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Abstract

Pwntools is a widely used framework and exploit development library that simplifies

the way attacks are performed during a CTF competition. Pwntools offers functions

for assembling and disassembling code, ELF analysis and manipulation, communication

with external services, and more; unfortunately it lacks tools to perform cryptographic

attacks, that are nowadays widespread in almost every small and big CTF. The objective

of this thesis is to document the process of implementing some RSA related cryptographic

attacks into a fork of the library to enrich its capabilities, with the possibility that the

changes will be accepted and merged into the main branch.
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Chapter 1

Introduction

RSA (named after Rivest-Shamir-Adleman, its creators) is the most famous asymmetric-

key cipher, and it is very widespread with many practical applications such as message

encryption and digital signatures. The infeasibility of the factorization of the modulus

back into the big primes p and q is what guarantees the security of this cipher. The

bigger the modulus, the harder it should be to factorize. The NIST (National Insti-

tute of Standards and Technology) recommends 2048 bit keys for RSA, with 3072 bit

recommended if security is needed after the year 2030. Many devices on the Internet,

regardless of this recommendation, still use RSA key sizes such as 512 bit or 1024 bit,

the latter being more widespread. RSA security can be compromised regardless of the

key size, with side-channel attacks such as the padding oracle, first presented in 1998 [5],

which exploits a vulnerability used in the padding scheme PKCS #1 v1.5. A substitute

for that vulnerable padding scheme is Optimal asymmetric encryption padding (OAEP),

although PKCS #1 v1.5 is still used in legacy software and devices. Regardless of the

padding scheme used, some RSA keys are vulnerable to an attack presented recently,

in 2017, [11]. That research discovered the possibility to factorise certain RSA 1024-bit

keys in 90 days in the worst case. The keys have to be generated in a specific way by

the RSALib library, which means that the principle where the primes p and q have to

be chosen randomly is violated. To provide further insight on these issues, they will be

described in depth in this thesis, and as a project they will be implemented in the form

of an easy to use Python library. This will also provide an useful tool for CTF (capture

the flag) competitions, and it will be integrated into the Pwntools framework which at

the moment does not provide any cryptographic attacks.
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Chapter 1. Introduction

The Project is divided in three main classes:

• PyRoca is the main class, which serves the purpose of performing the ROCA attack

• ParameterFinder is a class used to calculate the parameters M’, mm, tt that must

be obtained to perform the attack. It implements the greedy Algorithm 2 procedure

described in [11] with a small bruteforce at the end to potentially improve results.

• PaddingOracleAttack is the class that can be used to perform a padding oracle

attack.

The programs discussed in this library, PyRoca, ParameterFinder, PaddingOracleAttack

are avaliable via these links:

• https://github.com/lvenuto/roca-speed

• https://github.com/lvenuto/PaddingOracleAttack

After the Thesis discussion, they will also be available in a fork of the Pwntools library

[15].

The effort for the Project is represented by the following table:

COCOMO BASIC (ORGANIC MODE)

Project Kloc Effort Schedule Time(months)

PaddingOracleAttack 0.127 0.275 1.531

ParameterFinder 0.582 1.360 2.809

PyRoca 0.386 0.883 2.385

Table 1.1: Representation of the effort for the Project, in person-months, with CO-

COMO, where Kloc is one thousand lines of code

1.1 Structure of the thesis

In Chapter 2 the RSA cipher is introduced, showing its strengths and limitations, which

are fundamental to the understanding of the attacks on the vulnerabilities described in

this thesis. The RSA PKCS#1 v1.5 padding scheme is also introduced.

In Chapter 3 the existing research made on the topic of RSA security vulnerabilities

is analyzed. More specifically, the work done on the research paper “The Return of

2



Chapter 1. Introduction

Coppersmith’s Attack: Practical Factorization of Widely Used RSA Moduli” [11], and

the research done on Padding Oracles as explained by the article “Practical Padding

Oracle Attacks on RSA” [7]. Some of the functions presented in [11] are discussed more

in depth and shown with examples on real executions of the program.

In Chapter 4 a speed improved attack for the ROCA vulnerability is presented, and the

thought process used to reach the improved version is explored. The implementation is

then included in a fork of the Pwntools repository on GitHub.

The Chapter 5 will serve the purpose of showing benchmarks of the new implementation.

Performance graphs for keys in the range 512 bit to 4096 bit will be presented, including

detailed bar graphs of the most used and practically factorizable RSA key length sizes,

such as 512 bit, 1024 bit.

In Chapter 6 a practical, easy to use implementation of the attack in Python 2.7 is pre-

sented, and is then included in a fork of the Pwntools repository on GitHub. In Chapter

7 the topics of this thesis are summarized, and some possible future improvements for

the Python projects are presented.

1.2 Contributions

This thesis makes the following contributions:

• give an in depth explanation on ROCA (return of Coppersmith’s attack) and POA

(padding oracle) attacks implementations, with practical examples

• provide an analysis on the performance of the algorithm for recovering the RSA

primes as described in [11]

• provide and integrate into the CTF (capture the flag) Python library Pwntools [15]

an easy to use, automated, and faster attack by about 20%, than the one described

in the original paper

• provide benchmarks on this improved algorithm

• provide and integrate into Pwntools an easy to use attack for recovering plaintexts

using padding oracle attacks as described in [7]

3



Chapter 2

Background information

This chapter is dedicated to provide the reader with basic concepts of the RSA cipher,

and illustrate potential vulnerabilities that some of the implementations expose. This

introduction will be by no means complete, considering the vastness of the topic; the

efforts had to be focused towards explaining the most important parts that fall within

the scope of this thesis.

Chapter structure

• In Section 2.1 the RSA cipher is introduced

• In Section 2.2 the RSA padding scheme PKCS#1 v1.5 is introduced

2.1 RSA cipher background

We let n = p ∗ q with p and q two big prime numbers. We also let a and b be such that

a ∗ b mod Φ(n) = 1. Φ(n) is the Euler function which returns the number of numbers

less than or equal to n that are coprime to n. We have now our public and private keys,

defined as:

• (a, n) for the private key

• (b, n) for the public key

With the keys we can perform respectively decryption, and encryption operations.

• DSK(y) = ya mod n

• EPK(x) = xb mod n

4



Chapter 2. Background information

2.1.1 Square and multiply

To perform the exponentiation, which is used both for encryption and decryption, we

can use the Square-and-Multiply algorithm. The operation of squaring, for example to

the power of b for encryption, cannot be performed as b multiplications: it would be too

inefficient. The algorithm is easily implemented by following these steps if we want to

perform xe:

• Convert the exponent e to binary.

• If we encounter a 0 in e, we square x.

• If we encounter a 1 in e, we square x, then multiply by x.

The complexity of this algorithm is O(k3) in the worst case. We can also perform

a modulo operation every time we square or multiply, to prevent the number from

exceeding n and also to improve the performance. We can perform that operation

because it is true that:

x ∗ y mod n = (x mod n)(y mod n) mod n (2.1)

It follows that:

(xm)z mod n = (xm mod n)z mod n (2.2)

it is important to note that, for the aforementioned reason, if we perform an exponenti-

ation operation in Python and we need it modulo n, it is faster to write:

1 r e s u l t = pow(x , e , n )

than:

1 exp = pow(x , e )

2 r e s u l t = exp % n

2.1.2 The Euler function

The Euler function Φ(n) returns the number of numbers less than or equal to n that are

coprime to n. Now we can define the Euler Theorem:

Theorem 1. Let a and n be coprime, i.e. gcd(a, n) = 1, then aΦ(n) mod n = 1

This definition is important later to help us pick the public and private exponents.

5
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2.1.3 Inverse modulo

An operation important for RSA is the inverse modulo. The exact algorithm that is

shown here is included and used in the PyRoca library developed as a project for this

Thesis, to calculate the inverse of the parameter M , used for the key generation and

thus needed when trying to factorise it.

1 de f EuclidExt ( c , d) :

2 d0 = d

3 e = 1

4 f = 0

5 whi le d != 0 :

6 q = c/d # in t e g e r d i v i s i o n

7 tmp = c − q∗d # th i s i s c % d

8 c = d

9 d = tmp

10 tmp = e − q∗ f # new computation f o r the i nv e r s e

11 e = f

12 f = tmp

13 i f c == 1 :

14 return e % d0 # i f gcd i s 1 we have that e i s the i nv e r s e

Listing 2.1: Algorithm avaliable in [20]

The operation of inverse modulo is often used to calculate the private exponent from

the public exponent, which can be generated randomly. We have to make sure that b

is coprime to Φ(n), but as this happens with probability ∼ 0.6, we can just iterate the

exponent generation algorithm 2 or 3 times until this is true. Often though, 65537 is

used as a fixed public exponent because using a low exponent improves the performance

of encryption. If we do that we have to make sure that Φ(n) is not a multiple of 65537.

2.1.4 Generating RSA primes

The simplest way to generate the primes p and q is to generate two random numbers,

each one the size of half the key. For example for a 512 bit key we need two primes of 256

bit. After the generation we can test the primality of the number with a few iterations

of Miller-Rabin test: The algorithm is a NO-biased Montecarlo, and it is always correct

when the number is not prime but can be wrong on deciding when the number is prime.

The probability of being wrong however is less than 1
4 and decreases exponentially with

the number of tests. With 128 runs for example the probability of being wrong is so

small to be negligible. The Miller-Rabin test is very much used in practical applications:

in the ParameterFinder class, which is part of the PyRoca project, for the gen vuln key

function the is prime function call was used. This function makes use of the Miller-Rabin

6



Chapter 2. Background information

test to verify if the supplied number is prime.

2.2 Reasons for RSA padding

Some of the reasons of the use of padding are that textbook RSA (RSA without any

padding) gives place to a series of undesirable properties. In this example we demonstrate

that we can make predictable changes to ciphertexts without knowing the private key.

This is possible because of the multiplicative property of RSA, which is enunciated below.

E(m)E(s)mod n = E(m ∗ s mod n) (2.3)

RSA multiplicative property

In other words the multiplication (modulo n) of two ciphertexts is the same as the

encryption of the multiplication of the two plaintexts. In practice we can:

• encrypt the number 3 with our public exponent b and obtain a ciphertext enc3 =

(3b) mod n

• take a ciphertext of which we do not know the decrypted value, but let’s assume

it is 2. This ciphertext is called enc2.

• if we multiply the first ciphertext enc3 by the second one, enc2, we obtain a

ciphertext which decrypts to the number 6. In other words we made a change

to the second ciphertext knowing that the result would be multiplied by 2, this

without knowing the private exponent a.

Another undesirable property is that textbook RSA is deterministic: we can guess what

is the ciphertext simply by encrypting plaintexts ourselves with the public key and

compare them with the original ciphertext, if they match, we found our plaintext. This

brute force attack can work just with simple plaintexts but it is a property that is

absolutely not wanted nonetheless.

2.2.1 PKCS#1 v1.5 padding scheme

A PKCS #1 v1.5 [9] padded message is of the form:

Where the four component are:

7



Chapter 2. Background information

Figure 2.1: PKCS #1 v1.5 padding scheme

• Scheme is 2 bytes long, and is 0x0001 for signatures and 0x0002 for encryption.

We will talk mostly about encryption scheme.

• Random Padding is at least 8 bytes long and is non-zero.

• a Separator is 0x00 and sits in between Random Padding and Message.

• the actual message we want to send.

One rule is that the whole padded message must fit the key size exactly. For example,

for a 1024-bit key it must be 128 bytes. This is why random padding is of variable size to

accommodate this specification. When a PKCS #1 v1.5 message is sent for decryption

the following happens:

• the scheme is checked. If it does not match 0x0001 or 0x0002 an error is returned

• If the scheme is correct, the size of the random padding is checked in size, if it is

less than 8 bytes an error is returned. if a 0x00 is not found before the end of the

whole packet, an error is returned also.

• what lies after the separator is returned as the message

Depending on the error messages given, they can be exploited to reveal the plaintext for

what is called a padding oracle attack, the oracle is the decryption server that gives us

hints on the underlying plaintext.

8
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State of the art review

3.1 ROCA attack on weak RSA keys

When the basis of the RSA cipher in the Introduction were discussed, it was specified

that it is important for the primes p and q to be randomly chosen. Essentially, what

originated the ROCA vulnerability in RSALib is a poor selection of the primes that form

the RSA key. As mentioned in [11, page 1], there are multiple reasons why one would

not choose the primes in a pseudo-random way; Some are related to improve security

(for example to adhere to NIST specifications), and some are to increase performance on

low powered devices, such as security tokens. It would not be surprising if the generator,

a number present in the generation of primes in RSALib as we will see later, is used

because it was already in memory, as to improve performance. Unfortunately since no

source code for the library is published, it cannot be said for sure. It is true that without

the help of various advanced algorithms used by the ROCA attack, the keys would still

be relatively safe from standard factorization techniques, even with this loss of entropy.

An introduction to the basic functions and definitions of the ROCA attack will now be

given.

3.1.1 Definitions

According to [11, page 3], all the RSA primes generated by RSALib are of the following

form:

p = k ∗M + (65537a modM) (3.1)

9
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The integers k and a are the unknowns, while the integer M is known and equal to some

primorial (by definition the product of the first n primes):

1 whi le not i s p r i m e (p) :

2 k = randint ( min k , max k )

3 a = randint (0 , order −1)

4 p = k∗ f u l l m + pow(65537 , a , f u l l m )

Listing 3.1: Snippet of the key generation implemented in Python

n∏
i=1

Pi = 2 ∗ 3 ∗ ... ∗ Pn (3.2)

Definition of Primorial

The value of M is related to the key size, and is summarized in the following table:

Size interval M

x < 512b n/a

512b ≤ x < 992b P39

992b ≤ x < 1984b P71

1984b ≤ x < 3968b P126

3968b ≤ x < 4097b P225

Table 3.1: M and its dependency from the key size

Now that we know that 3.1, and we know that N = p ∗ q, we can write:

N = (k ∗M + 65537a mod M) ∗ (l ∗M + 65537b mod M) (3.3)

for a, b, k, l ε Z

Since we are working modulo M :

N = (65537a mod M) ∗ (65537b mod M)

= 65537a+b mod M = 65537c mod M

c = log65537(N) mod M = (a+ b) mod M

(3.4)

Pohlig-Hellman algorithm [14] guarantees the existence of the discrete logarithm in the

group G = [65537] subgroup of Z∗M

The term ord is also defined as:

10
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Definition. ord = ordM (65537)

It represents the multiplicative order of 65537 in the group Z∗M . The ord is a very

important value because the cost in terms of time of the attack is given by the number

of guesses (ord) a, multiplied by the time of execution of Coppersmith’s algorithm. Since

the number of attempts is very high even for smaller key sizes, an optimized value M’

is necessary to make the attack practical.

3.1.2 Smaller parameter M’

From [11, page 4, section 2.3.3] we can see that by using a smaller parameter M’ (divisor

of M ) with smaller corresponding ord’, the attack speed can be optimized. ord’ is defined

as:

Definition. ord′ = ordM ′(65537)

We have to make sure that the primes are still of the form 3.1, with M replaced by M’

and a, k replaced by a’, k’. The form of the modulus is still 3.3, but with new variables

a’,b’,c’,k’,l’.

The smaller M’ can be found with the greedy algorithm described in [11]. In the

ParameterFinder project the greedy algorithm has been implemented, with a small

brute force at the end. The strategy is to minimize ordM ′(65537) and simultaneously

maximize the size of M’ (we must respect log2(M ′) > log2(N)/4 to use Coppersmith’s

algorithm). In each iteration, ord’ is divided by some prime power divisor p
ej
j and the

M’ of maximal size is computed using the Algorithm 2, which is reported below for

reference. The reward parameter used to determine the choice of the greedy algorithm

is the reward-at-cost parameter, defined as:

∆size of ordM ′

∆size of M ′
=
log2(ordM ′old)− log2(ordM ′new

)

log2(M ′old)− log2(M ′new)
(3.5)

Reward-at-cost formula, from [11]

for M ′new computed by Algorithm 2 with M ′old, ord′ = ordM ′old/p
ej
j as input.
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Input : primorial M , ord′ - divisor of ordM (65537)

Output: M ′ of maximal size with ordM ′(65537) which divides ord′

M ′ ←M

forall primes Pi|M do

ordpi ← ordpi(65537);

if ordpi |ord′ then

M ′ ←M ′/pi;

end

end

return M ′

Algorithm 2: for the computation of the maximal divisor M’ [11]

In the following table the execution of the greedy algorithm as implemented in the

ParameterFinder class is illustrated for a starting M which is used for an RSA-512 bit

key. The starting M, referencing table 3.1.2 is set to P39.

Removed from ord Reward-at-cost Removed from M

831 0.86339 [167]

531 0.84965 [107]

411 0.84039 [83]

291 0.82581 [59]

371 0.72161 [149]

231 0.35693 [139,47]

171 0.29653 [137,103]

32 0.25891 [163,109,19]

Table 3.2: Execution of the greedy algorithm as implemented in ParameterFinder

The resulting M’ is calculated as

M ′ =
M

167 ∗ 107 ∗ 83 ∗ 59 ∗ 149 ∗ 139...
(3.6)

For the particular case of RSA-512, the greedy algorithm finds the optimum value of M’

without the need of performing a tail brute force of the last ord’ picked.

12



Chapter 3. State of the art review

3.1.3 Searching guess a’

From guessing strategy [11, page 8]:

p = 65537a
′
modM ′ (3.7)

The correct guess a’ is found by iterating through the order of the generator 65537

ord′ derived from M ′. A nice optimization that can be done is searching only for p or

q, and not both at the same time, effectively halving the search space and the search

time. Finding one of the primes means we can easily obtain the other one: p = N/q or

q = N/p. To do this, we have to calculate our two starting guesses as:

c′

2
,
c′ + ord′

2
(3.8)

We have no guarantees on which side of the interval will find p and which one q, we just

know we are guaranteed to find one of the two primes.

3.1.4 Example: search of a’

We take as an example an RSA-512 bit key generated randomly. Let N = 0x96c5a4601c5f

d4717d397e2da112c4fa3d25e65999560eae25601d5c8b82a068c4a34672c87e09a943844c153

1d8f229e205e6371b9d0298b67b90020042a533. We can now calculate c’ = 648905, from

the discrete logarithm of our N, and knowing that the generator is 65537. We now need

the ord′ which is the smallest non-zero integer such that 65537ord
′ ≡ 1 modM ′ and for

our M’ it is 1201200. We can now easily calculate the two intervals:

I1 =

[
c′

2
,
c′

2
+
ord′

2

]
I2 =

[
c′

2
+
ord′

2
, ord′ − 1

]
∪
[
0,
c′

2

]
I1 =

[
648905

2
,
648905

2
+

600600

2

]
= [324452, 925052]

I2 =

[
648905

2
+

1201200

2
, 1201200− 1

]
∪
[
0,

648905

2

]
= [925052, 1201199] ∪ [0, 324452]

The correct guesses are:

a′ = 794799 ∈ [324452, 925052]

b′ = 1055306 ∈ [925052, 1201199] ∪ [0, 324452]

13
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Now that an example was shown, the claim that in each interval I1, I2 there is exactly

one solution can be formally proved below. There are two cases:

CASE 1 Assuming that:

c′ = (a′ + b′) mod ord′ with 0 < c′ < ord′

a′ < b′ < ord′ , a′ + b′ < ord′

=⇒ 0 < a′ <
c′

2
and

c′

2
< b′ <

c′

2
+
ord′

2

Using the properties of addition of Natural Numbers:

a′ <
a′ + b′

2
< b′ =⇒ a′ <

c′

2
, b′ >

c′

2
=⇒ 0 < a′ <

c′

2

b′ < a′ + b′, b′ < ord′ =⇒ 2 ∗ b′ < (a′ + b′) + ord′

=⇒ b′ <
a′ + b′

2
+
ord′

2
=⇒ c′

2
< b′ <

c′

2
+
ord′

2

We have proved that a′ ∈ I2 and b′ ∈ I1

CASE 2 Assuming that:

c′ = (a′ + b′) mod ord′ with 0 ≤ c′ < ord′

a′ < b′ < ord′ , a′ + b′ ≥ ord′

=⇒ c′

2
< a′ <

c′

2
+
ord′

2
and

c′

2
+
ord′

2
< b′ < ord′

Using the properties of addition of Modular Arithmetic:

(a′ + b′) ≥ ord′ =⇒ (a′ + b′) = c′ + ord′

=⇒ c′ = a′ − (ord′ − b′) =⇒ a′ > c′ =⇒ a′ >
c′

2
a′ + b′

2
=
c′

2
+
ord′

2
, a′ <

a′ + b′

2
< b′

=⇒ a′ <
c′

2
+
ord′

2
, b′ >

c′

2
+
ord′

2
c′

2
< a′ <

c′

2
+
ord′

2
and

c′

2
+
ord′

2
< b′ < ord′

We have proved that a′ ∈ I1 and b′ ∈ I2

3.1.5 Calculating k’

Considering p of the form:

p = k′ ∗M ′ + k0guess (3.9)
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where k0guess is:

k0guess = 65537a
′

mod M ′

in the only unknown k’ as if it is a polynomial in the unknown x, we can use the

Howgrave-Graham method to solve the equation f(x) = 0 mod p. The polynomial

f(x) = x ∗M ′ + k0guess has to be monic, so by diving by the quantity M’ we obtain:

f∗(x) = x+ k0guess ∗ (M ′)−1

By comparing with 3.9 we have that the solution (root) x0 is equal to k’ which implies:

p

M ′
= x0 +

k0guess

M ′

Then:

k0guess = p− x0 ∗M ′

3.2 Padding Oracle Attack

We first introduce the definition of a padding oracle from [7]:

Definition. The padding oracle O(y) returns true if and only if RSA decryption of y is

correctly padded according to PKCS#1 v1.5

If we let k be the size of the RSA modulus, and B = 2k−16, we can write the interval of

numbers which give origin to a plaintext, in hexadecimal, starting with 0x0002; we recall

that all the valid PKCS #1 v1.5 correctly padded messages have as the starting bytes

0x0002 (at the moment we are not interested in signatures which start with 0x0001).

The said interval is [2B, 3B-1]. An example is shown to illustrate.

Let us take for the sake of the example a small size, 32 bit. If we follow our reasoning,

B = 232−16. Now let us print out the interval with the help of Python’s interactive

shell.

1 >>> hex (2∗B)

2 0x20000

3 >>> hex (3∗B−1)

4 0 x 2 f f f f

Listing 3.2: Interval for correctly padded 32 bit messages
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We can conclude that if the oracle returns True, then we know that m (the message) is

in this interval.

3.2.1 Simulating the attack

For didactic purpose it can be useful to work directly on plaintext without passing

through the encryption/decryption phase in the oracle, making this simulated attack

very fast. We can change the calls to the real oracle from O(y) to sO(m). The call is

modified but still checks for the compliance of m to the PKCS #1 v1.5 padding scheme.

The equivalent of the operation y′ = yE(s) mod n, which is the multiplication of the

ciphertext y for an integer s, is simulated by m′ = (m ∗ s) mod n. We recall this

operation is possible via the RSA multiplicative property (see 2.3).

3.2.2 Search intervals

We now need to compute a value s1 which has the following property: m ∗ s1 mod n =

m1 correctly padded. This can be done through multiple calls to the simulated oracle.

Doing so gives us an m1 which is also in the interval [2B, 3B-1]. We can now calculate

new intervals for m0.

m1 = m0 ∗ s1 − rn for some positive integer r

m0 ∗ s1 = m1 + rn

m0 =
(m1 + rn)

s1

Since 2B ≤ m1 ≤ 3B − 1 we can write the new intervals for m1 as:

2B + rn

s1
≤ m0 ≤

3B − 1 + rn

s1

The value of r is an unknown, we can however limit its values since r = (m0∗s1−m1)/n.

The interval for r is then calculated as:

2B ∗ s1 − 3B + 1

n
≤ r ≤ (3B − 1)s1 − 2B

n

Now we need to search for s1, starting from n
3∗B because it is the smallest value of s1

which gives us at least one interval.
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3.2.3 Narrowing intervals

To narrow the interval for m0, we iterate over the values of r and we intersect them

with the interval of m0, giving us a reduction of the search space. Only in case the

intersection is non-empty, is the interval updated with the new one.

3.2.4 Modification for iterating the search

To iterate the search until we find one value for m0 we need to modify the formula for

calculating the intervals:

2B + rn

si
≤ m0 ≤

3B − 1 + rn

si
(3.10)

New intervals for m0 at step i

We need to modify slightly the formula for r as well:

a ∗ si − 3B + 1

n
≤ r ≤ b ∗ si − 2B

n

Values of r in the generic interval [a,b]

3.2.5 Optimization for one interval

When we have one search interval, we can perform an optimized search. From the

formula 3.10 we can derive the interval for si as:

2B + rn

m0
≤ si ≤

3B − 1 + rn

m0

Since we have one search interval [a,b], we are sure that m0 is in the interval [a,b] and

we can write:

2B + rn

b
≤ si ≤

3B − 1 + rn

a

The search space for si is narrowed

By limiting the interval of si, we make the attack converge in a number of steps that is

linear in the number of bits. Thus as soon as we have one interval, we better switch to

this type of search.
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Chapter 4

Practical implementation and

performance improvement of the

ROCA attack

When trying to implement the ROCA attack in Python 2.7, some external libraries are

required and they are reported here, in the order in which they appear in the function

coppersmith howgrave univariate in PyRoca:

• a library to represent polynomials, needed to perform Coppersmith’s attack

• a library to perform the lattice reduction

• a library for polynomial factorization

In this chapter we explore the alternatives, and try to decide which ones serve our

purpose better. Am important thing to note when observing the benchmarks of this

paragraph: the version of SageMath used, the 8.2, is already about 20% faster, due to

updates to the library, than the version 7.5.2 that was used in the initial work by [11].

4.1 Representing polynomials in Python and factorization

In Coppersmith’s algorithm polynomials are created two times, to “feed” the matrix

used in LLL, and after the lattice reduction a polynomial is yet again generated and

its roots are searched to calculate p or q. Since we are working with big numbers, and
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Coppersmith’s attack will be ran various times to find the prime p or q, it is imperative

that the creation of the polynomial object be as fast as possible, to avoid a potential

bottleneck even bigger than the LLL algorithm execution time.

4.1.1 Numpy package for scientific computing

When browsing the Web for scientific computation libraries, it is hard not to stumble

across the Numpy library [13]. Numpy claims that “Polynomials in NumPy can be cre-

ated, manipulated, and even fitted using the Convenience Classes of the numpy.polynomial

package, introduced in NumPy 1.4”. Unfortunately, we will be working with big num-

bers, even trying to factorize the smallest RSA key generated by RSALib and still used

in practice, RSA 512-bit; the inability of Numpy to work with Big Integers automatically

rules it out from the possible candidates.

4.1.2 Sympy library for symbolic mathematics

Another popular alternative is Sympy [18]. It boasts to be:

• Free: Licensed under BSD, SymPy is free both as in speech and as in beer.

• Python-based: SymPy is written entirely in Python and uses Python for its lan-

guage.

• Lightweight: SymPy only depends on mpmath, a pure Python library for arbitrary

floating point arithmetic, making it easy to use.

• A library: Beyond use as an interactive tool, SymPy can be embedded in other

applications and extended with custom functions.

It also claims to be used by SageMath, which is the reference point of the implementation

written and used in [11]. Moreover, it offers an easy to use polynomial representation

and factorization that we seek. Its performance is now evaluated compared to SageMath

polynomials implementation.

4.1.2.1 Sympy performance compared to SageMath

To evaluate the performance, the following testing procedure was used.
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• 1000 RSA-512 and RSA-1024 keys are randomly generated with the help of the

ParameterFinder class method gen vuln key(), which is available in the final ver-

sion of the Python ROCA project developed for this thesis . These two sizes are

chosen because they are practically factorised even with a low expense in hardware,

and are somewhat still used in practical applications (especially true for the 1024

bit size).

• for every key, a random guess is calculated and so is the polynomial deriving from

that guess based on the formula: x+ (k0guess+ inverse of M ′) mod n

• The time to execute the various steps of Coppersmith’s attack is measured and

stored.

As it was mentioned in the beginning of this Chapter, it is interesting to benchmark the

steps of Coppersmith’s attack because that algorithm is ran multiple times, and makes

use of polynomials. It was decided to divide the algorithm in 5 parts and measure time at

each checkpoint. These checkpoints are: first creation of polynomials (used to populate

the matrix), matrix population, execution of LLL, second creation of a polynomial (to

be factored) and finally factorization.

All steps are now shown to illustrate. The code referenced is taken from the Python

version called PyRoca developed as a project for this thesis, Coppersmith’s algorithm is

derived from the SageMath implementation available in [21]

1 . . .

2 gg = [ ]

3 f o r i i in range (mm) :

4 f o r j j in range (dd) :

5 gg . append ( ( fmpz poly ( [ 0 ,XX] ) ∗∗ j j ) ∗ fmpz poly ( [ n∗∗(mm− i i ) ] )

∗ ( expr ( fmpz poly ( [ 0 ,XX] ) )∗∗ i i ) )

6 f o r i i in range ( t t ) :

7 gg . append ( ( fmpz poly ( [ 0 ,XX] ) ∗∗ i i ) ∗ ( expr ( fmpz poly ( [ 0 ,XX] ) )∗∗mm

) )

8 . . .

Listing 4.1: First polynomials creation

1 . . .

2 BB = IntegerMatr ix (nn , nn)

3 f o r i i in range (nn) :

4 f o r j j in range ( i i +1) :

5 BB[ i i , j j ] = in t ( gg [ i i ] [ j j ] )

6 . . .

Listing 4.2: Matrix population
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1 . . .

2 W=LLL .Wrapper (BB, de l t a =0.5)

3 W()

4 . . .

Listing 4.3: LLL Execution

1 . . .

2 new pol = fmpz poly ( [ 0 ] )

3 f o r i i in range (nn) :

4 new pol += ( fmpz poly ( [ 0 , 1 ] ) )∗∗ i i ∗ fmpz (BB[ 0 , i i ] / XX∗∗ i i )

5 . . .

Listing 4.4: Second polynomial creation

1 . . .

2 f a c t o r i z a t i o n = new pol . f a c t o r ( )

3 . . .

Listing 4.5: Factorization step

Since the LLL section does not depend on polynomials (its execution time is dependant

only on the speed of the LLL algorithm used), the results for it are not included in the

testing results for polynomials, but they will be included in a summarizing table in the

LLL section.

It should be noted that for completeness, the time of execution of Coppersmith’s attack

should be measured also for correct guesses, even if that situation happens only one

time during the entire run of the attack; it will be also evident that the overall execution

time of Coppersmith’s algorithm is lower for incorrect guesses, than for correct guesses,

possibly because the factorization step takes less time.

4.1.2.2 Testing Hardware specifications

The hardware is summarized in the following table. Note that Coppersmith’s attack

runs on a single core of the processor (we will discuss later on how to scale it to multiple

cores)

Processor Intel CoreTM i3-4160 3.60 GHz

RAM 8 GB

4.1.2.3 Testing Software specifications

The software is summarized in the following table. All the software is updated to the

latest version as of the time of writing.
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Operating System Ubuntu 18.04.1 LTS

SageMath version 8.1

Python version 2.7.15

Sympy version 1.3

Table 4.1: Software used for testing the performance of Sympy against SageMath

4.1.2.4 Testing results and comments

Execution step SageMath Sympy Perf. Delta

First creation of polynomials 489 µs 11837 µs +2320.7 %

Matrix population time 127 µs 538 µs +323.6 %

Second creation of polynomial 259 µs 8006 µs +2991.1 %

Polynomial factorization time 674 µs 11845 µs +1657.4 %

Total 1549 µs 32226 µs +1980.4 %

Table 4.2: Comparison between average polynomial creation time and factorization in

SageMath and Sympy. Polynomials are those encountered during RSA-512 factorization

Execution step SageMath Sympy Perf. Delta

First creation of polynomials 491 µs 8575 µs +1646.4 %

Matrix population time 119 µs 302 µs +153.8 %

Second creation of polynomial 283 µs 6589 µs +2228.3 %

Polynomial factorization time 609 µs 9981 µs +1538.9 %

Total 1502 µs 25447 µs +1594.2 %

Table 4.3: Comparison between average polynomial creation time and factorization in

SageMath and Sympy. Polynomials are those encountered during RSA-1024 factorization

From the benchmark results it is clear that, had the Sympy library been used in the

project, it would make our program about 13.6 times slower for RSA-512 recovery, and

14.5 times for RSA-1024. We can also deduce from the matrix population time (it is

a read operation from a Polynomial object and a write operation in the matrix), that

Sympy polynomial objects are probably slow in creation, but once in memory they do

not offer too much penalty over a polynomial object in SageMath, although one could
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call a penalty of more than twice the time a pretty significant one. The factorization

time is also a lot slower, considering that both implementations should be using the same

Berlekamp-Zassenhaus factorization. At this point however, there is little to no point to

continue to try and improve the results, in what appears to be a slowdown that is hard

to improve without modifying the Sympy library because it is due to object creation

time in the Python environment.

4.1.3 FLINT: Fast Library for Number Theory

The solution to the performance problem was found by analyzing what implementation

SageMath uses to have this dramatic advantage on speed. It was discovered that for the

operations on polynomials and factorization it uses the FLINT library, which is a library

written in ANSI C. It was clear that to try to match SageMath’s performance, a re-write

of the ROCA attack would probably be needed. Fortunately, Python has the ability to

use external C libraries with little overhead with the use of, for example, Cython [6].

This avenue was first explored because it did not require a complete re-write of the

project, and because integrating Python code into the Pwntools [15] library would be

trivial. A project that created bindings for some of the functions of the FLINT library

was found on Github [8]. Not all the functions are implemented though. Namely, the

polynomials modulo n are missing. When using Coppersmith’s attack, it was verified

experimentally that using polynomials without the modulo n did not impact the success

rate at all. This is true only if the numbers are not negative, which in our case are

not. In future work this road should be explored, implementing more functions from the

FLINT C library, because as we will see later, it is a very fast, complete and easy to use

library, which Sympy advertised but could not deliver. Now we test the performance

difference compared to the winner of the previous test, SageMath.

4.1.3.1 FLINT performance compared to SageMath

The testing procedure is the same as what already described in the sub subsection 4.1.2.1.

4.1.3.2 Testing Hardware specifications

See specifications in the previous sub subsection 4.1.2.2.
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4.1.3.3 Testing Software specifications

The software is summarized in the following table. All the software is updated to the

latest version as of the time of writing.

Operating System Ubuntu 18.04.1 LTS

SageMath version 8.1

Python version 2.7.15

FLINT version 2.5.2

Python FLINT version 0.3.0

Table 4.4: Software used for testing the performance of SageMath against FLINT

4.1.3.4 Testing results and comments

Execution step SageMath FLINT Perf. Delta

First creation of polynomials 489 µs 80 µs -83.6 %

Matrix population time 127 µs 160 µs +26 %

Second creation of polynomial 259 µs 71 µs -72.6 %

Polynomial factorization time 674 µs 452 µs -32.9 %

Total 1549 µs 763 µs -50.7 %

Table 4.5: Comparison between average polynomial creation time and factorization in

SageMath and Python using FLINT. Polynomials are those encountered during RSA-512

factorization

Execution step SageMath FLINT Perf. Delta

First creation of polynomials 491 µs 95 µs -80.7 %

Matrix population time 119 µs 161 µs +35.3 %

Second creation of polynomial 283 µs 80 µs -71.7 %

Polynomial factorization time 609 µs 425 µs -30.2 %

Total 1502 µs 761 µs -49.3 %

Table 4.6: Comparison between average polynomial creation time and factorization in

SageMath and Python using FLINT. Polynomials are those encountered during RSA-

1024 factorization

24



Chapter 4. Practical implementation and performance improvement of the ROCA
attack

As we can see from the benchmarks, the operations on polynomial on the Python FLINT

version is about 2 times faster overall than the SageMath version for RSA-512 bit keys,

and 1.97 times for RSA-1024 bit. it is interesting to see that there is a slight slowdown

in the matrix population time, but in all other step the performance of Python FLINT

cannot be matched. We can also see that out margin decreased when we increased the

key size. This is a trend that we will see better7 later with a more complete benchmark

on key sizes ranging from 512 to 4096 bit, but it is certainly a thing to keep an eye on.

4.1.3.5 Testing with correct guesses

To see the complete picture we need to perform one more test. Previously it was men-

tioned that the benchmark was conducted generating a polynomial with random guesses

that do not find p or q; Now we perform the test with polynomials that find the correct

solution is calculated with the help of the ParameterFinder class. To calculate such

polynomial we need k0guess that is obtained with the calculate k0guess(m, p, q) func-

tion, and since we have both primes p and q (remember that we have generated the keys

ourselves), we have all the parameters needed; m and its inverse are easily obtained.

The test is restricted to only RSA-512.

Execution step SageMath FLINT Perf. Delta

First creation of polynomials 481 µs 80 µs -83.4 %

Matrix population time 127 µs 152 µs +19.7 %

Second creation of polynomial 266 µs 71 µs -73.3 %

Polynomial factorization time 1181 µs 659 µs -44.2 %

Total 2055 µs 962 µs -53.2 %

Table 4.7: Comparison between average polynomial creation time and factorization in

SageMath and Python using FLINT. Polynomials are those encountered during RSA-512

factorization for a correct guess

We can observe an overall time increase, especially in the factorization time. This is

probably because the factorization algorithm is quicker on deciding when there is no

possible factorization for that polynomial. This case is not indicative of the overall

performance when running the real attack for the reasons explained in 4.1.2.1.
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4.2 LLL algorithm in Python with fpylll

Fpylll [1] is a Python wrapper for fplll [19], which contains implementations of several

lattice routines, and the name derives from the algorithm on which it is based, LLL [10].

Fplll is the practical implementation of the theory described in [12] by Phong Nguyen

and Damien Stehlé. It is currently the fastest LLL implementation available, having

quadratic complexity.

In SageMath fplll is already built-in, while in Python we have to install first the wrapper

and then fplll itself. It is interesting to see if there is any performance difference between

the two, even if they use the same library version.

4.2.1 fplll performance compared, SageMath and Python

In the previous sub subsections 4.1.2.1 and 4.1.3.1, the execution time was shown for

all but one step of Coppersmith’s attack: the LLL execution time. The comparison will

now be illustrated with a table.

4.2.1.1 Testing Software specifications

Operating System Ubuntu 18.04.1 LTS

SageMath version 8.1

Python version 2.7.15

Python fplll version 5.2.0

Table 4.8: Software used for testing fplll performance

Note: the SageMath version used includes fplll version 5.2.0.

4.2.1.2 Benchmark results and comments

Execution step SageMath Python Perf. Delta

fplll execution time 6331 µs 5290 µs -16.4 %

Table 4.9: Comparison between average fplll execution time in SageMath and Python.

Matrix encountered during RSA-512 factorization
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Execution step SageMath Python Perf. Delta

fplll execution time 6646 µs 5758 µs -13.4 %

Table 4.10: Comparison between fplll execution time in SageMath and Python. Matrix

encountered during RSA-1024 factorization

Surprisingly, from the benchmark it emerges that fplll is faster when executed in Python

rather than in SageMath, even when using the same version of the procedure. Now we

can summarize the overall execution time improvement we gained over the SageMath

version.

4.3 Overall improvement from Python ROCA

Now that all the improvements have been explained and documented, we can summa-

rize how much time improvement we can expect in total with the polynomial and fplll

speedup at the same time. Coppersmith’s attack execution time is the total sum of all

the execution steps in Coppersmith’s routine.

Execution step SageMath Python Perf. Delta

Coppersmith’s attack total time 7880 µs 6053 µs -23.2 %

Table 4.11: Comparison between total execution time in SageMath and Python. Matrix

and polynomials are encountered during RSA-512 factorization

Execution step SageMath Python Perf. Delta

Coppersmith’s attack total time 8148 µs 6519 µs -20 %

Table 4.12: Comparison between total execution time in SageMath and Python. Matrix

and polynomials are encountered during RSA-1024 factorization

From Python ROCA we can expect a 23.2% time saving for RSA-512, decreasing to

20 % for RSA-1024 bit keys.

4.4 Making the attack multi-process

In the current state of things, the fpLLL algorithm is not using more than 1 core for

its operations. It was decided to use the “multiprocessing” package in Python instead
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of using multithreading because of the GIL issue. The GIL is an interpreter-level lock

which prevents execution of multiple threads at once in the Python interpreter. Each

thread that wants to run must wait for the GIL to be released by the other thread,

which means a multi-threaded Python application is actually single threaded. PyRoca

runs automatically creates as many processes as there are core in the processor. If the

number of cores cannot be determined, then it launches a single process.

4.4.1 The batch size

The processes receive each a number of guesses as instructed by the batch size variable.

This variable, if not otherwise specified by the user, is set to 100, but it should be set

accordingly to not bottleneck the system: if this number is too small, the processes will

come back asking for more work frequently, and since the assignment of job is done in

mutual-exclusion we will have serious slow-downs. The mutual exclusion is obtained with

a lock object in Python and it is necessary because we do not want to have concurrency

problems in our program; There is not really a drawback with having batch size too big,

with the exception of guesses that take very long to compute, in that case we would

set it very small. With many number of cores (it was tested with upto 120 cores) it is

normal to have 10-20 seconds of wind up time to assign jobs, but once the processes get

their job, the interaction with the main thread is kept at a minimum by design.

4.4.2 The queue

To share the guesses with the processes a Python queue object is used. Every process

runs through its queue and goes back to the main thread for more work when it is empty.

A total of the attempts made is also updated to keep track of the statistics, so it is easier

to calculate the number of attempts made per second, for example.

4.4.3 Termination

There are three instances in which the processes are stopped:

• we exhausted all the possible guesses (we ran through the entire ord’)

• we found the solution

• termination (ctrl-c) was issued from the user
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In the first case, we do not have to check for anything, the join in the main process will

wait for the correct termination and tell us that no solution was found.

If a solution was found, we would like to terminate all the other processes because

they cannot possibly find the solution in their batches of guesses. A multiprocessing

Event is used for this purpose: at the end of every guess tried, all the processes check

if this termination event has been triggered, and if it has then we gracefully exit. This

event is checked after every guess because we do not want any delay in the termination.

Unfortunately some guesses for high key sizes (>2048 bit) take up to 15 minutes each.

We can expect in this case a very delayed termination. In future releases of the program

a timeout timer could be added in the main process that forcefully terminates any

processes that have not terminated in time to fix this issue. The problem has not been

addressed in the initial release because keys that big are not practically factorizable with

running times in the thousands of years.

4.4.4 Scaling on multiple processes

Intuitively, we would expect the performance to scale linearly with the number of cores

in the processor, if the program is well optimized (no time is wasted in the mutual

exclusion). To test this assumption, a benchmark on factorization of an RSA-1024 bit

key on Amazon EC2 c5.9xlarge instance has been performed. More information on the

hardware used are available in the Benchmark Paragraph.

4.4.4.1 Test results

Figure 4.1: Performance scaling in PyRoca during factorization of RSA-1024 on 16 cores

physical cores, 36 logical
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The performance scales linearly up until about 18 cores. Coincidentally this is the

number of physical cores in the Intel Xeon Platinum 8124M that we are testing. This

processor uses Intel Hyper Threading technology to achieve the 36 core count. This

means that of our 36 cores, half of them have to share the resources.
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PyRoca Benchmarks

In this chapter some benchmarks are presented on the full range of key sizes used by

RSALib. Time for factoring RSA-512, RSA-1024 and RSA-2048 are given to compare

with the speed of the old SageMath version. As mentioned in the beginning of Chapter

4, the comparison will be with the latest version, 8.2, which is already about 20% than

the version used in the work by [11]. Additionally, since Amazon EC2 (Elastic Compute

Cloud) instances were used for the benchmarks, and cost for cracking RSA-512, 1024,

2048 bit keys were included in the original paper, the cost estimate is updated with

the new values from the improved version. Finally, a method of reducing the cost with

Amazon EC2 Spot instances is discussed.

5.1 Amazon EC2

For the purpose of this test, it was decided to use the Amazon EC2 infrastructure, mainly

because of the cost per performance advantage over the competitors, and also because of

some techniques that can be put in place to save on the instances cost. This technique

is using Amazon Spot instances and will be discussed in a later section. To perform the

test C5 instances are selected: they are optimized for compute-intensive workloads. As

PyRoca does not leverage the power of a video card for example, it would not make sense

to rent an instance with that capability. For the test a c5.large and c5.9xlarge instance

was used, respectively to test single core performance and scaling on multiple cores.
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5.1.1 Virtual CPUs on the instances

An important thing to note is the concept of vCPUs on Amazon EC2: as most of the

machines available are virtualized, we talk about virtual CPUs (vCPUs). For example, a

c5.9xlarge instance has 18 CPU and 2 threads per core, or 36 vCPUs in total. A c5.large

instance has 1 CPU and 2 threads per core, so 2 vCPUs in total. Regarding this last

example, since we want to test single core (and single thread) performance, one of the

virtual CPUs was disabled (although specifying to PyRoca that it should use only 1 core

should be enough, as virtual cpu threads are not transparent to the OS, and show as

real CPU cores).

5.1.2 Software

The software used in Amazon EC2 is summarized in the following tables.

Software

Operating System Ubuntu 18.04.1 LTS

SageMath version 8.1

Python version 2.7.15

Python FLINT version 0.3.0

Table 5.1: Software used for testing on Amazon EC2 instances

5.1.3 Hardware

All the hardware is virtualized in the Amazon EC2 cloud.

c5.large instance c5.9xlarge instance

CPU Intel Xeon Platinum 8158 3.0 GHz

Number of vCPUs 1 36

RAM 8 GB 72 GB

Storage 10 GB EBS volume

Networking Upto 10 Gbps 10 Gbps

Table 5.2: Hardware used on Amazon EC2 instances
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5.1.4 Benchmark procedure

• random RSALib keys are generated with the gen vuln key function available in the

ParameterFinder class and stored in a file. The keys should be per RSALib spec.

The keys generated are in the range 512 to 4096 bit in step of 32 bit. The number

of keys in the specified interval is 129.

• For each key in the aforementioned interval, the attack using a slightly modified

PyRoca class is launched. The normal behaviour of the library had to be adjusted

because we have to account that we could run into the correct guess and thus

find the key or we could exhaust the possible candidates before the benchmarking

time is up. The choice of benchmarking time for each key is explained in the next

subsection.

5.1.5 Benchmark results
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Figure 5.1: Performance of PyRoca with varying key size up to 4096 bit in 32 bit steps,

graph generated with the help of an external script by [11]
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5.1.5.1 Comments

Unfortunately the granularity of the axes does not allow to notice the difference in

performance with the graph from [11]. For this reason, more detailed graphs will be

presented with regards to practically factorizable keys such as RSA-512 and RSA-1024

bit keys. Since the benchmark results purpose is to be compared with the results from

[11], the same optimal parameters mm, tt and M’ are used. Some of these parameter

combination used for the benchmark do not give a 100% success rate in Coppersmith’s

algorithm (it does not always find p or q). In the current version of the ParameterFinder

class, it was preferred to return only parameter combinations that have a 100% success

rate, hence why it would be hard to reproduce all of the results exactly like they are

presented here. Some of the popular key sizes such as RSA-512, 1024, 2048 are not

affected by this issue.

5.1.5.2 Time estimate (worst case)

Figure 5.2: Performance of PyRoca compared against the SageMath version for RSA-512

bit keys

As we can observe from the data for the worst case on RSA-512, we have a decrease in

execution time of 18.79%, which is less than what was measured in the previous chapter

during polynomial and LLL testing. There are a couple of reasons that can explain this

difference:

• In this test the sample size is only one. Only one key was tested during RSA-512
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testing, but multiple different guesses were tested during the span of the test. This

could have impacted the results. Testing multiple keys and multiple guesses was

infeasible given the number of resources avaliable.

• the hardware used for the test, unlike the test on the polynomial and LLL speed, is

done on a virtualized machine in the cloud. Amazon EC2 does not guarantee any

minimum performance for the vCPUs, some variance in the data result is expected.

Figure 5.3: Performance of PyRoca compared against the SageMath version for RSA-

1024 bit keys, additionally PyRoca is ran on all the cores avaliable on the machine

For RSA-1024 PyRoca was also allowed to use all the cores of the machine. We can

deduce that with some relatively powerful hardware we can we can factor any ROCA

weak RSA-1024 keys in a little over a day.

5.1.6 Cost per performance

In the following table we summarize the worst case cost to factor popular RSA-512,

1024, 2048 bit keys on EC2 c5.large and c5.9xlarge instances, at the current price per

hour, which is respectively 0.085$ and 1.53$.
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c5.large instance

Key size Worst case cost

RSA-512 0.085$

RSA-1024 69.28$

RSA-2048 38053$

c5.9xlarge instance

Key size Worst case cost

RSA-512 1.53$

RSA-1024 61.83$

Table 5.3: Cost per factoring various key sizes. The data is extrapolated from previous

benchmarks

There are a few things to note in these tables. First of all the cost of factoring RSA-512

is equal to the cost of the instance, because the least fraction of time Amazon EC2 rents

for is 1 hour; it would not make sense to rent a big instance for an RSA-512 key, unless

we want the result in a couple of seconds, but if we can wait an hour the first option is

way more cost effective. Another thing to note is that since some of the benchmarks done

in c5.large were working on single process (to compare to the result of SageMath), and

the instance offers 1 core and 1 logical thread, it follows that the cost per performance

for RSA-1024 and RSA-2048 would be not accurate, had we used the values from the

previous benchmark; the instance can offer more performance than that. We can notice

that is cheaper to run a big c5.9xlarge instance, instead of many c5.large. This can be

not always true, in this case the performance per core of the big instance was higher,

probably because the cpu wasn’t shared amongst other EC2 customers. With the help of

PyRoca the choice is made easier, because we do not have to split manually the workload

on the c5.9xlarge instance, it is done automatically for us. All of the cost estimates are

lower than what documented in [11], partly because of the faster algorithm, and partly

because of the ever changing Amazon EC2 offering cost and performance.

5.1.7 Amazon Spot Instances

Finally we discuss a possible way to save on factorization cost. Spot instances are normal

instances that have been unused; to avoid wasting this possible revenue, Amazon rents

these instances for a much lower than standard price. The problem is that these instances

can be terminated if we get out-bidded by another user of the platform; a bid is the

maximum price we are willing to pay. The use of spot instances can become a possibility
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in the future with an update to PyRoca: what is needed is a resume function, saving

the last guess made, so even if our instance is terminated we could start again once the

value of our bid becomes relevant again. With this technique, we can save up to 40% on

the price of the instance, which for big keys can be very relevant.
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Practical implementation of a

Padding Oracle Attack

A practical implementation based on the examples from [7] has been written in Python

2.7, ready to be integrated into the Pwntools repository fork. It only uses as an external

library the rsa library (see [17]) for encryption and decryption of PKCS#1 padded

ciphertexts.

6.1 Modification for the real implementation

A small modification of the examples from [7] was required to have a working imple-

mentation on real ciphertexts. In the introduction we shown examples on the messages,

unfortunately now we do not have that luxury because the message we want is encrypted.

The most important modification is the search for s1.

1 de f s e a r c h s 1 ( s e l f , s t a r t v a l u e , y0 ) :

2 s1=s t a r t v a l u e #s t a r t i n g value o f s1

3 whi le True :

4 y1 = ( s e l f . e n c r y p t i n t ( s1 ) ∗ y0 ) % s e l f . n

5 i f ( s e l f . padd ing orac l e ( y1 ) ) :

6 break

7 s1 += 1 #try next va lue o f s1

8 re turn s1

Listing 6.1: Search for s1 with ciphertexts

38



Chapter 6. Practical implementation of a Padding Oracle Attack

The encryption functionality as it was said in the beginning of the chapter, is given

from an external library. The call simply performs an encryption of an integer number.

The encryption could have been implemented as a function inside the class, but since

a PKCS#1 v1.5 padding implementation could be useful and is provided by the same

library, it was decided to rely entirely on it, without adding duplicates of Python code.

6.2 Initiating the attack

The usage of the library has been made with modularity in mind. It was not made for a

specific application, so the user needs to supply a function used to communicate with the

oracle; the oracle can be a webserver, a local program etc. The function must be written

to return a boolean value of True or False after it communicated with the oracle. The

only input parameter of the function must be a string which will be generated with the

Bleichenbacher attack [5] as implemented in this library. When the attack is initiated,

the object must also be supplied with the following parameters:

• k: the size of the RSA key in bits used to encrypt y0 (e.g. 1024 bit RSA key)

• n: the modulus n

• b: the public exponent of the RSA key

• y0: the ciphertext to recover

6.3 Usage example

The usage is illustrated with a simple example.

We can start by generating an RSA keypair of 1024 bit using openssl:

1 opens s l genrsa −out key 1024

Then we can import the generated public and private key into the RSA library.

1 #Reading the pub l i c key

2 f = open ( ”key . pub” , ” rb” )

3 pubkey = f . read ( )

4 f . c l o s e ( )

5 #Reading the p r i v a t e key
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6 f = open ( ”key” , ” rb” )

7 prkey = f . read ( )

8 f . c l o s e ( )

9 #Importing them in to the r sa l i b r a r y

10 prkey = rsa . PrivateKey . load pkcs1 ( prkey , format=’PEM’ )

11 pubkey = rsa . PublicKey . l oad pkcs1 openss l pem ( pubkey )

12 #saving the modulus n

13 n = pubkey . n

Since we need to provide a function that talks to the Oracle, we write a simple oracle

function that decodes the ciphertext, checks if the padding is correct, and returns a true

or false boolean value. To speed up the attack, we make the fastest oracle possible: it

returns true only if the message padding starts with 0x0002 and does not check additional

parameters. This guarantees the minimum number of oracle calls, for the sake of this

example.

1 de f s i m u l a t e d o r a c l e ( c i p h e r t e x t ) :

2 p l a i n t e x t = d e c r y p t i n t ( c i p h e r t e x t ) #decrypt the

c i p h e r t e x t with the r sa pr iv . key

3 p l a i n t e x t = long2hexs t r ( p l a i n t e x t ) #convert the

long to hex s t r i ng

4 p l a i n t e x t = p l a i n t e x t . decode ( ”hex” )

5 i f ( p l a i n t e x t [ 0 ] != ’ \x00 ’ or p l a i n t e x t [ 1 ] != ’ \x02 ’

) :

6 re turn Fal se

7 e l s e :

8 re turn True

Finally we generate a ciphertext and launch the attack:

1 y0 = encrypt pkcs ( ’ t e s t c i p h e r t e x t ’ )

2 theat tack = poa . PaddingOracleAttack (1024 ,n , pubkey . e , y0 ,

s i m u l a t e d o r a c l e )

3 p l a i n t e x t = theat tack . run at tack ( )

When the attack terminates we can print the plaintext. With our example we get:

0002...007465737463697068657274657874. Naturally this is a PKCS #1 v1.5 formatted

message. We recall that everything after the separator is the message. In fact for example
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in Python 2.7 we can print the plaintext like so:

1 >>> ( ’ 7465737463697068657274657874 ’ ) . decode ( ’ hex ’ )

2 ’ t e s t c i p h e r t e x t ’

6.4 Speed of the attack

The speed of the attack depends mainly on how fast the s1 that gives a correctly for-

matted ciphertext can be found. A benchmark was executed on randomly generated

ciphertexts to evaluate performance. Since the speed of the attack depends on the num-

ber of oracle calls, the hardware used for the test is not relevant. Of course in a real

scenario we have to keep in mind the response time of the oracle when we evaluate the

performance, especially if we talk about a web server or a low power security token.

Oracle Calls

Mean Median Min Max

30531 20911 2669 188822

Table 6.1: Statistics on the number of oracle calls

From the benchmark results we can see that we get similar results as the “Good” Oracle

from [7]. This is expected because in this test an unoptimized attack was used, and the

oracle used fits the description of the “Good” oracle case of that table.
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Conclusions

In this thesis we have given the basis of the RSA cipher, and then discussed two practi-

cal attacks on security of RSA. For the ROCA attack, an improved version about 20%

faster was shown; the speed increase was documented with benchmark to determine

the function calls responsible for the speedup. The attack was also made multi process

to leverage multi core processors, and the performance scaling was graphed. For the

padding oracle attack, a simple and easy to use version was presented with usage exam-

ples on a real encrypted ciphertext. The performance of the attack was then evaluated

in terms of oracle calls.

In future versions of this project, for what concerns the ROCA attack, a resume function

of the attack is needed to allow the use of the much cheaper Amazon spot instances. It

should be possible to further speed up the attack by implementing the ideas described

in [4] and by using the very recent General Sieve Kernel [2] together with fplll. The

padding oracle attack can be highly sped up by implementing the techiniques described

in the paper [3]. Furthermore a recent paper [16] mentions the ability to parallelize the

attack on multiple servers sharing the same public key.
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