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Preface 
 
 
 
 
This is a Master thesis in time-series analysis as part of the study program 
in Economics and Finance at the University of Ca’ Foscari in Venice. This 
Master thesis is achieved within the framework of the double degree in 
Economics, Econometrics and Finance (MEEF) resulting from a 
partnership between the University of Venice and Aix-Marseille School of 
Economics. The thesis was carried out from April to mid June of 2018.  

The Master thesis assumes the reader is familiar with notions and 
common methods within statistics.  
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Abstract 
 
 
 
 
Nowadays, generating very-short term energy power forecasts is a crucial 
challenge. In particular, wind generation, which exhibits large fluctuations, 
is not easy to predict. This study is based on a probabilistic forecasting 
framework and ought to account for the nonlinear and double-bounded 
nature of that stochastic process. Discrete and continuous mixtures of 
generalised logit-Normal distributions and probability masses at the 
bounds serve to provide probabilistic forecasts. Pinson (2012) showed that 
this framework is superior to classical models for wind power production, 
which assume that the shape of predictive densities follow (censored) 
Normal and Beta distributions. Both simple autoregressive and 
autoregressive moving average models are designed in order to estimate 
the location and the scale parameters. The first aim of this study is to 
extend the Pinson (2012) model by introducing a dynamic structure for the 
location of the wind generation. The second aim is to analyse the 
predictive ability of the proposed model. The theory approach concerning 
the different methods is illustrated by assessment and ranking of 
probabilistic forecasts of wind generation at Galicia in the Spain Northwest 
(on 10-minute ahead point).  
 
 
Keyword: bounded times-series; cross-validation; density forecast; 
dynamic models; predictive distribution; transformation; wind power 
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Chapter I 
 
 
Introduction 
 
 
 
One of the most important issues of the 21st century concerns energy 
production. Indeed, for quite some time we have understood the alarming 
situation that our energy production system is not stationary and that in 
face of exponential population growth and to a lesser extent the climate 
change, the situation will not remain stable for long. Consequently, we 
have to change our energy production mode in order to have a stationary 
system. We must simply remember that our energy production system is a 
current and unavoidable global challenge. 

The energy sector is very complex from several reasons. One of its 
complexities is the highly technical process and also that each industry 
has his specific features. The energy is a crucial point in economic 
development of countries. When the electricity collapses in a country, it 
generates many economic losses. We can measure these losses by the 
gross domestic product (GDP) of the county multiplied by the time of the 
collapse. As a result, an efficient electrical network is essential to preserve 
economic growth. 

Like any branch of economics, energy economics is concerned with 
the basis issue of allocating scarce resources in the economy. Thus, the 
micro-economic concerns of energy supply and demand and the macro-
economic concerns of investment, financing and economic linkages with 
the rest of the economy form an essential part of a complete energy power 
analysis. The issues facing the energy industry change, bringing new 
issues to the fore. In the 1970s, the focus was on understanding the 
energy industry and especially the oil industry, energy substitution and to 
some extent on renewable energies. 

Nowadays, renewable energies have a complete role in energy 
production. Its involvement in our energy production system will increase 
even more in the future. We can quote for instance Gneiting et al., 2007 
saying 10 years ago “Wind power is the fastest growing source of energy 
today”. Indeed, global trends are towards renewable energies for many 
years. Recently this being formalized by the Paris Agreement in April 
2016, which is a global agreement signed. This Agreement aims to 
respond to mitigate global warming through the reduction of high-carbon 
energies. Therefore, so-called low-carbon energies must be adopted in 
our energy production system. The renewable energies and nuclear 



 

(1) Available at: http://www.irena.org/publications/2018/Feb/Renewable-
energy-prospects-for-the-EU 
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energy being considered low-carbon, thus these two energy sources solve 
this previous issue. For some external reasons only the renewable 
energies are desirable for the future. The chart below allows us to illustrate 
the situation about the current energy production and future production 
prospects concerning the European Union (see Figure 1). The Union aims 
to increase by more than 10% its proportion of renewable energy in its 
gross final energy consumption over the next ten years. This represents a 
very important market share for renewable energies.  
 
 

 
 
Figure 1. Proportion of renewable energy in gross final European energy 
consumption - 2015, 2020 target and 2030 potential through accelerated 
energy adoption renewable, this chart comes from the International 
Renewable Energy Agency1.  
 
Another point to illustrative purposes is the Portugal’s renewable electricity 
production, which is a very interesting case due to the central role of the 
wind production in the Portugal’s economy. For instance, in March 2018 its 
power generation from renewable sources, especially from wind power 
generation, exceeded monthly consumption according to the nation’s 
transmission operator. Its average renewable generation for the month 
exceeded 103% of consumption. However, this source of energy 
(especially from wind and water) is neither deterministic nor constant. 
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Therefore, at some moment the country need to fossil fuel and also 
imported electricity to even out supply. Consequently, as mentioned by 
Gneiting et al., 2007, some arguments against the proliferation of wind 
energy have been discussed because of the inability to predict wind 
resources with any degree of precision. But partially, the developments of 
advanced probabilistic prediction methodologies help to address these 
concerns.  

The electrical energy is not a commodity like any other. Indeed, an 
important feature is that it cannot be stored and the response to the 
demand must be instantaneous. Consequently, the market must be 
managed on a per second basis. There are major economic 
consequences in the event of a supply disruption. An important 
characteristic about the renewable energy is that they provide the lowest 
market prices; it outperforms the nuclear power, which is also energy low-
carbon. Nonetheless, the renewable energies from wind power and solar 
power in particular are extremely volatile compared to other types of 
energy sources. The electric market depends only on the supply and 
demand; hence this market is very sensible. For instance, it is possible to 
have a negative price when the production is significantly higher than the 
demand. Indeed, the producers may have to pay so that the energy 
produced can be consumed. It makes this market unique. 

As a result, the renewable energy is characterized on the one hand 
by a low price, low-carbon and stationary energy source, in the sense that 
this resource is inexhaustible, and on the other hand by the fact that its 
part in the energy production system is constantly increasing. A direct 
consequence of this is that tomorrow’s energy production will be more 
volatile than today’s. This resulting uncertainty is a real problem. 
Information is crucial for any decision-making: be it development planning, 
decisions or business decisions or decisions by individual consumers. 
Because of all this, the new issues to the fore are related to forecast the 
future power generation provided by renewable energies. Consequently, 
the quality of the forecasts concerning the energy produced by these 
renewable energies is a crucial issue. The quality of the electricity 
networks, the economic life, prices and climate problems depend on a 
large part of these forecasts. 

This study aims to forecast the wind power generation in the very 
short-term, more precisely on 10-minute ahead. The main reason to focus 
on the wind energy is, as mentioned before, that it is one of the most 
volatile sources of energy. Furthermore, it has been showed that for such 
lead times statistical approaches are known to outperform the Running 
Numerical Weather Prediction (NWP) models when forecasts are based 
on short-term temporal resolutions (Giebel et al., 2011). In addition, the 
NWP models for these temporal resolutions (very short-term) with frequent 
updates would be clearly to expansive if not impossible today. 
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In order to have an efficient electrical network, it is crucial to have 
some ‘robust’ forecasts for horizons of a few minutes ahead. 
Characterizing and modelling the power fluctuation at these time scales is 
known as a current challenge. 

The analysis is focused on a Spanish wind farm, which is the site of 
Galicia in the northwest region of Spain. In particular, this country is one of 
the European countries that use wind energy the most. It is the second 
European country in term of production.  This aspect directly motivated the 
choice to focus on this site. 

All forecasts are associated with some sort of uncertainty and 
probabilistic forecasts are often preferred over deterministic forecast to 
better express this uncertainty. This is the reason why this study places us 
in a parametric probabilistic forecasting framework. The probabilistic 
forecast takes the form of a probability density function, which is denoted 
by PDF or a cumulative density function, which is denoted by CDF 
(Gneiting et al., 2007). The way a probabilistic forecast represents 
uncertainty allows more nuanced decision-making. As a result, 
probabilistic forecasts have seen increased impact in many applications, 
such as economics, meteorology and climatology (Gneiting and Ranjan, 
2013). The aim of a probabilistic forecast is to maximise the sharpness 
subject to calibration. Calibration refers to the statistical consistency 
between the probabilistic forecast and the observations, whereas 
sharpness refers to the concentration of the predictive distributions 
(Gneiting et al., 2007). If we declare an interval or event to have probability 
p, the forecast is calibrated if the event happens a proportion p of the time 
on average (Raftery et al., 2005). The continuous ranked probability score 
(CRPS) combines both sharpness and calibration to evaluate the 
performance of a forecast. The score is minimized when the probabilistic 
forecast is identical to the distribution of the process we want to forecast, 
and is thus a proper scoring rule (Gneiting et al., 2007). 

The main objective of this study is twofold. On the one hand, it is to 
extend the Pinson (2012) model by introducing a dynamic structure for the 
location of the wind generation. On the other hand, it is to analyse the 
predictive ability of the proposed model within a parametric probabilistic 
forecasting framework.  

The central characteristic of the wind power variable is that it is 
double-bounded in the sense that it can be between a minimum 
production, which is zero and a maximum production, which is the nominal 
capacity. This second value is related either to the wind turbine or wind 
farm or to the energy portfolio considered, therefore depending to your 
framework. Here, the nominal capacity represents the maximum 
production of the wind farm at Galicia. To formalize this feature the wind 
power measurements and forecasts are normalized by the nominal 
capacity, which is denoted by 𝑃!, and then the outputs take values in the 
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unit interval [0, 1]. Moreover, we note that the wind power generation is a 
nonlinear function of the wind speed, in the form of a sigmoid according to 
Pinson (2012). As a result, these characteristics show that the predictive 
densities in this case cannot be Gaussian for any temporal resolution of 
wind power time-series or whatever the forecast horizon considered. In 
order to illustrate the purposes, the next figure (see Figure 2) depicts 4 
days of wind power measurements at the Galicia wind farm (1152 time-
steps, with a temporal resolution of 10 minutes). 
 
 

 
 
Figure 2. Episode of 4 days (1152 time-steps, with a temporal resolution 
of 10 minutes) with wind power measurements at the Galicia farm in 
Spain. 
 
A consistent probabilistic forecasting of wind power time-series has to take 
into account all the characteristics mentioned here above.  

The master’s thesis is organized as follows. In a first chapter, a 
suitable distribution is introduced in order to represent the predictive 
densities of wind power generation. This distribution is a generalised logit-
Normal distribution inspired by Pinson (2012). The second chapter 
concerns definitions and background about the distributions, which are 
required for the continuation of the study. The following chapter carries out 
the forecasting methodology concerning the adaptive predictive density 
based on the generalised logit-Normal distribution. The chapter 4 presents 
the different dynamic models for the shape and location parameters. The 
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chapter 5 puts forward all the methods concerning the evaluation of 
forecasts i.e. on the one hand the evaluation of point forecasts and the 
evaluation of density forecasts and on the other hand the cross-validation 
exercise. Following that, the chapter 6 is assigned to the probabilistic 
forecasting of wind power generation at lead-time of 10 minutes at the 
Galicia wind farm in Spain. The results obtained are compared between 
themselves and also against some benchmarks. To conclude, the last 
chapter summarizes the results and discusses possible extensions. 
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Chapter II 
 
 
Definitions and Background 
 
 
 
In this chapter we introduce the key assumptions of this work about wind 
generation distribution and data transformation.  

The normal distribution has played a major role in theoretical and 
applied statistics since Laplace’s time. Nonetheless, it was obvious that 
the normal distribution could not correctly represent all distributions in 
statistical domain. At the end of the 19th century, many mathematicians 
then attempted to construct systems of frequency curves in order to 
provide a wider variety of distributions than a normal curve. Thus, on the 
basis of many works done in the past, we could have a better distribution 
than the normal distribution in order to model the wind power generation. 

A good model should account for some well-known feature of wind 
data. As mentioned in the introduction, an essential feature about wind 
power variable is that it is double-bounded in the sense that this variable 
can take value between zero (a null production) and its nominal capacity 
(the maximum production). We can denote the nominal capacity by 𝑃!. It 
can depend of the framework, in the sense that if the study is applied on a 
special wind turbine or a general wind farm or also on a wind portfolio 
energy. In our case study the nominal capacity is considered on the 
Galicia wind farm in Spain. Moreover, as mentioned by Pinson (2012), the 
wind power variable is characterised by a nonlinear function of the wind 
speed. In addition, the wind power measurements and forecasts are 
normalised by the nominal capacity (𝑃!). As a result, variables can take 
the values between the range [0,1]. Thus, in the rest of this work the wind 
power measurements will always be considered as standardised. These 
various characteristics about modelling the wind power generation 
demonstrate that predictive densities cannot be Gaussian. Furthermore, 
this crucial consequence is true for any temporal resolution of wind power 
times-series and for any forecast horizon considered. In particular, Pinson 
(2012) showed the superiority of the generalised logit-Normal distribution 
over the classical distributions for wind generation modelling, which are 
the (censored) Normal and Beta distributions.   

At present, an introduction of the background theory has to be 
demonstrated concerning the generalised logit-Normal distribution. That is 
necessary in order to develop the forecasting methodology, which is 
discussed in the next chapter. The starting point of this section is the 
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concept of “method of translation”, which called also “transformation” in 
the literature. Many authors have covered this issue, in particular Johnson 
(1949). According to previous works, the purpose of using a 
transformation of a variable is to obtain a transformed variable, which is 
approximately normally distributed. As a result, this method is regularly 
used for variance stabilization and also to work in a Gaussian framework.  

The following demonstration is inspired by the work of Johnson 
(1949) and Mead (1965). The general form of transformation can be 
defined by 𝑧 = 𝑓(𝑥) where 𝑧 is a standard normal variable will be referred 
to as the transformation of 𝑥, which is the observed variable. It has been 
shown that the introduction of four parameters associated to the possible 
functions 𝑓(𝑥) is convenient. These functions can be considered as being 
normally distributed. Let us resume the Mead’s generalisation of one of 
the transformations discussed by Johnson. This generalisation as the 
following form 
 

 𝑧 = 𝛾 + 𝛿 𝑙𝑜𝑔
𝑥 − 𝜉

𝜉 + 𝜆 − 𝑥 ,    𝜉 < 𝑥 < 𝜉 + 𝜆  

 
(1) 

 
where 𝜉 and (𝜉 + 𝜆) are the lower and higher limits of 𝑥, respectively. In a 
variety of setting the bottom limit of 𝑥 is zero. Consequently, we can 
rewrite the previous equation as follows, 
 

 𝑧 = 𝛾 + 𝛿 𝑙𝑜𝑔
𝑥

𝑈 − 𝑥  
 

(2) 

 
where 𝑥 is within the range [0,U]. Following Nelder (1961) the generalised 
transformation can be obtained by adding a power parameter, 𝜃. The 
complete transformation is defined as follows, 
 

 𝑧 = 𝛾 + 𝛿 𝑙𝑜𝑔
𝑥!

𝐴! − 𝑥!
 

 
(3) 

or 
 

 𝑧 = 𝛾 + 𝛿 𝑙𝑜𝑔𝑖𝑡
𝑥
𝐴

!
. (4) 

 
 
The distribution of 𝑥 related to this previous transformation corresponds to 
the generalised logit-Normal distribution, which can be denoted by GL-
Normal distribution.  
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 With regard to wind power an important feature concerns the 
different inflection of the power curves for low and high power values. 
Nonetheless, this previous transformation developed by Mead (1965) 
seems to be an appropriate transformation that takes this asymmetry into 
account.  
 We can apply this method on the normalised power measurements 
{𝑥!}, which can take values between 0 and 1. We assume that 𝛾 = 0 and 
𝛿 = 1. The generalised logit transform 𝑦! is defined by  
 

 𝑦! = 𝑇 𝑥!; 𝜃 = 𝑙𝑜𝑔
𝑥!!

1 − 𝑥!!
,     𝜃 > 0,     𝑥! ∈ 0,1  

 
(5) 

 
in parallel, we can note also the inverse transformation as follows,  
 

 𝑥! = 𝑇!! 𝑦!; 𝜃 = 1 +
1

𝑒𝑥𝑝(𝑦!)

!! !

,    𝜃 > 0,    𝑦! ∈ ℝ 

 
(6) 

 
corresponding to the inverse generalised logit transformation (IGL). Note 
that the simple logistic transformation is derived from the generalised 
logistic transformation when the power parameter 𝜃 is equal to one. This 
parameter aims to influence the evolution of variance and skweness of 
these distributions as a function of their mean, as confirmed by Pinson 
(2012). As stated previously the purpose of using such a transformation is 
to be able to work whit a time-series 𝑦! , which is assumed that 
conditional densities may be Gaussian.  

Following the previous reasoning, if 𝑌~𝒩(𝜇, 𝜎!) is a Gaussian 
variable over the interval [−∞,∞], the transformed variable 𝑋 = 𝑇!!(𝑌; 𝜃) 
follows a generalised logit-Normal (GL-Normal) distribution, 𝑋~𝐿!(𝜇, 𝜎!) 
over the interval [0,1]. From these assumptions and according to Mead 
(1965), the probability density function of the GL-Normal variable 𝑋 is 
given by 
 

 𝑓(𝑥) =
1

𝜎 2π
𝜃

𝑥(1 − 𝑥!)
𝑒𝑥𝑝 −

1
2
𝑇(𝑥; 𝜃) − 𝜇

𝜎

!

,    𝑥 ∈ 0,1 . 

 
(7) 
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Chapter III 
 
 
Forecasting Methodology 
 
 
 
Many authors such as Lange (2005) and Pinson (2006), have 
demonstrated that the standard deviation of the distribution of forecast 
errors is directly related to its conditional expectation. This specificity is 
independent of the period, horizon and forecast model. Consequently, the 
predictive densities related to the wind power production shouldn’t ignore 
this feature. In particular, Pinson (2012) mentioned this issue and, 
explains that the use of a suitable GL-transform to the wind energy time-
series mitigates the effect by assuming that the variance of the predictive 
densities of the transformed is independent of its mean. Taking into 
account these characteristics we assume the predictive density for the 
wind power generation 𝑋!!! at time 𝑡 + 𝑘 is  
 

 𝑋!!! ~ 𝜔!!!! 𝛿! + 1 − 𝜔!!!! − 𝜔!!!! 𝐿!(𝜇!!!, 𝜎!!!! ) + 𝜔!!!! 𝛿! 
 (8) 

 
where 𝛿! and 𝛿! are Dirac delta functions at 0 and 1, respectively. Note 
that 𝛿!(𝑥) takes value 1 if 𝑥 = 𝑎 and 0 otherwise. They represent the 
potential concentration of probability mass at the bounds of the unit 
interval. In addition, to obtain a well-defined density, we assume that 
 

  𝜔!!!! ,  𝜔!!!! ∈ [0,1]    
and 

𝜔!!!! + 𝜔!!!! ∈ [0,1]. 
 
 
The introduction of this concentration of probability mass at the bounds is 
explained by the fact that the original variable, which is the normalised 
power measurement to be GL-transform, belongs to the unit interval. 
Furthermore, for this type of variable the bounds are regularly reached. To 
illustrate this characteristic; the next figure (see Figure 3) represents the 
histogram issuing of observed wind power production at the Galicia site.  
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Figure 3. The histogram of observed wind energy production at Galicia 
in the northwest of Spain. 
 
According to the previous chart the concentration of probability mass at 
these bounds over the unit interval make full sense. This representation 
reflects the fact that when the forecast takes value 0 or 1 (the nominal 
power), there is always some form of uncertainty.  
 From the predictive density of the process 𝑋!!!, we can deduce the 
predictive density of its GL-transform, which is denoted by 𝑌!!!. Therefore, 
we can write 
 

 𝑌!!! ~ 𝜔!!!! 𝛿!! + 1 − 𝜔!!!! − 𝜔!!!! 𝒩(𝜇!!!, 𝜎!!!! ) + 𝜔!!!! 𝛿!!. 
 (9) 

 
In the same way that Pinson (2012) and Lesaffre et al., (2007), for the 
modelling of outcome scores in [0,1] using classical logit-Normal 
distribution, a threshold value 𝜖 is defined, being in the order of 
measurement precision, such as 𝜖 ≤ 10!!. Thus, wind power values below 
or equal to this threshold (respectively above or equal to 1 − 𝜖) are 
considered to be null (respectively equal to 1). This allows a limitation of 
the range of potential variations of the GL-transformed variables, i.e. 
𝑦! ∈ 𝐷!, where 𝐷! = 𝑇(𝜖; 𝜃), 𝑇(1 − 𝜖; 𝜃) . Thus, we can re-write the 
previous predictive density as follows 
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𝑌!!! ~ 𝜔!!!! 𝛿!(!;!) +𝒩(𝜇!!!, 𝜎!!!! )𝕝!! + 𝜔!!!

! 𝛿!(!!!;!) 
 

(10) 

 
where 𝕝!! is the indicator function for the set 𝐷!, i.e. 
 

𝕝!! =
1,             𝑦 ∈ 𝐷!
0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

 
The weight 1 − 𝜔!!!! − 𝜔!!!!  disappears, for the reason that the 
predictive density for 𝑌!!! takes the form of censored Normal distribution 
instead. This allows for obtaining the both weights 𝜔!!!!  and 𝜔!!!! : 
 

𝜔!!!! = Φ
𝑇(𝜖; 𝜃) − 𝜇!!!

𝜎!!!
,    𝜔!!!! = 1 − Φ

𝑇(1 − 𝜖; 𝜃) − 𝜇!!!
𝜎!!!

,     

 
where Φ is the cumulative distribution function (CDF) of a standard Normal 
variable. In this way, predictive densities are fully represented by their 
location (𝜇!!!) and scale (𝜎!!!) parameters only.  

The predictive density is illustrated with the next figure (see Figure 
4), which represents the cumulative distribution function of wind power 
generation. This CDF is related to a zero wind power measurement. We 
can observe on the chart the concentration of probability mass on the left 
bound. Moreover, values approximately below -22 and above 5 are not 
achievable in real world, which represent the minimum and maximum 
production, respectively.  
 
 

 
 
Figure 4. Forecast CDF of the predictive density of the process 𝑌!!!. 
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Chapter IV 
 
 
Dynamic and Reference Models 
 
 
 
In this chapter, different dynamic models are specified for the location and 
scale parameters. Both Autoregressive (AR) and Autoregressive Moving 
Average (ARMA) models are proposed for the location parameter. 
Adaptive estimation of the scale parameter is updated each period 
according to the dynamic model used. Several authors such as Gneiting et 
al., (2006), Pinson and Madsen (2011), Sanchez (2006) or Vincent et al., 
(2010) have shown the fact that parameters in dynamic models should be 
assumed slowly changing over time. The reason is that such a process 
should certainly vary at time scales of weeks, months, seasons and years. 
Consequently, the dynamic models are adaptively and recursively 
estimated based on an exponential forgetting of past observations.  
 
 
4.1. Autoregressive dynamics 
 
 
Placing us in the case of AR dynamics, the equation linking the location 
parameter to previous observations is written as follows 
 

 𝜇!!! = 𝜙!!Θ! 
 (11) 

 
where Θ! = [𝜃!,!,  𝜃!,!, … , 𝜃!,!] ! and 𝜙! = [1, 𝑦!, 𝑦!!!, … , 𝑦!!!!!]!. This study 
is based on one-step ahead forecasts, so the horizon 𝑘 is assumed equal 
to one.  Note that the equations below are easily transformable for 
horizons greater than one. The expression of the scale parameter is 
developed at the end of this section. The number of lag denoted by 𝑝 can 
be determined from many methods. For instance after examining the 
autocorrelation and partial autocorrelation functions (ACF and PACF) of 
𝑦!, which is the time-series corresponding to realisations of censored 
Normal variables. Other possibilities are also by minimisation of either 
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) 
or finally through a cross-validation exercise. The last technique 
mentioned is applied in this study. It can be showed that parameters AR 
model Θ! can be estimated using the Least Squares or Maximum 
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Likelihood methods, denoted respectively LS and ML. Note that a greater 
bias may be feared in the case of censored Normal variables using the LS 
method. Nonetheless, Pinson (2012) admitted that the LS-estimator 
applied to wind energy production is tolerable comparing to the ML-
estimator. This technique is preferable in the sense that it has the 
advantage of being easier to implement than the other.  Furthermore, as 
Pinson (2012), we place ourselves in a recursive framework, fore more 
details refer to Ljung and Söderström (1983) and Madsen (2007). The 
main benefit is that only the last available observations are used at each 
time step for updating the model parameters. Thus, this method offers the 
advantage of reducing the computational cost. The minimization problem 
for the estimate of the vector of AR parameters Θ! with forgetting factor at 
time 𝑡 takes the following form 
 
  Θ! = 𝑎𝑟𝑔𝑚𝑖𝑛{!} Ψ!(Θ)  (12) 
 
where  
  

 Ψ!(Θ)  = 𝜆!!!(𝑦! − 𝜙!!!! Θ!)!
!

!!!

 (13) 

 
 
with 𝜆 is the forgetting factor, which belongs to the unit interval [0,1], 
allowing the exponential forgetting of past observations, for which the 
corresponding number of observations is defined as 𝑛! = (1 − 𝜆)!!.The 
value of the forgetting factor is typically slightly below 1. In that sense, a 
smallest value is assigned to the older observations. It assumes that the 
recent observations have more information for the future. According to the 
Recursive Least Squares (RLS) framework and from the minimization 
problem mentioned above, we can obtain the final updating parameters 
based on the newly information, which are summarized by the following 
equations 
 
 𝑅!!! = 𝜆𝑅!!!!! + 𝜙!!!𝜙!!!!  (14) 

 
 Θ! = Θ!!! + 𝑅!𝜙!!!𝜀! (15) 

 

with 𝜀! = 𝑦! − 𝜙!!!! Θ!!! and 𝑅! is the inverse variance-covariance matrix at 
time 𝑡. For more details, the demonstration of the RLS method is 
demonstrated in the appendix (page 30).  
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The adaptive estimation at time 𝑡 of the scale parameter can be 
performed using ARMA dynamics with some restrictions. The first 
restriction is that parameters of the model are fixed according to the 
forgetting factor and, secondly, the residual term is not related to the scale 
parameter but to the location parameter i.e. 𝜀!! = 𝑦! − 𝜙!!!! Θ!!!

!. The 
proposal concerning the updating of the scale parameter is  
 
 𝛽! = 𝜆𝛽!!! + (1 − 𝜆)𝜀!!. (16) 
 
 
4.2. Autoregressive Moving Average dynamics 
 
 
The Autoregressive Moving Average model (ARMA) is a very famous 
model used in the time-series domain. This model is similar to the 
previous one but integrate also the MA part, which involves modelling the 
error term as a linear combination of error terms occurring 
contemporaneously and at various times in the past. It has been shown to 
be a very tough competitor within renewable energy forecasting (David, 
Lauret, Trombe, Ramahatana, 2016). The equation linking the location 
parameter to previous observations inspired by Tsay et al., (2005) is 
written as follows 
 
 𝜇!!! = 𝜙!!Θ! (17) 
 
 
with 𝑘 = 1 is the horizon fixed to one, Θ! = [𝜃!,!,  𝜃!,!, … , 𝜃!,!, 𝛽!,!, … , 𝛽!,!] ! 
the vector of parameters to be estimated and 
𝜙! = [1, 𝑦!, 𝑦!!!, … , 𝑦!!!!!, 𝜀!, 𝜀!!!, … , 𝜀!!!!!]! the vector of inputs, where 
𝑝 is the order of the AR part and 𝑞 is the order of the MA part. Similarly to 
the AR dynamic model, the final updating parameters based on the newly 
information can be written as 
 
 𝑅!!! = 𝜆𝑅!!!!! + 𝜙!!!𝜙!!!!  (18) 

 
 Θ! = Θ!!! + 𝑅!𝜙!!!𝜀! (19) 

 
 
with 𝜀! = 𝑦! − 𝜙!!!! Θ!!! and 𝑅! is the inverse variance-covariance matrix at 
time 𝑡. In addition, the scale parameter is updated in the same way as in 
the previous section.  
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4.3. Reference models 
 
 
It exists in the literature many benchmarks, which can be applied to this 
type of data. According to Perez et al., (2010), persistence, smart 
persistence and climatology could be used. The two reference models in 
this study, as Pinson (2012), are the Moving-Average and the persistence 
models for the horizon of one step ahead, which are both very easy to use 
and also very efficient in the short term, especially the second one.  

The Moving-Average benchmark consists to take the mean of the 
previous observations. In order to be consistent with the rest of the study, 
the number of lags here is selected the same that the AR dynamics. Thus, 
this first reference model can be written as follows 
 

 𝜇!!! =
1
𝑝 𝑦!!!

!!!

!!!

 

 

(20) 

 
where 𝑘 = 1 in this study case and 𝑝 is the number of lags. 

The second benchmark, which is the persistence model, is known 
to be very difficult to outperform for short-term forecasts. It is expressed as 
follows 
 

 𝜇!!! = 𝑦!. 
 (21) 

 
This model assumes that the wind power generation for each time 
depends only on its previous value, which means that the power 
production remains invariant between time 𝑡 and time 𝑡 + 𝑘.  

In addition, for both reference models, the scale parameter is 
obtained with the same formula expressed in the section 4.1. 
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Chapter V 
 
 
Evaluation Methods 
 
 
 
The aim of this master thesis is to develop some new dynamic models to 
estimate the location and shape parameters related to the GL-Normal 
distribution and to predict wind energy production. We compare our 
models with some benchmarks discussed by several authors such as 
Giebel et al., (2011), Costa et al., (2008) and Pinson and Madsen (2011), 
which are know to be very difficult to outperform in the case of wind 
generation for short lead time, i.e. less than one hour. Model performance 
is assessed based on predictive sharpness and calibration, as these are 
desired predictive properties. As Gneiting et al., (2007) indicate calibration 
refers to the statistical consistency between the predictive distribution and 
the observations, whereas sharpness refers to the concentration of 
predictive distributions. With actual values and predictions in hand, we 
need to find ways to quantify the model’s effectiveness with respect to 
sharpness and calibration. This topic is discussed in this section. 
 
 
5.1. Mean Absolute Error and Root Mean Square Error 
 
 
The Mean Absolute Error and the Root Mean Square Error allow us to 
evaluate the point forecasts by measuring differences between observed 
and predicted values. They are regularly used in model evaluation studies.  

The Mean Absolute Error, which is denoted by MAE, measures the 
average magnitude of errors in a set of predictions, regardless of their 
direction. It represents the average over the test sample of the absolute 
differences between prediction and actual observation where all individual 
differences have equal weight. Consequently, the MAE associates the 
same weight to all errors. We let 𝑦! be the prediction of the observed 𝑦! at 
time 𝑡. If 𝑡 = 1,… ,𝑁 then the MAE can be written as follows 
 

 𝑀𝐴𝐸 =
1
𝑇 𝑦! − 𝑦!

!

!!!

. 

 

(22) 
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We note that if the absolute value is not defined (the signs of the errors 
are not removed), the average error becomes the Mean Bias Error 
(denoted by MBE) and usually aims to measure average model bias. MBE 
can transmit useful information, however, it must be interpreted with 
caution for the reason that positive and negative errors cancel each other 
out.  

The Root Mean Square Error, which is denoted by RMSE, is a 
quadratic scoring rule that also measures the average magnitude of the 
error. It represents the square root of the average of squared differences 
between prediction and actual observation. As a consequence, the RMSE 
penalizes variance as it gives errors whit larger absolute values more 
weight than errors with smaller absolute values. The RMSE can be writing 
as follows 
 

 𝑅𝑀𝑆𝐸 =
1
𝑇 𝑦! − 𝑦! !

!

!!!

. 

 

(23) 

 
We note some similarities between them. Both MAE and RMSE 

evaluated average model prediction error in units of the variable of 
interest. Both metrics can vary from zero to infinite and are indifferent to 
the direction of errors. They are negatively oriented scores, which by 
definition means lower values are better. Obviously, when both measures 
are computed the RMSE cannot be smaller than the MAE. There are also 
some differences; taking the square root of the average squared errors 
has some interesting implications for RMSE. Since the errors are squared 
before they are averaged, the RMSE attributes a relatively high weight to 
large errors. Hence, the RMSE should be more interesting to calculate 
when large errors are particularly undesirable. An important remark is that 
if the error distribution is expected to be Gaussian and there are enough 
samples, the RMSE has an advantage over the MAE to represent the 
error distribution. Indeed, referring to Chai and Draxler (2014), the RMSE 
is more appropriate to represent model performance than the MAE when 
the error distribution is expected to be Gaussian.  
Another remark is that, the RMSE does not necessarily increase with the 
variance of errors. In parallel, the RMSE increases with the variance of the 
frequency distribution of error magnitudes.  

The underlying assumption when presenting the RMSE is that the 
errors are unbiased and follow a normal distribution. The MAE is more 
suitable to describe uniformly distributed errors. For the reason that model 
errors are likely to have a normal distribution rather than a uniform 
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distribution, the RMSE is a better measure to highlight than the MAE when 
errors following a Gaussian distribution.  
 
 
5.2. Continuous Rank Probability Score 
 
 
The Continuous Rank Probability Score denoted by CRPS is a verification 
tool related to probabilistic forecast systems, and it is a quantity that 
highlights to both forecast sharpness and calibration. In the case of a 
deterministic forecast, the CRPS takes the value of the mean absolute 
error (MAE) and, therefore, has a clear interpretation. According to the 
work done by Hersbach (2000), we can define the CRPS as below.  

Let us denote with 𝑥 the parameter of interest. Suppose that the 
Probability Density Function (PDF) forecast by an ensemble system is 
given by 𝑓!(𝑥), and the corresponding observation is denoted by 𝑥!, which 
is the value that actually occurred. Both Cumulative Distribution Functions 
(CDFs) for 𝑓! and 𝑥! are then respectively represented by 
 

 𝐹!(𝑥) = 𝑓!(𝑦)𝑑𝑦
!

!!
 (24) 

and 
 
 

 

𝑃!(𝑥) = 𝐻(𝑥 − 𝑥!) (25) 

 
where 
 

𝐻(𝑥) = 0   for 𝑥 < 0
1   for 𝑥 ≥ 0 

 
 
this last equation 𝐻(𝑥) is the well-known Heaviside function. Note that, 
𝐹!(𝑥) is the forecasted probability that 𝑥! will be smaller than 𝑥. Obviously, 
whatever the cumulative distribution 𝑃!(𝑥) ∈ [0, 1], 𝐹(−∞) = 0, and 
𝐹(+∞) = 1. This remains true for parameters that are only defined on a 
subdomain. In that case 𝑓!(𝑥) = 0 and 𝐹! constant outside the domain of 
definition.  

We can show through a simple case the useful of the CRPS, using 
a simple implementation on Matlab software. We consider that the PDF 
has a standard normal distribution, and 𝑥! = 1. Then, we can observe on 
the figures below the PDFs and CDFs plots at time 𝑡.  
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Figure 4. Visual illustration of CRPS when the probabilistic forecast is 
assumed to be a standard normal distribution.   
 
The CRPS measures the difference between the predicted and occurred 
cumulative distributions. Its minimal value of zero is only achieved for 
𝐹!(𝑥) is equal to 𝑃!(𝑥), that is, in the case of a perfect deterministic 
forecast. This measurement can be written like this 
 

 𝐶𝑅𝑃𝑆! = 𝐶𝑅𝑃𝑆(𝐹!, 𝑥!) = [𝐹!(𝑥) − 𝑃!(𝑥)]!𝑑𝑥
!

!!
. 

 
(26) 

 
Figure 4 represents a visualization of the CRPS at a given time 𝑡. The blue 
and red lines represent 𝐹! and 𝑃! respectively. The particularity of the 
CRPS is that it is negatively oriented, in this way, a smaller CRPS 
indicates a better forecast. The area between 𝐹! and 𝑃! marked yellow (on 
the right chart above) is straight related to 𝐶𝑅𝑃𝑆!, it means that minimizing 
this area also minimizes 𝐶𝑅𝑃𝑆!. The area and thus the 𝐶𝑅𝑃𝑆! are 
minimized when the observation takes the value of the median of the 
probabilistic forecast. In an empirical study, the CRPS is averaged over an 
interval of time, so that we obtain only one value for the CRPS: 
 

 𝐶𝑅𝑃𝑆 =
1
𝑇 𝐶𝑅𝑃𝑆!

!

!!!

. (27) 
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Note one of the benefits of the CRPS is that it takes the form to absolute 
error if the forecast is deterministic, that is, when there is no randomness 
in the forecast. Empirically, this allows us to have a consistently 
comparison between a deterministic forecast and a probabilistic forecast. 
 
 
5.3. Cross Validation 
 
 
The cross validation method is a well-known method for adjusting and 
calculating predictions to estimate the performance of the prediction 
model. This technique so called rotation estimation or also out-of-sample 
analysis considers a dataset denoted by 𝑆. And, it divides the data in two 
sets: the training (so-called learning) set and the testing set. The purpose 
of cross-validation is to test the predictive model’s ability to predict new 
data that have not been used to estimate it. Moreover, it allows to report 
problems such as overfitting issues and to provide an overview of how the 
model will generalize to an independent dataset.  
In this section, the description of a famous category of cross validation 
called 𝑘-fold cross validation is presented. A brief outline of this technique 
is described in three points as follows: 
 

1. Cut the dataset 𝑆 into 𝑘 folds (parts) 𝑆!, … , 𝑆!, which are 
approximately of the same size. The type of data and the model 
used can influence how the dataset 𝑆 should be divided.   

 
2. For 𝑖 = 1,… , 𝑘, apply the following: 

 
2.1. For the 𝑖-th fold (testing set), fit the model to the other 𝑘 − 1 
folds (learning set).  
 
2.2. Test the model on the 𝑖-th fold.  

 
3. Merge results for all test sets.  

 
In this master thesis, the 𝑘-fold cross validation method is applied in the 
fallowing chapter on wind power measurements. For more information 
about this technique, we can refer to Stone (1974). 
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Chapter VI 
 
 
Application and Results 
 
 
 
The aim of this part is to analyse the performance of the proposed 
dynamic models and the associated adaptive estimation method for 
modelling and forecasting wind energy fluctuations. These assessments 
are applied to a real case study. The exercise consists of one-step ahead 
forecasting of wind power generation. In a first stage, the onshore wind 
farm data are described. Then in a second stage, both models 
configuration and estimation setup are commented. The way forecasts are 
evaluated, as well the benchmarks is also presented. Moreover, the 
results obtained from point and density forecasts are discussed. 
 
 
6.1. Wind Farm Data 
 
 
The observations applied to this study come from the website of the 
Sotavento Galicia Foundation, which manages the Galicia wind farm site 
located in the northwest Spain. This wind farm has a nominal capacity of 
17.56 megawatts (MW). An important remark is that Galicia is not a purely 
commercial wind farm, but above all an experimental site. During the 
analysis of data, we have noted that the nominal capacity was never 
reached. Galicia being a training area then, this is one of the possible 
reasons why it does not maximize its power generation on its wind farm. 
For this reason, the nominal capacity has been deliberately reduced to 
13.56 MW. This considers the highest 20% measures as the nominal 
capacity. This assumption brings us closer to the industrial reality, which 
seeks to maximize the power generation i.e. the nominal capacity is 
reached on regular basis. Obviously, this assumption doesn’t impact the 
aim of this study.  

The data processing was carried out with a personal 
implementation in Python. The measurements have been gathered for the 
period ranging from 1th January 2016 to 31th December 2016, consisting of 
52703 data points. Some few data were dropped due to measurements 
errors. After the cleaning procedure, the data set for wind power 
generation in Galicia consists of 52123 valid data points.   
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6.2. Model configuration, estimation setup and 
benchmarking 
 
 
We have to consider some different periods, that are used for identification 
(learning sample) of the statistical models, and periods that are used for 
evaluating the performance of these models concerning out-of-sample 
analysis (testing sample). The first 17419 data points compound the 
learning set, which represents approximately the first four months the year 
studied. While the rest of the data, are employed for out-of-sample 
evaluation of one-step ahead forecast performance, which represents 
exactly 34704 data points.  
 Over the learning period, a part of data is used for one-fold cross 
validation exercise, represented by the last 10000 data points. This 
permits to evaluate the optimal values such as the optimal lags for the 
dynamic models, more precisely the AR order and also the MA order, the 
optimal forgetting factor and the optimal shape parameter of the GL 
transformation. Note that only the variance covariance matrix (equation 
14) is updated before data point 10000 to get enough information before 
updating the vector of parameters (equation 15).  

We remind that in a similar way to several studies such as Pinson 
(2012) or also Madsen and Pinson (2012) a suitable transformation is 
applied to the forgetting factor, it is preferred to use the corresponding 
effective number of observations denoted by 𝑛!, which can be written as 
follows 

 

 𝑛! =
1

1 − 𝜆. 
 

(28) 

 
Indeed, this value is more comparable with the ‘sliding window’ in the 
adaptive estimation of the dynamic model parameters, as viewed by 
Gneiting et al., (2006) and Hering and Genton (2009).  

The vector of parameters for each model has been initialised as a 
white noise i.e. with a vector of zeros. The scale parameter has been 
initialised with a small value and finally, the inverse variance covariance 
matrix as an identity matrix times a small constant. Drawing on Pinson’s 
(2012) study with equivalent data, the censoring parameter 𝜀 is fixed to 
0.001, representing the resolution of the power measurements. Moreover, 
both the effective number of observations and the shape parameter of the 
GL transformation are selected from the results of Pinson in order to 
evaluate the first computations. These concern the estimation of the 
optimal lags for dynamic models using a one-fold cross validation 
exercise. More precisely, this procedure gives the optimal AR order and 
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the ARMA order. The metric to be minimised over the cross-validation set 
is the CRPS of 1-step ahead density forecasts. This method is an 
appropriate skill score to evaluate the performance of density forecasts 
(Gneiting et al., 2007).  
 The location parameters for both models are computed with the 
RLS method as presented in the chapter IV. The results from the cross 
validation exercise show that the optimal lag to be considered is 𝑝 = 3 for 
capturing the AR dynamics in wind power fluctuations with a 10-minute 
resolution, at Galicia wind farm. Regarding the ARMA dynamics the 
optimal lag to be considered is 𝑝 = 3 for the AR part and 𝑞 = 2 for the MA 
part. Using the optimal lags estimated for both models, another cross 
validation exercise is performed in order to determine the optimal 𝑛! and 𝑣 
applied to the case study. Pinson (2012) mentioned that for this type of 
data these parameters could be estimated by a train-and-error manner, by 
evaluating the results obtained from different setups. Moreover, it has 
been shown that the results are similar using a simultaneously or 
iteratively ways. Hence, for simplicity the parameters are reached by the 
iterative method i.e. optimising one after the other. After testing different 
setups, the parameters selected in the paper of Pinson (2012), which are 
applied to a different wind farm, are reasonable for our study case. As a 
result, the forgetting factor and the GL transform shape are 𝜆 = 0.9996 
(with 𝑛! = 2500) and 𝑣 = 3.2, respectively. Note that the last parameter is 
used only with AR and ARMA models, where a generalised logit-normal 
distribution is assumed. While, the benchmarks are assumed to fallow a 
(censored) normal distribution.  
 
 
6.3. Point forecasting results 
 
 
In this subchapter, we evaluate the point forecasts of different models 
proposed. The evaluation is performed with the Root Mean Square Error 
(RMSE). Note that, we dropped the Mean Absolute Error (MAE) criterion 
for two reasons. The first reason is that several authors used only the 
RMSE criterion to evaluate point forecasts for wind generation (Giebel et 
al., 2011, Costa et al., 2008, Madsen et al., 2005), which gives the 
information sought. Indeed, this criterion permits to evaluate more 
precisely the large fluctuations, which are totally undesirable for energy 
production. The second reason is referring to Chai and Draxler (2014); the 
RMSE is more appropriate to represent the model performance than the 
MAE when the error distribution is expected to be Gaussian. The GL 
transform allows to process with a Gaussian framework. In addition, the 
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fact that we are in a probabilistic forecasting framework, the median of 
predictive densities is deliberately selected for the RMSE exercise.   
 
 

Month Moving-
Average 

Persistence GL-Normal AR GL-Normal 
ARMA 

May 3.1349 2.3931 2.1585 2.1595 
Jun. 3.5802 2.6940 2.1880 2.1824 
Jul. 3.5477 2.7603 2.4162 2.4029 
Aug. 3.7101 2.7635 2.3057 2.2898 
Sep. 4.3401 3.0979 2.3350 2.3178 
Oct. 3.3241 2.3297 1.8338 1.8341 
Nov. 2.8369 2.0812 1.9029 1.8993 
Dec. 2.5351 1.8646 1.6286 1.6295 
All 3.4157 2.5263 2.1118 2.1045 

 
Table 1. Monthly and overall assessment of point forecasts obtained 
using a RMSE criterion for the median with the test sample. 
 
The RMSE is negatively oriented scores, then, the best scores in table 1 
are identified in bold. The evaluation is carried out on a monthly basis and 
on overall the test sample, which more precisely represents the data from 
1th May to 31th December 2016. We observe a high improvement when the 
predictive density assumed moves from the (censored) Normal distribution 
to the GL-Normal distribution. Indeed, we note a decrease in the RMSE 
criterion of approximately 16.5% when going from the Normal predictive 
density to GL-Normal predictive density. Nonetheless, the persistence 
model stays a competitive reference model comparing to the Moving-
Average benchmark, which has much more high values whatever the 
period considered. We note also a slightly improvement concerning the 
GL-Normal predictive density when we use the ARMA dynamics instead of 
the AR dynamics. This table confirms the results obtained by Pinson 
(2012), who demonstrated the superiority of the GL-Normal distribution 
over the (censored) Normal distribution for point forecasting.   
 
 
6.4. Density forecasting results 
 
 
From the setup proposed in the second section of this chapter, the CRPS 
is computed monthly and overall for each model in order to evaluate the 
quality of predictive densities. The evaluation is applied on the test 
sample, which is the same than previously. This method evaluates the 
score with the GL transform data as for the point forecasts. The table 2 
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gathers the results obtained from the Galicia site. Note that, the best 
scores are indicated in bold.  
 
 
Month Moving-Average Persistence GL-Normal AR GL-Normal ARMA 
May 4.6900e+05 1.4694e+05 1.2293e+05 1.2252e+05 
Jun. 5.3126e+05 1.6067e+05 1.1936e+05 1.1901e+05 
Jul. 4.4896e+05 1.8517e+05 1.5701e+05 1.5699e+05 
Aug. 4.5236e+05 1.8394e+05 1.5344e+05 1.5293e+05 
Sep. 5.2377e+05 1.9037e+05 1.3973e+05 1.3893e+05 
Oct. 4.5043e+05 1.6066e+05 1.3103e+05 1.3052e+05 
Nov. 3.7970e+05 1.3904e+05 1.2137e+05 1.2067e+05 
Dec. 4.7944e+05 1.0923e+05 8.6053e+04 8.6030e+04 
All 3.7340e+06 1.2757e+06 1.0307e+06 1.0274e+06 

 
Table 2. Monthly and overall assessment of density forecasts using a 
CRPS criterion. 
 
The Moving-Average benchmark is extremely outperformed whatever the 
period considered. While, the persistence model appears to be a 
competitive benchmark. Nonetheless, the improvements in terms of the 
CRPS criterion are significant when going from the Normal predictive 
density to GL-Normal predictive density. For both AR and ARMA models 
with a GL-Normal predictive density, have a significantly higher 
probabilistic forecast skill if compared with the persistence model 
assuming a Normal predictive density, with a decrease in the CRPS 
criterion of 19.21% and 19.46%, respectively. Note that the ARMA model 
proposed in our study faintly outperforms the AR model. The results 
obtained from this density forecasting evaluation confirm the conclusion of 
Pinson (2012), who demonstrated the superiority of the GL-Normal 
distribution over the (censored) Normal distribution for density forecasting.    
 
 
6.5. Illustration of quantile forecasts 
 
 
To conclude this chapter, an illustration of quantile forecasts (with nominal 
of 5% and 95%) is presented with the figure 5. These forecasts are 
extracted from GL-Normal predictive densities with our best model, which 
is the ARMA dynamic structure. The corresponding normalized 
measurements are also represented. We can easily observe that the 
predictive densities are naturally bounded between 0 and 1. Moreover, we 
can observe that the variance of GL-Normal densities is larger when the 
conditional expectation of the process moves away from the bounds. In 
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particular, the following chart shows this feature when the conditional 
expectation deviates by 0. This remark confirms Pinson’s (2012) 
conclusion on the variance of GL-Normal densities when applied to wind 
power generation.  
 
 

 

Figure 5. Sequence of 32 hours (with a 10-minute time step) of wind 
power measurements (solid line) with quantile forecasts of nominal 
proportions 5% and 95% (hashed lines). Quantile forecasts come from 
predictive densities with ARMA dynamics.  
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Chapter VII 
 
 
Conclusion and Discussion 
 
 
 
The first aim of this study was to extend the Pinson (2012) model by 
introducing a dynamic structure for the location of the wind generation. 
The second aim was to analyse the predictive ability of the proposed 
model. A GL-Normal distribution was proposed to better represent the 
wind power process in short-term probabilistic forecasting, whereas 
classical assumptions assumed (censored) Normal and Beta distributions. 
The ARMA dynamic for the location parameter is proposed to extend the 
existing dynamic models in the literature related to wind power forecasts. 
The forecasting methodology is applied to one-step-ahead prediction with 
a lead-time of 10 minutes at Galicia wind farm in Spain.   

The proposed methodology has been largely inspired by Pinson 
(2012). Wind energy predictive densities are represented by discrete-
continuous mixtures of GL-Normal distributions with potential 
concentration of probability mass at the bounds of the unit interval [0,1]. 
Probability masses are essential since the wind power measurements 
reach the bounds on regular basis. The location parameters of different 
setups are updated with the Recursive Least Square method with a 
forgetting factor. The scale parameters are updated at each step as a 
function of its previous values and the previous errors concerning the 
location parameters. These two parameters can fully represented the 
predictive density considered here. To evaluate point forecasts and 
density forecasts of different setups, the Root Mean Square Error and the 
Continuous Rank Probability Score methods have been employed, 
respectively. The models proposed were compared to different reference 
models, which are the moving-average and persistence benchmarks.  
 The proposal forecasting methodology applied to the Galicia wind 
farm in Spain allows many conclusions to be drawn. Firstly, results confirm 
the Pinson’s belief, which is that the GL-Normal distribution is more 
appropriate to describe the wind power process in short term probabilistic 
forecasting and could be considered as the reference distribution. Indeed, 
evaluations according to the point forecasts and density forecasts 
confirmed the superiority of the GL-Normal distribution over the classical 
distribution, which is the (censored) Normal. As a result, this forecasting 
methodology seems to be robust for the process considered in short term 
analysis. Secondly, we note also that slightly improvements can be 
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obtained when more complex dynamics structures are applied to model 
the location parameter, which in our case ARMA dynamics is used instead 
of AR dynamics. Note that, even faintly improvements for forecasts are not 
negligible when applied to the overall electrical network.  

Pinson and Madsen (2011) explained that regime switching might 
be present in the time-series of wind power generation, this feature was 
also confirmed by Vincent et al. (2011). They showed that the switches 
relate to different meteorological effects, which are very important for 
forecasts but extremely difficult to measure for short lead times. Pinson 
and Madsen (2011) demonstrated the superiority of the Markov-Switching 
Autoregressive (MS-AR) model over the Autoregressive model for very 
short-term wind power generation forecasts. However, they mentioned 
that many improvements could still be made. Consequently, furthers works 
on MS-AR models could be realised in order to extend this master thesis.  
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Appendix 
 
 
The mathematical developments necessary for the predictive models’ 
estimation are gathered in this section. More precisely, it gathers the 
recursive estimation procedure applied to the Autoregressive structure 
defined by the equations 14 and 15. In addition, to be coherent with our 
study case, demonstrations are applied for a horizon of one-step ahead. 
Nonetheless, this demonstration can easily be adapted for horizons 
greater than one. The recursive estimation procedure applied to the 
Autoregressive Moving Average model is not demonstrated due to look 
very similar with the AR model.   
 
 
Recursive Least Squares of the location parameter with an AR 
structure 
 
 
The expression relating the location parameter at time 𝑡 + 1 to previous 
observations can be written as follows 
 

 𝜇!!! = 𝜙!!Θ! 
 (29) 

 
where 𝑘 = 1, Θ! = [𝜃!,!  𝜃!,!   …  𝜃!,!] ! and 𝜙! = [1  𝑦!  𝑦!!!   …  𝑦!!!!!]!. 
Hence the estimate of the parameters Θ! at time 𝑡 is defined as 
 
 

  Θ! = 𝑎𝑟𝑔𝑚𝑖𝑛{!!} Ψ!(Θ!)  
 

(30) 

with  
 

 Ψ!(Θ!)  = 𝜆!!!(𝑦! − 𝜙!!!! Θ!)!
!

!!!

 

 

(31) 

 
where 𝜆 is the forgetting factor, which belongs to the unit interval [0,1], 
allowing the exponential forgetting of past observations, for which the 
corresponding number of observations is defined as 𝑛! = (1 − 𝜆)!!.The 
value of the forgetting factor is typically slightly below 1. In that sense, a 
smallest value is assigned to the older observations. It assumes that the 
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recent observations have more information for the future. We can rewrite 
the previous objective function into matrix form as follows 
 
 

 Ψ(Θ!)  = [𝑌! − Φ!!!Θ!]!Λ![𝑌! − Φ!!!Θ!] 
 (32) 

 
where 𝑌! = [𝑦!  𝑦!   …  𝑦!]!, Φ! = 𝜙! 𝜙!  … 𝜙!!! ! and Λ! the diagonal 
matrix, which associate the forgetting factor to each observation.  
In order to find optimal parameters we have to apply the first order 
condition to our minimization problem, such that  
 

 
𝜕Ψ(Θ!)
𝜕Θ!

= 0 

 
(33) 

⇔ −2Φ!!!
! Λ! 𝑌! − Φ!!!Θ! = 0 

⇔ Φ!!!
! Λ!𝑌! = Φ!!!

! Λ!Φ!!!Θ!. 

 
As a result, the optimal solution takes the following form 
 
 

 Θ! = [Φ!!!
! Λ!Φ!!!]!!Φ!!!

! Λ!𝑌! 
 (34) 

 
with 
 

 Λ! =

𝜆!!! 0
0 𝜆!!!

⋯ 0 0
0 0

⋮ ⋱ ⋮
0 0
0 0 ⋯ 𝜆! 0

0 𝜆!

. 

 

(35) 

 
 
Let 𝑌!!! = 𝑌!, 𝑦!!! !, Φ! = Φ!!!;  𝜙!! and 𝑅! = Φ!!!

! Λ!Φ!!!
!!, where 𝑅! 

is the inverse variance-covariance matrix at time 𝑡. We can write the 
variance-covariance matrix at time 𝑡 and 𝑡 + 1 as the following: 
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 𝑅!!! =

1   1 ⋯ ⋯ 1      1
  𝑦! 𝑦! ⋯ ⋯ 𝑦!!! 𝑦!!!
 𝑦!! 𝑦! ⋯ ⋯ 𝑦!!! 𝑦!!!

  ⋮    ⋮   ⋯ ⋯      ⋮       ⋮
   ⋮    ⋮   ⋯ ⋯      ⋮       ⋮

  𝑦!!! 𝑦!!! ⋯ ⋯ 𝑦!!!!! 𝑦!!!

 

𝜆!!! 0 0 ⋯ 0 0
0 𝜆!!! 0 ⋯ 0 0
0 0 𝜆!!! ⋯ 0 0
⋮  ⋮  ⋮  ⋱   ⋮  ⋮
0 0 0 ⋯ 𝜆! 0
0 0 0 ⋯ 0 𝜆!

 

1 𝑦!
1 𝑦!
⋯ ⋯
⋯ ⋯
1 𝑦!!!
1 𝑦!!!

𝑦!! ⋯
𝑦! ⋯
⋯ ⋯
⋯ ⋯
𝑦!!! ⋯
𝑦!!! ⋯

⋯ 𝑦!!!
⋯ 𝑦!!!
⋯ ⋯
⋯ ⋯

⋯ 𝑦!!!!!
⋯ 𝑦!!!

 

 

(36) 

 

 𝑅!!!!! =

1   1 ⋯ ⋯ 1      1
𝑦!  𝑦! ⋯ ⋯ 𝑦!!! 𝑦!

 𝑦!! 𝑦! ⋯ ⋯ 𝑦!!! 𝑦!!!
  ⋮    ⋮   ⋯ ⋯      ⋮       ⋮

   ⋮    ⋮   ⋯ ⋯      ⋮       ⋮
  𝑦!!! 𝑦!!! ⋯ ⋯ 𝑦!!! 𝑦!!!!!

 

𝜆! 0 0 ⋯ 0 0
0 𝜆!!! 0 ⋯ 0 0
0 0 𝜆!!! ⋯ 0 0
⋮  ⋮  ⋮  ⋱   ⋮  ⋮
0 0 0 ⋯ 𝜆! 0
0 0 0 ⋯ 0 𝜆!

 

1 𝑦!
1 𝑦!
⋯ ⋯
⋯ ⋯
1 𝑦!!!
1 𝑦!

𝑦!! ⋯
𝑦! ⋯
⋯ ⋯
⋯ ⋯
𝑦!!! ⋯
𝑦!!! ⋯

⋯ 𝑦!!!
⋯ 𝑦!!!
⋯ ⋯
⋯ ⋯
⋯ 𝑦!!!
⋯ 𝑦!!!!!

. 

 

(37) 

 
 
We note that the covariance-variance matrix at time 𝑡 + 1 is linear 
dependent of the previous period, such that 
 

 𝑅!!!!! = 𝜆𝑅!!! + 𝜙!𝜆!𝜙!! 
 (38) 

 
hence, we have 
 

 𝑅!!!!! = 𝜆𝑅!!! + 𝜙!𝜙!!. 
 (39) 

 
In this first demonstration we showed the linear dependence of variance-
covariance matrices related to two successive periods. At present, we 
have to demonstrate how to obtain the LS-estimate of the parameters in 
our recursive framework. To show that we have to start from the optimal 
solution the equation 34: 
 

Θ! = [Φ!!!
! Λ!Φ!!!]!!Φ!!!

! Λ!𝑌! 
 
at time 𝑡 + 1 we have 
 

 𝛩!!! = 𝛷!!𝛬!!!Φ!
!!Φ!

!𝛬!!!𝑌!!! (40) 
 

 𝛩!!! =  𝑅!!! Φ!!!
! Λ!𝑌!𝜆 + 𝜙!𝜆!𝑦!!!  (41) 

 
 𝛩!!! = 𝑅!!! 𝜆𝑅!!!Θ! + 𝜙!𝑦!!!  (42) 

 

 𝛩!!! = 𝑅!!! 𝑅!!!!! − 𝜙!𝜙!! Θ! + 𝑅!!!𝜙!𝑦!!! 
 (43) 
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hence, we have 
 

 Θ!!! = Θ! + 𝑅!!!𝜙![𝑦!!! − 𝜙!!Θ!] 
 (44) 

 
it is equivalent to write 
 

 Θ!!! = Θ! + 𝑅!!!𝜙!𝜀!!! 
 (45) 

 
where 𝜀!!! = 𝑦!!! − 𝜙!!Θ!. This quick demonstration inspired by Madsen 
(2007) gives us the recursive system in order to obtain the updating 
parameter based on the newly available information at time t+1. The 
updates parameters can be summarised by the following equations 
 
 

 𝑅!!!!! = 𝜆𝑅!!! + 𝜙!𝜙!! (46) 
and 
 

 Θ!!! = Θ! + 𝑅!!!𝜙!𝜀!!! . (47) 
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