
Master’s Degree programme

in Computer Science
“Software Dependability and

Cyber Security”

On the optimality of size-based scheduling
in networking

Supervisors
Prof. Andrea Marin
Prof. Sabina Rossi
Candidate
Giorgio Magnan, 846314
Academic Year
2017 / 2018





Abstract

In recent years flow scheduling on the Internet has attracted a lot of interest in

scientific research, in particular the study of how the distribution of flow size

can influence system performance. Many queuing models have been studied

and designed to prove that size-based schedulers improve performance for

small flows without degrading overall system performance. On the other

hand, however, it has been demonstrated that it is not easy to identify small

size flows.

In this thesis we propose a new queuing system model, starting from the

study of existing ones, with a multiple level priority queue that can separate

small flows from bigger ones in order to prioritise them. We derive the

mean response time for the job conditioned on their sizes and we compare

them with those of the systems already studied in the scientific literature.

Our results have been validated by using a stochastic simulator. Finally,

we discuss an idea to implement the model in the reality analysing some

schedulers implemented in Linux systems.
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Chapter 1

Introduction

In recent years computer networks have grown exponentially, more and more

devices are connected and the number of services accessible via the network

have increased. Many applications like voice call, streaming and online games

require connections with low delay, while other applications like p2p try to

exploit the available bandwidth at the maximum possible. For these rea-

sons, many studies have concentrated on improving performance of routers

and switches in order to maximise the amount of data transferred, focusing

above all on scheduling algorithms.

Routers and switches can assign a class to each packet (or flow) that they

route in such a way that it can determine its priority and therefore the order

in which it will be served. Many scheduling algorithms use classes to assign

priority or bandwidth to a specific job. Among these, some algorithms assign

priority statically and other dynamically (as we will see in Section 3). Many

scheduling algorithms have been studied in these years and many others have

been designed and implemented to improve the performance of systems.
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What clearly emerges from this literature is that the distinction between

large and small TCP flows play a crucial role in the minimization of the ex-

pected response time. However, with the current TCP/IP network design it

is impossible to understand the TCP flow size in advance, and the possibility

of changing the protocols in order to allow for this information to be embed-

ded in the packets is unfeasible for at least two reasons. First, the sender

could give the routers wrong information about the size either intentionally

or because it cannot know it in advance. The second reason is that chang-

ing the TCP/IP architecture appears to be prohibitive and similar attempts

previously proposed failed. Therefore, the main goal is that of proposing a

discipline capable of distinguishing large and short flow sizes by using net-

work statistics.

Among the solutions proposed in the literature we will focus on the multi-

level systems proposed by Kleinrock in [1, 2]. Although the multi-level queues

have been proposed several years ago, the literature in networking seems not

to have taken full advantage of this discipline.

The idea consist in the introduction of several thresholds to distinguish the

flows based on the resources used up to a certain time. Under some condi-

tions on the hazard-rate of the distributions of the job sizes, it can be proved

that giving priority to the jobs that have requested less resources up to a

certain epoch reduces the overall expected response time.

From a practical point of view, it is important to understand if this kind of

scheduler is possible to implement on modern routers. Many routers on the

network use an operating system that is a light version of Linux since it pro-

vides a modular architecture. As a consequence, it is easy to add and remove
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modules to extend and modify scheduling algorithms and other networking

operations.

1.1 Objective of the thesis

The purpose of this thesis is to study, analyse and model a set of scheduling

algorithms proposed in the scientific literature and compare them with those

already implemented and used in real systems. In particular our attention

will be focused on size-based scheduling algorithms. We introduce a queuing

system model with a multilevel scheduling structure able to recognise small

flows from large ones in order to prioritise the first ones. We describe the

structure and functionality of our model and we compute all the formulas

to evaluate some performance indices to understand the effectiveness of our

system. We design a simulator in order to verify the theoretical results and

we propose a route to implement the scheduling discipline in a Linux OS

after analysing the schedulers already present in this system.

1.2 Contributions of the thesis

The major contributions of this thesis can be summarised as follows:

• In [2] the author proposes an analysis of the multilevel queue which

relies on the solution of a system of differential equations which is not

trivial to address. The first contribution of this thesis is that of provid-

ing such a solution for jobs whose size follows a negative exponential

random distribution.
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• As a second point, we give an approximate solution for the multilevel

queue model in the case of non exponential job sizes. We evaluate the

accuracy of such an approximation by comparing the estimates of the

simulation with those derived by the approximate model. According

to our experiments, we asses that the error introduced by the approxi-

mation is around 3%.

• We develop two different simulators to compare the results obtained

by the theoretical model with those obtained from the simulations.

The first simulation model resembles the queuing model and has been

mainly used to evaluate the approximations proposed in the previous

step. The second simulator is closer to the actual implementations of

the networking system and models the packet arrival process with an

implementation of the considered queuing discipline.

• As a final step, we analyze how the networking scheduling works in

Linux systems, focusing our attention on some scheduling algorithms

already implemented. We discuss the implementability of size based

scheduling in such real systems.

1.3 Structure of the thesis

This thesis is organised in 9 chapters. In Chapter 2 we present the general

problem of scheduling in networking which is a topic addressed by a lot of

scientific researches. Moreover, some QoS techniques are described.

Chapter 3 presents the main scheduling algorithms currently present in the

scientific literature.
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Chapter 4 presents some basic concept of the queuing theory that are neces-

sary for the understanding of the entire research work.

Chapter 5 shows our model, with the description of the architecture, the

calculations of the system indexes and the application of the model to some

distributions taken into consideration.

Chapter 6 shows the simulation of the model and the results obtained by our

system.

Chapter 7 presents the traffic control of Linux, taking into account queuing

disciplines, classes and filters.

Chapter 8 analyses some schedulers used by default by the operating system.

In the last chapter our data (obtained from theoretical calculations and sim-

ulations) are compared with those of the other models in the scientific liter-

ature.

5
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Chapter 2

Scheduling in networking

2.1 Introduction

The aim of this chapter is to give a general idea about the problem of the

scheduling in networking. Starting from what it has been studied from the

scientific literature, we have focused our attention on the works that analyze

the distribution of the flow dimension. Secondly we give an introduction to

the quality analysis in network systems and finally we report some existing

technique to analyse the quality of service.

Scheduling of flows in the network is a subject that has attracted particular

interest in scientific and technological research.

Modern computer network still rely on the TCP/IP architecture. This con-

sists of two main protocols of the transport layer: the Transmission Control

Protocol (TCP) and the User Datagram Protocol (UDP). While the latter is

a mere incapsulation of the IP protocol and therefore provides an unreliable

and connectionless service, TCP is a connected and reliable protocol. All
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the segments belonging to the same TCP connections can be easily identified

by the network devices and therefore we can talk about TCP flows or, more

simply, flows. TCP is widely used in nowadays Internet services even in those

domains for which the literature suggested to use UDP. At the current time,

video streaming of YouTube and that of other providers like Netflix use TCP

flows for the transmission of massive amount of data. Similarly, audio/video

call software prefer to exploit the reliability of TCP rather than handling the

characteristics of UDP. Finally, the relatively small pages and web elements

of the world-wide-web are accessed by the browser thanks to the TCP. As

a consequence, the size of the flows that populate the Internet varies a lot

according to the content. A TCP flow can range from few bytes to some

gigabytes.

Traffic in network is composed of flows. We can divide these flows in two

groups, the first one is composed by a few number of flows that transport the

majority of the traffic of the network (also called elephant flows), the second

group is composed by a huge number of flows that carry a very small traf-

fic (also called mice flows). Elephant flows have a huge impact on network

performance, and for this reason it is important to identify them when we

develop a network system.

Many studies have focused on the analysis of the distribution of the dimen-

sions of the flows that pass through the networks. As a consequence, many

researchers have focused their attention on designing scheduling algorithms

that are able to recognise the small flows from the large ones in such a way

to maximise the performance. All these studies have the aim to minimize

the delay of small flows without degrading to much the performance of big
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flows. But, as proved in many articles, it is not easy to understand the real

dimension of a flow. For example, in [3], the authors try to understand the

size of the flows by sampling the packets that enter in the router, while oth-

ers like Least Attained Service (LAS) [4], try to reach the same goal without

having any information about the size of the flows.

The performance index on which the researchers have focused is the average

response time. For example, in [5], the authors prove that Shortest Remain-

ing Processing Time (SRPT) minimise this index, in [6] they prove that a

multilevel processor sharing system is always better or equal with respect

to a processor sharing scheduling algorithm under the assumptions that the

hazard rate of the job size distribution is decreasing.

Other studies have focused their attention on the relationship between haz-

ard rate of the job size distribution and the average response time. In [7]

and [8] the authors prove that some schedulers (like Foreground Background

(FB) and LAS) minimize the average delay if the hazard rate of the job size

distribution is decreasing.

Remark (Hazard rate). The hazard rate is a theoretical measure that exam-

ines the probability of occurrence of an event in an interval of time. For a

random variable X, with cumulative density function (cdf) F (t) and proba-

bility density function (pdf) f(t) we define it as:

h(t) =
f(t)

1− F (t)
=
f(t)

R(t)
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2.2 Quality of service in networking

The term quality of service (or QoS) is used to denote some parameters and

measures associated with the performance of a system. Typically, the param-

eters that are analysed are transmission delay, jitter, bit rate, throughput,

and packet loss.

QoS can be associated with different types of network traffic, it can take into

account the priority to be assigned to each flow and it can be used for the

management of congestions.

The Internet Engineering Task Force (IETF) has proposed a lot of methods

to achieve a certain quality of service in networking: the most important are

Best Effort, Integrated Services (IntServ) and Differentiated Services (Diff-

Serv).

2.2.1 Best Effort

The Best Effort model is the easiest one and is used by the Internet Protocol

(IP). Each node of the network tries to send a packet to the destination but

it does not guarantee that the data arrive. Data can be delivered later or

even may not arrive at destination: if they arrive at destination there is not

even the guarantee that they will arrive in the order in which the sender sent

them.

It does not provide any type of QoS mechanism and for this reason it is

very easy to implement but it is not usable in real time systems or in other

networks with limited resources[9, 10].
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2.2.2 Integrated Services (IntServ)

Integrated Services (IntServ) was introduced as a standard for the analysis

of quality of service in 1994 by IETF. It is based on flows, each node asks

the network to have a resource reservation for a flow. In this way, when an

application receives a resource it is possible to predict the behaviour of the

network because the resource is guaranteed. In the reservation phase each

node specifies the minimum bandwidth, maximum acceptable delay and some

other parameters. The network has to confirm the request and if the answer

is affirmative, it must provide the resources required for all the duration of

the transmission [9, 11].

It has not been widely used in networks for different reasons. First it assumes

that each node maintains a history with all the flows and so it is hard to use it

in fast growing networks. Second it requires a strict standard for the descrip-

tion of flows and it needs the use of Resource Reservation Protocol(RSVP)

[12].

2.2.3 Differentiated Services (DiffServ)

Differentiated Services (DiffServ) was born as an alternative to IntServ due

to the complexity and massive use of resources of the latter. Differently from

the previous method, it groups flows that enter the network into classes. In

this way, each node must not keep track of the flows that have crossed it as

it happen in IntServ. Each packet is analysed by a classifier that inspects

some parameters like source and destination address, traffic type or other

characteristics to assign it to a class. Moreover, there is no need to reserve
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resources before using them since it is based on statistical preferences [9, 10].

Each router implements a Per-Hop Behaviours (PHB) specifying the type of

forwarding for each type of class, the most common are:

• Default PHB: it is usually the Best Effort traffic model;

• Expedited Forwarding (EF): low loss and low latency traffic;

• Assured Forwarding (AF): it guarantees the delivery under some pre-

defined conditions;

This model is easy to use in scalable networks, it has an easy configuration,

it reduces the overhead of maintaining a history of flows for each node and

it can process the traffic more easily than IntServ [9, 13].
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Chapter 3

Scheduling disciplines

In this chapter, we present some of the most widely used scheduling algo-

rithms, we classifying them into two different categories depending if they

work independently or dependently with the size of the jobs. Henceforth,

we use the terms job, process and customer as synonyms to denote a unit

of work for the server. In networks, traffic consists of a set of packets that

move from one point to another thanks to the work of the routers. At each

router, incoming packets are classified and then resent out based on the pri-

ority assigned, in particular packets with high priority have precedence with

respect to the others. Nowadays, there are two different type of Internet

Protocol (IP), one is Transmission Control Protocol (TCP) and the other is

User Datagram Protocol (UDP). The TCP is a connection oriented protocol

while UDP is a connectionless protocol. From this point forward we define

a flow as a stream of packets that belong to the same TCP connection.

Scheduling algorithms are introduced to manage the available resources, they

are fundamental for improving the performance of a system. Combining
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scheduling and QoS we can regulate the traffic in a system, we can know

how many packets a sender can send, how many packets an intermediate

node can store and the number of flows that the system can support.

Scheduling algorithms are divided in two different sets, one consisting of

the schedulers that takes decisions on the priority of the packets based on

their sizes and one that contains those that does not take into account the

dimension of the jobs and decides their priority statically.

3.1 Scheduling discipline independent of the

job size

Scheduling algorithms that are independent of job sizes are the easiest to

analyze and implement. These algorithms can be based on the order of

arrival of the customers in the queue, giving more priority to those that

arrived first (First In First Out or First Come First Served) or can assign a

quantum of time that can be cyclically used by each job in queue (Round

Robin). When the quantum of time shrinks to 0 the RR discipline takes the

name of Processor Sharing (PS) and models the situation in which each job

in the system receives the same amount of computational power.

3.1.1 First In First Out (FIFO)

First In First Out (FIFO) or First Come First Served (FCFS) is the simplest

scheduling algorithm. It consists of only one queue in which customers are

stored in the order of arrival. In this way, customers that arrive first have
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higher priority than the last ones and it is impossible to change the priority

of jobs already in the queue.

Given the easiness of implementation, FIFO discipline is widely used, but

it is not good to use it in batch systems where the jobs can have size with

different order of magnitude (minutes, days or weeks): in fact, if a job of small

dimension comes in queue after a bigger job, it has to wait the completion of

the bigger one [14]. For this reason, although FIFO discipline is still widely

adopted for scheduling TCP flows, it is known to have poor disciplines and

should be avoided unless some assumptions on the homogeneity of the flow

size can be formulated.

Figure 3.1: Example of FIFO queue

3.1.2 Round Robin (RR) and Processor Sharing (PS)

Round Robin (RR) is another simple scheduling algorithm in which the com-

putational resource is assigned to each job in turn for a certain portion of

time (quantum).

The scheduler maintains a queue of ready jobs, it takes the job from the head

of the queue and processes it. If a job is not completed until the quantum

of time, then it is put at the end of the queue (the scheduler uses a circular

queue). The difference between RR and the FIFO algorithm is the assign-

ment of a quantum of time for each job. In fact, while the FIFO extracts the
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job from the head and completes it before moving on to the second job, the

RR extracts the job from the head, works it for the quantum of time and if

it is not finished it puts it back in the queue and moves on to the second.

Each job can be processed more than once before being completed[14, 15].

This algorithm is widely used because it is easy to implement (it has only a

circular queue and a constant that indicates the quantum of service provided

each time) and it also solves the problem of starvation. Starvation occurs

when a customer is not able to use a resource because it is used by other

customers with higher priority that does not release it [14].

Although it is widely used, the RR algorithm has some critical issues in the

choice of the quantum of time to be assigned to each job. In fact, if the quan-

tum is too small it increases the overhead of the CPU while, if the quantum

is too big, it increases the response time of the system (if the amount of

time is too big, the system behaves like a FIFO system). Many studies have

been made on the choice of the amount of time to assign, some algorithms,

instead, change the size of the quantum dynamically in order to improve the

performance of the system [16].

A specialisation of this model is the Processor Sharing policy (PS), in which

each job in queue receive an equal quantum of time that tends to zero. In this

way, the jobs perceive a sharing policy of the computational unit in which

each one receives the same proportion of computational power.
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3.2 Size based scheduling

Size based scheduling disciplines are used to improve the response time and

reduce the waiting time to some categories of jobs. They are more complex to

analyze and implement with respect to the previous types of scheduling algo-

rithm and they base their decisions on the size of the job, which is retrieved

dynamically. There are algorithms that give priority to smaller jobs (SJF),

others give priority to job whose remaining processing time is the smallest

(SRPT), others try to divide small and big jobs in order to minimise the

response time of the small jobs using a multilevel scheduling structure and

sampling the incoming packets (multilevel size based scheduling).

3.2.1 Shortest Job First (SJF)

Shortest Job First (SJF) (also known as Shortest Job Next (SJN) or Shortest

Process Next (SPN)) is a non-preemptive scheduling algorithm that gives

priority to the job that have the minimum execution time to be processed.

It minimises the amount of time that each process has to wait before being

processed. If two processes have the same execution time, then the first

arriving has higher priority than the second one.

This algorithm has a drawback, in fact if other small jobs continuously arrive

at the system, then these immediately overtake the processes with bigger size

already present in the queue, blocking in this way the latter for a long time:

for example, the IBM 7094 at MIT that used this algorithm was shut down

in 1973 and in the system there were still present waiting jobs initialised in

1967 [17]. Some studies have been made in order to prevent that large jobs
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have to wait indefinitely before being executed. An example is the Enhanced

SJF algorithm proposed in [17] in which the shortest processes are scheduled

as in the SJF algorithm but after an interval of time(selected dynamically)

also big jobs could be processed. The processes are ordered in the queue,

keeping the shorter ones in the head while the longer ones are kept in the

back. There are two pointers which are used to take processes from the front

or from the rear of the queue.

3.2.2 Shortest Remaining Processing Time (SRPT)

Shortest Remaining Processing Time (SRPT) is the pre-emptive version of

the SJF algorithm. Unlike the SJF, in which a job is processed until it runs

out, in the SRPT a job can be interrupted if a shorter job enters in the queue.

In this way, it minimises the average response time of the system and the

queue length distribution [18].

SRPT, like SJF, is not widely used because it requires to know an estimation

of the execution time of each job [19].

3.2.3 Multilevel size based scheduling

Queuing systems with a multilevel scheduling structure consist on a series

of queues ordered according to their priority. Each queue processes the jobs

until they reach a certain level of obtained service and then they are passed

to a queue of another level with lower priority. We define a bound for each

level in order to have:

0 = a0 < a1 < ... < aN < aN+1 =∞
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For example, a job whose size is x, where ai < x < ai+1 will start its service at

the queue with highest priority. Once it has received an amount of work equal

to a1 it is moved to the queue with the second highest priority. This continue

until it reaches the queue with the i th top priority. All the computational

effort is concentrated in the queue with the highest priority which is not

empty. We can define different scheduling disciplines for each level (it can

be FCFS, RR or PS). As previously stated, each level has a different priority

than the others in such a way that the schedulers choose to take the jobs that

are in the high-level queue (those with the highest priority) so that small jobs

are prioritised over large ones. In this way, a job that is in queue i can be

served only if the i− 1 previous queues are empty, otherwise it has to wait.
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Chapter 4

Introduction to queuing theory

4.1 Introduction

In this chapter, we give a general introduction to queuing theory, we intro-

duce its notation, we introduce the Poisson process that is widely used to

describe the arrival process and, finally, we present two different queuing

systems that are widely used and that we will exploit in this work.

Queuing theory is used to model and understand the performance of a system

with waiting queues. It is widely used in a lot of technological fields [20].

For the purpose of this thesis, we consider a set of identically distributed ran-

dom variables that forms the arrival process. They represent how customers

arrive at the system and how they are distributed in the time. On the other

hand, there is a set of independent random variables that models the service

time. Let λ−1 be the expectation of the inter-arrival time of the jobs and let

µ−1 be the expected service time. Then, if the queue has an infinite buffer,

in order to have a stable system it is necessary that µ > λ. In this work,
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we take as definition of stability of queuing system the property that states

that when time t goes to infinity the expected number of jobs in the system

is finite. Therefore, if µ > λ, the queue length tends to grow indefinitely

because the system is unable to serve the input workload [20].

In general, we can have one or more servers, and we take the system capacity

(maximum number of jobs that could be present in the system) to be infi-

nite. All the customers that arrive at the system have to wait in a queue.

Although in reality the queues have a limited size, it is common to consider

them infinite from a theoretical prospective [21].

The general description of queues is done with the Kendall’s notation

A/S/c/K/N/D where:

• A denotes the inter-arrival distribution, S indicates the service time

distribution and they can be:

– M : Exponential;

– Hk: Hyper-exponential with k phases of service;

– D: Deterministic;

– G: General;

• c indicates the number of servers;

• K indicates the system capacity (if not specified, we assume that it is

∞);

• N indicates the population size (if not specified, we assume that it is

∞);
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• D indicates the service discipline, the most common are FIFO, LIFO

and PS (if not specified, we assume that it is FIFO);

Typically, arrivals at queues are described by a Poisson processes. This is a

random process that has some fundamental characteristics such as [12]:

• the inter arrival times between two consecutive jobs are identically and

exponentially distributed random variables;

• the inter-arrivals are independent and memoryless:

P (T ≤ t0 + t|T > t0) = P (T ≤ t)

• the probability that there are n arrivals in a interval of time t is:

P (n) =
(λt)n

n!
e−λt

where λ is called intensity of the process;

• the probability of one arrival in a small interval of time of width ε is

proportional to its length:

P (1 arrival in [t, t+ ε]) = λε

4.2 M/M/1 queue

The simplest queuing system is the M/M/1 in which the arrivals are dis-

tributed according to a Poisson process (denoted by the first M in the clas-

sification) with exponentially distributed interarrival times. There is one

server which serves the clients in the queue (denoted with the 1 in the classi-

fication) and the job service time has an exponential distribution (denoted by
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the second M in the classification) [12]. Thanks to the independence and the

exponential distribution of all the times involved in the system, we have that

the stochastic process underlying a M/M/1 queue is a time-homogeneous

Markow chain. Its state transmission diagram can be easily represented as

shown in Figure 4.1. Jobs arrive with rate λ and are served with rate µ. Each

node in the figure represent a state of the system, the number represents how

many jobs are present in the system in a specif moment.

For this model, we know that the load factor is ρ = λ/µ and the stationary

probability distribution of the number of costumers in the system (that is

equal to the stationary probability to find the system in state i of the state

space) is πo = (1− ρ)ρi. We also know that:

• the expected number of jobs in the system is:

N̄ =
ρ

1− ρ

while the variance is:

V ar(N) =
ρ

(1− ρ)2

• the expected response time computed with Little’s theorem is:

R̄ =
1

µ− λ

Figure 4.1: State space of M/M/1 queue
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If we give a maximum size to the buffer we have an M/M/1/N queue. All

the other assumptions are equal to the M/M/1 queue, but the probability

to be in state i becomes:

πo =
1− ρ

1− ρn+1
ρi

and the queue is unconditionally stable.

4.3 M/G/1 queue

Another popular queue is the M/G/1 in which the arrivals are distributed

with a Poisson process with rate λ (denoted with the first M in the classifi-

cation), there is a general service time distribution with mean 1
µ

and variance

σ2 (denoted with the G in the classification), a single server (denoted with

the 1 in the classification) and the queuing discipline is FIFO.

For this type of queue we know that:

• the load factor is ρ = λ/µ;

• the expected number of jobs in the system is given by the Pollaczek

Khinchine formula (P-K formula):

N̄ =
ρ2 + λ2σ2

2(1− ρ)
+ ρ

• the expected response time is:

R̄ =
ρ+ λµσ2

2(µ− λ)
+

1

µ

• the expected waiting time is:

E[w] =
ρ+ λµσ2

2(µ− λ)
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It is worth of notice that the stochastic process underlying a M/G/1 queue

is not Markovian. As a consequence, several techniques have been developed

to study its stationary behaviour (see [2] and [22]). However, the importance

of the P-K formula relies on the fact that the expected performance indexes

depend only from the first two moments of the service time distributions

although it can be shown that the stationary state distribution depends on

the whole description of service time.

4.4 Conclusion

In this chapter we introduced some queuing models with some of the most

important indices of performance that we will use in the following chapters. in

queuing theory, we can focus either on the transient properties of the system,

i.e., its behaviour over a finite horizon, or on the stationary behaviour, i.e., we

consider the system in the long-run. In this chapter we have focused only on

the latter results which one extremely useful for the performance evaluation

of networking systems. In fact, transient behaviour is usually important for

reliability analysis. An interesting aspect that characterises the stationary

behaviour of Markovian queues is that, if the stochastic process underlying

the queue is ergodic, then the performance indices do not depend on the

initial state of the queue. For the Markovian queues, it can be shown that

the ergodicity is granted by the stability condition.
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Chapter 5

Analysis of multilevel size

based scheduling[2]

5.1 Introduction

This section presents the multilevel size based scheduling technique presented

by L. Kleinrock in [1] and then shows its analysis by means of a queuing sys-

tem with a multilevel scheduling structure. We give a general idea of our

model and then we compute some indexes that are useful to understand its

power compared to those already existing in the scientific literature.

The model presented by L. Kleinrock in [1] allows us to describe a mixed

scheduling strategy that is used in a large set of algorithm. We use Poisson

arrivals and an arbitrary service time distribution. There are different levels

of obtained service:

0 = a0 < a1 < ... < aN < aN+1 =∞ (5.1.1)
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where ai ∈ R+ ∪ {∞} denote thresholds on the size of the job in the system.

When a job arrives at the queue it start being served at the highest priority

queue according to the scheduling discipline associated with that level. If its

size is lower or equal than ai, at the service completion it leaves the system.

Conversely, if its size is greater than ai, it receives service from the first

level up to size ai, and then it is moved to the second level to receive the

residual service according to the discipline associated with the second level.

Therefore, it is possible to define N + 1 scheduling discipline (one for each

interval/level) followed by a job when it has a specific attained service τ :

ai−1 ≤ τ < ai i = 1, 2, ..., N + 1 (5.1.2)

The scheduling discipline for each level could be FCFS, FB or RR. Hence-

forth, we assume that all the levels implement a processor sharing queuing

discipline. We make this choice because we aim to use this model for study-

ing TCP-flow scheduling. These flows consist of numerous packets, therefore

from the prospective of routing device, the job is divided in many small pieces

(the packets) that are enqueued in its buffer. Clearly, among the available

queuing disciplines, the PS is that with analytical tractability that resembles

this behaviour more accurately.

5.2 Analysis of the queuing system

In this section we present the analytical study of the multilevel queuing

system. The main idea consists in conditioning the expected service time on

the job size x. Therefore, we want to calculate the value of T (x). To this aim

we introduce the quantity Ti(x) that represents the time spent in queue-level
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i for a job of size x, i.e.:

Ti(x) =E
{

Time spent in the ith interval [ai−1, ai) for customers

with size x
} (5.2.1)

We note that Ti(x) = Ti(x
′) for all x′ ≥ ai while for ak−1 ≤ x < ak, we have

that:

T (x) =
k∑
i=1

Ti(x) (5.2.2)

If ∆(x) is the p.d.f. of the job size, then the expected response time not

conditioned on the job size can be derived as:

T =

∫ ∞
0

T (x)∆(x)dx

We want to analyze the behaviour of the jobs that reach the ith-level queue

and depart from the system before passing to the (i + 1)th level.

We also know that, by the assumption of preemptive priority of the lower

level queues, those jobs in level higher than the ith-level can be ignored.

So, if a customer departs during the first level (0 ≤ x < a1), then we simply

have:

T (x) =
x

1− ρa1
(5.2.3)

that is a pure RR system in which the service time distribution is truncated

at a1.
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Figure 5.1: Example of multilevel queue, we define middle queue the ith

level queue that receives jobs from queue of level i− 1 and passes to level

i+ 1

Now, consider a job that requires x = ai−1 + τ sec of service, let α1 be the

mean real time the job spends in the system until its arrival to the middle

level queue and α2(τ) be the mean virtual time that the job spends in the

middle level queue.

α1 is equal to the mean work the job finds in the lower level on arrival plus

the ai−1 sec of work performed in the lower level, this delay is multiplied by

a factor of 1/(1− ρa1) due to new jobs arriving at the lower level:

α1 =
1

1− ρa1
(Wai−1

+ ai−1) (5.2.4)

where Wai−1
is the mean remaining work in the previous level.
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If a customer departs from the second level, the conditioned response time

is much harder to compute. The formula for the conditioned service time of

the second level is:

T (α1 + τ) =
1

1− ρa1
[Wai−1

+ ai−1 + α2(τ)] (5.2.5)

The only unknown term in the previous equation is α2(τ). In order to com-

pute it, we have to consider a M/G/1 system with bulk arrivals and RR

processor-sharing.

First, we have to compute the average bulk size ā at the second level using

the z-transform of the bulk size:

G(z) =
∞∑
i=0

P [ā = n]zn (5.2.6)

The z-transform is defined from the equation [2]:

G(z) = [1−B(a1)]ze−λa1[1−G(z)] +

∫ a1

0

e−λt[1−G(z)]dB(t) (5.2.7)

The service time distribution B(τ) is defined as follows:

1−B(τ) =

q(τ)e−µτ , if 0 ≤ τ < ai − ai−1 , t1

0, if t1 ≤ τ

(5.2.8)
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We have that ā = G(1)(1) and the value of b could be expressed in terms of

G(z) and we obtain:

b =
G(2)(z)

G(1)(z)
(5.2.9)

Now we can obtain the value of α
(1)
2 (τ) from the following equation:

α
(1)
2 (τ) =

1

1− λāτ̄
− b

λā

d+1∑
i=1

(µ2 − β2
i )

Q
(1)
2 (βi)

[Q0(βi)e
βiτ −Q1(βi)e

βi(t1−τ)

Q0(βi) +Q1(βi)e−βit1

]
(5.2.10)

where:

Q0(y) = (y + µ)d+1 − λā
d∑
i=0

q(i)(0)(y + µ)d−i (5.2.11)

Q1(y) = λā
d∑
i=0

e−µtq(i)(t1)(y + λ)d−1 (5.2.12)

Q2(y) = Q0(y)Q0(−y)−Q1(y)Q1(−y) (5.2.13)

and where the solutions of the equations Q2(y) = 0 occur in pairs denoted

by (βi,−βi) for i = 1, 2, ..., d+ 1.[2]
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In the next figure we report the Response time of an M/M/1 queue with

parameters x̄ = 1, λ = 0.75, a1 = 2. The image is taken from [2].

Figure 5.2: Response time for M/M/1, x̄ = 1, λ = 0.75, a1 = 2
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5.3 The 2-level processor sharing queue

This model was designed after studying the models presented in the articles

[3, 4, 6, 8, 23] and is based on the algorithm developed by L. Kleinrock

for the multilevel processor-sharing scheduler (chapter 4.7 of [2]). Since we

focus our attention on data center TCP flows, real-world devices are capable

of handling two priority queues. The complexity of the device with more

priorities seems not to justify the benefits obtained in terms of performance

improvements.

As reported in Figure 5.3 the model is composed of two queues, one with

high priority and one with low priority. When a job arrives in the system it

is inserted in the first queue with high priority, both the queues are served

with a round robin policy but the second one is served only if the first one is

empty. Each job can be processed in the first queue until it reaches a specific

threshold of attained service a, if the job is smaller than a it is fully served

in the first queue (it is a short job) otherwise it is considered as a big job and

is moved to the second queue.

Only when the first queue is empty, a job that is in the second queue can be

processed. There, it is processed until a new job arrives in the high priority

queue, or the job ends or ends its quantum of time.

The jobs arrive at the system with rate λ and they are served with rate µ. All

the derivations are done with the assumptions that the system works with

Poisson arrivals and arbitrary service time distribution.

In Figure 5.3 the functionality of the model is presented schematically.
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Figure 5.3: General idea of the model, we described it in the previous

section. When a job arrives in the system it is inserted in the first queue.

Each job can be processed in the first queue until it reaches a specific

threshold of attained service a, if it is not completed it is moved to the

second queue. Only when the first queue is empty, a job that is in the

second queue can be processed.
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5.3.1 High priority queue

In this section we focus on the analysis of the response time conditioned on

the job size at the high priority queue. We compute the utilisation factor

of the queue in the first level by knowing that S(x) = Pr{X ≤ x} is the

cumulative distribution function of X, the random variable that describes the

size of the job. The average size S̄1 of a job served at this queue is:

S̄1 =

∫ a

0

xs(x)dx+ a

∫ ∞
a

s(x)dx (5.3.1)

where s(x) is the probability density function of the variable X, and a is the

only threshold in our system used to distinguish the job sizes.

Therefore, the load factor ρ1 at the high priority queue is:

ρ1 = λS̄1 (5.3.2)

The average speed and the variance of the distribution are defined as::

µ1 =
1

S̄1

(5.3.3)

V ar(S1) =

∫ a

0

x2s(x)dx+ a2

∫ ∞
a

s(x)dx− S̄2
1 (5.3.4)

The mean work that a random job sees at the first queue at the instant of

its arrival is computed with the PK-formula (see Chapter 4) as the mean

waiting time of a M/G/1 queue:
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W1 =
ρ1 + λµ1V ar(S1)

2(µ1 − λ)
(5.3.5)

The response time conditioned on the dimension of the job at the first queue

is defined in the equation (4.36) of [2] for the jobs that have size x ≤ a:

T (x) =
x

1− ρ1

(5.3.6)

Now we compute the mean response time for the jobs that are smaller than

the threshold a:

T≤a =

∫ a
0
T (x)s(x)dx

Pr{X ≤ a}
(5.3.7)

The time that a job, with size greater than a, spends in the first queue it is

defined in equation (4.37) of [2]:

α1 =
1

1− ρ1

(W1 + a) (5.3.8)

5.3.2 Low priority queue

Now, we discuss how to derive the performance of the low priority queue.

Since the low priority queue works only if the high priority queue is empty,

we can imagine a time line in which we remove the busy periods of the first

queue. In this way the low priority queue sees a Poisson arrival process of

batches consisting of the jobs moved from the first queue to the second. If
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x is the job size, the remaining work on it is x− a. However its advantages

relies on the fact that we do not have to solve the differential equation system

reported in 5.2.11 and 5.2.12. The mean service time of the second level is

computed as:

S̄2 =

∫ ∞
a

(x− a)s(x)dx (5.3.9)

And the mean service rate is:

µ−1
2 =

S̄2

Pr{X > a}

We compute the mean batch size ā and the average size of the bulk from

which a tagged job is selected at random from the arrivals to the second level

b+ 1 as described in equation (4.41) of [2].

The generating function of bulk size ā is defined in the exercise 7.1 of [1] as

the solution of:

β(z) = [1−B(a)]ze−λai−1[1−β(z)] +

∫ a

0

e−λt[1−β(z)]dB(t) (5.3.10)

where B(a) is the service time distribution for the level.

From equation(5.3.10) we can compute ā and b:

ā = β(1)(1) (5.3.11)
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b =
β(2)(1)

β(1)(1)
(5.3.12)

Now, to compute the expected response time of the second queue we restart

to the z-transform approach, i.e., we introduce the function g(z) =
∑∞

i=0 πiz
i

where πi is the stationary probability that queue 2 has i jobs. Notice that

this approach provides the exact solution in case of exponentially sized jobs

but it is approximate otherwise. To compute π0 and g(z) we need to start

from the balance equation of the system where bi is the probability that the

batch size is equal to i.

π0λ(1− b0) = π1µ2

πn(λ(1− b0) + µ2) = πn+1µ2 +
∑n

i=1 biπn−i

(5.3.13)

We can multiply both members for zn and sum up all the equations of the

system (5.3.13)

∞∑
n=1

(λ(1− b0) + µ2)znπn =
∞∑
n=1

µπn+1z
n + λ

∞∑
n=1

zn
∞∑
i=1

biπn−i

(λ(1− b0) + µ2)
∞∑
n=1

znπn =
µ2

z

∞∑
n=1

πn+1z
n+1 + λ

∞∑
n=1

zn
∞∑
i=1

biπn−i

We know that g(z) =
∑∞

n=0 πnz
n so:

(λ(1− b0) + µ2)
[
g(z)− π0

]
=
µ2

z

[
g(z)− π0 − π1z

]
+ λ

∞∑
n=1

zn
∞∑
i=1

biπn−i
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From equation(5.3.13) we know that π1 = π0
λ(1−b0)

µ

(λ(1−b0)+µ2)
[
g(z)−π0

]
=
µ2

z

[
g(z)−π0−π0

λ(1− b0)

µ2

z
]
+λ

∞∑
n=1

zn
∞∑
i=1

biπn−i

The last term can be rewritten as:

n = 1 zb1π0

n = 2 z2b1π1 + z2b2π0

n = 3 z3b1π2 + z3b2π1 + z3b3π0

. . .

this succession can be rewritten as:

∞∑
j=0

πj

∞∑
i=1

biz
i+j =

∞∑
j=0

πjz
j

∞∑
i=1

biz
i = g(z)

[
β(z)− b0

]

(λ(1−b0)+µ2)
[
g(z)−π0

]
=
µ2

z

[
g(z)−π0−π0

λ(1− b0)

µ2

z
]

+λg(z)
[
β(z)−b0

]
(5.3.14)

From equation(5.3.14) we can get π0:

π0 =
µ2g(z)− λzg(z)− µ2zg(z) + λzg(z)β(z)

µ2(1− z)
(5.3.15)

We compute the limit of equation(5.3.15) with z → 1, we recall that g(1) =
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β(1) = 1. We know that g′(1) = N̄ is the average number of jobs in the

system and β′(1) = ā is the average batch size.

π0 = lim
z→1

µ2g(z)− λzg(z)− µ2zg(z) + λzg(z)β(z)

µ2(1− z)

π0
H
= lim

z→1

g(z)
[
− λ− µ2 + λβ(z) + λzβ′(z)

]
+ g′(z)

[
µ2 − λz − µ2z + λzβ(z)

]
−µ2

And so we have that:

π0 = 1− λā

µ2

(5.3.16)

From equation(5.3.14) we obtain g(z) as:

g(z) =
π0µ2 − π0µ2z

µ2 + λzβ(z)− λz − µ2z
(5.3.17)

It is easy to see that g(1) = 1, now deriving g(z) from equation(5.3.17) we

get g′(z)

g′(z) = −λµ2π0(−1 + β(z)− (−1 + z)zβ′(z))

(µ2(−1 + z) + λz − λzβ(z))2
(5.3.18)

g′(1) = lim
z→1
−λµ2π0(−1 + β(z)− (−1 + z)zβ′(z))

(µ2(−1 + z) + λz − λzβ(z))2

g′(1)
H
= lim

z→1

λµ2π0(−1 + z)(2β′(z) + zβ′′(z))

2(µ2(−1 + z) + λz − λzβ(z))(λ+ µ2 − λ(β(z) + zβ′(z)))
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g′(1)
H
= lim

z→1

λµ2π0(2β′(z) + (−3 + 4z) + β′′(z) + (−1 + z)zβ(3)(z))

2
{[
λ+ µ2 − λ(β(z) + zβ′(z))

]2
+

+ λ
[
µ2 − (λ+ µ2)z + λzβ(z)

][
2β′(z) + zβ′′(z)

]}



As seen in chapter 4.7 of [2] ā = β′(1) and b = β′′(1)
β′(1)

g′(1) =
λµ2π0(2ā+ β′′(1))

2
[
λ+ µ2 − λ(1 + ā)

]2
We can rewrite β′′(1) = bā and remembering that π0 = µ2−λā

µ2
as showed in

equation(5.3.16) we obtain:

N̄ = g′(1) =
λā(2 + b)

2(µ2 − λā)

Now we can compute the mean response time R̄ for the second level multi-

plying N̄ by throughput:

α2 = R̄ =
λā(2 + b)

2(µ2 − λā)

1

λā
=

2 + b

2(µ2 − λā)
(5.3.19)

Let’s check if we have an M/M/1 queue in which ā = 1 and b = 0 we have

that:

N̄ =
λ

µ2 − λ
=

λ/µ2

1− λ/µ2

=
ρ

1− ρ
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R̄ =
1

µ2 − λ

We compute the mean response time for the system:

T̄R = T≤aPr{X ≤ a}+ α1Pr{X > a}+
1

1− ρ1

α2Pr{X > a} (5.3.20)
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5.4 The model with exponentially sized job

In this section we will show our model applied to systems with exponential

arrival and service time distributions.

5.4.1 High priority queue

We compute the utilization factor of the first level starting from the equation

(5.3.1) and by knowing that s(x) = µe−µx:

S̄1 =

∫ a

0

xs(x)dx+

∫ ∞
a

as(x)dx =

∫ a

0

xµe−µxdx+ a

∫ ∞
a

µe−µxdx

S̄1 =
1− e−aµ

µ

The load factor ρ1:

ρ1 = λS̄1 =
λ(1− e−aµ)

µ

The mean and the variance of the distribution:

µ1 =
1

S̄1

=
µ

λ(1− e−aµ)

V ar(S̄1) =

∫ a

0

x2µe−µxdx+ a2

∫ ∞
a

µe−µxdx− S̄2
1
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The mean response time of the first level requires the computation of the

PK-formula of a M/G/1 queue described in equation (5.3.5)

W1 =
ρ1 + λµ1V ar(S1)

2(µ1 − λ)
=
λe−aµ (−aµ+ eaµ − 1)

µ2(1− ρ1)

The mean response time of the jobs that has size lower than the threshold

a is computed as follow, knowing that T (x) is calculated as reported in the

equation (5.3.6):

T≤a =
1

1− e−aµ

∫ a

0

T (x)µe−µxdx =
1

1− e−aµ

[
−aµ+ eaµ − 1

eaµ(µ− λ) + λ

]
(5.4.1)

Remembering that, as seen in equation (5.3.8), the time spent in the first

queue from a job that is bigger than the threshold is:i

α1 =
1

1− ρ1

(W1 + a) (5.4.2)

5.4.2 Low priority queue

Now we want to evaluate the average batch size ā and b using equation

(5.3.10) knowing that µ2 = µ for exponential distribution

1−B(t) = e−µt =⇒ dB(t) = µe−µtdt

ithe development of the following expression is not reported due to the complexity of

the result
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Equation(5.3.10) becomes:

β(z) = [1−B(ai−1)]ze−λai−1[1−β(z)] +

∫ ai−1

0

e−λt[1−β(z)]µe−µtdt

β(z) = ze−aλ(1−β(z))−aµ −
µ
(
ea(λβ(z)−λ−µ) − 1

)
λ− λβ(z) + µ

Knowing that ā = β′(1) as defined in equation(5.3.11) we have:

ā = β′(1) =
µ

λ+ eaµ(−λ+ µ)

We also know that b = β(2)(1)
β′(1)

as defined in equation(5.3.12)

b =
β(2)(1)

β′(1)
=

2λ
[
− λ+ eaµ(λ− aλµ+ aµ2)

][
λ+ eaµ(−λ+ µ)

]2
Knowing ā and b we can compute the mean response time of the second

queue as seen in equation (5.3.19): ii

α2 = R̄ =
2 + b

2(µ2 − λā)
(5.4.3)

iithe development of the following expression is not reported due to the complexity of

the result
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Now we can compute the mean response time of the system starting from

equation(5.3.20) and putting together (5.4.1), (5.4.2) and (5.4.3):

T̄R = T≤aPr{X ≤ a}+ α1Pr{X > a}+
1

1− ρ1

α2Pr{X > a} =
1

µ− λ
(5.4.4)

So the response time of our module with exponentially sized job depends

only on the rate of arrival λ and on the rate of service of the system µ.

The response time is constant and there are no improvements or worsening

due to the change in the size of the threshold. However, we still have that

we can observe an improvement in the expected response time of the small

jobs. Albeit the worsening of the large jobs response time compensate these

benefits. We can explain this result with the memoryless property of the

exponential distribution: in fact, when we move a job from the high priority

queue to the low priority one, we cannot predict if the residual size is big

(and hence the use of two levels brings benefit) or is small (and hence the

multi-level worsen the response time too much).
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5.5 The model with hyper-exponentially sized

job

In this section we will show our model applied to systems with hyper-exponential

service time distribution (two exponential distribution with parameter η1 and η2)

and exponential inter arrival distribution. Flows can be generated by the first

exponential distribution with probability p or by the second distribution with

probability 1− p.

A hyper-exponential distribution is a continuous probability distribution that

mix a set of exponential distributions. Let X1, X2, ..., Xn be independent ex-

ponential distribution with rate η1, η2, ..., ηn and the probability of choice each

variables are p1, p2, pn. We can define the probability distribution functions

as:

f(x) = p1(η1e
−η1x) + p2(η2e

−η2x) + ...+ pn(ηne
−ηnx)

The analysis that we propose is approximate since we adopt the generating

function approach described in Chapter 5. We will access the accuracy of

this approximation in the chapter presenting the simulation estimates.

5.5.1 High priority queue

We compute the utilization factor of the first level starting from the equation

(5.3.1) and by knowing that s(x) = pη1e
−η1x + (1− p)η2e

−η2x:

S̄1 =

∫ a

0

xs(x)dx+

∫ ∞
a

as(x)dx
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S̄1 =
η1(p− 1) (e−aη2 − 1) + η2p (1− e−aη1)

η1η2

The load factor ρ1:

ρ1 = λS̄1 =
λ (η1(p− 1) (e−aη2 − 1) + η2p (1− e−aη1))

η1η2

The mean and the variance of the distribution:

µ1 =
1

S̄1

=
η1η2

η1(p− 1) (e−aη2 − 1) + η2p (1− e−aη1)

V ar(S̄1) =

∫ a

0

x2s(x)dx+ a2

∫ ∞
a

s(x)dx− S̄2
1

The mean response time of the first level is computed with the PK-formula

of a M/G/1 queue described in equation(5.3.5)

W1 =
ρ1 + λµ1V ar(S1)

2(µ1 − λ)

The mean response time of the jobs that has size lower than the threshold

a is computed as follow, knowing that T (x) is calculated as reported in the

equation (5.3.6):

T≤a =
1

1− e−aµ

∫ a

0

T (x)s(x)dx (5.5.1)
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Remembering that, as seen in equation (5.3.8), the time spent in the first

queue from a job that is bigger than the threshold is:iii

α1 =
1

1− ρ1

(W1 + a) (5.5.2)

5.5.2 Low priority queue

Now we want to evaluate the average batch size ā and b using equation(5.3.10)

knowing that µ2 for hyper-exponential distribution is:

µ2 =
η1η2 (peaη2 − (p− 1)eaη1)

η2peaη2 − η1(p− 1)eaη1

B(t) = p(1− e−η1t) + (1− p)(1− e−η2t)

So dB(t) becomes:

dB(t) = η1pe
−η1t + η2(1− p)e−η2tdt

Equation(5.3.10) becomes:

β(z) = [1−B(ai−1)]ze−λai−1[1−β(z)] +

∫ ai−1

0

e−λt[1−β(z)]dB(t)

iiithe development of the following expression is not reported due to the complexity of

the result
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Knowing that ā = β′(1) as defined in equation(5.3.11) we have:

ā =
η1η2 (peaη2 − (p− 1)eaη1)

ea(η1+η2)(η1(η2 + λ(p− 1))− η2λp) + η1λ(p− 1) (−eaη1) + η2λpeaη2

We also know that b = β(2)(1)
β′(1)

iv as defined in equation(5.3.12).

Knowing ā and b we can compute the mean response time of the second

queue as seen in equation (5.3.19): iv

α2 = R̄ =
2 + b

2(µ2 − λā)
(5.5.3)

Now we can compute the mean response time of the system starting from

equation(5.3.20) and putting together (5.5.1), (5.5.2) and (5.5.3):

T̄R = T≤aPr{X ≤ a}+ α1Pr{X > a}+
1

1− ρ1

α2Pr{X > a}

T̄R =
η1(1− p) + η2p− λ(p−1)p(η1−η2)(η1(eaη2−1)−η2eaη1+η2)

ea(η1+η2)(η1(η2+λ(p−1))−η2λp)+η1λ(p−1)(−eaη1 )+η2λpeaη2

η1(η2 + λ(p− 1))− η2λp
(5.5.4)

Unlike the average response time calculated with jobs originating from an

exponential distribution (equation 5.4.4) in this case we have many variables

ivthe development of the following expression is not reported due to the complexity of

the result
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within the final result. The average response time of the system applied to

jobs with hyper-exponential size distribution depends on the means of the

two distribution η1 and η2 , from the threshold a, from the arrival rate λ and

from the probability p that a flow is generated by the first or by the second

distribution. Notice that the parameter a is now present in the expected re-

sponse time and hence the formula can be used to choose the best threshold

in order to minimize the expected overall response time.
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Figure 5.4: Average Response Time computed for hyper-exponentially sized

job (the simulation was done with two exponential distribution has rate

respectively equal to 1/0.2 and 1/1.8 and the probability to choice one

distribution or the other is equal to 0.5). As describe in the next section we

can notice an improvement of the average response time when the size of

the threshold changes

As can be seen in Figure 5.4 in this case, based on the choice of the threshold

size, we could have an improvement of the average response time. It is

important to select a correct dimension of the threshold a to obtain the

best possible improvement however, even with a non-optimal selection of

the threshold, an improvement is always obtained even if minimal. The

figure is obtained with two exponential distribution with rate respectively

equal to 1/0.2 and 1/1.8 and the probability to choice one distribution or
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the other is equal to 0.5, we can notice that. In this case the optimal value

of the threshold is around 1. Moreover, we observe that, for the parameters

considered in this example, the expected response time of a M/G/1/PS queue

is 5 and hence the introduction of the multilevel queue produce a reduction of

the expected response time of 6% plus the benefits for the small jobs. If the

phases of the hyper-exponential distribution are very different in magnitude,

the improvement can reach also higher level around 20%.
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5.6 The model with uniformly sized job

In this section we will show our model applied to systems with uniform

arrivals distribution U(v, w) and exponential service distribution. Without

loss of generality we consider that our threshold a is in between v and w and

v ≥ 0

5.6.1 High priority queue

As previously seen for the exponential model we calculate the utilization

factor of the first queue by taking the equation(5.3.1), knowing that s(x) =

1
w−v ∀x ∈ [v, w]:

S̄1 =

∫ a

0

xs(x)dx+

∫ ∞
a

as(x)dx =
1

w − v

∫ a

v

xdx+
a

w − v

∫ w

a

dx

S̄1 =
a2 + v2 − 2aw

2(v − w)

The load factor ρ1:

ρ1 = λS̄1 =
λ(a2 + v2 − 2aw)

2(v − w)

The mean and the variance of the distribution:

µ1 =
1

S̄1

=
2(v − w)

a2 + v2 − 2aw
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V ar(S̄1) =
1

w − v

∫ a

v

x2dx+
a2

w − v

∫ w

a

dx− S̄2
1 = −(a− v)3(3a+ v − 4w)

12(v − w)2

The mean response time of the first level is computed with the PK-formula

of a M/G/1 queue described in equation(5.3.5)

W1 =
ρ1 + λµ1V ar(S1)

2(µ1 − λ)
= − l (2a3 − 3a2w + v3)

3 (l (a2 − 2aw + v2)− 2v + 2w)

The mean response time of the jobs that has size lower than the threshold

a is computed as follow, knowing that T (x) is calculated as reported in the

equation (5.3.6) :

T≤a =
1

w−v

∫ a
v
T (x)dx

Prob{X < a}
=

(a− v)(a+ v)

l (a2 − 2aw + v2)− 2v + 2w
∗ 1

Prob{X < a}
(5.6.1)

Remembering that, as seen in equation (5.3.8), the time spent in the first

queue from a job that is bigger than the threshold is:v

α1 =
1

1− ρ1

(W1 + a) (5.6.2)

vthe development of the following expression is not reported due to the complexity of

the result
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5.6.2 Low priority queue

Now we want to evaluate the average batch size ā and b using equation(5.3.10)

knowing that µ2 = 2
w−a for uniform distribution:

1−B(t) =⇒ dB(t) =
1

w − v
dt

Equation(5.3.10) becomes:

β(z) =
eaλ(b(z)−1) − eλv(b(z)−1)

λ(b(z)− 1)(w − v)
+ z

(
1− a− v

w − v

)
e−aλ(1−b(z))

Knowing that ā = β′(1) as defined in equation(5.3.11) we have:

ā = β′(1) =
2(a− w)

aλ(a− 2w) + λv2 − 2v + 2w

We also know that b = β(2)(1)
β′(1)

as defined in equation(5.3.12)

b =
β(2)(1)

β′(1)
= −4λ(a− w) (a3λ− 3a2λw + 3av(λv − 2) + 6aw − λv3)

3 (λ (a2 − 2aw + v2)− 2v + 2w)2
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Knowing ā and b we can compute the mean response time of the second

queue as seen in equation (5.3.19):vi

α2 = R̄ =
2 + b

2(µ2 − λā)
(5.6.3)

Now we can compute the mean response time of the system starting from

equation(5.3.20) and putting together (5.6.1), (5.6.2) and (5.6.3):

T̄R = T≤aPr{X ≤ a}+ α1Pr{X > a}+
1

1− ρ1

α2Pr{X > a}

T̄R =


λ (a4 + 2av3 − 3v4)− 2w (2a3λ+ v2(λv + 3)) +

+ 6w2 (a2λ+ v(λv − 1))− 6w3(aλ− 1) + 6v3

3(v − w)(λ(v + w)− 2) (λ (a2 − 2aw + v2)− 2v + 2w)

 (5.6.4)

Also in this case (as in the case of jobs generated by a hyper-exponential

described in the Section 5.5) the average response time depends on many

parameters such as the arguments of the uniform distribution v an w, from

the threshold a and from the arrival rate of the system λ.

vithe development of the following expression is not reported due to the complexity of

the result
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Figure 5.5: Average Response Time computed for uniformly sized job (the

simulation was done with a Uniform distribution with parameter (0, 1)). As

describe in the next section we can notice a worsening of the average

response time when we use the threshold

In Figure 5.5 we reported the average response time of the simulation done

with a Uniform distribution with parameter (0, 1). Unlike the results ob-

tained with the jobs generated by exponential and hyper-exponential distri-

butions, with this distribution we always have a worsening of the average

response time regardless of the choice of the value of the threshold a.
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Chapter 6

Simulation and results

The aim of this chapter is to present our simulators developed after having

computed some performance indexes with the theoretical calculations. We

present the main functions of the two simulators and finally we compare the

theoretical results with those provided by the simulators.

After evaluating the various indexes through the theoretical calculations we

designed two different simulators: one that replicates the behaviour of the

model and one that is closer to the behaviour of the real system. Basi-

cally, the first simulator works on the queuing model by implementing the

processor sharing discipline with multiple levels. This will be used to access

the accuracy of the approximations introduced in the previous section for job

size distribution which are not exponential. In contrast, the second simulator

does not resort the processor sharing abstraction and works by decomposing

the flows in packets and exploring an an actual possible implementation of

the multi-level discipline.

We have chosen to develop the two simulators with two different program-
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ming languages: the first one is written in C because it did not require the

use of large data types and hierarchical structures, the second one was devel-

oped in Scala because we needed objects to represent the various components

of the system, their hierarchy, and the interactions between them.

In the next two subsections we present the two simulators that we have

developed. At the end we compare the result that we obtained with our

simulators (the results are very similar to each other except for some ap-

proximations or rounding errors) and with the theoretical calculations. The

simulators are downloadable from https://github.com/GiorgioMagnan/

2-level-processor-sharing-queue

6.1 Simulations of the model

Starting from the model described in Section 5 we designed a simulator that

emulates its behaviour. As said previously, we decided to develop this simu-

lator with a simple imperative language like C.

We used a lot of auxiliary variables to evaluate the various indexes that we

had calculated theoretically and then we proceeded with a comparison. Fur-

thermore, we used 3 arrays to store the flows that arrived in the system: the

first two arrays were used to simulate the behaviour of the high priority and

low priority queue while the third one was used to save the arrival time of the

flows. The main function of the program (reported in Listing 6.1) initialises

all the variables and the structures and then performs a cycle with thousands

of interactions; for each interaction it evaluates what the next event will be

(it could be a departure or an arrival of a flow) and then performs the action.
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At the end we printed the statistics to be able to compare the values obtained

with our simulator with those obtained from the theoretical calculations.

1 int main(){

2 initialize () ;

3 event type e; /∗can be ARRIVAL or DEPARTURE∗/

4 for( int events = 0; events < MAX EVENTS; events++){

5 int ne = next event(&e);

6 process event(e, ne);

7 }

8 print stats () ;

9 return 0;

10 }

Listing 6.1: Simulator of the model: main function

The main part of the work is performed by the functions next event and

process event.

The first function has to control the state of the queues and the relation

between the completion time of the jobs and the next arrival time. At the

beginning, it assumes that the type of next event is an ARRIVAL, then it

checks if the first queue is not empty: in this case it adds at each job in queue1

the quantum of works (calculated as queue1 length/MU), then it checks if

some job has been completed. If a job has been completed, then the type of

next event becomes a DEPARTURE, otherwise it remains an ARRIVAL.

If the first queue is empty, it will check if the second one has elements: in

positive case it performs the same operation of the first queue, adding to

each job the quantum of service and checking if any of them has been com-
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pleted. Also in this case, if a job is completed, then the type of next event

will become a DEPARTURE otherwise it remains an ARRIVAL.

At the end of the function it returns the time elapses before the next event

takes place.

In Listing 6.2 we report a schematization of the operations performed by the

function.
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1 double next event(event type ∗type){

2 next event = time next arrival ;

3 ∗type = ARRIVAL;

4 if (queue1 not empty){

5 for each job in queue1 do

6 remaining work −= (size(queue1) / MU);

7 if (job completed){

8 ∗type = DEPARTURE;

9 next event = time next departure;

10 }

11 }

12 else if (queue2 not empty){

13 for each job in queue2 do

14 remaining work −= (size(queue2) / MU);

15 if (job completed){

16 ∗type = DEPARTURE;

17 next event = time next departure;

18 }

19 }

20 return next event;

21 }

Listing 6.2: Simulator of the model: next event function
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The second important function is the process event. At the beginning of the

function we computed the work done that is performed in the elapsed time

from the previous event, than we updated the number of jobs in the system.

From this point forward, the function will have two different behaviours in

the case that the next event is an ARRIVAL or a DEPARTURE.

In case of ARRIVAL the function updates the number of jobs arrived, then

it updates the residual of each job already present in the queue, then again

it adds the new job in the queue checking if it is greater than the threshold

(th). If it is bigger, then it splits the job in the two queues, putting in the

first queue a quantity of work equal to the threshold and the remaining part

of the job in the second queue, otherwise it puts the job only in the first

queue.

At the end, it computes the time for the next arrival generated by an expo-

nential distribution with parameter LAMBDA.

In case of DEPARTURE the function checks first of all if the first queue

has only one job: in this case it is the end of its busy period and then it

can update the value of alpha1 ; otherwise it checks if there is not any job in

queue1 and if there are jobs in the second queue. If it is true it uploads the

value of alpha2.

At this point it checks from which queue there is a departure:

• from queue1: it decreases the number of jobs in the queue1 and than

it updates the residual job size in queue1. Then it has to check what

is the dimension of the job:

– if it is smaller than the threshold: it increases the number of

completions and it evaluates the response time of the job;
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– if it is bigger than the threshold: it increases the number of jobs

present in queue2;

• from queue2: it decrease the number of job in queue2, it increases the

number of completions, it evaluates the response time of the job and

then it updates the value of alpha2 ;

At the end of the function it increases the simtime.

In Listing 6.3 we report the structure of the process event function.

1 void process event(event type t , double ts){

2 double elapse = ts − simtime;

3 double workdone;

4 if (jobs1 > 0)

5 workdone = elapsed ∗ MU / jobs1;

6 else

7 workdone = elapsed ∗ MU /jobs2;

8 totjobs += jobs∗elapsed;

9 switch(t){

10 case ARRIVAL:

11 /∗pseudocode in Listing 4∗/

12 case DEPARTURE:

13 /∗pseudocode in Listing 5∗/

14 }

15 simtime = ts;

Listing 6.3: Simulator of the model: main function
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In Listing 6.4 and 6.5 we report a schematization of the operations performed

by the function when it has to manage an ARRIVAL or a DEPARTURE.

1 void process event(event type t , double ts){

2 case ARRIVAL:

3 totalarrivals ++;

4 /∗update residual job sizes∗/

5 if (queue1 not empty){

6 for each job in queue1

7 remaining work −= workdone;

8 }

9 else{

10 for each job in queue2

11 remaining work −= workdone;

12 }

13 /∗add job in the queues∗/

14 if ( size > th){

15 queue1 = th;

16 queue2 = size − th;

17 }

18 else{

19 queue1 = size;

20 queue2 = 0;

21 }

22 next arrival = ts + exponential(LAMBDA)

23 }

Listing 6.4: Simulator of the model:

process event function (case ARRIVAL)
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1 void process event(event type t , double ts){

2 case DEPARTURE:

3 if ( size (queue1) == 1)

4 /∗update the value of alpha1∗/

5 else if ( size (queue1) == 0 && size(queue2) > 0)

6 /∗update the value of alpha2∗/

7

8 /∗Completion at queue1 and departure∗/

9 if (queue1[jobs−1]>0.0 && queue2[jobs−1]==0.0 && size(queue1)>0){

10 /∗update residual job size in queue1∗/

11 }

12 /∗Completion at queue1 and move to queue2∗/

13 else if (queue1[jobs−1]>0 && queue2[jobs−1]>0 && size(queue1)>0){

14 /∗update residual job size in queue1∗/

15 }

16 /∗completion at queue2∗/

17 else if (queue1[jobs−1]==0 && queue2[jobs−1]>0 && size(queue1)==0 && size(

queue2)>0){

18 /∗update residual job size in queue2∗/

19 /∗update alpha2∗/

20 }

21 else{

22 /∗SOME ERROR IN THE SIMULATION∗/

23 }

24 }

Listing 6.5: Simulator of the model:

process event function (case DEPARTURE)
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6.2 Simulations of the system

In order to simulate the model that we describe in Section 5, applied in a

system with different components, we decide to use a programming language

that allows us to emulate the behaviour of each entity and that guarantees

a hierarchy among the components: for these reasons we decided to use an

object oriented language like Scala.

The main function of the program initialises an object that represents the

Scheduler of our system and then it calls the simulate method of the sched-

uler that starts the simulation. At the beginning of the method, we sent a

series of flows to make sure that the queues are not empty at the beginning

of the real simulation. At the end of the method, we printed the statistics in

order to compare the values obtained with this simulator with those obtained

from the theoretical calculations.

1 class Scheduler {

2 def simulate() : Unit = {

3 while(SW.getFlowsSent < Scheduler.WarmUpFlows)

4 executeOneEvent()

5 SW.reset()

6 while(SW.getFlowsSent < Scheduler.TotalFlows)

7 executeOneEvent()

8 SW.printStatistics()

9 }

10 }

Listing 6.6: Simulator of the system: Scheduler.simulate()
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At each iteration the scheduler calls the executeOneEvent method that must

update the residual job size of flows in the system (it call the forwardTime

method) and it must check if the next event is a departure or an arrival.

It checks in the list of SimulationEntity which element has the minimum

NextEventTime, in fact if the minimum is of type Flow we have a departure,

otherwise, if it is a FlowGenerator, we have an arrival.

In case the next event is of type FlowGenerator, it creates a new flow and

adds it to the list of entities in the system, then it calls the executeEvent

which simply calculates the time between the next arrival by generating a

random number from a Poisson distribution, and then again it returns to the

Scheduler and moves on to the next iteration.

In case the next event is of type Flow then it updates the remaining number

of packets that the flow has to send and calculates the time between the next

arrival with a Poisson distribution (it execute this two operation by calling

the executeEvent method), and then again it sends the packet to the Switch

object (with the receivePacket method). At the end, it checks if the flow is

completed and in case of positive answer it removes the flow from the list of

entities.
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1 private def executeOneEvent():Unit = {

2 val Next = getNextEvent

3 forwardTime()

4 Next match{

5 case fg : FlowGenerator => {

6 val F: Flow = new Flow(Scheduler.FlowRate)

7 entities = F :: entities

8 fg .executeEvent()

9 }

10 case f : Flow => {

11 f .executeEvent()

12 SW.receivePacket(flowPackets(f.getID)

13 if ( f .getRemainingPackets == 0L) {

14 entities = entities . filter ( != f)

15 }

16 }

17 }

Listing 6.7: Simulator of the system: Scheduler.executeOneEvent()
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The Scheduler maintain a series of field that coordinate the operation of the

entire system. The most important are SWRate and FGRate that represent

respectively the rate service of the Switch and the rate of the FlowGenerator.

Furthermore, it maintains the number of flows that must be generated in the

warm up and in the simulation.

It maintains a referene to the switch, a reference to the flow generator, a list

of entities (that initially contain only the switch and the flow generator) and

a map with the history of packets sent for each flow.

In Listing 6.8 we report all variable that store the Scheduler that are useful

to coordinate the system.

1 object Scheduler {

2 val SWRate: Double = 1

3 val FGRate: Double = 0.8 ∗ SWRate

4 val FlowRate: Double = SWRate ∗ Flow.AverageSize / Packet.AverageSize

5 val TotalFlows: Int = 90000

6 val WarmUpFlows: Int = 25000

7 }

8

9 class Scheduler {

10 private val SW: Switch = new Switch(Scheduler.SWRate ∗ Flow.AverageSize /

Packet.AverageSize)

11 private val FG: FlowGenerator = new FlowGenerator(Scheduler.FGRate)

12 private var entities : List [SimulationEntity] = Nil

13 private var flowPackets: Map[Long, Packet] = Map[Long, Packet]()

14 entities = SW :: FG :: entities

15 }

Listing 6.8: Simulator of the system: Scheduler fields
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The fundamental component of the system is the Switch, it has a lot of aux-

iliary variables that are used to calculate the final statistics and a variable

that indicates the dimension of the threshold. Furthermore, it has a map

to store how many packets of a flow have already been sent, a variable that

indicates the time between the next event and two lists to distinguish the

two queue’s levels.

1 class Switch(serviceRate: Double) extends SimulationEntity(serviceRate) {

2 private val sizeThreshold: Long;

3 private var packetSent: Map[Long, Long] = Map[Long, Long]()

4 nextEvent = Double.MaxValue

5 private var inputQueue = mutable.MutableList[Packet]()

6 private var waitQueue = mutable.MutableList[Packet]()

7

8 /∗Auxiliary variables∗/

9 private var totalFlowsSent: Int = 0

10 private var totalResponseTime: Double = 0.0

11 private var simulationTime: Double = 0.0

12 private var warmUpTime: Double = 0.0

13 private var arrivalTime: Map[Long, Double] = Map[Long, Double]()

14 private var avgQueueLength: Double = 0.0

15 }

Listing 6.9: Simulator of the system: Switch
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Another important method of the Switch is the receivePacket, in this method

we checked if the arrived packet is the first of the flow by checking into the

arrivalTime map if the ID of the flows is already present, if it is not present

it is added into the map.

After that we checked if the packet that has just arrived should be added in

the first or second queue by checking the history of the packets received from

the flow to which the packet belongs. If the flow has already sent a number

of packets greater the threshold then the packet it is put in the second queue

otherwise in the first one.

1 def receivePacket(p: Packet): Unit = {

2 if (!arrivalTime.contains(p.getFlowID)) {

3 arrivalTime += (p.getFlowID −> simulationTime)

4 packetSent += (p.getFlowID −> 0L)

5 }

6 if (packetSent.get(p) < sizeThreshold){

7 insert (p, inputQueue)

8 }

9 else{

10 insert (p, waitQueue)

11 }

12 }

Listing 6.10: Simulator of the system: Switch.receivePacket()
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The last important method is executeEvent, it has the task of determining

from which queue it has to pick up the next packet tha has to be sent, after

it checks if the packet that it has chosen is the last of the flow and in this

case updates some variables that are used to calculate the statistics and the

performance indices. In all the cases it call the send method of the packet

and then it updates the number of packet sent in the map with the history

of all flows.

1 override def executeEvent(): Unit = {

2 val NextPacket = getNext

3 if (NextPacket.getRemainingPacketsNumber == 1) {

4 timeFrame = simulationTime − flowArrivalTime(NextPacket.getFlowId)

5 flowTotalResponseTime += timeFrame

6 NextPacket.endFlow()

7 flowArrivalTime −= NextPacket.getFlowId

8 totalFlows += 1

9 }

10 NextPacket.send()

11 packetSent += (NextPacket.getFlowID −> (packetSent(NextPacket.getFlowID) +

1))

12 }

Listing 6.11: Simulator of the system: Switch.executeEvent()

Other methods and other classes are present in our project but are only

helpful in calculating final indices or for carrying out operations in our data

structures. In Figure 6.1 we have reported the UML diagram to give a general

idea of the project structure.
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Figure 6.1: UML of the components of the simulator
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6.3 Comparison of the results

In Table 6.1 we report the result obtained with our model in which the

arrivals are distributed with an exponential process and the parameters are

µ = 1 and λ = 0.8. Henceforth, we will only report the data obtained from

one of the two simulators because they are very similar to each other.

Remembering that as we have seen in equation (5.4.4) the average response

time is T̄R = 1/(µ−λ) independently from the choice of the threshold so, with

our data, we expect that T̄R = 5. As we can notice all our result obtained with

the theoretical computations and the simulations are in between 4.71 and

5.00, we can consider that the values smaller than 5 are due to approximations

of the calculations. No result below 5 can be considered as an improvement

due to the use of our model or of the threshold.
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a Simulated Computed

0.0 4.9856 5.0000

0.5 4.7094 4.7804

1.0 4.7067 4.7163

1.5 4.7346 4.7308

2.0 4.7633 4.7592

2.5 4.7831 4.7898

3.0 4.8046 4.8201

3.5 4.8425 4.8489

4.0 4.8820 4.8753

4.5 4.8987 4.8986

5.0 4.9416 4.9187

Table 6.1: Average response time with exponential distribution

In Figures 6.2 and 6.3 we report the average response time obtained with

the theoretical computations and the simulations. We can notice that the

result obtained with the theoretical computations and with the simulations

(especially in the case of hyper-exponential distribution) are very similar to

each other.

In Figure 6.2 we can notice that, when the threshold is set to 0, we have the

maximum measure for the average response time; changing the level of the

threshold, we obtain an improvement of the average response time.

We can be satisfied with the results obtained, the improvement achieved

reaches up to 6/7%, the average response time is always under the maximum

for all the possible values of the threshold and we are always under the
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level that we can obtain with a system that use a M/M/1 queuing discipline.

Furthermore, the computed and simulated data are very similar to each other,

the maximum difference in fact is around 2%.

4.7

4.75

4.8

4.85

4.9

4.95

5

0 1 2 3 4 5 6

T̄

a

Average Response Time, simulated vs. computed

Simulated
Computed

Figure 6.2: Average Response Time Hyper-exponential distribution (the

simulation was done with two exponential distribution has rate respectively

equal to 1/0.2 and 1/1.8 and the probability to choice one distribution or

the other is equal to 0.5). As described in the previous section we can

notice that we improved the response time of 7/8% with a difference from

theoretical calculations and results obtained with the simulations of 2%

In Figure 6.3 we report the result obtained with flow generated by a Uniform

(0,1). In this case, however, we note that without threshold (so when a =
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0 or a = 1) we have the best average response time; in all other cases,

when a threshold is used (so when 0 < a < 1), we have a deterioration

of performance. Also in this case, the results obtained with the theoretical

calculations and with the simulations, are similar to each other: the error is

around the 3%.
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Figure 6.3: Average Response Time Uniform distribution (the simulation

was done with a Uniform distribution with parameter (0, 1)). As described

in the previous section we can notice that without the threshold we have

the best value of the average response time, in the other cases we have a

deterioration of the value. The difference between the theoretical

calculations and the simulations is around the 3%
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Chapter 7

Networking in the Linux kernel

In this chapter we introduce the Linux operating system, we focused our at-

tention in particular on the traffic control of this system, taking into account

queuing disciplines, classes and filters.

Linux is an open source operating system based on Unix built with a mono-

lithic kernel. The kernel, which handles process control, networking (includ-

ing facilities for firewalling, forwarding and traffic shaping), accesses to the

peripherals and file systems, it is built in a modular way so that it is easy

for developers to add or remove functionality [24].

The networking subsystem could be divided into four parts [24, 25]:

• network core: includes code that is independent from the protocol that

the system could use, includes some generic datagram routines, data

structures and device interfaces;

• network protocols: include specific code for specific type of networks
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like Ip and Ethernet;

• network scheduler: includes routine to handle traffic priority and shap-

ing;

• network drivers: include functionality to handle specif networking hard-

ware;

7.1 Traffic control

From Linux 2.2.0, traffic control has been part of the distribution of the Linux

kernel [26]. Traffic control consists of a set of operations and mechanisms that

allows to manage packets sent and received by a machine. Figure 7.1 shows

how the kernel processes data received by the network and how it generates

data for the network. Incoming packets are examined and then forwarded to

the network or passed up to the higher layer of the protocol in order to be

processed. After the forwarding phase the packets are inserted in the correct

output interface and, at this point, the traffic control takes action. [27]

Figure 7.1: Networking data processing

Traffic control can decide if a packet can be queued or dropped, it can decide

the order in which the packets have to be sent and it can slow down the

sender. Traffic control is composed of three parts: queuing discipline, classes
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and filters. As with most components, traffic control is also modular to allow

the use of multiple different traffic control schemes.

Queuing disciplines are the basic of a traffic control system, it includes zero or

more filters to direct traffic into classes and zero or more classes to prioritise

traffic. Each class can contain another queuing discipline with its own classes

and filters [26, 27].

7.1.1 Queuing disciplines

Queuing disciplines can be classless or classful but each network device has

its own queuing discipline that controls how packets that pass from the device

are treated. The most simple queuing discipline is a single queue that works

with FIFO discipline where all packets are stored in the order in which they

arrive and they are served one after the other respecting the order of arrival.

Figure 7.2: FIFO queuing discipline

On the other hand there are queuing disciplines that are classful and there-

fore use filters to distinguish packets in different classes and process each

class in a different way. A classful discipline includes one or more classes

with filters and a scheduler that manages the queues.

When a packet arrives, the system calls the enqueue() function of the se-

lected scheduler based on the filters configured in the discipline. The function

examines all the filters until one of them corresponds to a match: at this point

the packet is inserted in the queue of the corresponding class. If a packet
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does not match any filter, it is associated with some default class.

When the kernel decides, it calls the dequeue() function, the scheduler can

make its decision based on different criteria like priority, delays of the queue

and used traffic [24, 27].

In addition to the functions enqueue() and dequeue(), queuing disciplines

provides several functions:

• drop: drops one packet from the queue;

• init: initialises and configures the queuing discipline;

• change: changes the configuration of the queuing discipline;

• reset: restore the initial state of the queuing discipline;

• destroy: removes a queuing discipline;

• dump: returns information used for maintenance [26, 27];

Figure 7.3: Queuing discipline with filters and classes
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7.1.2 Classes

Classes are used by the queuing disciplines to differentiate the traffic, they

are identified by an unique ID assigned by the user, they have a set of variable

and a queue to put packet that belongs to the class.

Each class has a set of function like:

• get: returns the internal ID;

• put: called when a class that was previously referenced is dereferenced;

• change: used to create new class or to change the priority of an existing

class;

• delete: deactivates and removes the class if it is not used;

• leaf: returns the queuing discipline of the class;

• graft: returns the queuing system in use and adds a new queuing dis-

cipline to the class;

• walk: invokes a callback function for each class of the queuing discipline;

• bind tcf: binds a filter to the class (similar to get);

• unbind tcf: removes a filter from the class (similar to put);

• tcf chain: returns a link to the list of filters of the class;

• dump class: returns information for maintenance and diagnostic data

[27];
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7.1.3 Filters

Filters are used by queuing discipline to manage the incoming traffic, in fact

they assign each packet to a specific class. Filters are saved in a sorted list in

ascending order based on priority. Each filter could access to all information

of the packet and could have an internal structure that controls internal

elements [24, 27].

Figure 7.4: Structure of a filter with internal elements

As for the classes and the queuing disciplines also the filters have a series of

operations to use them:

• init: initialises the filter;

• get: returns the internal ID of the filter;
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• put: called when a filter that was previously referenced is no longer

used;

• change: changes the configuration of an existing filter or configures a

new filter;

• classify: returns the classification of the filter;

• destroy: removes a filter;

• delete: deletes an element of the filter;

• walk: invokes a callback function for each element of the filter;

• dump: returns information for maintenance and diagnostic data [27];

Figure 7.5: Traffic control: General procedure
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7.1.4 Policing

Policing is used when one wants to impose traffic limits, they can be used

in any part and in any moment in the traffic control, there is not a specific

point where they could be applied. There are four types of policing:

1. policing decision by filter;

2. dropping of a packet from a queuing discipline;

3. dropping of a packet when a new one is enqueued;

4. refuse to enqueue a packet;

As we have seen in the section 7.1.3 the function classify of filters returns

different types of policy value to indicate a different state, they are:

• TC POLICE OK: no treatment required;

• TC POLICE RECLASSIFY: packet was selected by the filter but it

exceed some bound and it has to be reclassified;

• TC POLICE SHOT: packet was selected by the filter but it violate the

bound and it should be rejected;

Furthermore, filters can use the tcf police function to control if a flow is

conformed or not.

The second policing is used when a queuing discipline decides to drop a

packet to create new space for a packet that was already in queue but arrives

from another class more important than the previous one.

The third policing eliminates the packets that were already in the queue, this
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happens when the enqueue function is called and the new packet has higher

priority than the previous one [24, 27].
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Chapter 8

Linux schedulers

The scheduler is a component of the kernel and, as seen in Section 3, it

manages the traffic entering and leaving the machine. There are different

scheduling algorithms, in the next subsections we will see two scheduling

algorithms widely used in Linux systems.

8.1 CoDel

CoDel (Controlled Delay Management) was developed by Van Jacobson and

Kathleen Nichols in 2006 as an evolution of Random Early Detection (RED)

algorithm. A first implementation was written in 2012 by Dave Tht and

Eric Dumazet for the Linux kernel. It is designed to overcome the problem

of bufferbloat in network links, it is parameterless, it controls delay and it

scales from simple to complex routers [28].

It introduces three innovations [29]:

• it uses the local minimum queue instead of using queue size or queue
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average size;

• it uses a single variable of the minimum delay to understand where the

delay in the queue is;

• the queue size is measured in packet-sojourn time in the queue (it is

not measured in bytes or packets);

Moreover, CoDel distinguishes between good and bad queues: the first one

does not have bufferbloat, the network link utilization is maximised, and

so, the management algorithm can ignore it; the second one, instead, has

bufferbloat, low utilization and constant high buffer delay, and so, the mon-

itoring is constant and a lot of packets are dropped.

Since CoDel measures the minimum packet sojourn time, there is no need for

blocks in the implementation, in fact it can be modified only when a packet is

dequeued. CoDel compares the minimum local queue with a target value: if

it is lower, there is not the necessity to drop packets, otherwise, if it exceeds

the target for an interval, the system starts to drop packets.
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8.1.1 Main functions

In this section are presented some functions that are the core of CoDel algo-

rithm, the code present in this subsection is taken from sch codel.c of Linux

v.18.04(64 bit) LTS.

The first thing that we analyze is the enqueue function, that uses the generic

enqueue function to add the packet in the queue. Furthermore, it saves the

actual timestamp that will be used in dequeue to calculate the sojourn time

of the packet [30].

1 void codel queue t :: enque(packet t∗ pkt){

2 pkt−>timestamp() = clock();

3 queue t ::enque(pkt);

4 }

Listing 8.1: CoDel enqueue function
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The next piece of code is an auxiliary function that dequeues the packet and

checks if the sojourn time is below the target [30].

1 dodeque result codel queue t :: dodeque(time t now){

2 dodeque result r = { 0, queue::deque() };

3 if (r .p == NULL) {

4 first above time = 0;

5 } else {

6 time t sojourn time = now − r.p−>tstamp;

7 if (sojourn time < target || bytes() < maxpacket) {

8 // went below so we’ll stay below for at least interval

9 first above time = 0;

10 } else {

11 if ( first above time == 0) {

12 // just went above from below. if we stay above

13 // for at least interval we’ ll say it ’ s ok to drop

14 first above time = now + interval;

15 } else if (now >= first above time) {

16 r .ok to drop = 1;

17 }

18 }

19 }

20 return r ;

21 }

Listing 8.2: CoDel auiliary function for dequeue
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The previous function returns a struct with two values, a bool that indicates

if the packet has been over the target for more than interval(so it has to be

dropped) and the dequeued packet [30].

1 typedef struct {

2 packet t∗ p;

3 flag t ok to drop;

4 } dodeque result;

Listing 8.3: CoDel struct dodeque result

The core of the CoDel is in the codel queue t::deque function and it has some

checks to manage different states of the system.

In Figure 8.1 we report a schematisation of the various branches of the func-

tion. From the figure we can notice that the function first checks that there

is an element in the list. Then, before performing a dequeue of a packet, the

function checks that the system is not in drop phase.
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Figure 8.1: CoDel dequeue function general idea
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At the beginning we check if we are in drop mode, then we check if we have

to leave the drop phase (if the queue is empty or if the sojourn time is under

the target) or if we have to continue to drop packets [30].

1 packet t∗ codel queue t :: deque(){

2 time t now = clock();

3 dodeque result r = dodeque();

4 if (r .p == NULL) {

5 // an empty queue takes us out of dropping state

6 dropping = 0;

7 return r .p;

8 }

9 if (dropping) {

10 if (! r .ok to drop) {

11 // sojourn time below target − leave dropping state

12 dropping = 0;

13 }

Listing 8.4: CoDel dequeue function: check drop mode phase
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If we are in drop phase we drop the packet and we dequeue another one. Af-

ter dequeuing, the system checks if it has to continue to drop other packets

or if it has to leave the drop phase [30].

1 else if (now >= drop next) {

2 while (now >= drop next && dropping) {

3 drop(r.p);

4 ++count;

5 r = dodeque();

6 if (! r .ok to drop)

7 // leave dropping state

8 dropping = 0;

9 else

10 // schedule the next drop.

11 drop next = control law(drop next);

12 }

13 }

Listing 8.5: CoDel enqueue function: drop packets phase
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In the next branch, the system is not in dropping phase and it has to check

if the sojourn time is bigger than the target for more then interval. In this

case it has to drop a packet and then it enters in the dropping phase [30].

1 } else if (r .ok to drop && ((now − drop next < interval) || (now −

first above time >= interval))) {

2 drop(r.p);

3 r = dodeque();

4 dropping = 1;

5

6 // If we’re in a drop cycle, the drop rate that controlled the queue

7 // on the last cycle is a good starting point to control it now.

8 if (now − drop next < interval)

9 count = count>2? count−2 : 1;

10 else

11 count = 1;

12 drop next = control law(now);

13 }

14 return (r .p);

15 }

Listing 8.6: CoDel enqueue function: check sojourn time phase
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8.2 FqCoDel

Th FqCodel (Fair Queuing Controlled Delay) algorithm is an evolution of

CoDel and it combines a packet scheduler and an Active Queue Manage-

ment (AQM) [31].

8.2.1 Main functions

As done for CoDel we present some main functions of FqCodel, the code

present in this subsection is taken from sch codel.c of Linux v.18.04(64 bit)

LTS.

The first things that we analyze are that it has two ordered queues (new flows

and old flows) in which packets are enqueued. When a packet arrives in the

system it is put on the new flows queue if the flow is not already in the queue.

After an interval of time it is moved to the old flows queue from which it is

dequeued when the work of the flow is terminated [32].

1 struct fq codel sched data {

2 struct list head new flows;

3 struct list head old flows ;

4 }

Listing 8.7: FqCoDel struct sched data
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Differently from the enqueue function of the CoDel algorithm in this case

the function is a bit more complicated. It has to manage some aspect of the

system.

In Figure 8.2, we summarise the three main phases that characterise the

functioning of the fq codel enqueue.

Figure 8.2: FqCoDel enqueue function general idea
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The first phase of the enqueue function has the task of classifying the packets

arriving in the system and redirecting them to the correct queue. By default,

the classification is done with the hashing of the source and destination ad-

dresses and the port number modulo the number of queues [32].

1 static int fq codel enqueue(struct sk buff ∗skb, struct Qdisc ∗sch, struct sk buff ∗∗

to free ){

2 struct fq codel sched data ∗q = qdisc priv(sch) ;

3 unsigned int idx, prev backlog, prev qlen;

4 struct fq codel flow ∗flow;

5 int uninitialized var (ret) ;

6 unsigned int pkt len;

7 bool memory limited;

8

9 idx = fq codel classify (skb, sch, &ret);

10 if (idx == 0) {

11 if (ret & NET XMIT BYPASS)

12 qdisc qstats drop(sch) ;

13 qdisc drop(skb, to free ) ;

14 return ret ;

15 }

Listing 8.8: FqCoDel enqueue function: classification phase

104



After having classified them, the packets are passed to the Codel algorithm

to save the timestamp and then it is enqueued in the selected queue and

the counter of bytes of the queue is updated by the size of the flow. It also

checks if the flowchain is empty, in this case it moves the new flows list in

the flowchain [32].

1 codel set enqueue time(skb);

2 flow = &q−>flows[idx];

3 flow queue add(flow, skb);

4 q−>backlogs[idx] += qdisc pkt len(skb);

5 qdisc qstats backlog inc (sch, skb);

6

7 if (list empty(&flow−>flowchain)) {

8 list add tail (&flow−>flowchain, &q−>new flows);

9 q−>new flow count++;

10 flow−>deficit = q−>quantum;

11 flow−>dropped = 0;

12 }

Listing 8.9: FqCoDel enqueue function: add flow in list phase
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At the end, the counter is compared with the threshold and if it is above

then some packets are dropped to get back into the limit [32].

1 q−>memory usage += get codel cb(skb)−>mem usage;

2 memory limited = q−>memory usage > q−>memory limit;

3 if (++sch−>q.qlen <= sch−>limit && !memory limited)

4 return NET XMIT SUCCESS;

5

6 prev backlog = sch−>qstats.backlog;

7 prev qlen = sch−>q.qlen;

8

9 /∗ save this packet length as it might be dropped by fq codel drop() ∗/

10 pkt len = qdisc pkt len(skb);

11 /∗ fq codel drop() is quite expensive, as it performs a linear search

12 ∗ in q−>backlogs[] to find a fat flow.

13 ∗ So instead of dropping a single packet, it drops half of its backlog

14 ∗ with a 64 packets limit to not add a too big cpu spike here.∗/

15 ret = fq codel drop(sch, q−>drop batch size, to free);

16 return NET XMIT SUCCESS;

17 }

Listing 8.10: FqCoDel enqueue function: threshold control phase

106



As for the CoDel algorithm, the bulk of the work is done by the function

fq codel dequeue. It selects the queue, then it dequeues a job and then again

it uploads the counter of bytes of the queue.

Obviously, it starts from the list of new flows, if it is empty then it checks

the old flows queue [32].

1 static struct sk buff ∗fq codel dequeue(struct Qdisc ∗sch){

2 struct fq codel sched data ∗q = qdisc priv(sch) ;

3 struct sk buff ∗skb;

4 struct fq codel flow ∗flow;

5 struct list head ∗head;

6 u32 prev drop count, prev ecn mark;

7

8 begin:

9 head = &q−>new flows;

10 if (list empty(head)) {

11 head = &q−>old flows;

12 if (list empty(head))

13 return NULL;

14 }

15 flow = list first entry (head, struct fq codel flow , flowchain) ;

Listing 8.11: FqCoDel dequeue function
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If the queue has finished the credits then it is put in the old flows list and

the routine restarts again selecting another queue.

1 if (flow−>deficit <= 0) {

2 flow−>deficit += q−>quantum;

3 list move tail (&flow−>flowchain, &q−>old flows);

4 goto begin;

5 }

Listing 8.12: FqCoDel dequeue function: checking credits phase

When a queue is selected then it calls the codel dequeue function, at the end

it returns the packets that are removed from the list. If it does not return

anything, then the scheduler has to manage different situations: in fact, if

the function was applied to one queue of the new flows list, then the queue is

moved into the old flows list. In the other hand, if the function was applied

to the old flows list then the queue is removed.

In Figure 8.3 is summarised the possible situation that the scheduler has to

manage [32].

Figure 8.3: FqCoDel transition of queues
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On the other hand, if a packet is returned to the scheduler then it uploads

the counter of bytes already present in the queue and the available credits of

the list [32].

8.2.2 Design of the multi-level queue in Linux

The implementation of the model presented in this thesis in reality is not

very easy. Our idea for a possible future work is to start from one of the

Linux schedulers analysed in the previous chapters (8.1 and 8.2) and modify

them in order to adapt them to work with a multi-level queue. We thought

about two possible solutions that would partially modify the structure of the

two algorithms without twisting them. The first solution is to maintain the

two lists new flows and old flows but changing the policy of moving the jobs

from the first to the second queue according to our model (so as soon as a

job in new flows exceeds the threshold level of obtained service, it is moved

to the old flows list). The second idea is to double the number of lists in such

a way to have 4 lists: 2 for new flows and 2 for old flows. In this way, we

maintain the same politic used by FqCodel to distinguish flows (described in

detail in Chapter 8.2). Moreover, for each group of flow, we add our policy

distinguishing between large and small flows using two more queues. In this

way we will have:

• new flows high priority that contains the jobs that are classified by

FqCodel as new flows and whose obtained service is minor than the

threshold;

• new flows low priority that contains the jobs that are classified by Fq-
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Codel as new flows and whose obtained service exceeds the threshold;

• old flows high priority that contains the jobs that are classified by Fq-

Codel as old flows and whose obtained service is minor than the thresh-

old;

• old flows low priority that contains the jobs that are classified by Fq-

Codel as old flows and whose obtained service exceeds the threshold;

The order with which the queues would be served will be:

1. new flows high priority

2. old flows high priority

3. new flows low priority

4. old flows low priority

In both cases, however, we must take into account the dropping policies

of packets provided by the operating system in order not to overload the

system. Furthermore, we have to add a data structure to count for each flow

how many packets are processed. In this way we can identify the moment in

which the obtained work threshold is exceeded.
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Chapter 9

Conclusion

In this dissertation, we have presented some theoretical and practical aspects

about scheduling in networking that have been addressed for years in the sci-

entific literature. We have provided a new model that we believe could be

implemented in reality and further developed.

Our study focused mainly on the current TCP/IP network design, we tried

to understand the dimension of the flows using a series of queues and thresh-

olds in order to distinguish the flows based on how much resources they used

up to a certain moment.

In Chapter 2, we introduced the problem of scheduling in networking start-

ing from what has been studied in the scientific literature. We focused, in

particular, on works that concern the analysis of the distribution of the jobs’

size. Then, we introduced some basic concepts that concern schedulers and

queuing theory (discussed in Chapters 3 and 4) that underlies our research

project.

All the concept discussed in Chapters 2, 3 and 4 have been used as a basis
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for the development of our model.

Our model (described in detail in Chapter 5) was designed starting from the

multi-level system proposed by Kleinrock in [1, 2]. Furthermore, in Chapter

5, after having described in detail the functioning of the model, we have cal-

culated some indices (including the average response time, the mean waiting

time, etc.) to understand the goodness of our model.

We have provided a punctual solution at the system of differential equations

proposed by Kleinrock in [2] for jobs whose size follows a negative exponen-

tial random distribution. Secondly, we provided an approximate solution for

jobs whose sizes do not follow an exponential random distribution.

After observing that the theoretical results obtained with our model were

very satisfactory for jobs whose size follows an hyper-exponential random

distribution (that corresponds to TCP flow distribution with high variance,

as it happen in practice), we developed two simulators (that we described

in detail in Chapter 6). The first simulator replicates the behaviour of the

model, while the second one is closer to the behaviour of the real system.

The first simulator was used to evaluate the accuracy of the approximation

introduced with the theoretical calculation for jobs whose size does not follow

an exponential distribution. We can be satisfied with the estimates obtained

considering that, comparing the theoretically results with those obtained

from the simulations, the introduced error was fewer than 3%.

The second simulator, instead, simulated the behaviour of our model applied

in a real system, it decomposed the flows in packets, and simulated a possible

implementation of the multi-level discipline in a real router.

In Chapter 6.3 we have analysed the results obtained with the theoretical
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computations with those obtained with our simulators.

As far as the result obtained with the job whose size follows an exponen-

tial random distribution is concerned, we can say that the introduction of a

threshold is useless with respect to the improvement of the expected response

time, while it is still useful to improve the response time of the small jobs

with respect to the bigger one. In fact, with the theoretical computation, we

can observe that the average response time depends only on λ and µ, that

are general parameters of the system. With the simulators we have obtained

the same results of the theoretical computations without taking into consid-

eration some errors introduced with approximations.

Instead, as far as the result obtained with jobs whose dimension follows an

hyper-exponential distribution is concerned, we can observe an improvement

of the average response time when the threshold levels change. With our

simulation (executed with two exponential distributions with parameters,

0.2 and 1.8, considering that the probability of choosing one distribution or

the other is equal to 0.5) we have observed an improvement of the 7% of the

average response time.

Finally, as far as the result obtained with jobs whose size follows a uniform

distribution is concerned, we can observe a deterioration of the performance

(our simulation was done with a uniform distribution with parameter (0, 1)).

The results that we have 0obtained are consistent with what has been said

in [7] and [8] about the hazard rate of distribution. In fact, the hyper-

exponential distribution has a decreasing hazard rate distribution, for this

reason we can have an improvement of the average response time. On the

other hand, the uniform distribution has an increasing hazard rate distribu-
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tion, for this reason it cannot have an improvement of the average response

time. In Chapter 7, we have seen that the traffic control of Linux consists

of a set of elements that interacts in a lot of ways. Given the modularity

with which the traffic control system has been implemented it is easy to add,

modify or remove features to traffic control.

In Chapter 8, we discussed about two schedulers already present in Linux

systems and we analysed their main functions in order to understand the

functioning of the scheduling in the operating system. As described in Chap-

ter 8.2.2 the implementation of a scheduler that respects our model is not

simple because there are a lot of component that we have to manage in order

to reproduce the multi-level queue system that we have described in this the-

sis (in particular we have to rewrite a module of the kernel which requires a

complete knowledge of all the module that are used by the system to manage

the scheduling of the packets). For these reasons we have proposed a general

idea on how it could be developed.

In conclusion, we think that the results that we have obtained are satisfactory

and we positively believe that the implementation can be done as a future

work.
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