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Abstract

Assessing the performance and reliability of computer and telecommunication systems
requires the development of stochastic models whose state spaces are very large. This
problem is often known as State Space Explosion. As a consequence, general purpose
algorithms for their solution cannot be applied straightforwardly. This problem may be
found both in continuous or discrete time. To tackle this problem we resorted to the
theory of product-forms, including the latest theoretical developments in the field such
as the Reversed Compound Agents Theorem (RCAT) and new forms of time-reversibility.
The main contribution of our work consists in the identification of classes of product-form
models that are not captured by previous results. More specifically, our contribution can
be summarized as follows:

• We identified a process algebraic specification of models including instantaneous
propagation of signals in continuous time such as those required to describe the
G-networks with negative customers and triggers. As an application of this result
we introduced an original model which allows one to perform an exact analysis for
a class of cache systems based on the Time-To-Live (TTL) policy with resets.

• We characterized a class of models suitable for the quantitative analysis of reversible
computations. We showed that our results can be useful for the performance eval-
uation of speculative distributed simulations.

• Finally, we analysed product-form models also in discrete time and provided a
product-form formulation for the Probabilistic Input/Output Automata (PIOA).

vii
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Chapter 1

Introduction

1.1 Preface

This thesis consists of two parts. The first part introduces the formalisms used and state
of the art in the fields of product-form, time-reversibility and probabilistic process alge-
bras. We present also the main results on product-forms and a brief description of some
formalisms in both continuous (i.e., PEPA and Stochastic Automata) and discrete (i.e.,
PIOA) time. The second part illustrates the novel contributions of this work.
Chapter 2 introduces the Markovian stochastic models, in particular Markov chains and
their applications to computer systems. We focus on Markovian queueing networks (QN)
giving their definition and two main examples: M/M/. queuing networks (i.e., Jackson’s
networks) and G-Networks. We give a description of both basic G-Network and all its ex-
tensions.
The last introductory part is Chapter 3 in which we describe compositional modelling.
We illustrate Markovian process algebras and their main results for the product-forms. In
the first part we focus on continuous time models with the Performance Evaluation Pro-
cess Algebra (PEPA) and with Stochastic Automata (SA). After a brief description of dis-
crete time process algebras, we recall the Probabilistic Input/Output Automata (PIOA)
and its formal description. In the last part of this chapter, we examine product-forms,
and special attention is devoted to the presentation of the RCAT theorem and the notion
of quasi reversibility which are the basis from which our work starts. We also present the
main theorem on product-form QNs (i.e., BCMP theorem) and we illustrate the proper-
ties of the queueing model that imply the BCMP product-form. These properties can be
expressed in terms of a characterization of the scheduling discipline or in terms of prop-
erties of the underlying CTMC (e.g., Local Balance Property or M =⇒ M property).

The second part of the thesis illustrates our original contributions. Chapter 4 presents
propagation of signals in continuous time. We describe a case study with G-Networks
with signals. In these networks, one or more customers are forced to move to another
queue when a signal enters their queue and according to a Markovian routing rule they
enter a new queue or leave the network instantaneously. This is particularly useful to
model synchronised or triggered motions; e.g., systems in which work and customers
can be moved from one queue to another upon the arrival of an external or internal
signal. Applications for G-Network models with signals can be found in flow-control
in communications systems or to perform load balancing in distributed systems. More
complex systems can be analysed and developed with these models and in particular,
they are outside the possible solutions of BCMP-networks presented in [14, 54]. We de-

1



2 CHAPTER 1. INTRODUCTION

scribe product-form and stationary probability distribution of the case study. We also
give a method to represent signals using the PEPA language. In order to do this, we
have to introduce an encoding method called Double Index (DI) solution, for modelling
G-Networks with triggers using PEPA. This method uses the concept of a double index.
The double index in a process can fully trace the information about the state of another
process. This increases the “dependence” between the “tracker” process with respect
to the “tracked” one, but completely eliminates any possible uncertainty about possible
choices of tracker regarding actions of tracked processes. In this way, a process can know
exactly how many positive customers are present in the system and where and so it can
decide to perform some specific kind of action. Furthermore, it can be also informed
whether the departure of a customer will leave that queue empty or not. Additionally,
we want to model G-Networks with signals, also satisfying RCAT conditions. Thus, we
introduce the notions of Phantom State and Impossible Actions to satisfy these conditions
maintaining the same behaviours at the same time. Impossible actions will never occur
due to the fact that they will never cooperate with the corresponding active/passive ac-
tions in other processes. In order to do this, the so-called phantom state is added. This
state will never be reachable during cooperation because all the actions which lead to it
are impossible actions. In this way all the actions from an unreachable state F will be
impossible too, because they will never occur thanks to the non reachability of F .
In Chapter 5 we propose a new model for the analysis of systems with ageing objects
such as a Time-To-Live cache. We consider a model with an underlying Continuous Time
Markov Chain in which objects can be completely or partially rejuvenated. In the former
case the object becomes fresh, while in the latter all the objects are simultaneously rejuve-
nated so that the youngest becomes fresh. We show that under the so-called Independent
Reference Model assumption our model is numerically tractable and has a product-form
equilibrium distribution. Furthermore, we consider the case in which the object ageing
stops after a certain threshold and hence the partial rejuvenation introduces a probabilis-
tic behaviour. Also in this case, we can derive a product-form equilibrium distribution
under some mild conditions. The models presented in our work may be interpreted as a
new class of G-Networks with catastrophes and partial flushing. It is worthy of note that
these models are not quasi reversible and they do not satisfy RCAT conditions.
In Chapter 6 we study reversible computations. Reversible computations have two exe-
cution directions: forward, corresponding to the usual notion of computation, and back-
ward that restores previous states of the execution. Various applications and problems
related to reversible computations have been widely studied in different research areas
and from different viewpoints, including functional analysis and energy consumption.
Various formalisms and models have been proposed in the literature to represent and as-
sess qualitative properties of reversible computations such as their correctness or if two
reversible processes are equivalent in some terms. Most of the proposed approaches are
based on process algebras that do not include any notion of computation time. In this
chapter we propose the adoption of Markovian stochastic models to assess the quanti-
tative properties of reversible computations. Under some conditions, we show that the
notion of time reversibility for Markov chains can be used to efficiently derive some per-
formance measures of reversible computations. The importance of time-reversibly relies
on the fact that, in general, the process’s stationary distribution can be derived efficiently
by using numerically stable algorithms. We will review the main results about time-
reversible Markov processes and discuss how to apply them to tackle the problem of
quantitative evaluation of reversible computations.
The last part showing original results is Chapter 7 in which we study product-forms for



1.2. INTRODUCTION OF THESIS 3

models in discrete time. Probabilistic I/O automata (PIOAs) provide a modelling frame-
work that is well suited for describing and analysing distributed and concurrent sys-
tems. They incorporate a notion of probabilistic choice as well as a notion of composition
that allows one to construct a PIOA for a composite system from a collection of simpler
PIOAs representing the components. Differently from other probabilistic models, the lo-
cal actions of a PIOA are associated with time delays governed by independent random
variables with continuous-time exponential distributions. Our contribution consists of
studying the product-form property for PIOAs. Our main result is the formulation of a
theorem giving sufficient conditions for a composition of PIOAs to be in product-form
and hence to efficiently compute its stationary probabilities.
Finally, in Chapter 8, we present the conclusions of our work.

1.2 Introduction of Thesis

Stochastic models are powerful tools for assessing the non functional quantitative proper-
ties of computer networks, communication systems, and software architectures. In many
practical applications, Markov processes are the stochastic processes underlying the con-
sidered models and their performance evaluation is carried out by using the well-known
methods for the analysis of transient or stationary behaviour of Markov processes. In
the first part of our work in this thesis, we will focus on the analysis of models whose
underlying process is a Continuous Time Markov Chain (CTMC). Several higher level
formalisms that are widely applied for quantitative analysis are based on Markov pro-
cesses, including Stochastic Process Algebras (SPA), Stochastic Petri Nets (SPN), Stochas-
tic Automata Networks (SAN) and Queueing Networks (QN). Although the quantitative
analysis based on these formalisms can be obtained by the direct solution of the under-
lying Markov chain, the state space dimension of the process in general grows exponen-
tially with the model dimension. This is known as the state-space explosion problem and
becomes intractable from the computational viewpoint as the problem size increases. In
order to overcome this problem, various techniques have been proposed in the literature,
including the state-space reduction by aggregating (or lumping) methods, approximation
techniques, and the identification of product-form solutions for state probabilities of the
Markov chain. The product-form theory provides techniques to derive the equilibrium
state distribution of a complex model based on the analysis of its components in isola-
tion. Product-form models consist of a set of interacting sub-models whose solutions
are obtained by isolating them from the rest of the systems. Then, the stationary state
distribution of the entire model is computed as the (normalised) product of the station-
ary state distributions of the sub-models. Various classes of product-form models have
been defined for different formalisms and some of them can be analysed through efficient
algorithms with a low polynomial complexity in the model dimension. Product-form
has been widely investigated for queueing network models [14, 74]. These product-form
models have closed-form expressions of the stationary state distributions that lead to effi-
cient solution algorithms. For more general Markov models and by the compositionality
property of Stochastic Process Algebra, the Reversed Compound Agent Theorem (RCAT)
[60, 11] provides a product-form solution of a stationary CTMC defined as a cooperation
between two sub-processes under certain conditions. This result gives a unified view of
most of the commonly used product-forms.

Since its introduction [22], the theory of product-form solutions has been playing an im-
portant role for the practical analysis of models with underlying CTMCs as it allows for
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an efficient derivation of the stationary performance indices even when the process’s state
space is huge and the analysis methods based on the solution of the system of global
balance equations become computationally prohibitive. Even more interestingly, for a
class of product-form models, including the ones we are studying here, the performance
indices can be derived without even generating the joint state space. Successful appli-
cations of product-form theory include the BCMP theorem [14], the modelling of neural
networks [51], the analysis of systems with fork and join constructs [84], the loss networks
[76] and the performance evaluation of wireless networks [17], just to mention a few.

In the second part of our work in this thesis, we also study discrete time models. In
discrete time we can use probabilistic automata. A major distinction of these automata is
that between fully probabilistic and non-deterministic ones. A fully probabilistic automa-
ton gives a probability distribution (over a set of states or states combined with actions)
to every choice it can do. The probability distribution captures the uncertainty about the
next state. We will obtain a discrete time Markov chain if we abstract away from the ac-
tions in a fully probabilistic automaton. Subsequently, we can apply standard techniques
to analyse the resulting Markov chains. Sometimes, we cannot represent probabilisti-
cally the incomplete knowledge about the system behaviour. In these cases we should
consider more than one possible transition. We speak in this case of a non-deterministic
probabilistic automaton. Non-determinism is essential for modelling scheduling free-
dom, implementation freedom, the external environment and incomplete information.
Furthermore, non-determinism is essential for the definition of an asynchronous parallel
composition operator that allows interleaving. Non-deterministic choices could be ex-
ternal or internal, due to the fact that they are influenced by the environment or by the
system itself. We use the term non-determinism for full non-determinism either with in-
ternal or external non-deterministic choices.
We can further categorize the automata types, grouping them in several subsections re-
flecting their common properties. Basically, every type of probabilistic automata arises
from the plain definition of a transition system with or without labels. We can add prob-
abilities to every transition, or to transitions labelled with the same action. There can be
also a distinction between probabilistic and ordinary (non-deterministic) states, where
only the former ones include probabilistic information, or the transition function can be
equipped with structure that provides both non-determinism and probability distribu-
tions. The two main groups of probability system are the reactive and the generative mod-
els. The probabilities are distributed over the outgoing transitions labelled with the same
action in reactive systems or they are distributed over all outgoing transitions from a state
in a generative one. Reactive systems wait (react) for an external input (either inside or
outside the system) for finalize their actions while generative systems start (generate) their
own actions. A reactive system acts probabilistically by choosing the next state according
to a probability distribution when it receives input from the environment and it has no
probabilistic assumptions about the behaviour of the environment. On the other hand,
a generative system chooses the next transition according to the probability distribution
assigned to the state. Thus, when it chooses the next transition, the system moves to
another state while generating the output action. Note that in a generative system there
is no non-determinism present, while in a reactive system there is only external non-
determinism.
In our work, we use a fusion between reactive and generative models: Input/Output
Model. The model of input/output probabilistic automata, introduced by Wu, Smolka
and Stark in [101], exploiting the I/O automata by Lynch and Tuttle [82], presents a com-
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bination of the reactive and the generative model. In an I/O automaton for every input
action there is a reactive transition. Note that the transition function for inputs is always
a function and not a partial function as in the reactive models. Hence each input action
is enabled in each state of an I/O probabilistic automaton. The output actions are treated
generatively. At most one generative probabilistic transition gives the output behaviour
of each state.
In I/O automaton there is a parameter called delay rate δ, an aspect from continuous-time
systems. if we ignore the 0 delays, (i.e., with no active actions) one gets the reactive model
and excluding passive actions, one gets the generative model with a delay rate assigned
to each state.
The semantics of I/O automata are an extension of labelled automata with probabilities
and we consider one with a delay rate parameter δ and with an underlying discrete time
Markov chain (DTMC) as common denominator of a wide set of Markovian discrete pro-
cess algebra. Also the parallel composition operation has been treated in different ways
in the discrete time models: as unique composition, synchronous, asynchronous or partly
synchronous and partly asynchronous operator or even strongly relying on the specific
structure of the systems. As the classes of probabilistic systems can be divided into three
groups depending on whether they show reactive, generative or mixed behaviour; each
of them allow in essence a similar definition and investigation of parallel composition.
Also, the probabilistic automata [101] are equipped with a composition operation by which
a complex automaton can be constructed from simpler components. The model draws
a distinction between active and passive action types, and in forming the composition of
automata only active/passive synchronisations are permitted.

Motivation

In this thesis we study product-forms beyond the limitations of RCAT theorem and quasi
reversibility property. We want to find new classes of product-forms as well as new meth-
ods to analyse cooperating systems without solving all their global balance equations.
The class of product-forms is wide and includes different kinds of systems. Even if the
Reversed Compound Agent Theorem (RCAT) [61] and Extended Reversed Compound
Agent Theorem (ERCAT) [63] are very general results for the analysis of product-form
stochastic models, they have some limits and do not capture all product-forms models.
In fact, some systems have a product-form solution, even if they do not satisfy the con-
ditions of these theorems. In [8] we can see a method for analysing Markov modulated
processes as well as other product-form model classes, opportunely formulated in or-
der to apply RCAT theorem and its extensions. These include quasi-reversible queueing
networks [76], G-Networks with various types of triggers [62], queueing networks with
finite capacity and blocking [6], stochastic Petri nets [10, 84] and others. However, there
are some examples of meaningful models whose product-form cannot be analysed by
applying these results. As far as we know, the methodology used in RCAT and in its ex-
tensions is sufficient but not necessary for product-forms. For now, there is not a general
rule for product-form solutions thus we cannot state that RCAT it’s not just an incom-
plete version of the general rule (if it will ever exist) even if its main idea could be used
to search for new product-forms.
In general, a system of a tandem of two queues in which the service rate of the second
depends on the number of customers of the first does not have a product-form stationary
distribution. Moreover, as analysed in [14, 76], it is not considered in the state-dependent
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service rate functions. However, under some assumptions, the product-form exists even
if it is not derivable by previously known results. This is an example of a product-form
Markov modulated process whose stationary distribution cannot be derived via ERCAT.
We find three different kinds of product-form not satisfying the quasi reversibility prop-
erty or the RCAT theorem in three different application field:

1. Systems with Ageing Objects;

2. Reversible computations;

3. Probabilistic Input/Output Automata.

As for RCAT theorem. the first two are product-forms from the continuous time field
where we can see more clearly that the conditions are not satisfied although. For what
concerns the last one, the fact that it’s in discrete distances itself even further from RCAT.
It makes us notice that there are an entire group of product-forms in discrete time that are
not tracked by RCAT and its extensions.
We will give now very brief descriptions of these three application fields and then a sum-
mary of our contributions.

Systems with Ageing Objects

We focus on modelling and analysing systems with ageing objects by means of product-
form models. These systems consist of a set of objects which are associated with an age
(e.g., the time-stamp of their creation or latest access). As time passes, the objects become
older. Two types of events can rejuvenate the objects:

• total rejuvenation, i.e., the object timestamp is set to the current time. This event
affects only one object.

• partial rejuvenation. In this case, the event affects the whole system since the objects
are all rejuvenated for the same time interval so that the youngest is associated with
the current timestamp.

An example of such a system is a TTL cache in which the total rejuvenation occurs when
an object is accessed and the partial rejuvenation can be seen as a method to prevent an
under utilisation of the cache memory in case of periods of inactivity. The networking
research community has renewed its interest in the performance of caching systems due
to the new delivery methods for distributing contents in the networks. The huge num-
ber of proxy servers has led to the design of Content Delivery Networks (CDN) which
are used by the content providers to deliver information to a large and dispersed popu-
lation of users. Caching contents that have the greatest demand closer to the users’ lo-
cations allows one to improve the client-perceived experience, to reduce the server load
and optimize the bandwidth requirements. In this perspective, the caching system plays
a fundamental role in the gradual shift from the traditional paradigm of host-to-host com-
munication to the new host-to-content model. Other applications of ageing systems are
shown in [53, 56] where the failure of nodes in distributed systems are handled by means
of checkpoints.

The study in this field led us to the publication of the paper:
A Product-Form Model for the Analysis of Systems with Aging Objects, (F. Cavallin,
A. Marin, S. Rossi; Proc. of Int. Conf. MASCOTS 2015; pp. 136-145) [24].
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Reversible computations

Reversible computations have two execution directions: forward, corresponding to the
usual notion of computation, and backward that restores previous states of the execu-
tion. Various applications and problems related to reversible computations have been
widely studied in different research areas and from different viewpoints, including func-
tional analysis and energy consumption (e.g., [80, 96] and the references therein). Also
the RCAT characterisation of product-form solutions is connected to time-reversibility:
the solution is based on the definition of a set of transition rates in the time-reversed
process. Further notions of reversibility have been introduced in [110, 76] for dynami-
cally reversible processes where some states of the direct and reversed processes are in-
terchanged, and more recently the ρ-reversibility for reversible processes with arbitrary
state renaming [87, 86]. Some results on properties and product-form solutions have been
recently derived for this class of time-reversibility [89]. Various formalisms and models
have been proposed in the literature to represent and assess qualitative properties of re-
versible computations such as their correctness or if two reversible processes are equiv-
alent in some terms. Most of the proposed approaches are based on process algebras
that do not include any notion of computation time [31, 80]. We focus on the quanti-
tative analysis and evaluation of reversible computations based on Markov stochastic
processes. The dynamic behaviour of the forward and backward computation may be
represented by stochastic models that include the notion of time. Hence, under certain
conditions, time-reversibility of stochastic processes can be applied to assess quantitative
properties of reversible computations.
Quantitative models based on Markov processes have been widely applied for the analy-
sis and evaluation of complex systems (see e.g., [44, 21]). Markov models and formalisms
have the advantage of efficient methods and algorithms for studying their behaviour. In
particular, under appropriate stationary conditions, one can derive the equilibrium state
distribution of a continuous-time Markov chain by applying algorithms with polynomial
time complexity in the process state space cardinality [103].
The concept of time-reversibility of Markov stochastic processes has been introduced and
applied to the analysis of Markov processes and stochastic networks by Kelly [76]. A re-
versible Markov process has the property that when the process obtained by reversing
the direction of time is formed, it has the same probabilistic behaviour of the original
one. Early applications of these results led to the characterisation of product-form solu-
tions for some models with underlying time-reversible Markov process, such as closed
exponential Queueing Networks [14, 58].

The study in this field led us to the publication of the paper:
Applying reversibility theory for the performance evaluation of reversible computa-
tions, (M.S. Balsamo, F. Cavallin, A. Marin, S. Rossi; Proc. of Int. Conf. ASMTA 2016; pp.
45-59) [5].

Probabilistic Input/Output Automata

Probabilistic Input/Output automata (PIOAs) have been introduced in [102, 101] as a for-
malism aimed at modelling distributed and concurrent systems in a compositional way.
However, the interest in their application goes beyond the pure engineering applications
[13]. PIOAs incorporate a notion of probabilistic choice and time delays for locally con-
trolled actions that distinguish them from earlier work [82]. The definition of formalisms
for modelling probabilistic systems has been extensively investigated in the literature
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both in the field of process algebras and automata theory. One of the key factors that
characterises the proposed methodologies is clearly the semantics of the composition.
Giving a reasonable way of composing probabilistic systems is challenging because the
probabilities that are specified within each single component have a “loca” meaning. In
general, they are not sufficient to describe the probabilistic behaviour of the joint model
without further assumptions such as the time scale. In the PIOA model, this problem is
solved by associating an exponentially distributed delay parameter with each state. In-
tuitively, a PIOA first draws a random delay time from an independent exponentially
distributed random variable and then performs the probabilistic choice. Therefore, in
the composition of a collection of PIOAs, the usual race condition policy used in [70, 97] is
applied. Another feature of PIOAs is the way they handle synchronisations, which is in-
spired by the I/O automata originally defined in [82]. PIOAs communicate via input and
output actions and can perform internal non-communicating transitions. The communi-
cation is seen as a message transmitted on a labelled channel (that we call synchronisation
label) by the output automaton. The synchronising automaton can read the message and
perform a probabilistic transition accordingly. For each PIOA the sum of the probabili-
ties associated with output and internal transitions, called locally controlled transitions,
must be 1. On the other hand, upon the reception of a message, the PIOA immediately
reacts, i.e., the sum of the probabilities associated with the message-receiving transitions
outgoing from each state of a PIOA must be 1 for each of them separately (including the
possible self-loops).
PIOAs share with many other formalisms for the quantitative analysis of computer sys-
tems the property of having an underlying Markov process that describes the model evo-
lution, and the problem of the exponential growth of the cardinality of the state spaces
which makes the derivation of the quantitative indices unfeasible even for relatively small
systems. The problem of defining compositional approaches to the quantitative analy-
sis of PIOAs has been addressed in [102] for what concerns the transient behaviour. To
the best of our knowledge, the problem of defining a compositional approach for study-
ing the stationary behaviour of PIOAs remains open. In the literature of queueing net-
works this problem is often associated with the so-called product-form analysis which is
described in [76] and then extended in numerous subsequent works (see, e.g., [46, 43, 11]).
There were some product-form results for Markovian process algebras in the previous
decade [61, 66]. Informally, a product-form model can be studied without constructing
the stochastic process underlying the composition of the simpler components forming the
systems, but these can be studied in isolation. Hence, the computational effort required
to compute the stationary quantitative indices is highly reduced.

The study in this field led us to the publication of the paper:
Product-forms for Probabilistic Input/Output Automata, (F. Cavallin, A. Marin, S. Rossi;
PProc. of Int. Conf. MASCOTS 2016; pp. 361-366) [25].

Main contributions

In this thesis, the main contributions with respect to the literature are the following:

• We analysed the state of art for what concern the analysis and detection of product-
forms. We looked for cases not found by well-known methods. We also studied
and analysed product-forms in discrete time and their relations with the ones in
continuous time. In the last part, we focused our efforts in the study of properties to
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detect product-forms directly in discrete time without passing through continuous
time.

• We present two models in product-form for the performance evaluation of systems
with ageing objects. The main difference between the two models is that one al-
lows the object age to grow indefinitely, while the other introduces a maximum age
threshold. We discuss the implications for practical applications with some exam-
ples. The product-form analysis that we demonstrate is interesting for at least two
aspects. The first is that neither the joint CTMC nor the CTMC underlying a single
model are reversible as it happens, e.g., in Jackson’s queues [74] and G-queues [48].
The second interesting aspect is that synchronisations among objects are not pair-
wise, i.e., at a given epoch more than two objects can simultaneously change their
states. There are few results in this direction in the literature of product-forms. In
[50, 38] the authors consider queueing networks in which the departure of a cus-
tomer from a queue causes a movement of one job from a second queue to a third
one, hence causing the simultaneous state change of three components. However,
the extension of the result to more than three components is not trivial mainly be-
cause the proof technique adopted in those papers is based on solving the system
of global balance equations (GBEs). The first model we propose is in the style of
G-Networks as proposed in [41], while the one with maximum ageing is, to the best
of our knowledge, very peculiar since very few product-forms are known for finite
state space models [3, 6]. The contribution of the unbounded model with respect to
[41] is twofold. First, the proof is not based on the solution of the system of global
balance equations of the joint model. Secondly, we consider individual jumps of the
objects to the zero state. Our proof method is based on the quasi-reversibility prop-
erty [76] and the Reversed Compound Agent Theorem (RCAT) [61, 7]. Both these
results provide a way to elegantly prove the product-form of a CTMC but they con-
sider only pairwise synchronisations and hence they cannot be straightforwardly
applied to study our models. We show that they can still be used by introducing a
passage to the limit for a transition rate in a similar fashion to what has been done in
[27, 65, 84]. Proofs of product-forms based on quasi-reversibility are simple to han-
dle and compositional in the sense that they allow the combination of the models
that we study here with others which are known to be quasi-reversible while main-
taining the product-form of the equilibrium distribution. As a consequence, hetero-
geneous networks may be studied without constructing the joint Markov chain.

• We show how to numerically derive the models’ performance indices of systems
with ageing objects, without constructing the joint CTMCs. This is important be-
cause the structures of these chains can be complex since the transitions correspond-
ing to partial rejuvenations depend on the global state of the models. The derivation
of the performance indices requires us to solve a non-linear system of equations. We
propose a fixed point algorithm to tackle this problem and show its efficiency and
convergence properties on numerous examples. The system of equations admits a
unique positive solution. With respect to [41, 42], we do not require any modifica-
tion of the network of objects in order to obtain the convergence of the algorithm.

• As an example of systems with ageing objects, we apply our model for the analysis
of a TTL cache with partial rejuvenation. First, we propose an ideal model, whose
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implementation is very expensive, in which a timer is associated with each object
despite the fact that it is inside or outside the cache. We study the performance
indices under the Independent Reference Model (IRM) assumptions [45, 77, 108].
Then, we consider a model in which we maintain the timers only for the objects
inside the cache. The partial rejuvenation of objects outside the cache has a proba-
bilistic effect, i.e., the object may remain outside or can be copied inside the cache
according to a Bernoulli trial. We prove that it is possible to obtain exactly the same
expected performance indices of the ideal model while maintaining the product-
form property. We discuss how it is possible to dynamically set the model’s pa-
rameters to achieve some performance goals. The analyses of TTL caches, often
connected to form networks, have been widely addressed in recent years (see, e.g.,
[15, 34, 35] and the references therein). In our case study, we consider a simpler
situation of a single cache as in [91]. Clearly, the analysis becomes challenging be-
cause of the partial rejuvenation signals which aim to avoid the under utilisation of
the cache.

• For what concerns Reversible computations, we review the main results about
time-reversible Markov processes and discuss how to apply them to address the
problem of quantitative evaluation of reversible computations. We recall the defini-
tion of time reversibility for continuous time Markov processes, the main properties
and its application for quantitative analysis. We present an abstract model of con-
tinuous time Markov chain for representing and performance evaluating reversible
parallel computations. Taking advantage of the process reversibility, the station-
ary distribution of the model can be efficiently derived by using numerically stable
algorithms. In particular, we present some product-form results of reversible syn-
chronising automata by applying ρ-reversibility to the underlying Markov process.

• Finally for PIOAs our contribution consists in studying the product-form property
for PIOAs. Our main result is the formulation of a theorem giving sufficient con-
ditions for a composition of PIOAs to be in product-form and hence to efficiently
compute the stationary probabilities.



Chapter 2

Markov chains and applications to
computer systems

2.1 Introduction

In this chapter we will introduce the Markovian stochastic models characterized by a
stochastic process. By studying these processes, one can analyse a set of model properties
such as liveness, performance parameters and model checking issues. In particular we
will focus on Markov chains and their applications to computer systems. We focus on
the Markovian queueing network (QN) giving its definition and two main examples:
M/M/. queues and G-Networks. We give a description of both “pure” G-Network and all
its derivations.

2.2 Markov Stochastic Models

We introduce in this chapter some notions about Markovian stochastic models. First of
all we have to recall what is a stochastic model.
A mathematical model is the quantitative description of a natural phenomenon, judged us-
ing a factor. If a model is characterized by having a stochastic process within it, it’s called
a Stochastic Model. A stochastic process is a family of random variables Xt, where t is
a parameter contained in a set T (we can also use it as X(t)). The set of random vari-
ables are usually defined over the same probability space and indexed by the parameter
t. Usually t is a discrete index of a set T = {0, 1, 2, 3...}. For example,X(t) could represent
the outcome of successive dice throws or, more generally, repetitive observations during
different times of some characteristics of a system. t could also represent a distance from
an arbitrary origin 0, not just time, i.e., X(t) can be the number of people in the interval
(0, t] on a sidewalk.
Stochastic processes are characterized by:

• index set of T

• state space: the range of all possible value that the random variables X(t) can have

• dependence relations between all the random variables X(t)

Both the state space and the index set can be continuous or discrete. A lot of properties
such liveness, performance parameters and model checking issues (e.g. deadlocks detection,
unreachable states,..) can be derived studying these processes.

11
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Let X(t) be a stochastic process taking values in a state space S for t ∈ T. We can have
two cases:

• the case of continuous time (CT): the process is called continuous-time stochastic
process and therefore t is continuous: T is the real line R;

• the case of discrete time (DT) stochastic processes, T is the set of integers Z.

A discrete-time process is usually denoted by Xn with n ∈ T

For what concerns the state space it can be:

• discrete: the process is called discrete-space process or just chain

• continuous: the process is called continuous-space process

We denote the probabilistic behaviour of a stochastic process as:

Pr{X(t1) ≤ x1;X(t2) ≤ x2; ...;X(tn) ≤ xn}

where xi is an element of the state space. This behaviour is defined by the joint probabil-
ity distribution function of the random variables X(ti) for any set ti ∈ T, 1 ≤ i ≤ n with
n ≥ 1.
The stochastic process X(t) is said to be stationary if (X(t1), X(t2), . . . , X(tn)) has the
same distribution as (X(t1 + τ), X(t2 + τ), . . . , X(tn + τ)) for all t1, t2, . . . , tn, τ ∈ T.

2.3 Markov Chains

A stochastic process X(t) is a Markov Process if for all t1 < t2 < · · · tn < tn+1 the joint
distribution of (X(t1), X(t2), . . . , X(tn), X(tn+1)) is such that

P(X(tn+1) = in+1 |X(t1) = i1, X(t2) = i2, . . . , X(tn) = in) = P(X(tn+1) = in+1 |X(tn) = in).

The equation can be written more concisely as:

P(in+1 | i1, i2, . . . , in) = P(in+1 | in).

and is valid whenever the conditioning event (i1, i2, . . . , in) has positive probability. In
other words, for a Markov process its past evolution until the present state does non in-
fluence the conditional (on both past and present states) probability distribution of future
behaviour. A Continuous-Time Markov Chain (CTMC) or a Discrete-Time Markov Chain
(CTMC) is a Markov process with a discrete state space S.
We have to notice that, thanks to the Markov property, the residence time of the process
in each state is distributed according to:

• the geometric distribution in the discrete-time case

• the negative exponential distribution in the continuous-time case

A Markov process is time homogeneous if the conditional probabilityP (X(t+τ) = j |X(t) =
i) does not depend upon t, and we use the notation, with i, j ∈ S:

CTMC : lim
τ→0

P (X(t+ τ) = j | X(t) = i)

τ
= qij



2.3. MARKOV CHAINS 13

DTMC : P (X(t+ 1) = j | X(t) = i) = pij

In the continuous case, the transition rate between two states i and j is denoted by qij ,
with i 6= j. This means that the Markov process in state i remains in that state for a length
of time which is exponentially distributed with parameter:

qi =
∑

qi,j

and when it leaves state i, it moves to state j with probability:

pqij =
qi,j
qi

The infinitesimal generator matrix Q of a Markov process is such that the qij ’s are the
off-diagonal elements while the diagonal elements are formed as the negative sum of the
extra diagonal elements of each row.
In the discrete case, the value pij denotes the probability that the chain, whenever in state
i, next makes a transition into state j, and is referred to as one-step transition probability.
The square matrix P = (pij)i,j∈S is called one-step transition matrix, and since when leav-
ing state i the chain must move to one of the states j ∈ S, each row sums to one (e.g.,
forms a probability distribution): for each i ∈ S∑

j∈S
pij = 1.

The n-step transition probabilities of the chain are given by

pnij = P (X(t+ n) = j | X(t) = i)

for t, n ∈ Z and i, j ∈ S, denoting the probability that a process in state i will be in state j
after n additional transitions.
A state j is said to be accessible from state i if there exists a path from i to j (pnij > 0 in
the discrete case for some n ≥ 0). Two states i and j accessible to each other are said
to communicate and to belong to the same equivalence class. A Markov chain is said to be
irreducible if there is only one equivalence class, i.e., if all states communicate with each
other. The recurrence time Ti of a Markov chain is defined as Ti = min{n ≥ 1 |X(tn+1) =
i given Xn = i} (notice that Ti is a random variable.) A state i is said to be recurrent if
P (Ti < ∞) = 1, i.e., the probability that the process will eventually return to the same
state is one. Otherwise, it is called transient. The mean recurrence time Mi of state i is
defined as Mi = E[Ti]. A recurrent state i is called positive recurrent if Mi < ∞, i.e the
expected number of steps until the process returns to it is finite. A Markov chain is called
positive recurrent if all of its states are positive recurrent. Only in a DTMC, a state i is said
to have a period d ≥ 1 if d is the greatest integer such that pnii = 0 if n is not a multiple of
d. A state with period 1 is said to be aperiodic and a Markov chain is said to be aperiodic if
all states are aperiodic.
A Markov Chain is said ergodic if it is irreducible and positive recurrent (and also aperi-
odic in the discrete case). For the continuous case only, if the chain is finite, irreducibility
is sufficient for ergodicity.
An ergodic Markov Chain possesses a equilibrium (stationary or steady-state) distribution,
that is the unique vector π of positive numbers πi with i ∈ S such that

lim
t→∞

P (X(t) = i | X(0) = j) = πi . (2.1)
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The non-trivial vector of real numbers π satisfying the system of global balance equations
(GBEs) is [78]:

CTMC : πQ = 0 (2.2)

DTMC : π = πP (2.3)

and it is called the invariant measure of the Markov Chain. If the components of πi sum to
unity, ∑

i∈S
πi = 1 ,

then π is a probability distribution on S and is called steady-state distribution. From the
context, it will be clear if π denotes the steady-state distribution or an invariant measure
of X(t). Each πi can be interpreted as the average proportion of time spent by the chain
X(t) in state i. A Markov chain with a stationary distribution is said to be in steady
state. In other words, a Markov chain is in steady-state distribution if the probability
distribution of time spent in each state can be computed (i.e., it doesn’t go to infinite). Of
all the invariant measures of the chains, the only one that is a probability distribution (if
it exists) is the stationary distribution. Notice that for irreducible, positive recurrent and
periodic DTMCs, although the limiting distribution does not exist, the system (2.3) still
admits a unique solution summing to unity that is still called stationary distribution but
does not clearly correspond to the limiting distribution. Markov Chains have been widely
used in the performance evaluation field in order to derive several model properties (for
example [76, 78, 29, 32, 105]).

2.3.1 Examples of Markov Chain Models

A large number of natural, biological and economic phenomena can be described with
Markov Chains. The importance of Markov Chains is enhanced by their predisposition
for quantitative manipulation.

Stock Model

In a warehouse, goods are consumed during each period of time t according to a random
variable µt. At the end of each period (0, 1, ..), we check if the remaining amount of goods
are under some quantity s. If this is the case, we refill the warehouse to an optimal value
S.
According to these rules of warehouse policy, the stock levels of two consecutive periods
follow the relation:

Xn+1 =

{
Xn − µn+1 if s ≤ Xn ≤ S,
S −Xn+1 if Xn ≤ s.

(2.4)

where µi is the amount of goods consumed during period i.
Assuming that each consecutive demand µ1, µ2, .. are independent random variables, the
stock quantities X0, X1, .. compose a Markov Chain. Its probability matrix can be calcu-
late as:

Pij = Pr{Xn+1 = j|Xn = i}

=

{
Pr{µn+1 = i− j} if s ≤ i ≤ S,
Pr{µn+1 = S − j} if i ≤ s.

(2.5)



2.3. MARKOV CHAINS 15

Ehrenfest Urn Model

Markov chains can be also used to model the diffusion of molecules through a mem-
brane. Let’s consider two containers (cells), containing a total of 2n balls (molecules),
each of them have i and 2n− i balls, respectively. We select a random ball from the whole
set and move it to the other container. In this way a molecule diffuses at random through
the membrane. We can model each selection as a transition of the process.
The molecules fluctuates between the cells with an average drift from the container with
the highest concentration to the one with the smaller numbers. Considering Xm the dif-
ference between the number of molecules contained in a cell and its mean number n, we
have that {Xm} is a Markov Chain on the state space {−m,−m+1,−m+2, ...,−1, 0, 1, ...,m−
1,m}with transition probability computed as follow:

Pij =



n− i
2n

if j = i+ 1,

n+ i

2n
if j = i− 1,

0 otherwise.

The main focus of this model is the equilibrium distribution of the number of balls in
each container.

Markov Chains in Genetics

Markov Chains are also used in genetic fields. We can model the fluctuation of gene
frequencies under possible mutations and selections. Assuming that we are studying a
fixed population size of 2N genes divided in type-A and type-B individuals. The compo-
sition of the next generation of individuals is determined by 2N independent Bernoulli
trials. Considering parents population composed by j A-type and 2N − j B-type, then
the outcome of each trial could be A (pj) or B (qj) with the following probabilities:

pj =
j

2N
, qj = 1− j

2N
.

Now we can create a Markov chain {Xn} where Xn is the number of A-types in the n-
th generation. Since the population is constant (2N ), the space state has 2N + 1 values:
{0, 1, ..., 2N}. The transition probability matrix can be computed with the binomial dis-
tribution:

Pr{Xn+1 = j|Xn = i} = Pij =

(
2N

j

)
pji q

2N−j
i

with i, j = 0, 1, 2, ..., 2N .
In this case the end states 0, 2N are completely absorbing states, i.e., once Xn is equal to
0 or 2N then Xn+m = Xn, ∀m > 0. Under the condition of X0 6= 0 or 2N , the main focus
here is to compute the probability and the rate of approach of the population to reach the
fixation, i.e., that it will become purely composed by only A-genes or B-genes. From this
simpler model, we can add other variables (e.g., mutation pressure).

Discrete Customer Service

We can model a customer office in which people arrive and take a place in the waiting
line. During each period of time t, an employee can service only one customer, if at
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least one is waiting. If no customer is waiting then no service is issued. During each
period t, new customers can arrive in the office according to a random variable λt, whose
distribution is independent with respect to the period which we are considering. The
probability of these arrivals are:

Pr{n customer arrive} = Pr{λt = n} = an

for n = 0, 1, 2, .., an ≥ 0 and
∑∞

n=0 = 1.
The state of the system Xt is defined by the number of waiting customers i during the
period t. The following period can be computed as:

Xt+1 =


i− 1 + λt if i ≥ 1,

λt if i = 0,

with λ representing the number of new customers arrived in the servicing period.
The focus of this kind of models are important quantities such as the time that the office is
idle in the long run (π0) or the mean waiting time of the customers in the office (

∑∞
k=0(1+

k)πk).

2.4 Queueing Networks

A queueing system is composed of customers arriving at random times into a queue
where they expect some kind of service and then leave the queue. Customers could be
whatever can access or be put in a queue demanding for some kind of service. Some
examples can be:

• People waiting in a post office to send letters;

• Ships entering a port, waiting for their pier;

• Computer data flowing in a communication system;

• Broken machines waiting to be repaired in a factory

These network models have been extensively used for system performance evaluation
and prediction of resource sharing systems such as computer networks, computer and
production systems. Queueing networks are powerful and versatile in modelling and
analysing such systems. The analysis of queueing systems relies on the theory of stochas-
tic processes [29, 78, 81, 75, 99, 107].
The general description of a queueing network is a set of service centres, which represent
resources of the system, that provides some kind of service to a set of waiting customers.
Queueing disciplines control the priority of each customer to be served, which competes
for the resource service. They possibly wait in the queue if more of them compete for
the same resource. We can analyse the system through computation of its performance
measures (e.g., utilization, throughput, customer waiting time). A set of random vari-
ables that define a stochastic process can be used to describe the dynamic behaviour of
a queueing system. Assuming some constraints, we can also define and solve its under-
lying Markov process to compute its performance values. The relatively high accuracy
in the performance measures and the efficiency of model analysis and evaluation lead
to the popularity of queueing models for performance analysis. Moreover, the theory of
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product-form solutions was decisive. In queueing networks, product-forms have sim-
ple and closed-form expressions of the steady-state distribution. This can allow us to
compute average performance values with polynomial time complexity in the number of
model components with efficient algorithms.
Queueing systems are used to study congestion in computer and communication sys-
tems. We can use queueing networks of interacting service centres to model congestion
or resource-sharing systems and then compute their performance. The class of queueing
networks are very robust models even if we have to make several assumptions about the
system. The main solutions to analyse such models are:

• simulation: it has a wide application but potentially it can have high development
and a high computational cost to obtain accurate estimates. Moreover, these values
can be of quite difficult interpretation.

• analytical methods: they are based on a set of mathematical relationships character-
ized by the system behaviour. These methods require that a set of assumptions and
constraints are satisfied by the model.

2.4.1 Queueing Systems Definition

The basic model of a queueing network consists in a single service centre which provides
its service to the entire system. The theory of stochastic processes is under the analysis
of queueing systems and their basic version have been defined in queueing theory to be
applied to congestion systems analysis. We can define a continuous-time Markov process
associated with the queueing network, assuming that the model random variables are
independent and exponentially distributed. In this way we can solve the underlying
Markov process to analyse the queueing system.
In Figure 2.1 we can observe a simple queueing system (or service centre).

q s
da

Figure 2.1: Simple Queueing System.

This system models the stream of arriving customers, their waiting in the queue if another
customer is being served by the server and then when they receive the service and in the
end when they leave the queue.
For example, a simple shop can be modelled by a basic queueing system in which people
are customers, their waiting in line is the queue and the employee is the server whose
services are tasks of the employee with each person.
We can classify queueing system behaviour, according to five basic characteristics:

1. The arrival process (or input process): is the probability (discrete time) or rate (con-
tinuous time) distribution of the customer arrivals. It describes the behaviour of
customers arrivals. We can define the time between two consecutive arrivals as a
random variable. The average number of arrivals per each unit of time is the mean
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arrival rate, and is denoted by λ in CT. In DT the probability that some number of
customers arrive is denoted by p. We usually assume that the arrival process is a
Poisson process and this corresponds to an exponential inter-arrival distribution.

2. The service process: is the description of the behaviour of the customer service.
Its the probability (DT) of a service or rate (CT) representing the random time to
provide the service to a customer (or group of them in case of batch service). We
can define the mean service rate as a random variable µ (CT) and the probability of
service as q (DT). In this way, the random variable of the time spent for a customer
service is 1/µ and it represents the service time.

3. The queue discipline: is the order in which customers are served. It describes how
customers are scheduled in the queue. A customer is forced to wait in the queue
if the server is unavailable to provide service to it when it arrives. It has to wait
until it can start to receive its service. The problem of a discipline arises when
there is more than one waiting customer in the queue. When the server becomes
available the discipline has to choose one of the waiting customers to start receiving
the service. This kind of customer selection for service is what distinguishes two
queueing disciplines.
Queueing disciplines can be discerned by arrival time, possible services already
given to customers and customers priority. If there are no artificial creation or loss
of work in the system then the queueing discipline is also work-conserving.
First Come First Served (FCFS) and Last Come First Served (LCFS) are classical
examples of queueing disciplines based only on arrival time.

4. The number of servers: is the set of identical and parallel servers which can provide
the service to customers. A common queue is shared by all customers and each
server can be a service facility of the system, physically or logically separate.

5. The queue capacity: is the upper limit of the possible number of waiting customers
(both in line or receiving service) in the system. Queue can have infinite size (i.e.,
to have enough slots to receive all arriving customers) or with finite resources, forc-
ing an upper bound to the maximum number of customers that can be present in
the queue at the same time. Most analytical computations require the queue to be
infinite.

There are many arrival processes that can be found in practice. Two simple and inten-
sively used types are scheduled input and completely random input. In the first, cus-
tomer arrivals are scheduled at fixed times (t, 2t, 3t, ..), in the latter, customers arrive
forming a Poisson process. These two type of arrival process are mathematically tractable
and can be used to study more complex cases. A lot of theoretical results can be found
if customers arrivals constitute a renewal process. In the exponentially distributed inter-
arrival times, the Poisson process of customer arrivals is a special case, even if it is one of
the most commonly used. Also the service duration for customers is an independent and
identically distributed random variable. In this case, the special case is when all service
times have the same fixed duration.
The main target of queueing models is to evaluate a set of system performance measures
in terms of more basic quantities. This kind of computation can aid the design process,
e.g., computing the benefits/costs of adding another server to the system. Some perfor-
mance indices are:

• the number of the customers wp in queue p;



2.5. MODELLING EXAMPLES - M/M/. QUEUES 19

• the number of waiting customer n either waiting in the queue or being served;

• the customer waiting time tw. Long waiting times to obtain services are annoying
for customers in simple queueing networks and they are often the cause of bigger
costs in much larger and complex systems;

• the customer response time tr;

• the system or server utilization U , i.e., the percentage of time in which the system
is providing services, therefore busy. In fact, idle servers could create unnecessary
costs without any contribution to system performance;

• the system throughput X is one of the main system performance measures and it
represents the average number of served customers for each unit of time. In other
words, it’s the number of customers passing through the system per unit of time in
the long run.

• the probability distribution of customers in the system. As we said, queues are
not always infinite. In real systems, physical space for new customers has to be
planned and provided. With limited slots, a full queue or even with just a large
number of waiting customers can adversely affect the arrival process leading to a
loss of possible customers. Moreover, the presence of customers in the system can
represent a cost for system design.

The most analysed and used measures are the average system throughput and system
utilization and the probability distribution.

Considering ts the service time and s the number of customers in service, we have that
the average service time is E[ts] = 1/µ. Then the following relations hold:

n = w + s;

tr = tw + ts.

If we denote the average number of customers in the system E[n] as N and the mean
response time E[tr] as R we have that:

N = E[w] + E[s];

R = E[tw] + E[ts].

We can analyse a queueing system associating a discrete-space stochastic process in which
the space state includes the system population. Moreover, we can define an underlying
Markov chain, using independent and exponential assumptions. Its stationary solution
can be derived using Formula 2.2 (CT) or 2.3 (DT). We can compute other performance
measures with the steady-state probability and basic relations (e.g., Little’s Law).

2.5 Modelling Examples - M/M/. queues

The Kendall’s notation is used to describe queueing processes. A queueing system can
be composed by queues defined as A/B/X/Y/Z/K, where:

• A: describe the arrival process;

• B: describe the service process;
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• X: describe the number of parallel servers;

• Y: describe the capacity of the queue;

• Z: describe the size of the population;

• D: describe the service discipline;

The concise notationA/B/X is more common and implies a queueing system with queues
with infinite capacity, infinite population and FCFS queueing discipline. A and B can as-
sume symbols of probability distributions:

• D: deterministic distribution;

• M: exponential distribution;

• G: general distribution.

One of the most common examples is a M/M/1 queue that has a Poisson arrival pro-
cess, exponential service process and a single server. Instead, a M/G/∞ queue has the
same arrival process but an arbitrary service distribution and an unlimited number of
independent exponential servers.

2.5.1 M/M/1 queues

As we said, this kind of queue has:

• Poisson independent arrivals;

• exponential service time distribution;

• one server with infinite capacity and FCFS discipline.

We denote the arrival rate with λ, the service rate with µ, the traffic intensity with ρ =
λ/µ and the system state with n. In this case, its underlying Markov process is a birth
and death process with constant rates λ and µ. We can use it to compute the customer
population and the stationary state probability πn. If the stability condition is satisfied by
the system,we can obtain:

πn = ρn(1− ρ) n ≥ 0

If the arrival rate is less than the service rate, the M/M/1 queue is stable. (i.e., with ρ < 1
or λ < µ). Furthermore, we can derive other performance measures (average population,
mean response time, system throughput and utilization) with the state probability and
by Little’s law:

N =
ρ

1− ρ
;

R =
1/µ

1− ρ
;

U = 1− π0 = ρ;

X = λ.
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2.5.2 M/M/m queues

This kind of queue extends basic M/M/1 queues with m servers, they have:

• Poisson independent arrivals;

• exponential service time distribution;

• m servers with infinite capacity and FCFS discipline.

As we can see the exponential and independence assumptions remain, the arrival rate is
λ, the service rate is µ and system state is n. ρ is now equal to λ/mµ. The underlying
Markov process is still a birth and death process with constant birth rates λ but with
variable state-dependent death rate µn = min{n,m}µ for all n ≥ 0. If ρ < 1 (i.e., the
system satisfies the stability condition) then we can compute πn as:

πn =


(mρ)n

n!
π0 if 1 ≥ n ≥ m,

mmρn

m!
π0 if n > m.

where

π0 =

[m−1∑
k=0

(mρ)k

k!
+

(mρ)m

m!

1

1− ρ

]−1

We can now derive other performance measures such average population and mean re-
sponse time:

N = mρ+ πm
ρ

(1− ρ)2
;

R =
1

µ

πm
mµ(1− ρ)2

.

2.5.3 M/M/∞ queues

This kind of queue has:

• Poisson independent arrivals;

• exponential service time distribution;

• unlimited number of independent exponential server with infinite capacity and
FCFS discipline.

The arrival rate is λ, the service rate of each server is µ and system state is n. ρ is now
equal to λ/µ.
Here, customers never wait to be served due to the infinite number of servers. In this
way, the mean response time for customers is equal to the mean service time of servers:
R = 1/µ. The underlying Markov processes associated with these queues are still birth
and death processes with constant birth rates λ and variable state-dependent death rate
µn = nµ. This time the system is always stable because customers never wait in a queue
because they are always served. Hence, the steady-state probability is:

πn =
ρn

n!
e−ρ k ≥ 0.
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We can now compute the average population as N = ρ.

A lot of M/M/1 queueing systems can be analysed using and solving their underly-
ing Markov chain. For example, M/M/1/N queues with finite capacity N and also
M/M/1//K queues with finite population K. We can compute performance measures
and the steady-state probability for these kinds of queues and similar basic queueing
systems.

2.6 Modelling Examples - G-queues

Another example of the application of the queueing theory are G-Networks [51]. G-
Networks, namely Generalized Queueing Networks or Gelenbe Networks, are open networks
composed by G-queues. Erol Gelenbe first introduced them as models for queueing sys-
tems and as well as for neural networks. They have specific control functions, which
include traffic re-routing and traffic destruction [51, 50, 49].
The foundations of this model are G-queues, which are composed by:

• Positive Customers: they arrive from other queues or from outside the system, they
wait for service and follow a routing disciplines (like in other conventional network
models);

• Negative Customers: they arrive from other queues or from outside the system, they
don’t act as normal customers but they remove (or kill) another waiting customer
of the queue (if the queue is non-empty). They represent the need of remove some
traffic in case of network congestion. This includes also removing batches of cus-
tomers;

• Triggers: signals arriving from other queues or from outside the system. They can
move or kill other customers and displace them in other queues.

Product-form solutions can be used to compute the stationary distribution of G-Networks
along with usual quantitative measures. We can exploit this kind of networks to approx-
imate quite general input-output behaviours because of their nature of universal approx-
imator for continuous and bounded functions.

2.6.1 General View

Gelenbe created this new class of queueing networks with two types of customers: posi-
tive (or regular) and negative.
Interest, in queueing networks and also in the case of single server node, has been in-
creased since its first introduction of the notion of negative customers. With this the-
ory, significant progress has been made in the versatile class of networks analysis. This
progress has helped the development of real application systems like manufacturing,
communication and indeed computers. Moreover, they have also enriched the queueing
theory.
G-Networks, also known as queueing networks with negative customers, signals, trig-
gers, (...), have the characteristics of containing also the presence of negative customers
in contrast with the normal positive ones. If those negative customers arrive in a non-
empty queue then there is the witness of a removal of some amount of work from the
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queue itself. There are various versions of this mechanism but the simplest of them pro-
vides that, according to some strategy, a negative customer can delete or kill an ordinary-
positive customer.
Some extensions of this model include the removal of a random batch of customers due
to the arrival of a negative customers. This corresponds to removing all or some random
amount of work from the queue which will may not always represent an integer number
of normal customers. The definition of negative customers and triggers arises with the
need to model server crashes or traffic jams in which some users have to be removed
from the system or transferred to another queue.

2.6.2 Definition

G-Networks are networks of n interconnected queues and their main characteristics are:

• all queues in this network (called G-Queues), have their own server which ensures
its service with a rate of µi

• external arrivals, of positive and negative customers or of triggers and resets, have
a rate λi

• when a positive customer (also called normal customer or simply customer) is ser-
viced, it can have multiple choices of behaviour:

– go to another queue remaining a positive customer;

– change its nature and become a negative customer, a trigger or a reset;

– exit the system.

The probabilities of these choices are represented usually as p+
ij , p

−
ij and di, respec-

tively.

• Arrivals of positive customers in a queue, increase the length of the queue by the
same amount.

• Arrivals of negative customers in a queue, can reduce the length of the queue by
some fixed or random number of customers (if the queue is non-empty and there is
at least one positive customer).

• Arrival of triggers in a queue, moves some fixed or random number of positive
customers to other queues with some probability.

• Arrivals of resets in a queue, reset the queue and set it in its steady-state only if the
queue is empty at the arrival time.

• each negative customer, trigger and reset, will disappear immediately after com-
pletion of their actions. For this reason, they are considered control signals of the
network.

Positive Customers

They are the first type of customers, also known as regular customers or normal customers. A
server treats those customers in the usual way. The dynamic behaviour of the considered
network is determined by service and routing disciplines that positive customers follow.
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Negative Customers

This kind of customers, opposite to the positive ones, they induce (or kill) a positive cus-
tomer to immediately leave the node if there is at least one customer in the queue, for this
reason they have the effect of a signal

The modelling of neural networks was the first motivation of the introduction of this
queueing network with positive and negative customers. A neuron is represented by a
node within this context and excitation and inhibition signals are represented by positive
and negative customers routing in the network. Those signals increase or reduce the neu-
ron potential in which they arrive by one unit.
G-Networks provide a basis that unifies queueing and neural networks and are the re-
sult of an extension of the original network of Gelenbe. Several extensions were made
since the introduction of G-Networks like triggered movement, batch service networks,
multiple classes networks, state-dependent service disciplines, disasters and tandem net-
works. G-Networks are a versatile class of networks in which the network behaviour
is affected in many ways by the arrivals of negative customers. Some of the different
possibilities that have been introduced in this topic are:

• Individual removal: the event in which a positive customer is cancelled by a negative
customer arrival at the queue. It hasn’t effect in case the queue is empty.

• Batch removal: the event in which a batch of customers are forced to leave the net-
work due to a negative arrival.

• Disaster: the event in which a catastrophe in the node is the effect of a negative
arrival at the node. This means that all customers are forced to leave the queue
immediately and automatically.

• Triggered movement: the event in which the instantaneous forcing, of a customer
movement to some other node or a batch of them to leave the network, is triggered
by a negative arrival which acts as a signal of that trigger.

• Random work removal: the event in which the arrival of a negative customer removes
instantaneously a random amount of work from the system.

2.6.3 Basic G-Networks

The first G-Networks introduced by Gelenbe, (i.e., without any extension) are those with
only general positive and negative customers. Considering a Markovian network with n
servers (also called nodes), the arrival of customers agrees with an independent Poisson
streams of rates, Λi for positive customers and λi for negative ones. Customers are ser-
viced in a server i with times that are exponentially distributed with rate r(i).
If the queue is non-empty when negative customers arrive, its queue length is reduced
by one unit. That cancelled unit represents a positive customer removal.
When a server completes service of a customer, it can behave in three ways when leaving
the queue i and joins queue j:

• A cusomers remain a positive customer with probability p+(i, j)

• A customer becomes a negative customer with probability p−(i, j)

• A customer leaves the network with probability d(i)
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In this way, the traffic equations are the following:

λ+(i) =
∑
j
qjr(j)p

+(i, j) + Λ(i)

λ−(i) =
∑
j
qjr(j)p

−(i, j) + λ(i)

where qi =
λ+(i)

r(i) + λ−(i)
for i = 1, ..., n.

These equations are non-linear and this is their main feature. The interesting thing is that
if there exists {λ+(i), λ−(i)} unique and non-negative solution such that qi < 1 ∀i > 0,
then the stationary probability distribution will have the following product-form:

p(k) =
n∏
i=1

(1− qi)qkii

where k = (k1, ..., kn) represent the vector of lengths of the queue.

2.6.4 Stability

Even if a basic G-Network has its product-form solution, it has also non-linear traffic
equations. This property distinguishes it from other classical queueing networks. The
non-trivial analysis of the stability of the network and of the existence of a solution to
its traffic equations is the consequence of this. The stability involves the existence of
the stationary probability distribution. Thus conditions for general stability in a multiple
class G-Network (a generalization of the “pure” network) are developed. This introduced
method is quite general and it can be used to analyse also extensions of G-Networks
like triggered movement, batch service, G-Networks with different service disciplines
[55, 48, 51, 50, 52].
The main point is to prove that solutions to the traffic equations exist, subsequently the
uniqueness of solution is easy to prove. This because it involves the stationary solution
of a system of Chapman-Kolmogorov equations.
Moreover, if a positive solution p(k) exists then it is unique.
Considering the following definition of vectors:

Λ = [Λ(i)], λ = [λ(i)], λ+ = [λ+(i)], λ− = [λ−(i)].

And taking into consideration also:

• the matrices, P+ and P−, of elements p+(i, j) and p−(i, j) respectively;

• the diagonal matrix F of the element which represents the fraction of queue enter-
ing as positive customers, who survive long enough to be served by the server and
leave the queue unkilled.

We can write the traffic equations in the following way:

λ+(I − FP+) = Λ, λ− = λ+FP− + λ+.

Now it can be proven that there always exists the solution {λ+(i), λ−(i)} for i = 1, ..., n
[48].
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2.6.4.1 Important Property

When dealing with G-Networks, the following important property ensures that at equi-
librium it doesn’t matter from which state of the queue we have started, we will always
get the same result we search for. Obviously assuming that conditions for the state equi-
librium are satisfied (e.g., it cannot be that positive customers arrival rate is much higher
than the sum of the arrival rate of negative customers and servicing rate).
The property is this:

When the single node is at equilibrium,
the streams of future arrival of positive and negative customers,
the past departure processes of positive and negative customers
and the current state of the network are independent

2.6.5 G-Networks Extensions

In the last years, a lot of different extensions and possibilities have been studied in this
topic of G-Networks. The current literature was made in a short period of time and
now I will present the main extensions that were made for G-Networks. This should
discriminate the various kinds of G-Networks and what characterizes each of them.

2.6.5.1 G-Networks with Triggered Customer Movement

For what concerns queueing networks in classical literature, regular customers are as-
sumed to move into another queue or leave the system after they have been serviced
(namely after some amount of service time). They also usually follow a Markovian rout-
ing mechanism.
This is the standard idea of customer transfer and this only occurs after a service com-
pletion, however it’s possible also that in queueing networks, there are external event
occurrences which force and route a customer to leave its queue.
Gelenbe himself introduced this new idea: G-Networks with positive customers and signals.
A Poisson process of rate λ(i) leads the arrivals of signals from outside the queue.
If the queue is a non-empty one, signals can have two different behaviours (and conse-
quently two kind of consequences in it):

• arrival of a signal implies the movement of a customer with probability q(i, j) from
its queue i to another different queue j;

• arrival of a signal trigger a customer (or a batch of them) to leave the network, from
queue i with probability D(i) = 1−

∑
j
q(i, j).

With the combination of this description and the routing discipline, after some service is
completed, we can comprehend that a signal could be defined by the various movements
of regular customers or it could also be exogenous. In both cases, an additional facility,
represented by signals, is added to the network for allowing other movements of positive
customers through the system.
There are other extensions of this type where signals have a similar behaviour to triggers.
Those are networks with both positive customers and signal emissions. The emission of
signals for the moving of a batch of customers and the concept of triggers are quite simi-
lar to each other.
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Other extensions, for instance, involve also the use of signals within the system for mov-
ing a customer but considering them like a secondary service process. Those processes
have parallel characteristics with respect to regular servicing events. This leads to the
superposition of mechanisms of two services and so these signals are no more an extra
facility for the movement of regular customers.
Some multiple class G-Networks were also developed, with random triggering times. In
these systems after the arrival of a signal in the queue, there is some random delay be-
fore the trigger of a customer movement. The class of the leaving customer, the queue in
which it is and the source of the signal define the random variable which represents that
amount of time.
One last example is the incorporation, into probabilities of routing, of some degree of
history dependence. This led to two different models of multiple class of G-Networks:

• when a service is completed or when a negative customer arrives, the amount of
service that has been received defines the various routing probabilities.

• after the completion of a customer servicing time or after its obliged movement
due to a signal, the cause of its movement (namely for signal arrival or end of its
servicing) and the number of times in which signals interrupted its service define
the various routing probabilities.

2.6.5.2 G-Networks with Batch Removal

In G-Networks with batch removal, customers can exit the network in batch mode. The
variations assume different batch distributions and also different movements through the
system of signals and batches.
The first extension was made with the possibility of batch service when there is a negative
arrival. This kind of model keeps assumptions of input and behaviour when a regular
service ends. On the other hand, when there is a negative arrival on a non-empty queue,
the effects are the same as of the arrival of a signal. The consequences are two:

• after that signal arrives, a movement of a normal customer, with probability q(i, j)
from queue i to queue j, is triggered;

• with the signal arrival, a service of a batch of normal customers is completed.

The batch size has a random distribution Bi and it only depends on the queue i in which
the signal came. In case of a lesser number ki of customers in the node with respect to Bi,
all and only the available regular customers are removed.
There is also the extension which assumes that signals (or negative arrivals) are secondary
servicing processes. In this way both movements, caused by a service completion of nor-
mal customers or by the arrival of signals, are the same but they have their own specific
parameters of movement triggering.
It can also be the case that a model has two kinds of different events in a queue i after a
service completion:

• type I: with probability pi, the routing probabilities agree with a general G-Network.

• type II: with probability 1− pi, a batch of size Bi leaves the network

Another batch removal system has also a symmetric behaviour between service comple-
tion and negative arrivals time but implies the following operating rules when there is a
completion of service in the queue i:
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• Customers in a queue can merge together in incomplete or partial batch;

• if a full batch is moved into a queue with a partial one, the latter is automatically
removed.

The routing possibilities are the following:

• the full batch joins the queue as a regular and single customer with probability
p+(i, j)

• the full batch joins the queue as a signal with probability p−(i, j)

• the full batch leaves the system with probability d(i)

There can be a further implementation in which both origin and destination queues can
define the formation of negative customer batches caused by a triggering movement. For
example, the completion of a service in a queue i can force the movement of a departing
customer to another queue j and in the meantime also the simultaneous arrival in the
same queue j of a batch of n negative customers with probability dij(n). These creations
of negative batches can also be triggered by the external arrival to node i of a positive
customer (with size n and probability d0i(n)).

2.6.5.3 Multiple Class G-Networks

Another family of alternative is represented by the case of multiple classes of both posi-
tive and negative customers. In these extensions, either type of customers can belong to
C different classes. An independent Poisson stream of arrival of positive (with rate Λic)
and negative (with rate λic) customers in queue i characterize each class c. At queue i,
c-type positive customers are served with exponential servicing time distribution ric. In
the case of a normal G-Network λic = λi, ∀c.
In those multi-class G-Networks, the state of system is now defined by:

• vector k = (k1, ..., kn)

• each component ki = (ki1, ..., kiC) ∀i = 1, ..., n

• each kic represents the number of customers of class c in queue i

Negative customers effects can be described in various ways:

• the negative arrivals of a c-class in the queue i affect only positive customers of the
same type (i.e., the same class c). Thus, if the number of c positive customers is
greater than zero (kic > 0) then the length of the queue is reduced by one unit.

• the negative arrivals trigger a removal of a customer of a random class. Thus, if in
queue i a negative customer arrives and it is a non-empty queue (ki > 0), then a

positive customer of class c is removed with probability
kic
ki

.

• the most intricate of the three removal policies: the negative arrivals to empty
queues don’t have any effect and simply leave the system. The negative arrivals
to non-empty queues select a regular customer to be removed, according to the ser-
vice discipline of the current queue. Then, the negative customer tries to kill the
selected regular one and succeeds with probability Ki,m,n, where i is the queue, m
is the class of the negative customer and n is the class of the positive customer.
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There are further studies in which several service disciplines have been considered in
these G-Networks extensions like:

• first-come-first-served (FIFO or FCFS)

• processor sharing

• last-come-first-served (LCFS or LIFO) with preemptive resume priority

• effort depending on the state of the system

• symmetric queues

• arbitrary service times

Moreover, there is the introduction of multiple classes also for triggers.
Also the routing probabilities can be changed in some models depending on the service
times or on the number of service interruptions. Usually those G-Networks have n nodes,
C classes of positive customers and only a unique type of negative ones. In this way, node
i and class c determine the arrival rates Λic whereas only the node i determines the ex-
ogenous negative arrival rate λi.
We have to remember that different G-Networks usually require various service require-
ments. Generally speaking, different servicing time distributions belong to different
types of customers but in some cases, to soothe any other condition we assume homoge-
neous service requirements.
For what concerns the deletion choice of customers, it could be:

• random

• depend on the position of the customer in the queue

• the class of the customer

• the service effort offered

All these multiple class G-Networks can be described also as a particular case of a general
state-dependent description. Those more general systems have state-dependent intensi-
ties and their signals can be either a trigger or a batch of negative customers. Moreover,
two non-negative functions, φ and ψ (defined on Zn), describe the arrival of signals and
positive customers.

2.6.5.4 G-Networks with Disasters

In some extensions, G-Networks can also be composed by the presence of a flow of dis-
asters. Contrary to previous G-Networks, in this case there is the possibility of a disaster.
These disasters represent an extreme case of customer exodus. In fact, all the customers
present in the queue, which is affected by the disaster, are automatically removed from
the system.
The first studies of a clearing mechanism for single node queues were further developed
in more detail with G-Networks with disasters. Virus infections in computer networks
and catastrophes in migration processes are some possible applications to those models.
All the assumptions of the main (or “pure”) G-Network remain valid with one exception
for the negative arrivals. In this specific case, a Poisson flow of disasters replace the usual
single negative arrivals. These disasters arrive in a queue i with rate λ(i) and the rules
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for arrivals and routing of disasters are the same as those for negative arrivals. The only
difference is on the behaviour, a disaster implies the total destruction of all customers
(and indeed of work) in the destination queue.
In this kind of network, the following non-linear system is satisfied by their traffic equa-
tions:

λ+(i) =
∑
j
qjr(j)p

+(j, i) + Λ(i),

λ−(i) =
∑
j
qjr(j)p

−(j, i) + λ(i)

where

q(i) =
{
λ+(i) + λ−(i) + r(i)− (λ+(i)2 + λ−(i)2 + r(i)2 +

+2λ+(i)λ−(i) + 2λ−(i)r(i)− 2λ+(i)r(i))1/2
}
/2r(i)

If either λ−(i) > 0 or (λ−(i) = 0 and λ+(i) < r(i)) are satisfied by the solution of this
system for each node i, then the stationary probability distribution will have the product-
form:

p(k) =
∏
i

(1− qi)qkii

2.6.5.5 Tandem G-Networks

Usually the main analysis in G-Networks includes stability, balance equations and ex-
istence of a product-form. In the case of tandem G-Networks, the delay times and the
response time distribution are the focus of analysis.
In a tandem of two Markovian G-Queues, the arrivals of customers in the queues are
determined by Poisson processes. With rate Λ(i) for positive customers and rate λ(i)
for negatives one (for i = 1, 2 where i is the number of the queue). Moreover, regu-
lar customers are served with time exponentially distributed with rate r(i). We have to
remember that the exponential law has the memoryless property, thus the policies of ser-
vice and removal, and the queue length distribution are independent.
In this way the limiting probability distribution is the following:

p(k1, k2) =
2∏
i=1

(1− ρi)ρkii

where

ρ1 =
Λ(1)

λ(1) + r(1)
< 1,

ρ2 =
r(1)ρ1 + Λ(2)

λ(2) + r(2)
< 1

To analyse the response times distribution (namely end-to-end delays) it is assumed that
queueing discipline in the G-Queues pair is FCFS and in case of negative arrival, the
removal of customers starts at the end of the queue (RCE). However this computation
of the response time distribution also for simple G-Networks is quite complex due to a
phenomenon of overtaking. This event is the supervision of a positive customer from
its removal: when another regular customer arrives in the queue immediately after the
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observed customer, positive customer protects the observed one from the removal due to
a negative arrival. In this way the fate of observed customer depends on the arrival of
positive customers after it.
The non-independence in each queue of sojourn times, which on the contrary exists in
classical networks without negative arrivals, is explained by this phenomenon.
The probability of a positive customer not being deleted, jointly with the distribution of
response time, have the following form (in terms of the Laplace transform):

W ∗(s) = (1− ρ1)(1− ρ2)× r(1)

Λ(1)
y1(s)G(ρ2, 0, y1(s), s)

Considering a Markovian G-Queue with FCFS and RCE discipline, in this formula the
root involved in the sojourn time distribution is represented by y1(s) and functional equa-
tion is satisfied by functionG. Dealing with the dependence of sojourn times leads to this
complex solution, even though the probability that a customer is not removed can be
reduced to the following simple product formula:

W ∗(0) =
r(1)

λ(1) + r(1)

r(2)

λ(2) + r(2)

If we consider the particular case in which Λ(2) = λ(2) = 0, then, as we can expect, the
sojourn times are independent in all queues and moreover distributed like considering
each corresponding queue to be isolated.
Finally, in the case of Λ(2) = λ(1) = 0 , then customers in the second queue are protected
by the customer departures of first queue and consequently there is still dependence on
the sojourn times.

2.6.5.6 The Service Mechanism

Now I will briefly describe the different possible choices of the service mechanism and
other relating operating rules for G-Networks. This includes also the individual service
times. The network design of the whole system is strictly connected with the choice
of a service mechanism, this means that we have to strengthen the description of other
network components if we relax any assumption on the choice. The final outcome and
also the service facilities are greatly influenced by those compensations. In general, r(i)
is the rate of exponential service distribution of time in basic G-Networks at queue i but
it can be changed when there are multiple classes of customers and it is modified by the
type of customers and/or the queue considered.
In a multiple-class G-Network with three distinct types of service centers which have the
following service disciplines:

• First-Come-First-Served (FCFS or FIFO)

• Processor Sharing (PS)

• Last-Come-First-Served with preemptive resume priority (LCFS/PR or LIFO/PR)

Each class of positive customers c can obey a different service rate ric. In this case, k =
(k1, ..., kn) is the representation of the state of FCFS and LCFS/PR queues and in the
queue i, the vector (kij) represents the state ki. The length of that vector is the number
of positive customers in the node and the class of customers in position j is represented
by the j-th element of the vector. On the contrary, with PS queues, the state ki is itself
a vector and the number of positive customers of class c in node i is represented by the
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c-th element of the vector. In some cases, G-Networks (with general n + 1 queues) can
label the queue 0 as the “outside” of the system and allow the queues to have a negative
queue.
Considering the general state-dependent intensities, we can define each node as a source
and a customers queue. The rate of generation of positive customers is the following:

Λ(i)
ψ(k − ei)
φ(m)

with k = (k1, ..., kn) is the vector of lengths of the queue, e0 is a vector of zeros with length
n and ei (with i > 0) is a n vector of zeros except of a 1 in the i-th position. Moreover, ψ(·)
is a non-negative function in Zn and φ(·) is a positive function in Zn.
There are also the following definitions:
d+
ij is the probability of the routing to queue j of the emitted customer, with 0 ≤ j ≤ n

and the subsequent addition of one unit in the length of queue j (except for queue 0),
d−ij(t) is the probability of transformation of the emitted customer into a signal t and its
routing to queue j, with 0 ≤ j ≤ n and the negative batch size is denoted by t (t ≥ 0)
Then the emission embeds the departure process and the choice of probabilities d+

ij , d
−
ij(t)

determines triggers and individual (or batch) services dependence.
Let’s consider now, mechanisms of service when they are state-dependent, having also
symmetric queues and general service times. Furthermore, the system with state-dependent
service times is a multiple class G-Network. A positive customer in a queue i, requires a
servicing time exponentially distributed with rate r(i), so it doesn’t depend on the type
of class. When ki customers are in the queue i the rate of total service is: Φi(ki)r(i).
A customer, in position l with l = 1, ..., ki of the queue i, has an effort service that is a
γi(l, ki) proportion of the total potential of service. After the completion of the service
of that customer, other customers in positions l + 1, ..., ki shift to positions l, ..., ki − 1. A
positive or signal arrival trigger the reallocation of customers and this reallocation is de-
termined by two auxiliary probabilities δ(l, ki) and η(l, ki). Moreover, standard routing
probabilities connect individual queues with one another.
Finally, if we relax the assumption of class homogeneity, assuming that service requests of
customers of class c in queue i have exponential time with rate ric, then we have to make
an assumption that the discipline of service is symmetric (γi(l, ki) = δ(l, ki) = η(l, ki)).
There can be also other models with different assumptions of servicing efforts and the
analysis could involve and arbitrary service time distribution Fic(x). In conclusion, even
if it depends on the service time distributions, the stationary distribution has also its own
product-form.

2.7 Applications

There are a lot of different fields of applications, in which complex systems can be mod-
elled by the class provided by G-Networks, such as:

• Computer Networks

• Neural Networks

• Migration Processes

• Telecommunication Systems

• Production Systems
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• Maintenance

From the original “pure” G-Networks in which inhibitor signals of neural networks are
represented by the negative customers, there has been a wide and huge extension of that
first model. All those applications now can cover a lot of different fields.
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Chapter 3

Compositional Modelling

3.1 Introduction

This is the last introductory chapter, in which we describe compositional modelling. We
illustrate Markovian process algebras and their main results for the product-forms. In
the first part we focus on continuous time models with the Performance Evaluation Pro-
cess Algebra (PEPA) and with Stochastic Automata (SA). After a brief description of dis-
crete time process algebras, we recall the Probabilistic Input/Output Automata (PIOA)
and its formal description. In the last part of this chapter we talk about product-forms,
and special attention is devoted to the presentation of RCAT theorem and the notion of
quasi reversibility which are the basis from which our work starts. We also present the
main theorem on product-form QNs (i.e., BCMP theorem) and we illustrate the proper-
ties on the queueing model that imply the BCMP product-form. These properties can be
expressed in terms of a characterization of the scheduling discipline or in terms of prop-
erties of the underlying CTMC (e.g., Local Balance Property or M =⇒ M property).
The class of product-forms is wide and includes different kinds of systems. Even if the
Reversed Compound Agent Theorem (RCAT) [61] and Extended Reversed Compound
Agent Theorem (ERCAT) [63] are very general results for the analysis of product-form
stochastic models, they have some limits and do not capture all product-forms models,
as we will see in the last part of this chapter.

3.2 Performance Evaluation Process Algebra (PEPA)

3.2.1 General View

The subject to capture and analyse the dynamic behaviour of a network, a communica-
tion system or a queue is the performance modelling.
Unfortunately it is difficult to study and analyse many modern systems, due to their
size and complexity, resulting in very huge and complex models. To solve this problem,
the drive to take a compositional approach arises. This approach decomposes the whole
system into smaller and easier subsystems. They are indeed less complicate and conse-
quently more easy to model. One of the main compositional approaches to performance
modelling is based on PEPA (Performance Evaluation Process Algebra) [70].
PEPA is a suitably enhanced process algebra and its language has a pronounced compo-
sitional nature. This can provide a lot of benefits for the solutions of models and in the
same way for model construction.

35
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PEPA provides an operational semantics and uses it to create an underlying Markov pro-
cess. It may be used also as a paradigm for specifying Markov models. This can be done
for any PEPA model and the method is well explained and demonstrated in [70].
To deal with the problems of large performance models, some techniques of model sim-
plification and state space aggregation have been proposed. They were developed as
notions of equivalence between entities of models and have an intrinsic interest from
both the process algebra perspective and usefulness in the context of performance mod-
elling. The basis of these model transformation techniques is formed by equational laws.
These laws are generated and ensured by a strong structural equivalence, the isomor-
phism. Using also the abstraction capacity of the PEPA modelling, this equivalence leads
to a technique of model simplification. This, obviously, providing that certain conditions
are satisfied.
These tools may be used to replace one model component by another one which must
have the same apparent behaviour.
Moreover, limiting only to timed and probabilistic behaviours of systems in a process al-
gebra, may result to be less suitable for performance modelling. For this reason, PEPA,
as a stochastic process algebra, is effective in modelling complex and real systems [70].
This process algebra tries also to identify problems of performance evaluation in order to
offer a systematic method for modelling also complex systems.
To facilitate the analysis of the whole system, separate components and aspects of it may
be considered individually. They can be also subsequently considered in a more abstract
form, as their interactions are developed. Furthermore, the methods of model simplifi-
cation of PEPA can avoid the generation of the complete state space of the underlying
stochastic process.
Finally all those methodologies have been formally defined with its operational semantic,
in this way they could lead to automation or machine-assistance for model simplification.

3.2.2 Main Features

One of the main targets of a process algebra able to make performance evaluation is to
capture as many features of a normal process algebra as possible while also having char-
acteristics that allow specification of stochastic processes. In this context, the performance
evaluation part can be seen as an extension, taking also the normal features of normal
process algebras as a basis to be used as a design formalism and thanks to annotations of
the design we can develop the performance model.
The following features are considered essential for this process algebra:

• Parsimony: elements of the languages must be few in numbers and also simple.
With this parsimony the reasoning on the language should be easy and ensure flex-
ibility in the modelling phase. The basic elements of this language are components
and activities, corresponding in the underlying stochastic model to states and tran-
sitions.

• Formal Definition: in the language there is a structured operational semantics, this
provides formal interpretation for each expression. These rules are the basis of the
notions of equivalence, giving a formal way to compare and manipulate both mod-
els and components.

• Compositionality: the combinator of cooperation is the basis of composition in
PEPA. Complementary to it, there are methods of model simplification and aggre-
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gation. In this way a part of a model can be simplified in isolation and replaced by
a simplified component without compromising the integrity of the whole model.

Quantification of time and uncertainty are main attributes needed for performance eval-
uation. They are present in PEPA but missing in other process algebras such as CCS. In
other algebras time of actions is usually implicit and the models are non-deterministic but
it is important to quantify timing behaviour and uncertainty for extracting performance
measures from performance models.
PEPA associates random variables (representing duration) to all activities, to achieve this.
In this way, timing behaviour of the system is represented by delays of each activity in
the model. Furthermore, also temporal uncertainty (regard actions duration) is captured
because the duration is a random variable.
Succession uncertainty (about next events) is obtained because probabilistic choices re-
place non-deterministic ones. A race condition between the enabled activities determines
probabilities of branchings.
Introducing random variables for all system activities can be considered as annotations
of the pure process algebra model.

3.2.3 Language - Informal Description

With PEPA you can describe a system via interactions of its components and actions those
elements can engage in. Parts and behaviour of the system will correspond to some com-
ponents. A queue could be represented by an arrival component and a service compo-
nent, both of them will interact to form the queue behaviour.
Moreover, each component can be atomic or can be composed itself by other components
and it is assumed that there is a countable number of possible components, each of them
has a behaviour defined by its possible activities. Contrarily to other process algebras, in
PEPA a random variable representing duration, with exponential distributions, is associ-
ated to each activity. Every activity has a type (called action type) from a countable set A,
of all possible types. In case that different activities have the same type, this means that
they are different instances of the same action in the system.
The action type τ , called also unknown type, represents an action (or a sequence of them)
that is unknown or not important to identify. This kind is considered private to the
component in which it occurs and it is not instantaneous, like any other type of action.
Nonetheless, different instances of τ don’t necessarily represent the same action within
the modelled system and they could be represented by their real number parameter of
duration.
Generally speaking, this parameter is called the activity rate and must be greater or equal
than 0 or >which means that it unspecified.
There will be the following conventions about the names of various elements:

• Components are denoted by names starting with large roman letters (P ,Q,R,Pi,...).

• Activities are denoted by single small roman letters from the alphabet beginning (a,
b, c,...).

• Action types are denoted by small greek letters (α,β,γ,...), or by names starting with
a small roman letter (task, service, checki,...).

• Activity rates are denoted by single roman letters from the alphabet ending (r,s,t,sj ,...).
Usually the greek letters µ (for the service rate) and λ (for the arrival rate) are also
used.
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• Subsets of A are typically denoted by L, K, and M .

In this way, each activity is defined by pairs such as (α; r) where α ∈ A is the action type
and r is the activity rate.
From this, we can say that there exists a set of activities, Act ∈ A × R+, where R+ is the
set of real positive numbers and the symbol >.
There is also some other terminology to introduce:

• System behaves as P : when component P determines its behaviour

• A(P ): current action types of P. Component P can next perform only these action
types.

• Act(P ): multiset of current activities of P. Component P can next perform only these
activities.

• Delay period of an enabled activity a = (α, r): period of time given by its associ-
ated distribution function that is the probability that this activity happens within a
period of time t, with Fa(t) = 1− ert.

• P ′: is the component which describes the behaviour of the system when P com-
pletes α for some α ∈ Act(P ). P ′ does not have to be different from P .

• P α−→ P ′ or P
(α,r)−→ P ′: completion of activity α and the subsequent behaviour of

the system as P ′.

The distinction between action types and activities is the dynamic behaviour of a compo-
nent which depends on the number of instances of each enabled activity. Moreover,A(P )
is a set and Act(P ) and is a multiset (unless stated otherwise).
The delay period is like a timer set by an activity when it becomes enabled and the rate
of the activity determines its time. Furthermore, each enabled activity has its own associ-
ated timer and the first which finishes implies that its corresponding activity takes place
(an external observer could observe the event of an activity of that type). That activity is
said to be succeeded or completed and others are considered preempted, or aborted.

3.2.4 Language - Syntax

The primitives of PEPA language are: components and activities. Remember that activi-
ties characterize the behaviour of a component and also PEPA has a small set of combi-
nators. Those combinators allow us to construct expressions and terms which can define
the behaviour of components through interaction between them and activities they can
perform. In this way, the behaviour of components can be influenced also by the envi-
ronment in which they are placed.
In PEPA, the syntax of terms is defined as follows:

P ::= (α, r).P | P +Q | P 1
L
Q | P/L | A

Now we will give a brief description of names and interpretations of those constructions.

Prefix: (α, r).P
The basis of the construction of component behaviour is the mechanism of Prefix. In this
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case, the component (α, r).P can perform the activity (α, r), which has action type α and
a duration exponentially distributed with parameter r (mean 1

r ). For completing the ac-
tivity, the time is t, drawn from the distribution. After its completion, the behaviour of
component will be as component P . If a component reaches the behaviour of (α, r).P at
some time t′, it will complete the action (α, r) in t′ + t time. In this way it will become
P , enabling all the activities in Act(P ). If we consider a = (α, r) then we can write the
component (α, r).P as a.P .
We have to recall also that we assume there is always an underlying implicit resource,
which helps the component activities. They are not modelled explicitly but their utiliza-
tion by the components are represented by the time elapsed before the completion of an
activity. Those resources could be time processor, cycles of CPU, some I/O devices or
bandwidth of a communication channel; this can depend on which system and at which
level it is modelled.

Choice: P + Q
A system which can behave both as component P or as componentQ, can be represented
by the component P + Q. This component enables all the current enabled activities of P
and all the current enabled activities of Q at the same time.
To be more formal: Act(P + Q) = Act(P ) ] Act(Q) (where ] denotes the multiset of
the union) and whatever enabled activity will be completed, it must belong to Act(P )
or Act(Q). It must be in this way, also in the case that P and Q have the same enabled
activity since different instances of the same activity are distinguished in PEPA. Doing so,
the future behaviour will be of P or of Q and it will be distinguished by the first activity
to complete. This activity will also discard the other component of the choice.
We have an important thing to remark, the probability, that both P and Q complete an
activity at the same time, is zero, and this is ensured by the continuous nature of the
probability distributions. If we consider that after P completed the activity, it behaves as
P ′ component and similarly Q and Q′, then the system will subsequently behave as P ′ or
Q′ since P + Q had completed an activity.
Finally, we have to consider that there is always the underlying assumption that either P
and Q compete for the same implicit resource.
In this way, the competition between components is represented by the choice combina-
tor.

Cooperation: P 1
L
Q

The set L is called the cooperation set, and the interaction between the P and Q compo-
nents are determined by it. If we consider that K 6= L, then almost certainly component
P 1

L
Q will behave quite differently from the behaviour of P 1

K
Q. This makes the coop-

eration combinator, an indexed family of combinators, one different combinator for each
possible set of action types L ⊆ A. The action types, on which the components must
cooperate or synchronise, are indeed defined by the cooperation set.
Contrary to the choice operator, we assume that in a cooperation, each component has its
own implicit resource. Moreover, they independently proceed with any other activities
whose types are not in the cooperation set L but those whose action type is in the set L
must involve simultaneously both components (and consequently both resources) in an
activity of that type. Any cooperation set can’t contain any unknown action type τ .
The activities which have types which do not occur in L, are called individual activities
of the components and they will proceed unaffected.
On the other hand, shared activities, whose types are in the set L, will only be enabled in
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P 1
L
Q, namely when they are enabled in both P and Q. Doing so, one component, which

wait for the other component participation, can become blocked and represent situations
in the system when, to achieve an action, the components have the need to work together.
Generally speaking, each component has to complete some work. This work corresponds
to their own representation of the action and individual activities of the individual com-
ponents P andQ are replaced by a new shared activity, formed by the cooperation P 1

L
Q.

The shared rate of this new activity reflects the rate of the slower participant even if
the activity will have the same action type as the two contributing ones. Thus this rate
(namely the expected duration) of a shared activity, will be greater than or equal to the
rates (namely the expected durations) of the corresponding activities in the cooperating
components.
In the case of an unspecified rate of an activity in a component, the component is called
passive with respect to that action type. In other words, the component will not con-
tribute to the work involved, even though its cooperation can be required to achieve the
completion of an activity of that type. One example can be the role of a channel in a com-
munication system: if we want to transfer a message, the cooperation of the channel is
essential, but the transfer don’t need any work (i.e., consumption of implicit resource) of
the channel itself.
Finally, if the set L is empty, 1

L
has the same effect of a parallel composition. This al-

lows the components to proceed concurrently without any kind of interaction between
them and this kind of situation will occur quite often, in particular when systems have
repeated components. For this reason to represent P 1

∅
Q, there is the introduction of the

more concise notation P ||Q. The combinator || is called parallel combinator.
We have to notice that also with this syntactic convenience inclusion, there is no expres-
siveness addition to the language.

Hiding: P/L
In the component P/L, all activities, whose types are in the set L, are hidden, this means
that their completion cannot be witnessed and this is the only difference between P/L
and P behaviour (i.e. an observer can only witness a hidden activity by its delay). Those
hidden activities will appear as the unknown type τ and they can represent an internal
delay of the component.
The activities that a component can engage individually are not affected by hiding but it
affects the possibility to fully witness externally these activities. If a process completes an
activity, an external observer can see the type of that completed activity and can also be
aware of the length of time from the previous activity completion, i.e., the delay of time
in which the activity took place.
Furthermore, those hidden activities cannot be within a cooperation set L with any other
component and their action types are no longer accessible outside to both another com-
ponent or external observers. Anyhow, activities are not affected in their durations even
if they are hidden.

Constant: A
def
= P

Assuming that the set of constants is countable, the meaning of constants component is

defined by equations such as A
def
= P , in this way the behaviour of component P is given

to the constant A. Doing so, names can be assigned also to components (behaviours).
Let’s suppose that E is a component expression containing also a variable X , the expres-
sion E{P/X} will then indicate the component made by the replacement of P in every
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occurrence of X in E. Generally speaking, if we consider an indexed set of variables,
then E{P̃ /X̃} is the replacement of an indexed set of variables X̃ by an indexed set of
components P̃ .

In PEPA the precedence of combinators is defined and this provides a default interpreta-
tion of any kind of expression.
The precedence, from the highest to the lowest, is the following:

1. Hiding

2. Prefix

3. Cooperation

4. Choice

Moreover, forcing alternative parsings or simplifications, to clarify meaning, can be done
using brackets.
They can also be used to clarify the meaning of a combination of components. For ex-
ample, P 1

L
Q 1

K
R has an unclear scope of the cooperation sets L and K. There are two

alternatives:

• (P 1
L
Q) 1

K
R: in this case R, for each action type in L \ K, can proceed indepen-

dently but it has to cooperate with P 1
L
Q for any action types in K

• P 1
L

(Q 1
K
R): here Q 1

K
R has to cooperate with P to perform any action types in L

but P is free to do independently each action types in K \ L.

In this way the intended scope of the cooperation set can be delimited by the use of
brackets and, in case of missing brackets, it is assumed the left association of cooperation
combinator. Considering this and using differing cooperation sets in the cooperation
between several different components, we can build layers and levels. Each one of these
layers uses a cooperation combination of just two processes, which can be formed in turn
by cooperation between lower-level components.
One example can be the following:(

(P1 1
L
P2) 1

K
P3

)
1
M

(
P4 1

N
P5

)
This component can be seen as Q1 1

M
Q2 at the top level. Considering ≡ the syntactic

equivalence, we have that at lower level, Q1 ≡ Q3 1
K
P3 and Q2 ≡ P4 1

N
P5 and in the

lowest level Q3 ≡ P1 1
L
P2.

In the lowest level, components which do not contain any cooperation are called atomic
components, instead in the top level these are called top-level components.

Passive Activities: >
In some cases, the components cooperation is not equal and this can represent that one of
them is passive with respect to an action type. This means that each enable activity of that
type in the component, has an unspecified activity rate. Those passive activities must be
shared with other components which will determine the real rate of this shared activity.
A model is called incomplete, if at least one of its passive components is not shared with
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others or a cooperation set restricted it.
There is also the case in which more than one passive activity type is simultaneously
enabled within a component and we must assign a weight to all unspecified activity rates.
Those weights have to be natural numbers and they can be used to determine the relative
probabilities of the possible outcomes (regarding the activities of that action type).
If we consider this following component:

(α,w1>).P + (α,w2>).Q

It is passive with respect to the action type α and when that action will be completed,
subsequently the component may behave as P with probability w1/(w1 + w2) or may
behave as Q with probability w2/(w1 + w2).
Furthermore, we can assume that (α,>) is an abbreviation for (α, 1>) and that if there is
no weights assignation, then the various instances have all equal probabilities to occur.
From this, comparisons and manipulations of unspecified activity rates are defined by
the following inequalities and equations:

r < w> ∀r ∈ R+ and ∀w ∈ N

w1> < w2> if w1 < w2 ∀w1, w2 ∈ N

w1>+ w2> = (w1 + w2)> ∀w1, w2 ∈ N

w1>
w2>

=
w1

w2
∀w1, w2 ∈ N

Apparent Rate: rα(P ) Usually it could be convenient that a single action of the system
is represented by more than only one activity in the model at a time. Nevertheless, the
apparent rate of those activities type will always be the same to an external observer of
the system or of the model. This is because the race condition of the model assures that
the α-rate at which an α activity is completed is the sum of the rates of all the enabled
activities of type α.
For example, there exist systems with the multiple capacity of performing an action, like
a queue with multiple servers and n waiting customers with obviously n > 1. Now let’s
consider the apparent rate of service action of a PEPA component which enables only one
type of service activity but with a rate n-times the actual service rate of the first presented
example. The apparent rate of two service activities would be the same.
From that we can comprehend that the apparent rate, at which action types happen, is
very important in the comparison of models with systems and between models them-
selves.
The formal definition for the Apparent Rate is:
“The apparent rate of action of type α in a component P is denoted rα(P ) and it is the sum of the
rates of all activities of type α in Act(P )”.
And the formal rules are the following:
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1. rα((β, r).P ) =

{
r if β = α

0 if β 6= α

2. rα(P +Q) = rα(P ) + rα(Q)

3. rα(P/L) =

{
rα(P ) if α /∈ L
0 if α ∈ L

4. rα(P 1
L
Q) =

{
min(rα(P ), rα(Q)) if α /∈ L
rα(P ) + rα(Q) if α ∈ L

Remember that an apparent rate can also be unspecified, for example if P is defined like
this:

P
def
= (α,w1>).P1 + (α,w2>).P2

Then by the previous definitions: rα(P ) will be equal to the sum rα(P1) + rα(P2), so
we can sum w1> + w2> and we know that this is equal to (w1 + w2)>. In conclusion
rα(P ) = (w1 + w2)>.

Current Action Types: A(P )
The set of action types which are enabled by a component P is called A(P ). This set
contains all possible action types which can be seen in the next completion of an activity,
when the system behaves as component P.
For any PEPA component, this set (Set of Current Action Types) can be constructed by
the following definitions:

1. A((α, r).P ) = {α}

2. A(P +Q) = A(P ) +A(Q)

3. A(P/L) =

{
A(P ) if A(P ) ∩ L = ∅
(A(P )\L) ∪ {τ} if A(P ) ∩ L 6= ∅

4. A(P 1
L
Q) = (A(P )\L) ∪ (A(Q)\L) ∪ (A(P ) ∩ A(Q) ∩ L)

Current Activities: Act(P )
The multiset of current activities of P is called Act(P ). It will also take a relevant part in
the analysis of a component P . These are the enabled activities when the system behaves
as component P.
Adopting the following abbreviations:

Act\L(P ) = {|(β, r) ∈ Act(P )|β /∈ L|}
Act∩L(P ) = {|(β, r) ∈ Act(P )|β ∈ L|}

Then this multiset (Activity Multiset) can be constructed by the following definitions:
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1. Act((α, r).P ) = {|(α, r)|}

2. Act(P +Q) = Act(P ) ]+Act(Q)

3. Act(P/L) = Act\L(P ) ] {|(τ, r) | (α, r) ∈ Act∩L(P )|}

4. Act(P 1
L
Q) = Act\L(P ) ] Act\L(Q)]

]{|(α, r) | α ∈ L,∃(α, r1) ∈ Act∩L(P ), ∃(α, r2) ∈ Act∩L(Q),

and r =
r1

rα(P )

r2

rα(Q)
min(rα(P ), rα(Q))|}

3.2.5 Language - Operational Semantics

We present the summary of the formal definition of the operational semantics of PEPA in
Figure 3.1.
Those operational rules have the following meaning:
we can infer the transition below the inference line only if the transition(s) above that line can be
inferred.
The activities which a component can perform are outlined by the rules, and whenever
an activity completes, it causes a transition in the system.
Moreover, there is no explicit representation of time in these rules but we assume that, for
all rules, an activity will take some time to complete. In this way, some advance of time
is represented by each transition. In these rules, we assume that each activity is (time)
homogeneous, this mean that rates and types of activities are time-independent with re-
spect of when they occur. Consequently we also assume that Act(P ), namely the activity
set of a component, is time independent, and it is independent from the time at which it
is considered.
The only comment presented is on the third rule for cooperation, which defines shared
activities. Furthermore, the apparent rate of shared actions type in the componentE 1

L
F ,

when α ∈ L, is chosen such that it is the slowest of the apparent rates of that action type
in both E and F . In general, we assume also that both cooperation components have to
complete some work to complete the shared activity, as a reflection of their own version
of that activity.
If one component has an unspecified apparent rate, other components will completely
determine that rate. Moreover, to represent different possibilities of outcome, we can use
multiple instances of the same action type in a component. It is also assumed that there
is independence between the choice of each shared activity rate, made in order to keep
the same outcome probability of each component, and the choice of outcome that each of
the cooperating components makes.
Considering for example an instance (α, r1) of action type α ∈ Act(E) and another in-
stance (α, r2) of action type α ∈ Act(F ). When an α-type activity occurs, the probability,
that it is (α, r1), is r1/rα(E) and on the other hand the probability, that it is (α, r2), is
r2/rα(F ). Instead, if α is a shared type activity in E 1

L
F , when it occurs, the probability

that E and F combine, to form the shared activity, will be r1/rα(E)× r2/rα(F ).

The activity rate of any activity instance, is the product of the probability of this instance
completion (assuming that an activity of this type occurs) and the apparent rate in this
component of the action type. Consequently there is the following rule:
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Figure 3.1: Operational Semantics of PEPA

E
(α,r1)−→ E′ F

(α,r2)−→ F ′

E 1
L
F

(α,R)−→ E′ 1
L
F ′

(α ∈ L) where R = r =
r1

rα(E)

r2

rα(F )
min(rα(E), rα(F ))

Generally speaking, a set of states S, a set of transition labels T and a transition relation
t→⊆ S × S ∀t ∈ T can define a labelled transition system (S, T, { t→ |t ∈ T}). Instead, if we

consider a multi-transition system, we have to replace the relation with a multi-relation
whose instances reflect the number of transition between states. Taking those semantic

rules, we can define PEPA as a labelled multi-transition system (C,Act, {(α,r)−→ |(α, r) ∈
Act}), withAct as set of activities, C as the set of components and rules in Figure 3.1 give
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the multi-relation
(α,r)−→.

3.2.6 Language - Additional Definitions

In this section we will present some auxiliary definitions related to PEPA, resulting from
the last section. If we consider a graph in which nodes represent the language terms and
arcs represent the possible transitions between them, then operational rules will define
how the graph is formed. Considering also that we have already distinguished different
instances of the same activity, then the graph will be a multi-graph. In this way we will
distinguish different instances of an arc between terms.
This underlying derivation graph describes the possible behaviour of any component of
PEPA. It provides also a useful way to reason about the model behaviour.
Finally, these are the formal notions of derivatives:

One-step derivative: P ′ is a one-step derivative of P , if P
(α,r)−→ P ′

Derivative: more in general, P ′ is a derivative of P , if P
(α1,r1)−→ . . .

(αn,rn)−→ P ′

Those derivatives represent the various states of the labelled multi-transition system. It
is usually convenient also to expand those definitions of a component and name each
derivative individually. In this way we can define recursively the set of all possible
derivatives (behaviour) of all PEPA components, in which they can evolve.
Derivative Set: ds(C) is the notation of the derivative set of a PEPA component, and it is the
smallest set of components such that:

• if C
def
= C0 then C0 ∈ ds(C);

• if Ci ∈ ds(C) and ∃a ∈ Act(Ci) such that Ci
a−→ Cj , then Cj ∈ ds(C).

Each reachable state of the system is captured by the derivative set of components. In this
way we can visualize all possible states of the system and the relationships among them
with the transition graph of a system. In fact the derivation graph is defined in terms of the
derivative set of a system.
Derivation Graph: the derivation graph D(C) of a component C and its derivative set ds(C),
is the labelled directed multi-graph with a set of nodes ds(C) and with multiset of arcs A defined
as:

• The elements of A given by the set ds(C)× ds(C)×Act ;

• 〈Ci, Cj , a〉 occurs in A with the same multiplicity as the number of distinct inference trees
which infer Ci

a−→ Cj .

We can denote the derivation graph and derivative set of component expressions with E,
ds(E) and D(E).
The variables in the expression are represented by leaves of the derivation graph. When
a variable is instantiated, the appropriate derivation graph will be attached at that point.
~A(C) is the notation of the complete set of action types, used in the derivation graph of

a system. This complete set represents all possible action types which can be completed
during a component evolution.
Complete Set of Action Types: the complete set of action type of a component C is:

~A(C) =
⋃

Ci∈ds(C)

A(Ci)
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3.2.7 The Underlying Stochastic Model

A stochastic process, as a representation of the system, can be built using PEPA and
its derivation graphs. Furthermore, the resulting stochastic model is a continuous time
Markov process, if we assume that the duration of all activities are exponentially dis-
tributed random variables.
With the CTMC, we can compute its numerical solution when it is assumed that there
exists a steady-state solution. There is also a relationship between the ergodicity of the
Markov process and the structure of the PEPA models.

3.2.7.1 Markov Process Generation

The generation of the underlying stochastic process can be based on the derivation graphs,
for any finite model of PEPA. We know that in any model there is a component which de-
fines it as its initial node and that its derivation graph is a multigraph. Thus, we have the
following characteristics of a derivation graph:

• Initial node

• Other nodes in the graphs represent each subsequent derivative (or component)

• Between the corresponding components, for each possible transition there is an ac-
tion type and an activity rate which label all arcs between nodes

To build the stochastic process we make the following associations:

• Each node of the graph is associated with a state

• Arcs of the graph define the transitions between states

Remember that in the derivation graph, the number of nodes is finite because we have
assumed that also the model is finite. Moreover, in the derivation graph, the sum of all
the activity rates, which label the arcs linking two nodes, represents the total transition
rate between the corresponding states, since each activity duration is exponentially dis-
tributed.
We can summarize it in the following theorem:

Theorem
For any finite PEPA modelC def

= C0, if we define the stochastic processX(t), such thatX(t) = Ci
represents that at time t, the system behaves as component Ci, then X(t) is a Markov process.

The proof of this theorem can be found in [70].

3.2.7.2 Definitions on the Markov Process Underlying a PEPA Model

There are some notions associated with the underlying Markov processes of a PEPA
Model.

Sojourn Time: In a component C, the sojourn time is an exponentially distributed ran-
dom variable. Moreover, C enables some activities and the sum of these activity rates
represents the parameter in the distribution. Then the expected (i.e., the mean) sojourn
time is:
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( ∑
a∈Act(C)

ra

)−1

Exit Rates: The related notion of the exit rate from C is more convenient to consider. This
rate can represent the rate at which an arbitrary activity is completed in the component
C (i.e., it does something). The exit rate can also represent the rate at which the system
leaves the corresponding state of component C for another one.
We denote it as q(C) and its definition is:

q(C) =
∑

a∈Act(C)

ra

Transition Rates: The transition rate is the rate at which transitions occur between state
Ci and Cj or the system changes from behaving like component Ci to behaving like com-
ponent Cj . In the derivation graph there are arcs connecting the node corresponding to
Ci with the node corresponding to Cj , the sum of the activity rates labeling those arcs is
represented by this rate.
We denote as q(Ci, Cj) the transition rate between two components Ci and Cj and so it
is:

q(Ci, Cj) =
∑

a∈Act(Ci|Cj)

ra

Where:
Act(Ci|Cj) = {|a ∈ Act(Ci)|Ci

a−→ Cj |}

Usually the previous multiset contains only a single element. Moreover, if the set of one-
step derivatives of Ci doesn’t contain Cj , then q(Ci, Cj) = 0.
The off-diagonal elements of the infinitesimal generator matrix of the Markov process Q
are represented by q(Ci, Cj) which can be also denoted with qij . In this way:

Pr(X(t+ δt) = Cj |X(t) = Ci) = q(Ci, Cj)δt+ o(δt)

With: i 6= j

The negative sum of the non-diagonal elements of each row forms the diagonals elements
(qii = −q(Ci)).
If the steady-state probability distribution for the system Π(·) exists, we can compute it
solving the following matrix equation:

ΠQ = 0

This will be subject to the normalization condition:∑
(Ci) = 1

Conditional Transition Rates: The conditional transition rate is the rate at which, as a
result of the completion of an activity of type α, the system changes from behaving like
component Ci to behaving like component Cj . In the derivation graph there are arcs con-
necting the node corresponding to Ci with the node corresponding to Cj , the sum of the
activity rates labelling those arcs, which have a label of the action type α, is represented
by this rate.
We denote as q(Ci, Cj , α) the conditional transition rate between two components Ci and
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Cj using the action type α.

Conditional Exit Rates: Also the conditional exit rate is considered sometimes. The exit
rate represents the rate at which the system leaves the corresponding state of component
C for another one after the completion of an activity of type α.
Moreover, C enables some activities and the sum of the rates of activities of type α repre-
sents this conditional exit rate. We denote it as q(C,α).
Furthermore, the apparent rate of α inC is the same as the conditional exit rate ofC using
activities of type α:

q(C,α) = rα(C)

3.3 Stochastic Automata (SA)

Many high-level specification languages for stochastic discrete-event systems are based
on Markovian process algebras and labelled automata [16, 69, 70, 71, 44, 21, 97] that are char-
acterized by powerful composition operators and timed actions whose delay is governed
by independent random variables with a continuous-time exponential distribution. The
expressivity of such languages allows the development of well-structured specifications
and efficient analyses of both qualitative and quantitative properties in a single frame-
work. Their semantics are given in terms of stochastic automata, an extension of la-
belled automata with clocks that often are exponentially distributed random variables. A
stochastic concurrent automaton has an underlying continuous-time Markov chain as the
common denominator of a wide set of Markovian stochastic process algebra. Stochastic
automata are equipped with a composition operation by which a complex automaton can
be constructed from simpler components. A model of such automata can be found in
[88, 89] which draws a distinction between active and passive action types, and in form-
ing the composition of automata only active/passive synchronisations are permitted. An
analogue semantics is proposed for Stochastic Automata Networks in [97].

Definition 3.1. (Stochastic Automaton (SA)) A stochastic automaton P is a tuple (SP ,ActP ,
PassP ,;P , qP ) where

• SP is a denumerable set of states called state space of P ,

• ActP is a denumerable set of active types,

• PassP is a denumerable set of passive types,

• τ denotes the unknown type,

• TP = (ActP ∪ PassP ∪ {τ})

• ;P ⊆ (SP × SP × TP ) is a transition relation where ∀s ∈ SP , (s, s, τ) /∈;P ,1

• qP is a function from ;P to R+ such that ∀s1 ∈ SP and ∀a ∈ PassP ,∑
s2:(s1,s2,a)∈;P

qP (s1, s2, a) ≤ 1.

1Notice that τ self-loops do not affect the equilibrium distribution of the CTMC underlying the automa-
ton. Moreover, the choice of excluding τ self-loops will simplify the definition of automata synchronisation.
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In the following we denote by →P the relation containing all the tuples of the form
(s1, s2, a, q) where (s1, s2, a) ∈;P and q = qP (s1, s2, a). We say that qP (s, s′, a) ∈ R+

is the rate of the transition from state s to s′ with type a if a ∈ ActP ∪ {τ}. Notice that this
is indeed the apparent transition rate from s to s′ relative to a [70]. If a is passive then
qP (s, s′, a) ∈ (0, 1] denotes the probability that the automaton synchronises on type a with
a transition from s to s′. Hereafter, we assume that qP (s, s′, a) = 0 whenever there are no
transitions with type a from s to s′.
If s ∈ SP , then ∀a ∈ TP we write:

• qP (s, a) =
∑

s′∈S qP (s, s′, a) the sum of outcoming transition from s of type a.

• qP (s, s′) =
∑

a∈TP qP (s, s′, a) the sum of outcoming transition from s to s′.

• qP (s) =
∑

a∈TP qP (s, a) the sum of outcoming transition from s.

We say that P is closed if PassP = ∅. We use the notation s1
a
;P s2 to denote the tuple

(s1, s2, a) ∈;P ; we denote by s1
(a,r)−−−→P s2 (resp., s1

(b,p)−−−→P s2) the tuple (s1, s2, a, r) ∈→P

(resp., (s1, s2, b, p) ∈→P ) where a ∈ ActP , b ∈ PassP , r ∈ R+ and p ∈ (0, 1].

Definition 3.2. (CTMC underlying a closed SA) The CTMC underlying a closed stochastic
automaton P , denoted XP (t), is defined as the CTMC with state space SP and infinitesi-
mal generator matrix Q defined as: for all s1 6= s2 ∈ SP ,

qs1,s2 =
∑

a,r:(s1,s2,a,r)∈→P

r .

For ergodic chains, we denote the equilibrium distribution of the CTMC underlying P by
πP .

An automaton is irreducible if each state can be reached by any other state after an arbi-
trary number of transitions; moreover a closed automaton P is ergodic if its underlying
CTMC is ergodic.
The synchronisation operator between two stochastic automata P and Q is defined in the
style of master/slave synchronisation of SANs [97] based on the Kronecker’s algebra and
the active/passive cooperation used in Markovian process algebra such as PEPA [70].

Definition 3.3. (SA synchronisation) Given two stochastic automata P and Q such that
ActP = PassQ and ActQ = PassP we define the automaton P ⊗Q as follows:

• SP⊗Q = SP × SQ,

• ActP⊗Q = ActP ∪ ActQ = PassP ∪ PassQ,

• PassP⊗Q = ∅,

• τ is the unknown type,

• ;P⊗Q and qP⊗Q are defined according to the rules for −→P⊗Q depicted in Table 3.1:
indeed, the relation−→P⊗Q contains the tuples ((sp1 , sq1),(sp1 , sq2), a, q) with ((sp1 , sq1),
(sp1 , sq2), a)∈;P⊗Q and q = qP⊗Q((sp1 , sq1), (sp1 , sq2), a).
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sp1
(a,r)−−−→P sp2 sq1

(a,p)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−→P⊗Q (sp2 , sq2)

(a ∈ ActP = PassQ)

sp1
(a,p)−−−→P sp2 sq1

(a,r)−−−→Q sq2

(sp1 , sq1)
(a,pr)−−−→P⊗Q (sp2 , sq2)

(a ∈ PassP = ActQ)

sp1
(τ,r)−−−→P sp2

(sp1 , sq1)
(τ,r)−−−→P⊗Q (sp2 , sq1)

sq1
(τ,r)−−−→Q sq2

(sp1 , sq1)
(τ,r)−−−→P⊗Q (sp1 , sq2)

Table 3.1: Operational rules for SA synchronisation

3.4 Probabilistic Automata

In the discrete time we can use the probabilistic automata. A major distinction of these
automata is that between fully probabilistic and non-deterministic ones. In a fully prob-
abilistic automaton every choice is governed by a probability distribution (over set of
states or states combined with actions). The probability distribution captures the uncer-
tainty about the next state. If we abstract away from the actions in a fully probabilistic
automaton, we are left with a discrete time Markov chain. Subsequently, standard tech-
niques can be applied to analyse the resulting Markov chains. Sometimes, the incomplete
knowledge about the system behaviour cannot be represented probabilistically. In these
cases we should consider more than one transition possible. We speak in this case of a
non-deterministic probabilistic automaton. Non-determinism is essential for modelling
scheduling freedom, implementation freedom, the external environment and incomplete
information. Furthermore, non-determinism is essential for the definition of an asyn-
chronous parallel composition operator that allows interleaving. There are two main
kinds of non-deterministic choices:

• external non-deterministic choices influenced by the environment, specified by hav-
ing several transitions with different labels leaving from the same state

• internal non-determinism, exhibited by having several transitions with the same
label leaving from a state.

We use the term non-determinism for full non-determinism including both internal and
external non-deterministic choices.

Automata types can be further grouped in several subsections reflecting their common
properties. Basically, every type of probabilistic automata arises from the plain definition
of a transition system with or without labels. Probabilities can then be added either to
every transition, or to transitions labelled with the same action, or there can be a distinc-
tion between probabilistic and ordinary (non-deterministic) states, where only the former
ones include probabilistic information, or the transition function can be equipped with a
structure that provides both non-determinism and probability distributions. Two classi-
cal types of probability system are:
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• the reactive model

• the generative model

In a reactive system, probabilities are distributed over the outgoing transitions labelled
with the same action, while in a generative system probabilities are distributed over all
outgoing transitions from a state. A motivation for making this distinction is the differ-
ent treatment of actions. In a reactive system actions are treated as input actions being
provided by the environment. When a reactive system receives input from the environ-
ment then it acts probabilistically by choosing the next state according to a probability
distribution assigned to this input. There are no probabilistic assumptions about the be-
haviour of the environment. On the other hand, in a generative system, as the name
suggests, actions are treated as output generated by the system. When a generative sys-
tem is in a state s it chooses the next transition according to the probability distribution
α(s) assigned to s. When the transition is chosen, the system moves to another state while
generating the output action which labels this transition. Note that in a generative sys-
tem there is no non-determinism present, while in a reactive system there is only external
non-determinism.
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a, 1/3

a, 2/3

b, 1
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b, 1

0Q 2

1
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a, 1/2
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Figure 3.2: Reactive System P and generative System Q.

3.4.1 Probabilistic Input/Output Automata (PIOA)

There exists also a model which is a fusion between reactive and generative ones: In-
put/Output Model. The model of input/output probabilistic automaton, introduced by
Wu, Smolka and Stark in [101], exploiting the I/O automaton by Lynch and Tuttle [82],
presents a combination of the reactive and the generative model.
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Figure 3.3: I/O System P considering: ActP = {a, b}, PassP = {c, d}.

In an I/O automaton for every input action there is a reactive transition. Note that the
transition function for inputs is always a function and not a partial function as in the re-
active models. Hence each input action is enabled in each state of an I/O probabilistic
automaton. The output actions are treated generatively. At most one generative proba-
bilistic transition gives the output behaviour of each state. We have to add also a delay
rate parameter δ which is an aspect from continuous-time systems (we will discuss it
later). It is obvious that, when ignoring the 0 delays, for ActP = ∅ one gets the reactive
model (with all actions enabled) and for PassP = ∅ one gets the generative model with a
delay rate assigned to each state.

The semantics of I/O automata are an extension of labelled automata with probabilities
and we consider one with a delay rate parameter δ and with an underlying discrete-time
Markov chain as a common denominator of a wide set of Markovian discrete process
algebra. The parallel composition operation has been treated in different ways in the
discrete time case:

• as unique parallel composition.

• purely synchronous (e.g., given by the product of distributions)

• asynchronous

• partly synchronous and partly asynchronous

• can strongly rely on the specific structure of the systems.

As we said, the classes of probabilistic systems can be divided into three groups depen-
dent on whether they show reactive, generative or mixed behaviour. Classes belonging to
the same of these groups allow in essence similar definition and investigation of parallel
composition.
Also the probabilistic automata [101] is equipped with a composition operation by which
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a complex automaton can be constructed from simpler components. The model draws a
distinction between:

• active action types corresponding to output actions

• passive action types corresponding to input actions

Furthermore, in forming the composition of automata only active/passive synchronisa-
tions are permitted.

Definition 3.4. (Probabilistic I/O Automaton (PIOA)) A probabilistic Input/Output au-
tomaton P is a tuple (SP , ActP ,PassP ,;P , qP , δ) where

• SP is a denumerable set of states called state space of P ,

• ActP is a denumerable set of active types,

• PassP is a denumerable set of passive types,

• τ denotes the unknown or internal type,

• TP = (ActP ∪ PassP ∪ {τ}),

• ;P ⊆ (SP × SP × TP ) is a transition relation where ∀s ∈ SP and ∀a ∈ PassP , there
exists a state s′ ∈ S such that (s, s′, a) ∈;P

2

• qP is the transition probability function from ;P to (0, 1] which is required to satisfy
the following conditions:

– qP (s1, s2, a) > 0 iff (s1, s2, a) ∈;P

– ∀s1 ∈ SP and ∀a ∈ PassP ,∑
s2:(s1,s2,a)∈;P

qP (s1, s2, a)=1.

– ∀s1 ∈ SP considering qP (s1, s2, a) = 0 if (s, s, a) /∈;P ,∑
a∈ActP

∑
s2:(s1,s2,a)∈;P

qP (s1, s2, a)=1.

• δ is the state delay function from SP to [0,∞) which is required to satisfy the fol-
lowing conditions:

– ∀s ∈ SP we have δ(s) > 0 iff there exists a ∈ ActP and s′ ∈ SP such that
(s, s′, a) ∈;P

– ∀s ∈ SP we have δ(s) = 0 iff @a ∈ ActP and @s′ ∈ SP such that (s, s′, a) ∈;P

The conditions on qP can also be explained in this way:

• each transaction must have a probability greater than 0 to avoid deadlocks or un-
reachable states.

• the sum of all transaction of the passive type a in each state must be 1 because the
input has to be always enabled and also because when they will synchronise we
cannot have a probability in which we don’t know what to do.

• the sum of all transactions of all active types in each state must be 1. When choosing
which action to do next, we cannot have a probability greater or less than 1.

2This satisfies the input-always-enabled property for the synchronisation.
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In the following we denote by →P the relation containing all the tuples of the form
(s1, s2, a, q) where (s1, s2, a) ∈;P and q = qP (s1, s2, a). We say that qP (s, s′, a) ∈ (0, 1]
is the probability of the transition from state s to s′ with type a. Notice that this is in-
deed the apparent transition rate from s to s′ relative to a. Hereafter, we assume that
qP (s, s′, a) = 0 whenever there are no transitions with type a from s to s′. We say that P
is closed if PassP = ∅. We use the notation s1

a
;P s2 to denote the tuple (s1, s2, a) ∈;P ;

we denote by s1
(a,p)−−−→P s2 the tuple (s1, s2, a, p) ∈→P .

Definition 3.5. (Closed PIOA) A probabilistic Input/Output automaton P is a tuple (SP ,
ActP ,PassP ,;P , qP , δ) and it is considered closed if PassP = ∅.

Definition 3.6. (DTMC underlying a closed PIOA) The DTMC underlying a closed prob-
abilistic automaton P , denoted XP (t), is defined as the DTMC with state space SP and
transition probability matrix P defined as: ∀(s1, s2) ∈ SP ,

ps1,s2 =
∑

a,p:(s1,s2,a,p)∈→P

p .

For ergodic chains, we denote the equilibrium distribution of the DTMC underlying P
by πP .

An automaton is irreducible if each state can be reached by any other state after an arbi-
trary number of transitions, moreover a closed automaton P is ergodic if its underlying
DTMC is ergodic.
Also the synchronisation operator between two probabilistic automata P and Q is de-
fined in the style of master/slave synchronisation. In the PIOA the actions are divided
into passive and active, and while there can be synchronisation on passive actions, as in
the reactive setting, the sets of active actions in each of the components must be disjoint.

Definition 3.7. (Compatible PIOAs) Given two probabilistic Input/Output automata P
and Q, they are compatible if and only if

ActP ∩ ActQ = ∅

Moreover we use the following convention:
If s ∈ SP (resp., SQ) and a ∈ (PassP ∪ ActQ ∪ PassQ) (resp., (ActP ∪ PassP ∪ PassQ))

and there is no transition from s involving a, then we consider that s
(a,1)−−−→P s′ (resp.,

s
(a,1)−−−→Q s

′) and if a /∈ PassP then a ∈ PassP .
In other words, if there exists an action type in the sets of Q but there is no transition

from a state of P of that type, then we will consider an implied passive action s
(a,1)−−−→P s

′.
This convention will enforce the “input-always-enabled” requirement for the composite
automaton.

Synchronisation operator is only defined on compatible automata.

Definition 3.8. (PIOA Synchronisation) Given two compatible probabilistic Input/Output
automata P and Q we define the automaton P ⊗Q as follows:

• SP⊗Q = SP × SQ,

• ActP⊗Q = ActP ∪ ActQ,
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sp1
(a,p)−−−→P sp2 sq1

(a,q)−−−→Q sq2

(sp1 , sq1)
(a,pq)−−−→P⊗Q (sp2 , sq2)

(a ∈ PassP⊗Q)

sp1
(a,p)−−−→P sp2 sq1

(a,q)−−−→Q sq2

(sp1 , sq1)
(a,D1pq)−−−−−→P⊗Q (sp2 , sq2)

(a ∈ ActP )

sp1
(a,p)−−−→P sp2 sq1

(a,q)−−−→Q sq2

(sp1 , sq1)
(a,D2pq)−−−−−→P⊗Q (sp2 , sq2)

(a ∈ ActQ)

sp1
(τ,p)−−−→P sp2

(sp1 , sq1)
(τ,D1p)−−−−→P⊗Q (sp2 , sq1)

sq1
(τ,p)−−−→Q sq2

(sp1 , sq1)
(τ,D2p)−−−−→P⊗Q (sp1 , sq2)

D1 =
δP (sp1)

δP (sp1) + δQ(sq1)
D2 =

δQ(sq1)

δP (sp1) + δQ(sq1)

Table 3.2: Operational rules for PIOA synchronisation

• PassP⊗Q = (PassP ∪ PassQ) \ ActP⊗Q,

• τ is the unknown type,

• δP⊗Q = δP + δQ,

• ;P⊗Q and qP⊗Q are defined according to the rules for −→P⊗Q depicted in Table 3.2:
indeed, the relation−→P⊗Q contains the tuples ((sp1 , sq1),(sp1 , sq2), a, p) with ((sp1 , sq1),
(sp1 , sq2), a)∈;P⊗Q and p = qP⊗Q((sp1 , sq1), (sp1 , sq2), a).

We have to notice that PassP⊗Q is the set of passive actions which remain passive because
they don’t synchronise with anybody. Moreover, since ActP⊗Q = ActP ∪ ActQ we have
δP⊗Q = δP + δQ because the delay rate increase (hence the waiting time for the next active
action decreases) with more possible active actions which can take place.

The proof that P ⊗ Q is well defined in the class I/O can be found in [101]. Let us now
informally explain the definition of parallel composition, and the role of the functions δP
and δQ and more in general of δ. If s is a state of P , then δP (s) is a positive real number
corresponding to the delay rate in state s. It is a rate of an exponential distribution, de-
termining the time that the automaton waits in state s until it generates one of its active
actions. If no active actions are enabled in this state then δP (s) = 0. When determining
the distribution on active actions for P ⊗ Q, the components distributions are joined in

one such that any probability of P is multiplied with normalization factor
δP

δP + δQ
and

any probability of Q is multiplied with
δQ

δP + δQ
. Note that by the compatibility assump-

tion, no action appears both in the set of active actions of P and Q. The normalization
factor models a racing policy between the states sP1 and sq1 for generating their own
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active actions. The value
δP (sp1)

δP (sp1) + δQ(sq1)
is the probability that the state sp1 has less

waiting time left then the state sq1 and therefore wins the race and generates one of its
own active actions. On the other hand, synchronisation occurs on all passive actions, no
autonomous behaviour is allowed by the components on active actions, corresponding
to the assumption that the input of those passive states is provided by the environment
or other processes and must be enabled in any state.

3.4.1.1 Example

Let’s now see an example of two simple cooperating processes S and T (Table 3.4) with:

• δs(0) = 2, δt(0) = 3 and δs⊗t(0, 0) = 5.

• ActS = {d, e}, ActT = {b} and ActS⊗T = {b, d, e}

• PassS = {a, b}, PassT = ∅ and PassS⊗T = ({a, b} ∪ ∅) \ {b, d, e} = {a}

Clearly the states s0 and t0 are compatible since ActS ∩ ActT = ∅. Moreover, due to the

convention input-always-enabled we consider t0
(a,1)−−−→T t0, t0

(d,1)−−−→T t0, t0
(e,1)−−−→T t0 and

then we have PassT = {a, d, e}. Their cooperation can be seen in Table 3.5.

0S 3

2

1

4

5

0

1 2

T

a, 1

b, 1/4

b, 3/4

d, 1/3

e, 2/3

b, 1/3 b, 2/3

Passive

Active

Figure 3.4: Processes S and T .

3.5 Product-forms at continuous time

The product-form property states that the steady-state probabilities of the joint process can be
expressed as the normalized product of the steady-state probabilities of its interacting components.
We can use product-form stochastic models for the performance evaluation of systems
in software and hardware architectures, and communication protocols. Using several
high-level formalisms, we can define product-form stochastic models. For the class of
Markovian queueing networks, we can use the BCMP theorem to provide a product-form
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Figure 3.5: Processes S and T cooperating.
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solution [14]. Moreover, we can use M =⇒ M property and the Reversed Compound
Agent Theorem (RCAT) to analyse product-form models of queueing networks (QN) and
Markovian Process Algebra (MPA) [94, 61].

3.5.1 Motivations

Using product-form models, we can evaluate precise and detailed results like queue
length distribution, average response time, resource utilization and throughput. These
performance measures can be computed for the overall network and also for each of its
components. We have to make a set of assumption on the parameters of the system in
order to analyse the product-form network. This leads to a closed-form expression of the
stationary state distribution.
Let’s consider a queuing network with a single chain and N servers, we define its states
with n = (n1, n2, ..., nN ). ni represents the number of customers at station i; the sum of all
of its states

∑N
i=1 ni is the system overall population. The associated Markov process can

define a closed-form of the joint queue length distribution π of the Product-form queuing
network as:

π(n) =
1

G
d(n)

N∏
i=1

gi(ni)

where G is a normalizing constant, d is a function defined in terms of network parame-
ters and function g of ni depends on the type of server i. G = 1 for open networks, on
the contrary d(n) = 1 for closed networks. Jackson introduced product-forms for open
queuing networks [74] and for closed queuing networks by Gordon and Newell [58]. For
these models, we have to consider only single-class and single-chain queuing networks.
Moreover, we have to require exponential service time distributions and for Jackson net-
works also Poisson arrivals. The BCMP Theorem [14] considers non-exponential service
time distributions for certain scheduling disciplines and extends these classes of queuing
networks to open, closed, mixed, multi-class and multiple chain queuing networks.
We can efficiently analyse product-form queuing networks using algorithms with a poly-
nomial time computational complexity in the number of their components. In this way,
we can achieve a good balance between a relatively high accuracy in the performance
results and the efficiency in model analysis and evaluation for this class of models. The
application of this class as a powerful tool for performance evaluation is achieved thanks
to the satisfaction of several interesting properties such as insensitivity and exact ag-
gregation by product-form networks. The class of BCMP queuing networks and some
properties of product-form will be now briefly defined.

3.5.2 BCMP Theorem

BCMP theorem [14] is named after its authors Baskett, Chandy, Muntz and Palacios. It
characterizes a wide class of queuing networks with product-form distribution.

Model Definition

The queuing network consists in N service stations Ω = {1, 2, .., N} and the number of
classes R and chains C are the same R = C. There can be 4 service disciplines:

1. FCFS Service discipline and exponentially distributed chain-independent service
time,
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2. Processor Sharing (PS) discipline,

3. Infinite Server (IS) discipline,

4. Last Come First Serviced (LCFS) with Preemptive Resume (also known as LCFSPR)

Except for FCFS we have to assume that the average service rate can depend on the state
of each customer chain and the service time distributions have rational Laplace trans-
forms.
Moreover we have that:

• µ(j)
i is the service rate of server i for chain j customers. For FCFS µ(j)

i = µi and the
service time is independent from the number of customers.

• n = (n1,n2, ...,N) is the state of system

• ni = (n
(1)
i , n

(2)
i , ..., n

(C)
i ) is the occupancy vector of server i

• ni =
∑C

c=1 n
(c)
i is the total number of customers in i server

• n =
∑N

k=1 nk is the total number of customers in the system

• n(j) =
∑N

k=1 n
(j)
k is the total number of customers of chain j in the system.

• when we have an open system, customers can arrive in the network from an ex-
ternal source (e.g., another unidentified system) with a Poisson process with pa-
rameter λn which depends on the number of customers n in the system or with
parameter λi(j) which depends on the number of customers j in queue i.

BCMP theorem, single class, multiple chain [14]

Considering Ω a BCMP queuing network under stability conditions. Then we have that
the steady-state probability holds and its equal to:

π(n) =
1

G
d(n)

N∏
i=1

gi(ni)

where d(n) =
∏n−1
a=0 λ(a) if arrival rate depends on the total number of customers in the

network or d(n) =
∏C
j=0

∏n(j)−1
a=0 λj(a), otherwise. gi(ni) functions are determined with

respect of service discipline:

• gi(ni) = ni!

[∏C
c=1

1

nci !
(ρ

(c)
i )n

(c)
i

]
, for FCFS, PS and LCFSPR disciplines.

• gi(ni) =
∏C
c=1

1

nci !
(ρ

(c)
i )n

(c)
i , for IS discipline.

For what concerns the BCMP theorem for multi-class and multiple chain queuing net-
works, the theorem of steady-state probability still holds but using different definitions
for gi.
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3.5.2.1 Extensions of the BCMP class

We can find some extension of systems in BCMP product-form to define formalisms to
model more complex systems with more features (e.g., dynamic load balancing algo-
rithms, adaptive routing strategies). These extensions include systems with:

• State-dependent routing in which routing probabilities of customers can depend on
the state of the entire system or on the single queue in [19, 79, 106]

• Different service disciplines, e.g., multiple-server nodes with concurrent classes of
customers in [20].

• Finite capacity queues in which the system has sub-network constraints and block-
ing policies deciding the behaviour of customer arrivals and server activities when
the queue is at its full capacity. These kinds of queues have a product-form solution
in some special case [2, 59, 9, 109].

• Batch of arrivals and batch of services, related also to discrete-time queuing net-
works. These systems’ behaviours are described by discrete-time Markov chains
assuming special expression in the case of batch of arrivals and departures. The
quasi-reversibility property and the generalized expressions for traffic equations
are the bases of the product-form solution which holds for both discrete and con-
tinuous time [67, 68].

• Also G-Networks [48] (described in section 2.6) with product-form solutions are an
extension of queuing networks. These product-form solutions are based on sets
of non-linear traffic equations of the customers and have exponential and inde-
pendence assumptions. These queues can be used to model some special system
behaviours [51], dealing with also multi-class of customers [37], with customers’
resets [36] and with triggered batch signal movement, state-dependent service rate
and routing intensities [38].

3.5.3 Characterization of Queuing Networks in Product-Forms

We can derive a set of performance indices without generating and solving the under-
lying Markov processes and the system of global balance equations if the system is in
product-form. Under some assumptions (e.g., infinite queue capacity, non-blocking fac-
tors, non-priority scheduling, state-independent routing probabilities), we can determine
whether a well-formed queuing network has a BCMP product-form solution, giving con-
ditions on server queuing discipline and on service time distributions. Local balance prop-
erty, M =⇒ M property and quasi-reversibility property are all strictly related to product-
form.

3.5.4 Local Balance Property

The local balance property states that the effective rate at which the system leaves state s
after a service completion of a chain j customer at station i, equals the effective rate at which the
system enters state s due to an arrival of chain j customer to station i. In [95, 26] we see that
local balance holds even when service time distributions are represented by a network of
exponential stages but we must track the stage at which a customer is being served.
Moreover, we can notice that:
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• local balance equations (LBEs) are a sufficient but not necessary condition for the
system solution. In fact, if the steady-state probability distribution π satisfy the
LBEs then also the global balance equations (GBEs) are satisfied, but the opposite is
not true.

• it’s computationally more efficient to solve LBEs than GBEs even if we have still to
handle the set of reachable states. It can be a problem for open chains or networks.
Moreover, it’s more simple to prove that the steady-state formula is correct checking
if it verifies LBEs than GBEs.

• The local balance is a property of a station embedded in a queuing network. Nev-
ertheless, we are considering states that are still part of the network.

3.5.5 M =⇒ M property

Introduced in [94], M =⇒ M property is defined for a single queueing system. Open
queuing networks must be under independent Poisson process condition for both ar-
rivals and departures for each class of customers in order to satisfy this property.
Let us define a queue in isolation with state space S and R classes. λr is the independent
Poisson processes rate of customer arrivals of class r. π(s) is the steady-state probability
of state s with s ∈ S and |s|r is the number of customers of class r in the queue when the
system is in state s. The M =⇒ M property holds if we have that:

∀s ∈ S
∏
s′∈S+

r

π(s′)qs′s
π(s)

= λr

with S+
r = {s′ : |s′|r = |s|r + 1} and qs′s represents the transition rate between state s′ and

s.
We can notice that:

• The queue is considered in isolation in the M =⇒ M property. In this way, we
can decide if we can embed the queue, with specific service time distribution and
queuing discipline, into a product-form queuing network ([20, 1]). If theM =⇒ M
property is satisfied by all stations of a queuing network then the system has a
product-form solution.

• If we have an open system and all stations satisfy the M =⇒ M property, then the
entire system fulfils the M =⇒ M property [94].

• In a queuing network with a server using a non-priority scheduling discipline, all
stations satisfy M =⇒ M property if and only if the local balance property holds.

3.6 Quasi reversibility

In a system, if the queue at time t has a length independent of the departure times of customer
prior to time t and of the arrival times of customers after t, then the queuing system has the
quasi-reversibility property. In a queuing network, if all its stations are quasi-reversible
then it has also a product-form solution. We can find a proof of this in [76].
Moreover, we have to notice that:

• The quasi-reversibility property is only defined for the queue in isolation.
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• In a quasi-reversible system, both arrival and departure streams should be inde-
pendent and Poisson (A proof can be found in [75]). In this way, a system is quasi-
reversible if and only if it exhibits the M =⇒ M property.

3.6.1 Quasi-Reversible Automata

Now we review the definition of quasi-reversibility given by Kelly in [76] by using the
notation of stochastic automata of Section 3.3. In order to clarify the exposition, we in-
troduce a closure operation over stochastic automata that allows us to assign to all the
transitions with the same passive type the same rate λ.

Definition 3.9. (SA closure) The closure of a stochastic automaton P with respect to a
passive type a ∈ PassP and a rate λ ∈ R+, written P c = P{a ← λ}, is the automaton
defined as follows:

• SP c = {sc | s ∈ SP }

• ActP c = ActP and PassP c = PassP r {a}

• ;P c= {(sc1, sc2, b)| (s1, s2, b) ∈;P , a 6= b} ∪ {(sc1, sc2, τ)| (s1, s2, a) ∈;P }

•

qP c(sc1, s
c
2, b) =

{
qP (s1, s2, b) if b 6= a, τ

qP (s1, s2, a)λ+ qP (s1, s2, τ) if b = τ

where we assume that qP (s1, s2, b) = 0 if (s1, s2, b) /∈;P .

Notice that for a closure P c of a stochastic automaton P with respect to all its passive
types in PassP we can compute the equilibrium distribution, provided that the underly-
ing CTMC is ergodic (see Definition 3.2).

Definition 3.10. (Quasi-reversible SA [76, 90]) An irreducible stochastic automaton P with
PassP = {a1, . . . , an} and ActP = {b1, . . . bm} is quasi-reversible if

• for all a ∈ PassP and for all s ∈ SP ,
∑

s′∈SP qP (s, s′, a) = 1

• for each closure P c = P{a1 ← λ1} . . . {an ← λn}with λ1, . . . , λn ∈ R+ there exists a
set of positive real numbers {kb1 , . . . , kbm} such that for each s ∈ SP c and 1 ≤ i ≤ m

kbi =

∑
s′∈SPc

πP c(s′)qP c(s′, s, bi)

πP c(s)
, (3.1)

where πP c denotes any non-trivial invariant measure of the CTMC underlying P c.

Notice that in the definition of quasi-reversibility we do not require the closure of P with
respect to all its passive types to give rise to a stochastic automaton with an ergodic
underlying CTMC because we assume πP c to be an invariant measure, i.e., we do not
require that

∑
s∈SPc

πP c(s) = 1. However, the irreducibility of the CTMC underlying
the automaton ensures that all the invariant measures differ for a multiplicative constant,
hence Equation (3.1) is independent of the choice of the invariant measure.
The next theorem states that a network of quasi-reversible stochastic automata exhibits
a product-form invariant measure and, if the joint state space is ergodic, a product-form
equilibrium distribution. For the sake of simplicity, we state the theorem for two synchro-
nising stochastic automata although the result holds for any finite set of automata which
synchronise pairwise [76, 61, 90].
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Figure 3.6: Stochastic automaton underlying a Jackson’s queue.

Theorem 3.11. (Product-form solution based on quasi-reversibility) Let P and Q be two
quasi-reversible automata such that ActP = PassQ and ActQ = PassP and let S = P ⊗ Q.
Assume that there exists a set of positive real numbers {ka : a ∈ ActP ∪ ActQ} such that if we
define the following automata P c = P{a← ka} for each a ∈ PP and Qc = Q{a← ka} for each
a ∈ PQ it holds that:

ka =

∑
s′∈SPc

πP c(s′)qP c(s′, s, a)

πP c(s)
∀s ∈ SP c , a ∈ ActP

ka =

∑
s′∈SQc

πQc(s′)qQc(s′, s, a)

πQc(s)
∀s ∈ SQc , a ∈ ActQ

Then, given the invariant measures πP c and πQc it holds that

πS(s1, s2) = πP c(sc1)πQc(sc2)

is an invariant measure for all the positive-recurrent states (s1, s2) ∈ SS where sc1 and sc2 are the
states in SP c and SQc corresponding to s1 ∈ SP and s2 ∈ SQ, according to Definition 3.9. In
this case we say that P and Q have a quasi-reversibility based product-form.

Example 1. (Product-form solution of Jackson networks) Jackson networks provide an ex-
ample of models having a product-form solution. A network consists of a collection of
exponential queues with state-independent probabilistic routing. Jobs arrive from the
outside at each queuing station in the network according to a homogeneous Poisson pro-
cess. It is well-known that the queues of Jackson networks are quasi-reversible and hence
the product-form is a consequence of Theorem 3.11. Figure 3.6 shows the automaton un-
derlying a Jackson’s queue where a is an active type while b is a passive one. It is worth
noticing that also the queues considered in [14, 20] are quasi-reversible.

3.7 Product-Forms in PEPA

Using the PEPA language, we can reformulate the product-form property. Let’s define
P and Q as two interacting components. If we can express the stationary probability
distribution of their cooperation as a product function depending only on the states of P
andQ in isolation, then the system is in product-form. We can classify these product-form
solutions with respect to:

• Models with a reversible CTMC [72];

• Models with a quasi-reversible CTMC [64];

• Models based on RCAT theorem and its extensions [61, 63]
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Moreover, besides these general classifications, there are also other kinds of reformula-
tions for the product-form property using the PEPA language. Models belonging to the
class of competing Markov processes identified by Boucherie [18], are analysed using
PEPA models in [73]. Another product-form property for PEPA, derived from stochastic
Petri nets, are presented in [100]. Furthermore, in [28], we can see an extension of PEPA
which guarantee the product-form using a derived combinator for constructing process
algebra models.

3.7.1 Reversible Models

This product-form solution is based on the reversibility property of CTMC. In this solu-
tion we have complementary types of activities α and −α. α and −α are a reverse pair
because if we can leave a state due to an α activity then in the arrival state there must
be an −α activity which allows us to return back to the previous state. These syntactical
conditions are quite strict but they ensure that a PEPA model has a product-form solution
[72].

3.7.2 Quasi-Reversible Models

Quasi-reversible models are based on the same main idea of reversible ones. A compo-
nent P enables a reverse pair (α,−α) if there is an enabled activity (a, r) in P and for each

of its derivative components P ′ such that P
(α,r)−→ P ′ there exists an activity P ′

(−α,s)−→ P ,
with r and s positive real numbers or>. A reverse pair can be associated with customers’
arrivals and departures. A PEPA component is an input/output component if it enables
only two activities forming a reverse pair: passive (α,>) and active (−α, r), with r ∈ R+.
The analysis of these models [64] has two main steps:

1. A PEPA component with a quasi-reversible underlying CTMC is called a QR-component.
A subset of QR-components, called input/output components, can be syntacti-
cally recognized and these have the same role as queueing stations in a product-
form queueing systems. In this way we can check if a PEPA component is an in-
put/output component without generating its underlying CTMC and its derivation
graph.

2. More complex components of the system are studied as combinations of QR-components.
In [64] a set of sufficient syntactical conditions are defined to ensure that the CTMC
of the whole system is still quasi-reversible. There is a distinction between open and
closed interaction which can be associated to open and closed queuing networks,
respectively. This result holds also for the class of QR-component models and not
just for input/output systems.

3.7.3 Reversed Compound Agent Theorem

One of the most interesting results in the Markovian process algebras is the Reversed
Compound Agent Theorem (RCAT) [61] and its extension [60, 63]. This theorem includes
other product-form models such as:

• Boucherie product-forms

• G-Networks
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• Jackson queuing networks product-forms

• Coleman, Henderson et al. product-forms

The main idea of the theorem is that RCAT derives the steady-state probabilities of two in-
teracting components P and Q, analysing the reversed processes of the two components
(S and R, respectively). Replacing in P and Q their occurrence of the passive action type
transitions with rates that can be algorithmically calculated we obtain R and S.

Reversed actions of multiple actions

The reversed actions of multiple actions ai, λi with 1 ≤ i ≤ n that an agent P can perform,
which lead to the same derivative Q are respectively:

(ai, (λi/λ)λ)

where λ =
∑n

i=1 λi is the sum of forward rates and λ is the reversed rate of the (compos-
ite) transition in the CTMC with rate λ corresponding to all the arcs between P and Q.

RCAT and its extensions only deal with cooperation where actions are active with a spec-
ified rate or passive with > rate. Let’s define a cooperation P ��

L
Q, we denote as:

• PP (L) the passive set of P with action types of L;

• AP (L) the active set of P with action types of L;

We have that PP (L) ∪ AP (L) = PQ(L) ∪ AQ(L) = L. An action type a is enabled in a
component if it can carry out an activity with type a.

RCAT Theorem

Assuming that P ��
L
Q has an irreducible derivation graph. If the following conditions

hold:

1. every passive action in PP (L) or PQ(L) is always enabled in P or Q (i.e. enabled in
all the states of the transition graph);

2. every reversed action of an active action type in AP (L) or AQ(L) is always enabled
in P or Q;

3. every occurrence of a reversed action of an active action type in AP (L) (or AQ(L))
has the same rate in P (or Q).

Then we have that the reversed agent P ��
L
Q has the following derivation graph:

R{(α, pα)← (α,>)|α ∈ AP (L)} ��
L
S{(α, qα)← (α,>)|α ∈ AQ(L)}

where:

• ← represent a syntactical substitution of the left hand side part with the right hand
side part in the component definition;

• R = P{>a ← xα|α ∈ PP (L)} and S = Q{>a ← xα|α ∈ PQ(L)};

• {xα} are the solutions of the equations for >α:

>α = qα α ∈ PP (L)

>α = pα α ∈ PQ(L)

• pα and qα are the symbolic rates of action type α in P and Q.
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3.8 Limitations of RCAT and Quasi-reversible Product-forms

The class of product-forms is wide and includes different kinds of system. Even if the
Reversed Compound Agent Theorem (RCAT) [61] and Extended Reversed Compound
Agent Theorem (ERCAT) [63] are very general results for the analysis of product-form
stochastic models, they have some limits and do not capture all product-forms models.
In fact, some systems have a product-form solution, even if they do not satisfy the con-
ditions of these theorems. In [8] we can see a method for analysing Markov modulated
processes as well as other product-form model classes, opportunely formulated in order
to apply ERCAT theorem. These include quasi-reversible queueing networks [76], G-
Networks with various types of triggers [62], queueing networks with finite capacity and
blocking [6], stochastic Petri nets [10, 84] and others. However there are some examples
of meaningful models whose product-form cannot be analysed by applying these results.
As far as we know, the methodology used in RCAT and in its extensions is sufficient but
not necessary for product-forms. For now, there is not a general rule for product-form so-
lutions thus we cannot state that RCAT it’s not just an incomplete version of the general
rule (if it will ever exists) even if its main idea could be used to search for new product-
forms. We will show now an example of a product-form Markov modulated process
whose stationary distribution cannot be derived via ERCAT.
In general a system of two tandem queues in which the service rate of the second de-
pends on the number of customers of the first does not have a product-form stationary
distribution. Moreover, as analysed in [14, 76], it is not considered in the state-dependent
service rate functions. Under some assumptions, the product-form exists even if it is not
derivable by previous known results.

3.8.1 Example of Product-form not satisfying ERCAT

Let’s consider two tandem queues P and Q as depicted in Figure 3.7. Customers arrive
at P according to a homogeneous Poisson process with rate λ and at Q according to
a Poisson process whose rate λD(e) depends on the number of customers e present in
queue P . We assume that:

P Q
µP (e) µQ(e)

λD(e)

λ

Figure 3.7: Tandem of two queues.

λD(e) =

{
λH if 0 ≤ e < n

λL if e ≥ n
for n > 0. Moreover, P has an exponentially distributed service time whose rate µP (e)
depends on the number of customers e in P . Q has an exponentially distributed service
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time whose rate depends on the number of customers e in P according to the following
definition:

µQ(e) =

{
µH if 0 ≤ e < n

µL if e ≥ n

In this model, P and Q could represent two processes running in the same operating sys-
tem but on different CPUs. If the number of customers in P is greater or equal to n then
we have a page swapping (i.e., slow persistent memory is used instead of fast volatile
one). Thus, we have a decrease in the overall performance of the system. The service
rate of the process represented by Q slows down and passes from µH (high) to µL (low)
(e.g., it requires access to the same disk where the swapping is occurring). Q could de-
cide to drop some of the requirements coming from the outside and hence the arrival rate
of Q will pass from λH to λL, in order to maintain reasonable performance indices like
expected response time.

P and Q can be in product-form if the following condition holds:

λ+ λH
µH

=
λ+ λL
µL

= ρQ

In this case, we have that the stationary distribution for cooperation state (p, q) (of P and
Q respectively) is:

π(p, q) = πP (0)(1− ρQ)λp
( p∏
i=1

1

µp(i)

)
ρqQ (3.2)

A proof of this can be found in [8].

In literature, several studies have been made on the comparison of theoretical results for
studying product-form models:

• [90]: quasi-reversible queueing networks are in product-form by ERCAT;

• [62]: derives the product-form for G-Networks with various types of synchronisa-
tions;

• Also Boucherie’s product-form [18] has been proved via ERCAT.

It’s not simple to prove that a model in product-form cannot be studied via ERCAT be-
cause we should prove that the conditions are violated for every possible assignment of
the labels for the synchronisation specification. Moreover, the ERCAT analysis can be
changed by the inversion of active and passive roles of unsynchronised labels, maintain-
ing the same joint model. In this way, in the analysis the product-form can be identified
in one case and not in the other. Even allowing the possible swap of active/passive tran-
sition roles, to avoid a computational cost higher than the direct solution of the global
balance equation, in the system it is not allowed to change the label assigned to a specific
transition.

Proposition 1. Given a pair of labelled models, ERCAT conditions are not necessary for
product-form even considering possible swapping of the roles of the active/passive tran-
sitions.
The proof (found in [8]) relies on showing that the model does not satisfy the RCAT
condition even if it’s in product-form. Regardless of active/passive synchronisation roles,



3.9. CONCLUSIONS 69

the birth transitions have rate λH(λL) and the death transitions µH(µL). If the conditions
of ERCAT theorem would be satisfied, we would have that:

πPS
′(s) ∝

(λ+ λL + λH
µH + µL

)s
which leads to a different expression of the joint stationary probabilities of Equation 3.2
for positive transition rates. Considering the uniqueness of stationary distribution and
sufficiency of conditions of ERCAT, we have that ERCAT conditions cannot be satisfied.
Even in the case that job completions in P are modelled by passive transitions and Q by
active ones. The service rate would be different for each state of P and to make Q active
we would need a denumerable number of labels in the synchronisation, leading us to a
total birth rate of Q:

λL + λH +

∞∑
p=1

µP (e)

This would give us a different product-form. Using the same approach, we can prove
that the product-form cannot be identified even if some transitions in P are made active
and some others in S, to model the customer departures from P .

3.9 Conclusions

We saw in this chapter the compositional modelling. We gave a brief description of PEPA,
Stochastic Automata and PIOAs. In the last part of this chapter we talked about product-
forms, focusing on the presentation of the RCAT theorem and the notion of quasi re-
versibility. The definition of quasi-reversibility given by Kelly in [76] is also described
using the notation of stochastic automata of Section 3.3 and PEPA 3.2. We presented also
another way of define the RCAT theorem using the PEPA language.
The class of product-forms is wide and includes different kinds of systems. Even if the
Reversed Compound Agent Theorem (RCAT) [61] and Extended Reversed Compound
Agent Theorem (ERCAT) [63] are very general results for the analysis of product-form
stochastic models, they have some limits and do not capture all product-forms models.
There are some examples of meaningful models whose product-form cannot be analysed
by applying these results. Consequently, finding other product-form systems and a more
general theorem or method are still open problems. We will show in the next chapters
some examples of product-forms whose stationary distribution cannot be derived via ER-
CAT or quasi-reversibility property.
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Chapter 4

Propagation of Signals in Continuous
Time

4.1 Introduction

In this chapter we will present propagation of signals in continuous time. We describe
a case study with G-Networks with signals. In these networks, a customer is forced to
move to another queue when a signal enters its queue and according to a Markovian
routing rule it enters a new queue or leaves the network in batch mode. This is partic-
ularly useful to model synchronised or triggered motions; e.g., systems in which work
and customers can be moved from one queue to another upon the arrival of an exter-
nal or internal signal. Applications for G-Networks models with signals can be found
in flow-control in communications systems. More complex systems can be analysed and
developed with these models and in particular, they are outside the BCMP-network pos-
sibilities of solution presented in [14, 54]. We describe its product-form and stationary
probability distribution. We also give a method to represent signals using the PEPA lan-
guage. In order to do this we have to introduce an encoding method called Double Index
(DI) solution, for modelling G-Networks with Triggers using the PEPA language. This
method uses the concept of a double index. The double index in a process can trace fully
the information about the state of another different process. This increases the “depen-
dence” between the “tracker” process with respect to the “tracked” one, but completely
eliminates any possible uncertainty about possible choices of tracker regarding actions of
tracked processes. In this way a process can know exactly how many positive customers
are in the system and where, and so it can decide to perform some specific kind of action.
Furthermore, it can be also informed whether the departure of a customer will leave that
queue emptied or not. We also use the notions of Phantom State and Impossible Actions.
Impossible actions will never occur due to the fact that they will never cooperate with the
corresponding active/passive actions in another process. In order to not cooperate with
anyone, the so-called phantom state is added. This state will never be reachable because
all the actions which lead to it are impossible actions. In this way all the actions from an
unreachable state F will be impossible too, because they will never occur thanks to the
non-reachability of F .

71
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4.2 Case study: G-Networks with signals

We now consider queuing networks with customers and signals introduced by [50]. With
a Markovian transition of a customer after its service, we can obtain both customers and
signals in case they are not exogenous. A customer is forced to move to another queue
when a signal enters its queue and according to a Markovian routing rule it enters the
new queue or leaves the network in batch mode. This is particularly useful to model
synchronised or triggered motions; e.g., systems in which work and customers can be
moved from one queue to another upon the arrival of an external or internal signal. These
networks are useful also for analyse system behaviours that we can observe in parallel
computer system modelling and they have product-form solution and we can compute
its customer routing equations [49].

4.2.1 Example

Let’s consider an open queuing network with n servers mutually independent. Their
service times have exponential rates µ1, µ2, ..., µn. In the system, there are two types of
entities which navigate through the network:

• Customers which add 1 to the queue length;

• Signals which trigger an instantaneous customer movement from one queue to an-
other.

Both of them can arrive in i-th queue as an external arrival according to a Poisson process
of rate λi for customers and γi for signals. The length of a queue is composed only by
normal customers and their service is handled in the usual way. A customer after being
served can:

• Leave the i-th queue and move to queue j with probability p+
ij as a normal customer;

• Leave the i-th queue and move to queue j with probability p−ij , becoming a signal;

• Depart from the system with probability di = 1−
∑

j(p
+
ij + p−ij)

The transition matrix of the underlying Markov chain is composed by elements pij =
p+
ij + p−ij . This matrix represents the movements of both customers and signals.

Signals arriving in empty queues won’t have any effect and just disappear from the sys-
tem. On the contrary, if a queue is non-empty then one of the following events can occur:

• the signal arrives and triggers the movement of a customer from queue i to another
queue j with probability qij ;

• the signal arrives and forces the departure from the system of a batch of customers
with probability Di = 1−

∑
j qij .

Q is a n × n transition probability matrix. The length of the batch is Bi and its size
distribution is general and given by P [Bi = s] = Lis with s ≥ 1. If the length of the queue
is ki at the moment of the signal arrival then:

• if ki ≥ Bi then the length is reduced to ki −Bi;

• otherwise the length is reduced to 0.
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In this way a signal behaves as an external trigger which instantaneously moves a batch
of customers to outside the system or a single customer from one queue to another. As-
suming that pij and qij compose the transition probabilities of the transient of the Markov
chain, we have that the probability that a customer leaves the system is guaranteed to be
1.

We define a n-vector of non-negative integers k = (k1, k2, .., kn) and the following (with
s ≥ 1):

• k+s
i = k1, k2, .., ki + s, .., kn

• k−i = k1, k2, .., ki − 1, .., kn

• k+−
ij = k1, k2, .., ki + 1, .., kj − 1, .., kn

• k++s
ij = k1, k2, .., ki + 1, .., kj + s, .., kn

• k++−
ijm = k1, k2, .., ki + 1, .., kj + 1, .., km − 1, .., kn

k(t) = (k1(t), k2(t), .., kn(t)) is the state of the system at time t and ki(t) is the number
of customers in queue i at time t. {k(t) : t ≥ 0} represents the underlying contin-
uous Markov chain of the state of the system and its steady-state distribution π(k) ≡
limt→∞ P [k(t) = k] satisfies the following system of balance equation if its exists:

πk
∑
i

[λi + (γi + µi)1[ki > 0]] =

=
∑
i

[
π(k+

i )µidi + π(k−i )λi1[k1 > 0] + λiDi

∞∑
s=1

Lisπ(k+s
i )+

+ λiDi

∞∑
s=1

Lis

s−1∑
u=0

π(k+u
i )1[ki = 0]+

+
∑
j

[
π(k+−

ij )(µip
+
ij + γiqij)1[kj > 0]+

+
∞∑
s=1

Lisπ(k++s
ij )µip

−
ijDj +

∞∑
s=1

Lis

s−1∑
u=1

π(k++u
ij )µip

−
ijDj1[kj = 0]+

+ π(k+
i )µip

−
ij1[kj = 0]+

+
∑
m

π(k++−
ijm )µip

−
ijqjm1[km > 0]

]]

(4.1)

where

1[x] =

{
1 if x is true
0 otherwise

The signal generation is handled in the last three terms of the equation:

• the first of them deals with the signal moving a batch of customers toward the
outside of the system;

• the second represents a signal arriving in an empty queue and it just disappears
from the system;
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• the last covers the case of a signal arriving from queue i to queue j and instan-
taneously moving a customer from queue j to queue m (adding 1 customer to its
length).

G-Networks were introduced in [48] and [52] in the single server queue case, under ex-
ponential assumption on service time and inter-arrival times. The signal models for G-
networks were introduced in [50] and then generalize and further studied in [47] and [49],
dealing with positive and negative customers. These signal models of [49] generalize the
case of a single negative customer of [47, 48] which triggers an external departure of a
single and positive customer in a queue (i.e., with probability p−ijDj).

4.2.2 Special Case Application

We present an application for signal G-network models to control the flows in commu-
nications systems. More complex systems can be analysed and developed with these
models and this is a special case of them but it’s outside the BCMP-network possibilities
of solution presented in [14, 54].
Let’s consider a communication network composed by an input queue I and a sub-
network S. S is composed by networks N1, N2, .., Ns and provides alternate routes for
the packet received by the network. These routes are disjointed. With some rate λ, pack-
ets enter the communication system from outside and wait in I . After that, they receive
some service in I server, according to FIFO order and then are moved into some sub-
network Ni. The packets can enter each sub-network Ni:

• With predetermined probability Pi to ensure a minimum of traffic flow in each sub-
network;

• Under the effect of a signal due to a control flow decision. If in the sub-networkNi a
packet leaves the system, it can accommodate another packet from I . This informa-
tion, about its capacity, triggers the arrival of a new packet thanks to a control flow
packet generated and sent back to input queue I . This control flow packet behaves
as a signal and instantaneously moves a customer from I to Ni.

4.2.3 Product-Form

Considering the system of non-linear equations:

γ−i =
∑
j

µjrjp
−
ji + γi

γ+
i =

∑
j

µjrj

[
p+
ji +

∑
m

p−j,mrmrm,i

]
+
∑
j

γjrjrji + λi
(4.2)

where
ri ≡ γ+

i /[µj + γ−i Difi(ri)]

fi(x) = [1−
∞∑
s=1

Lisx
s]/[1− x]

and i, j,m = 1, .., n. We can rewrite γ+
i as:

γ+
i =

∑
j

µjrjp
+
ji + λi +

∑
j

γ−j rjrji
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Theorem 4.1. If a non-negative solution {γ+
i , γ

−
i } exists to equation 4.2 such that each γ+

i <
µi + γ−i Difi(ri) for i = 1, .., n, then

πk =

n∏
i=1

[1− ri]rkii

The proof of this theorem for the case where only a single customer can be removed from
the system (i.e., P [Bi = 1] = 1) can be found in [49].

4.2.4 Stability

The existence of the stationary probability distribution (i.e., the stability of the network)
and the existence of a solution to the Equation 4.2 can be found extending the approach
in [55] but considering also the effect of batch removals and signals which move packets
from one queue to another one.

Theorem 4.2. If the matrix [P+ +Q] is sub-stochastic and transient (i.e., it does not contain any
ergodic class), then the solution of Equation 4.2, {γ+

i , γ
−
i } always exists for i = 1, .., n.

The proof is based on Brouwer’s theorem and can be found in [49]. The result about the
existence of the product-form solution for this class of G-networks is found putting in the
fixed-point vector y∗ the values of γ+

i and γ−i and we can compute:

ri(y
∗) = [γ+

i /µi + γ−i Difi(ri)]y = y∗

for i = 1, 2, .., n.

Considering Theorem 4.1 and 4.2 the stationary solution πk = limt→∞ P [k(t) = k] exists
if ri(y∗) < 1 and does not exist otherwise.

4.3 Representing signals in PEPA

In this section, we will first analyse an example of a type of G-Network with triggers. We
briefly focus on its behaviour to form the basis of the subsequent model phase, searching
for various aspects of the network:

• Dependences between components;

• Transitions of states in each component;

• Cooperations between components and their consequences

• Limits, particular cases and borderlines (like state 0 or state n)

After that we will model it with the PEPA language introduced in [70] using the Double
Index (DI) method.
We will also compare this latter solution with the original system.
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Figure 4.1: G-Network with trigger

4.3.1 G-Network with Trigger

The first example is a G-Network with trigger generated after job completion in R1 that
moves a customer from R3 to R2. It is represented by the Figure 4.1.
In this specific type of G-Network, a homogeneous Poisson process defines the arrival
of positive customers, which arrive from outside the system to queue R1 and R3, with
rates λ1 and λ3, respectively. Moreover, the rates µ1, µ2 and µ3 represent the service times
in each queue and so they are exponential random variables, which are independent. A
customer of R1, after the completion of its service can move to R2 as a regular customer
(a+

12) or can travel to R3 and change its nature into a trigger (a−13). In the second case,
when R3 is a non-empty queue, the length of its queue is reduced by one unit and a pos-
itive customer is added to the queue R2 (a+

32). If R3 is empty when the trigger arrives,
then nothing happen to R3. We have to notice that when both R1 and R3 are non-empty
queues, then the trigger causes the change of states in all three queues simultaneously.

If we consider the following informal annotations:

(r1, r2, r3) is the state of the system, describing each queue by the number of its
customers where:
r1 is the number of positive customers in R1,
r2 is the number of positive customers in R2,
r3 is the number of positive customers in R3.

And:

r+
i represents the addition of a positive customer to queue i (with i = 1, 2, 3)

and is equivalent to r+
i = ri + 1

r−i represents the completion of a service of a positive customer and its conse-
quent departure from queue i (with i = 1, 2, 3) and is equivalent to r−i = ri − 1
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An overall informal description of this G-Network behaviour can be the following:

1) In R1 a positive customer can arrive ∀r1 ≥ 0, this implies the change of
overall state to (r+

1 , r2, r3)

2) In R3 a positive customer can arrive ∀r3 ≥ 0, this implies the change of
overall state to (r1, r2, r

+
3 )

3) In R1 a positive customer can have its service completed ∀r1 > 0 and then it
remains a positive customer and goes to R2, this implies the change of overall
state to (r−1 , r

+
2 , r3)

4) In R1 a positive customer can have its service completed ∀r1 > 0 and then
it becomes a trigger and goes to the empty queue R3 (i.e. r3 = 0) and it does
nothing in R3, this implies the change of overall state to (r−1 , r2, 0)

5) In R1 a positive customer can have its service completed ∀r1 > 0 and then
it becomes a trigger and goes to the non-empty queue R3 (∀r3 > 0) forcing a
positive customer in the arrival queue to move in R2 (∀r2 ≥ 0), this implies the
change of overall state to (r−1 , r

+
2 , r

−
3 )

6) In R2 a positive customer can have its service completed ∀r2 > 0 and then it
leaves the system as a positive customer, this implies the change of overall state
to (r1, r

−
2 , r3)

7) In R3 a positive customer can have its service completed ∀r3 > 0 and then it
leaves the system as a positive customer, this implies the change of overall state
to (r1, r2, r

−
3 )

To summarize the arrivals and departures in each state:

• 1: arrival in R1

• 3,4,5: departure in R1

• 3,5: arrival in R2

• 6: departure in R2

• 2: arrival in R3

• 5,7: departure in R3

To summarize relations between state of components and actions:

• r1 ≥ 0 can do 1

• r1 > 0 can do 1,3,4,5

• r2 ≥ 0 can do 3,5
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• r2 > 0 can do 3,5,6

• r3 ≥ 0 can do 2,5

• r3 > 0 can do 2,5,7

And actions which change more queues are: 3 and 5

In the following section, we model the behaviour of this G-Network with the PEPA lan-
guage.

4.3.1.1 Double Index (DI) Solution

We will now present the encoding of the G-Network with Trigger using DI method with
the PEPA language. We adopt the annotation in which Pi is a generic state of R1, Qj of
R2 and Rk of R3.

This solution uses the concept of a double index. The double index in R1 traces fully the
information about the state of R3.
This increases the “dependence” of R1 with respect to R3 but completely eliminates any
possible uncertainty of its possible choices regarding a0 and a1. R1 knows exactly how
many positive customers are in R3 so it can decide to perform a0 in case of empty R3

or a1 if R3 has customers. Furthermore, R1 knows also if the departure of the following
customer in R3 will leave R3 empty or not.
Using the DI method to model a system, we have a growing in dependence of R1 from
R3 and the increase of the state space, on the other side, there is a simplification in the
complexity of actions and their correspondence with the behaviour of the original system
and also in the whole encoding of the system.
Moreover, in a normal encoding the space of state for R1 is n where n is the number of its
customers; in this case, the space is n ∗m where n is the number of customers of R1 and
m is the number of customers in R3.
Thus R1 is aware of all changes of R3 and it is informed by R3 itself, with the use of
cooperation combinator in its actions: fill increases its positive customers and empty
decreases them. In particular those types of actions help R1 to keep track of the number
of customers in R3.
This information is stored inR1 with the superscript number in the name of its state, thus:

• Pi represents the queue R1 with i positive customers and the empty queue R3 with
0 positive customers, ∀i ≥ 0

• P ji represents the queue R1 with i positive customers and the non-empty queue R3

with j positive customers ∀i ≥ 0 and ∀j > 0

The encoding of the G-Network in PEPA is the following:
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R1
def
=



P0 = (τ, λ1).P1 + (fill,>).P 1
0

Pm0 = (τ, λ1).Pm1 + (fill,>).Pm+1
0 + (empty,>).Pm−1

0

Pn = (τ, λ1).Pn+1 + (fill,>).P ′n + (a, µ1p).Pn−1 + (a0, µ1(1− p)).Pn−1

Pmn = (τ, λ1).Pmn+1 + (fill,>).Pm+1
n + (empty,>).Pm−1

n + (a, µ1p).P
m
n−1+

+(a1, µ1(1− p)).Pm−1
n−1

R2
def
=

{
Q0 = (a,>).Q1 + (a1,>).Q1

Qn = (a,>).Qn+1 + (a1,>).Qn+1 + (τ, µ2).Qn−1

R3
def
=

{
V0 = (fill, λ3).V1 + (a0,>).V0

Vn = (fill, λ3).Vn+1 + (empty, µ3).Vn−1 + (a1,>).Vn−1 n > 0

With m > 0 and n > 0 and considering P 0
n ≡ Pn for better readability.

With this representation, we can define the following correspondence between informal
description and encoding:

• 1: represented by (τ, λ1) in R1

• 2: represented by (fill, λ3) in R3 (and R1 is informed by (fill,>))

• 3: represented by (a, µ1p) in R1 and by (a,>) in R2

• 4: represented by (a0, µ1(1− p)) in R1 and by (a0,>) in R3

• 5: represented by (a1, µ1(1− p)) in R1 and by (a1,>) in both R2 and R3

• 6: represented by (τ, µ2) in R2

• 7: represented by (empty, λ3) in R3 (and R1 is informed with (empty,>))

4.3.2 G-Network Iterative Customer Removals

In this second example a G-etwork with iterative customer removals started with the
arrival of an external negative trigger β, this system adds also the concept of chains of
actions in the model, further than the previous example. This concatenation of a lot of
instant actions will stress my solution and enlighten its advantages and its weaknesses.
It is represented by the Figure 4.2.
In this example there is the use of a negative trigger β. Negative and positive triggers
are very similar, except that a negative one transforms a removed customer into a trigger
itself (which can be positive or negative). Thus, if a negative trigger is generated from
a removed customer, its arrival to the next queue will be also a trigger and this can lead
to the formation of chains of negative triggers in a system. Those triggers will stop only
if they move to an empty queue or they become a positive trigger or leave the network
(like ordinary negative customers) and have a strictly specific order of their routing (i.e.,
trigger with route 1, 2, 3 has different behaviour from one with route 1, 3, 2). In this way
a whole subset of queues of the system can be emptied.
In this specific type of G-Network, a homogeneous Poisson process defines the arrival of
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Figure 4.2: G-Network with iterative customer removals

positive customers, which arrive from outside the system to queueR1, with rate λ. More-
over, they are served first in R1 and then in R2, the rates µ1 and µ2 represent in fact the
service times in each queue and so they are exponential random variables, which are in-
dependent. A customer ofR1, after the completion of its service, moves toR2 as a regular
customer (a+

12). A negative trigger can arrive with rate β in R1 and it reduces the length
of its queue by one unit if R1 is a non-empty queue. Moreover, that removed customer
become a negative trigger and it will instantaneously propagate to R2, then back to R1,
then to R2 again and so on, until one of the two queues is emptied when the chain of
triggers arrives. In this way the chain terminates.
(a−12) represents the propagation of the trigger from R1 to R2 and (a−21) represents the
opposite. Thus, this example allows the construction of chains of instantaneous transi-
tions between the two queues. These chains are finite even if they are also unbounded in
length. Obviously, we have to notice that when both R1 and R2 are non-empty queues,
then the trigger causes the change of states in both of them simultaneously and usually
with a high change in their numbers of positive customers.

If we consider the following informal annotations:

(r1, r2) is the state of the system, describing each queue with the number of its
customers where:
r1 is the number of positive customers in R1,
r2 is the number of positive customers in R2,

And:

r+
i represents the addition of a positive customer to queue i (with i = 1, 2) and

is equivalent to r+
i = ri + 1

r−i represents the completion of a service of a positive customer and its conse-
quently departure from queue i (with i = 1, 2) and is equivalent to r−i = ri − 1

An overall informal description of this G-Network behaviour can be the following:
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1) In R1 a positive customer can arrive ∀r1 ≥ 0, this implies the change of
overall state to (r+

1 , r2)

2) In R1 a positive customer can have its service completed ∀r1 > 0 and then it
remains a positive customer and goes to R2, this implies the change of overall
state to (r−1 , r

+
2 )

3) In R2 a positive customer can have its service completed ∀r2 > 0 and then it
leaves the system as a positive customer, this implies the change of overall state
to (r1, r

−
2 )

4) In R1 when there is an empty queue, a negative trigger can arrive from either
outside the system or R2 and it stops itself and does nothing in R1, the overall
state remains (0, r2)

5) In R1 a negative trigger can arrive from either outside the system or R2

∀r1 > 0 and then, after it kills a positive customer in the queue, it propagates
immediately to R2, this implies the change of overall state to (r−1 , r2)

6) In R2 when there is an empty queue, a negative trigger can arrive from R1

and it stops itself and does nothing in R2, this doesn’t change the overall state
(r1, 0)

7) In R2 a negative trigger can arrive from R1 ∀r2 > 0 and then, after it kills a
positive customer in the queue, it propagates immediately to R1, this implies
the change of overall state to (r1, r

−
2 )

To summarize the arrivals and departures in each state:

• 1: arrival in R1

• 2,5: departure in R1

• 2: arrival in R2

• 3,7: departure in R2

To summarize relations between state of components and actions:

• r1 ≥ 0 can do 1,4

• r1 > 0 can do 1,2,5

• r2 ≥ 0 can do 2,6

• r2 > 0 can do 2,3,7

And the only action which changes more queues is 2, but 5 and 7 are part of a chain of
changes.

In the following section, we model the behaviour of this G-Network with the PEPA lan-
guage.
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4.3.2.1 Double Index (DI) Solution

We will now present the stress test of DI solution with the encoding of the G-Network
with Iterative Customer Removals using PEPA. We adopt the annotation in which Pi is a
generic state of R1 and Qj of R2.

In this trial we use again the concept of double index but with a further type of repre-
sentation. In this encoding we use the concept of MAX(i, j) because there are two main
cases in both queues.
The two cases are:

• the number of customers of R1 is less than the number of R2; in this case the nega-
tive trigger will empty the R1 queue;

• the number of customers of R1 is more than the number of R2; in this case the
negative trigger will subtract only a certain number of customers in R1 queue.

It is more or less the same, also in the case of the Q process.
This is done in order to avoid negative results from subtractions because negative states
don’t exist in this system. Moreover, this represents only a single choice because in each
instantiation of the modelMAX(i−n; 0) andMAX(n−i−1; 0) are gradually substituted
by the result of the MAX operator (which behaves as the normal operator of maximum
in mathematics) and usually they are complementary (i.e., if the first possibility is chosen
in the first MAX then in the second is chosen the second one, and vice versa).
In this case the double indexes in both R1 and R2 mutually trace fully the information
about the states of R2 and R1.
We make this encoding because both R1 and R2 need to know the state of the other to
take a unique and right decision about the outcome of the negative trigger effect. R1

knows exactly how many positive customers are in R2 so it can decide how many pos-
itive customers it removes from its queue when a trigger arrives and R2 behaves in the
same way but with respect to R1. Thus, we retain the simplification in the complexity of
actions and their correspondence with the behaviour of the original system and also in
the whole encoding of the system.
Then, similarly to previous encodings, R1 is aware of all changes of R2 and it is informed
by R2 itself, with the use of cooperation combinator in its action a2 which decreases the
positive customers inR2 and similarlyR2 is informed byR1 itself with the use of coopera-
tion combinator in its action a0 which increases its positive customers. In particular those
types of actions help R1 and R2 to mutually keep track of their number of customers.
This information is stored in R1 and R2 with the superscript number in the name of their
state, thus:

• Pi represents the queue R1 with i positive customers and the empty queue R2 with
0 positive customers, ∀i ≥ 0

• P ji represents the queue R1 with i positive customers and the non-empty queue R2

with j positive customers ∀i ≥ 0 and ∀j > 0

And vice versa for Q in R2.

The encoding of the G-Network in PEPA is the following:
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R1 =


P0 = (a0, λ).P1 + (τ, β).P0

Pn = (a0, λ).Pn+1 + (a1, µ1).P 1
n−1 + (τ, β).Pn−1

P i0 = (a0, λ).P i1 + (a2,>).P i−1
0 + (τ, β).P i0

P in = (a0, λ).P in+1 + (a1, µ1).P i+1
n−1 + (a2,>).P i−1

n + (b, β).P
MAX(i−n;0)
MAX(n−i−1;0)

R2 =


Q0 = (a0,>).Q1

0

Qn = (a0,>).Q1
n + (a2, µ2).Qn−1

Qi0 = (a0,>).Qi+1
0 + (a1,>).Qi−1

1

Qi0 = (a0,>).Qi+1
n + (a1,>).Qi−1

n+1 + (a2, µ2).Qin−1 + (b,>).Q
MAX(i−n−1;0)
MAX(n−i;0)

With n > 0 and i > 0 and considering P 0
n ≡ Pn and Q0

n ≡ Qn for better readability.

With this representation, we can define the following correspondence between informal
description and encoding:

• 1: represented by (a0, λ) in R1 (and R2 is informed with (a0,>))

• 2: represented by (a1, µ1) in R1 and by (a1,>) in R2

• 3: represented by (a2, µ2) in R2 (and R1 is informed with (a2,>))

• 4: represented by (τ, β) in R1 or the conclusion of the subtraction caused by (b, β)
in R1

• 5: represented by the subtraction caused by (b, β) in R1

• 6: represented by the conclusion of the subtraction caused by (b,>), in R2

• 7: represented by the subtraction caused by (b,>) in R2

4.3.3 Derivation Graphs of G-Network with Trigger

In this part we draw the derivation Graphs of G-Network with Trigger 4.1, to see visually
its behaviours in Figure 4.3.
As expected, the graph grows in two dimensions: horizontal and vertical. The various
columns represent the number of normal customers in R1 instead the rows represent the
information stored in R1 about the number of positive customers in R3. This means that
the state 2′ representsR1 with 2 positive customers andR3 with only 1 positive customer.
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Figure 4.3: Derivation Graph of process R1

Figure 4.4: Derivation Graph of process R2

Figure 4.5: Derivation Graph of process R3
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4.3.4 Comparison between two systems

Now we will show that DI system in PEPA has the same behaviour to the original one
shown in Figure 4.1.

Hypothesis:
1) The G-Network will be represented by (n1, n2, n3), namely the states of its queues,
where:

• n1: represents the number of positive customers in queue R1 of the G-Network

• n2: represents the number of positive customers in queue R2 of the G-Network

• n3: represents the number of positive customers in queue R3 of the G-Network

So the original system will be (n1, n2, n3)

2) My system will also be represented by ((n11, n13), n2, n3), namely the states of my
processes P (the first two numbers), Q and R, where:

• n11: represents the number i in the state name of a general process P ji , i.e., the
number of positive customers in process R1 of my encoding

• n13: represents the number j in the superscript name of a general processP ji , i.e., the
information about the number of positive customers in process R3 of my encoding,
stored in R1

• n2: represents the number i in the state name of a general process Qi, i.e., the num-
ber of positive customers in process R2 of my encoding

• n3: represents the number i in the state name of a general process Ri, i.e., the num-
ber of positive customers in process R3 of my encoding

So my model will be S = ((n11, n13), n2, n3)
It is important to note that (n11, n13) is the state of process R1, n2 of R2, n3 of R3. More-
over, it is important to notice that since they model the same number of customers:

• n1 = n11

• n2 = n2

• n3 = n3

• n13 = n3.

My system will be represented as: S
def
= P 1

a,a0,a1,fill,empty
Q 1

a,a0,a1,fill,empty
V

Thesis:
The DI model represents the systems depicted in Figure 4.1. We will see that we have
an isomorphism of the labelled transition system of the CTMC underlying the original
system with our model.
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4.3.4.1 Possible Actions of two Systems

The original system (n1, n2, n3) can perform the following actions (i.e., transition between
states), with also the following restrictions and rates:

1. Informal description: A positive customer arrives to queue R1

Action 1: from (n1, n2, n3) to (n1 + 1, n2, n3)
Restriction: ∀n1 ≥ 0
Rate: λ1

2. Informal description: A positive customer arrives to queue R3

Action 2: from (n1, n2, n3) to (n1, n2, n3 + 1)
Restriction: ∀n3 ≥ 0
Rate: λ3

3. Informal description: A positive customer moves from queue R1 to queue R2

Action 3: from (n1, n2, n3) to (n1 − 1, n2 + 1, n3)
Restriction: ∀n1 ≥ 1 and ∀n2 ≥ 0
Rate: µ1p

4. Informal description: A positive customer moves from queue R1 becomes a trigger
and arrives to queue R3 when it is empty
Action 4: from (n1, n2, 0) to (n1 − 1, n2, 0)
Restriction: ∀n1 ≥ 1 and n3 = 0
Rate: µ1(1− p)

5. Informal description: A positive customer moves from queue R1 becomes a trigger
and arrives to queue R3 when it is non-empty, then a positive customer from R3 is
forced to move to R2

Action 5: from (n1, n2, n3) to (n1 − 1, n2 + 1, n3 − 1)
Restriction: ∀n1 ≥ 1 and ∀n2 ≥ 0 and ∀n3 ≥ 1
Rate: µ1(1− p)

6. Informal description: A positive customer leaves the system from queue R2

Action 6: from (n1, n2, n3) to (n1, n2 − 1, n3)
Restriction: ∀n2 ≥ 1
Rate: µ2

7. Informal description: A positive customer leaves the system from queue R3

Action 7: from (n1, n2, n3) to (n1, n2, n3 − 1)
Restriction: ∀n3 ≥ 1
Rate: µ3

We will now define an update vector for each of these actions in which we can track the
differences in the numbers of customers in each queue:

1. Action 1: from (n1, n2, n3) to (n1 + 1, n2, n3)
(1, λ1): (+1, 0, 0)

2. Action 2: from (n1, n2, n3) to (n1, n2, n3 + 1)
(2, λ3): (0, 0,+1)
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3. Action 3: from (n1, n2, n3) to (n1 − 1, n2 + 1, n3)
(3, µ1p): (−1,+1, 0)

4. Action 4: from (n1, n2, 0) to (n1 − 1, n2, 0)
(4, µ1(1− p)): (−1, 0, 0)

5. Action 5: from (n1, n2, n3) to (n1 − 1, n2 + 1, n3 − 1)
(5, µ1(1− p)): (−1,+1,−1)

6. Action 6: from (n1, n2, n3) to (n1, n2 − 1, n3)
(6, µ2): (0,−1, 0)

7. Action 7: from (n1, n2, n3) to (n1, n2, n3 − 1)
(7, µ3): (0, 0,−1)

From the derivation graphs, we can analyse each process of the model, their actions (i.e.,
transition between states), with also their restrictions and rates.
Process P which represents R1 can perform:

• State P0

– Action: τ
Restriction: none
Rate: λ1

– Action: fill
Restriction: cooperate, has to wait for R3 action of fill
Rate: >

• State Pn with n > 0

– Action: τ
Restriction: none
Rate: λ1

– Action: fill
Restriction: cooperate, has to wait for R3 action of fill
Rate: >

– Action: a
Restriction: none, but there is an active cooperation with R2

Rate: µ1p

– Action: a0

Restriction: none, but there is an active cooperation with R3, moreover R3

must be empty but this is ensured by the fact that there wasn’t any fill action
in R3 otherwise the state will be P in with i > 0
Rate: µ1(1− p)

• State P i0 with i > 0

– Action: τ
Restriction: none
Rate: λ1
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– Action: fill
Restriction: cooperate, has to wait for R3 action of fill
Rate: >

– Action: empty
Restriction: cooperate, has to wait for R3 action of empty
Rate: >

• State P in with n > 0 and i > 0

– Action: τ
Restriction: none
Rate: λ1

– Action: fill
Restriction: cooperate, has to wait for R3 action of fill
Rate: >

– Action: empty
Restriction: cooperate, has to wait for R3 action of empty
Rate: >

– Action: a
Restriction: none, but there is an active cooperation with R2

Rate: µ1p

– Action: a1

Restriction: none, but there is an active cooperation with R3, moreover R3

must be non-empty but this is ensured by the fact that there were one or more
fill action in R3 otherwise the state will be only Pn with i = 0
Rate: µ1(1− p)

Process Q which represents R2 can perform:

• State Q0

– Action: a
Restriction: cooperate, has to wait for R1 action of a
Rate: >

– Action: a1

Restriction: cooperate, has to wait for R1 action of a1 (so R1 and R3 must be
non-empty queues)
Rate: >

• State Qn with n > 0

– Action: a
Restriction: cooperate, has to wait for R1 action of a
Rate: >

– Action: a1

Restriction: cooperate, has to wait for R1 action of a1 (so R1 and R3 must be
non-empty queues)
Rate: >
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– Action: τ
Restriction: none
Rate: µ2

Process V which represents R3 can perform:

• State V0

– Action: fill
Restriction: none, but there is an active cooperation with R1

Rate: λ3

– Action: a0

Restriction: cooperate, has to wait for R1 action of a0

Rate: >

• State Vn with n > 0

– Action: fill
Restriction: none, but there is an active cooperation with R1

Rate: λ3

– Action: empty
Restriction: none, but there is an active cooperation with R1

Rate: µ3

– Action: a1

Restriction: cooperate, has to wait for R1 action of a1

Rate: >

Where there are no further specifications, when a process waits for a cooperation (i.e., it is
passive with respect to that action) means that the conditions for that activity are imposed
only by the active process. Moreover, when a process doesn’t have any restriction in an
activity but there is an active cooperation, it means that there are no conditions in that
activity (except the ones in its state, e.g., if the activity is present only in Pn and not in P0

this means that one condition on that activity is n > 0)

To summarize, the model encoded from original system ((n11, n13), n2, n3) can perform
the following actions (i.e., transition between states), with also the following restrictions
and rates:

1. Action τ : from ((n11, n13), n2, n3) to ((n11 + 1, n13), n2, n3)
Restriction: ∀n11 ≥ 0
Rate: λ1

2. Action fill: from ((n11, n13), n2, n3) to ((n11, n13 + 1), n2, n3 + 1)
Restriction: ∀n13 = n3 ≥ 0
Rate: λ3

3. Action a: from ((n11, n13), n2, n3) to ((n11 − 1, n13), n2 + 1, n3)
Restriction:∀n11 ≥ 1 and ∀n2 ≥ 0
Rate: µ1p
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4. Action a0: from ((n11, 0), n2, 0) to ((n11 − 1, 0), n2, 0)
Restriction:∀n11 ≥ 1 and ∀n13 = n3 = 0
Rate: µ1(1− p)

5. Action a1: from ((n11, n13), n2, n3) to ((n11 − 1, n13 − 1), n2 + 1, n3 − 1)
Restriction:∀n11 ≥ 1 and ∀n13 = n3 ≥ 1 and ∀n2 ≥ 0
Rate: µ1(1− p)

6. Action τ : from ((n11, n13), n2, n3) to ((n11, n13), n2 − 1, n3)
Restriction: ∀n2 ≥ 1
Rate: µ2

7. Action empty: from ((n11, n13), n2, n3) to ((n11, n13 − 1), n2 − 1, n3 − 1)
Restriction: ∀n13 = n3 ≥ 1
Rate: µ3

We will now define an update vector for each of these actions in which we can track the
differences in the numbers of customers in each queue:

1. Action τ : from ((n11, n13), n2, n3) to ((n11 + 1, n13), n2, n3)
(τ, λ1): ((+1, 0), 0, 0)

2. Action fill: from ((n11, n13), n2, n3) to ((n11, n13 + 1), n2, n3 + 1)
(fill, λ3): ((0,+1), 0,+1)

3. Action a: from ((n11, n13), n2, n3) to ((n11 − 1, n13), n2 + 1, n3)
(a, µ1p): ((−1, 0),+1, 0)

4. Action a0: from ((n11, 0), n2, 0) to ((n11 − 1, 0), n2, 0)
(a0, µ1(1− p)): ((−1, 0), 0, 0)

5. Action a1: from ((n11, n13), n2, n3) to ((n11 − 1, n13 − 1), n2 + 1, n3 − 1)
(a1, µ1(1− p)): ((−1,−1),+1,−1)

6. Action τ : from ((n11, n13), n2, n3) to ((n11, n13), n2 − 1, n3)
(τ, µ2): ((0, 0),−1, 0)

7. Action empty: from ((n11, n13), n2, n3) to ((n11, n13 − 1), n2 − 1, n3 − 1)
(empty, µ3): ((0,−1), 0,−1)

We can compare now the update vectors from the original system and from the DI method:

1. Action 1 has a similar behaviour to Action τ :
from (n1, n2, n3) to (n1 + 1, n2, n3)
from ((n11, n13), n2, n3) to ((n11 + 1, n13), n2, n3)
(1, λ1): (+1, 0, 0)
((+1, 0), 0, 0)

2. Action 2 has a similar behaviour to Action fill:
from (n1, n2, n3) to (n1, n2, n3 + 1)
from ((n11, n13), n2, n3) to ((n11, n13 + 1), n2, n3 + 1)
(2, λ3): (0, 0,+1)
(fill, λ3): ((0,+1), 0,+1)
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3. Action 3 has a similar behaviour to Action a:
from (n1, n2, n3) to (n1 − 1, n2 + 1, n3)
from ((n11, n13), n2, n3) to ((n11 − 1, n13), n2 + 1, n3)
(3, µ1p): (−1,+1, 0)
(a, µ1p): ((−1, 0),+1, 0)

4. Action 4 has a similar behaviour to Action a0:
from (n1, n2, 0) to (n1 − 1, n2, 0)
from ((n11, 0), n2, 0) to ((n11 − 1, 0), n2, 0)
(4, µ1(1− p)): (−1, 0, 0)
(a0, µ1(1− p)): ((−1, 0), 0, 0)

5. Action 5 has a similar behaviour to Action a1:
from (n1, n2, n3) to (n1 − 1, n2 + 1, n3 − 1)
from ((n11, n13), n2, n3) to ((n11 − 1, n13 − 1), n2 + 1, n3 − 1)
(5, µ1(1− p)): (−1,+1,−1)
(a1, µ1(1− p)): ((−1,−1),+1,−1)

6. Action 6 has a similar behaviour to Action τ :
from (n1, n2, n3) to (n1, n2 − 1, n3)
from ((n11, n13), n2, n3) to ((n11, n13), n2 − 1, n3)
(6, µ2): (0,−1, 0)
(τ, µ2): ((0, 0),−1, 0)

7. Action 7 has a similar behaviour to Action empty:
from (n1, n2, n3) to (n1, n2, n3 − 1)
from ((n11, n13), n2, n3) to ((n11, n13 − 1), n2 − 1, n3 − 1)
(7, µ3): (0, 0,−1)
(empty, µ3): ((0,−1), 0,−1)

The update vectors of both systems affect them in the same way, i.e. in both the change of
number of customers and where they can occur. To better understand this, we will show
that they are applied in the same states of the systems. We have the following cases in the
original system:

1. (0, 0, 0): all queues are empty.

2. (n, 0, 0): R1 has n positive customers, R2 and R3 are empty.

3. (0, n, 0): R2 has n positive customers, R1 and R3 are empty.

4. (0, 0, n): R3 has n positive customers, R1 and R2 are empty.

5. (n1, n2, 0): R1 has n1 positive customers, R2 has n2 positive customers and R3 is
empty.

6. (n1, 0, n3): R1 has n1 positive customers, R3 has n3 positive customers and R2 is
empty.

7. (0, n2, n3): R2 has n2 positive customers, R3 has n3 positive customers and R1 is
empty.
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8. (n1, n2, n3): R1 has n1 positive customers, R2 has n2 positive customers, R3 has n3

positive customers.

Case 1
From state:
(0, 0, 0)

We can have only two possible actions with these values: Action 1 and Action 2.
And these are the two possible state transitions:

1. (0, 0, 0)
1,λ1−→ (1, 0, 0)

2. (0, 0, 0)
2,λ3−→ (0, 0, 1)

There exists the following correspondence in my system ((0, 0), 0, 0) with actions: τ and
fill which have the same update vectors of Action 1 and Action 2. And these are the two
possible state transitions:

1. ((0, 0), 0, 0)
τ,λ1−→ ((1, 0), 0, 0)

2. ((0, 0), 0, 0)
fill,λ3−→ ((0, 1), 0, 1)

Case 2
From state:
(n, 0, 0)

We can have only four possible actions with these values: Action 1, Action 2, Action 3
and Action 4.
And these are the four possible state transitions:

1. (n, 0, 0)
1,λ1−→ ((n+ 1), 0, 0)

2. (n, 0, 0)
2,λ3−→ (n, 0, 1)

3. (n, 0, 0)
3,µ1p−→ ((n− 1), 1, 0)

4. (n, 0, 0)
4,µ1(1−p)−→ ((n− 1), 0, 0)

There exists the following correspondence in my system ((n, 0), 0, 0) with actions: τ , fill,
a, a0 which have the same update vectors. And these are the four possible state transi-
tions:

1. ((n, 0), 0, 0)
τ,λ1−→ ((n+ 1, 0), 0, 0)
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2. ((n, 0), 0, 0)
fill,λ3−→ ((n, 1), 0, 1)

3. ((n, 0), 0, 0)
a,µ1p−→ ((n− 1, 0), 1, 0)

4. ((n, 0), 0, 0)
a0,µ1(1−p)−→ ((n− 1, 0), 0, 0)

Case 3
From state:
(0, n, 0)

We can have only three possible actions with these values: Action 1, Action 2 and Action
6.
And these are the three possible state transitions:

1. (0, n, 0)
1,λ1−→ (1, n, 0)

2. (0, n, 0)
2,λ3−→ (0, n, 1)

3. (0, n, 0)
6,µ2−→ (0, (n− 1), 0)

There exists the following correspondence in my system ((0, 0), n, 0) with actions: τ , fill,
τ , which have the same update vectors.
And these are the three possible state transitions:

1. ((0, 0), n, 0)
τ,λ1−→ ((1, 0), n, 0)

2. ((0, 0), n, 0)
fill,λ3−→ ((0, 1), n, 1)

3. ((0, 0), n, 0)
τ,µ2−→ ((0, 0), n− 1, 0)

Case 4
From state:
(0, 0, n)

We can have only three possible actions with these values: Action 1, Action 2 and Action
7.
And these are the three possible state transitions:

1. (0, 0, n)
1,λ1−→ (1, 0, n)

2. (0, 0, n)
2,λ3−→ (0, 0, (n+ 1))
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3. (0, 0, n)
7,µ3−→ (0, 0, (n− 1))

There exists the following correspondence in my system ((0, n), 0, n) with actions: τ , fill,
empty which have the same update vectors.
And these are the three possible state transitions:

1. ((0, n), 0, n)
τ,λ1−→ ((1, n), 0, n)

2. ((0, n), 0, n)
fill,λ3−→ ((0, n+ 1), 0, n+ 1)

3. ((0, n), 0, n)
empty,µ3−→ ((0, n− 1), 0, n− 1)

Case 5
From state:
(n1, n2, 0)

We can have only five possible actions with these values: Action 1, Action 2, Action 3,
Action 4 and Action 6.
And these are the five possible state transitions:

1. (n1, n2, 0)
1,λ1−→ (n1 + 1, n2, 0)

2. (n1, n2, 0)
2,λ3−→ (n1, n2, 1)

3. (n1, n2, 0)
3,µ1p−→ (n− 1, n2 + 1, 0)

4. (n1, n2, 0)
4,µ1(1−p)−→ (n1 − 1, n2, 0)

5. (n1, n2, 0)
6,µ2−→ (n1, n2 − 1, 0)

There exists the following correspondence in my system ((n1, 0), n2, 0) with actions: τ ,
fill, a, a0, τ which have the same update vectors.
And these are the five possible state transitions:

1. ((n1, 0), n2, 0)
τ,λ1−→ ((n1 + 1, 0), n2, 0)

2. ((n1, 0), n2, 0)
fill,λ3−→ ((n1, 1), n2, 1)

3. ((n1, 0), n2, 0)
a,µ1p−→ ((n1 − 1, 0), n2 + 1, 0)

4. ((n1, 0), n2, 0)
a0,µ1(1−p)−→ ((n1 − 1, 0), n2, 0)
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5. ((n1, 0), n2, 0)
τ,µ2−→ ((n1, 0), n2 − 1, 0)

Case 6
From state:
(n1, 0, n3)

We can have only five possible actions with these values: Action 1, Action 2, Action 3,
Action 5 and Action 7.
And these are the five possible state transitions:

1. (n1, 0, n3)
1,λ1−→ (n1 + 1, 0, n3)

2. (n1, 0, n3)
2,λ3−→ (n1, 0, n3 + 1)

3. (n1, 0, n3)
3,µ1p−→ (n− 1, 1, n3)

4. (n1, 0, n3)
5,µ1(1−p)−→ (n1 − 1, 1, n3 − 1)

5. (n1, 0, n3)
7,µ3−→ (n1, 0, n3 − 1)

There exists the following correspondence in my system ((n1, n3), 0, n3) with actions: τ ,
fill, a, a1, empty which have the same update vectors.
And these are the five possible state transitions:

1. ((n1, n3), 0, n3)
τ,λ1−→ ((n1 + 1, n3), 0, n3)

2. ((n1, n3), 0, n3)
fill,λ3−→ ((n1, n3 + 1), 0, n3 + 1)

3. ((n1, n3), 0, n3)
a,µ1p−→ ((n1 − 1, n3), 1, n3)

4. ((n1, n3), 0, n3)
a1,µ1(1−p)−→ ((n1 − 1, n3 − 1), 1, n3 − 1)

5. ((n1, n3), 0, n3)
empty,µ3−→ ((n1, n3 − 1), 0, n3 − 1)

Case 7
From state:
(0, n2, n3)

We can have only four possible actions with these values: Action 1, Action 2, Action 6
and Action 7.
And these are the four possible state transitions:
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1. (0, n2, n3)
1,λ1−→ (1, n2, n3)

2. (0, n2, n3)
2,λ3−→ (0, n2, n3 + 1)

3. (0, n2, n3)
6,µ2−→ (0, n2 − 1, n3)

4. (0, n2, n3)
7,µ3−→ (0, n2, n3 − 1)

There exists the following correspondence in my system ((0, n3), n2, n3) with actions: τ ,
fill, a, τ , empty which have the same update vectors.
And these are the four possible state transitions of state:

1. ((0, n3), n2, n3)
τ,λ1−→ ((1, n3), n2, n3)

2. ((0, n3), n2, n3)
fill,λ3−→ ((0, n3 + 1), n2, n3 + 1)

3. ((0, n3), n2, n3)
τ,µ2−→ ((0, n3), n2 − 1, n3)

4. ((0, n3), n2, n3)
empty,µ3−→ ((0, n3 − 1), n2, n3 − 1)

Case 8
From state:
(n1, n2, n3)

We can have only six possible actions with these values: Action 1, Action 2, Action 3,
Action 5, Action 6 and Action 7.
And these are the six possible state transitions:

1. (n1, n2, n3)
1,λ1−→ (n1 + 1, n2, n3)

2. (n1, n2, n3)
2,λ3−→ (n1, n2, n3 + 1)

3. (n1, n2, n3)
3,µ1p−→ (n− 1, n2 + 1, n3)

4. (n1, n2, n3)
5,µ1(1−p)−→ (n1 − 1, n2 + 1, n3 − 1)

5. (n1, n2, n3)
6,µ2−→ (0, n2 − 1, n3)

6. (n1, n2, n3)
7,µ3−→ (0, n2, n3 − 1)
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There exists the following correspondence in my system ((n1, n3), n2, n3) with actions: τ ,
fill, a, a1, τ , empty which have the same update vectors.
.
And these are the six possible state transitions:

1. ((n1, n3), n2, n3)
τ,λ1−→ ((n1 + 1, n3), n2, n3)

2. ((n1, n3), n2, n3)
fill,λ3−→ ((n1, n3 + 1), n2, n3 + 1)

3. ((n1, n3), n2, n3)
a,µ1p−→ ((n1 − 1, n3), n2 + 1, n3)

4. ((n1, n3), n2, n3)
a1,µ1(1−p)−→ ((n1 − 1, n3 − 1), n2 + 1, n3 − 1)

5. ((n1, n3), n2, n3)
τ,µ2−→ ((n1, n3), n2 − 1, n3)

6. ((n1, n3), n2, n3)
empty,µ3−→ ((n1, n3 − 1), n2, n3 − 1)

We have shown that ∀ states (n1, n2, n3) there exists a correspondence to a state ((n1, n3), n2, n3)
and equivalent updates are applied to them. Moreover, they can perform the same ac-
tions.
Since the actions done by my system are the all and only ones permitted in those cases
the system represents all and only the states of original G-Network with trigger, and also
their behaviours are equivalent.

We can now state that with the proposed encoding of this system, we have modelled a
G-Network using only the definitions of the PEPA language. Thus, we introduced a
method to extend its expressivity to cover also this kind of G-Network.

4.3.5 Product-Form of G-Network with Trigger

We will now analyse the derivation graph of Double Index solution and search where
it doesn’t satisfy the conditions of the product-form theorem. After that, we modify it
in order to satisfy those conditions but without changing its behaviour that we already
proved it is equal to the original one.
We add a new state in the processes, the Phantom State F . The purpose of this stratagem
is in fact to satisfy the two conditions without changing the behaviour thanks to its prop-
erty of unreachability. The main property of state F is exactly that from the starting normal
states, every possible and permissible transaction in the system cannot lead in any way to the
phantom state F .

4.3.5.1 Conditions for the Product-Form Theorem

In order to have the product-form solution, a system in PEPA must satisfy the following
conditions:
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1. Each passive action must be outgoing from each state of processes in which it is
used at least one time, i.e., each state must have an outgoing transition of type of
the passive action and with > rate.

2. Each active action must be ingoing to each state of processes in which it is used at
least one time, i.e., each state must have an ingoing transition of type of the active
action and with a non-> rate.

3. All reverse rate of the same action type in a process must be equal, i.e., all the reverse
rates of a passive action with > rate within a process must be all equal.

Another important fact is that all these referred actions are in a cooperation set.
To satisfy these conditions we will adopt the following techniques:

1. Outgoing Passive Actions: we add an exiting transition from all states that don’t
have it, of that type of passive action (it doesn’t matter if it is a self-loop).

2. Ingoing Active Actions: we add an entering transition to all states that don’t have
it, of that type of active action (it doesn’t matter if it is a self-loop).

3. We will balance the equations of my processes and after that we compute the re-
verse rates of all the passive actions.

Analysing this graph in Figure 4.3 we have the following information regarding action
types:

• Active Actions: a, a0, a1 (τ doesn’t cooperate with anyone)

• Passive Actions: fill, empty

And the following information is about the first two conditions of the product-form the-
orem:

• State P0:
Ingoing Active Actions: a, a0, a1

Missing Active Actions: none
Outgoing Passive Actions: fill
Missing Passive Actions: empty

• State Pn:
Ingoing Active Actions: a, a0, a1

Missing Active Actions: none
Outgoing Passive Actions: fill
Missing Passive Actions: empty

• State P i0:
Ingoing Active Actions: a, a1

Missing Active Actions: a0

Outgoing Passive Actions: fill, empty
Missing Passive Actions: none
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• State P in:
Ingoing Active Actions: a, a1

Missing Active Actions: a0

Outgoing Passive Actions: fill, empty
Missing Passive Actions: none

Analysing the graph in Figure 4.4 we have the following information regarding action
types:

• Active Actions: none (τ doesn’t cooperate with anyone)

• Passive Actions: a, a1

And the following information is about the first two conditions of the product-form the-
orem:

• State Q0:
Ingoing Active Actions: none
Missing Active Actions: none
Outgoing Passive Actions: a, a1

Missing Passive Actions: none

• State Qn:
Ingoing Active Actions: none
Missing Active Actions: none
Outgoing Passive Actions: a, a1

Missing Passive Actions: none

Analysing the graph in Figure 4.5 we have the following information regarding action
types:

• Active Actions: fill, empty

• Passive Actions: a0, a1

And the following information is about the first two conditions of the product-form the-
orem:

• State R0:
Ingoing Active Actions: empty
Missing Active Actions: fill
Outgoing Passive Actions: a0

Missing Passive Actions: a1

• State Rn:
Ingoing Active Actions: fill, empty
Missing Active Actions: none
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Outgoing Passive Actions: a1

Missing Passive Actions: a0

There are some states in which an action has problems in satisfying the conditions.
(←) represents an outgoing passive problem, (→) represents an ingoing active problem.
This is the summary of the DI solution:

Process Action a Action a0 Action a1 Action fill Action empty
P (→) : P i0, P

i
n (←) : P0, Pn

Q
V (←) : Vn (←) : V0 (→) : V0

4.3.5.2 Addition of Phantom State and Missing “Conditions” Actions

In this section we add those missing actions to my double index solution. We call them
impossible actions because they will never occur due to the fact that they will never co-
operate with the corresponding active/passive actions in another process. We use the
annotation of putting a ! before their name to distinguish them from the normal actions.
In order to do this, we add a state F , called Phantom state. This state will never be reach-
able, because all the actions which lead to it are impossible actions. In this way all the
actions from the unreachable state F will be impossible too, because they will never occur
thanks to the non-reachability of F .
The possible solutions are depicted in Figure 4.6 and 4.7:

Figure 4.6: R1 with impossible actions (DI)
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Figure 4.7: R1 with impossible actions (DI), alternative

We can see that F is unreachable because in state P0, the process R0 doesn’t have any
positive customer and so it cannot perform an empty action. This ensures that empty in
Pn with n ≥ 0 doesn’t occur and so F is unreachable.
We add also in the phantom state, the action All which represent all possible actions, in
this way the first two conditions of product-form theorem are satisfied also for F state.
However, they are still impossible.
A solution could be even splitting the F state in more phantom states. The meaning
is the same, F states are still unreachable and their ingoing and outgoing actions still
impossible. In this way we show that it is the same to have a single phantom state F
or a set of them (F0, F1, ..., Fn). Moreover, each F state has its action All and like in
the previous example, they satisfy the two conditions even if they are still impossible.
Another important fact is that we can add whichever action from any phantom state Fi to any
other phantom state Fj (included i = j with a self-loop) because they will be still impossible.
In both solutions we add the passive empty action in all Pn with n ≥ 0 and a0 in all P in
with n ≥ 0 and i > 0.
Similarly we can do the same for R3 in Figure 4.8 and 4.9
A possible alternative in this case is the use of only one F phantom state for the miss-
ing actions of state 0 and transform all the others outing missing actions of states 1, ..., n
into self-loops. The state 0 needs to have an ingoing missing action and in order to not
synchronise with anyone we must add a phantom state F in this case in contrast to other
states.

The definition of an impossible action is:
An action whose type is part of a cooperation set and never synchronised with anyone (i.e., it will
never occur) is called an impossible action.
This means that impossible actions will never cooperate with their corresponding active
or passive actions in other processes and they are usually marked with a ! before their
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Figure 4.8: R3 with impossible actions (DI)

Figure 4.9: R3 with impossible actions (DI), alternative

name to discern them from the normal actions.

To better understand them, we make an example. Considering the following encoding of
a system in PEPA:

P =

{
P0 = (a,>).P1

P1 = (b, µ1).P0 + (c, µ2).P0

Q =

{
Q0 = (a, µ).Q1 + (c,>).Q1

Q1 = (b,>).Q0

S
def
= P 1

a,b,c
Q

And their derivations graphs are the following two:
We can notice that all actions are in the cooperative set and a,b have the same direction in
both processes (from 0 to 1 and from 1 to 0, respectively) but c has an opposite behaviour
(1 − 0 direction in P and 0 − 1 direction in Q). Furthermore a is passive in P and active
in Q and b,c are active in P and passive in Q.
In this way, considering that the starting states are P0 and Q0 (or we will incur in a dead-
lock situation), when the two processes cooperate in general system S we have the fol-
lowing states:

• General State S0: corresponds to the states of processes P0 and Q0

• General State S1: corresponds to the states of processes P1 and Q1
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Figure 4.10: Example of Impossible Action c in processes P and Q

Moreover, starting from the cooperation of P0 with Q0, process S will have the following
behaviour:

• In S0:

– P0 has only a passive action a and must wait for Q0

– Q0 could perform a and c but both must synchronise with the same type of
actions in P0

– Result: Q0 can only synchronise in action a with P0 and it proceeds in Q1 and
similarly P0 proceeds in P1 always performing action a

In this way S0 becomes state S1 and c in this case can’t occur.

• In S1:

– P1 could perform b and c but both must synchronise with the same type of
actions in Q1

– Q1 has only a passive action b and must wait for P1

– Result: P1 can only synchronise in action b with Q1 and it proceeds in P0 and
similarly Q1 proceeds in Q0 always performing action b

In this way S1 becomes state S0 and c also in this case can’t occur.

• We return to state S0 so no other behaviours can occur.

With this behaviour, the derivative graph of S is the following:

Figure 4.11: Example of Impossible Action c in cooperation process of P and Q

We can see how c never occurs in both directions (i.e., either from S0 to S1 or from S1 to
S0). In this case c never synchronises and subsequently never occurs so in this system
both c actions are impossible actions.
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The definition of a phantom state F is:
A non-starting state in which all ingoing actions are impossible actions is called a phantom state.
This means that the entering actions in a phantom state F can be of three types (even if
still impossible):

• Impossible actions from other kind of states

• Self-loops of impossible actions

• Impossible actions from other phantom states

This definition ensures that a phantom state is unreachable and not present in the deriva-
tive set of the process because all the actions which lead to it are impossible actions. In
this way all outgoing actions of F are impossible too because of the state will never be a
future state of the process and subsequently all its actions will never occur.
So, due to the unreachability of phantom state F , all the actions, both ingoing and outgoing,
of a phantom state F are consequently impossible actions.
This leads the definition of a set of phantom states F :
A set of states in which there isn’t any starting state and all actions (ingoing and outgoing) from
outside the set are impossible actions is called a set of phantom states F = (F1, ..., Fn).
Similarly to the previous definition all outgoing actions from a set of phantom states are
still impossible actions and they can be of three type:

• Actions to outside the set

• Self-loops of actions

• Impossible actions between phantom states

To better understand them, we make an example. Considering the following encoding of
a system in PEPA:

P =


P0 = (a,>).P1 + (b, µ1).FP

P1 = (b, µ1).P0 + (c, µ2).FP

FP = (a,>).P1

Q =


Q0 = (a, µ).Q1 + (c,>).FQ

Q1 = (b,>).Q0 + (a, µ).FQ

FQ = (a, µ).Q1

S
def
= P 1

a,b,c
Q

And their derivations graphs are the following two:
We can notice that all actions are in the cooperation set but apart from a from P0 and Q0

and b from P1 and Q1, the others actions don’t have the same direction in both processes.
Furthermore a is passive in P and active in Q and b,c are active in P and passive in Q.
In this way, considering that the starting states are P0 andQ0 (or we will incur a dead-lock
situation), when the two processes cooperate in general system S we have the following
states:



4.3. REPRESENTING SIGNALS IN PEPA 105

Figure 4.12: Example of Phantom State F in processes P and Q

• General State S0: corresponds to the states of processes P0 and Q0

• General State S1: corresponds to the states of processes P1 and Q1

Moreover, starting from the cooperation of P0 with Q0, process S will have the following
behaviour:

• In S0:

– P0 could perform a and b but both must synchronise with the same type of
actions in Q0

– Q0 could perform a and c but both must synchronise with the same type of
actions in P0

– Result: Q0 can only synchronise in action a with P0 and it proceeds in Q1 and
similarly P0 proceeds in P1 always performing action a

In this way S0 becomes state S1 and b and c in this case can’t occur.

• In S1:

– P1 could perform b and c but both must synchronise with the same type of
actions in Q1

– Q1 could perform b and a but both must synchronise with the same type of
actions in P1

– Result: P1 can only synchronise in action b with Q1 and it proceeds in P0 and
similarly Q1 proceeds in Q0 always performing action b

In this way S1 becomes state S0 and a and c also in this case can’t occur.

• We return to state S0 so no other behaviours can occur.

With this behaviour, the derivative graph of S is the following:
The final result process is the same in the two previous examples, this means that both
impossible actions and phantom state F didn’t affect the main system S.
It is important to notice that FP and FQ could have synchronised and performed action
a but since P , Q and in general S have never reached both states FP and FQ then their a
actions never synchronise and occur so they are impossible actions.
We can see how F is never reached from any state (i.e., neither from S0 nor from S1). In
this case no action reaches F so in this systems both FP and FQ states are phantom states.
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Figure 4.13: Example of Phantom State F in cooperation process of P and Q

4.4 Conclusions

We have modelled a case study with G-Network with signals in which customers can be
moved from one queue to another upon the arrival of a signal. With our work, we intro-
duced an encoding method, called Double Index (DI) method, for modelling G-Networks
using the PEPA language. In order to satisfy the conditions of the product-form theorem
we have to add to the system in PEPA also the notions of Phantom State and Impossible
Actions. In this way even if we change the structure of the system we have maintained its
behaviour because the new states will never be reachable since all the actions which lead
to them are impossible actions. Thus, they help to satisfy the theorem conditions without
altering the behaviour of the overall system.



Chapter 5

Analysis of Systems with Ageing
Objects

5.1 Introduction

In this chapter we will propose a new model for the analysis of systems with ageing
objects such as Time-To-Live cache. We consider a model with an underlying Continu-
ous Time Markov Chain in which objects can be completely or partially rejuvenated. In
the former case just one object becomes fresh, while in the latter all the objects are si-
multaneously rejuvenated so that the youngest becomes fresh. We show that under the
so-called Independent Reference Model assumption our model is numerically tractable
and has a product-form equilibrium distribution. Furthermore, we consider the case in
which the object ageing stops after a certain threshold and hence the partial rejuvena-
tion introduces a probabilistic behaviour. Also in this case, we can derive a product-form
equilibrium distribution under some mild conditions. The models presented in our work
may be interpreted as a new class of G-Networks with catastrophes and partial flushing.

5.1.1 TTL caches

Stochastic models are powerful tools for assessing the non-functional quantitative prop-
erties of computer networks, communication systems, and software architectures. In
many practical applications, Markov processes are the stochastic processes underlying
the considered models and their performance evaluation is carried out by using the well-
known methods for the analysis of transient or stationary behaviour of Markov processes.
We will now focus on the analysis of models whose underlying process is a Continuous
Time Markov Chain (CTMC). Since its introduction [22], the theory of product-form so-
lutions has played an important role in the practical analysis of models with underlying
CTMCs as it allows for an efficient derivation of the stationary performance indices even
when the process’s state space is huge and the analysis methods based on the solution
of the system of global balance equations become computationally prohibitive. Even
more interestingly, for a class of product-form models, including the ones we are study-
ing here, the performance indices can be derived without even generating the joint state
space. Successful applications of product-form theory include the BCMP theorem [14],
the modelling of neural networks [51], the analysis of systems with fork and join con-
structs [84], the loss networks [76] and the performance evaluation of wireless networks
[17], just to mention few.

107
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We now focus on modelling and analysing systems with ageing objects by means of
product-form models. These systems consist of a set of objects which are associated with
an age (e.g., the time-stamp of their creation or latest access). As time passes, the objects
become older. Two types of events can rejuvenate the objects:

• total rejuvenation, i.e., the object timestamp is set to the current time. This event
affects only one object.

• partial rejuvenation. In this case the event affects the whole system since the objects
are all rejuvenated for the same time interval so that the youngest is associated with
the current timestamp.

An example of such a system is a TTL cache in which the total rejuvenation occurs when
an object is accessed and the partial rejuvenation can be seen as a method to prevent an
under utilisation of the cache memory in case of periods of inactivity. The networking
research community has renewed its interest in the performance of caching systems due
to the new delivery methods for distributing contents in the networks. The huge number
of proxy servers has led to the design of Content Delivery Networks (CDN) which are
used by the content providers to deliver information in a large and spread population of
users. Caching contents that have the greatest demand closer to the users’ locations allow
one to improve the client-perceived experience, to reduce the server load and optimize
the bandwidth requirements. In this perspective, the caching system plays a fundamen-
tal role in the gradual shift from the traditional paradigm of host-to-host communication
to the new host-to-content model. Other applications of ageing systems are shown in
[53, 56] where the failure of nodes in distributed systems are handled by means of check-
points.

Technical contributions and related work

The main contributions with respect to the literature are the following:

• We present two models in product-form for the performance evaluation of systems
with ageing objects. The main difference between the two models is that one al-
lows the object age to grow indefinitely, while the other introduces a maximum age
threshold. We discuss the implications on practical applications with some exam-
ples. The product-form analysis that we demonstrate is interesting for at least two
aspects. The first is that neither the joint CTMC nor the CTMC underlying a single
model are reversible as it happens, e.g., in Jackson’s queues [74] and G-queues [48].
The second interesting aspect is that synchronisations among objects are not pair-
wise, i.e., at a given epoch more than two objects can simultaneously change their
states. There are few results in this direction in the literature of product-forms. In
[50, 38] the authors consider queueing networks in which the departure of a cus-
tomer from a queue causes a movement of one job from a second queue to a third
one, hence causing the simultaneous state change of three components. However,
the extension of the result to more than three components is not trivial mainly be-
cause the proof technique adopted in those papers is based on solving the system
of global balance equations (GBEs). The first model we propose is in the style of
G-Networks as proposed in [41], while the one with maximum ageing is, to the best
of our knowledge, very peculiar since very few product-forms are known for finite
state space models [3, 6]. The contribution of the unbounded model with respect to
[41] is twofold. First, the proof is not based on the solution of the system of global



5.1. INTRODUCTION 109

balance equations of the joint model. Secondly, we consider individual jumps of the
objects to the zero state. Our proof method is based on the quasi-reversibility prop-
erty [76] and the Reversed Compound Agent Theorem (RCAT) [61, 7]. Both these
results provide a way to elegantly prove the product-form of a CTMC but they con-
sider only pairwise synchronisations and hence they cannot be straightforwardly
applied to study our models. We show that they can still be used by introducing a
passage to the limit for a transition rate in a similar fashion to what has been done in
[27, 65, 84]. Proofs of product-forms based on quasi-reversibility are simple to han-
dle and compositional in the sense that they allow the combination of the models
that we study here with others which are known to be quasi-reversible while main-
taining the product-form of the equilibrium distribution. As a consequence, hetero-
geneous networks may be studied without constructing the joint Markov chain.

• We show how to numerically derive the models’ performance indices without con-
structing the joint CTMCs. This is important because the structures of these chains
can be complex since the transitions corresponding to partial rejuvenations depend
on the global state of the models. The derivation of the performance indices requires
us to solve a non-linear system of equations. We propose a fixed point algorithm
to tackle this problem and show its efficiency and convergence properties on nu-
merous examples. The system of equations admits a unique positive solution. With
respect to [41, 42], we do not require any modification of the network of objects in
order to obtain the convergence of the algorithm.

• As an example we apply our model for the analysis of TTL cache with partial rejuve-
nation. First we propose an ideal model, whose implementation is very expensive,
in which a timer is associated with each object despite the fact that it is inside or out-
side the cache. We study the performance indices under the Independent Reference
Model (IRM) assumptions [45, 77, 108]. Then, we consider a model in which we
maintain the timers only for the objects inside the cache. The partial rejuvenation of
objects outside the cache has a probabilistic effect, i.e., the object may remain out-
side or can be copied inside the cache according to a Bernoulli trial. We prove that
it is possible to obtain exactly the same expected performance indices of the ideal
model while maintaining the product-form property. We discuss how it is possi-
ble to dynamically set the model’s parameters to achieve some performance goals.
The analyses of TTL caches, often connected to form networks, have been widely
addressed in recent years (see, e.g., [15, 34, 35] and the references therein). In our
case study we consider a simpler situation of a single cache as in [91]. Clearly, the
analysis becomes challenging because of the partial rejuvenation signals which aim
to avoid the under utilisation of the cache.

We now give some theoretical background and introduce the notation for our model with
unbounded ageing and then prove its product-form.

5.1.2 Preliminaries

Let X(t) be a stationary CTMC on the state space S . Its reversed process, denoted XR(t),
is still a stationary CTMC [61, 76] whose transition rates are defined as follows:

qR(s1, s2) =
π(s2)

π(s1)
q(s2, s1) , (5.1)
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where q(s2, s1) is the transition rate from state s2 to s1 in X(t) and qR(s1, s2) its inverse in
XR(t). X(t) is reversible if it is stochastically indistinguishable from XR(t). Henceforth
we assume that X(t) is ergodic, since the models we are presenting in the following sec-
tions are all unconditionally ergodic. The equilibrium distributions π of X(t) and XR(t)
are identical. Moreover, given the forward and the reversed chain, the following gener-
alised Kolmogorov’s criteria hold.

Proposition 2 (Kolmogorov’s generalised criteria [61]). Let X(t) be an ergodic CTMC
with state space S and infinitesimal generator Q, then Y (t) with the same state space and
infinitesimal generator Q′ is the reversed process XR(t) if and only if:

• For every state s1 ∈ S we have:∑
s2∈S
s2 6=s1

q(s1, s2) =
∑
s2∈S
s2 6=s1

q′(s1, s2) ,

i.e., the residence times in a state in the forward and in the reversed processes have
the same distribution.

• For every finite sequence of states s1, s2, . . . , sn ∈ S, it holds that:

q(s1, s2)q(s2, s3) · · · q(sn, s1) = q′(s1, sn)q′(sn, sn−1) · · · q′(s2, s1) .

In the analysis of the model presented in Section 5.1.3 we will use Proposition 2 to derive
the rates of the reversed chain of the CTMC underlying the model.
We should stress that one can derive the reversed process XR(t) for any stationary chain
X(t) even if this is not reversible. Indeed, we will widely base the product-form analysis
presented in Sections 5.1.3 and 5.2.4 on the derivation of reversed processes of the CTMCs
underlying the proposed models even if these chains are not reversible.
If one knows the infinitesimal generator of both the forward and the reversed chain, Q
and QR, respectively, then we can compute the expression of the equilibrium distribution
in a very efficient way. Indeed, it suffices to choose an arbitrary reference state s0 ∈ S and
then to compute the equilibrium probability of any state s ∈ S with respect to s0 by
finding a path from s0 to s, e.g.,

s0 → s1 → s2 → · · · → sn = s .

Then, we have (see, e.g., [85, 87])

π(s) = π(s0)

∏n
i=1 q

R(si, si−1)∏n
i=1 q(si−1, si)

. (5.2)

Finally, we recall that quasi-reversibility [27, 76] is a sufficient condition to ensure that
the synchronisation of a set of models whose underlying stochastic process is an ergodic
CTMC has product-form solution. Informally, we can think that the transition in one of
the components can trigger a transition in another by sending a signal. In the terminol-
ogy used in [76] we say that there is a departure from the component sending the signal
and an arrival at the one receiving the signal, while in the process algebraic terminology
[70], we say that the component which sends the signal is active and the one receiving
it is passive. In the analysis of quasi-reversible models, the receiver cannot prevent the
transitions in the sender (but it may ignore them). For the sake of simplicity, we assume
that a component sends a synchronising signal only to another component (that will be
the case for the models we study in the following sections).



5.1. INTRODUCTION 111

Proposition 3 (Quasi-reversibility). Given a cooperating component let T ⊂ S × S be
the set of transitions that synchronise with another model. Then, the model is quasi-
reversible if there exists x ∈ R+ such that for all the states s ∈ S, we have:

x =

∑
s′:(s′,s)∈T π(s′)q(s′, s)

π(s)
.

It is well-known that quasi-reversibility is a sufficient condition for the existence of a
product-form equilibrium distribution of the joint model [61, 76, 90].

5.1.3 A model for ageing objects

5.1.3.1 The stochastic process underlying the collection of ageing objects.

We consider a set of K objects whose age at time t is modelled by a stochastic process
Yk(t), 1 ≤ k ≤ K, which takes values in N. Let Y(t) = (Y1(t), . . . , YK(t)) be the stochastic
process associated with all the objects and let u = (u1, . . . , uK) be its state at time t, and
umin = min(ui, 1 ≤ i ≤ K). We characterise the stochastic process Y(t), for h→ 0+, as:

Pr{Y(t+ h) = u− 1umin|Y(t) = u} = ηh+ o(h)

Pr{Y(t+ h) = u[uk ← 0]|Y(t) = u} = λkh+ o(h)

Pr{Y(t+ h) = u[uk ← uk + 1]|Y(t) = u} = γkh+ o(h)

Pr{Y(t+ h) = u|Y(t) = u} = 1−

(
η +

K∑
k=1

λk + γk

)
h+ o(h)

where u[uk ← val] denotes vector u in which component k takes value val, and 1 is a
vector of 1s with size K. We say that λk is the refresh rate for object k, η is the partial
rejuvenation rate and γk is the ageing rate. Clearly, Y(t) is a CTMC.
We are interested in computing the equilibrium distribution of Y(t). Notice that the par-
tial rejuvenation events are such that processes Yk(t) are not stochastically independent.
Moreover, Y(t) is neither reversible nor in product-form, and hence the computation of
the equilibrium distribution can be prohibitive for a large number of objects even if trun-
cation is applied.

5.1.4 A product-form approximation for Y(t)

In this section we approximate the CTMC Y(t) introduced in Section 5.1.3.1 by a CTMC
X(t). We introduce a different semantics for the partial rejuvenation signals that allows
us to prove that X(t) has a product-form equilibrium distribution. Let us introduce the
following notation:

k+ =

{
k + 1 if k < K

1 if k = K
k− =

{
k − 1 if k > 1

K if k = 1
.

In X(t), a partial rejuvenation signal iteratively decreases the age of the objects according
to their orders until we find a fresh object, i.e., whose age is 0. Formally, the destination
state reached by X(t) immediately after a partial rejuvenation signal is given by Algo-
rithm 1. The ageing rate and the refresh rate have the same effects as those described for
Y(t).
Notice that the model does not exactly implement the behaviour described for Y(t) as
shown by the following counterexample. Consider a model with K = 4 objects, and
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suppose their ages are (2, 1, 3, 4) when the reset signal arrives at the first timer. Then, at
t+0 the state of Y(t) is (1, 0, 2, 3), however Algorithm 1 performs a first iteration on all the
objects and a second one that stops when it reaches the second object leading to a state
in t+0 which is (0, 0, 2, 3). Notice that the difference between the correct age of an object
and the one which is computed by Algorithm 1 can be at most of one unit, therefore we
consider the approximation acceptable.

Algorithm 1: Reset of timers upon arrival at time t0 of a reset signal to the oκ
timer.

Data: κ, Xi(t0)
Result: Xi(t

+
0 )

for k ∈ [1,K] do
Xk(t

+
0 ) = Xk(t0);

end
k ← κ;
while Xk(t

+
0 ) > 0 do

Xk(t
+
0 )← Xk(t

+
0 )− 1;

k ← k+;
end

5.1.5 Stationary analysis of X(t)

In this section we derive the stationary distribution of the model and prove that it is in
product-form and unconditionally stable.

Theorem 5.1. The stochastic process X(t) has the product-form equilibrium distribution:

πX(u) =

K∏
k=1

πXk (uk) =

K∏
k=1

(1− ρk)ρukk , (5.3)

where ρk is the solution of the following non-linear system of rate equations:

ρk =
1

2(xk + η/K)
· (5.4)

·

(
λk +

η

K
+ xk + γk −

√(
λk +

η

K
+ xk + γk

)2
− 4γk

(
xk +

η

K

))
xk+ = ρk

(
xk +

η

K

)
(5.5)

for all k = 1, . . . ,K, and uk is the age of object k. Moreover, the model is unconditionally stable
for strictly positive rates λk and γk.

In principle, one could prove Theorem 5.1 by substituting Expression (5.3) in the system
of the global balance equations for X(t) in a similar fashion to what has been done in
[41, 42]. However, the complexity in the structure of X(t), which depends on Algorithm 1,
makes this way of proving the equilibrium distribution long and prone to errors.
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Figure 5.1: Quasi reversible model for the single object ageing. (A)-Forward process and
(B)-Reversed process.

Proof. Let us consider the model for the single object ageing depicted in Figure 5.1-(A).
In this model the arrivals of partial rejuvenation signals occur with rate ξk. At the arrival
of such a signal at object k, this moves from state u > 0 to state u′ and then propagates
the signal to object k+ while moving to state u − 1. The signal propagation becomes
instantaneous as required by the definition of X(t) when β →∞. We prove the product-
form by resorting to the quasi-reversibility property, i.e., we prove that the occurrences of
the transitions from state i′ to state (i− 1)′, i > 0, at t0 are independent of the occurrences
of the same transitions subsequent t0. These are the transitions that forward the partial
rejuvenation signal from object k to k+.

Claim 1. The reversed CTMC of the process shown in Figure 5.1-(A) is the process shown
in Figure 5.1-(B) where

ρk =
1

2ξk
(λk + γk + ξk − ((λ+ γk + ξk)

2 − 4ξkγk)
1/2

and xk+ = ρkξk.

The claim can be readily verified by applying the generalised Kolmogorov’s criteria given
in Proposition 2. First, we check that the total rate out of every state in the forward and
the reversed process are the same. For states u′k it is trivial. For state uk > 0 we have:

γk + λk + ξk =
γk
ρk

+ xk+ , (5.6)

which is satisfied for the definition of ρk given in Claim 1. For state 0 we have to prove
that γk =

∑∞
uk=1 ρ

uk
k λk +xk+ = λkρk/(1−ρk) +xk+ which is equivalent to Equation (5.6).
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Figure 5.2: Simplified version of the model of Figure 5.1 for proving the quasi-
reversibility property.

Finally, we can easily see that the product of the rates in the forward and reversed pro-
cesses are the same for every minimal cycle. This is sufficient to prove Claim 1. The
model is quasi-reversible (and satisfies RCAT conditions) because every state in the re-
versed process has an outgoing rate of xk+ associated with the propagation of the partial
rejuvenation signal. By the definition of the rates in the reversed process, we can derive
the equilibrium distribution of state uk > 0 by using the path from uk to 0 according to
Equation (5.2). We have πXk (uk) = πXk (0)ρukk and we easily see that πXk (u′k) = πXk (uk)ξk/β.
Notice that neither xk+ nor πXk (uk) depends on β. Indeed, for β → ∞ we have the in-
stantaneous propagation of the partial rejuvenation signal as required and the model is
quasi-reversible and πXk (u′k)→ 0.
Hence, the theorem is proved by noticing that ξk is the sum of the rates of the partial
rejuvenation signals arriving from k− and from outside, i.e., ξk = xk + η/K.

The proof method based on the passage to the limit for modelling instantaneous propa-
gation of transitions is inspired by the approach used in [27, 65, 84] for different networks
and is an alternative to the process algebraic one recently proposed in [66]. Notice that,
thanks to the passage to the limit β → ∞, proving the product-form of a component
such as the one shown in Figure 5.1 can be readily done by considering the simplified
model shown in Figure 5.2, in the sense that if the latter is quasi-reversible also the for-
mer is quasi-reversible. In the model depicted in Figure 5.2, one has just to prove that
the reversed rates of the dotted transitions (those propagating the rejuvenation) are con-
stant [61].

5.1.6 Solving the system of rate equations

The system of rate equations (5.4)-(5.5) does not generally have a symbolic solution and
its degree grows very quickly with the number of timers. For this reason we introduce a
fixed-point iteration with the aim of solving equations (5.4)-(5.5) numerically.
In Algorithm 2 we show the fixed-point iterations. The algorithm initialises the values for
xk randomly according to independent uniform random variables with support (0, γk).
Recall that the xk may be interpreted as the reversed rates associated with the death
transition in the model of Figure 5.2 and hence cannot exceed γk. Then, we iteratively
compute ρk and xk according to Equations (5.4) and (5.5), respectively, until we reach the
desired accuracy, i.e., the L1-norm of the difference between two successive iterations on
ρk is lower than ε.
Although we do not have a formal proof of the convergence for Algorithm 2, we carried
out several tests with randomly generated models and always observed the computation
of a good approximation for ρk.

The convergence of Algorithm 2 has been verified on 100, 000 random models with a pop-
ulation ranging from 1, 000 to 100, 000 objects. We have also tested the scalability of the
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Algorithm 2: Fixed-point algorithm for the solution of the system of rate equa-
tions (5.5).

Data: λk, γk, η, ε
Result: ρk
Initialise randomly xk for k = 1, . . .K with uniform distribution in (0, γk);
Compute ρk using Equation (5.4);
repeat

ρ′k ← ρk for all k = 1, . . . ,K;
Update xk using ρ′k by Equation(5.5);
Compute ρk using Equation (5.4);

until |ρ′k − ρk| < ε;

fixed point algorithm with different numbers of objects. Using an Intel Core(TM)2 Duo
CPU processor, we have analysed a model with 1000 objects and obtained the solution
of the non-linear system in 0.5s. We have noticed that the convergence time depends on
the variance of the set of λks. Indeed, for 100, 000 objects, the computation time varies
between 30 and 160 seconds, where the lowest time corresponds to the lowest variance.

5.2 Application: analysis of an ideal TTL cache with rejuvena-
tion

In this section we use the results derived in Section 5.1.3 to analyse a class of TTL caches
with rejuvenation. TTL caches are attracting the attention of the research community es-
pecially in the context of the analysis of Information-Centric Networks [57]. Analyses
of TTL cache networks are shown, e.g., in [15, 34, 35]. In TTL caches, each object is as-
sociated with a timer. At each object access, the timer is reset and when it expires the
corresponding object is evicted from the cache. Here, we propose a rejuvenation mech-
anism for the timers that reduces their ages in such a way that the last recently used is
set to 0. This aims at reducing the problem of under-utilisation of the TTL cache in case
of long periods of inactivity. The model we propose here represents an ideal case in the
sense that we require the maintenance of a timer for all the objects, including those which
are not present in the cache. With the model proposed in Section 5.2.4 we will propose a
workaround to this implementation issue.

5.2.1 System description

We study the cache model under the Independent Reference Model (IRM) assumptions
in continuous time. IRM requires the object requests to be generated according to inde-
pendent Poisson processes. Although this scenario may be unrealistic for some practical
performance analysis, still it is widely used as a benchmark to compare different caching
policies as, e.g., in [77, 45, 30, 33, 108]. With reference to the model presented in Sec-
tion 5.1.3, we have that K is the number of timers associated with the objects, Xk(t) is
the state of timer t. Requests of object k occur according to an independent Poisson pro-
cess with rate λk and the partial rejuvenation signal occurs with rate η and starts from
an object chosen randomly with uniform distribution. At the k-th object request epoch
we observe a cache hit if the timer associated with object k is not greater than threshold
T = Tk, a cache miss otherwise.
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5.2.2 Stationary performance indices

In this section we derive some performance indices of the model in equilibrium. We will
give an expression for the cache hit/miss rates and probabilities, and for the expected size
of the cache as functions of ρk, with k = 1, . . .K. Suppose that object k requires αk bytes
to be stored in the cache. Let us define the following stochastic process that corresponds
to the cache size:

S(t) =

K∑
k=1

αk1Xk(t)≤T

where 1Xk(t)≤T is 1 if Xk(t) ≤ T , 0 otherwise. We are interested in the evaluation of the
expected cache size in equilibrium, i.e.,

S = E
[

lim
t→∞

S(t)
]
.

Notice that the limit exists since limt→∞Xk(t) is the marginal distribution associated with
the states of timer k of the ergodic CTMC underlying the model.

Proposition 4 (Expected cache size). In equilibrium, the expected cache size S is:

S =
K∑
k=1

αk(1− ρT+1
k ) (5.7)

Proof. The proof follows from the observation that in equilibrium the timer models be-
have as if they were independent (product-form). Therefore, the probability that the timer
k is not over T is:

lim
t→∞

Pr{Xk(t) ≤ T} = 1− ρT+1
k . (5.8)

The result is readily derived by weighting the stationary probability of finding an object
in the cache by its size.

The expression for the standard deviation of the cache size can be used combined with
Chebyshev’s inequality to derive bounds on the probability that the cache size exceeds a
given threshold.

Proposition 5 (Standard deviation of the cache size). The standard deviation of the cache
size in equilibrium is:

σS =

√√√√ K∑
k=1

α2
kρ
T+1
k

(
1− ρT+1

k

)
.

Proof. The proof follows after simple algebraic simplifications of the expression:

σ2
S =

K∑
k=1

α2
k(1− ρT+1

k )−
K∑
k=1

α2
k(1− ρT+1

k )2 .
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Proposition 6 (Hit and miss probability). In equilibrium, the probability of observing a
cache hit (hk) or a cache miss (mk) event for a request of object k is:

hk = 1− ρT+1
k , mk = ρT+1

k .

Proof. According to the PASTA property (see, e.g., [92]), in equilibrium, an event that oc-
curs according to an independent Poisson process sees the stationary distribution. Then,
the proof follows the lines of that of Proposition 4.

The following proposition gives an expression for the rate at which we observe a cache
hit or a cache miss event when the model is in equilibrium.

Proposition 7 (Total hit/miss rate). In equilibrium, the total cache hit rate isH =
∑K

k=1 hkλk
and the miss rate is M =

∑K
k=1mkλk.

Finally, we give an expression for the probability of a request to generate a cache hit or a
cache miss:

Proposition 8 (Total hit/miss probability). In equilibrium, the probability that an object
request causes a cache hit event (PH ) or a cache miss event (PM ) is given by the following
expressions:

PH =

∑K
k=1 λk(1− ρ

T+1
k )∑K

k=1 λk
,

PM = 1− PH =

∑K
k=1 λkρ

T+1
k∑K

k=1 λk
.

We observe that in a perfectly symmetric system, i.e., when all the objects are requested
with the same rate and occupy the same space, the cache hit probability and rate are
directly proportional to the expected space dedicated to the cache. This should be not
surprising since the choice of evicting one particular object at a given time is arbitrary
under the IRM assumption given that all the object requests occur with the same rate
(recall that IRM inherits the memoryless property of the exponential distribution).

5.2.3 Experiments

In this section we present some experiments in order to evaluate the performances of
the TTL cache with reset signals. Considering 1000 objects (and so 1000 timers) with
dimension 1, T = 20, γ = γk = 30 and homogeneous λk = 0.5 for 1 ≤ k ≤ K, we tested
the effect of η on the hit probability. In this experiment, η varies from 0.001 to 5.0 with a
step of 0.1. In Figure 5.3 we can see how η affects the probability of finding an object in
the cache.
We study the influence of the variance of λk on the hit probability and the average space
occupation of the cache. In Figure 5.4 we use sets of λk with growing variance and we
notice that the fraction of objects in the cache is lower than the hit probability for higher
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Figure 5.3: Cache hit probability vs. η with homogeneous λk.

variances. Intuitively, this happens because in the TTL cache, the objects required with
high frequency are present with very high probability and this causes a good cache hit
probability even with small cache sizes. As a consequence, the benefits on the cache hit
probability with higher values of η are lower.
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Figure 5.4: Comparison between different heterogeneous λk with varying η.

Finally, we study the differences between the TTL model with resets and the model
with the FIFO policy studied in [77]. In this case, we took γ = γk = 80, the λk =
(1, . . . , 1, 10, 10) and η = 0.005. We varied T to get the same space occupation for the
two models (for TTL model we consider the average space occupation). With low space
occupation, the FIFO model works slightly better but, between 10% and 80% of cached
objects, the TTL model with resets shows a higher cache hit probability (up to 10% of im-
provement) due to the fact that the reset signals avoid the removal of some objects from
the cache.

5.2.4 A model for ageing objects with maximum threshold

In this section we consider a model which is similar to that described in Section 5.1.3
but in which the ageing of objects has a maximum threshold. Once this threshold is
reached, the object stops its ageing. The motivation to study this type of ageing objects
is that when ageing is handled by timers and the proportion of young objects is small
with respect to the object population, it is too computationally expensive to handle all
the timers. So according to this idea we use one state to denote that an object is very old
and hence we do not handle its timer any more. Clearly, we need to specify how the
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Figure 5.6: Simplified model for an ageing object with maximum age.

partial rejuvenation signal affects the objects in their terminal state. Intuitively, in order
to get around the problem of the lack of knowledge of the true age of the objects in their
terminal state we introduce a probabilistic behaviour, i.e., object k in its terminal state
is partially rejuvenated with a certain probability pk or it is left in its terminal state with
probability 1−pk. In both cases, the partial rejuvenation signal is transmitted immediately
to object k+.
In this case the analogue of the simplified model of Figure 5.2 is shown in Figure 5.6.
Let H(t) be the CTMC underlying a set of ageing objects with maximum age and partial
rejuvenation and let πH be its equilibrium distribution function. Moreover, we use Tk + 1
to denote the terminal state of ageing object k. When the model is in state Tk + 1 and a
partial rejuvenation signal arrives it may either jump to state Tk (rate yk) or stay in state
Tk + 1 (rate ξk − yk), where yk < ξk. We now study the conditions on yk that give the
product-form. In order for the model of Figure 5.6 to be quasi-reversible, we must prove
that all the dotted transitions have the same reversed rate [61]. A necessary condition to
satisfy this constraint is that πHk (u)/πHk (u − 1) = ρk, for all u = 1, . . . Tk. Let us start by
writing down the global balance equation associated with state u, with 0 < u < Tk:

πHk (u)(λk + ξk + γk) = πHk (u+ 1)ξk + πHk (u− 1)γk ,

which can be rewritten as:
λk + ξk + γk = ρkξk +

γk
ρk
. (5.9)

Moreover, we have to satisfy the GBEs of states Tk and Tk + 1:{
πHk (Tk)(λk + ξk + γk) = πHk (Tk + 1)yk + πHk (Tk − 1)γk

πHk (Tk + 1)(yk + λk) = πHk (Tk)γk
(5.10)

The last condition we need to satisfy is that the reversed rate of the transitions with rates
yk and ξk − yk must be equal to the reversed rate of the transitions with rate ξk, i.e.:

πHk (Tk + 1)

πHk (Tk)
yk = ξk − yk = ρkξk . (5.11)
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Notice that we have only one free variable, yk, to satisfy Equations (5.9), (5.10), (5.11).

Lemma 1. The model depicted in Figure 5.6 is quasi reversible if:

yk =
1

2

(
ξk − γk +

√
(λk + γk + ξk)2 − 4ξkγk

)
. (5.12)

In this case we have the following equilibrium distribution:

πHk (u) =

{
πHk (0)ρuk if u ≤ Tk
πHk (0)ρTkj

γk
λk+yk

if u = Tk + 1
(5.13)

with

ρk =
λk + γk + ξk −

√
(λk + γk + ξk)2 − 4ξkλk

2ξk
(5.14)

and:
πHk (0) = (1− ρk) .

Proof. First we derive ρk from Equation (5.9) which gives:

ρk =
λk + γk + ξk ±

√
(λk + γk + ξk)2 − 4ξkλk

2ξk
.

We choose the solution given by Equation (5.14) because it is the only one that admits a
positive solution for yk.
From the second equation of System (5.10) we derive πHk (Tk + 1)/πHk (Tk) = γk/(λk + yk).
If we divide both sides of the first equation for πH(Tk) and substitute the expression of
πHk (Tk + 1)/πHk (Tk) = γk/(λk + yk), we obtain:

λk + ξk + γk =
γkyk
λk + yk

+
γk
ρk
, (5.15)

that can be reduced to a linear equation in yk whose solution is given by Expression (5.12).
We can prove that yk is positive when all the other rates are also positive. At this point
we have proved that for this choice of yk we have:

• πHk (u)/πHk (u− 1) = ρk for all 0 < u ≤ Tk

• πHk (Tk + 1)/πHk (Tk) = γk/(λk + yk)

and hence the equilibrium distribution of Equation (5.13) can be readily derived. How-
ever, in order to prove that the model is quasi-reversible we still have to check the re-
versed rates of the dotted transitions of Figure 5.6. Notice that the reversed rates of the
transitions with forward rate ξk from state u to u− 1 is ρkξk. This is equal to the reversed
rate of the transition with forward rate yk which is γkyk/(yk + λk) as can be seen by com-
paring Equation (5.15) and the GBE (5.9). It remains to prove that ξk − yk is positive and
that its reversed rate, which is equal to its forward rate, is ρkξk. The verification of this
equality is purely algebraic. Finally, we derive the expression of πHk (0) by normalising
the stationary probabilities, i.e.:

Tk∑
u=0

πHk (0)ρuk + πHk (0)ρTkk
γk

λk + yk
= 1 .
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After some algebraic reductions one obtains:

πHk (0) =

[
1− ρTk+1

k

1− ρk
+

ρTkk γk
λk + yk

]−1

= (1− ρk) ,

as required. This concludes the proof.

Theorem 5.2 gives the product-form equilibrium distribution for this model. Let H(t) be
the CTMC underlying a set of ageing objects with maximum age and partial rejuvenation.

Theorem 5.2. The stochastic process H(t) in which the rates satisfy the condition of Lemma 1
has the product-form equilibrium distribution:

πH(u) =
K∏
k=1

πHk (uk) (5.16)

where ρk is the solution of the non-linear system of equations (5.4)-(5.5) and πHk is given by Equa-
tion (5.13) where ξk = xk + η/K.

Proof. The proof follows the same steps as that of Theorem 5.1 given Lemma 1 stating the
quasi-reversibility of the model in Figure 5.6.

Corollary 1 (Partial rejuvenation probability). The model has a product-form if at the ar-
rival of a partial rejuvenation signal at an object in state Tk+1, the probability of changing
its state to Tk is:

pk =
ξk − γk − λk +

√
(γk + λk + ξk)2 + 4γkξk

2ξk
, (5.17)

where ξk = xk + η/K.

Proof. The expression is obtained by simply computing yk/ξk, since ξk is the rate at which
the partial rejuvenation signal arrives at the object.

The following result is important for understanding the connections between the model
studied in Section 5.1.3 with unbounded ageing and the one considered here. The result
is in some sense surprising since it basically states that with the definition of rate yk as
specified by Equation (5.12) we have two enjoyable properties: the first is that the equi-
librium distribution is in product-form and hence analytically tractable, and the second
is that the stationary probability of observing a state u, with 1 ≤ u ≤ Tk is the same in
the model with unbounded ageing and that with bounded ageing. Therefore, in a practi-
cal situation in which the object ageings are handled by timers, one can replace the ideal
model with unbounded ageing with the one proposed in this section while maintaining
the same performance indices, provided that the probability of rejuvenating an object k
in state Tk + 1 upon the arrival of a partial rejuvenation signal is set according to Equa-
tion (5.17).
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Corollary 2 (Equivalence corollary). Given the CTMCs X(t) and H(t) and let πX and πH

be their equilibrium distribution functions. Then

πH(u) =
K∏
i=1

gk(uk) ,

where u = (u1, . . . , uK) and

gk(uk) =

{
πXk (uk) if 0 ≤ uk ≤ Tk∑∞

u′=Tk+1 π
X
k (u′) if uk = Tk + 1

Therefore, we can see H(t) as an aggregation of X(t) that preserves the equilibrium dis-
tribution and the product-form.

It is worth note that H(t) is not a lumping (neither strong nor exact [71, 87]) of X(t).
Moreover, we observe that the choice of yk can be interpreted as the conditional transition
rate from state Tk + 1 to state Tk of object k considered in isolation:

yk =
πXk (Tk + 1)∑∞
u′=Tk+1 π

X
k (u′)

ξk .

5.2.5 Application: Revisiting the TTL cache with partial rejuvenation

In Section 5.2 we have shown an application of our theoretical findings in the analysis of
a single TTL cache with partial rejuvenation. We called the model ideal since its actual
implementation would be prohibitive because it would requires to associate a timer with
each object, including those which are not in the cache. However, we overcome this
problem by using the model presented in this section. For each object k we have a timer
that is handled only when the object is in the cache, i.e., its state uk is 0 ≤ uk ≤ Tk. When
the object is evicted from the cache, its state is Tk + 1. The partial rejuvenation signal
has a probabilistic effect on the objects outside the cache, i.e., they are rejuvenated with
probability pk as specified by Equation (5.17) or they stay in state Tk + 1 with probability
1 − pk. In both cases the object instantaneously propagates the signal to the following
object k+. By Corollary 2 the performance measures are the same as derived in Section 5.2.
We now address the inverse problem, i.e., finding γk and Tk such that the probability of
copying in the cache an object which is outside, i.e., in state Tk + 1, is qk and the expected
eviction time is Rk. From a theoretical point of view, the problem has a simple solution:

γk =
(1− qk)(λ+ qkξk)

qk
, (5.18)

then we may choose Tk in such a way that the expected eviction time is Rk, i.e., dTk =
γkRke. Nevertheless, the evaluation of Equation (5.18) requires the solution of the non-
linear system (5.4)-(5.6) which may be computationally expensive to be performed dy-
namically. A dynamic adjustment of γk in order to obtain the desired probability qk can
be formulated by observing that pk in monotonic on γk in Equation (5.17). Indeed, we
have:

dpk
dγk

=
1

2ξ

(
−1 +

γk + λk − ξk√
(γk + λk + ξk)2 − 4γkξk

)
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which is always negative for positive transition rates. In other words, the dynamical con-
trol of pk in order to reach the desired value qk can be performed by simply augmenting
γk (and reducing Tk) if the current value of pk is higher than qk, and by reducing it when
it is lower.

5.3 Conclusion

With our work, we propose two novel product-form models that can be applied for the
analysis of systems with ageing objects. These two models differ because in one the
objects have an unbounded age while in the other there is a maximum threshold for the
age. The approach that we propose can be applied also for the analysis of heterogeneous
systems, i.e., systems in which some objects have a maximum threshold for the age and
some others have not.
Informally, we can say that the peculiarity of these models is that the transitions are not
”local” -as in most of product-form models- i.e., they may change the states of all the ob-
jects instantaneously and the effect of a partial rejuvenation event depends on the global
state of the model.
We show that the CTMC underlying the model of objects with limited ageing can be
seen as an aggregation of the chain of the model with unbounded ageing. This allowed
us to prove some equivalence results on the expected performance indices. The conse-
quences of these equivalences are important for practical applications especially if the
system must maintain a timer for the objects. Indeed, by introducing a maximum age,
we avoid maintaining the timers of all the objects that reach this age thus reducing the
computational effort required for monitoring the object ageing. We used as case-study
the analysis of a cache with TTL policy and partial rejuvenation of the objects.
The results can be extended in order to include the partial rejuvenation of clusters of ob-
jects (instead of all) and more sophisticated interactions among them in a similar fashion
of what is considered in [41]. Indeed, our model may be seen as a queueing network with
external independent Poisson arrival streams. The queues can only be partially flushed
(i.e., the customers in the network are reduced as computed by Algorithm 1) or totally
flushed, i.e., the number of customers in a single queue is set to 0. The exponential distri-
bution of the equilibrium distributions stated by Theorem 5.1 allows the introduction of
state-independent probabilistic customer routing.
The proposed model could also be further developed with the possibility of a probabilis-
tic insertion of an object in the cache, i.e., when an object is not in the cache and it is
requested, it can enter the cache with a probability q or remain outside with probability
1 − q. Moreover, we aim at overcoming the limitations of the IRM by allowing state-
dependent request rates so that the last requested objects will be associated with a higher
rate thus incorporating in the analysis the time-locality property of the network traffic.
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Chapter 6

Analysis of reversible computations

6.1 Introduction

Reversible computations have been widely studied from the point of view of functional
and energy consumption. In the literature, several authors have proposed various for-
malisms (mainly based on process algebras) for assessing the correctness or the equiv-
alence between reversible computations. In this chapter we propose the adoption of
Markovian stochastic models to assess the quantitative properties of reversible computa-
tions. Under some conditions, we show that the notion of time reversibility for Markov
chains can be used to efficiently derive some performance measures of reversible com-
putations. The importance of time-reversibility relies on the fact that, in general, the
process’s stationary distribution can be derived efficiently by using numerically stable
algorithms. We will reviews the main results about time-reversible Markov processes
and discusses how to apply them to tackle the problem of the quantitative evaluation of
reversible computations.

6.2 Motivations

Reversible computations have two execution directions: forward, corresponding to the
usual notion of computation, and backward that restores previous states of the execu-
tion. Various applications and problems related to reversible computations have been
widely studied in different research areas and from different viewpoints, including func-
tional analysis and energy consumption (e.g., [80, 96] and the references therein). Various
formalisms and models have been proposed in the literature to represent and assess qual-
itative properties of reversible computations such as their correctness or if two reversible
processes are equivalent in some terms. Most of the proposed approaches are based on
process algebras that do not include any notion of computation time [31, 80]. We focus
on the quantitative analysis and evaluation of reversible computations based on Markov
stochastic processes. The dynamic behaviour of the forward and backward computation
may be represented by stochastic models that include the notion of time. Hence, un-
der certain conditions, time-reversibility of stochastic processes can be applied to assess
quantitative properties of reversible computations.
Quantitative models based on Markov processes have been widely applied for the analy-
sis and evaluation of complex systems (see e.g., [44, 21]). Markov models and formalisms
have the advantage of efficient methods and algorithms for studying their behaviour. In
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particular, under appropriate stationary conditions one can derive the equilibrium state
distribution of a continuous-time Markov chain by applying algorithms with polynomial
time complexity in the process state space cardinality [103]. Several higher level for-
malisms that are widely applied for quantitative analysis are based on Markov processes,
including Stochastic Process Algebras (SPA), Stochastic Petri Nets (SPN), Stochastic Au-
tomata Networks (SAN) and Queueing Networks (QN). Although the quantitative anal-
ysis based on these formalisms can be obtained by the direct solution of the underlying
Markov chain, the state space dimension of the process in general grows exponentially
with the model dimension. This is known as the state-space explosion problem and be-
comes intractable from the computational viewpoint as the problem size increases. In
order to overcome this problem, various techniques have been proposed in the literature,
including the state-space reduction by aggregating (or lumping) methods, approximation
techniques, and the identification of product-form solutions for state probabilities of the
Markov chain. The product-form theory provides techniques to derive the equilibrium
state distribution of a complex model based on the analysis of its components in isolation.
As we said in Section 3.5, product-form models consist of a set of interacting sub-models
whose solutions are obtained by isolating them from the rest of the systems. Then, the
stationary state distribution of the entire model is computed as the (normalised) product
of the stationary state distributions of the sub-models. Various classes of product-form
models have been defined for different formalisms and some of them can be analysed
through efficient algorithms with a low polynomial complexity in the model dimension.
Product-form has been widely investigated for queueing network models [14, 74]. These
product-form models have simple closed-form expressions of the stationary state distri-
butions that lead to efficient solution algorithms. For more general Markov models and
by the compositionality property of Stochastic Process Algebra, the Reversed Compound
Agent Theorem (RCAT) [60, 11] provides a product-form solution of a stationary CTMC
defined as a cooperation between two sub-processes under certain conditions, as we saw
in Section 3.7.3. This result gives a unified view of most of the commonly used product-
forms.

The concept of time-reversibility of Markov stochastic processes has been introduced and
applied to the analysis of Markov processes and stochastic networks by Kelly [76]. A re-
versible Markov process has the property that when the process obtained by reversing
the direction of time is reversed has the same probabilistic behaviour as the original one.
Early applications of these results lead to the characterisation of product-form solutions
for some models with underlying time-reversible Markov processes, such as closed ex-
ponential Queueing Networks [14, 58]. Also the RCAT characterisation of product-form
solutions is connected to time-reversibility: the solution is based on the definition of a
set of transition rates in the time-reversed process. Further notions of reversibility have
been introduced in [110, 76] for dynamically reversible processes where some states of
the direct and reversed processes are interchanged, and more recently the ρ-reversibility
for reversible processes with arbitrary state renaming [87, 86]. Some results on properties
and product-form solutions have been recently derived for this class of time-reversibility
[89]. We will survey the main results about time-reversible Markov processes and dis-
cuss how to apply them to address the problem of quantitative evaluation of reversible
computations. We recall the definition of time reversibility for continuous time Markov
processes, the main properties and its application for quantitative analysis. We present an
abstract model of continuous time Markov chain for representing and performance eval-
uating reversible parallel computations. Taking advantage of the process reversibility,
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the stationary distribution of the model can be efficiently derived by using numerically
stable algorithms. In particular we present some product-form results of reversible syn-
chronising automata by applying ρ-reversibility to the underlying Markov process.

6.3 Model and analysis

6.3.1 Time reversibility for CTMCs (ρ-reversibility)

Given a stationary CTMC, X(t) with t ∈ R, we call X(τ − t) its reversed process for all
τ ∈ R. We denote by XR(t) the reversed process of X(t). It can be shown that XR(t)
is also a stationary CTMC. Given a state renaming function ρ (a bijection from S to S),
we say that X(t) is ρ-reversible if it is stochastically identical to XR(t) modulo the state
renaming ρ [86, 87]. Intuitively, an external observer is not able to distinguish X(t) from
XR(t) once the state renaming function ρ is applied to rename the states. Notice that if
ρ is the identity then we simply say that X(t) is reversible, whereas if ρ is an involution,
then we say that X(t) is dynamically reversible [110, 76].
We can decide if a CTMC is ρ-reversible in two ways:

• the first involves the steady-state distribution of the CTMC;

• the latter is based on an extended formulation of Kolmogorov’s criteria [76], i.e.,
requires the analysis of the cycles in the reachability graph.

Lemma 2. Given a stationary CTMC X(t) with state space S, if there exists a collection
of positive real numbers π summing to unity and a bijection ρ from S to S such that:

qs = qρ(s) ∀s ∈ S (6.1)

π(s)q(s, s′) = π(ρ(s′))q(ρ(s′), ρ(s)) ∀s, s′ ∈ S, s 6= s′ (6.2)

then X(t) is ρ-reversible and π(s) is its steady-state distribution.

Equation 6.1 states that the residence time of a state and its renaming must be equal.
Notice that this condition is trivially satisfied if ρ is the identity, i.e.,X(t) is reversible. The
set of equations 6.2 are called detailed balance equations. In case the renaming function
ρ is known, it is possible to use the detailed balance equations to compute the chain’s
steady-state distribution instead of the more complex GBE.

Lemma 3. Given a stationary CTMCX(t) with state space S and let ρ be a renaming on S.
X(t) is ρ-reversible with respect to ρ if and only if for every finite sequence s1, s2, ..., sn ∈
S:

q(s1, s2)q(s2, s3)q(sn−1, sn)q(sn, s1) =

q(ρ(s1), ρ(sn))q(ρ(sn), ρ(sn−1))q(ρ(s3), ρ(s2))q(ρ(s2), ρ(s1))
(6.3)

and Equation 6.1 holds ∀s ∈ S.

6.3.2 Modelling reversible computations with ρ-reversible Markov processes

Reversible computations are characterised by the fact that they have two execution di-
rections: the forward and the backward that restores past states of the computation. Our
idea of the implementation of purely reversible computations is similar to that consid-
ered in [96], i.e., the code being executed is naturally reversible. By purely reversible
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Figure 6.1: Model for a reversible sequential computation.

computations we mean those computations in which each step can be undone and there
are no segments in which the execution direction is forward only. For instance, the pro-
grammer may have used Janus [111] which is a programming language for reversible
computations or a subset of a standard language equipped with a reversible compiler.

6.3.2.1 Modelling reversible programming structures

In this section we describe a modelling methodology for the reversible programming
structures such as sequences, branches, cycles and sequences with checkpoints.

Sequential computations. The simplest reversible computation is the reversible sequen-
tial one shown in Figure 6.1 where si are the states of the computation and the arc labels
denote the transition rates, f standing for forward rates and r for the reversed ones. In
this model every state can be restored in one step. For each state we define a probabilistic
law that decides if the computation will proceed in the forward or backward direction. In
practice these probabilities can be derived by the statistical analysis of the software exe-
cution or by the knowledge of the intrinsic law that governs the probability of proceeding
in one direction or the opposite.
Assume that the residence time in state sn is exponentially distributed with rate fn+rn−1,
then the probability of a forward transition given that X(t) (i.e. the Continuous Time
Markov Chain) is in state sn is fn/(fn + rn−1) and the probability of a backward tran-
sition is rn−1/(fn + rn−1). This follows from the properties of the exponential random
variable (see, e.g., [98]) and the so called race policy.
If the Markov chain depicted in Figure 6.1 is ergodic then it is reversible. The ergodic-
ity is trivially satisfied if there exist lower and higher boundary states. The former is a
state that does not allow a backward computation while the latter is a state that does not
allow a forward computation. According to Lemma 3 we have that the forward cycle

sn
fn−→ sn+1

rn−→ sn has itself as inverse cycle and therefore the conditions of Lemma 3 are
satisfied.

Branches. Branches can be modelled in a similar way to the one used for the sequen-
tial computations. Notice that, as commonly done in stochastic modelling, we model
the branch by means of the probabilistic behaviour of the executed process. Although
a modelling approach taking into account the detailed description of the system state is
theoretically possible, in many cases this is not practically feasible due to the high cardi-
nality that would be reached by the state space.
The forward rates f is split among all the possible branches that we have to reach. Sup-
pose that the system is going forward and state s1 is associated with a branch that pro-
ceeds to state s2 with probability p and to s3 with probability 1 − p (see Figure 6.2). In
this case, let 1/f be the expected residence time in state s1, then the transition rates are
f1 = fp and f2 = f(1− p). Following the reasoning proposed in the previous paragraph
on sequential computations, it is easy to see that the conditions of Lemma 3 are satisfied
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Figure 6.2: Model for a reversible branch.

s2

· · · s1 s3

s4

s5

· · ·

r1

f2f1

r4

f ′1

r2

f3

f4

r3

r1

Figure 6.3: Model for a reversible cycle.

by choosing ρ as the identity.

Cycles. Cycles can be modelled as long as each transition they consist of can be undone.
Let us consider the model of Figure 6.3, where we can choose more than one possible cy-
cle but for simplicity we focus just on the cycle s1, s2, s3, s4 as the forward direction and
s1, s4, s3, s2 as the reverse one (although similar reasoning can be done choosing other
cycles). The computation at state s1 can proceed by entering the cycle s1, s2, s3, s4 or by
moving to state s5. The probability of entering the cycle given that the computation will
proceed in the forward direction is f1/(f1 + f ′1) and the number of (forward) iterations
are geometrically distributed. Modelling the exact number of iterations of the cycles is
possible but, in general, will drastically increase the number of model states. Let us focus
on the cycle s1, s2, s3, s4 and its inverse s1, s4, s3, s2. If we apply Lemma 3 with ρ being the
identity function, we notice that the conditions are satisfied for the cycles consisting of
two states (e.g., s3, s4, s3) but we need also to consider the cycle s1, s2, s3, s4 whose inverse
is s1, s4, s3, s2 that originates a rate-condition for the ρ-reversibility: f1f2f3f4 = r1r2r3r4.
In general, in cycles, the product of the forward rates must be equal to the product of the
corresponding backward rates. This is trivially satisfied if the time required to perform a
forward computation follows the same distribution of that required to undo it.

Sequences with checkpoints. In the previous paragraphs we have shown how it is pos-
sible to model reversible sequential computations, branches and cycles by using a re-
versible CTMC, i.e., by taking the identity as ρ function. In the context of modelling
reversible computations, the notion of ρ-reversibility is important because it allows the
specification of atomic sequences that can be only fully reversed. For instance, consider
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Figure 6.4: Model for a reversible computation with checkpoints.

a system atomic transaction whose correctness is tested at a certain checkpoint. If an
invalid state is detected, then all the operations performed by the transaction must be
undone. An example of such a computation is shown in Figure 6.4. In order to prove the
ρ-reversibility of the model, we define function ρ as:

ρ(s)


CK1 if s = CK1

CK2 if s = CK2

s′i if s = si 1 ≤ i ≤ n
si if s = s′i 1 ≤ i ≤ n

By Lemma 3 we observe that the residence time of si must have the same expectation of
that of its ρ-renaming, s′i (and vice versa). Therefore, we have the rate condition for the ρ-
reversibility whose interpretation is that the time required to perform an operation in the
transaction must follow the same probabilistic law of that required to undo it. For what
concerns the cycle analysis, observe that CK1, s1, ..., sn, CK2, s

′
n, ..., s

′
1, CK1 has itself as

inverse and hence the condition 6.3 is satisfied.

6.3.2.2 Modelling assumptions and steady-state

In this section we discuss two crucial points of the modelling technique that we propose:

• How does the exponential assumption of the distribution of the state residence time
impact on the expressiveness of this modelling framework?

• How do we interpret the steady-state distribution of Markov chains in terms of
quantitative properties of the reversible computations?

The exponential assumption can be relaxed by using distributions whose coefficient of
variation may be higher or lower than that of the exponential. This is achieved by split-
ting a state whose residence time is not exponential into a set of micro-states each of
which has an exponential residence time. Coxian random variables are formed by ex-
ponential stages and can approximate any distribution with rational Laplace transform
with arbitrary accuracy (see, e.g.,[75]). The literature proposing algorithms to fit data
statistics to a distribution by means of a combination of the exponential stages is very
rich (e.g., [23, 93]). Informally, the steady-state distribution of a CTMC is the probability
of observing a given state when the time elapsed since the first observation is very large
(the time required to reach the stationary behaviour depends on the magnitude of the
second eigenvalue of the infinitesimal generator). For instance, in stationary reversible
simulations [96] the state of the process after a period of warm up, is independent of its
initial conditions and hence our framework can be applied easily. The assumption that
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each state transition can be undone includes the transitions that take the model to the
state encoding the result of the computation. As a consequence, it is not obvious how the
steady-state distribution can give an idea about the time required to obtain the result in a
reversible computation. In stochastic analysis this problem is connected to the computa-
tion of the (moments of the) distribution of the time to absorption. Basically, we assume
that once the chain enters in one of the states encoding the result, then they cannot leave
them. Unfortunately, to the best of our knowledge, time-reversibility does not help in the
exact computation of the distribution of the time to absorption. Nevertheless, approxi-
mating methods which may take advantage from the process’ reversibility are available
and are quite accurate when the expected computation time is much higher than the ex-
pected transition delays of the model (see, e.g., [12, 4]). The steady-state distribution may
also be interpreted as the fraction of a large number of processes which are in a given
state (in the long-run) once they are run in parallel and they restart their computation
after terminating it.

6.3.3 Cooperation of reversible parallel computations

In section 3.3 we presented Stochastic Automaton (SA) as an abstract model based on
continuous time Markov chains, this model can be used for the performance evaluation
of reversible parallel computations. Differently from those functional models that repre-
sent explicitly the parallel composition of reversible computations, we do not consider
any notion of causality. Instead we can use SA for analysing the dynamic behaviour of
those computations that can be realized in a reversible fashion, where the underlying
conditional probabilities play the role of causality.

Notice that, according to the definition of SA, an automaton obtained by a composition
does not have passive types. This is reasonable if we consider the fact that in this case
the resulting automaton has an underlying CTMC and then we can study its equilibrium
distribution. In [89] we can see that this semantics for pairwise SA synchronisations can
be easily extended in order to include an arbitrary finite number of pairwise cooperating
automata.

6.3.3.1 Reversible Stochastic Automata

We now introduce the notion of ρ-reversibility for stochastic automata. We present a
definition in the style of the Kolmogorov’s criteria stated in [76]. We assume the existence
of a bijection (renaming) ←. from TP to TP such that for each forward action type a there
is a corresponding backward action type

←
a with

←
τ = τ . In most of practical cases, ←. is

an involution, i.e.,
←
←
a = a for all a ∈ TP , and hence the semantics becomes similar to the

one proposed in [31]. We say that ←. respects the active/passive types of an automaton P
if
←
τ = τ and for all a ∈ TP \ {τ} we have that a ∈ ActP ⇔

←
a ∈ ActP , (or equivalently

a ∈ PassP ⇔
←
a ∈ PassP ).

The notion of ρ-reversible automaton is defined as follows.

Definition 6.1. (ρ-reversible automaton) Let P be an irreducible stochastic automaton.
Assume that:

• ρ : SP ← SP is a renaming (permutation) of the states;

• ←. is a bijection from TP to TP that respects the active/passive typing.
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We say that P is ρ-reversible if:

1. q(s, a) = q(ρ(s), a), for each state s ∈ SP ;

2. for each cycle φ = (s1
a1
; s2

a2
; ...

an−1
; sn

an
; s1) in P there exists one cycle

←
φ =

(ρ(s1)
←
a n
; ρ(sn)

←
a n−1
; ...

←
a 2
; ρ(sn)

←
a 1
; ρ(s1)) in P such that:

n∏
i=1

q(si, si+1, ai) =
n∏
i=1

q(ρ(si+1), ρ(si),
←
a i) with sn+1 ≡ s1

We say that
←
φ is the inverse of cycle φ. If ρ is the identity function we simply say that P

is reversible.

Notice that the inverse cycle
←
φ of a cycle φ is unique. This can be easily derived from

the fact that, by definition of stochastic automaton, there exists at most one transition
between any pair of states with a certain type a ∈ TP . The following theorem states that
any ρ-reversible automaton satisfies a set of detailed balance equations similar to those
presented in Lemma 2.

Theorem 6.2. (Detailed balance equations) If P is ergodic and ρ-reversible then for each pair of
states s, s′ ∈ SP , and for each type a ∈ TP , we have:

πP (s)q(s, s′, a) = πP (s′)q(ρ(s′), ρ(s),
←
a )

The next proposition says that the states of an ergodic ρ-reversible automaton have the
same equilibrium probability of the corresponding image under ρ.

Proposition 9. (Equilibrium probability of the renaming of a state) If P is an ergodic and
ρ-reversible automaton then for all s ∈ SP :

πP (s) = πP (ρ(s))

6.3.4 Product-form result

It is well-known that the cardinality of the state space of complex systems can grow ex-
ponentially with the structure of the model. Even worse, the numerical algorithms for
deriving the equilibrium distribution become numerically unstable and prohibitive in
terms of computation time. In this section we present the product-form result for net-
works of ρ-reversible synchronising automata. First we prove that the parallel compo-
sition of ρ-reversible automata is still ρ-reversible. Then, based on this result, we prove
that the equilibrium distribution of the composition of two ρ-reversible automata can
be derived from the equilibrium distribution of the cooperating automata considered in
isolation (i.e., without generating the joint state space and solving the system of global
balance equations). The analysis in isolation requires us to set a rate for the passive tran-
sitions. To this aim, in [89] we can see that, thanks to the rescaling property of ρ-reversible
automata, we can choose an arbitrary positive constant.

Theorem 6.3. (Closure under ρ-reversibility) Let P1 and P2 be two ρ1- and ρ2-reversible au-
tomata with respect to the same function ←. on the action types. Then, the composition P1

⊗
P2

is ρ-reversible with respect to the same ←. , where, for all (s1, s2) ∈ SP1 × SP2 :

ρ(s1, s2) = (ρ1(s1), ρ2(s2))
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Figure 6.5: Models for P1 (left) and P2 (right)

The next theorem provides the product-form result for networks of ρ-reversible stochastic
automata. In order to understand the relevance of this result, consider a set of M coop-
erating automata and assume that each automaton has a finite state space of cardinality
N . The state space of the network may have the size of the Cartesian product of the state
space of each single automaton, i.e., in the worst case, its cardinality is NM . Since the
computation of the equilibrium distribution of a CTMC requires the solution of the linear
system of global balance equations, its complexity is O(N3M ). For ρ-reversible automata,
by applying Theorem 6.2, we can efficiently compute the equilibrium distribution of each
automaton in linear time on the cardinality of the state space, and by Theorem 6.4 the
complexity of the computation of the joint equilibrium distribution is O(NM).

Theorem 6.4. (Product-form solution) Let P1 and P2 be two ergodic ρ1- and ρ2-reversible au-
tomata with respect to the same function ←. on the action types, and let π1 and π2 be the equi-
librium distributions of the CTMCs underlying P1 and P2, respectively. If P1

⊕
P2 is ergodic

on the state space given by the Cartesian product of the state spaces of P1 and P2, then for all
(s1, s2) ∈ SP1 × SP2 :

π(s1, s2) = π1(s1)π2(s2)

where π is the equilibrium distribution of the CTMC underlying P1
⊗
P2. In this case we say

that the composed automaton exhibits a product-form solution.

6.4 Discussion

Notice that this analysis, differently from those based on the concepts of quasi-reversibility
[76, 61] and reversibility, does not require a re-parameterisation of the cooperating au-
tomata, i.e., the expressions of the equilibrium distributions of the isolated automata are
as if their behaviours are stochastically independent although they are clearly not.

6.4.1 Example

In this section we describe a model for the parallel composition of two reversible com-
putations. Consider the stochastic automata P1 and P2 depicted in Figure 6.5. P1 and
P2 communicate on the reversible channels a, b and c. Channel a is unreliable, i.e., a
packet sent from P1 to P2 is received by P2 with probability p and lost with probability
1 − p. P executes its computations in the forward (s0 → s1 → s2 → s3 → s4 → s5 or
s0 → s1 → s2 → s3 → s4 → s6) or backward (s5 → s4 → s′3 → s′2 → s1 → s0 or
s6 → s4 → s′3 → s′2 → s1 → s0) direction. It has two checkpoints modelled by states s1

and s4. P2 moves from t0 to t1 or t2 with a probabilistic choice upon the synchronisation
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with type a. P1 is ρ1-reversible with ρ(si) = si for i = 0, 1, 4, 5, 6 and ρ1(si) = s′i and
ρ1(s′i) = si for i = 2, 3, while P2 is ρ2-reversible where ρ2 is the identity function. Notice

that a,
←
a , b, c ∈ ActP1 = PassP2 and

←
b ,
←
c ∈ ActP2 = PassP1 .

We assume that the model encodes the result of the computation in the states (s5, t2), (s5, t4),
(s6, t2), (s6, t4). We aim to compute the equilibrium probability of these four states that
represents the fraction of time that the process spends in the states that encode the desired
result. Now we use Theorem 6.2 to derive the equilibrium distribution of the isolated au-
tomata. Let us consider an arbitrary state in P , say s0. We can immediately derive π1(s1)
by using the detail balance equation and we obtain:

π1(s0)λ(1− p) = π1(s1)µ(1− p)

which gives π1(s1) = π1(s0)λ/µ.
Then, we derive π1(s2) using the detailed balance equation with s1 and obtain:

π1(s2) = π1(s0)λγ1/(µγ2)

By Proposition 9 we immediately have π1(s′2) = π1(s2).
Then we derive:

π1(s′3) = π1(s3) = π1(s0)λγ1/(µγ3)

π1(s4) = π1(s0)λγ1/(µγ4)

π1(s5) = π1(s0)λγ1νq/(µγ4)

π1(s6) = π1(s0)λγ1ν(1− q)/(µγ4)

It remains to derive π1(s0) that is computed by normalising the probabilities. We can
apply the same approach to derive the equilibrium distribution of P2, obtaining:

π2(t1) = π2(t3) = π2(t0)
1

2

π2(t2) = π2(t0)
1

2α

π2(t4) = π2(t0)
1

2β

Again, by normalising the probabilities, we obtain π2(t0). By applying Theorem 6.4 we
can now easily derive the desired result:

π(s5, t2) + π(s5, t4) + π(s6, t2) + π(s6, t4) =

π1(s5)π2(t2) + π1(s5)π2(t4) + π1(s6)π2(t2) + π1(s6)π2(t4).

Notice that we have not built the joint state space and also that the automata P1 and P2

are not independent. For example, when P2 is in state t1 and P1 is in checkpoint s4, P2

moves to t2 only if P1 decides neither to roll back to checkpoint s1 nor to move to s5.
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6.5 Conclusion

In this chapter we have proposed an abstract modelling framework for the quantitative
analysis of reversible computations. The main idea is to exploit the time-reversibility
property of Markov processes in order to provide a computationally efficient way of de-
riving the desired performance indices. We have shown that, under some conditions,
the proposed approach is suitable to be applied for a compositional formalism based
on labelled stochastic automata. As a consequence the advantages (reduction of time-
complexity and improvement of algorithms’ numerical stability) of time-reversibility are
applicable also for the analysis of the cooperation of automata that are proved to have
product-form steady-state distributions.
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Chapter 7

Product-form for models at discrete
time

7.1 Introduction

Probabilistic I/O automata (PIOAs) provide a modelling framework that is well suited
for describing and analysing distributed and concurrent systems. They incorporate a no-
tion of probabilistic choice as well as a notion of composition that allows one to construct
a PIOA for a composite system from a collection of simpler PIOAs representing the com-
ponents. Differently from other probabilistic models, the local actions of a PIOA are as-
sociated with time delays governed by independent random variables with continuous-
time exponential distributions. Our contribution consists in studying the product-form
property for PIOAs. Our main result is the formulation of a theorem giving sufficient
conditions for a composition of PIOAs to be in product-form and hence to efficiently
compute its stationary probabilities.

7.2 Motivations

Probabilistic Input/Output automata (PIOAs) have been introduced in [102, 101] as a
formalism aimed at modelling distributed and concurrent systems in a compositional
way. However, the interest for their application goes beyond the purely engineering
applications [13]. PIOAs incorporate a notion of probabilistic choice and time delays
for locally controlled actions that distinguish them from earlier work [82]. The defini-
tion of formalisms for modelling probabilistic systems has been extensively investigated
in the literature both in the field of process algebras and automata theory. One of the
key-factors that characterises the proposed methodologies is clearly the semantics of the
composition. Giving a reasonable way of composing probabilistic systems is challenging
because the probabilities that are specified within each single component have a “local”
meaning. In general, they are not sufficient to describe the probabilistic behaviour of the
joint model without further assumptions such as the time scale. In the PIOA model this
problem is solved by associating an exponentially distributed delay parameter with each
state. Intuitively, a PIOA first draws a random delay time from an independent exponen-
tially distributed random variable and then performs the probabilistic choice. Therefore,
in the composition of a collection of PIOAs, the usual race condition policy used in [70, 97]
is applied. Another feature of PIOAs is the way they handle the synchronisations which

137
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is inspired by the I/O automata originally defined in [82]. PIOAs communicate via in-
put and output actions and can perform internal non-communicating transitions. The
communication is seen as a message transmitted on a labelled channel (that we call syn-
chronisation label) by the output automaton. The synchronising automaton can read the
message and perform a probabilistic transition accordingly. For each PIOA the sum of
the probabilities associated with output and internal transitions, called locally controlled
transitions, must be 1. On the other hand, upon the reception of a message, the PIOA im-
mediately reacts, i.e., the sum of the probabilities associated with the message-receiving
transitions outgoing from each state of a PIOA must be 1 for each of them separately (in-
cluding the possible self-loops).
PIOAs share with many other formalisms for the quantitative analysis of computer sys-
tems the property of having an underlying Markov process that describes the model evo-
lution, and the problem of the exponential growth of the cardinality of the state spaces
which makes the derivation of the quantitative indices unfeasible even for relatively small
systems. The problem of defining compositional approaches to the quantitative analysis
of PIOAs has been addressed in [102] for what concerns the transient behaviour. To the
best of our knowledge, the problem of defining a compositional approach for studying
the stationary behaviour of PIOAs remains open. In the literature of queueing networks
this problem is often associated with the so called product-form analysis which is described
in [76] and then extended in numerous subsequent works (see, e.g., [46, 43, 11]). In the last
decade the product-form approach has been successfully extended to include Markovian
process algebras [61, 66]. Informally, a product-form model can be studied without con-
structing the stochastic process underlying the composition of the simpler components
forming the systems, but these can be studied in isolation. Hence, the computational
effort required to compute the stationary quantitative indices is highly reduced. Our
contribution consists in studying the product-form property for PIOAs. Our main result
is the formulation of a theorem giving sufficient conditions for a composition of PIOAs
to be in product-form and hence to efficiently compute the stationary probabilities.

7.2.1 Characterisation of Product-forms

The literature about the characterisation of product-forms for various formalisms is very
rich. Since the pioneering work of Kelly [76], several other works have addressed the
problem of characterising the product-form of queueing networks in terms of differ-
ent properties. These works have been extended with the introduction of Gelenbe’s G-
Networks [46] whose characterisation of the product-form is surveyed in [27, 83]. Similar
efforts have been devoted to stochastic Petri nets product-forms [10] and Markovian pro-
cess algebra [61]. The common denominator among all these contributions is that the
considered models are based on continuous-time transition rates. Fewer results are avail-
able for probabilistic models expressed in terms of probabilistic process algebras or prob-
abilistic automata. In the latter context we mention the results by Fourneau in [39, 40] but
the synchronisation semantics which is considered is different from that of PIOAs and
hence the results are not directly applicable.

7.2.2 Embedded Marov Chains and Uniformization

In many cases it is possible to reduce the analysis of a CTMC to that of a corresponding
DTMC. There are two main approaches to associate a DTMC with a CTMC (see, e.g.,
[104]):
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• The uniformisation method;

• The construction of the so called embedded chain.

A CTMC is fully characterised by its infinitesimal generator matrix Q where qij is the
transition rate from state i to j for i 6= j while the diagonal elements qii = −qi are defined
as the negative sum of the non-diagonal elements of each row while the DTMC is fully
characterised by its transition probability matrix P where pij is the transition probability
from state i to j for i 6= j while the diagonal elements pii is the probability to remain in
the state i.
Let X(t) be a CTMC such that there exists a positive real number φ as an upper limit
for its rates (i.e. qi ≤ φ for all i ∈ S). We define the DTMC XU (t) with the same state
space of X(t) by uniformisation, i.e., we consider the maximum rate ν that appears in the
CT system (i.e. ν = max{qi, i ∈ S}) and define the transition probabilities of XU (t) as
follows:

pij =

{
qij
ν if i 6= j

1− qi
ν if i = j .

Thus the steady-state probability distribution of XU (t) and X(t) are the same and some-
times it may be more convenient to study the uniformised chain rather then that at con-
tinuous time.

Another possible way of analysing a CTMC X(t) is through the corresponding embedded
Markov chainXE(t). If we consider the Markov process only at the moments upon which
the state of the system changes, and we number these instances 0, 1, 2, etc., then we get a
DTMC. This Markov chain has the transition probabilities pij for i, j ∈ S as:

pij =
qij∑
k 6=i qik

for j 6= i (7.1)

and pii = 0. If π is the steady-state distribution of the DTMC (notice that it maybe pe-
riodic) one may derive the distribution π∗ (which coincides in the continuous time with
the limiting distribution even if the embedded DTMC is periodic) of the corresponding
CTMC, assuming its ergodicity, as:

π∗i =
πiq
−1
i∑

i∈S πiq
−1
i

. (7.2)

With the uniformisation we must know the entire system to compute the uniformisation
of a single state but with the corresponding embedded chain we only have to know the
rates of a single state. Both of them unlickily aren’t bijective functions, e.g. a system will
have the same uniformized or embedded chain with respect to a system with the same
state space and with doubled rates. As we can see in Figure 7.1 and in Figure 7.2. This
behaviour can be explained as the systems, in the continuous case, have different rates
but the transitions take place with the same proportion. This difference is flattened pass-
ing in the discrete case in which transitions may occur only in uniform slots of time.
We will see that the definition of the embedded DTMC has an important role in the inter-
pretation of the synchronisation among PIOAs.
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Figure 7.1: Two examples of CTMC Uniformization.
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Figure 7.2: Two examples of CTMC Embedded chains.
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7.2.3 Stochastic Automata

As we saw in Section 3.3, many high-level specification languages for stochastic discrete-
event systems are based on labelled automata [16, 69, 70, 97] equipped with a compo-
sition operator and timed actions whose delays are governed by independent random
variables with continuous-time exponential distributions. Models of stochastic automata
presented in [88, 89] which draw a distinction between active and passive action types,
and forming the composition of automata, only active/passive synchronisations are per-
mitted. An analogous semantics is proposed for Stochastic Automata Networks (SAN)
in [97].

7.2.4 PIOAs

As we saw in Section 3.4, in [102, 101], Smolka, Stark and Wu defined the class of prob-
abilistic I/O automata (PIOA) which are a model for distributed or concurrent systems
that incorporates a notion of probabilistic choice together with a composition rule. This
model is based on a combination of reactive and generative transitions. In a reactive sys-
tem, probabilities are distributed over the outgoing transitions labelled with the same
action, i.e., actions are treated as being provided by the environment and there are no
probabilistic assumptions about the behaviour of the environment. On the other hand,
in a generative system, probabilities are distributed over all outgoing transitions from a
state, i.e., actions are treated as locally generated by the system. Note that in a generative
system there is no non-determinism present, while in a reactive system there is only ex-
ternal non-determinism.
In a probabilistic I/O automaton for every input action there is a reactive transition.
Moreover, it is assumed that each input action is enabled in each state of a PIOA. The
output and internal actions (called locally controlled actions) are treated generatively. At
most one generative probabilistic transition gives the local behaviour of each state. A
delay rate parameter δ is also added to each state.
PIOAs are an extension of the I/O model of Lynch and Tuttle [82] with probabilities. Our
simplified version of the definition is equivalent to that in [101] in the case of “ergodic”
PIOAs, which are those we considered in our work.

7.2.4.1 Delay Function

The state delay function δP is explained as follows: upon arrival in a state s, the PIOA
P chooses randomly the length of time it will spend in that state before executing its
next locally controlled (internal or output) transition. The random choice is made, in-
dependently of the other PIOAs in the system, according to an exponential holding time
distribution whose mean is the reciprocal 1/δP (s) of the delay parameter δP (s) associated
with that state. If no locally controlled actions are enabled in this state then δP (s) = 0.

7.3 Discretization of a SA into a PIOA

In this section we study the relations between SAs and PIOAs. First we present a method
to transform a stochastic automaton P into a probabilistic one PD. The Discretization
is a method we introduce to transform a Stochastic Automata into a Probabilistic In-
put/Output Automata. This method relies on the embedded chain method for what
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concerns the transformation between transition rates and transition probabilities. Infor-
mally, we consider the stochastic automata only at the moments at which the state of the
system changes, and we number these instances 0, 1, 2, etc., then we get a probabilistic
automata. Moreover we add the delay rate at each state of the probabilistic automata
(representing the waiting time between each change of the system) and we obtain a prob-
abilistic Input/Output automata.

Each state of PD is equipped with a delay rate representing the waiting time between each
change of the system. We show that discretization is indeed a bijection from the class
of SAs to the class of PIOAs. Then, we prove that, under the assumption that all in-
put actions synchronise with output ones in the PIOA model, discretization respects the
synchronisation in the sense that, given two stochastic automata, the composition of the
corresponding discretized automata coincides with the discretization of the composition
of the two stochastic automata.

Definition 7.1. (Discretization of a SA into a PIOA) Given a stochastic automaton P =
(SP ,ActP , PassP ,;P , qP ), the discretization of P is the probabilistic I/O automaton
PD = (SPD , ActPD , PassPD ,;PD , µPD , δPD) defined as follows:

• SPD = SP

• ActPD = ActP ,

• PassPD = PassP

• {τ}PD = {τ}P

• ;PD = ;P

• δPD(s) =
∑

a∈AP
qP (s, a) with s ∈ SP

• µPD is the transition probability function from ;PD to (0, 1] such that

– for all s1, s2 ∈ SP and for all a ∈ PassP = PassPD , µPD(s1, s2, a) = qP (s1, s2, a)
(since qP (s1, s2, a) is already a probability)

– for all s1, s2 ∈ SP and for all a ∈ LP = LPD , µPD(s1, s2, a) = qP (s1, s2, a)/δPD(s1).

Informally, for each transition function i
(a,q)−−−→P j with i, j ∈ SP , this automata has the

following transition probabilities pij :

• if a ∈ ActP then pij =
qij

δPC (i)

• if a ∈ PassP then pij = qij since qij is already a probability (e.g. qij = > corresponds
to pij = 1

We can define qP in terms of the two functions qPassP and qActP , such that:

∀s1, s2 ∈ SP we have qP =

{
qPassP = [qP (s1, s2, a)|a ∈ PassP ]

qActP = [qP (s1, s2, a)|a ∈ ActP ]

In this way we have:

• qPass
PC

= qPassP
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• qAct
PC

=
qActP
δPC

qActP
δPC

is the concise notation of
qs,s′

δPC (s)
for all s ∈ SP and for all qs,s′ ∈ qActP .

Notice that δPD(s) is the sum of the transition rates of the active actions of P outgoing
from s. If s has only passive actions outgoing from it then δPD(s) = 0. In this way we
don’t have to know the entire system to compute the discretization of a single state but
only the rates of a single state. Moreover, if P is closed then also PD is.
Differently from the uniformization method and the embedded chain, discretization is
a bijective function from the set of all SAs to the set of all PIOAs. The inverse of the
discretization function allows one to transform a probabilistic I/O automaton into the
unique stochastic automaton having it as the corresponding discretization. Two systems
with the same state space and with doubled rates will have the same uniformized or em-
bedded chain however in case of the discretization, they will have the same probabilities
but different δ functions, as we can see in Figure 7.3. Moreover, when the transition rates
are doubled also the corresponding δs double too. This behaviour can be explained as
the uniformization and the embedded chain methods are functions from a class of CTMC
(with different transition rates but the same proportions) to a single DTMC. On the con-
trary, discretization method keeps track of which chain of the CTMC class it derives from.
As we will see this property is also kept from DTMC to CTMC.

Proposition 10. (Bijection of Discretization) The discretization transformation of Defi-
nition 7.1 is a bijection from the set of all SAs to the set of all PIOAs.

Proof. It is easy to prove that discretization is an injective function, i.e., if P1 and P2 are
two distinct stochastic automata then PD1 6= PD2 . Indeed, assume by contradiction that
PD1 = PD2 . Then P1 and P2 have the same state space, the same sets of active and passive
action types, the same transition relation and the same probabilities associated to pas-
sive type transitions. From the fact that PD1 and PD2 have the same delay function it also
follows that P1 and P2 have the same rates associated to locally controlled transitions.
This contradicts the hypothesis that P1 and P2 are distinct. (Informally, the discretization
method consists in equalities, a summation and a division between real numbers. All of
these operators have trivially the injection property therefore also the discretization has
the injection property.)
In order to prove that discretization is a surjective function consider the following trans-
formation from PIOAs to SAs. Let P = (SP , ActP , PassP ,;P , µP , δP ) be a PIOA. Define
the stochastic automaton PS = (SPS , ActPS , PassPS ,;PS , qPS ) defined as follows:

• SPS = SP

• ActPS = ActP

• PassPS = PassP

• ;PS = ;P

• qPS is the function from ;PD to R+ such that

– for all s1, s2 ∈ SP and for all a ∈ PassPS = PassP , qPS (s1, s2, a) = µP (s1, s2, a)

– for all s1, s2 ∈ SP and for all a ∈ LPS = LP , qPS (s1, s2, a) = µP (s1, s2, a)δP (s1).

It is easy to prove that for every probabilistic input/output automaton P , the discretiza-
tion of PS coincides with P .
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0P 1 2

a, 4 a, 9

b, 3 b, 6

0PD 1 2

4δP 12 6

a, 1 a, 9/12

b, 3/12 b, 1

0Simplified PD 1 2

4δP 12 6

a, 1 a, 3/4

b, 1/4 b, 1

0Q 1 2

a, 8 a, 18

b, 6 b, 12

0QD 1 2

8δP 24 12

a, 1 a, 18/24

b.6/24 b, 1

0Simplified QD 1 2

8δP 24 12

a, 1 a, 3/4

b, 1/4 b, 1

Figure 7.3: Two examples of CTMC discretization with:
ActP = ActQ = {a, b}
PassP = PassQ = ∅.
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The following corollary will be useful to prove the next theorem.

Corollary 3. LetP be a closed SA andPD be the corresponding discretized PIOA (defined
according to Definition 7.1). Then

• for all s ∈ SP , δPD(s) = qP (s)

• for all s ∈ SP and for all a ∈ (ActP ∪ PassP ), qP (s, s′, a) = µP (s, s′, a) δPD(s).

The stationary distribution of a closed SA P can be derived from that of the correspond-
ing discretized automaton PD and vice versa.

Theorem 7.2. (Relations between stationary distributions of SA and PIOA) Let P be a closed
SA and PD be the corresponding discretized PIOA (defined according to Definition 7.1). Let
S = SP = SPD .

• If πPD is the stationary distribution of the DTMC underlying PD then πP defined by

πP (s) =
πPD(s)δ−1

PD(s)∑
s∈S πPD(s)δ−1

PD(s)
(7.3)

for all s ∈ S, is the stationary distribution of the CTMC underlying P .

• If πP is the stationary distribution of the CTMC underlying P then πPD defined by

πPD(s) =
πP (s)δPD(s)∑
s∈S πP (s)δPD(s)

(7.4)

for all s ∈ S, is the stationary distribution of the DTMC underlying PD.

Proof. In order to prove the first statement, consider the GBEs of the CTMC underlying
P :

πP (s)
∑

s′∈SP ,s′ 6=s
qP (s, s′) =

∑
s′∈SP ,s′ 6=s

πP (s′) qP (s′, s).

Adding the self-loops we get:

πP (s)
∑
s′∈SP

qP (s, s′) =
∑
s′∈SP

πP (s′)qP (s′, s).

We can now replace πP (s) with its definition of Equation (7.3) obtaining:

πPD(s)δ−1
PD(s)∑

s′′∈SP πPD(s′′)δ−1
PD(s′′)

∑
s′∈SP

qP (s, s′) =
∑
s′∈SP

πPD(s′)δ−1
PD(s′)∑

s′′∈SP πPD(s′′)δ−1
PD(s′′)

qP (s′, s).

From Corollary 3, since
∑

s′∈SP qP (s, s′) = qP (s) = δPD(s) and qP (s′, s) = µP (s′, s) δPD(s′)
we have:

πPD(s)δ−1
PD(s)∑

s′′∈SP πPD(s′′)δ−1
PD(s′′)

δPD(s) =
∑
s′∈SP

πPD(s′)δ−1
PD(s′)∑

s′′∈SP πPD(s′′)δ−1
PD(s′′)

µP (s′, s) δPD(s′).
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By simplyfing, we obtain:

πPD(s)
1∑

s′′∈SP πPD(s′′)δ−1
PD(s′′)

=
1∑

s′′∈SP πPD(s′′)δ−1
PD(s′′)

∑
s′∈SP

πPD(s′)µP (s′, s)

that is
πPD(s) =

∑
s′∈SP

πPD(s′)µP (s′, s)

which are exactly the GBEs for the DTMC underlying PD. Since, if it exists, the station-
ary distribution of PD is unique, we can conclude that also the second statement of our
proposition holds.
The proof of the second statement is analogous by using the GBEs of the DTMC underly-
ing PD, replacing πPD(s) with its definition of Equation (7.4) and finding the GBEs of the
CTMC underlying P .

Another interesting property of the discretization function is that it respects the synchro-
nisation operator when we assume that all the input actions synchronise with the output
ones in the PIOA model.

Proposition 11 (Discretization respects the synchronisation). Let P and Q be two SAs
and PD and QD be the corresponding discretized PIOAs. Assume that PassP = ActQ
and PassQ = ActP . Then

(P ⊗Q)D = PD ⊗QD.

Proof. It is easy to prove that (P ⊗Q)D and PD ⊗QD are both closed and have the same
state space SP × SQ, the same set of output actions ActP ∪ ActQ and the same transition
relation. We prove that they have also the same delay functions and the same transition
probabilities. By Definitions 3.3 and 7.1:

δ(P⊗Q)D((sp, sq)) =
∑

a∈LP⊗Q

qP⊗Q((sp, sq), a)

and
δPD⊗QD((sp, sq)) = δPD(sp) + δQD(sq) =

∑
a∈AP

qP (sp, a) +
∑
a∈AQ

qQ(sq, a)

From the semantics for pairwise SA synchronisations and the fact that for all a ∈ PassP
(resp. PassQ),

∑
s2:(s1,s2,a)∈;P

qP (s1, s2, a) = 1 (resp.
∑

s2:(s1,s2,a)∈;Q
qP (s1, s2, a) = 1)

we can conlude that δ(P⊗Q)D and δPD⊗QD coincide.

Now let:

• a ∈ AP = PQ;

• (sp1 , sq1)
(a,pr)−−−→P⊗Q (sp2 , sq2) because sp1

(a,r)−−−→P sp2 ;

• sq1
(a,p)−−−→Q sq2 .

By Definition 7.1 we have that:

(sp1 , sq1)
(a,pr/δ

(P⊗Q)D
(sp1 ,sq1 )

−−−−−−−−−−−−−−−→(P⊗Q)D (sp2 , sq2)
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In this case,

sp1
(a,r/δ

PD (sp1 ))
−−−−−−−−−→PD sp2

and
sq1

(a,p)−−−→QD sq2

and then, by the semantics of PIOA synchronisation:

(sp1 , sq1)
(a,∆1pr/δPD (sp1 )
−−−−−−−−−−−→PD⊗QD (sp2 , sq2)

where ∆1 = δPD(sp1)/(δPD(sp1) + δQD(sq1)).

Hence, by simplifying, (sp1 , sq1)
(a,pr/δ

PD⊗QD (sp1 ,sq1 )
−−−−−−−−−−−−−−−→PD⊗QD (sp2 , sq2).

The case a ∈ PP = AQ is analogous. Consider now :

• a = τ ;

• (sp1 , sq1)
(τ,r)−−−→P⊗Q (sp2 , sq2) because sp1

(τ,r)−−−→P sp2 .

By Definition 7.1:

(sp1 , sq1)
(τ,r/δ

(P⊗Q)D
(sp1 ,sq1 )

−−−−−−−−−−−−−−→(P⊗Q)D (sp2 , sq2)

In this case,

sp1
(τ,r/δ

PD (sp1 ))
−−−−−−−−−→PD sp2

and then, by the semantics of PIOA synchronisation,

(sp1 , sq1)
(a,∆1r/δPD (sp1 )
−−−−−−−−−−−→PD⊗QD (sp2 , sq2)

where ∆1 = δPD(sp1)/(δPD(sp1) + δQD(sq1)).

Hence, by simplifying, (sp1 , sq1)
(a,r/δ

PD⊗QD (sp1 ,sq1 )
−−−−−−−−−−−−−−→PD⊗QD (sp2 , sq2).

Example 2. Consider the stochastic automata P andQ depicted in Figure 7.4 withActP =
PassQ = {a} and PassP = ActQ = ∅. Let P ⊗Q be the composition of P and Q defined
according to Definition 3.3 and (P ⊗Q)D be the probabilistic I/O automaton correspond-
ing to the discretization of P⊗Q. The discretizations of P andQ are depicted in Figure 7.5
together with their probabilistic composition. One can verify that (P ⊗Q)D = PD ⊗QD.

7.4 Product-form for PIOA

In this section we present our product-form result for probabilistic I/O automata. In par-
ticular we prove that the stationary distribution of the composition of two PIOAs, P and
Q, can be computed without constructing the stochastic process underlying the whole
system P ⊗Q, but it can be derived from the the stationary distribution of the two com-
ponents in isolation.
We first introduce a closure operation over probabilistic I/O automata that allows us to
assign to all the transitions with the same input action a the same transition probability λ.
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0P 1 2

τ, 5 τ, 5 τ, 5

a, 3 a, 3 a, 3

0Q 1 2

a, 1 a, 1 a, 1

τ, 6 τ, 6 τ, 6

00P ⊗Q 10

01 11

τ, 5 τ, 5

τ, 5 τ, 5

τ, 6 τ, 6

τ, 6 τ, 6

a, 3
a, 3

a, 3

00(P ⊗Q)D 10

01 11

τ, 1 τ, 5/8

τ, 5/11 τ, 5/14

τ, 6/11
τ, 6/14

τ, 6/11 τ, 6/14

a, 3/8

a, 3/8

a, 3/14

with δ(00) = 5, δ(10) = 8,
δ(01) = 11, δ(11) = 14

Figure 7.4: Example of (P ⊗Q)D
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0PD 1 2

τ, 1 τ, 5/8 τ, 5/8

a, 3/8 a, 3/8 a, 3/8

with δ(0) = 5, δ(1) = 8, δ(2) = 8

0QD 1 2

a, 1 a, 1 a, 1

τ, 1 τ, 1 τ, 1

with δ(0) = 0, δ(1) = 6, δ(2) = 6

00PD ⊗QD 10

01 11

τ, 1 τ, 5/8

τ, 5/11 τ, 5/14

τ, 6/11
τ, 6/14

τ, 6/11 τ, 6/14

a, 3/8

a, 3/8

a, 3/14

with δ(00) = 5, δ(10) = 8,
δ(01) = 11, δ(11) = 14.

Figure 7.5: Example of PD ⊗QD
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Definition 7.3. (PIOA closure) The closure of a probabilistic I/O automaton P with respect
to an input action a ∈ PassP and λ ∈ R+, written PC = P{a ← λ}, is the PIOA defined
as follows:

• SPC = SP

• ActPC = ActP ∪ {a}

• PassPC = PassP \ {a}

• ;PC=;P

• µPC is the transition probability function from ;PC to (0, 1] such that

– for all s1, s2 ∈ SP such that (s1, s2, a) ∈;P

µPC (s1, s2, a) = µP (s1, s2, a)
λ

δP (s1) + λ

– for all s1, s2 ∈ SP and for all b ∈ PassP \ {a},

µPC (s1, s2, b) = µP (s1, s2, b)

– for all s1, s2 ∈ SP and for all b ∈ LP ,

µPC (s1, s2, b) = µP (s1, s2, b)
δP (s1)

δP (s1) + λ

• δPC is such that for all s ∈ SP , δPC (s) = δP (s) + λ.

Several closures can be specified by susequently applying Definition 7.3. It is easy to
prove that the order in which the closures are applied is irrelevant and then, if PassP =
{a1, . . . , an} and {λ1, . . . , λn} is a set of positive real numbers then we write P{ai ←
λi}ai∈IP for ((P{a1 ← λ1}) · · · ){an ← λn}.

We are now ready to prove the product-form theorem.

Theorem 7.4. (Product-forms for PIOA) Let P and Q be two probabilistic I/O automata such
that ActP = PassQ and ActQ = PassP . Let {a1, . . . , an} = ActP ∪ ActQ. If there exists a set
of positive real numbers {λ1, . . . , λn} such that PC = P{ai ← λi}ai∈PassP and QC = Q{ai ←
λi}ai∈PassQ satisfy the following equations:

• for all sp ∈ SP and for all ai ∈ ActP ,

δPC (sp)
∑

s′p∈SPC

µPC (s′p, sp, ai)
πPC (s′p)

πPC (sp)

δP (s′p)

δPC (s′p)
= λi (7.5)

• for all sq ∈ SQ and for all ai ∈ ActQ,

δQC (sq)
∑

s′∈S
QC

µQC (s′q, sq, ai)
πQC (s′q)

πQC (sq)

δQ(s′q)

δQC (s′q)
= λi (7.6)
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then for all (sp, sq) ∈ SP⊗Q

πP⊗Q(sp, sq) ∝ πPC (sp)πQC (sq)
δP (sp) + δQ(sq)

δPC (sp) + δQC (sq)
. (7.7)

Proof. For the sake of readability, we assume that ActP = PassQ = {a} and ActQ =
PassP = {b} and that for all sp ∈ SP there exists a unique s′p ∈ SP such that (sp, s

′
p, b) ∈;P ,

i.e., µP (sp, s
′
p, b) = 1, and for all sq ∈ SQ there exists a unique s′q ∈ SQ such that

(sq, s
′
q, a) ∈;P , i.e., µQ(sq, s

′
q, a) = 1. The proof can be easily generalized to the case

of an arbtrary number of output actions in P and in Q, respectively. Let PC = P{b← λb}
and QC = Q{a← λa}where λa and λb are defined according to Equations (7.5) and (7.6).
The global balance equations (GBEs) for a state s ∈ SPC are:

πPC (s) =
∑

s′∈S
PC

µP (s′, s, τ)
δP (s′)

δPC (s′)
πPC (s′) +

∑
s′∈S

PC

µP (s′, s, a)
δP (s′)

δPC (s′)
πPC (s′)+

+
∑

s′∈S
PC

λb
δPC (s′)

πPC (s′)

analogously, the GBEs for a state s ∈ SQC are:

πQC (s) =
∑

s′∈S
QC

µQ(s′, s, τ)
δQ(s′)

δQC (s′)
πQC (s′) +

∑
s′∈S

QC

µQ(s′, s, b)
δQ(s′)

δQC (s′)
πqC (s′)+

+
∑

s′∈S
QC

λa
δQC (s′)

πQC (s′)

The GBEs for a joint state (sp, sq) ∈ SP⊗Q are

πP⊗Q(sp, sq) =
∑
s′p∈SP

µP⊗Q((s′p, sq), (sp, sq), τ)πP⊗Q(s′p, sq)+

+
∑
s′q∈SQ

µP⊗Q((sp, s
′
q), (sp, sq), τ)πP⊗Q(sp, s

′
q)+

+
∑

(s′p,s
′
q)∈SP⊗Q

µP⊗Q((s′p, s
′
q), (sp, sq), a)πP⊗Q(s′p, s

′
q)+

+
∑

(s′p,s
′
q)∈SP⊗Q

µP⊗Q((s′p, s
′
q), (sp, sq), b)πP⊗Q(s′p, s

′
q) .

Let us now introduce the following notation: for all (sp, sq) ∈ SP⊗Q, we write

• ∆sp,sq =
δP (sp)

δP (sp)+δQ(sq)

• ∆sq ,sp =
δQ(sq)

δP (sp)+δQ(sq) .
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By Definition 3.8 of PIOA synchronisation, we can write

πP⊗Q(sp, sq) =
∑
s′p∈SP

µP (s′p, sp, τ)∆s′p,sq πP⊗Q(s′p, sq)+

+
∑
s′q∈SQ

µQ(s′q, sq, τ)∆s′q ,sp πP⊗Q(sp, s
′
q)+

+
∑

(s′p,s
′
q)∈SP⊗Q

µP (s′p, sp, a)∆s′p,s
′
q
πP⊗Q(s′p, s

′
q)+

+
∑

(s′p,s
′
q)∈SP⊗Q

µQ(s′q, sq, b)∆s′q ,s
′
p
πP⊗Q(s′p, s

′
q)

and by replacing πP⊗Q(sp, sq) by the product-form of Equation (7.7)

πPC (sp)πQC (sq)
δP (sp) + δQ(sq)

δPC (sp) + δQC (sq)

we obtain:

δP (sp) + δQ(sq) = δPC (sp)
∑
s′p∈SP

µP (s′p, sp, τ)
δP (s′p)

δPC (s′p)

πPC (s′p)

πPC (sp)
+

+ δQC (sq)
∑
s′q∈SQ

µQ(s′q, sq, τ)
δQ(s′q)

δQC (s′q)

πQC (s′q)

πQC (sq)
+

+ δQC (sq)
∑
s′q∈SQ

1

δQC (s′q)

πQC (s′q)

πQC (sq)
· δPC (sp)

∑
s′p∈SP

µP (s′p, sp, a)
δP (s′p)

δPC (s′p)

πPC (s′p)

πPC (sp)
+

+ δPC (sp)
∑
s′p∈SP

1

δPC (s′p)

πPC (s′p)

πPC (sp)
· δQC (sq)

∑
s′q∈SQ

µQ(s′q, sq, b)
δQ(s′q)

δQC (s′q)

πqC (s′q)

πQC (sq)

We now multiply the definitions of πPC (sp) and πQC (sq) above by the factors δPC (sp) and
δQC (sq), respectively, and after few algebraic manipulations we get:

δP (sp) = δPC (sp)
∑

s′p∈SPC

µP (s′p, sp, τ)
δP (s′p)

δPC (s′p)

πPC (s′p)

πPC (sp)
+

+ λa + δPC (sp)
∑

s′p∈SPC

λb
δPC (s′p)

πPC (s′p)

πPC (sp)
− λb

and

δQ(sq) = δQC (sq)
∑

s′q∈SQC

µQ(s′q, sq, τ)
δQ(s′q)

δqC (s′q)

πQC (s′q)

πQC (sq)
+

+ λb + δQC (sq)
∑

s′q∈SQC

λa
δQC (s′q)

πQC (s′q)

πQC (sq)
− λa
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We replace the above definitions in the GBEs for P ⊗Q and, after some simple algebraic
operation, considering that

• δPC (sp) = δP (sp) + λb

• δQC (sq) = δQ(sq) + λa

we derive:

δPC (sp)
∑

s′p∈SPC

µP (s′p, sp, τ)
δP (s′p)

δPC (s′p)

πPC (s′p)

πPC (sp)
+λa + δPC (sp)

∑
s′p∈SPC

λb
δPC (s′p)

πPC (s′p)

πPC (sp)
−λb

+δQC (sq)
∑

s′q∈SQC

µQ(s′q, sq, τ)
δQ(s′q)

δqC (s′q)

πQC (s′q)

πQC (sq)
+λb+δQC (sq)

∑
s′q∈SQC

λa
δQC (s′q)

πQC (s′q)

πQC (sq)
−λa =

δPC (sp)
∑
s′p∈SP

µP (s′p, sp, τ)
δP (s′p)

δPC (s′p)

πPC (s′p)

πPC (sp)
+ δQC (sq)

∑
s′q∈SQ

µQ(s′q, sq, τ)
δQ(s′q)

δQC (s′q)

πQC (s′q)

πQC (sq)

+ δQC (sq)
∑
s′q∈SQ

1

δQC (s′q)

πQC (s′q)

πQC (sq)
· δPC (sp)

∑
s′p∈SP

µP (s′p, sp, a)
δP (s′p)

δPC (s′p)

πPC (s′p)

πPC (sp)

+ δPC (sp)
∑
s′p∈SP

1

δPC (s′p)

πPC (s′p)

πPC (sp)
· δQC (sq)

∑
s′q∈SQ

µQ(s′q, sq, b)
δQ(s′q)

δQC (s′q)

πqC (s′q)

πQC (sq)
.

We now simplify and obtain:

δPC (sp)
∑

s′p∈SPC

λb
δPC (s′p)

πPC (s′p)

πPC (sp)
+ δQC (sq)

∑
s′q∈SQC

λa
δQC (s′q)

πQC (s′q)

πQC (sq)
=

δQC (sq)
∑
s′q∈SQ

1

δQC (s′q)

πQC (s′q)

πQC (sq)
· δPC (sp)

∑
s′p∈SP

µP (s′p, sp, a)
δP (s′p)

δPC (s′p)

πPC (s′p)

πPC (sp)
+

+ δPC (sp)
∑
s′p∈SP

1

δPC (s′p)

πPC (s′p)

πPC (sp)
· δQC (sq)

∑
s′q∈SQ

µQ(s′q, sq, b)
δQ(s′q)

δQC (s′q)

πqC (s′q)

πQC (sq)
.

By substituting the definitions of λa and λb given by Equations (7.5) and (7.6), we obtain

δPC (sp)
∑

s′p∈SPC

λb
δPC (s′p)

πPC (s′p)

πPC (sp)
+ δQC (sq)

∑
s′q∈SQC

λa
δQC (s′q)

πQC (s′q)

πQC (sq)
=

δQC (sq)
∑
s′q∈SQ

1

δQC (s′q)

πQC (s′q)

πQC (sq)
λa + δPC (sp)

∑
s′p∈SP

1

δPC (s′p)

πPC (s′p)

πPC (sp)
λb

which is an identity. By uniqueness of the steady-state distribution, we can conclude the
proof.
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7.5 Conclusion

This work has addressed the problem of the compositional stationary analysis of PIOAs
in a similar fashion to what has been done for the transient in [102]. We have derived a
product-form theorem for PIOA. Since we have enlightened the strong relations between
the stochastic automata in the style of SANs and the PIOAs, it is interesting to address the
problem of relating Theorem 7.4 with the results known for the stochastic counterpart. It
is important to notice that the product-form that appears in our theorem is the solution
of a DTMC and is not equal to that of the corresponding SAN. In fact the discretization
procedure described in Section 7.3 does not preserve the steady-state distribution of au-
tomata. Moreover, given a PIOA, its steady-state distribution is independent of the δs
associated with the states (in the same way the stationary distribution of the embedded
chain of a CTMC is independent of its residence times). As a consequence if a PIOA is
in product-form for instance according to Theorem 7.4, we can easily compute the sta-
tionary distributions of all the corresponding stochastic automata which are defined for
arbitrary definitions of the δ functions.
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Chapter 8

Conclusions

8.1 Future Work

During the developing of the first part of this thesis, we focused our efforts on the study
of the “family” of product-forms. We tried to find methods to transform some systems in
product-forms into other systems, altering their behaviours (e.g. rates) but still maintain-
ing satisfied the conditions of RCAT or one of its extensions. We found that the conditions
are strictly connected each other, when we tried to change the new system in order to sat-
isfy one condition, another slipped out. Our general impression is that these conditions
are strictly bound to the group of product-forms which they can detect. Outside this
main “RCAT-group”, systems in product-forms seem to be sparse and rarely similar to
each other. For now, there was no apparent common scheme in these “outliers” product-
forms.
If we analyse discrete time, product-forms are even less grouped. We can consider each
time slot constant, in which the system can take more than one action, or in relation to a
single change of the system composition (e.g. the number of customers in a queue). Our
work is focused on the first type of DT product-forms but we think a similar analysis can
be done even in the second case.
We observed that different systems in product-form in continuous time have more sim-
ilarities if they are transformed in discrete time. Often, if they have proportional rates
and similar graphs, they would have the same corresponding discrete time system. We
hope that this connection could open the path to a better study of the product-forms in
discrete time. This because, even if in continuous time they can’t be grouped together
under the same conditions, maybe in discrete time a theorem similar to RCAT would be
both necessary and sufficient to detect these product-form systems.
For now, we analysed just specific cases in continuous time outside the RCAT theorem
and its extension and, in discrete time, we consider just the product-form property for
the PIOAs, giving sufficient conditions for a product-form composition. We hope that
expanding the research to other kinds of discrete time product-forms, we will be able to
track some necessary conditions for product-forms.
Moreover, in discrete time if we consider that more actions can be done in each time slot,
we could further exploit the “summary property” of the discrete time. In this case, more
continuous actions can be merged in a single discrete state. The main drawback is that we
have more state transitions in each state when we model a bunch of moving customers
(in a similar way to G-Networks). We would have to analyse this problem, in particular
if we consider the time slot representing a large amount of time. However, a discrete
system could represent a large amount of continuous one and thus represent a sub-group
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of CT product-form.

8.2 Contributions

This thesis is mainly focused on stochastic models in product-form and on limitations of
RCAT and quasi-reversible product-forms.
With our work, we propose two novel product-form models that can be applied to the
analysis of systems with ageing objects. In the first model, the objects have an unbounded
age, while in the other there is a maximum threshold for the age. The approach that we
propose can be applied also for the analysis of heterogeneous systems, i.e., systems in
which some objects have a maximum threshold for the age and some others have not.
Informally, we can say that the peculiarity of these models is that the transitions are not
“local” -as in most of product-form models- i.e., they may change the states of all the ob-
jects instantaneously and the effect of a partial rejuvenation event depends on the global
state of the model.
We show that the CTMC underlying the model of objects with limited ageing can be
seen as an aggregation of the chain of the model with unbounded ageing. This allowed
us to prove some equivalence results on the expected performance indices. The con-
sequences of these equivalences are important for practical applications especially if the
system must maintain a timer for the objects. Indeed, by introducing a maximum age, we
avoid having to maintain the timers of all the objects that reach this age thus reducing the
computational effort required for monitoring the object ageing. We used as case-study
the analysis of a cache with TTL policy and partial rejuvenation of the objects.
The results can be extended in order to include the partial rejuvenation of clusters of ob-
jects (instead of all) and more sophisticated interactions among them in a similar fashion
to what is considered in [41]. Indeed, our model may be seen as a queueing network with
external independent Poisson arrival streams. The queues can only be partially flushed
(i.e., the customers in the network are reduced as computed by Algorithm 1) or totally
flushes, i.e., the number of customers in a single queue is set to 0. The exponential distri-
bution of the equilibrium distributions stated by Theorem 5.1 allows the introduction of
state-independent probabilistic customer routing.
The proposed model could also be further developed with the possibility of a probabilis-
tic insertion of an object in the cache, i.e. when an object is not in the cache and it is
requested, it can enter the cache with a probability q or remain outside with probability
1 − q. Moreover, we aim at overcoming the limitations of the IRM by allowing state-
dependent request rates so that the last requested objects will be associated with a higher
rate thus incorporating in the analysis the time-locality property of the network traffic
[24].

We have also proposed an abstract modelling framework for the quantitative analysis
of reversible computations. The main idea is to exploit the time-reversibility property
of Markov processes in order to provide a computationally efficient way of deriving
the desired performance indices. We have shown that, under some conditions, the pro-
posed approach is suitable to be applied for a compositional formalism based on labelled
stochastic automata. As a consequence, the advantages (reduction of time-complexity
and improvement of algorithms’ numerical stability) of time-reversibility are applicable
also for the analysis of the cooperation of automata that are proved to have product-form
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steady-state distributions [5].

Finally, this thesis has addressed the problem of the compositional stationary analysis of
PIOAs in a similar fashion of what has been done for the transient in [102]. We have de-
rived a product-form theorem for PIOA. Since we have enlightened the strong relations
between the stochastic automata in the style of SANs and the PIOAs, it is interesting to
address the problem of relating Theorem 7.4 with the results known for the stochastic
counterpart. It is important to notice that the product-form that appears in our theorem
is the solution of a DTMC and is not equal to that of the corresponding SAN. In fact the
discretisation procedure described in Section 7.3 does not preserve the steady-state distri-
bution of automata. Moreover, given a PIOA, its steady-state distribution is independent
of the δs associated with the states (in the same way the stationary distribution of the
embedded chain of a CTMC is independent of its residence times). As a consequence if
a PIOA is in product-form for instance according to Theorem 7.4, we can easily compute
the stationary distributions of all the corresponding stochastic automata which are de-
fined for arbitrary definitions of the δ functions [25].

To summarise, the development of this thesis leads us to the publication of the following
papers:

1. A Product-Form Model for the Analysis of Systems with Aging Objects, (F. Cav-
allin, A. Marin, S. Rossi; Proc. of Int. Conf. MASCOTS 2015; pp. 136-145) [24];

2. Applying reversibility theory for the performance evaluation of reversible com-
putations, (M.S. Balsamo, F. Cavallin, A. Marin, S. Rossi; Proc. of 23rd Int. Conf.
ASMTA 2016; pp. 45-59) [5];

3. Product-forms for Probabilistic Input/Output Automata, (F. Cavallin, A. Marin, S.
Rossi; Proc. of Int. Conf. MASCOTS 2016; pp. 361-366) [25].
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