16–29.

[29] Y. Cai et al. “Vulnerabilities in MLC NAND Flash Memory Programming: Ex-
perimental Analysis, Exploits, and Mitigation Techniques”. In: 2017 IEEE In-
ternational Symposium on High Performance Computer Architecture, HPCA 2017,
Austin, TX, USA, February 4-8, 2017. 2017, pp. 49–60.

[30] R. B. Carpi et al. “Glitch It If You Can: Parameter Search Strategies for Suc-
cessful Fault Injection”. In: Smart Card Research and Advanced Applications -
12th International Conference, CARDIS 2013, Berlin, Germany, November 27-29,
2013. Revised Selected Papers. 2013, pp. 236–252.

[31] R. Clayton and M. Bond. “Experience Using a Low-Cost FPGA Design to
Crack DES Keys”. In: Proceedings of the 4th International Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES 2002. 2002, pp. 579–592.

[32] J. Clulow. “On the Security of PKCS#11”. In: Proceedings of the 5th International
Workshop on Cryptographic Hardware and Embedded Systems, CHES 2003. 2003,
pp. 411–425.

[33] L. Cojocar, K. Papagiannopoulos, and N. Timmers. “Instruction Duplication:
Leaky and Not Too Fault-Tolerant!” In: Smart Card Research and Advanced Ap-
plications - 16th International Conference, CARDIS 2017, Lugano, Switzerland,
November 13-15, 2017, Revised Selected Papers. 2017, pp. 160–179.

[34] Common Criteria Working Group. CC v3.1. Release 5 — Common Methodology
for Information Technology Security Evaluation. https://www.commoncriteriaportal.
org/files/ccfiles/CEMV3.1R5.pdf. Apr. 2017.

https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R5.pdf

92 Bibliography

[35] T. Cooijmans, J. de Ruiter, and E. Poll. “Analysis of Secure Key Storage So-
lutions on Android”. In: Proceedings of the 4th ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices, SPSM 2014. 2014, pp. 11–20.

[36] L. Cordesses. “Direct digital synthesis: A tool for periodic wave generation
(part 1)”. In: IEEE Signal processing magazine 21.4 (2004), pp. 50–54.

[37] Cryptosense S.A. Mighty Aphrodite – Dark Secrets of the Java Keystore. 2016.
URL: https://cryptosense.com/mighty-aphrodite-dark-secrets-of-
the-java-keystore/.

[38] D. De Cock et al. “Threat modelling for security tokens in web applications”.
In: Communications and Multimedia Security. Springer. 2005, pp. 183–193.

[39] S. Delaune, S. Kremer, and G. Steel. “Formal Analysis of PKCS#11 and Propri-
etary Extensions”. In: Journal of Computer Security 18.6 (Nov. 2010), pp. 1211–
1245. DOI: 10.3233/JCS-2009-0394. URL: http://www.lsv.ens-cachan.
fr/Publis/PAPERS/PDF/DKS-jcs09.pdf.

[40] Y. Dodis, T. Ristenpart, and T. Shrimpton. “Salvaging Merkle-Damgård for
Practical Applications”. In: Proceedings of the 28th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, EUROCRYPT
2009. 2009, pp. 371–388.

[41] K. Gandolfi, C. Mourtel, and F. Olivier. “Electromagnetic Analysis: Concrete
Results”. In: Cryptographic Hardware and Embedded Systems - CHES 2001, Third
International Workshop, Paris, France, May 14-16, 2001, Proceedings. Generators.
2001, pp. 251–261.

[42] P. Gasti and K. B. Rasmussen. “On the Security of Password Manager Database
Formats”. In: Proceedings of the 17th European Symposium on Research in Com-
puter Security, ESORICS 2012. 2012, pp. 770–787.

[43] A. Gkaniatsou et al. “Getting to know your Card: Reverse-Engineering the
Smart-Card Application Protocol Data Unit”. In: Proceedings of the 31st Annual
Computer Security Applications Conference, Los Angeles, CA, USA, December 7-
11, 2015. 2015, pp. 441–450.

[44] T. Goodspeed. “A side-channel timing attack of the MSP430 BSL”. In: Black
Hat USA (2008).

[45] P. A. Grassi et al. Digital Identity Guidelines: Authentication and Lifecycle Man-
agement. https://pages.nist.gov/800-63-3/sp800-63b.html#sec5.
2017.

[46] P. Gutmann. “Lessons Learned in Implementing and Deploying Crypto Soft-
ware”. In: Proceedings of the 11th USENIX Security Symposium. 2002, pp. 315–
325. ISBN: 1-931971-00-5. URL: http://dl.acm.org/citation.cfm?id=
647253.720291.

https://cryptosense.com/mighty-aphrodite-dark-secrets-of-the-java-keystore/
https://cryptosense.com/mighty-aphrodite-dark-secrets-of-the-java-keystore/
https://doi.org/10.3233/JCS-2009-0394
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DKS-jcs09.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/DKS-jcs09.pdf
https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
http://dl.acm.org/citation.cfm?id=647253.720291
http://dl.acm.org/citation.cfm?id=647253.720291

Bibliography 93

[47] J. A. Halderman et al. “Lest we remember: cold-boot attacks on encryption
keys”. In: Commun. ACM 52.5 (2009), pp. 91–98.

[48] M. Hutter and J. Schmidt. “The Temperature Side Channel and Heating Fault
Attacks”. In: Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised Se-
lected Papers. 2013, pp. 219–235.

[49] M. Hutter, J.-M. Schmidt, and T. Plos. “Contact-based fault injections and
power analysis on RFID tags”. In: Circuit Theory and Design, 2009. ECCTD
2009. European Conference on. IEEE. 2009, pp. 409–412.

[50] Identification cards – Integrated circuit cards – Part 4: Organization, security and
commands for interchange. ISO/IEC 7816-4. 2013.

[51] Java Core Libraries: Serialization Filtering. 2018. URL: https://docs.oracle.
com/javase/10/core/serialization-filtering1.htm.

[52] Java Cryptography Architecture (JCA) Reference Guide. 2016. URL: https : / /
docs . oracle . com / javase / 8 / docs / technotes / guides / security /
crypto/CryptoSpec.html.

[53] JDK 7 Security Enhancements. 2016. URL: https://docs.oracle.com/javase/
8/docs/technotes/guides/security/enhancements-7.html.

[54] JDK 9 Early Access Release Notes. 2017. URL: http://jdk.java.net/9/
release-notes.

[55] M. Joye and M. Tunstall, eds. Fault Analysis in Cryptography. Information Se-
curity and Cryptography. Springer, 2012.

[56] J. P. Kaps and C. Paar. “Fast DES Implementations for FPGAs and Its Appli-
cation to a Universal Key-Search Machine”. In: Proceedings of the 5th Annual
International Workshop in Selected Areas in Cryptography, SAC’98. 1999, pp. 234–
247.

[57] T. Kasper, D. Oswald, and C. Paar. “A Versatile Framework for Implemen-
tation Attacks on Cryptographic RFIDs and Embedded Devices”. In: Trans.
Computational Science 10 (2010), pp. 100–130.

[58] P. C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”. In: Advances in Cryptology - CRYPTO ’96, 16th An-
nual International Cryptology Conference, Santa Barbara, California, USA, August
18-22, 1996, Proceedings. 1996, pp. 104–113.

[59] P. Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In: CoRR
abs/1801.01203 (2018).

[60] O. Kömmerling and M. G. Kuhn. “Design Principles for Tamper-Resistant
Smartcard Processors”. In: Proceedings of the 1st Workshop on Smartcard Tech-
nology, Smartcard 1999, Chicago, Illinois, USA, May 10-11, 1999. 1999.

https://docs.oracle.com/javase/10/core/serialization-filtering1.htm
https://docs.oracle.com/javase/10/core/serialization-filtering1.htm
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/enhancements-7.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/enhancements-7.html
http://jdk.java.net/9/release-notes
http://jdk.java.net/9/release-notes

94 Bibliography

[61] G. de Koning Gans and J. de Ruiter. “The SmartLogic Tool: Analysing and
Testing Smart Card Protocols”. In: Fifth IEEE International Conference on Soft-
ware Testing, Verification and Validation, ICST 2012, Montreal, QC, Canada, April
17-21, 2012. 2012, pp. 864–871.

[62] T. Korak and M. Hoefler. “On the Effects of Clock and Power Supply Tamper-
ing on Two Microcontroller Platforms”. In: 2014 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2014, Busan, South Korea, September 23,
2014. 2014, pp. 8–17.

[63] Z. Li et al. “The Emperor’s New Password Manager: Security Analysis of
Web-based Password Managers”. In: Proceedings of the 23rd USENIX Security
Symposium. 2014, pp. 465–479.

[64] M. Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In:
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018. 2018, pp. 973–990.

[65] D. Longley and S. Rigby. “An Automatic Search for Security Flaws in Key
Management Schemes”. In: Computers and Security 11.1 (Mar. 1992), pp. 75–
89.

[66] I. Magaki et al. “ASIC Clouds: Specializing the Datacenter”. In: Proceedings
of the 43rd International Symposium on Computer Architecture, ISCA 2016. 2016,
pp. 178–190.

[67] Matthias Hertel, ARM. AN277, ROM Self-Test in MDK-ARM. http://www.
keil.com/appnotes/files/an277.pdf.

[68] MITRE. CVE-2012-4929: CRIME attack. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2012-4929. Sept. 2012.

[69] MITRE. CVE-2014-0160: Heartbleed bug. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-0160. Dec. 2013.

[70] MITRE. CVE-2017-10345. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-10345. Oct. 2017.

[71] MITRE. CVE-2017-10356. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-10356. Oct. 2017.

[72] MITRE. CVE-2018-2794. http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-2794. Apr. 2018.

[73] K. Moriarty, B. Kaliski, and A. Rusch. PKCS#5: Password-Based Cryptography
Specification (Version 2.1). https://www.ietf.org/rfc/rfc8018.txt. Jan.
2017.

[74] K. Moriarty et al. PKCS#1: RSA Cryptography Specifications (Version 2.2). https:
//www.ietf.org/rfc/rfc8017.txt. Nov. 2016.

http://www.keil.com/appnotes/files/an277.pdf
http://www.keil.com/appnotes/files/an277.pdf
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4929
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4929
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10345
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10345
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10356
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-10356
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2794
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-2794
https://www.ietf.org/rfc/rfc8018.txt
https://www.ietf.org/rfc/rfc8017.txt
https://www.ietf.org/rfc/rfc8017.txt

Bibliography 95

[75] S. J. Murdoch et al. “Chip and PIN is Broken”. In: 31st IEEE Symposium on
Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California,
USA. 2010, pp. 433–446.

[76] C. O’Flynn. “Fault Injection using Crowbars on Embedded Systems”. In: IACR
Cryptology ePrint Archive 2016 (2016), p. 810. URL: http://eprint.iacr.
org/2016/810.

[77] C. O’Flynn and Z. Chen. “Synchronous sampling and clock recovery of in-
ternal oscillators for side channel analysis and fault injection”. In: J. Crypto-
graphic Engineering 5.1 (2015), pp. 53–69.

[78] C. O’Flynn and Z. (Chen. “ChipWhisperer: An Open-Source Platform for
Hardware Embedded Security Research”. In: Constructive Side-Channel Anal-
ysis and Secure Design - 5th International Workshop, COSADE 2014, Paris, France,
April 13-15, 2014. Revised Selected Papers. 2014, pp. 243–260.

[79] J. Obermaier and S. Tatschner. “Shedding too much Light on a Microcon-
troller’s Firmware Protection”. In: 11th USENIX Workshop on Offensive Tech-
nologies, WOOT 2017, Vancouver, BC, Canada, August 14-15, 2017. 2017.

[80] P. Oechslin. “Making a Faster Cryptanalytic Time-Memory Trade-Off”. In:
Proceedings of the 23rd Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO 2003. 2003, pp. 617–630.

[81] Oracle Corporation. Critical Patch Updates, Security Alerts and Third Party Bul-
letin. Oct. 2017. URL: http://www.oracle.com/technetwork/security-
advisory/cpuoct2017-3236626.html.

[82] Oracle Corporation. Critical Patch Updates, Security Alerts and Third Party Bul-
letin. Apr. 2018. URL: https://www.oracle.com/technetwork/security-
advisory/cpuapr2018-3678067.html.

[83] Oracle Corporation. Java Cryptography Architecture, Standard Algorithm Name
Documentation for JDK 8. http://docs.oracle.com/javase/8/docs/
technotes/guides/security/StandardNames.html#KeyStore. 2014.

[84] S. Ordas, L. Guillaume-Sage, and P. Maurine. “Electromagnetic fault injec-
tion: the curse of flip-flops”. In: J. Cryptographic Engineering 7.3 (2017), pp. 183–
197.

[85] D. A. Osvik, A. Shamir, and E. Tromer. “Cache Attacks and Countermea-
sures: The Case of AES”. In: Topics in Cryptology - CT-RSA 2006, The Cryptog-
raphers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17,
2006, Proceedings. 2006, pp. 1–20.

[86] C. Percival. “Stronger Key Derivation via Sequential Memory-Hard Func-
tions”. In: (May 2009).

[87] C. Percival and S. Josefsson. The scrypt Password-Based Key Derivation Function.
https://tools.ietf.org/html/rfc7914. Aug. 2016.

http://eprint.iacr.org/2016/810
http://eprint.iacr.org/2016/810
http://www.oracle.com/technetwork/security-advisory/cpuoct2017-3236626.html
http://www.oracle.com/technetwork/security-advisory/cpuoct2017-3236626.html
https://www.oracle.com/technetwork/security-advisory/cpuapr2018-3678067.html
https://www.oracle.com/technetwork/security-advisory/cpuapr2018-3678067.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyStore
http://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyStore
https://tools.ietf.org/html/rfc7914

96 Bibliography

[88] S. Picek et al. “Evolving genetic algorithms for fault injection attacks”. In: 37th
International Convention on Information and Communication Technology, Electron-
ics and Microelectronics, MIPRO 2014, Opatija, Croatia, May 26-30, 2014. 2014,
pp. 1106–1111.

[89] PKCS #11 Cryptographic Token Interface Base Specification Version 2.40. http:
//docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-
v2.40.html. OASIS Standard. Apr. 2015.

[90] PKCS #11 v2.30: Cryptographic Token Interface Standard. http://www.emc.
com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-
token-interface-standard.htm. RSA Laboratories. Apr. 2009.

[91] J.-J. Quisquater and D. Samyde. “Eddy current for magnetic analysis with
active sensor”. In: Proceedings of eSMART. Vol. 2002. 2002.

[92] Renesas Electronics. 78K0/Kx2 Flash Memory Programming. https://www.
renesas.com/en-eu/doc/DocumentServer/024/U17739EJ3V0AN00.pdf.

[93] Renesas Electronics. 78K0R/Kx3-L Flash Memory Programming. https://www.
renesas.com/en-eu/doc/DocumentServer/026/U19486EJ1V0AN00.pdf.

[94] Renesas Electronics. Renesas Mid-Term Growth Strategy. https://www.renesas.
com / en - in / media / about / ir / event / presentation / 2016 - 12 - q2 -
strategy.pdf.

[95] Riscure. VC Glitcher. https://www.riscure.com/uploads/2017/07/
datasheet_vcglitcher.pdf.

[96] Robin Walsh, Atmel. RC Oscillator Frequency Drift Compensation. http://ww1.
microchip.com/downloads/en/DeviceDoc/article_ac9_atmegaxx8pa-
15-rc-oscillator.pdf.

[97] RSA Laboratories. PKCS#11 v2.30: Cryptographic Token Interface Standard. Apr.
2009.

[98] RSA Laboratories. PKCS#12: Personal Information Exchange Syntax Standard
(Version 1.0). June 1999.

[99] RSA Laboratories. PKCS#12: Personal Information Exchange Syntax Standard
(Version 1.1). Oct. 2012.

[100] M. Sabt and J. Traoré. “Breaking into the KeyStore: A Practical Forgery Attack
Against Android KeyStore”. In: Proceedings of the 21st European Symposium on
Research in Computer Security (ESORICS 2016), Part II. 2016, pp. 531–548.

[101] J. Schmidt and M. Hutter. “Optical and em fault-attacks on crt-based rsa:
Concrete results”. In: Proceedings of 15th Austrian Workshop on Microelectronics.
2007, pp. 61–67.

[102] B. Schneier. Applied Cryptography (2nd Ed.): Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc., 1995.

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
https://www.renesas.com/en-eu/doc/DocumentServer/024/U17739EJ3V0AN00.pdf
https://www.renesas.com/en-eu/doc/DocumentServer/024/U17739EJ3V0AN00.pdf
https://www.renesas.com/en-eu/doc/DocumentServer/026/U19486EJ1V0AN00.pdf
https://www.renesas.com/en-eu/doc/DocumentServer/026/U19486EJ1V0AN00.pdf
https://www.renesas.com/en-in/media/about/ir/event/presentation/2016-12-q2-strategy.pdf
https://www.renesas.com/en-in/media/about/ir/event/presentation/2016-12-q2-strategy.pdf
https://www.renesas.com/en-in/media/about/ir/event/presentation/2016-12-q2-strategy.pdf
https://www.riscure.com/uploads/2017/07/datasheet_vcglitcher.pdf
https://www.riscure.com/uploads/2017/07/datasheet_vcglitcher.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/article_ac9_atmegaxx8pa-15-rc-oscillator.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/article_ac9_atmegaxx8pa-15-rc-oscillator.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/article_ac9_atmegaxx8pa-15-rc-oscillator.pdf

Bibliography 97

[103] B. Schneier, A. Shostack, et al. “Breaking up is hard to do: modeling se-
curity threats for smart cards”. In: USENIX Workshop on Smart Card Tech-
nology, Chicago, Illinois, USA, http://www. counterpane. com/smart-card-threats.
html. 1999.

[104] N. Selmane, S. Guilley, and J. Danger. “Practical Setup Time Violation Attacks
on AES”. In: Seventh European Dependable Computing Conference, EDCC-7 2008,
Kaunas, Lithuania, 7-9 May 2008. 2008, pp. 91–96.

[105] N. Selmane et al. “Security evaluation of application-specific integrated cir-
cuits and field programmable gate arrays against setup time violation at-
tacks”. In: IET Information Security 5.4 (2011), pp. 181–190.

[106] A. Shostack. “Experiences threat modeling at microsoft”. In: Modeling Secu-
rity Workshop. Dept. of Computing, Lancaster University, UK. 2008.

[107] D. Skarin, R. Barbosa, and J. Karlsson. “GOOFI-2: A tool for experimental
dependability assessment”. In: Proceedings of the 2010 IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2010, Chicago, IL, USA,
June 28 - July 1 2010. 2010, pp. 557–562.

[108] S. Skorobogatov. “Flash Memory ’Bumping’ Attacks”. In: Cryptographic Hard-
ware and Embedded Systems, CHES 2010, 12th International Workshop, Santa Bar-
bara, CA, USA, August 17-20, 2010. Proceedings. 2010, pp. 158–172.

[109] S. Skorobogatov. “Synchronization method for SCA and fault attacks”. In: J.
Cryptographic Engineering 1.1 (2011), pp. 71–77.

[110] S. P. Skorobogatov and R. J. Anderson. “Optical Fault Induction Attacks”. In:
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers. 2002,
pp. 2–12.

[111] R. Spreitzer et al. “Systematic Classification of Side-Channel Attacks: A Case
Study for Mobile Devices”. In: IEEE Communications Surveys and Tutorials 20.1
(2018), pp. 465–488.

[112] Spring Crypto Utils Documentation: Keystore. 2017. URL: http://springcryptoutils.
com/keystore.html.

[113] STMicroelectronics. RM0313 Reference manual. http://www.st.com/resource/
en/reference_manual/dm00041563.pdf.

[114] STMicroelectronics. STMicroelectronics Reports 2015 Fourth Quarter and Full
Year Financial Results. http://www.st.com/web/en/resource/corporate/
financial/quarterly_report/c2792.pdf. Jan. 2016.

[115] F. Swiderski and W. Snyder. Threat Modeling. Redmond, WA, USA: Microsoft
Press, 2004. ISBN: 0735619913.

http://springcryptoutils.com/keystore.html
http://springcryptoutils.com/keystore.html
http://www.st.com/resource/en/reference_manual/dm00041563.pdf
http://www.st.com/resource/en/reference_manual/dm00041563.pdf
http://www.st.com/web/en/resource/corporate/financial/quarterly_report/c2792.pdf
http://www.st.com/web/en/resource/corporate/financial/quarterly_report/c2792.pdf

98 Bibliography

[116] Texas Instruments. MSP430 ultra-low-power MCUs - Applications. http://
www . ti . com / microcontrollers / msp430 - ultra - low - power - mcus /
applications.html.

[117] N. Timmers and C. Mune. “Escalating Privileges in Linux Using Voltage Fault
Injection”. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2017, Taipei, Taiwan, September 25, 2017. 2017, pp. 1–8.

[118] M. S. Turan et al. Recommendation for Password-Based Key Derivation. Part 1:
Storage Applications. http://csrc.nist.gov/publications/nistpubs/
800-132/nist-sp800-132.pdf. Dec. 2010.

[119] Update to Current Use and Deprecation of TDEA. 2017. URL: https://beta.
csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-
of-TDEA.

[120] USB Implementers Forum, Inc. Device Class Specification for Device Firmware
Upgrade. http://www.usb.org/developers/docs/devclass_docs/DFU_
1.1.pdf (Version 1.1 - Aug 5, 2004).

[121] A. Vassilev. Annex A: Approved Security Functions for FIPS PUB 140-2, Se-
curity Requirements for Cryptographic Modules. http : / / csrc . nist . gov /
publications/fips/fips140-2/fips1402annexa.pdf. Apr. 2016.

[122] S. Vaudenay. “Security Flaws Induced by CBC Padding - Applications to SSL,
IPSEC, WTLS ...” In: Proceedings of the 21st International Conference on the The-
ory and Applications of Cryptographic Techniques Advances in Cryptology, EURO-
CRYPT 2002. 2002, pp. 534–546.

[123] F. Vincis and L. Fanucci. “A trimmable RC-oscillator for automotive applica-
tions, with low process, supply, and temperature sensitivity”. In: 12th IEEE
International Conference on Electronics, Circuits, and Systems, ICECS 2005, Gam-
marth, Tunisia, December 11-14, 2005. 2005, pp. 1–4.

[124] Vulnerability Note VU#576313. 2015. URL: https://www.kb.cert.org/vuls/
id/576313.

[125] L. Wang, E. Wong, and D. Xu. “A Threat Model Driven Approach for Secu-
rity Testing”. In: Proceedings of the Third International Workshop on Software En-
gineering for Secure Systems. SESS ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 10–. ISBN: 0-7695-2952-6. DOI: 10.1109/SESS.2007.2. URL:
http://dx.doi.org/10.1109/SESS.2007.2.

[126] WebLogic Integration 7.0: Configuring the Keystore. URL: http://docs.oracle.
com/cd/E13214_01/wli/docs70/b2bsecur/keystore.htm.

[127] F. F. Yao and Y. L. Yin. “Design and Analysis of Password-Based Key Deriva-
tion Functions”. In: IEEE Transactions on Information Theory 51.9 (2005), pp. 3292–
3297.

http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/applications.html
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/applications.html
http://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/applications.html
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
https://beta.csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA
https://beta.csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA
https://beta.csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA
http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf
http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexa.pdf
https://www.kb.cert.org/vuls/id/576313
https://www.kb.cert.org/vuls/id/576313
https://doi.org/10.1109/SESS.2007.2
http://dx.doi.org/10.1109/SESS.2007.2
http://docs.oracle.com/cd/E13214_01/wli/docs70/b2bsecur/keystore.htm
http://docs.oracle.com/cd/E13214_01/wli/docs70/b2bsecur/keystore.htm

Bibliography 99

[128] P. Youn et al. Robbing the bank with a theorem prover. Tech. rep. UCAM-CL-TR-
644. University of Cambridge, Aug. 2005.

[129] B. Yuce, P. Schaumont, and M. Witteman. “Fault Attacks on Secure Embed-
ded Software: Threats, Design, and Evaluation”. In: Journal of Hardware and
Systems Security (2018), pp. 1–20.

[130] L. Zussa et al. “Investigation of timing constraints violation as a fault injec-
tion means”. In: 27th Conference on Design of Circuits and Integrated Systems
(DCIS), Avignon, France. 2012.

[131] L. Zussa et al. “Analysis of the fault injection mechanism related to nega-
tive and positive power supply glitches using an on-chip voltmeter”. In: 2014
IEEE International Symposium on Hardware-Oriented Security and Trust, HOST
2014, Arlington, VA, USA, May 6-7, 2014. 2014, pp. 130–135.

	Preface
	Introduction
	Structure of the Thesis
	Summary of Contributions

	Background
	Architecture of the Cryptographic Hardware API
	The PKCS#11 Layer
	The APDU Layer

	Voltage Fault Injection
	Microcontroller Programming Interfaces

	Software Keystores
	Security Properties and Threat Model
	Security Properties
	Design Rules
	Threat Model

	Analysis of Java Keystores
	Oracle Keystores
	Bouncy Castle Keystores
	Keystores Adoption
	Summary

	Attacks
	Attacks on Entries Confidentiality (P1)
	Attacks on Keystore Integrity (P2)
	Attacks on System Integrity (P3)
	Bad Design Practices
	Security Considerations

	Estimating Brute-Force Speed-Up
	Test Methodology
	Results

	Disclosure and Security Updates
	Discussion and Related Work

	Cryptographic Hardware API
	Threat Model
	Administrator Privileges
	User Privileges
	Physical Access
	Summary of the Threat Model

	APDU-level Attacks on Real Devices
	Authentication
	Sensitive symmetric keys
	Bypassing Attribute Values
	RSA Session Keys

	Security Analysis
	Fixes and Mitigations

	Discussion and Related Work

	Physical Attacks in Embedded Systems
	Experimental Setup
	Arbitrary Waveform Voltage Glitch
	Parameter Search and Optimization
	Supervised Search
	Unsupervised Genetic Algorithm

	Scattered-glitch Attacks
	Case Study 1: STMicroelectronics
	STM32 F1
	STM32 F3

	Case Study 2: Texas Instruments
	MSP430 F5xx ultra-low power
	MSP430 FRxx FRAM nonvolatile memory

	Experimental Results and Considerations

	Complex Attacks
	Case Study 3: Renesas Electronics
	FMPI Vulnerabilities
	Mounting the Attacks

	Experimental Results and Considerations
	Injection Timing
	Ambient Temperature

	Evaluation
	Performance Analysis and Comparison
	Firmware Extraction Time
	Glitch Waveform Characterization

	Limitations and Further Improvements

	Discussion and Related Work

	Conclusion
	Bibliography

