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Introduction 

As part of Modern Portfolio Theory, Portfolio management is a subject introduced by 

Markowitz back in 1950s. In Chapter 1 of this paper, we describe the Mean- Variance 

portfolio selection model proposed by Markowitz. Since its introduction, this model 

has been considered as the standard model. Although it has many advantages, with 

the years passing and the increased complexity of the markets, the model showed all 

its limits. The main drawbacks arises from the unrealistic assumptions at the base of 

the model. In other words, the assumptions are not able to present the real world and 

the risk measure used. Therefore, there was the need of a new class of risk 

measures, coherent risk measure, suitable for financial portfolios. The coherent 

measure of risk that belongs to this class chosen for this paper is the two-sided risk 

measure introduced by Chen and Wang in 2008. Chapter 2 describes the 

metaheuristics and in particular focuses on those chosen for this paper. Metaheuristic 

can be describe as trial and error optimization techniques able to find high level 

solutions to complex problems. Those high-level solutions, although high quality 

solutions, are not the optimal ones. However, metaheuristics find good solutions in a 

reasonable amount of time. In this paper we decided to choose bio-inspired 

metaheuristics, in particular Particle Swarm Optimization and Bacterial Foraging 

Optimization. In Chapter 3 we presented an alternative model to the one introduced 

by Markowitz, that is the realistic portfolio proposed by Corazza, Fasano and Gusso. 

This strategy allows to make the analysis more realistic by overcoming the limits of 

the model described in Chapter 2. However, in order to effectively solve the NP-hard 

problem that arises from the use of the two-sided risk measure combined with the 

realistic portfolio chosen, we applied an exact penalty method, which allows to 

transform the constrained problem into an unconstrained one. Finally, in Chapter 4, 

we applied PSO and BFO to solve the portfolio selection problem presented in the 

previous chapter. For this application, the data used are the daily closing prices of 

DAX 30 index from March 2014 to November 2018. The periods considered are 

eight, and each one consists of 8 in-sample months and 3 out-of-sample. In addition, 

we also analyzed the respect of the monotonicity property of the risk measure. Lastly, 

we carried out a comparison between the given respectively between P3SO and 

BFO. 
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Chapter 1 

 

Portfolio Selection Theory 

 
Portfolio selection is one of the cornerstones of economics and finance. The classical 

framework of portfolio selection was theorized by Markowitz in 1952 and it is called 

Mean-Variance portfolio selection model. This model represents one of the pillars of 

the modern portfolio theory. In this chapter we are going to describe the Markowitz 

model for portfolio selection as well as its limits and the alternative models which try 

to overcome the disadvantages. 

 

1.1 Markowitz Model 

As we mention in the introduction to this chapter, Markowitz who introduced the 

Mean-Variance framework for the portfolio selection, is the father of the Modern 

Portfolio Theory. The name Mean-Variance portfolio selection model comes from the 

two criteria used to select the best portfolio, the expected return (mean) and the 

standard deviation (variance). In fact, in its seminal work [1], Markowitz states that 

investors should perceive the expected return as a desirable factor and the variance 

as an undesirable factor. The latter factor of each asset of the portfolio eventually 

determines the level of risk of the entire portfolio. However, portfolio selection model 

proposed by Markowitz allows to select the best combination of assets with lowest 

variance and as high as possible return. In other words, for each level of risk of the 

entire portfolio the model is able to maximize the return by combining the different 

assets of the portfolio. It should be clear that a trade-off between risk and return 

arises. Furthermore, due to the diversification, the assets of the portfolio collectively 

have a lower variance than they have singularly. 

 

Assumptions 

In order to be meaningful, the Mean-Variance portfolio selection model needs some 

basic assumptions. We are going to describe them as follows: 
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 Frictionless markets. This assumption includes the absence of any transaction 

costs, taxation. Furthermore, the assets are assumed to be indefinitely 

divisible; 

 Investor are price-taker thus, their action or decisions are not able to modify 

the distribution of security’s returns; 

 Investment opportunity is expressed by a probability distribution of returns and 

is measured over a unique holding period; 

 Maximization of the investment’s return is the objective of the investors; 

 Rational and risk adverse investors are aware of the risk and demand higher 

return for accepting higher risks. 

 

1.2 Portfolio selection model 

In this section we are going to talk about the selection process of the model. After a 

thoroughly discussion of the measure of risk and return, we are going to analyze the 

mean-variance dominance criterion, that is the ratio underneath the selection process 

and finally the portfolio selection itself. 

Markowitz model consists of three steps: 

1. Identification of a tool which is able to effectively measure the uncertainty of 

the investment, that is an appropriate measure of risk; 

2. Definition and selection of a criterion whereby classify the investment choices 

into an efficient set and an inefficient set. The two sets are mutually exclusive; 

3. Given the investor’s risk appetite, selection of the optimal portfolio. 

 

1.2.1 Risk and Return of the Portfolio 

Expected return and the risk of the portfolio are the two criteria through which the 

model works. However, given the stochastic nature of the investment choice the two 

measure are: 

 Mean of the rates of return (single-period). In this contest, this statistical 

measure applied to the rates of the return is used to express the desired 

profitability of the investment choice. 
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 Variance of the rates of return (single-period). This measure serves to quantify 

the undesired risk of the investment choice. 

We will break down the measures just presented above in order to make them 

mathematically meaningful. In order to do that, let X be a discrete random variable 

 where  with  is the i-th  realization of X,  

the possible return of an asset, whereas , with , is the probability that  

occurs, where  for all i and . Given this information mean and 

variance can be described as: 

 

 

Of course, this is the case when the random variable X is discrete. Since, usually the 

rates of return are assumed to be continuous the variable X has a cumulative 

distribution function F(.) and a probability density function p(.). Thus, the two 

measures can be expressed as: 

   or  

  or  

So far, we analyzed and discussed the mean and variance of the single assets. 

However, the portfolio is a combination of multiple assets. In order to obtain the mean 

of the entire portfolio, we need to define: 

  the random variable which represents the return of the i-th asset; 

   the part of the capital invested in the i-th asset; 

  expected rate of return of the i-th asset; 

  variance of the i-th asset. 

Then, given the information described above, the mean and the variance of the entire 

portfolio which can be respectively expressed as follow: 
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Where: 

  represents the Bravais-Pearson linear correlation coefficient 

between  and  

  represents the covariance between  and . 

It may result useful for the next sections, already providing with the matrix notation of 

mean and variance of the portfolio: 

   

  

 

1.2.2 Mean-Variance criterion 

In this section we are going to present the fundamental mechanism which allows the 

model to separate among all the assets selected the efficient and inefficient ones. 

Considered X and Y, two random variables with means and variances equal to ,  

and , , for the Mean-Variance dominance criterion we can state that X dominates 

Y, if and only if: 

  

  

Thus, we can say that when a portfolio, given the same or lower variance of other 

portfolios, has a greater expected return then it dominates. In other words, it is 

efficient. 

As we introduced before, the main objective of the portfolio selection problem is to 

minimize the variance, among all the available portfolios. Therefore, we can provide 

with a first and basic algebraically version of the portfolio selection process when an 

investor can invest in N assets, that is nothing but a minimization of a convex function 

subject to linear constraints: 

minimize       
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subject to  

Where: 

  is the N-column vector of the proportion of capital invested in each of the N 

assets of the portfolio; 

  is the  variance-covariance matrix1 between the assets; 

  is the N-column vector which storages the mean returns ; 

  is a N-column vector of ones; 

  rate of return that investor wants the portfolio to earn; 

  is the constraint that requires non-negative portions of capital invested in 

the portfolio2; 

The reason why the function is convex relies on the convexity of  matrix due to 

the fact that, the matrix  is positive definite3, as well as the convexity of the 

constraints. The unique solution of the problem is: 

  

where: 

  

  

  

Therefore, taking into consideration that the composition of the efficient frontier 

depends on: , r and , we have that: 

  

  , 

                                            
1 We implicitly assume that the matrix is nonsingular. This property of the variance-covariance matrix allows 
that assets to be not perfectly correlated with the return of the portfolio.  
2 In other words, this constraint means that short-selling is not allowed. 
3 For our purpose, a positive definite matrix means that all assets are risky.  
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Where  displays a parabola in the variance-mean plane, whereas 

 describes a hyperbola in the standard deviation-mean plane.  

 

1.2.2 Portfolio Selection 

Portfolio selection is the procedure aimed to select the optimal portfolio contingent to 

the investor’s risk appetite. When investors have to select the portfolio that gives the 

highest rate of return, we need to keep in mind that they prefer high returns and they 

risk-adverse. Thus, they prefer high returns but stable and hate uncertainty. 

However, the utility function allows investors to carry out the portfolio selection. 

Technically speaking, the utility function U is a function defined on R (real numbers 

set) that represents different investor’s wealth levels. In practical terms we take two 

random wealth variable x and and y and compare the values  and  

and prefer the highest expected value. Moreover, it is an increasing continuous 

function because given two real values x and y, with , . Another 

feature of this function is that it is concave, in this way the risk aversion of the 

investor can be replicated. In fact in order to be concave, given an interval  of 

real numbers where  and any x and y thus, 

 holds. The expected utility approach that 

consists in measuring individual utility function relying on the values assigned by 

investors to various risky alternatives, is consistent with the portfolio selection 

problem introduced by Markowitz if at least one of the following requirements is met:  

 The utility function is a quadratic utility function4, which can by mathematically 

expressed as: 

 

                                            
4 The quadratic utility function employed in the Markowitz’s approach can by represented by: 

 
Where: 

—  is the random variable of the portfolio returns 

—  is the coefficient that captures the risk aversion level of the investor. The conditions that is needs to 
respect are: being strictly positive and increase as the risk aversion of the investor increases. 
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 Assuming that the distribution of the assets’ returns is a Gaussian distribution. 

 

1.3 Criticisms to Markowitz Model 

Although Markowitz portfolio selection problem is a cornerstone of the Modern 

Portfolio Theory is not free of criticisms and limits. In particular, most of the criticisms 

that we are going to describe in this section, move from the mean-variance 

framework.  

However, among all the drawbacks the most evident ones are the unrealistic 

assumptions of the model. As pointed by Corazza and Favaretto in [2] among those 

unrealistic assumptions in the real world we have the following issues: frictions of the 

markets, transaction costs, taxes, non -indefinitely divisible assets and the absence 

of a minimum order size that does not allow investors to buy and sell securities’ 

fractions. Another strong assumption not respected is the one referred to the 

stationarity of the world. In fact, this assumption allows investors to determine the 

optimal rate of return. In practice, investors’ expectations are biased and subject to 

uncertainty. Moreover, in the Markowitz framework investors are assumed to be able 

to quantify their risk appetite and properly use the quadratic utility function.  

Another limit of this model is the diversification effect on the portfolio risk. The 

inclusion of additional assets considerably reduces the portfolio variance. However, 

complexity related problems could arise due to the increased dimension of the 

variance-covariance matrix as result of the inclusion of more assets in the portfolio.  

Another unrealistic assumption is the absence of asymmetries and then the 

subsequent hypothesis about the kurtosis in return distributions. As mentioned 

above, the distribution of return is assumed to be normal or gaussian but in this way 

extreme events are underestimated. Indeed, financial instruments are not normally 

distributed, rather their distributions are skewed and most important they have fat 

tails5. This feature entails that every type of utility function, different from the 

quadratic one, can’t be used because returns are not normally distributed. 

                                            
5 Normal distribution has kurtosis equal to 3. The shape parameter that describes how much probability there 
is on the tails of the distribution, can be used as benchmark. In fact, heavy-tailed distributions such as Laplace 
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Moreover, another limit is the trade-off in the optimization process where the two 

criteria, minimization of the risk and maximization of returns are conflicting. The 

reason lies on the increase of the risk as the returns increase.  

Finally, there is the criticism against the variance as measure of risk of the 

investment choice used in the Markowitz portfolio selection problem. The main limit is 

the nature of this measure. In fact, being a symmetric risk measure it equally weights 

down-side and up-side risk and even positive variance is considered risky. Of course, 

it is easy to understand that positive variance is not treated as an unfavorable fact 

due to possibility to earn higher returns. 

 

1.4 Improvements of Markowitz Model 

In this section we are going to present the improvements allowing portfolio selection 

problem to be more realistic. In order to achieve this objective, the improvements 

presented belong to two different categories. The first category refers to changing the 

constraints in order to contemplate some realistic facts such as transaction costs and 

taxes (market frictions) as well as the number of assets included in the portfolio. On 

the other hand, the second category considers the measure of risk. As respect to the 

first category, mix-integer constraints are able to make the portfolio more realistic and 

they can be divided into three categories: 

 negotiation minimum asset lots related restrictions; 

 restrictions concerning the maximum positive integer number of different 

assets that can be purchased by investors; 

 restrictions related to the minimum positive integer number of lots of an asset 

that can be negotiated. 

However, mixed-integer constraints are not free of disadvantages. This modification 

of the constraints makes become this mathematical programming problem a NP-

complete problem6. However, another implication is related to the fact that in order to 

find the solution of such a mathematical programming problem is a NP-hard 

                                                                                                                                         
distribution or Student’s t-distribution have values greater than 3. Therefore, their tails approach 0 more slowly 
and the probability assigned to outliers is greater than Normal distribution. 
6 They are problem where the process to find their solution is time consuming and the time grows as the size 
increases. 
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problem7.  

Although the solutions just presented are valuable alternatives for the purpose of this 

paper, we are going to focus on the improvements belonging to the second category. 

The definition of alternative risk measures is referred to this category. Among all the 

alternative measures of risk we start from the one proposed   by Markowitz, the semi-

variance. This measure can be defined in two ways, depending on the type of rate of 

returns. If we deal with discrete rate of returns, semi-variance can be expressed as 

follows: 

 

On the contrary, when R (rate of return) is a continuous random variable the semi-

variance can be expressed as: 

 

or deriving the cumulative distribution function of R: 

 

Semi-variance allows to take into consideration only negative performances and 

upside risk is no longer considered. In this way, positive portfolio performances are 

now treated as upside potential since any rational investor will always invest on 

assets with performances above expectations. As stated by Markowitz [3] through 

this measure of risk it is possible to decrease losses, whereas the variance, as 

measure of risk, takes into consideration both positive and negative outliers along the 

distribution as equally undesired. Although this measure is considered an alternative 

solution to the variance approach has some critical drawbacks. Except to the fact that 

semi-variance is not able to offset all the problems linked to variance measure of risk, 

it entails more calculation complexity.  

Beyond the measure of risk proposed by Markowitz for its portfolio selection problem, 

we are now going to present other alternatives.  

The first measure of risk we are going to consider is Value at Risk (VaR). This 
                                            
7 They are problems that have a hardness level at least as NP-complete problems. 
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measure was introduced in 1994 and later approved by Basel Committee as answer 

to the need of covering institutions from market risk. Although VaR is consider a 

sophisticated risk measure, it does not give any insight of the maximum loss you can 

collect. Conversely, VaR provides information about minimum expected loss over a 

predetermined time with a given probability. Technically speaking, it defines the 

minimum loss given a certain confidence level  over a predetermined time horizon. If 

the risky payoff is defined be X and the confidence level  with , then 

VaR can be expressed as follow: 

 

Moreover, this VaR has two important properties missing in variance measure of risk: 

 If C represents a riskless payoff, the transitional invariance property assures 

that: 

 

 If λ represents a positive constant, then positive homogeneity property assures 

that: 

 

Beyond the advantages of this measure of risk such as the ability to consider only 

downside risk and represent in a compact way the risk level, VaR has some 

drawbacks as well. Basically, in portfolio selection problem we require a measure of 

risk to be coherent. This means that the measure has to respect the following 

properties: 

 positive homogeneity; 

 sub-additivity; 

 monotonicity; 

 transitional variance. 

Given the missing satisfaction of the sub-additivity property, VaR can’t be considered 

as a coherent measure of risk. In particular the diversification effect is not evident and 

sometimes it is possible that portfolio VaR can be higher than the summation of 

single asset VaR. This possibility is presented by the following formula: 
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Where X and Y indicates two risky payoffs. Moreover, the failed satisfaction of this 

property entails the lack of convexity8 making VaR not suitable for measuring real 

portfolio risks. Elliptic return joint distribution is the only case when VaR satisfies sub-

adittivity. 

The second drawback has been shown in the definition of VaR. Indeed, it tells the 

minimum loss that can be collected, whereas it does not shed any light on maximum 

loss. In other words, the loss can be higher than the one forecasted by the measure 

of risk. However, the criticisms against VaR concerning its limits was expressed by 

Szegӧ in [4]: 

“VaR has become another “solution is search of a problem” and was wrongly adopted 

as risk measure”. 

In the following section we are going to present different coherent risk measures 

which respect the all the properties. 

 

1.4.1 Coherent Risk Measures 

Coherent risk measures, a new class of measures risk, are thought to be more 

appropriate to measure financial risk. In this section we are going to describe: Tail 

Conditional Expectation, Conditional Value at Risk, Expected Shortfall and Worst 

Conditional Expectation. However, following the definition provided by Szegӧ, a 

scalar measure of risk allows to compare different investment opportunities though 

their risk value. In fact, Szegӧ defines a measure of risk as , that the 

correspondence, ρ, between a space X, such as the returns and a non-negative real 

number [4]. However, a measure of risk in order to be coherent needs to satisfies the 

properties we introduced in the previous section, that is: 

 Positive homogeneity: This property states the magnitude of the risk is linearly 

affected by the size of the investment and it can be presented as follows: 

 

for all positive real number  and for all , with  

                                            
8 Convexity is necessary in rewarding the diversification, that is a fundamental aspect when the portfolio is 
being optimized.  
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 Monotonicity: This property allows risk measure to include and reflect the 

preference of the assets by investor. The monotonicity can be presented as: 

 

for all pairs of  and , with . 

 Sub-additivity: This property indicates that the inclusion of investment choices 

decreases the whole risk of the investment. This capability is also called risk 

contraction.  

 

for all  and , with . 

 Transitional invariance: This property is referred to the fact that the risk of the 

whole investment decreases whit respect to the risk of the risky investment 

choice when a riskless investment choice is added to a risky one. 

Mathematically, this property can be expressed as:  

 

for all  riskless portfolios that have a return equal to  (a real number) and for all 

risk portfolios , with . 

Moreover, a risk measure which satisfies only positive homogeneity and sub-

additivity properties is not coherent, but it is only convex. 

We now describe the alternative coherent measures of risk. 

 Tail Conditional Expectation 

This measure of risk, also called “TailVar”, allows to compute the expected 

loss that could be collected in  worst case. The worst cases are expressed as 

a sample for the portfolio by the percentage . Tail Conditional 

Expectation (TCE) can be expressed as the following quantile: 

 

where: 

 X is a random variable that represents profit or loss in a T horizon; 
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  is the distribution quantile. 

However, the TCE only holds for continuous portfolio’s distribution functions. If 

general distribution functions are considered TCE could overestimate the 

probability of the event }, in other words it could be higher than the 

set of “worse cases”, invalidating the purpose of the measure. Furthermore, 

the sub-additivity property could be violated. On the contrary, continuous 

distribution functions ensure TCE to be coherent. 

 Conditional Value at Risk 

Given a significant level ,  tells the mean, , of -tail 

distribution of . The distribution function is: 

 

where  is the  of the portfolio . This is possible because solving a 

simple convex optimization problem allows to separate  and  of the 

portfolio x itself [5]. We have to precise that  Is a function which is non-

decreasing and right-continuous. Furthermore,  as , 

that is the -tail distribution  is well defined through . However, 

one of the main advantage of Conditional Value at Risk is the ability to quantify 

the loss that could occur in the tail of the distribution and it can be expressed 

by the minimization formula that can be incorporated in the minimization 

problem. 

 Expectected Shortfall 

Basically, Expected Shortfall is a universal measure of risk, always coherent, 

which leads to a unique solution of the problem.  ES can be thought as the 

average loss in  of the worst cases. In order to give a mathematically 

representation let us consider X be the profit-loss of a portfolio, T the time 

horizon and  the probability level. Then Expected Shortfall can 

be expressed as: 
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where  and of course the part  is the part of 

the distribution beyond  the has the probability . 

However, only when , it is possible to have  [6].  

Moreover, when we deal with continuous random variable, ES is equal to 

CVaR. 

 Worst Conditional Expectation 

Given the profit or loss of a portfolio represented by a random variable X that 

belongs to  in a probability space  and an event A, Worst Conditional 

Expectation (WCE) can be expressed as follows: 

 

Although TCE has the great advantage to be really easy to apply, WCE is 

always a coherent measure of risk. However, the disadvantage respect to TCE 

is the need of knowledge all the probability space on order to be useful in 

practical terms. Moreover, Artzner et al. in [7] proved that . In 

order to be clear we have to specify that, although WCE and TCE seem similar 

each they are not for the reasons we have described. However, Expected 

Shortfall is able to join the advantages of them. 

 

1.5 Two-Sided Coherent Risk Measure 

Although the alternative risk measures we presented above are mostly coherent, they 

are not free of limits and drawbacks. The most important one is the one-sided feature 

the share. In other words, they consider only one part of the distribution, that is the 

lower one. This limit is particular critical because of the inability of the measure of risk 

to replicate the real world where investors who buy and sell securities, for example 

stocks, are exposed to both demand-side risk and offer-side risk. An additional 

problem of those measures occurs when they try to fix the VaR’s problem. Basically, 

they consider linear probability combination of losses beyond the VaR threshold, 

rather than considering higher orders of moments of a non-normal distribution. 

Finally, although those coherent measures of risk are theoretically effective, they are 

not usually applied in real world optimization selection problems. 
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A feasible solution in order to overcome those limits is presented  by the coherent 

risk measure proposed by Chen and Wang [8]. This risk measure is able to consider 

at the same time negative and positive deviations from the expected return (mean). 

This is why is named two-sided coherent measure of risk and it provides some 

advantages. One of the main advantages of this measure of risk is its own ability to 

better describe the investors’ attitude and deal with the features of the real world 

asset distribution. In fact, as we mentioned in the assumptions of the Markowitz 

portfolio selection problem, the normal distribution of the assets is not respected in 

the real world. In fact, financial assets do not follow a normal distribution and they 

present skewness and higher values of kurtosis respect to the one associated to the 

normal distribution (fat tails). Another advantage is its ability to carefully choose the 

order of the order of the norm of the downside random loss and the convex 

combination coefficient in order to manage the third and fourth moment of the 

distribution. Finally, it provides more stable (estimation error) and solid (from both 

trading sides) investment decisions by exploiting the entire domain of the loss 

distribution function.  
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Chapter 2 

 

Particle Swarm Optimization and Bacterial 
Foraging Optimization 

 
In this chapter, two metaheuristics, Particle Swarm Optimization (PSO) and Bacterial 

Foraging Optimization (PSO), are introduced and discussed. In the first part, some 

fundamental concepts such as metaheuristics and Swarm Intelligence are provided. 

While, in the second part the analytical formulation, the modifications, the variants 

and lastly a comparison between the two techniques are presented. 

 

2.1 Metaheuristics  

Many real world-optimization problems are NP-hard problems and, as such, they turn 

out to be intrinsically complex and high computing effort demand problems. Basically, 

they are comprised within a large range of fields, from technological one till scientific 

one. The complexity of these problems is given by: the sparse and large-dimension 

search spaces due to the hard constraints and the fact that they are multitude of 

objective problems which take into account hard-to-evaluate optimization functions. 

Furthermore, they are time varying problems and they also need to handle a huge 

amount of data. Based on the complexity of these problems and consequently on the 

time-consuming limit of operational research classical exact resolution methods, 

other techniques have been developed in order to overcome these issues. 

Metaheuristics represent new optimization methods to deal with real-world dimension 

problems more efficiently [9]. According to [10] metaheuristics evolved from heuristics 

whose etymology means “to find or to discover by trial and error”. In other words, 

heuristics can be described as a way by trial and error that allow to search for an 

acceptable solution in a reasonable time span even though there is no guarantee that 

the best solution is found as well as the algorithm work all the time. As mentioned 

above, metaheuristics represent an evolution of heuristics but unfortunately there is 

no broadly unique and accepted definition of it as stated by Blu, and Roli [11]. 

Therefore, to manage this issue it has been decided, for the purpose of this paper, to 
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adopt the definition provided by Osman and Laporte [12]: “A metaheuristic is formally 

defined as an iterative generation process which guides a subordinate heuristic by 

combining intelligently different concepts for exploring and exploiting the search 

space, learning strategies are used to structure information in order to find efficiently 

near-optimal solutions”. Hence, metaheuristics can be seen as a problem-

independent-strategies that can be adapted to the exact problem. In this way 

metaheuristics can be a useful method to solve a wide range of problems because of 

their high applicability. Even though these optimization techniques do not ensure the 

optimal solutions to the problem, they are capable to calculate sub-optimal solutions 

by exploiting non-exacts solutions and enhancing them in order to have solutions 

which fit better the real-world problem requirements. At the same time those solutions 

are good-quality solutions. Furthermore, metaheuristics have the crucial capability to 

manage annoying issues related to data, such as uncertainty, approximation errors 

and missing information. As stated by Osman and Laporte, two fundamental features 

of metaheuristics are: exploitation and diversification9. The first term indicates the 

ability of the optimization technique to focus on the search in a local region by taking 

advantage of the accumulated search experience, whereas the second term refers to 

the generation of diverse solution by exploring the search space. Therefore, the 

opportunity to rapidly find regions within the search space where high quality 

solutions are avoiding the chance to waste time in regions already explored or in 

which there are poor quality solutions, is given by the proper balance between 

exploitation and exploration. Put it differently, the combination of them should 

guarantee the achievement of the global optimality preventing the risk that solutions 

being trapped at local optima. However, to correctly complete the overview of 

metaheuristics, it may be useful to discuss the main way to classify them. In 

particular, it has been decided to distinguish the metaheuristics according to the 

exploration and exploitation. Therefore, the two categories which are considered here 

are: trajectory-based10 and population-based. 

 

                                            
9 They are also called intensification and diversification. These terms are basically used to indicate 
short-term strategies based on randomness rather than medium-term and long-term strategies 
which are linked to the use of some sort of memory. 
10 The term trajectory refers to kind of search process, in this case it is characterized by a trajectory. 
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 Trajectory-based 

The functioning of the search process of this type of metaheuristics works 

modifying and replacing the only candidate solution with the best one found in 

its neighborhood at each step11. Trajectory-based metaheuristics essentially 

have two main advantages with respect to population-based metaheuristics, 

that is speed and efficiency. In fact, they appear to be faster and more efficient 

than the others. The reason relies on the single solution they work with at each 

step. However, they are called exploitation-oriented method, due to the 

exploitation activity they carry out locally to enhance the solution [9]. 

 Population-based 

On the contrary, these methods deal with a set or a population of candidate 

solutions at each step. In this case the technique allows to recombine the set 

of candidate solution in the attempt to compute better results. This means that 

at each iteration replacement process takes place, whereby some individuals 

of the population are replaced by new best solutions or some certain ones, 

contingent to quality-based criterion. One of the most appreciated features of 

these methods is the high level of diversification they can achieve, due to 

usage of huge amount of candidate solutions. In fact, they are called 

exploration-oriented methods [9]. 

 

2.2 Swarm Intelligence  

A crucial concept in bio-inspired metaheuristics is played by Swarm Intelligence (SI). 

As a matter of fact, in the past years a huge number of models have been developed 

for swarm intelligence systems (PSO and BFO are only two of them). The term 

“swarm” derives from the nature and it can be described as the collection of animals 

like fishes, birds and insects such as ants, termites and bees performing collective 

behavior [13]. Basically, single components of the swarm are treated as simple entity 

even not smart by some authors. Although they can individually show a considerable 

                                            
11 Technically speaking, the metaheuristic, starting from an initial solution, generates a trajectory in 
the search space. However, the system dynamics depends on the of strategy chosen [11] 
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amount of complexity12 it is not yet as much as the complexity of the social insect 

colonies [14]. Indeed, the work that social insect swarms can do is marvelous and 

clearly outperform the individual one. Quick examples derive from termites that are 

capable, once consider collectively, to build mounds allowing to maintain comfortable 

ambient temperature, levels of oxygen as well as carbon dioxide even when the nest 

grows. Whereas, termite when considered individually they are nothing but meager 

intelligent insects [15]. However, SI is a branch (although substantially new) of 

Artificial Intelligence (AI) and it can be described as the collective behavior of 

decentralized and self-organized swarms13. Although the first time this paradigm was 

used only in the field of cellular robotic systems by Beni, Hackwood, and Wang, it 

seems to be more appropriate to consider the wider use suggested by Bonabeau, 

Dorigo and Theraulaz. As stated in [14] “using the expression swarm intelligence to 

describe only this work seems unnecessarily restrictive: that is why we extend its 

definition to include any attempt to design algorithms or distributed problem-solving 

devices inspired by the collective behavior of social insect colonies and other animals 

societies”. Considering the reasons that Bonabeau and Meyer [15] give to justify why 

social insects have been so successful, self-organization (SO) is crucial in the swarm 

systems. SO was firstly introduced in scientific fields such as physics and chemistry, 

but when applied to social insects underlines the collective behavior that arises from 

the interaction among individuals. To be more coherent with the purpose of this 

paper, SO can be seen as a collection of mechanisms by which the structures 

appearing at a global level derive from the interactions among its lower-level 

components. Moreover, the rules defining the interactions among swarm components 

guarantee that there is no external orders which may influence the behavior of the 

swarm itself. However, the four cornerstones of SO suggested by Bonabeau are:  

 Positive feedback: they are empirical rules promoting the creation of convenient 

structures; 

                                            
12 Complexity is considered as the amount of task they can carry out. For example, these creatures 
can process a huge amount of sensory inputs and modelling their behavior given the stimuli they are 

receiving, or they are able to interact with nestmates as well making decisions according to the high 
volume of information. 
13 A decentralized swarm is a swarm where each element carries out and defined activity autonomously. Self-
organized swarm is a swarm where thanks to cooperation among the elements of the swarm itself a common 
behavior arises without any order from a central point. 
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 Negative feedback: acts to stabilize the collective pattern by counterbalancing 

the positive feedback; 

 Fluctuations: usually represented by random walks and errors, its scope is to 

confer randomness to emergent structures which allows to discover new 

solutions; 

 Multiple Interactions: refers to the fact that multiple agents need to tolerate each 

other. In other words, the warm has to be composed by many agents the 

tolerate each as well as use their own results and other results. 

However, according to Valle et al. in [16],in order to give an exhaustive definition of 

SI, the swarm in addition to be self-organized, it needs to be intelligent. Thus,  five 

principles need to be considered: 

 Proximity Principle: the population is supposed to perform simple time and 

space computations. 

 Quality Principle: agents of the swarm should be able to respond to different 

factors in the environment. 

 Diverse response Principle: population should not take paths that are too 

narrow 

 Stability Principle: it refers to the capability of the population to not change its 

behavior because the environment changes. 

 Adaptability Principle: the swarm’s behavior should change when it is needed. 

To recap, in the past decade scientists (such as biologists and so on) have started to 

pay always more attention on natural swarm systems because of their stunning 

efficiency and then in the late-80s introduced the insights coming from those natural 

systems to the field of AI[17]. As a consequence, Swarm Intelligence has become 

progressively an important research field since then for computer scientists, 

engineers as well as bioinformatics and economists. According to  [13] the main 

reason lies on the important role played by those problems that the natural intelligent 

swarms can solve in engineering areas of the real world. Although a lot of efforts 

have been made in the past years to develop various models for SI like ant colony 

optimization (ACO) or Artificial Bee Colony, for the purpose of this paper two models, 

Particle Swarm Optimizaton (PSO) and Bacterial Foraging Optimization (BFO), will 

be considered. 
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2.3 Particle Swarm Optimization 

Particle Swarm Optimization, or PSO, is a population-based optimization technique 

created by J. Kennedy and R. Eberhart in 1995. Back then their aim, as suggested by 

Poli [18], was to develop a computational intelligence inspired by the social behavior 

of bird flocks searching for food. In [19] Kennedy and Eberhart highlighted as the 

PSO algorithm started from simulations of a simplified social model in order to 

describe the apparently unpredictable movements of bird flocks, but they shortly 

evolved to an optimization technique. This optimization method can be formally 

described as a “population” of particles floating around the hyperspace of the 

problem at different individual stochastic velocities subject to their historical best 

position and neighborhood best position. However, individual and collective best 

positions are derived from a problem specific fitness function and the trajectories of 

the swarm of particles move towards optimal or near-optimal solution [16]. Besides 

the description, it is fundamental to grasp the pillars which PSO is built on, that can 

be basically summarize as: social concept, Swarm Intelligence (SI) and the 

computational characteristics. The first pillar, as stated by J. de Valle et al. (2008) is 

related to ability of the individuals to interact and mimic in order to learn from others’ 

experience as well as to adapt to the surrounding environment. Furthermore, social 

concept refers directly also to the phenomenon that makes people to get similar each 

other thanks to the mutual social learning (known as culture) and the changes that 

allow agents to shift to more adaptive patterns of behavior. The second pillar, has 

been thoroughly described in the previous section, but just to recall it can be 

described as the collective behavior that emerges from a group of social insects. 

Finally, the third pillar is related to the link or even better the evolution and 

incarnation of cellular automata14 (CA) that is a computational system thanks to the 

property of computing function and solving algorithmic problems [20].  

 

                                            
14 Cellular automata (CA) can be described as discrete computational systems deployed in 
representing general models of complexity and more specific non-linear dynamics. Basically, the 
system can be discrete or abstract. The first case consists of a finite set of simple cells or atoms 
evolving in parallel powered by state update functions or dynamical transition rules taking into 
account their neighbor cells’ states. Whereas in the second case, cells are merely specified in 
mathematical terms.  
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2.3.1 PSO Functioning 

In this section the functioning of the Particle Swarm Optimization technique is 

showed in detail as well as the description of the algorithm which the optimization 

method has been coded in.  Technically speaking, the PSO consists of a swarm of 

particles, each representing a solution and valuating the objective function at their 

current location in problem’s search space. The magnitude of the particles’ 

movement is determined by the history of their current and best locations as well as 

the ones of the other particles and some disturbance, whereas the later iterations 

once all particles moved.  

The particles are specified by three vectors and each one is a D-dimensional 

vector15.They can be represented as follow: 

 represents the vector of the current positions and it can be thought as the 

coordinates of the solution of the search space. Its elements  indicates 

the position of the i - th particle at step k. 

  represents the vector which stores the previous personal best positions , 

or  ,of the particles.  

  represents the vector of the current velocity. The element  indicates 

the current velocity of the i – th particles at step k. 

In addition,  represents the global best position, or gbest, achieved until that 

moment by the whole swarm [18]. Before showing how the PSO algorithm works it is 

better to clarify what and  actually are. As suggested by Clerc and 

Kennedy [21] the fitness function gives back values by using the coordinates of the 

particles as input. In other words, those values are  and  

where f is the fitness function16. The implementation of the PSO algorithm assures 

the storing of the current position in proper vector  , if and only if the current 

position is better than anyone found so far. Therefore, the goal can be summarized in 

searching for better solutions in order to bring up to date the individual best position 

vector . The mechanism that allows the updating process can be represented as 

                                            
15 Where D represents the search space’s dimension. Furthermore, this paper considers real number 
space. 
16 In this paper the terms fitness function and objective function are interchangeably used even though actually 
a tiny little difference between them exists. Objective function is the function being optimized whereas the 
fitness function is the function used to guide the optimization process.  
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follows: 

                                                                      (2.1) 

As mentioned above, the objective function f uses the particle’s coordinates as input, 

in this case the coordinates of the i – th particle at step k. Being consistent with the 

maximization problem, as big as possible values of the function are preferred.  

According to [18] the structure of the original PSO algorithm can be explained as 

follows: 

1. Initialize a population of particles randomly setting their positions and 

velocities within the D-dimensional search space. 

2. Iterate: 

3. Compute the value related to the fitness function for each particle 

4. Compare the value obtained in the previous step with the  for each 

particle. Store the current position  as  into the vector  if and 

only if it is better than the previous personal best. 

5. Select the global best positions (gbest) reached so far by the population  

6. Use the following stochastic system of equation to update the individual 

position and velocity of each particle: 

 

              (2.2) 

Where: 

  and  are the current position and current velocity of the i – th particle at 

step k  

  and  are the current velocity and position of the i – th at step k+1 

  is a variable storing the global best position of the population. 

  is a vector of random numbers which follow a uniform distribution in 

. For each iteration the generation process is carried out. 

  is the component-wise multiplication. 
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7. Once the number of iterations or other stop criteria are reached, end the 

iteration. 

8. End iteration 

The first of the three components of the velocity update equation is called “inertia” or 

“momentum”. This term literally indicates the inertia of the particles to keep going in 

the same direction of the previous step. The second component, 

, is called “memory” component and represents the tendency of 

the particle to attracted towards the best position found by itself so far. However, the 

memory is scaled by the random number  . The third component  

 represents a sort of attraction towards the best position 

achieved so far by the entire population. Again, it is scaled by random number that 

derives from this uniform distribution . This third and last component is called 

“cooperation” or “social knowledge”. Recalling what has been mentioned at the very 

beginning of this chapter, the version proposed in this section is a basic PSO version. 

Indeed, only a minimum amount of parameters requires to be set up. 

 

2.3.2 Parameters of the Algorithm 

When it comes to implement the algorithm, two critical points require enough 

attention, that is the prevention of the explosion of the swarm and facilitation of the 

convergence of the particles. The former occurs when the velocities of the particle 

tend to infinity and as consequence the swarm dissolves. Whereas the later refers to 

the tendency of the swarm to converge towards the optimal solution in the search 

space. In order to limit these inconveniences, the set up of some parameters such as 

maximum velocity, acceleration constants and others has to be taken carefully into 

account. We are going to analyze in greater details the parameters in the following 

sections. 

 

Acceleration parameters 

The parameters characterizing the uniform distributions in (2.2),  and , are called 

acceleration parameters. As stated by Poli et al. [18], they are responsible to control 

the direction of the particles. Notably,  is responsible to control the move of the 
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particles to their personal best, , whereas the control on the particle towards the 

global best position , is governed by . However, the choice of the values has to 

be taken carefully in order to prevent abnormal particles’ behavior. In particular, small 

values of the parameters could hamper the movements of the particles. On the 

contrary, large values could make particles diverge. Thus, it seems clear that the 

choice of these parameters affects the behavior of the PSO itself. In fact, as showed 

in [16], it has been empirically obtained the different type of trajectories according to 

the acceleration parameter’s values chosen. If the value of the variable , which can 

be expressed as  is set greater than 4 the trajectory diverges. On the 

contrary a value of  could represent an acceptable starting point. 

However, to different values of  ranging within the interval [2,4] correspond different 

performances of the particles. Being more specific, small values of  give a 

sinusoidal trajectory whereas approaching the higher bound, the trajectory looks like 

more a complex interwoven cyclic path. To ensure a bumpy and random move of the 

particles looking for the optimal solution, it is suggested to randomly choose values 

within the range. In this way a path will be pursued by particles and they will be 

provided with the possibility to be pulled back only after many iterations overcoming 

the issues that small values of acceleration parameters may limit the movements. 

However, as it will be explained in the next sections, in order to solve the opposite 

problem and avoiding too high values,  parameter can be fixed. 

 

Maximum velocity 

The velocity at which the particles move around the problem’s search space is 

stochastically determined. Due to this feature, the trajectory might result uncontrolled 

and too swinging. To overcome this issue, the solution originally proposed was to 

damp the velocity by bounding each component of . According to [16] a way to 

show how the criterion works could be the following one: 

If  then   

else if  then  

However, the choice of [ , ] itself does not solve the problem rather it may 

create even a bigger one. In many practical cases, the maximum velocity boundaries 
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are chosen arbitrarily according to the kind of problem. However, this procedure is 

not the best one because it may be subject to mistakes such us misspecifications of 

the right values of the bounds. Therefore, as said previously, if the parameters values 

are too high the trajectory could diverge, and it may go beyond the optimal or good 

solution, whereas if the parameters values chosen is too small the move of the 

particle could be limited. In order to effectively tackle this parameter selection 

problem, a feasible solution could be represented by a dynamically changing . 

The solution can be represented as follow: 

                                                                                              (2.3) 

 

where  and  represent the maximum and the minimum values achieved by 

the particles till that step and N is the number of intervals in the k-th dimension 

selected by the user. With this approach, it is possible to manage the problem related 

to the right choice of the parameters as well as uniform the velocity throughout all the 

dimensions. 

 

2.3.3 PSO Variations 

PSO represents a valuable optimization technique which is able to provide good or 

even near-optimal solutions saving a considerable amount of time. However, beyond 

the advantages this method brings, it suffers some drawbacks as well. Apart from the 

issues due to the wrong selection of the acceleration parameters and maximum 

velocity, there are other drawbacks that may affect the efficiency of the PSO 

algorithm. One of the most critical limits is the premature convergence of the particles 

towards a single point in the search space. Although convergence is an eligible 

property, premature convergence could not be enough to explore the hyperspace. It 

is easy to understand that in this case the PSO algorithm fails at finding the global 

optimum [22]. In order to adequately solve these problems, some variations of the 

velocity update equation are considered. 

 

Inertia Weight 

This modification of the original PSO was proposed bey Shi and Eberhart in [23]. 
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Their objective was to diminish the importance of maximum velocity parameter  

but even more they want to better control the scope of the search by balancing the 

two components of the metaheuristic: exploitation and diversification. The 

modification that the two authors introduced consists of a new parameter in the 

velocity update equation as follow: 

 

where the term  is the “inertia weight”. As mentioned above, the scope of this 

parameter is to balance and control the exploration and exploitation components of 

the metaheuristics. In other words, the ability of the swarm to explore the search 

space as well as to focus and exploit a good solution found so far. What has been 

empirically found is that a high value of  such us 0.9, allows particle to perform a 

thorough exploration, as if particles were moving in a low viscosity medium17. 

Reducing the value till 0.4 the swarm is no longer focused on the exploration but 

rather on the exploitation by focusing on the local optima. However, a value of the 

inertia weight greater than 1 makes the swarm considerably unstable, with the 

particles not coming back to local optima and diverging [18]. On the other hand, a 

value of equal to 0 makes particles moving without any memory of where they 

have been the step before. Indeed, as pointed out by Shi and Eberhart in [23], a 

value of inertia weight equal to 0 eliminates the first component in (2.2), thus the 

particles move around the same position and the search area shrinks. Notably, the 

PSO is very likely to find the global optimum if it is included in the initial search area. 

In fact, as said in [23]: “Therefore, it can be imagined that the search process for 

PSO without the first part is a process where the search space statistically shrinks 

through the generations. It resembles a local search algorithm”. Furthermore, the 

PSO algorithm has been found to better perform for changing values of inertia weight 

rather than fixed values of it. The reason is that varying values allows to control the 

local and global search. Typically, in order to achieve this goal a linearly decreasing 

inertia weight has been used. In this way it is possible to firstly let the particle explore 

the problem hyperspace and then to narrow the research preferring the exploitation 

mode. The value of a linearly decreasing inertia weight can be defined as follow: 

                                            
17 Low viscosity medium means a medium which has low resistance to gradual deformation. 
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                                                                                  (2.4) 

where: 

  and  represents the desired maximum and minimum values of the 

inertia weight; 

  represents maximum number of iterations; 

  represents the iteration number. 

Although this approach guarantees fast convergence of the swarm it also has some 

drawbacks. Among the disadvantages the most serious one is that the change of 

mode between exploratory and exploitative, is irreversible and it is carried out the 

swarm loses the capability to search for new areas again. However, the value of 

inertia weight can be adjusted even adopting alternative approaches with respect to 

time-decreasing one such as a fuzzy system.  

 

Constriction coefficients 

This variation was introduced by Clerc and Kennedy in [21]. In this paper the authors 

showed how the optimization power of PSO can be improved as well as the control 

upon the explosion of the swarm by adding a coefficient called constriction coefficient 

X. Differently from the inertia weight, the constriction coefficient affects all the 

elements of the update velocity equation. Indeed, it is possible to show its influence 

on the particles’ velocity, the equation (2.2) is modified as follow: 

                               (2.5) 

where the coefficient  can be represented as follows: 

  

in which: 

  

An important difference that arises comparing the original equation with the 
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constriction parameters one, is that the value of the acceleration parameters can be 

set up greater than 4. When this variation of the PSO is used the value of  is set to 

4.1 and in this way the constriction parameter  is 0.7298. As consequence, the 

cognitive component  and the social component  are now 

multiplied by 1.49618 that is 0.7298 x 2.05. However, it is important to note that when 

the inertia weight  is equal to 0.7298 as set by Clerc and Kennedy and  equal to 

1.49618, PSO with constriction coefficient and PSO with inertia weight are 

algebraically equivalent. Ultimately, this variation brings some advantages and 

disadvantages. The advantage is the improved convergence of the particles due to 

the damping effect upon the oscillations once the particles are within the optimal 

region. On the other hand, the main disadvantages are the wider cycles particles 

could do and the failure at converging when individual best performance and global 

best performance are in two different regions. 

 

Fully Informed Particle Swarm. 

In the original version, the particles of the PSO were supposed to have only two 

sources of information, that is personal best and global best. Although this traditional 

algorithm has been widely accepted over time, it presents a critical limitation: in this 

way particles are not allowed to exploit other sources of information such as the rest 

of the neighborhoods. A feasible solution was introduced by Mendes. In fact, its 

framework consists of particles which are affected by their neighbors. This variation 

of the PSO is called Fully Informed Particle Swarm. The velocity and position update 

equations are now the following ones: 

  

where: 

  is the number of neighbors of the i-th particle; 

  is the k-th neighbor of the i-th particle. 

The main drawback of this approach is high dependency of the PSO from the 

population topology, in other words the underlying framework governing the 
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connections between particles. On the contrary this solution allows to save iterations 

respect to the original version of the PSO algorithm. 

 

2.3.4 Population Topology 

Exchanging of information is fundamental in PSO. The particles’ purpose is to find 

the global optimum within the optimization domain and in order to do it they adjust 

their velocity and direction according to the information of the positions found by 

others. The fact that performance of particles is affected by particle’s neighborhood is 

what allows common path of the swarm to arise [24]. However, the dimension of the 

neighborhoods implies the speed of the swarm to converge. Small neighborhoods 

are associated with slower convergence because of less exchange of information 

between particles. On the contrary, large neighborhoods speed up convergence 

because of high interaction between particles. As we introduced before, there are two 

types of neighborhoods: 

 global best (gbest): the best solution found so far by the entire swarm if 

available to all the members of the swarm itself. This means that the network 

is fully connected; 

 local best (lbest): the information is available only among immediate 

neighbors. Of course, the swarm topology plays a crucial role. 

The two different population topologies can be appreciated in figure 2.1 

 

 

 

 

 

 

 

 

Figure 2.1 (a) Global best (b) Local best 
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As we said just above, there are some types of topology. We are going to illustrate 

some of them: 

 Star topology: the network whereby the information flows, consists of a central 

particle which communicates to all the other particles. In this way the 

information of the central particle is shared with all the other particles. In other 

words, the central particle compares the best position found by all the other 

particles and consequently adjusts its position towards the best performance 

found. After that, the new position is shared with all the particles 

 Ring topology: a ring is formed by the particles that are arranged in a circle. 

Each particle is connected with other two others in its neighbors. It is easy to 

understand that through this topology the information is exchanged among 

immediate neighbors till all the circle is completed and the information reaches 

the last particle. The main disadvantage is the slow convergence of the swarm 

due to the slow flow of information around the ring. However, the main 

advantage is that large parts of the search space are covered efficiently.  

The choice among these two topologies is a trade-off between a slower convergence 

in the case of lbest, and a fast convergence but risky because of the possibility of 

being trapped in a local optimum in the case of gbest. However, there are other types 

of topologies beyond the ones presented in this paper, such as the Von Neumann 

topology, where particles are organized in a rectangular structure, which could 

outperform the gbest, as suggested by Kennedy and Mendes. A graphical 

representation of the topology is provided by figure 2.2. However, the selection of the 

most efficient neighborhoods has to be taken according to the specific problem to be 

solved. 

 

 

 

 

 

 

 

Figure 2.2: Von Neumann population topology 
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2.4 Bacterial Foraging Optimization 

Bacterial Foraging Optimization is part of the newest swarm optimization methods for 

continuous optimization problems. The technique was presented by Passino in [25]. 

Since then it has increasingly drawn attention of experts and thanks to its high 

performance as optimizer and advantages. Furthermore, this optimization technique 

was successively used in many fields since its introduction such as control 

engineering, electric load forecast and many others. Although it seems to be a very 

powerful methods given the reduction in convergence time and the considerably high 

accuracy, the complete potential of the BFO remains unexplored [25]. The main idea 

behind this swarm-based algorithm is the mimic of the foraging strategy of a swarm 

of Escherichia Coli (E. coli) bacteria in a multi-objective function. When searching for 

nutrients, bacteria pursue the maximization of the energy obtained per unit time18, as 

well as communicate information among each other through different signals. These 

ways to behave represent the two factors which the bacteria foraging decision 

process is based on. The movements the bacteria carry out after having taken the 

decisions, called chemotaxis, is precisely what BFO or Bacterial Foraging 

Optimization tries to replicate [26]. However, beyond the advantages listed above, 

this population-based technique presents some limits as well. In particular, 

drawbacks are related to the meager convergence tendency of the bacteria as well 

as the poor performance once the dimension of the search space increases when 

BFO is used in complex optimization problems [27]. This is the reason why 

researchers put effort to hybridize the original version of the algorithm, trying to 

overcome the limits. Among those variants introduced so far, one in particular seems 

to be working and it has been deeply studied in the past decades, that is the 

Cooperative search. The main feature of this approach is the increased number of 

search modules19. In this way a higher efficiency when searching for better solutions 

is ensured.  

In order to have a better understanding of the functioning of BFO it may be fruitful to 

have a biological and physical background of E. coli. According to [28] E. coli 

                                            
18 The maximization of the energy intake per unit of time is the principal assumption of the foraging theory. 

Therefore, the function needed to be maximized is the following one:   . The importance of this concept could 

be clearer if the maximization of the above function is thought as a nutrient source that makes species to 
survive and allow animals to save time that can be spent in other crucial activities such as fighting, fleeing, 
mating and so on. 
19 More than one. 
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bacterium is made for 70% of its weight by water and consists of a plasma 

membrane, cell wall and capsule with cytoplasm and nucleoid inside. Furthermore, 

they occasionally engage in sex, whereas they synthesize and replicate in about 

20minutes. However, in order to be able to move towards food sources and escape 

from noxious substances they have control system or guidance system that allows 

them to do it. The bacterium’s movements throughout their entire life can be divided 

into two types: 

 swimming: this movement is achieved by flagella20’ counterclockwise rotations. 

Those rotations create a composite propeller that pushes the bacterium in one 

direction;  

 tumbling: this movement derives from clockwise rotations. During this process, 

called “tumble interval”, each flagellum rotates independently, thus the 

bacterium after a run almost immediately slows down due to the absence of 

inertia. 

A crucial concept of the bacterial motile behavior is the motion patterns generated by 

bacteria, also called chemotaxes. The genesis of the chemotaxes is the decision of 

the bacterium about how long to run and how it responds to different conditions. 

Starting from a neutral condition such as the one represented by a substance without 

food or injurious substances the bacterium alternates tumbling and swimming modes 

following random directions. At this stage the bacterium is searching for foods. If the 

microorganism meets a nutrient gradient21, he immediately changes the motile 

behavior increasing the time spent swimming and decreasing the time spent tumbling 

as long as he runs towards the concentration gradient. An important feature of E. coli 

is that, if it finds a region with constant concentration of food after a reasonable 

amount of time he adjusts its motile behavior as if he was in a neutral substance. In 

other words, he comes back to its original search behavior. This is a crucial biological 

property, because it always wants to find more food. Talking about the decision-

making process more technically, it may result useful to talk about the underlying 

sensing and the balance of it. The receptor proteins of bacteria are very sensitive and 

provide them with “high gain” with a small attractant detection threshold. This means 

that the bacterium reacts very quickly to a minimum amount of nutrient. On the 

                                            
20 Flagella are lash-like appendages that protrudes form a bacteria cells. 
21 The term gradient is used to explain the gradual change of nutrient concentration. 
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contrary, the threshold for encountering neutral medium after being in a nutrient-rich 

is larger. However, the decision-making system has a sort of memory as well. 

Indeed, the bacterium while exploring the region, is able to remember the 

concentration one step before and compare it with the current region and considering 

the difference takes the decision. Beyond the changes of the motile behavior due to 

different levels of nutrients, there are also changes of the environment.  The changes 

of the environment conditions dramatically affect the bacteria swarm by killing part of 

the swarm or split it into smaller groups and dispersed into new part of the 

environment. Those events are call elimination and dispersal events. Furthermore, 

those events could either jeopardized or improve the chemotaxis, because they may 

place bacteria in a region with more sources of food and higher levels of nutrients or 

in a very poor region. However, E. coli bacterium is the inspiration for BFO that also 

an evolutionary algorithm, but predominantly it is a population-based method, that is 

the swarm intelligence plays a crucial role. That is why it is important to introduce the 

group behavior. Especially in a semisolid nutrient medium, bacteria will shift from the 

center drawing rings selecting the gradient created by consumption of the nutrient by 

the group. In particular, when cells release the attractant chemical component22 after 

having metabolized high levels of nutrient, bacteria assemble as groups moving 

following concentric patterns. The attractant chemical substance is used as a 

chemical signal that allows the swarm moves together. 

In the following sections the Bacterial Foraging Optimization technique will be 

presented as well as the original version of the algorithm. Furthermore, the main 

steps characterizing the behavior of the bacteria swarm and the derivation of the 

main formula will be presented. Finally, a thorough comparison between PSO and 

BFO will be carried out. 

 

2.4.1 Original version of BFO 

In this section the functioning of Bacterial Foraging Optimization Algorithm will be 

explained. Basically, the main goal it is to provide a mathematical representation of 

the foraging strategy of the bacteria that represents the biological foundation of this 

optimization technique. To ensure a detailed and thorough description, we decided to 

                                            
22 Passino (2002) uses succinate as nutrient and aspartate as scrap. 
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us work made by Jun Li et al. in  [29] as guideline.  

The strategy whereby the bacteria search for food consists of four parts:  

 chemotaxis; 

 reproduction; 

 elimination and dispersal; 

 swarming. 

Below we are going to provide a detailed analysis of each of these elements. 

 

Chemotaxis 

As described in the previous section, chemotactic component represents exactly the 

motion of the bacterium that consists of swimming and tumbling. Briefly recalling, 

swimming means a unit walk, in the same direction as the last step whereas tumbling 

means a unit walk, in a random direction. As such, favorable conditions like nutrient 

rich environments entail bacteria to swim in the same direction. On the contrary, 

unfavorable conditions like noxious rich environments implicate bacteria to change 

direction by tumbling. In order to translate the biological chemotaxis into 

computational chemotaxis, we firstly specify some parameters. Therefore, 

considering S as the bacteria population dimension and the position of the i–th 

bacterium as a candidate solution of the problem represented by , thus 

the bacterium motion can be expressed as follow: 

                                                                    (2.6) 

where: 

  represents the j-th chemotactic k-th reproductive and l-th dispersal 

step of the i-th bacterium; 

  represents the length of the tumble step; 

  represents the random direction of the tumble step. 

However, following [27], the direction of the tumble movement , as represented in 

(2.6),can be written in the extended form as follow: 
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where: 

  represents the direction vector of the direction of the j-th chemotactic 

step23. 

In other words, the equation (2.6) can be represented in the following way as well: 

                                                           (2.7) 

In the following section we are going to present the bacteria reproduction. 

 

Reproduction 

In this section we are going to describe the reproduction step. It is easy to 

understand that this step is the reason why BFOA is classified also as evolutionary 

algorithm, that is a branch of population-based algorithms. Indeed, through 

reproduction step this metaheuristic tries to replicate mechanisms belonging to the 

biological evolution like replication and selection of the species. Technically speaking 

at the end of each chemotactic step, the health status of each bacterium is evaluated 

through the following formula: 

                                                                                              (2.8) 

where: 

  represents the total number of steps which the motile phase, or 

chemotactic process, consists in; 

  represents the single value of the cost function of the i-th bacterium at 

the j-th chemotactic, k-th reproduction and l-th dispersal step. 

That is nothing but the corresponding sum of cost functions of the i-th bacterium. 

However, according to the value of the health status, bacteria are ordered and only 

half of them are eligible to survive and access the reproduction phase. Each surviving 

bacterium splits up in to two new entities that are placed at the same positions. 

Whereby this procedure, the population dimension remains constant and more 

bacteria are placed at the best positions in the problem hyperspace. In other words, 

                                            
23  is equal to the last chemotactic step only when the bacterium is swimming, otherwise 
it is a random number within [-1,1]. 
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this step allows to refine the search and speed up the convergence.  

 

Elimination and Dispersion step 

As mentioned in the general description of BFO, in this process part of the bacteria 

swarm is killed or moved to another location. Elimination and dispersion steps 

remedy the critical limit of the metaheuristic, that is to get stuck around local optima 

without finding global optima or better solutions. The main reason why bacteria may 

be trapped in poor solutions is simply that chemotaxis and reproduction are not 

sufficient to allow microorganisms to explore the search space. However, each 

bacterium is not always dispersed and eliminated. In fact, each bacterium has a 

probability equal to  of being part of this process and once the bacterium is 

eliminated another one is dispersed in the environment. Before going on with 

description it may be useful to underline the advantages and disadvantages related 

to the values can assume. A high probability implies bacterium has more chances 

to move away from local optima. On the other hand, greater probability of escaping 

given to bacterium dramatically reduce the convergence speed, creating an “escape” 

issue. It is clear that a trade-off referred to the right choice of this parameter arises. In 

order to solve escaping-problem it is sufficient not selecting the single bacterium 

close to or at the global optimum which would be dispersed otherwise. In this way it is 

possible to optimize the single bacterium avoiding him to uselessly move away. In 

order to implement this procedure, the elimination-dispersal operator selects bacteria, 

with a probability of  only among ones who have a fitness value lower than certain 

threshold. In other words, poor candidate solutions will be dispersed and eliminated, 

whereas the good ones will not. In addition, by increasing the generations and by 

gradually decreasing the dispersal and elimination steps, it is possible to further 

speed up the convergence and improve the efficiency of the metaheuristic. 

 

Swarming 

Being a particular type of swarm intelligence, BFO reproduces the social behavior of 

bacteria who inspire the metaheuristic. Just to make thing clearer, we recall that 

bacteria, while moving, release attractant signals which are captured by other 

population components and all the swarm moves in that direction. However, if 
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bacteria release repellent counterparts move away. Thus, the optimization technique 

replicates this behavior through the following equation: 

                              

(2.9) 

where: 

  represents the value of the corresponding cost or fitness function; 

 , ,  and  represent the coefficients of the 

function that need to be chosen; 

 S and D represent respectively the total number of bacteria and the total 

number of parameters to be optimized. 

After the description of each fundamental element which characterizes the 

functioning of the metaheuristic, we are going to present the original algorithm 

introduced by Passino in [25]. 

 

2.4.2 Bacterial Foraging Optimization Algorithm 

Up to know, BFO metaheuristic has been thoroughly described in every part, taking 

into consideration the mechanism whereby it works. Now we are going to present the 

algorithm24 through which the BFO can be implemented. However, it has to be 

clarified that the algorithm presented in this section refers to the original version 

introduced by Passino in 2002.  

In order to the initialize the algorithm, we have to choose the following parameters: 

 p represents the dimension of the real number set R; 

 S represents the population dimension; 

  represents the number of chemotactic steps; 

                                            
24 Algorithm is an unambiguous specification that allows to solve a class of problems.  
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  represents the maximum number of steps being taken in the same 

direction by the bacterium if the value of the cost function at the current 

position is lower than the one at the previous step25; 

  represents the maximum number of reproduction steps; 

  represents the number of elimination-dispersal events: 

  represents the probability that each bacterium will be subject of 

elimination-dispersal event; 

  represents the thumble step size. 

In addition, if the algorithm includes the swarming, there will be necessity to set up 

the following parameters as well: , ,  and : 

  represents the depth of the attractant released by the bacterium. In 

other words, a measure to quantifies the attractant; 

  represents the measure to quantifies the diffusion rate of the 

chemical attractant signal; 

  represents the magnitude of the noxious substance effect; 

  represents the width of the repellant. 

In addition, after setting all the parameters above we must select the starting position 

of each bacterium . Of course, it should be pretty much obvious that choosing the 

initial position in areas around optimum value would bring a clear advantage. 

However, the choice of the initial position is not easy to be taken when there is no 

knowledge where the optimum value really is. Therefore, bacteria are randomly 

distributed around the hyperspace problem.  

According to [28] the algorithm is: 

1. Elimination-dispersal loop:  

2. Reproduction loop:  

3. Chemotaxis loop:  

a. For , take chemotactic step for bacterium i as follows. 

b. Calculate . 

                                            
25 This concept is related to the bacterium exploitation of the problem hyperspace. This means that if 

 then the bacterium will swim in the same direction for a length of . 
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c. Let  to save this value given that it is possible to find a 

better cost value in the next run. 

d. Tumble: Generation of a random vector  where each element 

of the vector  corresponds to a random number 

within the interval [-1,1]. 

e. Move: 

  

f. Compute  and then let  

 

g. Swim26: 

i. Let m=0 (counter for swim length). 

ii. While   

 Let . 

 If ,  let  and let 

  

using  to compute new  as in f. 

 Let . This is the end of the while statement. 

h. If  then go to the next bacterium . 

4. If  go to step 3. If so, continue chemotaxis because bacterium keeps 

living. 

5. Reproduction: 

a. For the given k and l, and every  let 

  

Where  represents the health of the i-th bacterium. In order to sort 

bacteria, they need to be ascendingly ordered according to their health 

function value. 

b. The bacteria with the highest health value  ,  bacteria die and the 

other S bacteria splits up. 

                                            
26 Where for simplicity only bacteria numbered {1,2,…,i} have swum, whereas bacteria numbered {i+1,i+2,…S} 
have not. 
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6. If  then go to step 2. This means that the number of specified 

reproduction steps have been achieved, so the next generation in the 

chemotactic loop starts. 

7. Elimination-dispersal: For , with probability equals to , eliminate 

and disperse each bacterium. In order to keep the number constant, for each 

bacterium that is eliminated another one is dispersed in another location within 

the hyperspace problem. 

8. If the go to step 1: otherwise end. 

 

2.4.3 Algorithm Parameter Setting 

In the previous section, all the parameters required to be specified have been listed 

and they have to be chosen really carefully. In fact, in this section we are going to 

explained main advantages and disadvantages in order to properly choose the right 

parameter values.  

When it comes the first and basic parameter, S (population size), there is a trade-off 

between the magnitude of the population size. In fact, an increased population size 

brings a certain grade of computational complexity that could not be easy to 

overcome. On the contrary, larger size together with a random initial bacteria 

positions improves the effectiveness of the metaheuristic of the finding the global 

optimum by increasing the chances that some bacteria already start in optimum value 

regions. The tumble step size   is another parameter that needs to be carefully 

chosen. Too large values imply that bacteria could jump over local optima without 

sopping on them. Too small values could slow down the convergence and the risk of 

bacteria may be trapped in local optima arises. For those reasons, it is not suggested 

to select values of  that are biologically inspired. Talking about swarming, 

different values of attractant width, , balances the individual and swarm 

activity. In particular,  high and deep the cells are more likely to swarm. On 

the contrary, small width induces bacteria to search on their own instead of 

altogether. Moreover, the choice of  clearly affect the metaheuristic behavior. 

Large values of chemotactic steps  allow bacteria to exploit and explore the 

optimization domain but those large values increase the computational complexity as 

well. Small values of  could jeopardize the efficiency of BFO by causing a 
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premature convergence towards local optima. The maximum number of steps in the 

same direction once the bacterium is in a position where the cost function is lower 

than the step before , can be thought as a deviation of a random walk. The 

computational complexity could increase even due to large values of the maximum 

number of reproduction steps . In particular, taking into consideration the 

reproduction procedure, this parameter affects the tendency of the algorithm to 

ignore regions with poor solutions and focus on regions where better solutions. 

However, if the value is too small the algorithm may suffer of premature 

convergence. Large values of elimination-dispersion parameter  increase the 

ability of bacteria to search for good solution in more regions but, the main 

disadvantage is the higher computational complexity. Finally, the probability  aids 

BFO to not be trapped into local optima but rather to focus on global optima. 

However, it should be pretty much clear that large values of this parameter may 

degrade the effectiveness of the algorithm overworking the random search.  

 

2.5 Comparison between PSO and BFO 

In this section a briefly comparison between the two metaheuristics will be presented. 

As we mentioned before, even though the PSO and BFO are somewhat young 

optimization techniques, they were not introduced at the same time. Starting from the 

oldest one, PSO was developed in 1995 by Kennedy and Ebehrart whereas the 

youngest one is BFO that was introduced by Passino in[25]. Even though the 

timespan between them is not so big, PSO has more studies underneath and more 

variants were successively developed and applied throughout years. On the contrary, 

BFO has a lot of unexpressed potential that needs to be found out. However, both 

PSO and BFO belong to the same family of population-based optimization 

techniques, in particular they are two swarm intelligence techniques.  

Going more in depth, although BFO shows features of evolutionary computation 

techniques such as, reproduction, selection and elimination, the two metaheuristics 

presents many similarities.  

The most evident common feature between them is the similarity between particles 

and bacteria. In fact, both represent candidate solutions to the optimization problem. 

Particles and bacteria move within the problem hyperspace looking for global optima 

solutions and while doing this they act like a swarm. The main difference in the social 
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behavior is the way through which population elements exchange information in order 

to follow a common path. Whereas in BFO bacteria release attractant to signal other 

bacteria to swim in the same direction that can be computationally expressed through 

the combined cell-to-cell attraction and repelling effect in (2.9), in PSO a crucial role 

is played by the population topology. In the original version, a particle does not 

exchange information with all the particles swarm rather with its neighbors. Even the 

difference among the kinds of neighborhood, gbest or lbest, affects the swarm 

behavior. However, fully informed particle swarm variant tried to overcome those 

limits. Another important difference is the motile behavior between particles and 

bacteria. Particles move following a function in which the stochastic velocity is 

adjusted according to the distance between the best position personally found by the 

particle itself and the distance to the global position found by the entire swarm. On 

the other hand, bacteria move alternating swim and tumble, without stochastically 

adjusting the velocity. Bacterium keeps swimming in the same direction if the values 

of the cost function increasingly get better step by step, whereas he tumbles if the 

values of the cost function get worse. Another difference between PSO and BFO is 

played by elimination-dispersal operator. In fact, thanks to the probability , some 

bacteria move to another position increasing the chance to better explore the 

optimization domain. However, considering a huge number of iterations, particles are 

able to eventually go everywhere. Of course, this method could be time consuming. 

After presenting the two metaheuristics we are going to analyze, in the next chapter, 

the measure of risk and the portfolio selection model.  
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Chapter 3 

 

Realistic portfolio selection model and two-

sided risk measure 

 
Based on the wide range of coherent measures of risk, for the purpose of this work 

we decided to use the two-sided coherent risk measure introduced by Chan and 

Wang in [8]. As we mentioned in the first chapter, this measure of risk besides of 

being coherent, it takes into consideration positive and negative deviations from the 

mean returns and it is capable to replicate the asymmetry and fat tails of the 

distribution as well. Furthermore, this measure allows to reflect the investor’s risk 

attitude. However, in this chapter after the first part where we analyze the measure of 

risk chosen, we are going to describe the portfolio model which that will be applied. 

For the purpose of this work the realistic portfolio selection model has been taken into 

consideration [30].  

 

3.1 Breaking down two-sided coherent risk measure 

As we mentioned in chapter 1, variance can not be considered as an appropriate 

measure of risk due to the non-normality distribution of the returns. Moreover, 

variance measures dispersion and assigns equal weights to potential losses and 

gains. Thus, this risk measure allows to effectively deal with downside and upside 

risk. In this section we are going to describe in greater detail respect to chapter 1 the 

two-sided coherent measure of risk.  

Firstly, we set up the time period equal to one, this means that we assign 0 to the 

current date and D to the future date. Secondly, we specify the stochastic variable Y 

defined on a probability space , the asset payoff, as the risk that has to be 

measured. This means that positive values of Y represent a random profit for the 

investor, whereas negative values of Y indicate a random loss and the risk measure 

 represents the minimum amount of extra cash added to Y that allows the 

position to be acceptable for the holder. In other words, when  the investor 

needs to add an amount of extra cash equal to  in order to accept his future 
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position. On the contrary, when  the investor is allowed to withdraw an 

amount of cash equal to  without affecting the acceptance of his future position.  

In order to represent this measure of risk, let’s define  , where 

 is the mean, or expected value of the random variable Y, with  which 

represents the negative risk. Moreover, we define  as the maximum (-Y,0) and 

. Lastly, we define . The two sides of the return 

distribution that are taken into account by this risk measure are, the downside 

denoted by the random variable  and the upside represented by the 

random variable . However, given  and  we can 

define a new risk measure, , as follows: 

  

                                               (3.1) 

where: 

  is global factor that balances the good volatility and bad volatility. By 

changing the value of the weight , it is possible to have risk neutrality or risk 

preference. In particular, by selecting the following values,  and , 

we obtain risk neutrality. On the contrary, if we choose the value of  such that 

  we obtain risk preference. We can conclude that, the smaller the 

value of the weight , the bigger the weight on the lower  partial 

moment. In other words, an investor who is more cautious; 

  represents the global risk factor of the investment itself. Large values of  

are associated with investors who are risk adverse. On the other hand, small 

values of  are associated with risk adverse investors. Moreover, by carefully 

selecting suitable values of this parameter is also possible consider the 

skewness and the kurtosis (leptokurtosis in this case) of the returns.  

In order create the measure of risk  we take the convex combination of and 

 , where the former is the positive deviation of the returns from the mean 

 and the latter the negative deviation  . However, the inclusion 

of the expected value  insures that the risk measure respects the coherence 

properties. A proof of the coherence is that the following theorems, as defined in [8], 
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hold: 

Theorem 3.1 For any  and , the measure of risk , as 

represented in (3.1) is a coherent risk measure. 

Theorem 3.2 The risk measure  is non-decreasing with respect to  and non-

increasing with respect to . 

Theorem .3.2 is fundamental to explain how the investor reacts to risk. In fact, non-

decreasing property with respect to  insures that, given a fixed value of , higher 

values of  indicate that investor considers Y riskier. This means that higher values of 

 entail larger values of , respect when the investor consider lower values of . 

However, larger values of  reflects the propensity of the investor of being more 

carefully towards negative risk. The reason is that risk factor  is referred to the 

negative tail of the asset returns distribution, that is to the negative risk. On the other 

hand, non-increasing property of this measure of risk with respect to , insures that, 

for fixed values of , higher values of  are associated with a lower risk aversion of 

the investor. 

Furthermore, the most remarkable difference between this measure of risk and one-

sided risk measures is that, since , if the investor 

minimizes  he minimizes his dispersion from the mean. However, the 

main advantage of this measure of risk is that  contributes in finding robust 

optimal portfolios, with respect to others one-sided risk measure such as CVaR.  

 

3.2 Portfolio Selection Model 

The portfolio selection model chosen for this paper is one proposed by Corazza, 

Fasano and Gusso [30]. However, making a valid and effective portfolio selection in 

the real-world stock markets means solving a NP-hard problem, due to some issues. 

The first issue is to choose a risk measure which satisfies the coherence properties 

and represents non-normal distribution of returns. In order to effectively solve this 

issue, we choose the two-sided coherent risk measure. Secondly, the model is 

required to take into consideration the rules applied to the portfolio management 

industry. Bounds on the number of stocks that can be traded is an example of such 

rules. This issue can be solved by introducing some appropriate constraints in the 
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model. The last issue is that the use of risk measure together with the constraints 

used to replicate the rules used in the management industry, makes the portfolio 

selection problem a NP-hard problem. The solution to this problem is obtained by the 

combination of an exact penalty method and two metaheuristics taken into 

consideration this paper, PSO and BFO. The exact penalty method is used because 

it allows to transform nonlinear, non-differentiable and mixed-integer problem, into an 

equivalent minimization problem, in term of solutions, without any constraints. 

However, it has to be pointed that the problem still presents nonlinearity, non-

differentiability and non-convexity but, the use of algorithms which do not include 

derivatives, such as PSO and BFO, allows to approximately compute a global 

minimizer of the exact penalty-based model.  

 

Return and budget constraint 

Return and budget constraint represent two of the most important constraints due to 

their essential role. Furthermore, they are present in many portfolio selection models. 

In order to present the return and budget constraint, we first start with some 

definitions. Let’s consider the possibility to choose from N assets where for 

 is the weight of the   portfolio asset, with  and 

 which represents the real value of random variable where its expected return, , 

is represented by . If we move from the single asset to the whole portfolio it is 

possible define the return of the whole portfolio  and the expected value  as: 

 

 

We can now define the return constraint as:  

 

Where  is the minimum expected return the investor wants the portfolio to earn. It is 

easy to understand that in this way it is possible to select the portfolio with the 
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minimum risk among all the portfolios on the efficient frontier.  

Budget constraint, which allows all the capital available to the investor to be invested, 

can be defined as: 

 

 

Cardinality constraint 

Among the advantages that cardinality constraint brings, it allows to indirectly control 

transaction cost by limiting the number of assets included in the portfolio together 

with the proportion of the portfolio held in a given asset. Furthermore, it allows to 

include not too small or too large subset of the available assets. As a consequence, 

cardinality constraint permits to indirectly control transaction costs by helping fund 

managers to solve the issue of selecting assets from hundreds of them.  

In order to define the cardinality constraint, let  be a binary 

vector, with  that can assume only values equal to 1 if the  asset is included in 

the portfolio and 0 if it does not.  

Thus, the cardinality constraint can be defined as follows: 

                                                   (3.2) 

where: 

  represents the minimum number of assets in the portfolio; 

  represents the maximum number of assets in the portfolio. 

Moreover, it is also required that the portfolio does not include too small or large 

fraction of an asset. In order to ensure this property, it is required to fix a minimum 

and maximum fractions,  and , to allocate in each asset: 

                                                               (3.3) 

In order to ensure that cardinality constraint and the establishment of minimum and 

maximum fractions are compatible, parameters  and  must satisfy: 
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After the presentation of the constraints which make the portfolio realistic, we are 

going to describe the portfolio selection model.  

 

Portfolio Selection Model 

The portfolio selection model, whose objective is the minimization of the two-sided 

risk measure , consists of combining the constraints described before. Thus, the 

portfolio selection model chosen for this paper can be defined as follows: 

  

  

  

  

  

  

 

Penalty function method 

As we stated above, the penalty method transforms the constrained optimization 

problem, into an equivalent optimization problem, in terms of solutions, without any 

constraints. In order to achieve this approximation, we add to the objective function a 

penalty which entails costs sufficiently high if the constraints are violated. The 

parameters entitled to quantify the severity of the penalty is . 

However, penalty function has two drawbacks as follows: 

 the accuracy whereby the unconstrained problem approximates the 

constrained problem. Basically, if the parameter  tends to infinity, the solution 

of the unconstrained problem converges to the one of the constrained 

problem. 

 the solution method when the unconstrained problem’s objective function 

contains the penalty term. In fact, the larger the value of the parameter , the 

more precise the approximation is. Unfortunately, the structure of the 
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unconstrained problem becomes more unfavorable and the consequence is a 

longer time required to find a good solution. 

Although the penalty method has some drawbacks it also has the important 

advantage of solving constrained problems without the need of refined algorithms. 

With the purpose of describing the penalty method introduced by Luenberger and Ye 

in [31] and how it works, let’s firstly define the following problem: 

  

  

where: 

 The function  is a continuous function on ; 

 , represents a set of  constraints expressed in equality 

form; 

 , represents a set of  constraints expressed in equality 

form. 

Then, the penalty function method replaces the optimization problem described here 

above with an unconstrained problem as: 

 

where: 

  represents a positive constant; 

 The function  is a continuous function on . 

However, the continuous function  needs to satisfy the two following properties: 

 ; 

  

Whereas the absolute-value penalty function is expressed as: 
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For the purpose of this paper the penalty method chosen is the exact penalty method 

that guarantees a perfect correspondence between the solution of the original 

constrained problem and the derived unconstrained or penalized problem [30]. The 

Exact Penalty Theorem [31] permits this perfect correspondence: 

Theorem 3.3 Let’s suppose: 

 the local minimum  satisfies the second-order sufficiency conditions of the 

constrained problem; 

  and  be the Lagrange multipliers; 

Then for ,  is a local minimum of the absolute-

value penalty objective. 

This theorem, as we stated before, allows the perfect correspondence between 

constrained and unconstrained problems. Nonetheless, it does not give any insight 

about the value of the parameter . 

 

Portfolio Selection Problem with Exact Penalty Method 

In this section we are going to reformulate the portfolio selection problem as an 

unconstrained optimization problem by applying the exact penalty method. Given that 

penalty function is applied only when a constraint is violated, we are going to 

describe all the constraints. The constraints can be reformulated as follows: 

   

  

  

  

  

  

  

The portfolio selection model with exact penalty function becomes: 
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where: 

 

where  is the penalty parameter. 

However, it is possible to reformulate the measure of risk as well. Following this idea, 

for any portfolio  the risk measure can be expressed as: 

 

where: 

  represents the return of the stock computed using its price time series: 

  

  represents the expected value of the stock return  and it is estimated by 

using the historical data: 

  

After the transformation of the portfolio selection model into an unconstrained one, 

we are going to apply the two metaheuristics chosen: PSO and BFO. 
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Chapter 4 

 

Application to the DAX 30 Stock Index 

 
In the following chapter we will present the application and its result of the 

metaheuristics presented in the previous chapters. The solution procedure will be 

implemented on the german stock index DAX 30 and the period of time that has been 

taken into consideration is from April 2012 until November 2018 

 

4.1 Problem setting 

The daily closing prices of the of the assets included in the DAX 30, which is based 

on the stocks of the 30 companies with the highest capitalization liquidity and the 

number of stocks, have been taken into consideration for the analysis. The time 

length of the data is from April 2015 until November 2018. However, in this analysis 

only 26 of the 30 stocks populating the index have been considered. This because 4 

of them had missing values in the request period. 

The assets included in the stock are presented in Table 4.1.  
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Adidas Fresenius 

Allianz Fresenius Medical Care 

BASF HeidelbergCement 

Bayer Henkel vz 

Beiersdorf Infineon 

BMW Linde 

Continental Merck 

Covestro Münchener Rückversicherungs-Gesellschaft 

AG 

Daimler RWE 

Deutsche Bank SAP 

Deutsche Borse Siemens 

Deutsche Post thyssenkrupp 

Deutsche Telekom Volkswagen (VW) vz 

Lufthansa Vonovia 

EON Wirecard 

Table 4.1: DAX 30 stocks 

The period of time of the analysis has been organized in 4 periods of 11 months 

each. However, each of those periods has been divided into 2 sub-periods: the in-

sample period with a length of eight months and the out of sample period with a 

length of three months. The following scheme represents how the analysis period has 

been organized: 

 Period 1: in-sample: April 2015 – November 2015 

                out of sample: December 2015 – February 2016 

 Period 2: in sample: March 2016 – October 2016 

               out of sample: November 2016 – January 2017 

 Period 3: in sample: February 2017 – September 2017 

               out of sample: October 2017 – December 2017 

 Period 4: in sample: January 2018 – August 2018 

              out of sample: September 2018- November 2018 

The two periods have different purposes. The in-sample period is used to estimate 
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the parameter of the model. The out of sample, on the contrary, is used to test and 

verify the model. In other words, the out of sample period is the virtual future where 

the investment strategy is applied and it allows to evaluate the goodness of the 

model. The reason behind is that the risk and expected return of the portfolio in the 

first period is expected to approximately be the same even the second period and the 

percentage of investment suggested in the in-sample period should return the best 

portfolio also for the next future.  

For the purpose of this analysis the daily returns have been obtained using the 

following formula: 

 

while, the expected value of the return has been computed using the following 

formula: 

 

where  and T is the time horizon considered, and  is the asset 

considered.  

However, for this analysis we used MATLAB R2018 and we performed the 

computation on a Notebook ASUS equipped with a Intel Core i7, with 4gb ram. 

 

Problem specific parameter setting 

In this section we are going to presents the correct setting of parameters related to 

the constraints. However, in order to make comparable the results of both algorithms 

we decided to choose the same value of the parameters. The values chosen are the 

following: 

 Minimum expected return desired from the portfolio: the mean return of the in-

sample period; 

 Minimum fraction allowed in each asset: ; 

 Maximum fraction in each asset: ; 
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 Minimum number of holding assets: ; 

 Maximum number of holding assets, two values are equal to:  and 

; 

 Global risk factor: ; 

 Local risk factor: . 

 

PSO parameter setting 

The parameter set up for this analysis are the ones suggested by the literature: 

 Inertia weight ; 

 Cognitive acceleration coefficient: ; 

 Social acceleration coefficient: ; 

 Number of particles: 52; 

 Number of iterations: 1000. 

Before starting the analysis, we performed some preliminary tests in order to properly 

choose the value of the penalty parameter .As mentioned in the previous chapter 

this parameter is fundamental because it guarantees the corrispondency between the 

unconstrained and constrained optimization problem.  We decided, in order to be 

compliant with the best practice, to run this preliminary analysis only on the first 

period as indicative of the whole period. In order to identify the right value of  we run 

the algorithm 10 times for 5 different values of the parameter of interest using 52 

particles. The number of particles has been set equal to 52 since we have 52 

variables: that is 26 asset variables, and 26 binary variables  which tells if a 

particular asset has been included or not in the portfolio. -For each value of the 

penalty parameter, we computed the average normalized fitness and the relative 

standard deviation, and the parameter associated to the lowest standard deviation 

value has been selected, as shown in table 4.2.  

 

 

 



 

66 
 

 Normalized Fitness Standard Deviation 

0.0001 0.897584175 0.2992167 

0.00001 0.869491352 0.3027447 

0.000001 0.827959206 0.2910785 

0.0000001 0.867235283 0.303813 

0.00000001 0.847425359 0.2993551 

Table 4.2: Output for different values of  

As shown in Table 4.2 we selected the penalty parameter equal to 0.000001 given 

that it presents the lowest standard deviation. 

 

BFO parameter setting 

Conversely to PSO, the literature does not offer enough insights about the BFO 

parameter setting. The unproper choices of the values could lead to insufficient 

numbers of iterations, making the algorithm not able to find high quality solutions or 

increasing to much the computation time and the BFO would work inefficiently. 

Therefore, in order to effectively solve these problems, we run many trials of the 

algorithm combining different values of the algorithm. The main goal of this test it was 

to find the right combination which allows the algorithm to find acceptable solutions in 

a reasonable amount of time. The parameters have been set as follows: 

 number of bacteria: 52; 

 number of chemiotaxis steps: ; 

 number of swimming steps:  ; 

 number of reproduction steps: ; 

 number of elimination-dispersal steps: ; 

 elimination-dispersal probability: ; 

 size of the step taken by the tumble:  

 size of the step taken in each run: . 

As we did with PSO we performed a preliminary analysis in order to choose the right 

value of the penalty parameter  of the fitness function. In order to make this 

preliminary analysis comparable with the previous one, we run 10 times the algorithm 
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for 5 different values of  on the first period, using 52 particles. The reasoning behind 

the choice of the particle is the same of the PSO. The Table 4.3 shows the results of 

the analysis.  

 Normalized Fitness Standard Deviation 

0.0001 0.466912643 0.4109212 

0.00001 0.535473847 0.4113192 

0.000001 0.659274961 0.4662657 

0.0000001 0.577591981 0.4227383 

0.00000001 0.594749056 0.429676 

Table 4.3: Output for different values of  

The results, conversely to PSO, suggest to select a value for  equal to 0.0001. In 

fact, the third column which lists the values of the standard deviation of the 

normalized fitness for different values of the penalty parameters, associates the 

lowest standard deviation to the first element of the first column. However, for BFO 

we decided to skip the performance analysis that compares different numbers of 

bacteria and different number of iterations. Taking into consideration the way higher 

computation time than PSO, and increased number of bacteria or iterations lead to 

an inefficient BFO that would be time consuming. For this reason, we decided to 

keep the values as shown above.  
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4.2 Application and discussion 

In this section we present the relevant results of the application of the two 

metaheuristics to the data. The application has been carried out in order to test and 

compare the ability of the two metaheuristics, PSO and BFO, to effectively find the 

global minimum solution of the optimization problem and the effectiveness of the 

portfolio obtained. However, in this analysis we considered different investors’ taste 

for risk.  

The analysis has been divided in two parts: in the first one we applied the PSO, while 

in the second one we applied the BFO.  

The periods have been singularly analyzed for different values of the maximum 

holding asset , respectively equal to 10 and 20, while the minimum holding asset 

 has been kept constant. Furthermore, we used different values of the local risk 

factor , as mentioned above, in order to consider different risk preferences of the 

investor. The values considered in this analysis are: .The 

parameter  is referred to the negative variance. Therefore, small values of the local 

risk factor represent an investor who is risk seeker or in other words less careful 

about negative risk. On the contrary, high values of the local risk factor represent an 

investor who is risk averse, that is more worried about risk. The other parameter of 

the risk measure, the global risk factor , has been kept constant to 0.5 for all the 

analysis. However, for each combination of  and , we run the algorithm 10 times 

and we took the average. The reason is because metaheuristics are stochastic 

techniques and not exact optimization methods. 
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Period 1 p = 1 p = 2 p = 5 

 0.002224 0.008191 0.007539 

 8 8 8 

 0.010249 0.007224 0.007592 

 13 16 12 

Period 2 p = 1 p = 2 p = 5 

 0.002259 0.00531 0.001248 

 9 9 9 

 0.001918 0.001151 0.002478 

 13 12 12 

Period 3 p = 1 p = 2 p = 5 

 0.002686 0.001477 0.000761 

 9 9 7 

 0.001945 0.002115 0.001272 

 14 13 15 

Period 4 p = 1 p = 2 p = 5 

 -3.55E-05 0.001088 0.007796 

 8 8 10 

 0.003554 0.006957 0.004502 

 12 11  14 

Table 4.4: Monotonicity of the risk measure  for  and different values of  

and  with eight in sample moths, where  represents the number of assets 

included in the optimal portfolio. 

As we mentioned above, each value listed in Table 4.4 is the average of 10 runs of 

the risk measure of the best portfolio. In other words, the values taken into 

consideration are the ones referred to the minimum risk. This because those values 

are the one of the particles which performed better in the entire swarm. However, 

rows two and three list the number of the assets included in the optimal portfolio 

. Table 4.4 highlights that the Theorem 3.2, monotonicity theorem of the risk 

measure is not always respected. In fact, the preliminary test shows that  is not 

non-decreasing with respect to different values of the local risk factor. As we 

described in chapter 3, the theory suggests that a risk-averse investor, who is more 
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concerned about negative risk, uses a higher value of the local risk factor and 

considers the investment risky. A risk-seeker investor, on the contrary, uses a lower 

value of the local risk factor and considers an investment less risky. In general, the 

monotonicity seems to be not respected when the local risk factor  increases from 2 

to 5 for different periods and different values of .  

The monotonicity is not respected neither between the values of  equal to 1 and 2 

such as in periods 1 and 2 for value of  equal to 20. On the contrary, the only case 

where the monotonicity is respected for all the different values of  it is the period 4 

with the maximum number of assets included in the optimal portfolio  equal to 10. 

However, it is important to notice that the cardinality constraint, which is responsible 

to limit the number of assets in the optimal portfolio, is always respected in each 

period for all the values of  and . Furthermore, the minimum number of assets 

included in the optimal portfolio equal to 5 is always respected. However, an 

encouraging aspect is that the measure of risk in all the periods is always higher for 

values of   equal to 10 than for values of  equal to 20. This means that our 

algorithm is able to perform a satisfying exploration in the set of  and the 

subset  Although the monotonicity is not always respected, since all the other 

constraints, such as the budget one, are never violated, we decided to continue the 

analysis. 

Table 4.5 shows the results of the analysis of the other part of Theorem 3.2, that is 

the non-increasing property of  with respect to the global risk factor . 

Furthermore, it has to be specified that in this analysis we kept , while the 

values of  are respectively . 
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Period 1 a = 0 a=0.5. a=1 

 0.020342 0.002654 -0.0005 

 8 8 9 

 0.003973 0.001788 -0.00036 

 11 10 13 

Period 2 a = 0 a=0.5. a=1 

 0.0021 0.001797 0.000102 

 8 8 9 

 0.006752 0.000785 0.002105 

 13 16 15 

Period 3 a = 0 a=0.5. a=1 

 0.00132 0.001945 -8.33E-05 

 8. 10 10 

 0.001245 -0.00037 -0.00035 

 15 10 13 

Period 4 a = 0 a=0.5. a=1 

 0.004542 0.006298 -0.00013 

 8 9 9 

 4.63E-02 0.002135 0.001879 

 13 11 17 

Table 4.5 of  for  and different values of  and , eight in-sample months, 

where  represents the number of assets included in the optimal portfolio. 

From the results listed in Table 4.5 it is clear to see that is not always respected the 

non-increasing property of . The theory in fact suggests that when the global risk 

factor is low the negative risk assumes more importance in the risk measure and 

lower values of  refer to risk-averse investors. On the other hand, higher values of  

refer to investors who are risk-seeker. In period 3 for  the non-increasing 

property is not respected for a value of  equal to 0.5. Moreover, the property is not 

respected in period 4 as well. In fact, in this period for  and  the risk 

measure increases instead of decreasing. Except for those cases the non-increasing 

property of the risk measure always holds.  

In this part we are going to analyze and comment the results obtained in the out-of-
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sample period. We have an optimal portfolio provided by the PSO for each of the four 

periods. Each portfolio has been evaluated in the in-sample period and verified in the 

out-of-sample period. For different values of  and  we computed the percentage 

return of the resulting portfolios. Even in this analysis we followed the same logic, the 

values presented are the average of the 10 runs. 

When it comes the returns, Table 4.6 shows that the returns are pretty much low. In 

this application, we set the return constraint equal to the mean return of the in-sample 

period. Although Germany recovered greatly after the 2007 economic crisis and the 

DAX 30 index reflected it, the period of our analysis from April 2015 till November 

2018 is the period where the index slowed down and after a peak in 2017 it started to 

rapidly decrease testing the medium-term minimum. We can say that the results 

obtained were expected. Looking more carefully to the results obtained, in the first 

period, the worst one, there no difference between portfolios with  

and . Although the expected return constraint is always violated the best 

return is obtained by the combination of  and . The second period is the 

period where the PSO performed better than in the other ones. In this period the 

optimal portfolios have performances greater than the mean return of the in-sample 

period and so the minimum expected return constraint is always respected. However, 

the best performance, that is a daily return equal to 0.14%has been obtained 

combining the local risk factor  equal to 1 and the maximum assets included in the 

optimal portfolio  equal to 10. Period 3 is the second-best investment period. In this 

period the portfolio performances are close to the in-sample return 0.8%, but they 

remain below. However, the portfolio returns are comprised in a range of 0.00% - 

0.7%. The best portfolio in this period, with a return of 0.7% is obtained by the 

combination of  and . Finally, period 4 has poor performances like the 

first one. Although, the in-sample return is negative, -0.1%, portfolio returns are even 

worse. In fact, the worst portfolio, given by the combination of  and , has 

a return of -0.23% which is 22 basis point worse than the in-sample return. To 

summarize, the best performance is given by the portfolio in period 2 with the 

combination of  and  able to provide a return of 0.14%. However, we 

can also notice that in period 1 2 and 3 risk-averse investors are able to earn higher 

returns rather than risk-seeker investors, who are able to collect better performances 

only in period 4. 
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Period 1 p=1 p=2 p=5 

in-sample return -0.03% 
 

 -0.20% -0.24% -0.29% 

 -0.23% -0.24% -0.23% 

Period 2 p=1 p=2 p=5 

in-sample return 0.06% 
 

 0.14% 0.09% 0.07% 

 0.08% 0.09% 0.08% 

Period 3 p=1 p=2 p=5 

in-sample return 0.08% 
 

 0.06% 0.00% 0.05% 

 0.07% 0.06% 0.03% 

Period 4 p=1 p=2 p=5 

in-sample return -0.01% 
 

 -0.14% -0.12% -0.16% 

 -0.21% -0.23% -0.16% 

Table 4.6: Portfolio out-of-sample returns with different values of  and  for all the 

four periods. 

In this part we present the analysis made for BFO and the results obtained. The 

analysis is organized in the same way as for the one made for PSO. 

Therefore, for the analysis of the monotonicity of the risk measure with respect to the 

local risk factor , as we did before, we considered separately the four in sample 

periods and for each of them different values of the maximum number of holding 

assets , respectively 10 and 20. In order to be clear, we remember that different 

values of  correspond to different levels of concern with respect to negative risk. In 

particular, small values of  indicate an investor who is risk-seeker. On the contrary, 

high values of  indicate an investor who is risk-averse. The analysis has been 

implemented keeping the value of  in order to be consistent with the previous 

one. Table 4.7 shows the results.  
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Period 1 p = 1 p = 2 p = 5 

 0.005717 0.007221 0.012939 

 10 10 10 

 0.006002 0.008153 0.013321 

 16 14 15 

Period 2 p = 1 p = 2 p = 5 

 0.003602 0.008592 0.017752 

 9 10 10 

 0.004628 0.00613 0.016694 

 15 17 15 

Period 3 p = 1 p = 2 p = 5 

 0.001741 0.002883 0.005673 

 10 10 10 

 0.001541 0.003052 0.004934 

 13 15 19 

Period 4 p = 1 p = 2 p = 5 

 0.003187 0.004425 0.010399 

 10 10 10 

 0.004712 0.004975 0.009535 

 16 16 15 

Table 4.7: Monotonicity of the risk measure  for  and different values of  

and  with eight in sample moths, where  represents the number of assets 

included in the optimal portfolio. 

The results clearly show that the Theorem 3.2, which states that risk measure is non-

decreasing for different values of  holds. In particular, we can see that the risk 

measure is non-decreasing with respect to  holds for each period and values of the 

cardinality constraints. In fact, in all four periods  is respected. In 

other words, the higher the value of  the higher the value of the measure of risk. 

Furthermore, this evidence is theoretically meaningful since a more cautious investor 

to negative risk utilizes higher values of . On the contrary, an investor who is risk 

seeker will use lower values of  since he considers the investment less risky. 

However, it is important to notice that these results show an important difference 
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respect to PSO. As shown in Table 4.4, the measure of risk almost never respects 

the non-increasing property with respect to . On the contrary using BFO Theorem 

3.2 always hold. This crucial difference led us to rely much more on the results 

provided by BFO rather than PSO. In addition, the results in table 4.7 show that the 

cardinality constraint always hold for different values of  and . 

Even for BFO we performed the analysis on the respect of the non-increasing 

property of the risk measure  with respect to parameter . As for PSO, we set the 

same values of , that is ,  and , while the parameter  has been 

kept fixed and equal to 2. 
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Period 1 a = 0 a=0.5. a=1 

 0.016219 0.00866 0.006825 

 10 10 10 

 0.011336 0.008591 0.006089 

 16 17 13 

Period 2 a = 0 a=0.5. a=1 

 0.009052 0.005514 0.004133 

 10 10 9 

 0.009887 0.006392 0.004183 

 11 14 15 

Period 3 a = 0 a=0.5. a=1 

 0.00502 0.002605 0.001047 

 9 10 10 

 0.004539 0.002973 0.001618 

 13 16 18 

Period 4 a = 0 a=0.5. a=1 

 0.008436 0.006184 0.005307 

 10 10 10 

 0.007359 0.005692 0.00375 

 15 17 13 

Table 4.8 of  for  and different values of  and , eight in-sample months, 

where  represents the number of assets included in the optimal portfolio. 

The results once again show that the non-increasing property of  holds for each of 

the four in-sample periods and different values of . In fact,  is 

always respected. As mentioned in the previous analysis of the Theorem 3.2 we 

remember that lower values of  represent an investor who is more careful with 

respect to negative risk. On the contrary, higher values of  reflect an investor who is 

less concerned on negative risk. However, the results in Table 4.8 highlight that, 

differently from PSO, with BFO the Theorem 3.2 is always respected. This important 

evidence allows us to rely much more on the results and performances of BFO than 

the ones of the PSO.  
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In this part of the analysis we show and comment the results of the performance of 

the portfolio selected during the out-of-sample periods. However, as in the analysis of 

the PSO, even for BFO the Table 4.9 shows the expected returns, expressed in 

percentages, of the optimal portfolios found by the algorithm for different values of  

and . The expected returns listed in the Table 4.9, in order to be consistent with the 

analysis of the PSO, are the average of the 10 runs. 

Period 1 p=1 p=2 p=5 

in-sample return -0.03% 

 

 -0.31% -0.22% -0.33% 

 -0.34% -0.24% -0.29% 

Period 2 p=1 p=2 p=5 

in-sample return 0.06% 

 

 0.08% 0.21% 0.16% 

 0.11% 0.09% 0.15% 

Period 3 p=1 p=2 p=5 

in-sample return 0.08% 

 

 0.07% 0.01% 0.00% 

 0.00% 0.02% 0.06% 

Period 4 p=1 p=2 p=5 

in-sample return -0.01% 

 

 -0.10% -0.17% -0.26% 

 -0.21% -0.15% -0.14% 

Table 4.9: Portfolio out-of-sample returns with different values of  and  for all the 

four periods. 

It is clear that, even with BFO, the out-of-sample returns are very low. Except for 

period 2 the return constraints, which requires the portfolio in each period to 

outperform the mean return of the in-sample period is always violated. Starting from 

the first period, we can see that the final portfolios have the worst expected returns 

and in particular they are worse than the ones obtained in same period by the PSO. 
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However, portfolios with  have poorer performance respect to portfolios with 

, both in terms of evarage expected returns and in absolute values. In fact the 

worst performance is given by the combination of  and  with an 

expected return of -0.34%, while the best performance is provided by the portfolio 

that results from the combination of  and  with an expected return equal 

to -0.22%. The second period is the period that has the best performances and the 

return constraint is always respected. Furthermore, the final portfolios performed 

better than the ones of the PSO for the same period. The portfolio with the best 

performance is the one with  and , which provides an expected returns 

of 0.21%, while the worst expected return, 0.08%, is provided by the portfolio with 

 and . However, the results show that, in this period, the best 

performances are obtained with . Period 3 is the second best period in terms 

of performance. Although cardinality constraints never holds, we can see that 

expected returns of portfolios with ,  and with ,  are very 

close to the mean return of the in-sample period equal to 0.08%. On the contrary the 

worst performances are provided by portfolios given by ,  and , 

 with an expected returns of 0.00%. Finally, the fourth period represents the 

second worst period in terms of performances. Indeed, the return constraint never 

holds and the final portfolios have performances lower than -0.01%. The worst 

performance in this period is given by the portfolio with  and , that has 

an expected return equal to -0.26%. On the other hand, the portfolio that performs 

better in the final period is the one resulting from the combination of  and 

 with an expected return of -0.10%. In order to summarize, the best 

performance equal to 0.21% is given by the portfolio with  and   in 

period 2, while the worst performance is provided by the portfolio with   and 

 in period 1. Moreover, given the results obtained and listed in Table 4.9 we 

can conclude that the performance of BFO are similar to the ones of PSO but more 

extreme. When BFO collects expected returns greater than the mean return of the in-

sample period, such as in period 2, it outperforms PSO, being able to provide higher 

expected returns. However, when BFO realizes the worst performances, such as in 

period 1 and 4, they are worse than the ones obtained with PSO.  
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Conclusions 

The main goal of this analysis was to optimize the portfolio selection problem through 

the application of two metaheuristics, BFO and PSO. In order to be as much realistic 

as possible we tried to replicate the conditions of real-world financial markets. In fact, 

the portfolio selection model chosen in this paper includes realistic assumptions such 

as transaction costs, taxes and other real-world financial problems that are not 

included in the original Markowitz model. Furthermore, with the purpose of fitting the 

real-world conditions, we selected a measure of risk different from the one originally 

used by Markowitz. Among the risk measures classified as coherent, we decided to 

use the two-sided risk measure. Basically, the choice of the risk measure allows an 

investor to consider at the same time positive and negative variance and to assign 

different weights to them in order to reflect the different attitude towards risk. This 

means that through the combination of the two parameters characterizing the 

measure of risk, the global risk factor  and the local risk factor , it is possible to 

represent risk-averse investors and risk-seeker investors. Finally, the reason of using 

metaheuristics for this optimization problem is the huge advantage that they are able 

to provide in terms of computation time.  

If we look at the results obtained, we can say that they are not fully satisfactory. The 

PSO is not able to respect the return constraint in 3 of the four periods considered in 

the analysis, that is the expected returns of the final portfolios do not exceed the 

mean return of the in-sample period. The best portfolio gives a daily expected return 

of 0.14%, while the worst portfolio gives a daily expected return of -0.29%.However, 

an explanation to the poor performances of the metaheuristics could be represented 

by the data considered for this application. In fact, if we analyze the DAX 30 index in 

the period between April 2015 and November 2018 struggled to increase. This 

hypothesis could be justified from the fact that, in the first and fourth period the daily 

mean return of the 26 assets taken into consideration is negative. Furthermore, in the 

valuation of the results it has to be taken into consideration the fact that the measure 

of risk does not always respect the Theorem 3.2, by which risk measure has to be 

non-decreasing with respect to parameter  and non-increasing with respect to 

parameter . This issue could seriously jeopardize the goodness of the results 

obtained. In addition, if PSO is improved by increasing the number of iteration, the 

results could be better. We are quite confident that a higher number of iterations, 
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such as 6000 or 10000, would provide better performances of the portfolios. 

However, we have to be aware that increasing the iterations could not represent 

always the best solution since it could dramatically increase the computation time.  

With regards to BFO, the results are more or less aligned with the ones provided by 

PSO but the main difference is that they are much more reliable. In fact, using BFO 

the Theorem 3.2 of the two-sided risk measure holds in each period considered. Of 

course this aspect is fundamental when comparing the performances of the two 

metaheuristics. BFO is able to outperform PSO in period 2 when both respect the 

return constraint. On the contrary, BFO provides lowest daily-expected portfolio 

returns than PSO. However, the main disadvantage of the BFO is the computation 

time. In fact, investors are inclined to use metaheuristics to optimize portfolio 

selection problems and accept good solutions that are not the optimal ones though, 

as long as the computation time is reasonable. Therefore, the longer time needed by 

the BFO to carry out the optimization could be taken into consideration when it 

comes to decide which metaheuristics to chose. In particular if we decide to improve 

it by increasing the number of iterations the metaheuristics could become time 

consuming. However, taking into consideration pros e cons and the fact that with 

BFO the monotonicity of the risk measure is always respected we would recommend 

to use BFO rather than PSO.  

The choice of the BFO is also supported by the increasing interest of the researchers 

towards this metaheuristics. Indeed, since its introduction BFO has increasingly 

drawn attention not only in fields like engineering but also in finance. Furthermore, 

the development is still ongoing given that the metaheuristics is still young and it has 

a lot of unexpressed potential.  

To conclude, taking into consideration the results obtained from the analysis, we 

suggest to use BFO for portfolio optimization problems rather than PSO. 
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