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Summary 
Climate change is triggering new water management challenges affecting regional and global 

water quantity and quality. Despite potential impacts of climate change on water availability 

have been widely studied in the last decades, the implication for concomitant changes in 

water quality have been just poorly explored. Variations in temperature and precipitation 

patterns, are likely to have profound effects on those hydrological processes (e.g. runoff, river 

flow, water retention time, evapotranspiration) that regulate the mobilization of pollutants 

from land to water bodies however, such signals, can be masked by those of concurring local 

stressors (i.e. land use, point and diffuse pollution sources). 

Breaking down the relative role played by each of these pressures and predicting their 

combined impacts is necessary to mainstream the implementation of well-targeted 

adaptation measures supporting sectorial policies and legislations. Accordingly, the adoption 

of a multi-stressor perspective to water quality assessment is required to drawn realistic base 

lines and reasonable targets steering future water resource management strategies.  

A data driven risk framework based on Bayesian Networks was implemented in the Zero river 

basin (Northern Italy) to characterize the interlacing between climate change and land use 

practices and assess their cascading impacts on water quality status (i.e. nutrients loadings). 

Bayesian Networks were used as meta-modelling tool for structuring and combining the 

information available by existing monitored data, hydrological models, climate change 

projections producing alternative risk scenarios to communicate the probability of changes in 

the amount nutrients (i.e. NO3
-, NH4

+, PO4
3-) delivered from the basin under different climate 

change projections (i.e. RCP 4.5 and 8.5).  

Specifically, an Ensemble of temperature and precipitation projections downscaled from 

available Global and Regional Climate models (i.e. GCMs-RCMs) were directly used to inform 

the Bayesian Network in order to account for uncertainties across climate change scenarios 

and river basin responses and to determine the level of confidence of projected water quality 

alterations between baseline and future climate regimes.  

Bayesian Network outputs help in tracking future trends of water quality and in supporting 

the prioritization of stressors and pollution sources. Overall, developed risk scenarios, can be 

used as baselines against which test and evaluate existing management and adaptation 

measures and targets for water quality. 
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Simulated scenarios show that seasonal changes in precipitation and temperature are likely 

to modify both the hydrology and nutrients loadings of the Zero River and that diffuse 

pollution sources play a key role in determining the amount of nutrients loaded while point 

source have only a marginal effect. Both NH4 and PO4 loadings, in fact, are mainly influenced 

by changes in the climatic and hydrological variables while NO3 loadings are strongly affected 

by agronomic practices and land use.  

Results have been evaluated through a cross comparison with existing observed data and 

hydrological models’ simulations (i.e. SWAT) available for the case study providing a 

reasonable agreement. 
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Motivations and Objectives 

Climate change is likely to impose severe impacts on water systems affecting water quantity 

and quality in several ways (Jiménez Cisneros et al., 2014). However, while climate change 

impacts on water availability and hydrological risks are quite recognized (Molina et al., 2013; 

Ronco et al., 2017; Zabel, 2016), the consequences on water quality have been just poorly 

explored (Bussi et al., 2016; Huttunen et al., 2015; Lu et al., 2015; Whitehead et al., 2008, 

2009). Increases in temperature and changes in precipitations will probably affect hydrological 

processes (e.g. runoff, river flow, water retention time, evapotranspiration) with 

consequences on the loading and transport of nutrients and other kind pollutants (Alam and 

Dutta, 2013; Culbertson et al., 2016; El-Khoury et al., 2015; Ockenden et al., 2016). Such 

signals, however, can be often masked by the effect of other stressors concomitantly acting on 

water bodies. Integrated into a wider global change concept, climate change is likely to 

interact with land use , deforestation, urbanization, agriculture exacerbating water quality 

degradation but very few studies have considered the impact of these factors together 

(Huttunen et al., 2015). 

Risk assessment procedures commonly adopted for water quality assessment, in fact, applied 

a single stressor approach where each stressor is analysed in isolation (Bussi et al., 2016; 

Mantyka‐Pringle et al., 2014; Xia et al., 2016) neglecting synergic, cumulative or cascading 

effects (van der Brink, 2016). However, understanding the co-evolution and interrelations 

between climatic and anthropogenic pressures on water systems and breaking down the 

relative role played by the single stressor is necessary to provide a realistic picture of risks 

threatening sustainable water resource management. In addition, predicting the conjoined 

impact of multiple stressors is required to support the implementation of efficient and well 

targeted management strategies exploiting potential synergies between climate change 

adaptation and sectorial water policies (e.g. 2000/60/UE Directive). 

A key research challenge is, therefore, the adoption of a more integrated multi-stressor 

perspective enabling to model in a harmonic way multiple drivers’ interaction, account 

alternative perspectives (i.e. social, economic and environmental objectives and priorities) 

and effectively deal with the uncertainty characterizing climate change scenarios.  

In this context, the thesis aims at developing a multi-stressor oriented approach for the 

assessment and communication of impacts arisen by the interaction between climatic and 

anthropogenic stressors on water quality.  
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Bayesian Networks are proposed as modelling framework to overcome and address some of 

the main limitations of traditional risk assessment approaches (i.e. single stressors focus, 

representation of uncertainty) developing a probabilistic risk assessment model considering 

the interlacing between climate (i.e. changes in temperature and precipitations) and land use 

(i.e. agriculture, urbanization), and their cascading impacts on water quality parameters (i.e. 

nutrients loadings).  

Final outcomes of the research, include alternative risk scenarios and indicators enabling the 

communication of the probability (and uncertainty) of water quality alterations under 

changing conditions thus supporting decision making in the identification of targeted 

management and adaptation options to ensure the protection of good water status in the 

future.
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Thesis Structure 

This thesis is made up of three independent research papers which seek to explore and 

demonstrate the benefits of adopting Bayesian Networks for the integrated assessments of 

multiple climatic and non-climatic drivers ‘impact on water quality.  

The first paper analyses the potential use of Bayesian Networks in dealing with climate change 

impacts risk assessment and management. Accordingly, it first provides a review of existing 

Bayesian Networks applications in the field of environmental risk assessment and 

management. Lately, drawing on the results of the analysis, the paper discusses some of the 

main advantages and limitations of Bayesian Networks as modelling tool for the 

implementation of a generic risk framework for the assessment of interactions between 

climatic and no-climatic stressors.  

The second paper describes a risk assessment procedure based on Bayesian Networks 

modelling implemented in the Zero river basin in Northern Italy to link future scenarios of 

climate change with water quality alterations (i.e. changes in nutrients loadings). Bayesian 

Networks are employed as integrative tool for structuring and combining information 

available in existing hydrological models (i.e. SWAT), climate change projections, current land 

use and agronomic practices, historical observations and expert opinion. The BN is then used 

toproduce alternative risk scenarios to communicate the probability of changes in nutrients 

(i.e. NO3, NH4, PO4) delivered from the basin into the lagoon over future scenarios, thus paving 

the way for the identification and prioritization of most effective management and adaptation 

strategies to maintain good water quality status under climate change conditions. 

Finally, the third paper proposes the use of Bayesian Networks to track and communicate 

uncertainties across a range of climate change projections helping in determining the level of 

confidence of projected water quality alterations between baseline and future climate 

regimes. Accordingly, it describes the application of Bayesian Network approach to develop 

an ensemble of impact scenarios assessing the effect of different climate change projections 

on the quality of waters of transitional systems (i.e. estuaries). Ensembles of baseline and 

future temperature and precipitation downscaled from available Global and Regional Climate 

models (i.e. GCMs-RCMs) are directly used to inform BN and thus to drive simulations of 

nutrient loadings (i.e. NO3, NH4, PO4) projected under future climate change scenario.  
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Paper 1-Reviewing Bayesian Networks potentials for climate change 

impacts assessment and management: a multi-risk perspective1 

Introduction  
Climate change risk assessment represents a challenging task for environmental management 

due to the inherent complexity of socio-ecological systems, the multiplicity of processes and 

the high degree of uncertainty, variability and randomness involved (Döll and Romero‐Lankao, 

2017; Gallina et al., 2016). 

Multiple climatic and non-climatic stressors interact, inducing impacts which can be highly 

correlated (i.e. cumulative, synergic or antagonistic effect) or strongly dependent (i.e. 

cascading or triggering effects) one each other (Gill and Malamud, 2014, Kappes et al., 2012; 

Liu et al., 2014). Neglecting these interactions can lead to an underestimation of the overall 

risk and further to inefficient or controversial risk management strategies (i.e. maladaptation, 

unexpected environmental impacts, increase vulnerability or exposure toward other kind of 

stressors)(Liu et al., 2014). An effective risk management should be built on a good 

understanding of all relevant threats affecting the target of interest thus enabling decision 

makers and practitioner to develop efficient adaptation plans based on a robust prioritization 

of risk reduction measures (Komendantova et al., 2014).  

However, due to the differing characteristics of hazards, few quantitative models that suite a 

fully multi-risk perspective exist. Most climate change studies still are predominantly mono-

disciplinary, designed to consider impacts triggered by individual shocks (i.e. hazards) and 

analysing mono-causal and mono-temporal cause-effect relationships (Gallina et al., 2016).  

At the same time, considering uncertainty as a pervasive issue in climate change, it should be 

included as a key component of each risk assessment model. 

Despite this, most of risk assessment models still rely on the traditional definition of risk 

considering the probability of an event and its negative consequences (UNISDR, 2009). 

Instead, deep uncertainty about future risk could be better addressed by risk scenarios 

                                                           
1 The present paper has been published as:  

Sperotto A., Molina Gonzalez J.L., Torresan S., Critto A., Marcomini A., 2017. Reviewing Bayesian Networks’ 

potentials for climate change impacts assessment and management: a multi-risk perspective. Journal of 

environmental management, 202, 320–331. 
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describing the range of plausible future environmental and socio-economic conditions (Döll 

and Romero‐Lankao, 2017; Stirling, 2010; Willows and Connell, 2003). 

The aforementioned considerations clearly suggest that climate change risk assessment and 

management, required a shift from traditional risk assessment based on a single stressor 

approach, toward a more challenging multi risk  and adaptive paradigm (Döll and Romero‐

Lankao, 2017; Landis et al., 2013a). 

New approaches should be included in the current environmental risk assessment and 

management procedures considering the adoption of integrated models (i.e. Bayesian 

Networks (BNs), System Dynamics (SD), Agent-Based Models (ABMs), Artificial Neural 

Networks (ANNs) and Expert Systems) able to: incorporate multiple stressors and endpoints 

(i.e. social, economic and environmental objectives and priorities); ii) deal with uncertainty; 

iii) take into account the effect of policy and adaptation in changing final system states 

(Hamilton et al., 2015; Kelly et al., 2013). 

 Bayesian Networks (BNs) in the last decade have become a recognized tool to deal with 

environmental problems and decision making under uncertainty (Varis and Kuikka, 1997) and 

some authors (Catenacci and Giupponi, 2010; Döll and Romero‐Lankao, 2017; Hart and 

Pollino, 2008; Landis et al., 2013a; Pollino and Hart, 2008), suggested their use for risk 

assessment.  

Bayesian Networks (BNs), also known as Bayesian Belief Networks (BBNs) or Belief Networks, 

are probabilistic graphical models representing a set of random variables and their conditional 

interdependencies via a Directed Acyclic Graph (DAG) (Pearl, 1988) thus using probabilistic 

expressions to describe the relationships among system components (Borsuk et al., 2004). 

BNs, originally emerged from research into artificial intelligence (Charniak, 1991; Heckerman 

et al., 1995; Jensen, 1996; Pearl, 2011), have been applied with a risk assessment perspective 

to many different environmental issues (e.g. Integrated Water Resource Management, 

ecology, maritime spatial planning, fishery, agronomy)(Barton et al., 2008; Borsuk et al., 2004, 

2003; Bromley et al., 2005;; Farmani et al., 2009; Gudimov et al., 2012; Henriksen et al., 2007; 

Lecklin et al., 2011; Renken and Mumby, 2009; Stelzenmüller et al., 2010; Zorrilla et al., 2010). 

However, the application of BNs in the context of climate change still represent a limited 

explored field if compare with others where their use has exponential growth during recent 

years. Only very few studies which explicitly apply BNs to assess and manage climate change 

impacts on natural resources (i.e. water scarcity and deterioration, soil erosion, biodiversity 
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loss, eutrophication, sea-level rise) can be found in literature (Catenacci and Giupponi, 2013; 

Dyer et al., 2011; Gutierrez et al., 2011; Kotta et al., 2010; Molina et al., 2013; Tighe et al., 

2007).  

The purpose of the present work is, therefore, to discuss the application of BNs to improve 

climate change risks assessment and management. The paper wants to explore to what extent 

BNs can be useful to enhance environmental risk assessment, through the analysis of multi-

stressors issues in several case studies mainly related to natural hazards, sustainable resources 

management and pollution prevention in view of climate change. 

Finally, it describes the use of BNs for the environmental management of climate change 

impacts, providing some insights of their functionalities for risks prioritization, uncertainty 

communication and to support practitioners in the selection of optimal adaptation measures 

at the regional and local scale. To do so, a systematic analysis of existing literature is presented 

in Section 1. In Section 2, main advantages and limitations of BNs are discussed according to 

each steps of the general framework of multi-risk assessment and management (Figure 1) thus 

providing a sort of “road map” for the integration of BNs also in climate change risk 

assessment and management procedures. 

1. Reviewing Bayesian Networks applications 
According to the aim of the present work, a set of case studies dealing with BNs applications 

in the field of environmental modelling and management were selected and analysed. 

To facilitate a comparative analysis and discussion, case studies have been categorized 

according to specific features (i.e. model objectives, model structure, model parametrization, 

model evaluation, scenarios analysis, stakeholders involvement, representation of spatial and 

temporal dynamics) recognized as fundamental steps within a BN development process 

(Kragt, 2009; Pollino et al., 2007; Pollino and Henderson, 2010). Table 1 provides a summary 

of reviewed cases studies dealing with the sustainable management of natural resources (i.e. 

disaster risk reduction, climate change adaptation, integrated water management) which will 

be extensively described and discussed in the following sections. 
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Table 1 List of reviewed case studies dealing with BNs applications 

Reference 

Model objectives and scales Model conceptualization Model parametrization 

Model 
Evaluation 

Scenario analysis Dynamics 

SH 
involvement 

Model aim 
Application 

context 
Spatial 
scale 

Type of 
stressor 

Multiple 
stressors 

Climate 
change 

scenario  

Structure 
Learning 

Parameter 
learning 

Use of 
scenarios 

Type of 
scenarios 

Spatial Temporal  

(Nadim and Liu, 
2013) 

To estimate the risk for 
buildings associate with 
earthquake-triggering 
landslides 

RA, RM LOC GEO X   E E SA Predictive  
Alternative 

management 
measures 

      

(Qiu et al., 2014) 
To forecast the chain reaction 
path and losses due to a crisis 
event 

RA LOC HYDRO X   E D D Predictive 
Alternative risk 

scenarios 
      

(Liu et al., 2014) 
To model the probability of a 
tsunami triggered by a 
rockslide  

RA, RM LOC HYDRO X   E D MOD Predictive  
Alternative 

management 
measures 

      

(Grêt-Regamey 
and Straub, 2006) 

To assess the damage of 
avalanches in mountain 
regions 

RM LOC HYDRO     E D MOD, SA Predictive  
Alternative risk 

scenarios 
X     

(den Heijer et al., 
2012) 

To estimate the impact of 
extreme storm events on 
coastal shoreline 

RM REG GEO X   E D D Predictive  
Alternative 

waves scenarios 
      

(Balbi et al., 2015) 
To estimate the benefit of 
improving existing Early 
Warning Flood System 

RM LOC HYDRO     E E MOD, SA Predictive  

Alternative 
performance of 
Early Warning 

System 

X     

(Stelzenmüller et 
al., 2010) 

To assess the consequences 
of marine planning objectives 

RM REG 
ANTHR 
CLIM 

X   E D SA Diagnostic  
Alternative 

marine planning 
scenarios 

X     

(Helle et al., 2015) 
To provide a cost-benefit 
analysis of oil spill reduction 
measures 

RM REG ANTHR   E E, D NO VAL Predictive 
Alternative 

management 
scenarios 

   

(Franco et al., 
2016) 

To evaluate effects of 
anthropogenic and climate 
change disturbances on coral 
reef 

RM REG 
ANTHR 
CLIM 

X   E D SA, D Predictive 
Alternative 

anthropogenich 
disturbances  

      

(de Santa Olalla et 
al., 2005) 

To assess the impact of water 
abstraction on groundwater 
systems 

RM REG HYDRO     SH D, E E Predictive  
Alternative water 

abstraction 
regimes 

    X 

(Keshtkar et al., 
2013) 

To assess the sustainability of 
catchment management 

RM REG CLIM X   SH D, E E Predictive  
Alternative 

management 
scenarios 

    X 
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Reference 

Model objectives and scales Model conceptualization Model parametrization 

Model 
Evaluation 

Scenario analysis Dynamics 

SH 
involvement 

Model aim 
Application 

context 
Spatial 
scale 

Type of 
stressor 

Multiple 
stressors 

Climate 
change 

scenario  

Structure 
Learning 

Parameter 
learning 

Use of 
scenarios 

Type of 
scenarios 

Spatial Temporal  

(Chan et al., 2012) 
To assess the effect of river 
flows on fish abundance 

RM REG 
ANTHR 
CLIM 

X   E D, E SA, D Predictive  
Alternative water 

abstraction 
regimes 

X   X 

(Spence and 
Jordan, 2013) 

To estimate the effect of 
nitrogen inputs on freshwater 
wetland ecosystem services 

RA REG ANTHR   E D SA, D Predictive 
Alternative 

nitrogen inputs 
   

(Molina et al., 
2013) 

To estimate the impact of 
climate change and land use 
on groundwater systems 

RA, RM LOC 
ANTHR 
CLIM 

X X E D  Predictive  

Alternative 
climate change 
and land use 

change 
scenarios 

  X   

(Giordano et al., 
2013) 

To assess conflicting uses in 
groundwater resources 

RM REG ANTHR   E D, E E, SA Predictive 
Alternative 

management 
policies 

X   

(Landuyt et al., 
2014) 

To assess ecosystem services 
delivery of pond under different 
management scenarios 

RM LOC ANTHR   E D, E SA Predictive 
Alternative pond 

management 
scenarios 

   

(Gutierrez et al., 
2011) 

To assess the probability of 
shoreline changes as 
response to sea-level rise 
changes 

RM REG GEO X X E D D Predictive  
Alternative 

climate change 
scenarios 

X     

(Varis and Kuikka, 
1997) 

To assess the impact of 
climate change on water 
quality 

RM LOC CLIM X   E E E Predictive  No scenarios     X 

(Tighe et al., 2007) 
To assess climate change 
pressures on natural resources 

RA LOC CLIM X X E D, E SA, E Predictive  
Alternative 

climate change 
scenarios 

X     

(Kotta et al., 2010) 
To assess the interactive effect 
of eutrophication and climate 
change on sea water quality 

RA REG CLIM X X E D NO VAL Predictive 

Alternative 
climate and land 

use change 
scenarios 

      

(Dyer et al., 2011) 
To assess the effect of climate 
change on flow regime and 
water attributes 

RA REG CLIM X X D D NO VAL Predictive  

Alternative 
climate and 
regulation 
scenarios 

X     

(Catenacci and 
Giupponi, 2013) 

To assess the effectiveness of 
adaptation measure to sea 
level rise 

RM LOC HYDRO   X E E SA, E Predictive 
Alternative 

adaptatation 
measures 

      

RA=risk assessment, RM=risk management; LOC=local, REG=regional; ANTHR=anthropogenic, CLIM=climatic, GEO=geological, HYDRO=hydrological; E=expert, D=eata, SH=stakeholders; SA= sensitivity 

analysis, MOD= models, NO VAL=no validation 
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1.1 Model objectives, systems and scales 

The process of a BN model development starts with the definition of the models’ objectives and 

the context of its application (Pollino and Henderson, 2010). Within the analyzed literature, two 

main contexts of applications can be identified: risk assessment and risk management. In most 

of case studies (de Santa Olalla et al., 2005; den Heijer et al., 2012; Gutierrez et al., 2011; Kotta 

et al., 2010; Qiu et al., 2014; Varis and Kuikka, 1997) BNs are employed for environmental risk 

assessment in order to provide a more or less quantitative or qualitative estimate of risk related 

to specific stressors on well-defined targets. With this aim, for instance, Dyer et al. (2011) built a 

model to assess the probability of exceeding defined thresholds for water quality attributes (i.e. 

nitrogen, phosphorus, dissolved oxygen, pH, turbidity) related to climate change projections for 

different regions of Ginninderra (Australia). 

In some cases BNs have been specifically designed for risk management assessment with the 

objective of evaluating adaptation or management strategies effectiveness in control the 

probability of adverse events or conditions (Balbi et al., 2013; Catenacci and Giupponi, 2013; 

Nadim and Liu, 2013; Stelzenmüller et al., 2010).  

Balbi et al. (2015) developed a BN to estimate the benefits (i.e. avoided fatalities, injuries and 

post-traumatic stress disorder) of improving the existing Early Warning System for flood in the 

Sihl valley (Switzerland). In the same way, Catenacci and Giupponi (2013) evaluated the 

effectiveness of two alternative adaptation measures (i.e. saltmarshes restoration, beach 

nourishment) to contrast the negative effect of sea level rise in the Grado-Marano Lagoon 

(Northern Italy).  

In the listed applications, BNs have been applied most widely at regional and local scales to model 

processes taking place at very different spatial (e.g. aquifer, river basin, coast, ecosystem, region) 

and temporal (e.g. daily, monthly, annual, decadal) levels.  

 

1.2 Model conceptualization 

The model conceptualization aims at identifying the causal structure of the model and, 

consequently, requires the development of an influence diagram in which all the most relevant 

components of the system (i.e. stressors, processes, vulnerabilities, endpoints) and their casual 

https://en.wikipedia.org/wiki/Quantitative_property
https://en.wikipedia.org/wiki/Qualitative_data
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relationships and interdependences are included and represented (Pollino and Henderson, 

2010). The causal structure of the model, should represent as much as possible the reality of the 

system and thus the choice between alternative model structures can be fundamental. In fact, it 

is entirely possible to develop alternative model structures that are totally plausible but produce 

completely different results (Pshenichny et al., 2009). It is the case of complex and heterogenous 

environments, where interactions between systems components are largely unknown. In such 

situations, the use of multidisciplinary expert systems and knowledge-based models is crucial to 

reach a shared vision and a consensus on the most appropriate model configuration.  

 

Within the reviewed case studies BNs have been applied to assess the effect of both 

environmental and anthropogenic stressors on a variety of natural and semi-natural endpoints 

(i.e. rivers, transitional systems, coastal zone, agricultural and urban areas) using a 

heterogeneous set of indicators (i.e. ecological, social and economic). For what concern 

environmental stressors most of case studies are dealing with geological (i.e. earthquakes, 

avalanches, landslides) (den Heijer et al., 2012; Grêt-Regamey and Straub, 2006; Nadim and Liu, 

2013; Qiu et al., 2014) and hydrological hazards (i.e. flood, drought, storm surges, sea-level rise, 

coastal erosion) (Balbi et al., 2015; Catenacci and Giupponi, 2013; Gutierrez et al., 2011; Tighe et 

al., 2007) however few methodologies consider the alteration of climatic variables (i.e. 

temperature, precipitation, winds)(Kotta et al., 2010; Molina et al., 2013 Varis and Kuikka, 1997) 

as primary stressor and assess their impacts in changing systems conditions (i.e. water quality 

and availability). Anthropogenic stressors are usually considered together with environmental 

ones and include mainly water abstraction, changes in land use, and pressures derived by other 

human activities (i.e. agriculture, fishing, transportation, tourism and recreational activities) (de 

Santa Olalla et al., 2005; Molina et al., 2013). Stelzenmüller et al., (2010) however, considers only 

anthropogenic stressors (i.e. fishing, oil and gas infrastructures, aggregate dredging) derived by 

different marine planning objectives to assess how their cumulative impact can affect marine 

environments and ecosystems.  

With some exceptions (Balbi et al., 2015; Catenacci and Giupponi, 2013; de Santa Olalla et al., 

2005), which focus on single stressors, most of case studies follow a multi-stressors approach 
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considering the presence of multiple cumulative or cascading threats affecting the same system 

or region. Qiu et al. (2014), for instance, employed BN to assess the risk of buildings exposed to 

landslides triggered by earthquakes. They exploited BNs features to forecast the cascade of 

effects associated with a crisis event simulating the reaction path of emergency which can be 

induced by a typhoon-rainstorm-flood chain. 

Most of case studies do not take into account the effect of climate change (Balbi et al., 2015; de 

Santa Olalla et al., 2005; den Heijer et al., 2012; Nadim and Liu, 2013; Qiu et al., 2014; 

Stelzenmüller et al., 2010; Varis and Kuikka, 1997). Few studies (Catenacci and Giupponi, 2013; 

Gutierrez et al., 2011; Kotta et al., 2010; Molina et al., 2013; Tighe et al., 2007),  instead, are 

explicitly designed to explore the potential impacts of climate change which is considered as one 

of the main drivers. Among these, however, very few used climate change projections provided 

by climate models to inform the BN (Gutierrez et al., 2011; Molina et al., 2013; Tighe et al., 2007).   

 

1.3 Model parametrization  

The parametrization of a BN requires the assignment of states (i.e. potential values or conditions 

the variable can assume) to each variable of the system and the computation of conditional 

probabilities representing the strength of relationships between systems components (Kragt, 

2009; Pollino and Henderson, 2010).  

Across the reviewed literature, various sources of information have been employed to define 

states and extrapolate conditional probabilities including directly observed data, probabilistic or 

empirical equations, outputs from model simulations or elicitation from expert knowledge.  

When using observed data, conditional probabilities are learned directly from the dataset of 

monitoring or field observations, calculating the probability based on the frequency of observed 

conditions. In case of scarcity of observed data, outputs from models can be used to generate 

large amount of information to cover many cases as requests by scenarios setting (Cain, 2001b). 

The use of models becomes particularly useful, especially when dealing with climate change 

modelling and, more in general, with future scenarios for which directly observations are not 

available.  
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Molina et al. (2013), for instance, employed outputs provided by a chain of regional climate 

models, rainfall-runoff, groundwater and agro-economic models forced with different climate 

change projections (e.g. A1B, A2) and land use scenarios to parametrize a Decision Support Tool 

for sustainable groundwater management. 

When data learning cannot be applied because data or measures are missing or totally lacking, 

experts or stakeholders elicitation can be employed. Each knowledge source present some 

limitations which can affect the rigor and credibility of the model and therefore the best 

approach would be represented by the integration of different methods, at different level of 

accuracy and details (Pollino and Henderson, 2010). 

Only few of analysed methodologies, represent good practices in this sense, integrating multiple 

information and knowledge sources (Chan et al., 2012; de Santa Olalla et al., 2005; Keshtkar et 

al., 2013; Molina et al., 2013; Tighe et al., 2007). Among them Tighe et al. (2007), employed 

climate change projections provided by regional climate models, historical observations, expert 

judgment and literature information in an integrative fashion in order to assess multiple climate 

pressures on the state of natural resource in the Macquire River Delta Valley (Australia). 

 

1.4 Model evaluation  

After the model has been structured and trained, it requires to be evaluate in order to assess if 

it purses the objective for which it was designed and if the results are consistent with the 

outcome of other similar models (Kragt, 2009). According to Pollino and Henderson (2010), two 

main types of validation methods can been identified: the data-based validation and the 

qualitative evaluation. 

The data-based evaluation measures the predictive accuracy of the model by means of error 

rates comparing the frequency of the predicted node state (i.e. the node with the highest 

probability) with a test or an independent set of observed data. In cases where suitable dataset 

are not available, a qualitative model evaluation can be performed using expert judgement or 

comparing results with peer reviewed literature or similar model results (Kragt, 2009).  

Within the reviewed case studies, only two models have been validated using observed data (den 

Heijer et al., 2012; Gutierrez et al., 2011) while others (de Santa Olalla et al., 2005; Tighe et al., 
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2007; Varis and Kuikka, 1997) have not been validated or just provided a qualitative evaluation 

of the model highlighting that validation, as for other risk modelling techniques, remains a weak 

point.  

In addition, sensitivity analysis can be used to test the sensitivity of model outputs to variation in 

model input parameters and thus allowing to identify which are the most relevant variables but 

also to verify and correct model structure and parametrization (Borsuk et al., 2004; Marcot et al., 

2006; Newton, 2009). Most of the analyzed methodologies include sensitivity analysis (Balbi et 

al., 2015; Catenacci and Giupponi, 2013; Nadim and Liu, 2013; Stelzenmüller et al., 2010; Tighe 

et al., 2007) which, however, is performed using different type of measures (e.g. variance 

reduction, Entropy or Shannon’s measure of mutual information (Pearl, 1988)) according to the 

model objective and evaluation purposes. Tighe et al. (2007) applied the latter to identify which 

are the variables (i.e. climate change, river flow, water quality) that strongly influence the state 

of health of marshes. 

 

1.5 Scenario analysis 

Once trained and evaluated, the BN model can be used for scenarios analysis allowing to assess 

the relative changes in outcomes probabilities associated with changes in input variables (i.e. 

predictive function) or to define the state in which state input variable should be to obtain the 

desired outcome (i.e. diagnostic function). Most of the case studies applies scenarios analysis for 

predictive function perturbing the state of input variables according, for instance, to information 

provided by climate change (Catenacci and Giupponi, 2013; den Heijer et al., 2012; Gutierrez et 

al., 2011; Kotta et al., 2010; Molina et al., 2013; Tighe et al., 2007) and land use projections (Kotta 

et al., 2010; Molina et al., 2013) or future management and adaptation scenarios (Balbi et al., 

2015; Catenacci and Giupponi, 2013; de Santa Olalla et al., 2005). Giupponi and Catenacci et al., 

(2013) performed scenarios analysis to estimate the effectiveness of two different adaptation 

strategies (i.e. saltmarshes restoration, beach nourishment) in reducing the losses induced by sea 

level rise. To do so, the authors developed a total of nine different scenarios by imposing different 

relative sea level increase (i.e. +30, +50, +100 cm) and different scenarios of measures 

implementation changing the probabilities distribution of input nodes’ states. The same 
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approach has been used by Gutierrez et al., (2011) to estimate the effect of different climate 

change scenarios on shore line change rates.  

Finally, Molina et al. (2013) tested the effect of different scenarios on the recovery time of 

sustainable groundwater level in dry regions. Scenarios were developed starting from the 

outputs of an ENSEMBLE of Regional Climate Model (RCMs) and changing the states of input 

variables according with different combination of climate variables and land use features.  

Among the analyzed applications just Stelzenmüller et al., (2010) applied scenarios analysis with 

a diagnostic function. Specifically, she fixed the state of the final cumulative impacts (i.e. output 

variables) obtaining new “posteriori” probabilities distribution in the input nodes variables (i.e. 

fishing, sediment extractions, oil and gas infrastructures) to understand which changes in 

intensities of human activities would be required to achieve the desired level of cumulative 

impacts according with Maritime Spatial Planning (MSP) objectives and targets.  

Few studies (Varis and Kuikka, 1997) do not exploited the scenarios analysis function of BNs and 

provided just a scenario representing current or baseline conditions. 

 

1.6 Stakeholder involvement 

According to Bromley et al. (2005), good practices in BNs modelling would require stakeholders’ 

involvement during all the steps of the model development: from model conceptualization to 

validation and scenarios analysis. Despite these recommendations, just few of the reviewed case 

studies (Chan et al., 2012; de Santa Olalla et al., 2005; Keshtkar et al., 2013; Varis and Kuikka, 

1997) formally involved interested stakeholders in the process, thus using BNs as a fully 

participative tool for environmental assessment and management (Bromley, 2005). In most 

studies, in fact, stakeholders are mainly involved in the phase of model conceptualization (de 

Santa Olalla et al., 2005; Keshtkar et al., 2013) while they are generally ignored during the other 

stages of model development. 

de Santa Olalla et al. (2005) developed a BN to support the fulfilment of EU Water Framework 

Directive (Directive 2000/60/EC) requirements for groundwater resources. Relevant 

stakeholders (i.e. water users, local authorities) were identified performing a preliminary social 

network analysis and involved during the entire process of model development, testing and 
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updating by means of participatory recognized techniques (i.e. participative workshops, surveys). 

Conclusions highlight that, because of the high level of stakeholder involvement, the probability 

of adoption of proposed solutions and management options has increased.  

 

1.7. Spatial and temporal dynamics representation 

BNs are limited in the representation of spatial and temporal dynamics (Pollino and Henderson, 

2010). Accordingly, just few case studies consider possible changes of variables states in time or 

space across the timeframe and region of analysis (Balbi et al., 2015; Gutierrez et al., 2011; 

Molina et al., 2013; Stelzenmüller et al., 2010; Tighe et al., 2007). Tighe et al. (2007) included 

spatial nodes within the network to provide a more spatially explicit assessment of climate 

change impact on flows, water quality and ecology of Macquerine river and marshes (Australia). 

Specifically, the additional nodes are based on measures coming from gauging stations at 

different locations along the river and are used to build a subnetwork for river flow which rely on 

respective monitored data. In this way, the model, once run fixing the states of the spatial nodes, 

allows to associate the outcome to the specific location (i.e. gauging station). Others authors 

(Balbi et al., 2015; Grêt-Regamey and Straub, 2006; Gutierrez et al., 2011; Stelzenmüller et al., 

2010) instead, coupled BNs with Geographical Information Systems (GIS). In this way is possible 

to exploit spatially explicit dataset to characterize BNs nodes and to visualize the output in a 

spatial manner (e.g. risk mapping).  

The aforementioned approaches, however, only allow reproducing static changes trough space 

and time while neglecting dynamics and feedback effects. Among the reviewed application, only 

Molina et al. (2013) developed a dynamic model able to account also for dynamic changes trough 

time by applying an extension of conventional BNs (i.e. Dynamic Bayesian Networks, DBNs). 

Molina et al. (2013) developed a DBNs model to estimate the effect of climate change and land 

use scenarios for the future period 2070-2100 on groundwater recharge rates. Through DBNs 

modelling different stationary networks, each representing a discrete time steps, can be then 

linking together and information can be updated based on the output of the previous time steps 

thus allowing a more dynamic representation of space and time. 
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2. Potentials and limits of BNs for climate change multi-risk assessment 

and management  
The assessment and management of environmental and climate impacts from a multi-risk 

perspective can be seen as an extension of common environmental risk assessment and 

management frameworks (EPA, 1998) in which particular effort have to be posed to the 

identification and quantification of stressors interactions (Dawson, 2015; Gallina et al., 2016).  

Artificial Intelligence based models (e.g. Artificial Neural Networks (ANN), Bayesian Networks 

(BN) and fuzzy modelling approaches), integrating different system processes into a unified 

framework, are already commonly applied in environmental applications (Kourgialas et al., 2015; 

Liu et al., 2010; Pshenichny et al., 2009; Zabeo et al., 2010), and can be used to frame and quantify 

risk interactions under changing conditions. 

This kind of methods, in fact, can be designed to tackle complex environmental problems 

characterized by non-linear behaviour and hampered by large uncertainties. Fuzzy modelling, 

especially, result particular suitable in analysing new emerging risks which are still not well 

understood due to the lack of experience data (Zabeo et al., 2010). Fuzzy approaches recognize 

the uncertainty and lack of knowledge using available data or expert systems to describe cause-

and-effect relationships, assess the degree of risk exposure and rank key risks in a consistent way. 

Most variables are described in linguistic terms, making fuzzy models more intuitively similar to 

human reasoning (Shang and Hossen, 2013). However, relying most on expert knowledge they 

are strongly dependent on the human perspective and perception of the system failing in 

providing a strong quantitative assessment of risk and making the validation of results difficult. 

 

From the other side, Artificial Neural Networks (ANNs) allow relatively accurate and quantitative 

predictions of risk (Kourgialas et al., 2015). ANN, simulating the neural network behaviour of the 

human brain, are powerful learning tools capable of identifying complex non-linear relationships 

between input and output variables without prior knowledge of the internal structure of the 

system (Elgaali and Garcia, 2007). Often, however the value of ANNs as risk assessment tool has 

been argued claiming that they apply a sort of “black box” approach in which cause-effect paths 

are difficult to be detected and communicated to users. Furthermore, ANNs are a deterministic 
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tool and, consequently, features such as uncertainty, variability or randomness are difficult to 

assess through this tool. 

 

Bayesian Networks have the capability and flexibility to use and integrate different sources of 

information, from detailed models to qualitative experiential understanding, in order to derive 

the conditional probability distribution between variables. 

In this way, BN can be used as integrative tool in which different kind of methods can be coupled 

overcoming the shortcomings of single approaches and improving the risk assessment 

procedure. 

Fuzzy approaches, for instance, can be integrated in BNs modelling to discriminate between 

alternative model structures thus reducing structural uncertainty and encapsulating expert 

knowledge and rules to improved systems understanding. At the same way, ANNs results 

simulations can be used to extrapolate probabilistic relations between systems variables in the 

network improving the quantitative description of specific processes taking place in the system. 

Moreover, BN can act as integrative tool always maintaining an intuitive graphical structure 

which, making clear the underlaying cause-effect relationships and assumptions ensure a 

transparent communication of results to stakeholders and end users. 

Based on these considerations, in the following sections, an analysis of advantages of applying 

BNs as integrated modelling tool for environmental risk assessment and management of climate 

change impacts is provided. Specifically, drawing on the case studies analysis, main potentials of 

BNs are described and discussed in relation with the fundamental steps of a generic multi-risk 

assessment framework (Dawson, 2015) which is a chronological and iterative process as 

described in Figure 1. Finally, some of the major drawbacks which could represent barriers for 

BNs application in the climate change impact assessment and management field are presented.  
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Figure 1 Overall approach adopted for the review and discussion of potentials and limits of Bayesian Networks for climate 
change multi-risk assessment and management. 

 

2.1 Potentials 

2.1.1 System definition 

Any environmental risk assessment procedure requires, preliminarily, to establish the context of 

the analysis bounding the problem on appropriate time and spatial scales and identifying the 

systems structures and relevant assessment endpoints (Dawson, 2015; Pollino and Hart, 2008). 

Assessment endpoints provide an explicit representation of values or characteristics of the 

system that need to be protected and, therefore, translate the risk assessment objectives into 

measurable attributes which can be modelled (EPA, 1998). In the context of climate change 

impacts assessment, they can be represented by either ecological or human systems, 

characteristics, processes, values or activities which can be potentially affected or altered by 

climate related events (IPCC, 2014).  
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Given the multi-disciplinarily of the issue and the multitude of actors involved, reaching a 

consensus on the structure of the systems and relevant endpoints to be included in the analysis 

can be not straightforward. In such situations, the use of multidisciplinary expert systems and 

the involvement of representative groups of actors is crucial to reach a share vision of the system. 

BNs allow a strong integration between very different information sources ensuring that expert 

knowledge can be included together with quantitative data to better understand system 

structure and relevant processes involved (Kelly et al., 2013).  

Moreover, through BNs, multiple assessment endpoints can be integrated within the same 

framework allowing considering multiple perspectives and dimensions (e.g. economic, social and 

environmental), thus ensuring a comprehensive analysis of risk.  

In this way, the network can be used to estimate the optimal tradeoff between different and, in 

some cases, contrasting objectives. The potential to promote an informed discussion on tradeoffs 

(e.g. balancing water requirements for productivity and the ecosystem) and opportunities 

enhances the prospect for less controversial outcomes and an higher acceptance of the results 

(Pollino and Hart, 2008). 

 

2.1.2 Explore interactions 

The multi-risk analysis requires the characterization of all systems variables, interactions and 

processes relevant to the objectives and endpoints in the selected timeframe and spatial unit 

(Dawson, 2015; Gill and Malamud, 2014; Pollino and Hart, 2008). According to Gallina et al. 

(2016), when dealing with climate change impacts this can result particularly challenging as it 

naturally requires a multidisciplinary approach taking into account multiple perspectives and 

dimensions (e.g. economic, social and environmental) (McCann et al., 2006). Multidisciplinary 

may, to some extent, represents a demanding task in risk assessment: the joint involvement of 

different expertise requires the development of frameworks which are understandable and 

acceptable by all involved specialists, including decision makers. Moreover, different data 

sources adopt different unit of measures which can be not directly aggregable and comparable. 

The conceptual model’s structure of BNs can help in the understanding of such complex systems 

(Aguilera et al., 2011). Many variables (i.e. stressors, vulnerabilities, risks) and their inter-
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relationships can be incorporated, in form of nodes and arcs, under the same network. Through 

their graphical structure BNs provide an effective conceptualization of different possible 

interactions between variables and assessment endpoints including cumulative, synergic or 

antagonistic effects, cascading and triggering events. In this way, it is possible simultaneously to 

capture and communicate the breadth of the problem, allowing to include also indirect effects 

(e.g. lag effects, indirect impacts), as well as focusing on key processes at the local scale. BNs 

support the integration of knowledge coming from various disciplines and spheres permitting 

very different variables to be assembled in a systematic manner (Düspohl et al., 2012; Haapasaari 

and Karjalainen, 2010) and expressed using the same unit of measure (i.e. probability 

distribution). In this sense, BNs represent an effective tool to integrate existing information and, 

at the same time, a common platform where different domains (i.e. environmental, economic, 

social) can interact in a more effective fashion (Rahikainen et al., 2016).  

 

2.1.3 Interactions quantification 

A fundamental aspect translating a risk assessment into a multi-risk assessment lies on the 

quantification of interdependency between systems variables (i.e. cumulative, synergic or 

antagonistic, cascading effects) which are likely to influence the final risk level (Dawson, 2015; 

Gill and Malamud, 2014).  

Ideally, this quantification should be wholly quantitative however due to the differing 

characteristic of hazards, multiple sources of vulnerability and incomplete information about 

their relation this is rarely possible (Liu et al., 2015, 2014). Commonly used models for multi-risk 

analysis, mostly rely on past information, neglecting considerations about future climate and 

socio-economic scenarios and, consequently, resulted scarcely applicable for climate change 

analysis where condition could differing substantially from actual ones (Gallina et al., 2016). In 

addition, current multi-risk assessment practices are based on deterministic models where 

relationships evaluation is limited to those that are readily quantified while rarely uncertainty or 

variability are represented (Liu et al., 2014). 
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In BNs, as relations between variables are express as conditional probability, interactions are 

quantified in a probabilistic form and the likelihood of an event given the occurrence of another 

can be quickly derived. The use of probability to express risk components’ dependencies means 

that these can be quantified using both quantitative (i.e. empirical models, physical analyses or 

historical data, climate change models) and qualitative (i.e. expert elicitation) information. It 

makes possible to explore multi-risk also in cases when little information are available, 

uncertainty are high and the relationships are not easily expressible using mathematical 

notations (Pearl, 2011). A larger number of multi-risk scenarios, considering different 

combination of variables interactions, can be explored. In this way, it is possible to assess the 

consequence of chain of impacts induced by events that, despite being characterized by few 

information at the actual state of knowledge, could become more frequent in the future. At the 

same time, the uncertainty and probability of each of these scenarios are provided such as users 

can have a realist idea of those which are the most probable in term of occurrence. Another, 

interesting potential use of BN for the quantification of interactions between variables is the 

possibility of using Dynamic Bayesian Networks (DBNs) (explained in detail in Section 1.8 and 

Section 3.2.1) to account also for time-depended dependencies. In contrast to BN, DBNs allows 

probabilistic inferences in dynamic domains enabling to monitor and update the system as time 

proceeds (Mihajlovic and Petkovic, 2001). Introducing DBNs, would be possible, for instance, to 

predict the behavior of system variables in response to states changes in previous time steps and 

even to model the effect of consecutive or triggering events.  

 

2.1.4 Uncertainty estimation and communication 

An effective communication of risk and associated uncertainty is essential when developing 

models to support decision making. Given the high uncertainty associated with climate change 

projections, it is necessary that decision makers are informed about the range of possible 

outcomes (i.e. best/worst scenarios) to ensure that decisions taken are based on robust 

quantitative estimates (Burgman, 2005; Power and McCarty, 2006). 

Commonly decision makers are averse to uncertainty and, especially in climate change 

management issues, it can represent a major barrier for engagement and commitment (Morton 
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et al, 2011). For this reason uncertainties should be communicate as an inevitable component of 

risk and in a way that can be easily understood also by a no-scientific community to avoid 

misjudged information and to prevent overconfidence in management responses (Uusitalo, 

2007). When applying BNs for risk assessment, results are presented in form of risk scenarios 

representing a range of possibilities of what the future could be, each with a probability attached. 

In this way, uncertainty and risk are represented and communicated in a way which is 

quantifiable and well recognizable also by a non-expert. BNs, as probabilistic model, are designed 

to deal with uncertainty: uncertainty in the inputs is recognized and propagates trough the model 

determining uncertainty in the outputs. Users can easily track which are the main sources of 

uncertainty affecting the model (e.g. lack of knowledge, natural variability, subjectivity of expert 

judgements) and identify, if and where, it can be reduced improving the performance of the 

assessment. Finally, thanks to their graphical structure and the transparency in input information, 

the assumptions and uncertainties lying behind the model can be better communicate increasing 

the likelihood that the outputs will be accepted and, consequently adopted, in decision making 

and risk management (Pollino et al., 2007). BNs networks can be informed, for instance, using 

multi-model ensembles that rely on the outputs of multiple climate or impact models (e.g. 

hydrological, ecological models), thus facilitating the assessment and communication of 

uncertainty characterizing the analysed hazards and risks.  

 

2.1.5 Risks prioritization  

Risks prioritization is a key component of risk assessment and management as it provides the 

guidance for the implementation of appropriate risk reduction strategies and support the optimal 

allocation of available adaptation resources. This steps aims at evaluating environmental and 

climate risks identified in the previous phases based on their magnitude, uncertainty, relevance 

for stakeholders, to identify the most relevant ones that should be considered when developing 

adaptation strategies (Döll and Romero‐Lankao, 2017). 

BNs, being causal models, can assists risk prioritization driving the understanding of pathways of 

hazards and vulnerabilities relations, how they change over space and time, and what it means 

in terms of probability and likelihood of adverse effects in a straightforward and understandable 
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manner (Molina et al., 2016; Pollino and Henderson, 2010; Pollino and Hart, 2008). As suggested 

by Pollino and Hart (2008), once the structure and the relationships driving the model have been 

established, priority stressors and risks can be identified performing sensitivity analysis (Section 

1.4).  

Sensitivity analysis, in fact, can be used to explore the behaviour of the system and to identify 

variables which have the greatest influence on model endpoints. Through sensitivity analysis, it 

is possible to detect how the variation in the output of a model (i.e. risk level) can be apportioned 

to different variations in the inputs (i.e. hazards and vulnerability changes) and therefore to track 

relevant causal pathways between variables. 

In this way, the outcomes of risk prioritization can be useful to identify which factors and 

variables should be targeted by risk management to effectively reduce the probability of 

undesired events and to select the opportune typology of responses to put in place (i.e. hazards 

mitigation, vulnerability or exposure reduction). 

Finally, sensitivity analysis depicts the key variables which should be included in a more 

quantitative risk assessment procedure and those which can be removed from further 

consideration as their contribution on final risk level is irrelevant. 

 

2.1.6 Risk management  

Focusing on the most relevant risks identified in the previous phase, risk management involves 

the identification of measures and assessment of their effects in minimizing the probability of 

adverse events induced by multiple and interacting factors. Measures can be evaluated 

considering several criteria including costs, benefits and trade-offs among options. 

Specifically, climate change risk management is based on the development of adaptation or 

management scenarios, where the effect of alternative options is simulated to identify what 

measures can lead to a envisioned risk reduction under different climate change scenarios and 

other external stressors (Döll and Romero‐Lankao, 2017). 

BNs can be used to guide decision makers in the testing of individual or set of interventions (e.g. 

alternative management decisions or policies, adaptation or risk mitigation measures) through a 

quick and straightforward process. The effect of measures can be examined by assigning a fixed 
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distribution to the input variable of interests (i.e. those directly affected by the interventions) 

and to determine how probabilities distribution of the output variables change in response. As 

results are expressed as probability distributions, for each alternative, decision-makers can have 

a realistic prediction of the chances of achieving desired outcomes and an evaluation of its 

uncertainty. Moreover, to make the results more explicit and clear for users, decision and utility 

nodes can be incorporate within the network (Pollino and Henderson, 2010). Decision and utility 

nodes have the advantage that they can be associated with deterministic costs and benefits 

analysis (Düspohl et al., 2012; Inman et al., 2011) making the impacts of several management 

actions comparable also in economic terms and thus supporting the identification of the set of 

optimal measures (e.g. the mitigation of most relevant risk at the lower cost).  

 

2.1.7 Monitor and review 

Given the high uncertainty surrounding climate change, an adaptive approach to the whole 

process of multi-risk assessment and management is strongly required (Döll and Romero‐Lankao, 

2017; Landis et al., 2013b). 

The outputs of the risk assessment and management should be continually reviewed and 

updated throughout and after the process to: i) include improved knowledge to reduce 

uncertainty; ii) track changes in variables interactions as results of changes within the system; iii) 

determine if predicted effects are realized over the time; iv) monitor how the systems is reacting 

to the implemented adaptation measures. 

BNs are highly flexible and adaptable to changing conditions and, being constructed through an 

iterative process, well fit the implementation of the adaptive management principle  (Pollino and 

Henderson, 2010). As soon as the new knowledge and evidences (e.g. observations, field data, 

model results, scenarios) become available they can be used to update evidences and uncertainty 

thus increasing the robustness of risk assessment outcomes (Failing et al., 2004). 

In this way, new climate change scenarios can be included as input for the process allowing to 

test system responses to a wider range of climatic combinations and to adjust management 

efforts over time.  
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As results of iterative review, the model structure can also be adapted and extended including 

for instance, additional variables to capture emerging properties or removing variables that, with 

projected changes, may become irrelevant for final risk estimates. 

2.2 Limitations 

Besides highlighting several potentials of BNs as risk assessment tool, the reviewed applications 

allowed to depict also some of their main limitations and drawbacks. These limitations, have 

been extensively discussed by several authors (Aguilera et al., 2011; Catenacci and Giupponi, 

2010; Düspohl et al., 2012; Phan et al., 2016; Pollino and Henderson, 2010; Uusitalo, 2007) and 

include: i) the big amount of data required for model development; ii) the limited capacity of BNs 

of dealing with continuous variables; iii) the knowledge bias in expert elicitation; iv) the growing 

complexity of the computational effort in case of complex systems.  

Two other drawbacks of BNs models, however, are those representing major challenges and 

limiting their application for climate change impact assessment and management: their scarce 

representation of temporal and spatial dynamics and the difficulty of performing a quantitative 

validation of model results. Both aspects, together with practical solutions for improvement, are 

described and discussed in the following sections. 

 

2.2.1 Scarce representation of temporal and spatial dynamics and feedback loops 

As highlighted in Section 1.7, BNs are limited in the representation of spatial and temporal 

dynamics. It represents a problem for climate change applications as environmental and socio-

economic systems involved are characterized by dynamics which are strongly unpredictable and 

varying across space and time (Moore et al, 2009). As reported in some of the analysed 

application (Balbi et al., 2015; Gutierrez et al., 2011; Molina et al., 2013; Stelzenmüller et al., 

2010; Tighe et al., 2007), different methods can be adopted to overcome this limitation. One 

straightforward solution is to include a spatial/temporal node in form of an additional input 

variable into the network which can be then parametrized using information associated with 

specific geographical location (e.g. gauging and monitoring stations) or time period (i.e. a specific 

year or climatic period). The model, once run fixing the states of the temporal-spatial nodes, 

allows to associate outcomes to the specific location or time.   
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Another widely used practice consist in coupling BNs with Geographical Information Systems 

(GIS) in order to exploit  the capabilities of GIS to quantify specific nodes and to visualize outputs 

in a spatial manner (Balbi et al., 2015; Grêt-Regamey and Straub, 2006; Gutierrez et al., 2011; 

Stelzenmüller et al., 2010).  

Despite the aforementioned approaches allow conferring to the BNs’ outcome a more spatially 

and temporally explicit flavour, they only permit to reproduce static changes trough space and 

time while ignoring dynamics and feedback effects. If the process or system under analysis 

requires a dynamic representation trough time and space Dynamic Bayesian Networks (DBNs) 

can be used (Molina et al., 2013; Pollino and Henderson, 2010). DBNs are an extension of 

conventional Bayesian Networks relying on the Object Oriented Programming paradigm 

(OOP)(Koller and Pfeffer, 1997). DBNs act breaking up timeframe of analysis into relevant time 

slices (i.e. discrete time-steps) and reproducing the same structural copy of the network for each 

time slice. Networks associated with different time step are then linked by instance nodes which 

enable the exchange of information between different networks.  

Despite the potential of DBNs is quite attractive, especially from a multi-risk assessment point of 

view, their application can result tedious due to the complexity involved which require a certain 

level of expertise in statistics to be managed. For this reason, very few examples of DNBS 

modelling can be found in literature (Molina et al., 2013) 

 

2.2.2 Quantitative validation 

Another limiting aspect of the application of BNs as risk assessment tool is the difficulty to provide 

a strong quantitative validation of the network results. As for other kind of models, the best way 

for validation would be represented by a comparison with an independent set of observed data. 

However, as described in the analysed literature, it is not always feasible especially when dealing 

with complex systems characterized by multiple stressors and variables, where large dataset is 

commonly lacking or difficult to be retrieved.  

BNs are usually developed in an integrative way including different and heterogeneous 

information sources (i.e. experts, data, models results) making the validation of the whole 

network a very difficult or even impossible task (Barton et al., 2008; Uusitalo et al., 2016). For 
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this reason, in fact, quantitative validation is commonly limited to data-derived portions of the 

network or to single parameters (Molina et al., 2013) while, for others, validation is restricted to 

indirect methods (i.e. expert evaluation, comparison with previous studies). 

BNs validation became even more complex and problematic in the context of predicting future 

risks, where, the observations and experiences are not available and the true outcome will be 

revealed only in the future (Uusitalo et al., 2016). In such cases, an alternative validation can be 

performed using outputs of model’s simulation (i.e. climate or hydrological models), forced with 

the same climate change scenarios, as comparative dataset.  

Conclusions 
The paper provides a review of BNs applications in the field of sustainable resources management 

and natural hazard with the aim to explore the potential use of BNs as modelling tools to improve 

current climate change risk assessment and management procedure. The results highlight that, 

despite BNs have been applied to a large variety of problems and contexts (i.e. water resource 

management, oil spills, transport of pollutants, hydrological hazards), their application in climate 

change studied is still limited. Among the reviewed applications, very few previous studies 

(Catenacci and Giupponi, 2013; Dyer et al., 2011; Gutierrez et al., 2011; Kotta et al., 2010; Molina 

et al., 2013; Tighe et al., 2007) make explicit use of BNs to deal with the assessment of climate 

change impacts on natural resources (i.e. water quality and availability, soil erosion, biodiversity). 

These studies however mainly used qualitative and narrative scenarios to inform the BN, while 

very few integrated quantitative projections coming from climate change models within the 

analysis. 

The reviewed applications also reveal BNs could represent a powerful tool to help in addressing 

some of the main limitations of traditional approaches to environmental risk assessment such as 

the single stressor assessment focus and the representation of uncertainty. 

BNs, in fact, provide a stochastic assessment of risk based on probabilistic causal-effect 

relationships quantification which enable the modelling of multiple stressors and endpoints in 

the same integrated framework. In this way, the probability of impacts chains induced by the 

interactions between multiple stressors can be evaluated in a quick and systematic manner 
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taking advantage of the integration of qualitative and quantitative information coming from 

different knowledge domains (i.e. environmental, social, economic). The probabilistic expression 

of knowledge in BNs directly incorporates uncertainty, which represent a pervasive problem in 

climate change researches. Through BN, the large amount of information provided by climate 

and impact models can be effectively integrated and summarized supporting the quantification 

and transparent communication of uncertainties related with climate change projections and 

scenarios.  

Together with BNs potentials as risk assessment tool, some of their limitations and drawbacks 

are also discussed including, among all, the scarce representation of temporal and spatial 

dynamics as well as the difficult incorporation of feedback loops.  

In literature some of these limitation has been overcome by coupling, for instance, BNs with GIS 

(Grêt-Regamey and Straub, 2006; Stelzenmüller et al., 2010) or by developing DBNs (Molina et 

al., 2013).  

Both solutions represent innovative fields to be explored in future researches to boost BNs use 

in climate change applications and allowing the representation of spatial and temporal dynamics 

of risk and vulnerabilities, as well as the communication of results in a spatially explicit manner.
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Paper 2-A Bayesian Network approach for the assessment of climate 

change impacts on nutrients loadings in transitional waters 

Introduction  
Climate change, in combination with other anthropogenic stressors (i.e. urbanization, 

agriculture, population grown), may affect the availability and quality of water in multiple 

ways (Jiménez Cisneros et al., 2014). Accordingly, a deep understanding of expected impacts 

is required to support adaptation processes. Furthermore, a sustainable water resources 

management requires approaches that can be applied under uncertain and changing 

conditions. Despite potential impacts of climate change on water availability have been 

widely studied in the last decades (Molina et al., 2013;  Marcos-Garcia et al., 2017; Ronco et 

al., 2017; Zabel, 2016), the implication for concomitant changes in water quality have been 

just poorly explored (Bussi et al., 2016; Huttunen et al., 2015; Lu et al., 2015; Pulido-Velazquez 

et al., 2015; Whitehead et al., 2008). 

In Mediterranean climate regions, the high seasonal variability alternating dry and wet period 

is likely to have profound effects on those hydrological processes (e.g. runoff, river flow, water 

retention time, evapotranspiration) that regulate the mobilization of nutrients and other 

kinds of pollutants from land to water bodies (Alam and Dutta, 2013; Culbertson et al., 2016; 

El-Khoury et al., 2015; Ockenden et al., 2016). Likewise, increased temperature can accelerate 

the mineralization of organic matter in the soil (Eghball et al., 2002). Consequently, the 

availability of inorganic forms of nitrogen and phosphorus increases and favourite their 

erosion. Furthermore, decrease in precipitation can reduce river flow and nutrient loadings 

but at the same time can alter their dilution in the receiving water body (Whitehead et al., 

2009). Finally, increased winter precipitation and the occurrence of summer extreme events 

can increase the runoff and associated wash-off of fertilizers (Jeppesen et al., 2009; Sterk et 

al., 2016; Whitehead et al., 2009).  

Despite the fact that all these alterations are likely to affect nutrients availability and loadings, 

the magnitude, timing and seasonality of these changes are still largely unknown (Jiménez 

Cisneros et al., 2014) 

Moreover, procedures commonly applied to assess negative impacts on water resources are 

based on process-based models in which relationships between model variables are 
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expressed using mathematical equations with deterministic values (Jackson et al., 2000). 

Despite these approaches have the advantage of providing a strong quantitative modelling of 

impacts, they fall short in dealing with the uncertainty characterizing climate change 

scenarios and in incorporating the effect of human decisions on the system, thus reducing 

their usefulness for management and adaptation. Consequently, it results in their low use for 

management and adaptation. In fact, when dealing with natural resource management, , 

understanding the average processes is not always sufficient, while decision-makers are 

increasingly more interested in having a realistic picture of all possible outcomes (Burgman, 

2005; Power and McCarty, 2006) and uncertainties (O’Hagan, 2012). 

For this reason, probabilistic models (i.e. Bayesian Networks) which directly incorporate and 

account for uncertainty through all stages of the modelling, are increasing in popularity in 

environmental resource management under changing conditions (Catenacci and Giupponi, 

2010; Franco et al., 2016; Molina et al., 2013; Sperotto et al., 2017). Bayesian Networks (BNs), 

in fact, thanks to their probabilistic nature, can be used to summarize large amount of 

information coming from different knowledge domains and to display effects of different 

scenarios in an effective way. Consequently, they can be used to translate results of 

deterministic predictions into a probabilistic form. This makes the uncertainty in model results 

more explicit and interpretable, enhancing their value in decision making. 

 

In this study, we apply a risk assessment procedure based on Bayesian Network modelling to 

link future scenarios of climate change (i.e. changes in precipitation and temperature, 

irregularities in water regime) with water quality alteration (i.e. changes in nutrients loadings). 

Specifically, Bayesian Networks were used as integrative tool for building a Decision Support 

System (DSS) that structures and combines the information available in existing hydrological 

models (i.e. SWAT), climate change projections, current land use and agronomic practices, 

historical observations and expert opinion. The model was implemented and applied to the 

case study of the Zero river basin in Northern Italy, one of the main tributaries of the Venice 

Lagoon. The DSS is able to produce alternative risk scenarios to communicate the probability 

of changes in nutrients (i.e. NO3, NH4, PO4) delivered from the basin into the lagoon over 

future scenarios and to support the identification and prioritization of most effective 

management and adaptation strategies to maintain good water quality status (e.g. Water 

Framework Directive) under climate change conditions. 
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After a brief introduction to the case study area (Section1) the paper describes the 

methodological steps and input data used to implement the risk assessment procedure 

(Section 2) and finally, discusses the scenarios developed for the Zero river basin case study 

(Section 3). 

1. Case study area  
The Zero river basin (ZRB) (latitudes 45°28’N-45°48’N, longitudes 11°54’E-12°25’E) (Figure 1) 

covers an area of 140 km2, it is located within the Venetian floodplain (Northern Italy) and it 

is a sub-basin of the Venice Lagoon Watershed (Figure 1a). The Zero river (Figure 1b), which 

is 47 km long, originates near “San Marco di Resana”, and along its way, it collects the waters 

of numerous tributaries (e.g. Brenton del Maglio, Scolo Vernise, Rio Zermason). Then it 

merges with the Dese river about 2 kilometres upstream the discharge into the Venice 

Lagoon. Overall, the Dese and Zero rivers together provide the greatest contribution of 

freshwater (21% of the total) to the lagoon of Venice (Zuliani et al., 2005). Thanks to its 

transitional position the basin features a Mediterranean climate but with typical traits of 

more Continental climates (Guerzoni and Tagliapietra, 2006). Thus, this climate is 

characterized by cold winters and generally well distributed precipitation throughout the 

year, with peaks in spring-autumn and minimums during the winter-summer periods. 

Summers are frequently characterized by intense storms of short duration (Guerzoni and 

Tagliapietra 2006). Specifically, the region features an average annual precipitation of around 

1000 mm (period 2007-2012) and an average annual temperature of 14 °C (period 2004-2013) 

but it is characterized by a marked inter-annual climate variability, which can originate years 

climatologically very different from each other. 

The environmental and the hydrological characteristics of the ZRB are heavily influenced by 

natural phenomena and human activities that together had shaped a complex hydrologic 

network. The basin, in fact, is characterised by several hydraulic infrastructures and artificial 

channels developed to reclaim land for agricultural purposes and to regulate the flow 

discharging into the lagoon of Venice (CVN, 2006). Furthermore, spring waters originated and 

risen in the surrounding areas influence the hydrology of the Zero river with the main 

contribution coming from an unconfined aquifer system located on the high plain (Servizio 

Acque Interne, 2008).  
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Figure 1 The Zero river basin case study 

The land use of the ZRB is mainly characterized by agricultural areas, representing the 73% of 

the total surface, while the remaining surface of the basin is covered by artificial (24%), semi-

natural and forested areas (4 %). 

Agricultural areas are dominated by industrial crops typologies, including corn (45%) (i.e. Zea 

mays L.), soy (9%) (i.e. Glycine max L.), and autumn-winter cereals (13%) such as winter wheat 

(i.e. Triticum aestivum L.) and barley (i.e. Hordeum vulgare L.). A negligible percentage of the 

agricultural land is also used for the cultivation of beets and other permanent horticultural 

crops. Furthermore, the north-western part is characterized by an intensive rearing activity 

and a significant presence of livestock farms, with a density of 5 to 10 farms per km2  (ARPAV, 

2009). 

Artificial surfaces are mainly represented by housing areas (54%), industrial businesses (32%) 

and transportation and services (14%).  Accordingly, several industrial and residential 

activities exist on the basin. Three waste water treatment plans (i.e. Morgano, Zero-Branco 

and Castelfranco Veneto) (Figure 1b) with capacities ranging from 2500 to 32000 of 

Population Equivalents (P.E.) directly discharge into the Zero river. 

The intensive agriculture, characterized by an elevated level of fertilization, and the dense 

urbanization are considered significant pollution sources for the area; especially for what 
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concern nutrients (i.e. phosphorous, nitrogen) loadings. Diffuse and point nutrients pollution 

has become a major concern in the area since late 1980s when eutrophication reached its 

peak in the Venice Lagoon. This process brought toxic algae blooms and consequent 

implications for environmental, human health and water quality (Facca et al., 2014). Since 

then several national and regional policies, legislation and measures have been implemented 

to support investments for pollution control. Furthermore, good agricultural practice in 

concert with the Common Agricultural Policy (CAP) and other European regulations and 

directives has been implemented. In fact, the area has been identified as a Nitrate Vulnerable 

Zone (NVZ) according to the Nitrate European Directive (1991/676/CEE), with the aim of 

regulating and controlling the input of fertilizers from agricultural activities. At the same time, 

limits for the Maximum Admissible Load of nutrients discharged into the lagoon from the 

drainage basin were fixed at 3000 t/year for nitrogen and 300 t/years for phosphorous by the 

national competent law (DM 09/02/1999). 

2. Material and methods 
The risk assessment framework proposed in this work aims to assess the interactive effect of 

climate and anthropogenic changes on nutrients loadings in transitional waters. To do so, we 

adopt a multi-disciplinary approach to which different knowledge domains (i.e. 

environmental and social science, agronomy, hydrology, climate change) contribute. Also, 

quantitative and qualitative data, coming from multiple information sources, are integrated 

in a harmonic manner trough BNs. Accordingly, the proposed risk assessment approach is 

made upon different integrated components in communication through a dynamic exchange 

of information (Figure 2).  

The core is the Bayesian Network, which is used as meta-modelling tool for structuring and 

combining, into a probabilistic form, information provided by hydrological models, climate 

change projections, historical observations and expert judgment. Different information types 

populate the Bayesian Network at different level of implementation. Qualitative information 

elicited from experts is used to develop the conceptual model of the network and to train 

socio-economic and agronomic variables of the model for which quantitative data are not 

available. 
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Historical observations are used as input for the training of the network together with some 

hydrology and nutrient loadings variables provided by the hydrological simulation with the 

Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012) for current conditions (i.e. 2004-

2013). In addition, an independent set of observations is used for validation. After the 

training, climate change projections are employed as input for scenarios analysis to simulate 

the effect of future climate change on nutrients loadings. At the same time, SWAT simulations 

forced with the same climate change projections are used to evaluate the performance of the 

network over future condition.  

Main outputs of the risk assessment approach are the values of key state and management 

variables for alternative risk scenarios, communicating the probability of water quality 

alterations. This is achieved taking into account both projected climatic and not climatic 

conditions to support the identification of appropriate adaptation strategies at the local scale.  

2.1 Input data 

The capacity of the Bayesian Network to correctly represent hydrological and water quality 

processes of the case study area strongly depends on the quality and completeness of input 

data. Accordingly, Table 1 summarized the data collected for the implementation and 

evaluation of the network in the Zero river basin case study, highlighting the typology of data 

used, the time scale, spatial resolution and source. 

Figure 2 General risk assessment framework applied to evaluate the interactive effect of climate and anthropogenic 
changes on nutrients loadings in transitional waters 
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Table 1 List of input data used for the application of the risk assessment model in the Zero river basin 

Data type Description Time scale Resolution Source 

Observations 

Land cover 
map  

▪ Land use map of the Veneto region 2006 1:10.000  

Regione del Veneto – 
Infrastruttura dati 
territoriali 
(http://idt.regione.venet
o.it/app/metacatalog/)  

Climatic Data  
▪ Daily precipitation 
▪ Max/min daily temperature 
▪ Daily evapotranspiration  

2004-2013 
3 stations (i.e. Castelfranco, 
Veneto, Zero Branco, 
Mogliano Veneto) 

ARPAV – Servizio 
Meteorologico  

HWater 
quantity and 
quality data 

▪ Observed daily? river discharge 
▪ Observed nutrients’ (NO3, NH4, PO4) 

concentrations in the lagoon? 
2007-2012 

2 stations (i.e. Manual 
station (Code 122), 
Automatic station (Code: 
B2q) 

ARPAV – Servizio Acque 
Interne  
MAV – Magistrato 
Acque Venezia 

Point-source 
pollution 

▪ Monthly N and P loadings from 
WWTP and Industrial discharges  2004-2013 

3 stations (i.e. Morgano, 
Zero-Branco, Castelfranco 
Veneto) 

ARPAV – Servizio Acque 
Interne    

Hydrological simulations 

Water 
quantity and 
quality data 

▪ Simulated runoff 
▪ Simulated N and P load in the runoff 

2004-2013 River basin 

SWAT simulations (Pesce 
et al., 2017) 
 

▪ Simulated river discharge or flow rate 
▪ Simulated nutrient loadings (NO3, 

NH4, PO4) in the lagoon 
2004-2013 

1 station (i.e. Manual 
station (Code 122) ▪ Simulated nutrients loadings in the 

lagoon under future climate change 
scenarios 

1983-2100 

Climate change projections 

Climatic data 

▪ Temperature 
▪ Precipitation 

1976–2100 8 km 

CMCC-CM/COSMO-CLM 
simulations  (Cattaneo 
et al., 2012; Scoccimarro 
et al., 2011) 

 

2.1.1 Observations 

Observations regarding the main climatic parameters (i.e. precipitation, temperature and 

evapotranspiration) were provided by the ARPAV meteorological service and obtained from 

three weather monitoring stations (Figure 1b) representative of the climatic condition of the 

case study area for the period 2004-2013. Quantitative information regarding point-source 

pollution for the period 2004-2013 were obtained from the measures of ARPAV-Internal 

Waters Services which monitor the loadings of N and P originating from wastewater 

treatment plants (WWTP) and industrial discharges located along the Zero river. Observed 

hydrologic data (i.e. river discharge (Q), nutrient concentrations (i.e. NO3, NH4, PO4) used to 

evaluate the performance of the model under current conditions were provided by ARPAV –

Internal Water Services and the former MAV (Magistrato alle Acque Venezia) for the period 

2007-2012.  
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2.1.2 SWAT model simulations 

Due to the lack of a consistent record of observations for the training period, all the 

information used to characterize the hydrological aspects of the model under current 

condition were extrapolate from the output of SWAT model simulation runs for the period 

2004-2013 in the case study (Pesce et al., 2017) (Table 1). Specifically, water flow and 

nutrients loadings were simulated trough SWAT at the closure of the river basins (Figure 1b) 

while for the runoff and N and P in the runoff simulations at the river basin scale were used. 

At the same time, SWAT model simulations of nutrient loadings at the basin mouth for the 

period 1983-2100 according to two RCPs (Representative Concentration Pathways) (i.e. 

RCP8.5-4.5) (Table 1) were used to evaluate the performance of the model under future 

conditions.  

 

2.1.3 Climate change projections 

Future daily precipitation and temperature projections, used as input for the development of 

alternative climate change scenarios, were obtained from simulations of the CMCC-

CM/COSMO-CLM model developed by the CMCC (Centro Euro-Mediterraneo sui 

Cambiamenti Climatici) which produces climate scenarios at a spatial resolution of 8 km for 

the selected region covering the period 1976–2100. According with the purpose of the study, 

simulations developed using the two more extreme Representative Concentration Pathways 

(RCPs) (IPCC, 2013), RCP4.5 and RCP8.5 were selected.  

 

2.2 Bayesian Network development 

The BN for the Zero river basin was implemented and run using the software HUGIN Expert, 

version 8 (Bromley et al., 2005; Madsen et al., 2005). The development of a BN is an iterative 

and adaptive process which consist in four major steps: i) the development of the conceptual 

model of the system; ii) the training of the model with data; iii) scenario analysis; and finally, 

iv) the evaluation of model performances (Kragt, 2009) (Figure 2). Accordingly, the following 

Sections describe how the different BNs development phases have been implemented in the 

Zero river basin case study. 
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2.2.1 Development of the conceptual model of the system  

The phase of model conceptualization aims at developing an influence (i.e. “box and arrow”) 

diagram providing a graphical representation of the system under consideration. The network 

conceptualization, therefore, includes the identification of the main system variables (i.e. 

nodes) as well as the links between them (i.e. directed arcs). The identification of relevant 

variables and links can be typically based on a literature review, expert knowledge and 

consultation with local stakeholders. For each variable, appropriate indicators as much as 

possible measurable, observable and predictable have to be identified. Once the variables 

and relative indicators are defined, the links between them are identified and represented as 

unidirectional arrows as BNs do not permit feedback loops.   

Figure 3 provides a representation of the influence diagram developed for the Zero river case 

study which was developed based on expert consultation following the DPSIR (Driving forces, 

Pressures, States, Impacts and Responses) framework (EEA, 1999; Kristensen, 2004). The 

DPSIR here was adopted to conceptualize the system identifying the main cause-effect 

relationships and interactions between climatic changes, actual land use and the quality of 

water resources.  

 

 
Figure 3 Conceptual model of the system developed for the Zero river basin 



53 
 

Accordingly, different kind of nodes representing the different nature of variables involved 

have been included in the BN (Figure 3): 

▪ Driver nodes, consist in the input or parent nodes of the network and include 

environmental and socio-economic factors representing the main drivers of water 

quality alterations. Accordingly, in this study, driver nodes include climate change 

scenarios, agricultural land scenario (i.e. alternative agricultural land extension) and 

crop distributions (i.e. alternative combination of different percentage of crop 

typologies). 

▪ Pressures nodes, represent the variables which are influenced by the identified 

drivers. Precipitation, temperature and potential evapotranspiration’s will depend on 

the climate change scenario, inducing certain pressures on the system, including 

alternations in water needs for the different crops which, together with a reduced 

effective rainfall, will mostly lead to an increased water demand for irrigation. On the 

other hand, regarding anthropogenic drivers, both agricultural land scenarios and crop 

typology distributions will drive irrigation demand but also the quantity and timing of 

fertilizer application (i.e. N and P fertilizer application), affecting the loading of 

nitrogen and phosphorous entering in the system through diffuse (i.e. N and P diffuse 

sources) and non-diffuse sources (i.e. N and P point sources).  

▪ States nodes, representing the characteristics (i.e. states) of water resources that can 

be altered by the aforementioned pressures both in quantitative and qualitative 

terms. Quantitative alterations include, in this study, the alteration of river flow and 

runoff as results of changes in precipitation and temperature under different climate 

change scenarios. Qualitative alterations are instead represented by the change of N 

and P loadings in the runoff and in the increase of the total loading of N and P into the 

river resulting from the interaction between multiple climatic and anthropogenic 

pressures. 

▪ Impact nodes, consist in the output or child nodes of the network and are represented 

by the increase of nutrients loadings (i.e. NO3, NH4, PO4) discharged by the Zero river 

basin into the Venice Lagoon which can have severe impacts on the environment and 

human activities. 
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2.2.2 Model training  

The second step regards models training and involves assigning states, prior and conditional 

probabilities to all nodes of the networks, thus translating the conceptual model developed 

in Section 2.2.1 (Figure 3) into probabilistic results. For each node a certain number of states 

must be identified. States represent potential values or conditions that the variable can 

assume in the analysed system (Kragt, 2009) and can be featured in different way, 

representing Boolean functions (e.g. true, false), categorical definitions (e.g. low, medium, 

high), continuous or discrete numeric intervals (de Santa Olalla et al., 2005).  

Once the type and number of states have been defined, the prior probability associated to 

each state of the node have to be calculated based on available information and knowledge 

(Pollino et al., 2007). The prior probability distribution represents the starting point for each 

node in the network and thus the expectation of the node being in a certain condition. 

Finally, to operationalize the network, Conditional Probabilities (CPs) of nodes have to be 

specified for all combinations of states of its parent nodes. CPs, represented in the Conditional 

Probabilities Table (CPTs) of every node, describe the strength of relationships between the 

systems’ variables and thus the probability of the node of being within a state, given the 

combination of values of parent states. If a node has no parents (i.e. input nodes), it can be 

described probabilistically by a marginal probability distribution. CPTs can be defined using a 

range and combination of methods including observed data, probabilistic or empirical 

equation, results from model simulation or elicitation from expert knowledge (Pollino and 

Henderson, 2010). Within this study, states, prior probability distribution of nodes as well as 

the conditional probability distributions have been defined combining different quantitative 

and qualitative information available for a training period of 10 years (i.e. 2004-2013) at a 

seasonal time-step. Table 2 describes the states of the different nodes of the network and the 

type of information and data, which have been used for the definition of prior and conditional 

probability distributions. Most nodes present numerical interval type states, which have been 

identified starting from existing observed dataset, model simulation or expert judgement. 

Specifically, for each numeric interval nodes, continuous numerical dataset (i.e. series of 

observation or model simulations) have been discretized into states dividing the range 

between the maximum and the minimum values of the series into four intervals of equal 

amplitude (Table 2).  
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Table 2 Overview of nodes and states in the Bayesian Network model for the Zero river basin 

Node Description Type  States 
Parametrization 

method 

Season  Alternative seasons Labelled 

Winter 

Expert judgement 
Spring 

Summer 

Autumn 

Climate change 
scenario 

Alternative climate change scenarios Labelled 

Baseline 1983-2012 

CMCC-CM/COSMO-
CLM 

simulations 

RCP 4.5 2041-2070 

RCP 4.5 2071-2100 

RCP 8.5 2041-2070 

RCP 8.5 2071-2100 

Agricultural land 
scenario 

Extension of land (ha) occupied by 
agricultural activities under different 

scenarios  
Labelled 

Actual 2004-2013;  
Observations-LUISA 

simulations 
Future 2050 

Temperature  Seasonal average temperature (°C) 
Numeric 
interval 

0-8.37 

Observations 
8.37-13.79 

13.79-19.21 

>19.21 

Precipitation Seasonal cumulative precipitation (mm) 
Numeric 
interval 

0-201.50; 

Observations 
201.50-328.73 

328.73-455.96 

> 455.96 

Potential ET  
Seasonal cumulative potential 

evapotranspiration (mm) 
Numeric 
interval 

0-133.85 

Observations 
133.85-228.3 

228.3-322.75 

>322.75 

Effective rainfall  
Seasonal cumulative effective rainfall 

reaching the soil (mm) 
Numeric 
interval 

0-64.13 

SWAT simulations 
64.13-122.95 

122.95-181.77 

>181.77 

Crop water needs  
Seasonal water demand for different crop 

typology (mm) 
Numeric 
interval 

0-109.77 

Equation 
109.77-213.64 

213.64-317.50 

>317.50 

Irrigation 
Seasonal amount of water applied as 

irrigation 
Numeric 
interval 

<-55.29 

Equation 
-55.29-101.28 

101.28-257.86 

>257.86 

N fertilizer 
application  

Nitrogen fertilizer applied for each season 
according to different crop typology 

(kg/ha) 

Numeric 
interval 

0-45.74 

Expert judgment 
45.74-87.52 

87.52-129.30 

>129.30 

P fertilizer 
application  

Phosphorous fertilizer applied for each 
season according to different crop 

typology (kg/ha) 

Numeric 
interval 

0-25.41 

Expert judgment 
25.41-50.83 

50.83-76.25 

>76.25 

N diffuse sources  
Seasonal amount of nitrogen coming from 

agricultural practices (kg) 
Numeric 
interval 

0-7388.86 

Equation 
7388.86-13959.99 

13959.99-20531.11 

>20531.11 

P diffuse sources  
Seasonal amount of phosphorous coming 

from agricultural practices (kg) 
Numeric 
interval 

0-5169.28 

Equation 
5169.28-10221.75 

10221.75-15274.21 

>15274.21 

N point sources  

Seasonal amount of nitrogen coming from 
point sources (i.e. Waste Water 
Treatment Plans and Industrial 

discharges) (kg) 

Numeric 
interval 

0-9382.64 

Observations 
9382.64-10389.82 

10389.82-11396.99 

>11396.99 

P Point sources  
Seasonal amount of phosphorous coming 

from point sources (i.e. WWTPs and 
Industrial discharges) (kg) 

Numeric 
interval 

0-1143.64 

Observations 
1143.64-1478.99 

 1478.99-1814.35 

>1814.35 

River discharge Seasonal average river discharge (l/s) 
Numeric 
interval 

0-1458.96 
SWAT simulations 

1458.96-2360.53 
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Node Description Type  States 
Parametrization 

method 
2360.535-3262.102 

 > 3262.10 

Runoff  Seasonal cumulative runoff (mm) 
Numeric 
interval 

0-49.90 

SWAT simulations 
49.90-90.15 

90.15-130.40 

>130.40 

N in runoff  
Seasonal amount of nitrogen loaded in 

the runoff (kg/ha) 
Numeric 
interval 

0-0.63 

SWAT simulations 
0.63-1.19 

1.19-1.75 

>1.75 

P in runoff  
Seasonal amount of phosphorous loaded 

in the runoff (kg/ha) 
Numeric 
interval 

0-0.44 

SWAT simulations 
0.44-0.87 

0.87-1.30 

>1.30 

Total N loading  Seasonal nitrogen load in the river (kg) 
Numeric 
interval 

0-17031.20 

Equation 
17031.20-24401.92 

24401.92-31772.64 

> 31772.64 

Total P loading  
Seasonal phosphorous load in the river 

(kg) 
Numeric 
interval 

0-5405.76 

Equation 
5405.76-9710.91 

9710.91-14016.07 

>14016.07 

Loading NO3 
lagoon  

Seasonal loading of NO3 reaching the 
lagoon (kg) 

Numeric 
interval 

0-28047.50 

SWAT simulations 
28047.50-48615.00 

48615.00-69182.50 

>69182.50 

Loading NH4 
lagoon  

Seasonal loading of NH4 reaching the 
lagoon (kg) 

Numeric 
interval 

0-3224.52 

SWAT simulations 
3224.52-5009.3 

5009.3-6794.17 

>6794.17 

Loading PO4 
lagoon (kg) 

Seasonal loading of PO4 reaching the 
lagoon (kg) 

Numeric 
interval 

0-1978.90 

SWAT simulations 
1978.90-2954.00 

2954.00-3929.10 

>3929.10 

 

For the labelled node types, instead, states have been defined based on the alternative 

conditions the node can assume (i.e. alternative seasons, alternative climate change 

scenarios) (Table 2). As described in Table 2 for most nodes prior probability and conditional 

probability distributions have been extrapolated directly from the observed frequencies of 

the corresponding variable. For nodes associated with climatic variables (i.e. temperature, 

precipitation, evapotranspiration), probabilities have been learned from the frequencies of 

observations of weather monitoring stations available in the case study (Section 2.1.1). 

Probabilities distribution of hydrological variables (i.e. runoff, river flow, nutrients loadings, 

N and P in the runoff), instead, have been calculated based on the frequency analysis of the 

results of hydrological simulations performed with the SWAT model (Section 2.1.2). Finally, 

for nodes describing agronomic practices (i.e. water needs, irrigation, P and N fertilizer 

application), due to the lack of quantitative information in the case study, the CPs were 

calculated through expert elicitation and applying empirical equations. An exhaustive 
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description of assumption and information used to parametrize CPs of such nodes can be 

found in Annex I (SP). Figure II1 Annex II (SP) show the configuration of the BN for the Zero 

river basin once states, prior and conditional probabilities of each node have been 

parametrized. 

2.2.4 Scenario analysis 

Once the BN was trained, the resulting model can be used to analyse the performance of the 

system under different scenarios. This allows to assess the relative changes in the outcome 

probabilities of output nodes (e.g. nutrient loadings) when altering the probability 

distribution of one or more input nodes (e.g. climate change scenarios). A common manner 

to develop scenarios using BNs is to “set evidence” for one or more nodes (e.g. assigning 100% 

probability for one state) and thereby, let the information propagating through the nodes 

that are linked by CPTs in the network (Kragt, 2009).  

In this study, we were interested in assessing the effect of future climate change scenarios on 

nutrient loadings and therefore, five 30-year scenarios were developed as representative of 

a control period (1983-2012), a mid-term (2041-2070) and long-term (2071-2100) scenarios 

under two different representative concentration pathways (i.e. RCP4.5-RCP8.5). 

Accordingly, for each climate change scenario the probability distribution of temperature and 

precipitation was calculated based on the respective CMCC-CM/COSMO-CLM model 

simulations (Section 2.1.2) and set as evidence in the input nodes.   

Figure II2 Annex II (SP) provide an example of scenario analysis using the BN while a 

quantitative discussion of the results of BN simulations with other climate change scenarios 

is provided in Section 3.1. 

 

2.2.3 Model evaluation 

A fundamental aspect in BNs developed to support risk assessment and decision making is 

model evaluation. This steps is crucial as it allows to quantify the performance of the model 

and to assess the achievement of the objectives for which it was designed (Kragt, 2009). 

According to Pollino and Henderson (2010), two main types of validation methods can been 

used, the data-based validation (i.e. comparing the frequency of the predicted node state 

with a set of observed data) and the qualitative evaluation (i.e. using an independent domain 

of experts or comparing results with peer reviewed literature ) 
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Within this study, in order to evaluate the predictive performance a data-based validation 

was performed both for current and future conditions. Specifically, for the current condition, 

BN predictions were compared with observations from water quality monitoring stations. For 

future conditions, instead, considering that observations and experiences are not available 

an alternative validation was performed using outputs of SWAT models simulation, forced 

with the same climate change scenarios, as comparative dataset as suggested by Uusitalo et 

al., 2016). 

 

Another form of evaluating the developed model consist in the sensitivity analysis which allow 

to test the sensitivity of model outcomes to variations of model parameters (Kragt, 2009). In 

the context of BN sensitivity analysis help in exploring the behaviour of the system and 

ranking on the model sensitivity to different variables. Through sensitivity analysis, in fact, it 

is possible to detect how the variation in the output of a model can be apportioned to 

different variations in the inputs and thus track relevant causal pathways between variables. 

Accordingly, sensitivity to parameters was analysed to identify the most influential set of 

variables (i.e. those have the greatest influence on the model endpoints), as well as to rank 

the relevance and strength of inputs nodes on model output (i.e. nutrients loadings).  

The analysis was performed adopting an empirical approach in which the input parameters 

were modified one by one and the related changes in the output parameters were observed 

(Coupé et al., 1999; Pollino et al., 2007; Stelzenmüller et al., 2010).  

Results of data-based evaluation and sensitivity analysis for the developed BN are described 

and discussed in Sections 3.2 and 3.3.  

3. Results  

3.1 Quantitative assessment of seasonal nutrient loadings under climate 

change scenarios 

Once the DSS was trained, the BN was used to perform scenario analysis to assess the effect 

of future climate change on nutrients loadings and hydrological variables. This was done by 

forcing the model with the 30-year seasonal distribution of temperature and precipitation for 

mid-term (2041-2070) and long-term (2071-2100) projections under two different 

representative concentration pathways (i.e. RCP4.5-RCP8.5) according with the projections 

provided by the CMCC-CM/COSMO-CLM (Section 2.1.2) and  
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Future projections of the CMCC-CM/COSMO-CLM show a general increase of temperatures 

in every season with the probability of medium (i.e. 8.36-13.76 °C), high (13.76-19.21 °C) and 

very high (>19.21 °C) temperature states that increase in all seasons and scenarios respect to 

the baseline 1983-2012 (Figure 4a). Maximum increases are reached by the RC8.5 2071-2100 

scenario with a 76% probability of very high temperature state in spring and 50% probability 

of medium temperature state in autumn. 

Differently, for precipitations, projections show a general decrease in spring and summer 

(Figure 4a). The probability of lower precipitation states (0-201 mm), in fact, increases across 

scenarios reaching the 90 % in the RCP8.5 2071-2100 in summer with an increase of 50% 

respect to the baseline 1983 (i.e. 43%). Despite the decrease, for scenario RCP8.5 2041-2070 

in spring the probability of very high (i.e. >455 mm) and high (i.e. 328-455) precipitation states 

is remarkable (i.e. 8% and 10% respectively), denoting an increase in the probability of 

occurrence of extreme precipitation events during this season. In winter, future scenarios 

project a decrease in precipitation in the mid-term period follow by an increase over long-

term and by the end of the century for both RCPs.  

The highest increase however will be registered in autumn with the probability of higher 

precipitation states (i.e. 328-455, >455 mm) that increase in all the scenarios and up to 30% 

in the long-term period for both RCPs. 

Changes in precipitation and temperature associated with different climate change scenarios 

induce changes in the main hydrological variables of the systems (e.g. river flow, runoff, N 

and P in the runoff). Figure 5 show the changes in the probability distribution of river flow 

respect to the baseline (1983-2012) considering multiple climate change projections. In order 

to make the outcome of each simulated scenarios more understandable, the probabilistic 

results (Figure 5, left) have been also translated into deterministic form (i.e. numerical value) 

(Figure 5, right) and expressed using the Expected Value of the Probability distribution (Annex 

III). Deterministic results (Figure 5a, right) for different climate change scenarios show just 

slight changes of river flows from the baseline 1983-2012. However, looking at the 

probabilistic results an increase in autumn and a clear decrease in summer for both RCP 4.5 

and RCP 8.5 scenarios can be observed (Figure 5a, left). 

Specifically, maximum increase is projected for the RCP8.5 2041-2070 in autumn (Figure 5a) 

with the probability of the highest river discharge state (i.e. >3263 l/s)) that increase from the 
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27% of the baseline (i.e. 1983-2012) to the 50% according with the maximum increase of 

precipitation in the same scenario (Figure 4a).  

 

 

Figure 4 Probability distribution of temperature (a) and precipitation (b) for different seasons across climate change 

scenarios 
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Figure 5 Probabilistic (left) and deterministic (right) results for river discharge (a) and runoff (b) for different seasons 

across climate change scenarios 

In winter, the BN predicts a general decrease in river flows in the mid-term period follow by 

an increase over long-term and by the end of the century for both RCPs. Despite the projected 

decrease in precipitation and the strong increase in temperature (Figure 4), and thus in 

evapotranspiration, just a slight decrease in river flow is projected for spring. 

The runoff (Figure 5b) shows a marked decrease in spring-summer and an increase in autumn. 

Specifically, in spring the probability of the lowest states (i.e. 0-49.90 mm) increase from the 

10% of the baseline to the almost 50% in the in the baseline RCP8.5 long-term period (i.e. 

2071-2100) while in summer from 64% to 92%. Despite, the great reduction of runoff in 

spring, for scenario RCP8.5 2041-2070 a small probability of high runoff states exists probably 

due to the occurrence of extreme precipitation events in this scenario (Figure 5b). In autumn, 

greater increase in the runoff is predicted for the RCP8.5 2041-2070 scenario (Figure 5b, left) 

with a probability of 50% of being in the higher runoff states against the 20% of the baseline. 

In winter, the model predicts a general decrease in runoff in the mid-term period follow by 
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an increase over long-term and by the end of the century for both RCPs (Figure 5), which 

strongly reflect the changes in precipitation distribution (Figure 4a). 

The climate, runoff and river discharge control the capability of the river basin to export 

nutrients and therefore their changes affect the amount of nutrients seasonally loaded in the 

lagoon. The BN predicts changes in the seasonal distribution of NO3 loadings respect to the 

current condition (i.e. 1983-2012) (Figure 6). Specifically, for future scenario it can be notice 

a shift in high NO3 loadings with greater loadings occurring in autumn rather than in winter 

(Figure 6a). Both RCP4.5 and RCP 8.5 scenarios show a clear increase in autumn loads and a 

small decrease in both spring and summer loads. In autumn, in fact, the probability of high 

(i.e. 90.15-130.40 kg/season) and very high (i.e. >130.40 kg/season) loadings states increase 

across scenarios reaching respectively the 62% and 11% in the RCP4.5 2071-2100 scenario 

and the 67% and 10% in the RCP8.5 2041-2100 scenario (Figure 6a). Accordingly, in autumn, 

the greatest increase in NO3 loadings is predicted under the long-term scenarios RCP4.5 2071-

2100 and the medium-term scenarios RCP8.5 2041-2070 (Figure 6a) in correspondence with 

the greater increase in river flow (Figure5a). In spring and summer greater reduction in NO3 

loading are predicted for scenario RCP8.5 2071-2100, the one also characterized by the 

greatest decrease in river flow (Figure 5a).  

Regarding ammonium (i.e. NH4), the projections show a slight decrease of loadings in spring 

and summer and an increase in autumn (Figure6b). Specifically, in autumn the probability of 

low loading state decreases gradually across scenarios followed by an increase in the 

probability of very high loadings (i.e.>6794 kg/season), which reaches a 22% under the RCP8.5 

2041-2070 (Figure 6b). High loadings occur in correspondence with the highest projected 

runoff (Figure 5b), suggesting that this variable could play a major role in controlling the 

transport of NH4. 

Finally, seasonal changes in the phosphorous (i.e. PO4) loading have been also observed 

(Figure 6c). Results indicate a marked increase in autumn loads and a general decrease in 

spring and summer loads across scenarios. An exception is for the scenario RCP8.5 2041-2070, 

for which a slight increase in spring is predicted. In autumn, in fact, the probability of low 

loadings state decreases gradually followed by an increase in the probability of high loadings 

which reach the 28% under the RCP8.5 2041-2070 (Figure 6c). These changes can be attribute 

to the predicted increase in runoff (Figure 5b) caused by increasing in precipitations in the 

autumn-winter period. 
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Figure 6 Probabilistic (left) and deterministic (right) results for NO3 (a), NH4 (b) and PO4 (c) loadings for different 

seasons across climate change scenarios
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3.2 Model evaluation 

3.2.1 Data-based evaluation 

As described in Section 2.2.3 a data-based evaluation was performed to validate the 

predictive performance of the developed BN model and the consistence of the produced 

scenarios both for current and future conditions. Specifically, for the current condition the 

nutrients loadings predicted by the BN were compared with observations from water quality 

monitoring stations available in the case study (Table 1, Section 2.1). Unfortunately, 

observations were available only for 2007-2012 and therefore the evaluation was conducted 

only for this period. Figure 7 compares the Expected Value of the probability distributions of 

nutrient loadings (i.e. NO3, NH4, PO4) of observed data for the period 2007-2012 (red) and of 

the Bayesian Network outputs (blue). 

 

 

Figure 7 Expected Value of the probability distributions of nutrient loadings (NO3, NH4, P04) of observed data for the 

period 2007-2012 (red) and of Bayesian Network outputs (blue), obtained by fixing the states of precipitation and 

temperature according with the same period 2007-2012. 

Overall, the BN was able to reproduce the observed nutrients dynamics with loadings closely 

replicated for most seasons. The evaluation produced satisfactory results for nitrate (NO3) 

and phosphorous (PO4) while for ammonium (NH4) the correlation between observed and 

predicted nutrient loadings was slightly worse. BN overpredicts the decrease of ammonium 

loading between spring and summer and underestimates the autumn loading (Figure 7). 
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Difficulties in reproducing the observed loads may be attributed to a number of factors 

including uncertainties with model structure, missing or low-quality data and process 

algorithms used to train the BN. A major source of input uncertainty could be related with 

assumptions underlying agronomic practices. Fertilizers application and irrigation have been 

considered uniform across the whole catchment while they could vary considerably, both 

spatially and temporally, inside the same season. Potential uncertainties associated with 

input data also include inaccuracies in point pollution sources (i.e. Waste Water Treatment 

Plans and Industrial discharges) measurements and their temporal sparsity. For some years 

of the training period 2004-2013, in fact, this information was lacking.  

For future conditions, instead, nutrient loadings scenarios developed through the BN, were 

compared with outputs of SWAT model simulations for the case study (Table 1, Section 2.1), 

forced with the same climate change scenarios (i.e. 1983-2012, 2041-2070, 2070-2100). BN 

loadings of nutrients show a general agreement with the one predicted by SWAT. Figures 8 

compares the Expected Value of the probability distributions of PO4 of SWAT simulation 

across different scenarios (blue) with Bayesian Network outputs (red) showing a good 

correlation especially for medium-term periods (Figure 8). 

 

Figure 8 Expected Value of the probability distributions of PO4 loading of SWAT model simulation across different 

scenarios (blue) and of Bayesian Network outputs (red), obtained by fixing the states of precipitation and temperature 

according with the same climate change projection. 
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Also, NO3 loadings predicted by the BN shows a quite good correlation with SWAT results for 

all the developed scenarios (Figure IV1, Annex IV (SP)). The best agreement is predicted for 

RCP 4.5 scenarios for which, however, BN predicts lower loadings respect to SWAT especially 

in winter and spring. Also for ammonium ((Figure IV2, Annex IV (SP)).) results are quite 

satisfactory especially for RCP8.5 2041-2070.  

Such discrepancies between BN and SWAT results can be attributed mainly to the different 

representation of systems components and processes under the two approaches and to 

different assumptions regarding the simulation of agricultural and irrigation practices. SWAT, 

as physically based model, is able to represent complex nutrients dynamics (i.e. feedback 

effects) that are not well captured by BN due to their impossibility to include feedback loops. 

Despite the above issues, the BN model produced quite satisfactory results at a seasonal time 

step and therefore, was considered suitable for projecting future climate change scenarios. 

 

3.2.2 Sensitivity analysis-Identification of most influencing variables 

Sensitivity analysis considering the sensitivity to parameters was performed to identify and 

prioritize variables that have the greatest influence on model outputs (i.e. nutrients loadings). 

Based on the empirical approach proposed by Pollino et al. (2007), each node was 

alternatively maximized by setting the probability of its higher state equal to 100% and, 

consequently the relative change in each of the other nodes was analysed. Magnitude of 

change was measured calculating the Percent Change of the Expected Value of the probability 

distribution of output nodes (i.e. NO3, NH4, PO4 loadings) according with the Equation V.I 

(Annex V (SP)) (Molina et al., 2016). Results (Table V1, Annex V (SP)) have been normalized 

into a 0-1 interval based on the minimum and maximum values obtained in order to make 

outcomes immediately understandable and comparable. Results, summarized in the Figure 9, 

allowed to develop a ranking of input variables according with their relevance in the BN and 

consequently in the system. A higher Percent Change value denotes that the analysed variable 

has a high influence on the output variables (i.e. nutrient loadings), by contrary a lower value 

suggests a negligible effect. 
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Figure 4 Graphical representation of the results of the sensitivity analysis, represented as the normalized (0-1) 

percentage change (%) of output variables (i.e. NO3, NH4, PO4 loadings). 

According to sensitivity analysis outcomes, NO3 loadings are mainly driven by agronomic 

practices including irrigation, fertilizers application and water needs of crops which, in turn, 

is strictly related to crop potential evapotranspiration. All these variables, in fact, induced the 

higher percent change in the NO3 loading node ranging from the 0.46 (51% change, Table III1, 

Annex III) for irrigation to the 0.41 (46% change, Table V1, Annex V (SP)) for N fertilizer 

application. Also, the river flow moderately influences the loading with 0.46 of percent 

change correspondent to 47% (Table III1, Annex III). Despite not being directly linked through 

the network, irrigation is the variable that mostly influence the N03 loading. NO3 is highly 

soluble in water and therefore is likely to be rapidly washed out by the water applied trough 

irrigation and to be transported in dissolved form through the river when the river flow is 

regular. Irrigation is usually higher during summer, when higher are also the application of 

nitrogen fertilizers and water needs for summer crops (i.e. maize). Consequently, it could 

explain the concomitant influence of these agronomic variables in increasing NO3 loadings.  

The runoff is the variable that more strongly influence the NH4 loading, inducing a 0.68 % 

change with a change of 76% of the Expected Value in the output node. Ammonium (NH4) is 

not very soluble, however, the portion adsorbed to soil colloids can be transported into 

surface water during water erosion process induced by extreme runoff. River flow, being 

directly linked with the NH4 loading in the network, have a moderate influence (i.e. 0.64 

correspondent to 71% change (Table V1, Annex V (SP))  
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PO4 loading, instead, is strongly affected by the runoff, the loading of phosphorous into the 

runoff and consequently, by the intensity of diffuse pollution sources. In particular, the runoff 

causes the maximum variation (i.e. 1) corresponding with a percent change of 111% while the 

phosphorous in the runoff and phosphorous diffuse sources contribute respectively for the 

102% and 101% percent of change (Table V1, Annex V, (SP)). High runoff intensity, mainly 

related to intense precipitation are recognized as one of the main factor influencing the 

transport of phosphorous from agricultural areas to water bodies (Lundekvam et al., 2003).  

For all nutrient species (i.e. NO3, NH4, PO4) diffuse pollution represent more important 

sources of loading respect to point ones which are always classified as variables with 

negligible influence in the last position of the ranking.  

4. Discussion 
Scenarios obtained through BN simulations confirms that climate change will drive changes 

in both the hydrology and nutrient loadings as suggested by previous studies (Dunn et al., 

2012; El-Khoury et al., 2015; Huttunen et al., 2015; Shrestha et al., 2017; Whitehead et al., 

2009). Specifically, results indicate a high probability of an increase of freshwater discharge 

and nutrient loadings in autumn, and a slightly decrease in spring and summer with respect 

to the current condition (Panagopoulos et al., 2011) and (Bouraoui et al., 2002) reached 

similar conclusions analysing climate change and diffuse pollution effects at catchment level 

respectively in Greece and United Kingdom. 

Climate change scenarios for the Zero river basin indicate that increase in temperatures 

combined with decreasing precipitation will increase evapotranspiration and consequently 

induce dry and low flow conditions in summer. These effects could be significantly greater 

than those experiences at the current conditions and could impact on the autumn 

hydrological responses of the basin.  

Processes responsible for the reduced load in the summer season are mainly related with the 

increase of temperature which enhance the mineralization of organic matter during dry 

period followed then by the washing out of the accumulated nutrients during subsequent 

extreme precipitation events. This, combined with reduced summer flow rates, could explain 

the increase loads in autumn months as suggested by Whitehead et al.(2006) and (Wilby et 

al.)(2006). 
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Results also highlight that the processes governing nutrients losses from the basin to surface 

water under climate change scenarios are different depending on nutrients species. In fact, 

while NO3 loadings resulted strongly dependent on river flow and temperature, runoff 

resulted the factors playing the greatest role in driving NH4 loadings. In spring and summer, 

in fact, NO3 and NH4 are commonly applied as fertilizers amendments. In dry and warm 

conditions NH4, however, is readily adsorbed to clay mineral and therefore is scarcely prone 

to movements. Its load, is decreasing in summer and spring under projected climate change 

while increase, in autumn, drive up by runoff and extreme precipitation events. N03, on the 

other side, is highly soluble and thus suitable to be transported by hydrological flow (Lapp et 

al., 1998). In autumn, the elevated temperature and wet conditions projected will enhance 

nitrification process making NO3 highly available. This, combined with the seasonal increase 

in the river flow, could explain the great increase of NO3 load during autumn season respect 

to current scenarios. In the soil, soluble form of phosphorous (PO4) are mobile, and can be 

transported by diffusion or by surface water flow. At elevated temperature and in dry 

condition, however, PO4 is easily adsorbed to clay particles or immobilized by organic matter 

accumulating in the upper soil layers (Lapp et al., 1998). This characteristic makes 

phosphorous available for transport to surface water, primarily by surface runoff 

(Weldehawaria, 2013). Accordingly, decrease of summer load can be attributed to the 

increase temperature and decrease precipitation enhancing PO4 immobilization and the 

reduction of sediment transport due to low flow conditions. In autumn, an increase in runoff, 

following the enrichment of the topsoil of phosphorous occurred during the summer, increase 

PO4 transport and thus its loads in the river. In addition, the projected increase of dry 

prolonged conditions in summer might speed up soil erosion phenomena and, consequently, 

enhance the runoff of adsorbed mineral forms of phosphorus trough the basin leading to peak 

of PO4 load in autumn as soon as the drought breaks. Strong relationships between 

phosphorous and the runoff magnitude have been reported by (Molina-Navarro et al., 2014; 

Shrestha et al., 2017) in Mediterranean catchments. 

Conclusions 
A risk assessment procedure based on BNs modelling was implemented in the Zero river basin 

(Northern Italy) to link future scenarios of climate change with water quality alterations. This 
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produces alternative risk scenarios to communicate the probability of changes in the amount 

nutrients (i.e. NO3, NH4, PO4) delivered from the basin under different climate change 

projections (i.e. RCP 4.5 and 8.5). The developed BN has been shown to be an effective tool 

to support the assessment of the state of water resources under changing conditions, 

allowing to test multiple scenarios and to inform managers on a range of plausible future 

impacts. Thanks to their probabilistic nature, in fact, BNs resulted quite effective in translating 

the information provided by climatic and physical models improving the incorporation and 

communication of uncertainties of future climate change scenarios and impacts. Moreover, 

by identifying key components and processes affecting flow and water quality BNs could help 

in identifying variables of the system that should be targeted by adaptation and management 

and to select the opportune typology of responses to implement. Finally, being highly flexible, 

as new data and projections become available the developed BN can be easily revised 

updating evidences and uncertainty, thus increasing the robustness of the risk assessment 

outcomes (Failing et al., 2004) and contributing to the adaptive management process (Pollino 

and Henderson, 2010).  

Simulated scenarios show that seasonal changes in precipitation and temperature are likely 

to modify both the hydrology and nutrient loadings of the Zero River and that diffuse pollution 

sources play a key role in determining the amount of nutrients loaded while point source have 

only a marginal effect. Both NH4 and PO4 loadings are mainly influenced by changes in 

hydrological variables (i.e. runoff) while NO3 loadings, despite being highly dependent on flow 

conditions, are also influenced by agronomic practices and land use (i.e. irrigation, 

fertilization). These findings confirm that climate change, will play a significant role in 

exacerbating the risk of water quality degradation especially considering that most dramatic 

changes (e.g. increase in precipitation and runoff) will happen during periods characterised 

by intensive agricultural activities (e.g. manure application in the fields during the autumn). 

Both the developed BN and the future scenarios produced have been evaluated through a 

cross comparison with existing observed data and hydrological models’ simulation (i.e. SWAT) 

available for the case study providing acceptable results. In summary, the BN approach was 

able to represent the effect of climate change and land use on water quality attributes in a 

policy-relevant manner, demonstrating the suitability of this method to supplement 

traditional process-based models commonly applied in water resources management, 
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characterized by high complexity and data needs not always directly applicable to decision-

making. 

However, it is important also to acknowledge some limitations. Some uncertainty exists 

mainly due to the availability and quality of input data including fertilizer applications, 

irrigation and wastewater discharges. Obtaining more detailed information throughout the 

catchment and involving a higher number of experts in the model development would 

improve its calibration, validation and, as results, future projections.  

Furthermore, extreme events, which are recognized to play a significant role in driving 

nutrient loadings, are usually not well represented by climate change models especially at 

seasonal time step. Accordingly, the use of climate change projections as input of the BN 

could, to some extent, underestimate extreme events related processes such as extreme 

runoff and erosion and, consequently, the loading of nutrients. 

Finally, land use (i.e. agricultural land extension, crop typologies distribution) and agricultural 

management practices (i.e. amount of fertilizer application) changes, that in this BN version 

have been kept constant over future scenarios, should be accounted in the model to provide 

a realist picture of future risks and allow their prioritization (Mantyka‐Pringle et al., 2014). As 

this BN will keep continuously updated, upcoming advances will overtake these current 

technical limitations. Further improvements of the proposed approach could consider the 

implementation of a dynamic version of the BN (Molina et al., 2013) to better handle 

temporal dynamics and the development of new scenarios, considering land use changes 

projections or assuming that specific management measures have been put in place.
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Annex I-Information and assumptions used to calculate node’s states 

and probabilities in the BN  
 

Annex I provides an extensive description of the information and assumptions used to 

characterize states, prior and conditional probabilities of nodes in the BN developed for the 

Zero river basin (Figure 3). As described in Section 2.2.2, for most nodes, prior probability and 

conditional probability distributions have been extrapolated directly from the frequencies of 

observations or simulations available for the corresponding variables. For other nodes, they 

have been calculated as follows. 

 

N and P fertilizer application 

Nodes related with the nitrogen and phosphorous fertilizer application, describe respectively 

the amount (kg/ha) of P and N fertilizers applied for each season according to different crop 

typology. 

Accordingly, their parametrization was based on the seasonal needs of N and P for the three 

main crops of the case study (i.e. Corn, Soy, Winter Wheat) (Table 1I).  This information was 

obtained from both literature  (Carpani and Giupponi, 2010) and interviews with experts of 

Veneto Agricoltura (Bonetto, 2012; Regione Veneto, 2014). 

 

Table I3 Seasonal amount of N and P fertilizers (kg/ha) applied to different crop typologies in the case study 

Fertilizer application 
(kg/ha) 

Winter Spring Summer Autumn 

Corn 
N 0 50 230 0 

P 0 120 0 0 

Winter Wheat 
N 50 100 0 30 

P 0 0 0 100 

Soy 
N 0 30 0 0 

P 0 100 0 0 

 

Water needs 
The node “Water needs” represent the depth (mm) of water needed from different crop s to 

meet the water loss through evapotranspiration and thus the amount of water needed to 

grow optimally. Accordingly, node states and probabilities have been calculated based on the 

empirical Equation I.I proposed by FAO ((Brouwer and Heibloem, 1986) : 
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Water Needscrop = Etp × Kc                                                                                                   Equation I.I      

where: 

Water Needs crop is the crop water needs (mm/season); 
Kc is the crop factor; 
Etp is the reference evapotranspiration (mm/season). 

The Kc for the three types of crops, incorporating crop characteristics and effects of 

evaporation from the soil, have been selected according with FAO  (Allen et al., 1998) (Table 

I2). 

Table I4 Kc for different crop typologies in the case study 

Kc Winter Spring Summer Autumn 

Corn 0 0.3 1.2 0.6 

Winter Wheat 1.15 0.25 0 0.7 

Soy 0 0.4 1 0.5 

 

Irrigation 
The node “Irrigation” represents the amount of water applied as artificial irrigation (mm) for 

each season and, in the BN, it is directly dependent on the water needs and the effective 

rainfall (i.e. the amount of precipitation that is stored in the soil and thus available for the 

plant). Accordingly, its probability distribution has been calculated based on Equation I.II 

(Brouwer and Heibloem, 1986): 

 

Irrigation = Water needs crop-ER                                                                                       Equation I.II 

 

where: 

Irrigation is the amount of water applied as irrigation (mm/season); 
Water Needs crop is the crop water needs (mm/season); 
ER is the effective rainfall (mm/season). 
 

Total N and P loadings 
The nodes “Total N loadings” and “Total P loadings represent the total amount of N and P that 

are discharged from the river basin into the river seasonally. They are the results of the sum 

of the loadings apportioned to point and non-point sources and, accordingly, their probability 

distributions were calculated based on Equation I.III (here presented for N): 

 

N total loading= N point sources+ N diffuse sources                                                  Equation I.III 

where: 
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N total loading is the loading of nitrogen in the river (kg/season); 
N point sources is the amount of nitrogen coming from point sources (i.e. WWTPs and 
Industrial discharges) (kg/season); 
N diffuse sources is the amount of nitrogen coming from agricultural practices 
(kg/seasons)
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Annex II-Bayesian Network Configurations 

 

Figure II1 Configuration of the Bayesian Network for the Zero river basin trained with the information for the period 2004-2013 
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Figure II2 Configuration of the BN for the Zero river basin used for scenario analyisis simulating the nutrients loadings (kg/season) under the COSMO-CLM RCP8.5 2071-2100 climate 
change scenarios and current land use in summer season
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Annex III- Expected Value of the Probability distribution 
The Expected Value of the probability distribution of a discrete random variable represents the 

probability-weighted average of all possible values the variable can assume. In other words, each 

possible value of random is multiplied by its probability of occurring, and the resulting products 

are summed to produce the expected value. For a finite discrete random variable X the Expected 

Value E(X) is defined as (Equation III.I): 

 

E(X)= x1*p1 + x2*p2 + ----- + xk*pk                                                                                  Equation III.I 

 

where: 

E(X) is the expected value of X; 

x1,x2,…,xk are the finite number of outcomes of X; 

p1, p2,…,pk are the probabilities associated to each outcome of X. 

 

Within the BN developed for the case of study, however each variable is characterized by multiple 

states (i.e. intervals) and therefore the Expected Value has been calculated as the sum of the 

products of the intermediate value of each interval/state of the variable for its associated 

probability (Equation III.II): 

 

E(X)= I1*p1 + I2*p2 + ----- + Ik*pk                                                                                Equation III.II 

 

where: 

E(X) is the expected value of X; 

I1,I2,…,Ik are the intermediate value of each interval/state of X; 

p1, p2,…,pk are the probabilities associated to each intermediate value of each interval of X. 

 

https://en.wikipedia.org/wiki/Discrete_random_variable
https://en.wikipedia.org/wiki/Weighted_average
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Table III1 provide an example of the application of Equation II.II for the calculus of the Expected 

Value for the variable “Loading NO3 in the lagoon” of the BN for one of the scenarios (RCP4.5 

2041-2070, winter). 

 

E (Loading NO3) = 14023.67*0.05 + 38331.25*0.32+ 58898.75*0.55 + 83206.25*0.08 = 52284.6 

 
Table III1 Example of the computation on the Expected Value for the variable “Loading NO3 in the lagoon” 

Variable (X) Interval/State Probabilities (p) Intermediate value (I) 

Loading NO3 in the 
lagoon 

0-28047 0.05 14023.75 

28047-48615 0.32 38331.25 

48615-69182 0.55 58898.75 

69182-97230 0.08 83206.25 
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Annex IV-Evaluation results 
 

 

Figure IV1 Expected Value of the probability distributions of NO3 loading of SWAT model simulation across different 

scenarios (blue) and of Bayesian Network outputs (red), obtained by fixing the states of precipitation and temperature 

according with the same climate change projection 

 

 

Figure IV2 Expected Value of the probability distributions of NH4 loading of SWAT model simulation across different 

scenarios (blue) and of Bayesian Network outputs (red), obtained by fixing the states of precipitation and temperature 

according with the same climate change projection.  
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Annex V Percent change 
The Percent change is a measure of the change of a variable intensity, magnitude or extent over 

time. In this case, it is used to measure the increase or decrease of the Expected value of output 

nodes as consequence of the maximization of input nodes according with Equation V.I 

Percent change=((
𝑵𝒆𝒘 𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝑽𝒂𝒍𝒖𝒆

𝑬𝒙𝒑𝒆𝒄𝒕 𝑽𝒂𝒍𝒖𝒆
) − 𝟏𝟎𝟎) ∗ 𝟏𝟎𝟎                                                Equation V.I 

where: 

New Expected Value is the Expected Value of the output node after the maximization of 

input nodes; 

Expected Value is the initial Expected Value of the output node. 

 

Results of the application of Equation V.I to all the nodes of the BN are provided in Table V1. 

Table V1 Percentage change (%) of output variables (i.e. NO3, NH4, PO4 loadings) 
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Paper 3-Water quality scenarios under uncertainty: applying Bayesian 

Networks to compare multiple models and scenarios 

Introduction 
Uncertainty is a pervasive component of climate change studies (Beck and Krueger, 2016; Carter 

and Kenkyū, 1994). It can be attributed to a number of reasons including the uncertainty about 

the path of greenhouse gases emissions, the limited understanding of the climate system, 

processes and related impacts, the way such processes can be represented in climate and impacts 

models (Parker, 2013). In water resources management, this uncertainty is hampered by the 

inherent complexity and randomness of water systems and their interaction with socio-economic 

factors including the land use and population growth.  

Understanding the uncertainty in projected climate variations and related impacts on water 

resources is of paramount importance to support informed decisions based on robust 

quantitative estimates (Burgman, 2005; Power and McCarty, 2006). Proper uncertainty 

quantification is vital to facilitate a risk-based approach to decision making, where the range of 

possible futures are considered (Burgman, 2005; Power and McCarty, 2006) and costs-benefits of 

adaptation are estimate accordingly. For this reason, uncertainties should be communicated as 

an inevitable component of each impact assessment study in a form which is understandable also 

by a no-scientific community to avoid misjudged information and to prevent overconfidence in 

impact projections (Uusitalo, 2007).  

A promising way to evaluate and deal with uncertainty is represented by taking an “ensemble 

modelling approach” (Wallach et al., 2016) where simulations of future conditions are produced 

with multiple climate models (i.e. multi-model ensemble) or model versions (i.e. perturbed 

physics ensemble). Multi-model ensembles are commonly used to investigate structural 

uncertainty, and thus employ more than one climate model to perform multiple simulations and 

analyse how climate change projections differ. Perturbed-physics ensembles, instead, are 

produced by running multiple versions of a single climate model incorporating, in turn, different 

values of the same parameter and accordingly, are used to parametric uncertainty (Parker, 2013). 

The development of ensembles in both climate and impact studies is strongly encouraged also by 
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the IPCC since the Fourth Assessment Report (AR4, 2007) which suggests the use of multiple 

climate models and scenarios to cover different sources of uncertainty (IPCC, 2007). The 

variability among ensemble components, in fact, can be used as measure the state of our 

knowledge but also to describe out confidence about the impact of climate change on the system 

modelled: if most ensemble members give comparable results, we have a high confidence in 

projected climate change impacts while by contrary, if a large spread between components exist, 

we are less confident of the projected impacts. Furthermore, has been shown that ensemble 

often gives a more accurate prediction of future climate impacts than even the best individual 

model (Krishnamurti et al., 2000; Martre et al., 2015; Tebaldi and Knutti, 2007).  

Relying on the extensive experience acquired in climate modelling, the use of ensemble has been 

transfer also to the water resources field where attempts to build ensemble of impact models 

and scenarios (i.e. hydrological, water quality) are becoming increasingly common (Luo et al., 

2017; Schellekens et al., 2017) to support water resources management and adaptation.  

In this context, the paper proposes a Bayesian Network (BN) approach to develop an ensemble 

of impact scenarios assessing the effect of different climate change projections on the quality of 

waters of transitional systems (i.e. estuaries). Ensembles of future temperature and precipitation 

downscaled from available Global and Regional Climate models (i.e. GCMs-RCMs) are directly 

used to inform a BN and thus to drive simulations of nutrient loadings (i.e. NO3, NH4, PO4) 

projected under future climate change scenario. Accordingly, BN are use as modelling framework 

to track and propagate uncertainties across a range of climate change projection helping in 

determining and communicating the level of confidence of projected water quality alterations 

between baseline and future climate regimes.  

The approach was implemented and applied to the case study of the Zero river basin in Northern 

Italy, one of the main tributaries of the Venice Lagoon, building on a BN model previously 

validated in the case study (Paper 2, Sperotto et al., In preparation) which was here extended to 

allow the incorporation of multiple GCM-RCM’s inputs.  

BNs outcomes (i.e. multiple impact scenarios) can be used to inform about the spectrum of 

plausible effects of expected climate change on the Zero river basin and thus to support the 
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choice o of effective adaptation strategies for a sustainable management of the water resources 

quality at the local scale. 

After a brief introduction to the modelling approach chosen for the treatment of uncertainty 

(Section1) the paper describes the methodology and input data employed (Section 2) and finally, 

discusses the scenarios developed for the Zero river basin case study (Section 3). 

1. Bayesian networks and uncertainty representation 
BNs have been chosen, in this study, as a flexible and effective operational approach for exploring 

and incorporating uncertainty into climate change scenarios and river basin responses. Several 

authors (Catenacci and Giupponi, 2010; Mann et al., 2017; Richards et al., 2013) suggested BNs 

to deal with the uncertainty affecting climate change decision making processes thanks to their 

flexibility in characterizing the uncertainty affecting complex systems, incorporating it into impact 

assessment analysis and communicating the outcome to decision makers (Catenacci and 

Giupponi, 2010). 

Bayesian Networks use probability as quantitative measure of uncertainty. Probability is 

recognized as one of the most common way to formalize and characterize uncertainty (Morgan 

et al., 1992). The commonly adopted frequentist statistic, defines probability of an event as the 

relative frequency based on a large number of identical and independent trials. (Mann et al., 

2017). Accordingly, the probability is an objective and fixed property of the event itself.  

Bayesian Networks, by contrary, applied an epistemic or subjective interpretation of probability 

which represents the degree of belief assigned to events by an individual assessing the state of 

the world, and thus is function of the state of information rather than of the event (Cuzzolin, 

2012). In the Bayesian view data are fixed while the probability of a certain event can change as 

soon as new information become available and are incorporated in the model.  

Exploiting the probabilistic nature of BN, uncertainty in the input data (i.e. climatic variables) can 

be incorporated in the analysis by applying sequential learning, sensitivity analysis and scenario 

reasoning. When developing scenarios through BN, a certain level uncertainty in the inputs is 

recognized and propagates through the system determining uncertainty in the outputs. Users can 

test how uncertainty in input variables (i.e. climatic variables) affect the uncertainty in the 
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outputs/response (i.e. river flow, nutrient loadings) and identify whether it can be reduced 

(Sperotto et al., 2017). At the same way, main sources (e.g. lack of knowledge, natural variability, 

model structure), types of uncertainty (i.e. epistemic or aleatory) but also the pathways through 

which it propagates, can be easily track and accounted.  

Finally, thanks to their graphical structure and the transparency in input information, the 

assumptions and uncertainties lying behind the assessment can be communicated into a 

relatively simple, yet evidence-based, graphical way increasing the likelihood that the outputs will 

be accepted and, consequently adopted, in decision making (Pollino et al., 2007).  

2. Material and methods 

2.1 Input data 

To assess the effect of climate change on the nutrients loadings (i.e. NO3, NH4, PO4) changes in 

temperature and precipitations over future scenarios were selected as climate change indicators 

and used as input for the development of alternative climate change impact scenarios using the 

BN model. The aim of the study, however, was to capture uncertainties across a range of available 

climate change models and projections thus, in order to represent the widest range of 

temperature and precipitations change projected for the case study area, a set of different 

climate change model’s outputs were considered (Table 1). This allowed to consider both “worst” 

and “best” cases in the BN, thus giving the users a big flexibility in exploring and understanding 

the possible implications of climate change in the future. Climate change models were selected, 

among those available considering: i) their representativeness for the case study area and for the 

selected time periods (i.e. 2041-2070 and 2071-2100); ii) their ability to perform at high spatial 

resolution; iii) the possibility to be available in an open-source format. Accordingly, an ensemble 

of ten climate change scenarios were selected (Table 1) including the CMCC-CM/COSMO-CLM 

GCM-RCM and 9 GCM-RCM model combinations from the EURO-CORDEX project (Jacob et al., 

2014). 

The CMCC-CM global model (Scoccimarro et al., 2011) is a coupled atmosphere-ocean general 

circulation model while the COSMO-CLM (CCLM) (Cattaneo et al., 2012) is an high resolution 

(between 1 and 50 km) climate regional model both developed by the Centro Euro-Mediterraneo 
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sui Cambiamenti Climatici (CMCC) that, when coupled, allow a spatial resolution of 8 km for the 

selected region.  

EURO-CORDEX is the European branch of the CORDEX initiative sponsored by the World Climate 

Research Program (WRCP) with the aim of organizing an internationally coordinated framework 

to produce improved regional climate change projections for all land regions world-wide based 

on dynamical statistical downscaling models forced by multiple GCMs. CORDEX-results are 

commonly used as input for climate change impact and adaptation studies within the Fifth 

Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). In this study, 

9 climate change scenarios resulting from different combination of GCM and RCM at 12 km of 

spatial resolutions, were selected (Table 1). Different GCMs and RCMs have been developed by 

different research groups including the Danish Meteorological Institute (DMI), the Swedish 

Meteorological and Hydrological Institute (SMHI), the Met Office Hadley Centre (MOHC). 

Table 5 Future climate scenarios selected and implemented in the BN 

 

To make the outputs of GCM-RCMs suitable to be implemented at the spatial scale of impact 

assessment models a bias correction was applied (Pesce, 2017). GCMs, in fact, have a spatial 

resolution too coarse for local-scale assessments and for this reason they are generally coupled 

with RCMs to consider the effects of orography, land-sea surface contrast and land surface 

characteristics. However, also RCMs often show significant biases due to an imperfect 

conceptualization, discretization and spatial averaging within grid cells (Christensen and 

Christensen 2007) and, therefore, a bias correction is required (Teutschbein and Seibert, 2012). 

For the data used in this study, the linear scaling (LS) method, was applied to correct the biases 

in the monthly values of temperature and precipitation based on observed ones. The LS method 

No.
Global Climate 

Model (GCM)

Regional Climate 

Models (RCM)

Representative 

Concentrations 

Pathway (RCP)

Resolution Time range Institute 

1 HadGEM2-ES RCA4 4.5, 8.5 12 km 1970-2099 SMHI

2 IPSL-CM5A-MR RCA4 4.5, 8.5 12 km 1970-2100 SMHI

3 CNRM-CM5 RCA4 4.5, 8.5 12 km 1970-2100 SMHI

4 EC-EARTH RCA4 4.5, 8.5 12 km 1970-2100 SMHI

5 MPI-ESM-LR RCA4 4.5, 8.5 12 km 1970-2100 SMHI

6 CNRM-CM5 CCLM 4.5, 8.6 12 km 1950-2100 CLMcom

7 CMCC-CM COSMO-CLM 4.5, 8.5 8 km 1976-2100 CMCC

8 HadGEM2-ES RACMO22E 4.5, 8.5 12 km 1950-2099 KNMI

9 EC-EARTH HIRHAM5 4,5, 8,5 12 km 1951-2100 DMI

10 EC-EARTH RACMO22E 4,5, 8,5 12 km 1950-2100 KNMI
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was applied using the software CLIME, a GIS software for climate data analysis developed by the 

Regional Models and geo-Hydrogeological Impacts division (REMHI) of CMCC (Cattaneo et al., 

2015), as extensively described in (Pesce, 2017). Specifically, the method was implemented to all 

the ten climate scenarios for every weather station of the case study (Figure 1, Paper 2) using the 

rainfall and temperature observations for the period 1993-2012 as correction factor. Once 

corrected, outputs of the GCM-RCMs for each of the ten climate scenarios and for each of the 

three weather stations of the case study (i.e. Castelfranco Veneto, Zero Branco, Mogliano Veneto) 

were elaborated to obtain suitable input for the BN model.  

 

2.1.2 Climate change scenarios for the Zero river basin 

Based on the outputs of the selected GCM-RCMs different climate change scenarios were 

developed for the Zero river basin case study (Figure 1, Paper 2) by extrapolating the mean 

temperature (°C) and the cumulative precipitation (mm) calculated on a monthly base. 

Specifically, for each GCM-RCMs five different 30-year scenarios were developed for a control 

period (i.e. 1983-2012), a mid-term (i.e. 2041-2070) and long-term (i.e. 2071-2100) period under 

two different representative concentration pathways (i.e. RCP4.5-RCP8.5). The RCP4.5, represent 

the moderate emission scenario which predicts an increase in radiative forcing up to 4.5 W m-2 

by 2100 and a stabilization of the emissions (i.e. 650 ppm) shortly after 2100 (Thomson et al., 

2011) while RCP8.5, was chosen as representative of the extreme emission scenario, in which the 

GHGs emissions and concentrations increase considerably over the 21st century, leading to a 

radiative forcing of 8.5 W m-2 by 2100 (Riahi et al., 2011) thus describing  a future without any 

specific climate mitigation target.  

 

Figure 1 show the variability of temperature for different time periods and RCPs across different 

climate change models used to inform the BN. It is possible to observe that temperature 

variability across future projection is quite narrow. All climate scenarios agree on projected 

temperature during the control period (i.e. 1983-2012). Greater variability, instead, is depicted 

for RCP8.5 where, especially one model (i.e. MPI-ESM-LR/RCA4, Model 5) of the ENSEMBLE, 

projects lower temperatures in spring and higher temperatures in autumn. In general, all models 

predicted an increase of mean seasonal temperature respect to the baseline across the different 
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considered scenarios (Table I1, Annex I). The MPI-ESM-LR/RCA4 (Model 5), represents the only 

exception predicting a decrease in temperature in spring for both RCP8.5 (Table I1, Annex I). The 

greater increase in temperature respect to the baseline are predicted by RCP8.5 2071-2100. 

 

 

Figure 1 Variability of mean seasonal temperature within the GCM/RCM ensemble adopted in the case study 

Differently, precipitation features a marked variability in all scenarios shown in Figure 2. All 10 

GCMs/RCMs of the ENSEMBLE generate quite similar statistics for the control period (i.e. 1983-

2012) with a narrow range between max-min values for all seasons (Figure 4). By contrary, the 

variability increases consistently along the century especially for RCPs8.5. Greater variability can 
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be depicted in summer, autumn and winter where the range between max-min values projected 

by different GCMs/RCMs become quite wide (Figure 4). However, while for winter and autumn 

most models agree on an increase in the cumulative precipitation (Table I2, Annex I), for spring 

and summer models give opposite results making impossible an agreement about the direction 

of change (i.e. decrease-increase) (Table I2, Annex I). 

 

 

Figure 2 Variability of cumulative seasonal precipitation within the GCM/RCM ensemble adopted in the case study 
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2.2 Methodology  

A BN has been employed to assess and compare the impacts of different climate change scenarios 

on nutrients loadings (i.e. NO3, NH4, PO4) in the transitional waters of the Zero river basin and 

thus to generate an ensemble of impacts scenarios supporting the identification of climate 

change effect on water quality. The BN was implemented building on a BN model previously 

developed and validated in the case study (Paper 2, Sperotto et al., In preparation) which was 

extended to allow the incorporation of multiple GCM-RCM’s inputs. The BN for the Zero river 

basin was run using the software HUGIN Expert, version 8 (Bromley et al., 2005; Madsen et al., 

2005) and following the methodology described in Paper 2 (Sperotto et al., In preparation). The 

BN relies on multiple information source including both qualitative and quantitative data and 

consequently integrating different knowledge domains (i.e. environmental and social science, 

agronomy, hydrology, climate change). As described in Paper 2 (Sperotto et al., In preparation), 

the BN for the Zero river basin has been designed following the DPSIR framework starting from 

the conceptual models in Figure 3, (Paper 2, Sperotto et al., In preparation). An influence (i.e. 

“box and arrow”) diagram was then developed including the most relevant systems variables (i.e. 

nodes) as well as the links between them (i.e. directed arcs) allowing the identification of the 

main cause-effect pathways and interactions between input variables, represented by climatic 

changes and land use, and output variables represented by the increase of nutrients loadings (i.e. 

NO3, NH4, PO4) discharged by the Zero river basin. 

Successively, the BN has been trained assigning states, prior and conditional probabilities to all 

nodes of the networks, thus translating the conceptual model into an operative probabilistic 

form. The training has been performed using a heterogeneous set of information for the period 

2004-2013 at seasonal time steps including historical observations, hydrological model 

simulations (i.e. SWAT) and expert opinion. Specifically, for nodes associated with climatic 

variables (i.e. temperature, precipitation, evapotranspiration) probabilities have been learned 

directly from the frequencies of observations of weather monitoring stations available in the case 

study. Probabilities distribution of hydrological variables (i.e. runoff, river flow, nutrients loadings, 

N and P in the runoff), instead, have been calculated based on the frequencies of results of 

hydrological simulations performed with the Soil and Water Assessment Tool (SWAT)(Arnold et 

al., 2012). Finally, nodes describing agronomic practices (i.e. water needs, irrigation, P and N 
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fertilizer application), were trained through expert elicitation or by applying empirical equations 

due to the lack of quantitative information and experiences in the case study.  

The predictive performance of the BN in the case study has been evaluated performing a data-

based comparison for both current and future conditions. Specifically, for the current condition 

the nutrients loadings predicted by the BN were compared with observations from water quality 

monitoring stations while for future conditions with outputs of SWAT model simulations forced 

with the same climate change scenarios (i.e. 1983-2012, 2041-2070, 2070-2100). For further 

details about the development and validation of the BN in the Zero river basin please refer to 

Paper 2 (Sperotto et al., In preparation). 

The model developed as above was used in this study to perform scenarios analysis allowing the 

assessment of the relative changes in outcome probabilities of output nodes (e.g. nutrient 

loadings) when altering the probability distribution of one or more input nodes (e.g. climate 

change scenarios). For each GCM-RCM combination (Table 1) and climate change scenario (i.e. 

2041-2070 and 2071-2100 under two different representative concentration pathways RCP4.5-

RCP8.5) the probability distribution of temperature and precipitation was calculated based on the 

frequency in the respective model simulations (Section 1.2.1). The BN was then run fixing 

alternatively the evidence of being in a particular scenario assigning 100% probability to the 

related state in the “Climate change scenario node”, letting the information propagating through 

nodes that are linked by Conditional Probability Tables (Figure 5) and calculating the change in 

the posteriori probabilities of output variables (i.e. NO3, NH4, PO4 loadings).  
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Figure 5 Example of scenarios simulation for the COSMO-CLM RCP8.5 2071-2100 climate change scenarios in summer season 
 

3. Results 

3.1 Nutrient loadings scenarios  

The BN model was run fixing alternatively the probability distribution of precipitation and 

temperature according with the medium and long-term projections (i.e.2041-2070, 2071-2100) 

provided by the different available combinations of GCM-RCMs (Section 1.2.1) under two 

different representative concentration pathways (i.e. RCP4.5-RCP8.5). Accordingly, the network 

was used to develop multiple impacts scenarios linking the effect of future climate change 

projections on nutrients loadings. The develop scenarios represents the probability of different 

classes of nutrients loadings (i.e. low, medium, high, very high) calculated by the BN model as 

results of changes in the probability distribution of input variables (i.e. temperature and 

precipitation).  

Figure 6-7-8 give a concise overview of the probabilistic results obtained through the BN for each 

season and scenario across the different GCM-RCM models considered (Table 1). Specifically, 

each triangular portion of the graph represent one of the different climate change scenarios 

considered (i.e. RCP4.5 2041-2070, RCP8.5 2041-2070, RCP4.5 2071-2100, RCP8.5 2071-2100) 

while, inside them, each slice represents the results of different GCM-RCM arranged clockwise 
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direction (i.e. from 1 to 10, in Tab 1). Each slice, in turn, is divided into the four different classes 

of loadings with an amplitude correspondent to the value of the associate probability (i.e. from 0 

to 100). 

For what concern NO3 (Figure 6) impact scenarios report that higher loadings will take place in 

autumn and winter while lowest loadings are predicted for summer. Across different models, in 

fact, in autumn higher probabilities are associated with high (i.e. 48615-69182 kg/season, orange) 

and very high loading classes (i.e. >69182 kg/season, red). The highest loading is predicted by the 

MPI-ESM-LR/RCA4 (Model 5) under the RCP8.5 2071-2100 scenario with 70% probability 

associated with the high loading class (Table 1II, Annex II).  

In summer, by contrary, higher probability are associated with low (i.e. 0-28047 kg/season green) 

loading classes, with the CMCC-CM/COSMO-CLM (Model 7) predicting the highest probability 

(77%) under the long term RCP8.5 scenario (Table 1II, Annex II).  

For ammonium (i.e. NH4) results across different models predict high probabilities of low loading 

during summer and spring (Figure 7). The lowest loading is predicted by CMCC-CM/COSMO-CLM 

(Model 7) under the RCP8.5 2041-2070 with a 97% of probability associated to low class (i.e. 0-

3224 kg/season, green) (Table 2II, Annex II). In autumn, the probability of low loadings states 

decreases gradually across scenarios follow by an increase in the probability of medium (i.e. 3224-

5009 kg/season, yellow) and very high loadings (i.e.>6794 kg/season, red) which reach 

respectively the 38% and the 24 % under the RCP8.5 2071-2100 in the simulation with the IPSL-

CM5A-MR/RCA4 (Model 2) (Table 2II, Annex II). Results for PO4 show a marked seasonality with 

high autumn loads and low loads in spring and summer across different scenarios (Figure 8). In 

summer, in fact, higher probabilities are those associated with low loadings state (i.e. 0-1978 

kg/season, green). Specifically, lowest loadings are predicted by the CMCC-CM/COSMO-CLM 

(Model 7) under the medium and long term RCP8.5 scenarios with a probability of 98% (Table 3II, 

Annex II). High loadings are instead predicted for autumn with the probabilities of high (i.e. 2954-

3929 kg/season, orange) and very high classes (i.e. >3929 kg/season, red) that increase across 

scenarios. The IPSL-CM5A-MR/RCA4 (Model 2), the one describing the more extreme loadings for 

the season, predict a probability of 34% and 16% of being in very high and high classes under the 

long term RCP8.5 scenario (Table 3II, Annex II).  
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Figure 6 Probability of different classes of NO3 loadings associated to different seasons and scenarios across the GCM-RCM 
combinations consider 

 

Figure 7 Probability of different classes of NH4 loadings associated to different seasons and scenarios across the GCM-RCM 
combinations considered 
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Figure 8 Probability of different classes of PO4 loadings associated to different seasons and scenarios across the GCM-RCM 
combinations considered 

3.2 Analysis of confidence of projected changes/Variability of the results  

The variability of results was also analysed comparing outputs obtained with each of the ten GCM-

RCM combinations across scenarios and seasons. To make results comparable, the change in the 

probability of each loading class respect to the respective baseline scenario (i.e. 1983-2012) was 

calculated for each combination of GCM-RCM. Accordingly, in Figure 9, which provide an example 

for PO4 loadings, negative values describe a decrease of the probability of specific loading classes 

(i.e. coloured bars) respect to the baseline, while positive value indicate an increase.  

Orthophosphate (i.e. PO4) loadings show a clear variability during spring and summer (Figure 9). 

During these periods, in fact half of considered models predict an increase of loading while other 

predicted a strong decrease. Less marked variability, however, is depicted in the RCP8.5 2071-

2100 where most models agree on a reduction of loadings in summer-spring period and an 
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increase of the probabilities associated with the low class. A good agreement among models, 

instead, can be depicted in autumn and especially in RCP8.5 2071-2100 where most models 

predict an increase of the probabilities of very high and high loadings. Despite the good 

agreement on the increase of loading, a moderate variability in the magnitude of the change 

respect to the baseline remain. For the RCP8.5 2041-2070, for instance, the maximum variation 

is related with the MPI-ESM-LR/RCA4 (Model 5) (i.e.+20 %) while EC-EARTH/RCA4 (Model 4) just 

predicted a of increase of +1.5%. In RCP8.5 2071-2100 the increase of probability ranges from 

+28% of the IPSL-CM5A-MR/RCA4 (Model 2) to the 2% of the EC-EARTH/RCA4 and the EC-

EARTH/HIRHAM5 (Model 4 and 9). 

Also in winter, a general increase of loading is predicted with an increase of the probabilities 

associated with higher classes and a consequent decrease of probabilities of lower classes. 

Maximum increase (i.e. +10%) are depicted with the EC-EARTH/RACMO22E (Model 10) for the 

RCP4.5 2071-2100. Results for NO3 and NH4 loadings present a similar tendency (Figure 1III-2III, 

Annex III).  

The best agreement among models resulted for the autumn season where an increase in the 

loading is predicted across all scenarios and for all the GCM-RCM combinations. Specifically, for 

NO3 an increase in the probability of high loading class is depicted, while for NH4 the increase is 

associated with the highest loading class (i.e. very high).  
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Note GCM-RCM combinations: 1. HadGEM2-ES/RCA4; 2. IPSL-CM5A-MR/RCA4; 3. CNRM-CM5/RCA4; 4. EC-EARTH/RCA4; 5. MPI-ESM-
LR/RCA4; 6. CNRM-CM5/CCLM; 7. CMCC-CM/COSMO-CLM; 8. HadGEM2-ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10.EC-
EARTH/RACMO22E. 

Figure 9 Variations in the probability of each PO4 loading classes respect to the baseline (i.e. 1983-2012) under different 
scenarios and GCM-RCM combinations 
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Also for winter, the variability of results is quite low with most of models that agree on an increase 

of probability of high and very high classes across different scenarios. By contrary, two models 

(i.e. CNRM-CM5/CCLM and CMCC-CM/COSMO-CLM (Model 6 and 7)) predict a decrease of 

loadings for both NO3 and NH4. A large variability resulted for both summer and spring seasons 

so that is not possible to identify a clear direction of change. 

Overall, the results for different nutrients species highlight that, in general, the best agreement 

between models resulted for autumn and winter and, especially for RCP8.5 scenarios. In summer 

and spring, instead, variability is high and thus there is a less confidence in the changes projected. 

This seasonal pattern of variability, to some extent reflect those of precipitation (Section 1.2.1, 

Figure 3-4) suggesting that this variable could play a major role in the model in determining both 

the direction and the magnitude of changes in nutrient loadings.  

Comparing the results (Figure 9, 1III,2III, Annex III) with the changes in precipitation across the 

different models (Figure 2II, Annex II) a strong correlation between the increase in precipitations 

and increase in the probability of high loading can be found. In summer and spring (Figure 9, 

1III,2III, Annex III), in fact, those models which predict the highest increase of probability of high 

loadings are also those showing a positive variation (i.e. increase) in precipitation respect to the 

baseline (Figure 2II, Annex II).  

In this context, it is interesting to notice how, in spring (Figure 1III,2III, Annex III) some models 

(e.g. model 8-9-10) contemporarily predict an increase of the probability of the two most extreme 

classes (i.e. low and very high). The same models are also those predicting the highest increase 

of precipitation respect to the baseline (Figure 2II, Annex II) suggesting that the unexpected high 

probabilities of very high loading classes could be related with the projections of extreme 

precipitation events in the considered scenarios. 

Discussion and conclusion 
A BN was used to develop an ensemble of impact scenarios assessing the effect of different 

climate change projections on the quality of waters of transitional systems (i.e. estuaries) in the 

Zero river basin in Northern Italy, one of the main tributaries of the Venice Lagoon. 
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The BN used was implemented building on a model previously developed and tested in the case 

study (Paper 2, Sperotto et al., In preparation) integrating a heterogeneous set of data coming 

from multiple information sources (i.e. observations, hydrological model simulations, climate 

change projections). The BN was evaluated through a cross comparison between predicted and 

observed loadings providing satisfactory results at the seasonal time step and therefore, was 

considered suitable for projecting future climate change scenarios. 

Accordingly, the BN was informed with an ensemble of projections downscaled from multiple 

GCMs-RCMs and employed to track and propagate uncertainties across a range of climate change 

projections and river basin responses supporting the identification of the level of confidence of 

projected water quality alterations.  

Overall, impact scenario developed shows that seasonal changes in precipitation and 

temperature are likely to affect nutrient loadings and thus the water quality of the Zero River. 

Results suggest a good confidence that, across considered scenario, nutrients loadings will 

increase especially during autumn and winter seasons. Most models, in fact, agree in projecting 

a high probability of an increase nutrient loadings respect to current conditions. In summer and 

spring, instead the large variability between different GCM-RCM results make impossible to 

identify a clear direction of change. 

This big variability, seems to be strongly correlated with that of precipitation suggesting that this 

variable could play a major role in the model in determining both the direction and the magnitude 

of changes in nutrient loadings.  

A general conclusion that can be drawn is that the selection of climate change information to fed 

impact studies should be considered carefully as it strongly affects the outcome and the 

conclusion of the assessment: the selection of a more extreme climate scenario rather than other 

will produce more extreme results, and vice versa. Adaptation decisions are taken based on this 

information with the consequence that societies may underprepare for real risks, increasing the 

likelihood of severe impacts or, by contrary, overreact wasting resources and efforts targeting 

irrelevant threats. 

The use of multiple GCM-RCM outputs and the consideration of multiple scenarios can help 

reducing this risk and communicating the confidence in models results. Through the identification 
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of worst or best-case scenario it permits to bound the spectrum of plausible climate change 

impacts into an uncertainty space inside which define and test a set of optimal adaptation and 

management strategies.
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Annex I-Variability of input data 

Table 1I Variation in cumulative seasonal temperature respect to the baseline (i.e. 1983-2012) within GCM-RCM ensemble 

 

Table 2I Variation in cumulative seasonal precipitation respect to the baseline (i.e. 1983-2012) within GCM-RCM ensemble 

1 HadGEM2-ES 

RCA4

2 IPSL-CM5A-

MR RCA4

3 CNRM-CM5 

RCA4

4 EC-EARTH 

RCA4

5 MPI-ESM-LR 

RCA4

6 CNRM-CM5 

CCLM

7 CMCC-CM 

COSMO-CLM

8 HadGEM2-ES 

RACMO22E

9 EC-EARTH 

HIRHAM5

10 EC-EARTH 

RACMO22E

Winter 1.02 2.06 1.16 1.20 1.28 0.99 1.69 2.63 1.54 0.54

Spring 0.74 1.55 1.58 0.74 1.17 0.79 1.47 1.63 1.09 1.23

Summer 1.61 2.06 2.30 1.34 2.07 1.92 2.91 1.96 1.49 1.41

Autumn 0.98 2.06 1.44 0.99 1.59 1.01 1.99 2.09 1.34 1.35

1 HadGEM2-ES 

RCA4

2 IPSL-CM5A-

MR RCA4

3 CNRM-CM5 

RCA4

4 EC-EARTH 

RCA4

5 MPI-ESM-LR 

RCA4

6 CNRM-CM5 

CCLM

7 CMCC-CM 

COSMO-CLM

8 HadGEM2-ES 

RACMO22E

9 EC-EARTH 

HIRHAM5

10 EC-EARTH 

RACMO22E

Winter 1.89 2.43 1.94 1.83 1.59 1.36 2.44 3.22 1.37 1.62

Spring 1.31 2.19 1.70 1.40 1.43 0.95 2.16 2.23 1.01 2.02

Summer 1.46 2.72 2.88 1.30 2.07 2.43 3.25 2.03 1.41 1.67

Autumn 1.45 2.56 2.56 1.47 1.86 1.71 2.99 2.76 1.34 1.70

1 HadGEM2-ES 

RCA4

2 IPSL-CM5A-

MR RCA4

3 CNRM-CM5 

RCA4

4 EC-EARTH 

RCA4

5 MPI-ESM-LR 

RCA4

6 CNRM-CM5 

CCLM

7 CMCC-CM 

COSMO-CLM

8 HadGEM2-ES 

RACMO22E

9 EC-EARTH 

HIRHAM5

10 EC-EARTH 

RACMO22E

Winter 1.81 2.17 1.97 1.80 2.48 1.45 2.65 3.07 1.73 0.83

Spring 1.21 2.13 2.02 1.37 -1.33 1.46 2.10 2.21 1.47 1.43

Summer 1.35 2.80 3.42 1.23 1.76 2.62 3.35 2.93 1.55 1.81

Autumn 1.51 2.83 2.78 1.49 5.67 2.21 2.73 3.02 1.67 1.82

1 HadGEM2-ES 

RCA4

2 IPSL-CM5A-

MR RCA4

3 CNRM-CM5 

RCA4

4 EC-EARTH 

RCA4

5 MPI-ESM-LR 

RCA4

6 CNRM-CM5 

CCLM

7 CMCC-CM 

COSMO-CLM

8 HadGEM2-ES 

RACMO22E

9 EC-EARTH 

HIRHAM5

10 EC-EARTH 

RACMO22E

Winter 3.31 4.00 3.41 3.21 3.97 3.35 4.86 5.12 3.09 2.97

Spring 2.25 3.73 3.68 2.58 -0.37 2.81 3.87 4.04 2.41 3.16

Summer 2.81 5.60 5.94 3.20 3.42 4.93 6.54 5.27 3.39 3.80

Autumn 2.63 5.02 4.54 2.88 7.80 3.64 5.14 5.47 3.15 3.75

Season

RCP8.5 2071-2100

Season

RCP4.5 2041-2070

Season

RCP4.5 2071-2100

Season

RCP8.5 2041-2070
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1 HadGEM2-ES 

RCA4

2 IPSL-CM5A-

MR RCA4

3 CNRM-CM5 

RCA4

4 EC-EARTH 

RCA4

5 MPI-ESM-LR 

RCA4

6 CNRM-CM5 

CCLM

7 CMCC-CM 

COSMO-CLM

8 HadGEM2-ES 

RACMO22E

9 EC-EARTH 

HIRHAM5

10 EC-EARTH 

RACMO22E

Winter -14.07 17.83 59.87 13.30 11.76 7.73 13.42 4.34 44.78 -16.16

Spring -15.77 21.13 -43.52 4.08 3.20 -2.22 -19.95 9.58 18.00 -21.32

Summer -17.69 -2.35 -35.25 30.18 -43.19 -10.00 -106.05 4.01 -28.97 7.56

Autumn 24.20 -2.67 -9.31 26.26 34.31 56.90 69.32 -14.42 -46.75 -20.44

1 HadGEM2-ES 

RCA4

2 IPSL-CM5A-

MR RCA4

3 CNRM-CM5 

RCA4

4 EC-EARTH 

RCA4

5 MPI-ESM-LR 

RCA4

6 CNRM-CM5 

CCLM

7 CMCC-CM 

COSMO-CLM

8 HadGEM2-ES 

RACMO22E

9 EC-EARTH 

HIRHAM5

10 EC-EARTH 

RACMO22E

Winter 6.00 20.48 69.77 15.60 2.03 1.39 41.65 27.77 60.34 3.61

Spring 2.59 8.39 31.87 -1.20 24.41 -7.73 -13.09 -0.42 29.90 10.32

Summer 28.65 31.93 -53.24 52.86 2.41 -9.47 -78.80 80.84 44.51 25.57

Autumn 50.91 45.40 -7.46 53.85 54.03 10.85 50.80 -12.56 -1.08 29.17

1 HadGEM2-ES 

RCA4

2 IPSL-CM5A-

MR RCA4

3 CNRM-CM5 

RCA4

4 EC-EARTH 

RCA4

5 MPI-ESM-LR 

RCA4

6 CNRM-CM5 

CCLM

7 CMCC-CM 

COSMO-CLM

8 HadGEM2-ES 

RACMO22E

9 EC-EARTH 

HIRHAM5

10 EC-EARTH 

RACMO22E

Winter 29.04 11.61 51.32 30.23 -1.24 -4.56 52.57 8.42 46.99 -16.95

Spring -25.92 44.28 2.61 -9.45 7.13 -4.80 -1.12 41.46 45.36 27.64

Summer 19.06 33.65 -37.51 40.32 -32.79 -6.85 -104.07 41.10 23.26 -4.43

Autumn 60.83 7.90 -40.56 -0.45 109.50 55.55 50.35 -13.13 2.48 28.75

1 HadGEM2-ES 

RCA4

2 IPSL-CM5A-

MR RCA4

3 CNRM-CM5 

RCA4

4 EC-EARTH 

RCA4

5 MPI-ESM-LR 

RCA4

6 CNRM-CM5 

CCLM

7 CMCC-CM 

COSMO-CLM

8 HadGEM2-ES 

RACMO22E

9 EC-EARTH 

HIRHAM5

10 EC-EARTH 

RACMO22E

Winter -12.24 20.87 35.42 13.45 9.43 34.49 148.61 31.06 62.16 7.90

Spring -10.40 -2.52 -17.16 -3.72 -9.90 -30.93 -35.75 19.41 20.65 15.50

Summer 49.25 -7.07 -84.18 45.40 -67.79 -26.06 -139.39 -14.79 1.71 -36.75

Autumn 45.43 83.05 19.28 5.85 -21.26 23.80 15.97 25.87 -34.98 61.53

RCP4.5 2041-2070

RCP4.5 2071-2100

RCP8.5 2041-2070

RCP8.5 2071-2100

Season

Season

Season

Season
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Annex II-Probabilistic results across GCM-RCM combinations 

Table 1II Probability of different classes of NO3 loadings associated to different seasons and scenarios across the GCM-RCM combinations considered 

 

Note GCM-RCM combinations: 1. HadGEM2-ES/RCA4; 2. IPSL-CM5A-MR/RCA4; 3. CNRM-CM5/RCA4; 4. EC-EARTH/RCA4; 5. MPI-ESM-LR/RCA4; 6. CNRM-CM5/CCLM; 7. CMCC-CM/COSMO-CLM; 8. HadGEM2-

ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10.EC-EARTH/RACMO22E. 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-28047 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.05

28047-48615 0.33 0.32 0.32 0.32 0.31 0.32 0.30 0.32 0.31 0.32 0.32 0.32 0.31 0.32 0.30 0.32 0.32 0.32 0.29 0.32 0.32 0.30 0.30 0.32 0.31 0.32 0.30 0.32 0.29 0.31 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.30 0.32 0.32 0.31 0.28 0.31 0.31 0.32 0.27 0.32 0.28 0.30

48615-69182 0.55 0.55 0.55 0.55 0.56 0.55 0.56 0.55 0.56 0.55 0.55 0.55 0.56 0.55 0.56 0.55 0.55 0.55 0.57 0.55 0.55 0.57 0.57 0.55 0.56 0.55 0.56 0.55 0.57 0.56 0.55 0.55 0.56 0.55 0.55 0.55 0.55 0.55 0.56 0.55 0.55 0.55 0.58 0.56 0.56 0.55 0.58 0.55 0.58 0.56

>69182 0.08 0.08 0.08 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.08 0.08 0.09 0.08 0.09 0.08 0.08 0.08 0.10 0.08 0.08 0.09 0.09 0.08 0.09 0.08 0.09 0.09 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.09 0.08 0.08 0.09 0.10 0.09 0.09 0.08 0.11 0.08 0.10 0.09

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-28047 0.26 0.26 0.26 0.25 0.26 0.27 0.26 0.26 0.26 0.26 0.27 0.28 0.28 0.26 0.27 0.28 0.29 0.27 0.27 0.27 0.27 0.27 0.26 0.27 0.27 0.27 0.31 0.27 0.25 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.28 0.26 0.27 0.26 0.29 0.29 0.28 0.27 0.26 0.30 0.30 0.29 0.26 0.28

28047-48615 0.31 0.32 0.30 0.32 0.32 0.32 0.32 0.32 0.31 0.32 0.33 0.32 0.32 0.31 0.33 0.33 0.33 0.31 0.32 0.31 0.32 0.31 0.29 0.31 0.32 0.32 0.34 0.31 0.29 0.32 0.32 0.30 0.31 0.32 0.33 0.31 0.32 0.31 0.31 0.30 0.33 0.33 0.32 0.32 0.33 0.33 0.34 0.33 0.31 0.32

48615-69182 0.38 0.37 0.35 0.38 0.37 0.36 0.38 0.38 0.38 0.36 0.36 0.34 0.32 0.37 0.35 0.35 0.33 0.35 0.35 0.37 0.37 0.35 0.37 0.37 0.37 0.36 0.32 0.36 0.39 0.35 0.37 0.38 0.36 0.37 0.36 0.34 0.34 0.36 0.35 0.37 0.34 0.34 0.33 0.36 0.37 0.33 0.32 0.34 0.38 0.34

>69182 0.05 0.05 0.09 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.04 0.07 0.08 0.06 0.05 0.04 0.04 0.07 0.06 0.05 0.05 0.07 0.07 0.05 0.05 0.05 0.04 0.07 0.07 0.05 0.05 0.06 0.07 0.05 0.04 0.07 0.06 0.07 0.07 0.07 0.04 0.04 0.06 0.04 0.04 0.04 0.03 0.05 0.05 0.05

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-28047 0.72 0.70 0.69 0.68 0.71 0.70 0.72 0.68 0.71 0.69 0.68 0.71 0.70 0.67 0.72 0.69 0.76 0.70 0.70 0.66 0.67 0.65 0.71 0.64 0.70 0.69 0.76 0.64 0.68 0.64 0.67 0.66 0.73 0.70 0.70 0.71 0.74 0.65 0.65 0.69 0.60 0.70 0.74 0.64 0.75 0.69 0.77 0.69 0.68 0.71

28047-48615 0.21 0.22 0.22 0.23 0.21 0.22 0.22 0.24 0.21 0.23 0.24 0.21 0.22 0.25 0.21 0.23 0.20 0.23 0.22 0.25 0.25 0.24 0.22 0.26 0.22 0.23 0.20 0.25 0.24 0.27 0.24 0.24 0.21 0.23 0.23 0.22 0.20 0.26 0.26 0.23 0.28 0.22 0.20 0.27 0.20 0.24 0.18 0.21 0.23 0.22

48615-69182 0.06 0.07 0.08 0.08 0.07 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.07 0.04 0.07 0.07 0.08 0.07 0.10 0.06 0.08 0.07 0.07 0.04 0.09 0.08 0.08 0.08 0.08 0.06 0.07 0.07 0.06 0.06 0.08 0.08 0.07 0.11 0.07 0.05 0.08 0.05 0.06 0.04 0.09 0.08 0.06

>69182 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-28047 0.06 0.06 0.05 0.06 0.04 0.07 0.06 0.06 0.04 0.05 0.02 0.02 0.03 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.02 0.02 0.03 0.02 0.02

28047-48615 0.31 0.32 0.33 0.32 0.28 0.31 0.34 0.33 0.32 0.31 0.32 0.30 0.32 0.31 0.24 0.21 0.26 0.31 0.34 0.34 0.25 0.33 0.30 0.28 0.36 0.27 0.23 0.36 0.29 0.30 0.31 0.31 0.30 0.32 0.20 0.26 0.21 0.34 0.27 0.29 0.30 0.19 0.26 0.31 0.28 0.27 0.22 0.28 0.29 0.24

48615-69182 0.54 0.53 0.52 0.52 0.56 0.54 0.52 0.52 0.55 0.54 0.55 0.58 0.56 0.56 0.65 0.65 0.62 0.58 0.53 0.54 0.63 0.57 0.59 0.61 0.54 0.61 0.64 0.54 0.59 0.57 0.56 0.57 0.59 0.56 0.69 0.62 0.67 0.55 0.60 0.58 0.58 0.70 0.62 0.56 0.58 0.61 0.66 0.60 0.59 0.63

>69182 0.09 0.09 0.09 0.09 0.11 0.09 0.09 0.09 0.09 0.11 0.12 0.09 0.09 0.11 0.10 0.12 0.11 0.09 0.10 0.10 0.11 0.08 0.10 0.09 0.08 0.10 0.12 0.08 0.11 0.10 0.11 0.10 0.10 0.10 0.09 0.11 0.10 0.09 0.11 0.12 0.10 0.09 0.11 0.11 0.08 0.11 0.10 0.09 0.10 0.11

Winter

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100
Classes

Spring

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100
Classes

Summer

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100
Classes

Autumn

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100
Classes
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Table 2II Probability of different classes of NH4 loadings associated to different seasons and scenarios across the GCM-RCM combinations considered 

 

Note GCM-RCM combinations: 1. HadGEM2-ES/RCA4; 2. IPSL-CM5A-MR/RCA4; 3. CNRM-CM5/RCA4; 4. EC-EARTH/RCA4; 5. MPI-ESM-LR/RCA4; 6. CNRM-CM5/CCLM; 7. CMCC-CM/COSMO-CLM; 8. HadGEM2-

ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10.EC-EARTH/RACMO22E. 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-3224 0.59 0.59 0.59 0.59 0.57 0.58 0.56 0.59 0.57 0.59 0.59 0.59 0.57 0.59 0.56 0.58 0.58 0.59 0.54 0.59 0.59 0.55 0.55 0.59 0.57 0.59 0.56 0.58 0.53 0.57 0.58 0.58 0.56 0.57 0.58 0.59 0.59 0.58 0.55 0.59 0.59 0.58 0.53 0.57 0.56 0.58 0.51 0.58 0.52 0.56

3224-5009 0.28 0.28 0.29 0.28 0.29 0.29 0.30 0.28 0.29 0.28 0.28 0.29 0.29 0.29 0.30 0.29 0.29 0.28 0.31 0.28 0.28 0.30 0.31 0.29 0.30 0.28 0.30 0.29 0.32 0.29 0.29 0.29 0.30 0.29 0.29 0.28 0.28 0.29 0.30 0.28 0.28 0.29 0.32 0.30 0.30 0.29 0.33 0.29 0.32 0.30

5009-6794 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.06

>6794 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.07 0.08 0.08 0.07 0.08 0.07 0.08 0.07 0.09 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.07 0.09 0.08 0.08 0.07 0.10 0.07 0.09 0.08

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-3224 0.59 0.60 0.59 0.59 0.60 0.60 0.60 0.60 0.60 0.59 0.61 0.61 0.61 0.60 0.61 0.61 0.63 0.60 0.60 0.61 0.60 0.61 0.59 0.60 0.61 0.60 0.64 0.61 0.58 0.61 0.60 0.60 0.61 0.60 0.60 0.61 0.62 0.61 0.60 0.60 0.63 0.63 0.63 0.62 0.60 0.64 0.65 0.63 0.61 0.62

3224-5009 0.31 0.31 0.29 0.32 0.31 0.30 0.31 0.31 0.31 0.31 0.31 0.29 0.28 0.31 0.30 0.30 0.29 0.30 0.30 0.30 0.31 0.29 0.30 0.31 0.31 0.30 0.28 0.29 0.31 0.30 0.31 0.30 0.29 0.31 0.31 0.29 0.29 0.29 0.29 0.30 0.29 0.28 0.28 0.30 0.31 0.28 0.28 0.28 0.30 0.29

5009-6794 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05

>6794 0.04 0.04 0.05 0.03 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.04 0.05 0.04 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.04 0.05 0.04 0.03 0.04 0.03 0.04 0.05 0.04 0.03 0.04 0.04 0.03 0.03 0.05 0.04 0.04 0.04 0.05 0.02 0.03 0.04 0.03 0.03 0.03 0.02 0.03 0.04 0.03

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-3224 0.95 0.94 0.94 0.93 0.94 0.95 0.95 0.94 0.94 0.94 0.95 0.94 0.94 0.94 0.95 0.94 0.97 0.95 0.94 0.94 0.94 0.92 0.95 0.93 0.94 0.94 0.97 0.92 0.94 0.93 0.94 0.93 0.96 0.95 0.95 0.95 0.96 0.93 0.93 0.95 0.90 0.94 0.96 0.93 0.96 0.95 0.97 0.93 0.93 0.95

3224-5009 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.02 0.04 0.05 0.05 0.05 0.06 0.04 0.06 0.05 0.05 0.02 0.06 0.05 0.06 0.05 0.06 0.04 0.05 0.04 0.04 0.04 0.06 0.06 0.05 0.08 0.05 0.03 0.05 0.03 0.04 0.03 0.06 0.05 0.04

5009-6794 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00

>6794 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-3224 0.49 0.51 0.51 0.51 0.46 0.50 0.52 0.52 0.48 0.49 0.47 0.44 0.47 0.45 0.37 0.35 0.39 0.45 0.49 0.49 0.39 0.46 0.43 0.42 0.49 0.41 0.37 0.49 0.43 0.45 0.45 0.45 0.43 0.46 0.34 0.39 0.34 0.47 0.41 0.43 0.44 0.32 0.40 0.54 0.46 0.40 0.36 0.43 0.43 0.38

3224-5009 0.32 0.32 0.32 0.32 0.35 0.32 0.32 0.32 0.33 0.34 0.35 0.35 0.33 0.35 0.37 0.39 0.37 0.34 0.34 0.34 0.37 0.34 0.35 0.35 0.33 0.36 0.38 0.33 0.36 0.35 0.35 0.35 0.35 0.35 0.37 0.37 0.38 0.34 0.36 0.36 0.35 0.38 0.36 0.35 0.33 0.36 0.37 0.35 0.36 0.37

5009-6794 0.06 0.06 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.07 0.07 0.06 0.06 0.07 0.06 0.07 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.07 0.07 0.06 0.07 0.07 0.07 0.06 0.06 0.07 0.06 0.07 0.06 0.06 0.07 0.07 0.07 0.06 0.07 0.07 0.06 0.07 0.06 0.06 0.07 0.07

>6794 0.13 0.11 0.11 0.11 0.12 0.12 0.09 0.11 0.13 0.11 0.11 0.15 0.13 0.13 0.20 0.19 0.17 0.15 0.10 0.11 0.18 0.14 0.15 0.17 0.12 0.17 0.18 0.12 0.15 0.13 0.13 0.14 0.15 0.12 0.24 0.17 0.22 0.13 0.16 0.13 0.14 0.24 0.17 0.12 0.15 0.16 0.20 0.15 0.14 0.18

Winter

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100
Classes

Spring

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100
Classes

Summer

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100
Classes

Autumn

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100
Classes
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Table 3II Probability of different classes of PO4 loadings associated to different seasons and scenarios across the GCM-RCM combinations considered 

 

Note GCM-RCM combinations: 1. HadGEM2-ES/RCA4; 2. IPSL-CM5A-MR/RCA4; 3. CNRM-CM5/RCA4; 4. EC-EARTH/RCA4; 5. MPI-ESM-LR/RCA4; 6. CNRM-CM5/CCLM; 7. CMCC-CM/COSMO-CLM; 8. HadGEM2-

ES/RACMO22E; 9. EC-EARTH/HIRHAM5; 10.EC-EARTH/RACMO22E. 

 

 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-1978 0.65 0.65 0.64 0.65 0.62 0.64 0.61 0.65 0.62 0.65 0.65 0.64 0.62 0.64 0.60 0.63 0.63 0.65 0.58 0.65 0.63 0.59 0.59 0.64 0.62 0.65 0.60 0.63 0.56 0.46 0.63 0.63 0.61 0.63 0.63 0.65 0.65 0.63 0.60 0.65 0.65 0.63 0.56 0.61 0.61 0.64 0.53 0.64 0.56 0.61

1978-2954 0.25 0.25 0.25 0.25 0.26 0.25 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.27 0.25 0.25 0.25 0.28 0.25 0.26 0.27 0.26 0.25 0.26 0.25 0.27 0.26 0.27 0.27 0.26 0.26 0.25 0.26 0.26 0.25 0.25 0.25 0.27 0.25 0.25 0.26 0.27 0.26 0.25 0.26 0.30 0.26 0.26 0.24

2954-3929 0.08 0.08 0.08 0.08 0.09 0.08 0.10 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.10 0.08 0.08 0.08 0.11 0.08 0.08 0.11 0.09 0.08 0.09 0.08 0.10 0.08 0.11 0.15 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.10 0.08 0.08 0.08 0.12 0.09 0.09 0.08 0.14 0.08 0.10 0.08

>3929 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.06 0.11 0.03 0.03 0.05 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.06 0.03 0.05 0.03 0.04 0.03 0.08 0.07

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-1978 0.75 0.75 0.72 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.77 0.75 0.75 0.74 0.76 0.78 0.78 0.75 0.75 0.75 0.76 0.74 0.72 0.75 0.76 0.74 0.79 0.73 0.71 0.75 0.76 0.72 0.72 0.75 0.77 0.74 0.75 0.72 0.74 0.73 0.78 0.77 0.75 0.76 0.76 0.78 0.79 0.76 0.73 0.75

1978-2954 0.17 0.17 0.16 0.18 0.17 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.15 0.17 0.16 0.17 0.16 0.16 0.16 0.17 0.17 0.16 0.16 0.17 0.17 0.17 0.15 0.16 0.17 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.27 0.16 0.17 0.16 0.16 0.16 0.17 0.17 0.16 0.15 0.16 0.17 0.16

2954-3929 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.04 0.05 0.04 0.05 0.05 0.06 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.06 0.05

>3929 0.03 0.03 0.07 0.03 0.03 0.04 0.03 0.03 0.03 0.04 0.02 0.05 0.06 0.04 0.03 0.02 0.03 0.04 0.04 0.03 0.03 0.05 0.06 0.04 0.03 0.04 0.03 0.05 0.05 0.04 0.02 0.05 0.06 0.03 0.02 0.06 0.05 0.06 0.06 0.05 0.02 0.03 0.05 0.03 0.02 0.02 0.02 0.04 0.04 0.04

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-1978 0.95 0.94 0.94 0.93 0.95 0.95 0.96 0.94 0.95 0.94 0.95 0.95 0.94 0.94 0.95 0.95 0.98 0.95 0.94 0.94 0.94 0.92 0.96 0.93 0.94 0.94 0.98 0.92 0.94 0.93 0.94 0.93 0.96 0.95 0.95 0.96 0.96 0.93 0.93 0.95 0.90 0.94 0.96 0.93 0.97 0.95 0.97 0.93 0.93 0.95

1978-2954 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.01 0.03 0.03 0.03 0.03 0.04 0.02 0.04 0.03 0.03 0.01 0.04 0.03 0.04 0.03 0.03 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.05 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03

2954-3929 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.01

>3929 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.03 0.01 0.02 0.01 0.02 0.00 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0-1978 0.51 0.53 0.54 0.53 0.45 0.51 0.53 0.54 0.51 0.50 0.48 0.47 0.50 0.48 0.36 0.31 0.40 0.48 0.52 0.52 0.38 0.50 0.45 0.43 0.55 0.41 0.34 0.55 0.44 0.46 0.47 0.48 0.45 0.49 0.30 0.39 0.33 0.52 0.40 0.44 0.46 0.29 0.40 0.47 0.44 0.41 0.33 0.42 0.44 0.36

1978-2954 0.24 0.25 0.25 0.25 0.28 0.25 0.26 0.24 0.24 0.27 0.29 0.24 0.24 0.28 0.24 0.27 0.26 0.24 0.28 0.27 0.25 0.24 0.25 0.24 0.25 0.25 0.28 0.25 0.27 0.27 0.28 0.25 0.25 0.27 0.21 0.26 0.23 0.25 0.27 0.29 0.26 0.22 0.26 0.28 0.23 0.27 0.24 0.25 0.26 0.26

2954-3929 0.13 0.14 0.13 0.14 0.18 0.14 0.14 0.13 0.13 0.16 0.17 0.14 0.13 0.15 0.16 0.21 0.16 0.13 0.15 0.14 0.17 0.11 0.14 0.14 0.10 0.15 0.20 0.10 0.16 0.15 0.15 0.14 0.14 0.15 0.15 0.17 0.16 0.12 0.17 0.18 0.15 0.16 0.17 0.16 0.14 0.17 0.17 0.15 0.16 0.18

>3929 0.12 0.09 0.08 0.09 0.10 0.11 0.07 0.08 0.12 0.07 0.05 0.15 0.13 0.09 0.24 0.21 0.18 0.15 0.05 0.07 0.20 0.15 0.16 0.19 0.10 0.18 0.19 0.10 0.14 0.11 0.09 0.13 0.15 0.09 0.34 0.18 0.29 0.11 0.16 0.10 0.14 0.34 0.18 0.10 0.19 0.16 0.26 0.18 0.14 0.20

Classes

Classes

Classes

Classes
RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100

Winter

Spring

Summer

Autumn

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100

1983-2012 RCP4.5 2041-2070 RCP4.5 2071-2100 RCP8.5 2041-2070 RCP8.5 2071-2100

1983-2012 RCP4.5 2041-2070
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Annex III-Analysis of variability of results 

 

 



115 
 

 

Figure 1III Variations in the probability of each NO3 loading classes respect to the baseline (i.e. 1983-2012) under different 

scenarios and GCM-RCM combinations 
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Figure 2III Variations in the probability of each NH4 loading classes respect to the baseline (i.e. 1983-2012) under different 

scenarios and GCM-RCM combination 
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