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Introduction

The new XXI century is a historical epoch of high technologies, global changes in the

world, integration of the public gross product, as well as redistribution of the world’s

energy resources and monetary funds. Insurance is one of the essential financial segments

in the front lines of the world economic system.

Such a significant attention is paid to insurance by law, since its role in public life

is the accumulation and further redistribution of public funds, which form part of the

world’s gross product. Insurance is one of the largest financial sectors. It is some kind of

guarantee for people who can be involved in accident, be injured or damage something.

But there is the 2-nd party of insurance relations. That is the insurance company itself.

While people are trying to guarantee their future financial needs, insurance companies are

trying to protect themselves from losses and also earn some profit. In order to play safe,

insurance companies have to have a really good risk management system and, in particular,

the realistic estimation of claim frequencies can help the company to avoid huge losses in

the future.

With this thesis I tried to address the problem of claim frequencies prediction and

premiums determination based on that. The thesis examines four very important aspects

of insurance such as the general insurance theory, vehicle insurance, risk prediction and

premium calculations in insurance.

The content of the thesis begins with general insurance theory, its types, definitions of

life and non-life insurance, their classification and examples. The contract details of some

types of insurance are also discussed followed by the statistics of life and non-life insurance

and their development over the recent years in OECD countries in general and in Italy in

particular.

The legislative regulation in financial sector is very important. In case of the absence

of regulation, insured people and insurance companies can face horrific effects and risks.

That is why the legislative framework such as Solvency 2 in European Union is discussed

at the end of the chapter.

But the main purpose of the thesis is vehicle insurance and how we can predict claims
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made by policyholders. As a result we can determine the premiums according to these

claims or update these premium systems. Each year more and more cars are consumed

increasing the number of insured cars. That is why it is important to know how to

predict risks arising because of these policyholders. Unlike life insurance, the prediction of

risks in automobile insurance is very complicated. In life insurance insured person is being

checked up and the premium is determined based on these characteristics that are easier to

expose. But in case of vehicle insurance, after this a priori characteristic determination,

some heterogeneity will be still left. That is why Poisson regression function of claim

frequencies is being replaced with negative binomial regression function. The parameters

of this regression are being estimated with maximum likelihood method.

It is not a secret that bonus-malus system is used for the premium calculations of

vehicle insurance in a lot of countries. Based on this fact, two methods of premium

calculations are being introduced in chapter 2 along with the calculations of relativities.

In the third chapter the main focus is Italian bonus-malus system and how it works

with transition probabilities. Because of the private data policies adopted by financial

institutions, the main difficulty is to find a data for the numerical illustration of the theory.

That is why we use estimates by Denuit et al. (2007) for the calculation of relativities.

We take with a priori and without a priori ratemaking estimates of mean claim frequency

and heterogeneity factor, generate gamma distribution based on this heterogeneity factor

and try to tackle it with a posteriori corrections.
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Chapter 1

Classification of Insurance: Insurance

Numbers in OECD Countries

Insurance as a socio-economic institution has an interesting history of development,

originating in ancient times, at the stage of the emergence of civilization and the forma-

tion of the first signs of statehood. The emergence of insurance preceded the objective

prerequisites, which prompted people to enter into certain socio-economic relations, later

called insurance.

Such preconditions were the dangerous events that occurred in people’s lives, and

caused irreparable property and physical losses. In other words, these phenomena and

events caused harm by destroying the material goods created by people, influenced their

personal non-property benefits. It is possible to formulate the objective and subjective

factors that became the cause of insurance. Those factors include the presence of hazards

that can cause property or other material damage which can not be prevented (objec-

tive factor), people’s fears for the preservation and prevention of material and personal

non-material goods (subjective factor), the necessity, as well as the desire and aspiration

of people to fight with the dangers that cause a certain fear and threat of harmful con-

sequences (the combination of objective and subjective factors). Together, these factors

have become prerequisites for the establishment of an insurance institution as a socio-

economic way of combating the consequences of hazards. Moreover, the aforementioned

set of factors is the historically developed model, which, in essence, has not changed and

currently contributes to the insurance procedure. And while there is a subjective human

factor, there will be an insurance. In other words, insurance will accompany humanity as

much as there will be the problem of surviving in complex and dangerous situations.
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1.1 Types of Insurance

Insurance as a financial industry includes a significant number of subjects of civil legal

relations. This trend is objective, since insurance is the only financial and legal mechanism

that fully protects the economic interests of citizens practically from all the negative

circumstances that occur in their life path.

The reimbursement principle is the economic basis of insurance relations, due to the

availability of certain funds that provide the implementation of the insurance functions.

The reasons to study insurance are different: from macro perspective such as the high

cost of medical care, the tort system, costs of automobile insurance to studying it as just

consumers of insurance. At the present stage of the development of society, insurance is

an indicator of the economic and social well-being of a country.

The main principle of classification of insurance types is that we get groups and sub-

groups of insurance that have similarities in insurance application conditions, objects and

liabilities. Insurance is classified according to different characteristics. According to the in-

surance application and the contract characteristics, there are voluntary and compulsory

insurance schemes. The combination of these two helps countries to build a protective

environment of economy, social relations, private and property interests of citizens.

Compulsory insurance is organized by government. It takes into account issues con-

cerning the protection of society interests and defines the types of insurances for the most

vulnerable events. The types of compulsory insurance and its application conditions are

defined in laws of compulsory insurance. Insurance objects and people who must insure

their risks and liabilities are also listed in laws. The law regulates relationships between

parties and defines the size of the liability.

Voluntary insurance contracts are based solely on insureds will.

Insurance can be classified according to the insurance object difference characteristics.

This is based on the differences of insurance objects and liabilities. The classification

based on differences of insurance objects is used for the whole insurance system. The

classification based on differences of liabilities is used only in property insurance.

Insurance can be private and government. Private insurance includes:

1. life and health insurance,

2. property and liability insurance.

Government insurance includes social insurance and other government insurance.

We will focus mainly on private insurance.
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The insured event in case of life insurance includes the death of the insured. Upon

occurrence of an insured event, the insurance company has to pay to the insured or third

beneficiary party insurance benefits. The beneficiary can be any person. For example,

when obtaining a mortgage, banks often insure the life of the borrower on their behalf.

Life insurance can be whole life insurance, whole life insurance with time-limited pre-

miums, term life insurance, insurance with variable sum insured and variable premium,

group life insurance. Whole life insurance assumes the payment of sum insured to the

policyholder in case of his death. The policyholder pays constant premium to the insur-

ance company per annum. In case of whole life insurance with time-limited premiums,

the insured person pays premium for a limited time period or he stops paying if he dies

before that age. Term life insurance assumes the payment of the sum insured if the person

dies before the defined age. In case of insurance with variable sum insured and variable

premium, the sum insured in case of the insureds death changes over time. The terms of

group life insurance include the joint insurance of the group of people.

The main goal of health insurance is to allow the insured to pay high medical expenses

in case of illness. Modern medicine can be extremely expensive even for a wealthy person,

so this insurance is a very popular type of voluntary insurance.

Property insurance is aimed at protecting the property interests of the individual,

therefore incidents include property damage or loss. This type of insurance also provides

with liability coverage in case a person different from the owner is injured because of the

accident.

Liability insurance is applied in many areas where mistakes of individuals or businesses

can cause significant damage - in medicine, among carriers, etc. Liability insurance has a

huge demand in the fields where the actions of insureds can lead to the injuries of other

people.

Classification can also be done based on the duration of insurance contracts and the

size of insurance risks. In European Union this classification includes life insurance and

non-life or general insurance.

Life insurance is cumulative by its nature which means that the premiums are becoming

higher with the age of insured person. The contracts are for a long term that is why they

belong to the group of long-term private insurance.

Non-life insurance includes short-term private insurance groups such as casualty in-

surance, illness insurance, as well as property and liability insurance groups.

The latter classification provides more efficient environment for legislative regulation

of long-term and short-term insurance contracts, and better tax policy that considers the

specifications of different types of insurance.
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Figure 1.1.1: Gross insurance premium market shares in OECD countries, 2015.

Figure 1.1.2: Gross insurance premium market shares in OECD countries, 2016.

Insurance market is continuing to develop and increases every year. According to the

official webpage of data and metadata for OECD, the gross insurance premiums in OECD

countries were almost 4840.21 bn USD in 2015. The highest market share belongs to USA

with 54% followed by UK with 7% and Japan with 6% (illustrated in fig. 1.1.1).1

The same data is absent for some countries in 2016 (Canada, Netherlands, Slovak

Republic, for both life and non-life insurance). Excluding those countries, the estimated

gross insurance premium was almost 4061.9 bn USD. Again, the biggest share among

OECD countries belongs to US (52‘%) followed by Japan (9%). France came up to the

3-rd position with 7% market share (shown in fig. 1.1.2).

Italy has always been a major contributor to the international insurance market. Over

the last 10 years its gross insurance premiums were growing. They reach their peak

in 2014 with 189.7 bn USD (fig. 1.1.3). It is quite interesting that in 2008-2010 this

indicator grows, despite the economic crisis during those years. During 2015 and 2016

1Note: All the data on isurance premiums are taken from data.oecd.org.
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Figure 1.1.3: Gross insurance premiums in Italy, 2007-2016.

gross premiums decreased compared to 2014, but still Italy is one of the major insurance

markets in the world.

1.2 Life Insurance

The simplest forms of personal mutual insurance existed in the frames of medieval crafts-

men associations. The first mentions of the mutual insurance of craftsmen are discovered

in England at X, in Germany at XI, and in Denmark at XII centuries. The statute of

associations defined the organization of mutual relations between members, including the

payment of membership fees and the procedure for the expenditure of money from the

union. Money was spent on burials or on paying benefits to families of the deceased, as

well as to sick and disabled people.

Life insurance, as a separate type of entrepreneurship, appeared in Europe in the

XVII-XVIII centuries as a complement to marine insurance. Life insurance contracts were

signed with ships and cargo insurance for 135 ships’ commanders.

In case of life insurance, the insured risk is not the death itself, but its time. The

covered risk has three aspects. Those aspects are the likelihood of premature death or

death before the average life expectancy, the likelihood of death or disabling in a particular

time framework, and the likelihood of having a long life, in which case regular incomes are

required with the condition of unemployment. Based on the criteria for risk determination,

the types of life insurance are distinguished.

Life insurance has different types of contracts such as pure endowment, life annuity,

deferred annuity, term annuity, term deferred annuity, endowment assurance contracts.

In case of pure endowment contracts a person of age h will receive amount M if he
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lives until some age. If the person does not live up to that age, he will not receive any

money and his premium will not be returned. In case of life annuity, a person receives some

amount of money periodically until he reaches to some age. This is very similar to deferred

annuity, only in case of life annuity the payments are made immediately after buying an

annuity. Deferred annuity assumes that there is a delay of some time before the payments

will be started. Term annuity is in the contrast with life annuity as the payments are

made up to some age. In case of term deferred annuity payments are periodic not starting

immediately after buying an annuity. They last up to some age. It is a mixture of term

annuity and deferred annuity. The terms of endowment assurance contracts include the

payment that is to transferred to the beneficiary of an insured person if the latter dies

before the defined age and the sum insured is paid to the insured person if he lives until

that age.2

Offering a wide range of insurance guarantees and investment services, life insurance

allows people to solve a whole system of social and economic problems. These problems

can be combined into social and financial groups. The solution of social problems allows to

overcome the imperfection of the state, social insurance and security system. The solution

of financial issues, on one hand, contributes to the increase of personal income, on the

other hand provides necessary guarantees for implementation of a number of financial and

credit operations.

Social objectives include family protection, the loss of income of deceased family mem-

ber, accumulation of funds for the purpose of obtaining financial assistance when children

become adults etc. The set of financial objectives includes cumulative objectives concern-

ing investment incomes, protection of businesses, heritage protection, etc.

Thus, a citizen signs a life insurance contract either to support his/her family in the

case of his/her premature death, or for investment purposes, to satisfy his/her financial

needs in the future. That is why long-term life insurance allows to solve very important

socio-economic problems and gets support from the state in this frame. In a market

economy, it is one of the most important mechanisms for ensuring economic and social

stability.

Nowadays, life insurance is one of the most advanced branches in the international

insurance market. In 2015, the gross insurance premium of life insurance over OECD

countries was 2001.59 bn USD which includes 260310.81 mln USD pension contracts. Fig.

1.2.1 illustrates the market shares of OECD countries in life insurance. Again, US holds

the largest part of the pie, almost 41%.

In 2016, the gross insurance premiums increased up to 2240.22 bn USD. The market

2Khmaladze, E. V. (2013), pp. 141-151, 161-165.
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Figure 1.2.1: Life insurance market shares in OECD countries, gross insurance premium, 2015.

Figure 1.2.2: Life insurance market shares in OECD countries, gross insurance premium, 2016.

shares of this year are shown in fig. 1.2.2. US has 42% market shares in 2016, followed by

Japan with 14% and France (8%).

According to International Monetary Fund report, life insurance market in Italy offers

very traditional types of insurance. Those products include with-profit endowments, whole

life and term life, and linked products (both unit and index linked products) whose risk

is generally borne by policyholders. The products cannot guarantee a higher interest rate

than the one published by IVASS (Istituto per la Vigilanza sulle Assicurazioni, 60% of the

10 years Italian bonds’ return).3

The development of life insurance gross premiums are shown in fig. 1.2.3. The highest

peak over these 10 years was in 2014 with 146.504 bn USD which was almost 77% of total

gross insurance premiums for that year.

3IMF (2013), p.13.
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Figure 1.2.3: Life insurance gross premiums in Italy, 2007-2016.

1.3 Non-life Insurance

Non-life insurance includes the elements of private insurance that are not included in

life insurance. It also includes property and liability insurances. Unlike life insurance, the

classes of non-life insurance are not cumulative.

There is no universal classification of property insurance. However, it is common to

consider the following main types of property insurance: property insurance against fire

and other risks, cargo insurance, vehicle insurance, technical risk insurance, aviation risk

insurance, agricultural risk insurance.

Liability insurance can be classified into liability insurance for the use of vehicles,

employer’s liability insurance toward employees, professional liability insurance, liability

insurance for environmental pollution, liability insurance for manufacturers and sellers,

Insurance of other types of civil liability.

1.3.1 Property Insurance

The purpose of property insurance is the compensation of damages. The assessment of

insured property and the definition of the sum insured are highly important for this type

of insurance. In case of voluntary insurance, sum insured is determined by the insurer

and insured agreement, and in the case of compulsory insurance, it is the amount defined

by law within which insurance object is insured. The insurance value is the real (market)

value of the property at the moment of signing the contract of property insurance. It

should be noted that the sum insured can not be higher than the property insurance

value. Otherwise, we would have a situation that pushes insureds to take illegal actions

to get insurance compensation which exceeds the fair value of the property. Property
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insurance contracts usually contain the extent of the insureds involvement in the loss,

or the non-reimbursable amount which is known as "franchise". The non-reimbursable

amount is set as a certain percentage of the sum insured or it can be in absolute numbers.

On one hand, the non-reimbursable amount releases the insurer from the obligation to

compensate for minor damages, since in most cases such expenses exceed the amount

of damages. On the other hand, it forces the insured to be more careful and attentive

to the insurance object. Additionally, the non-reimbursable amount significantly reduces

insurance premiums.

Property insurance is the most common type of insurance. It may include buildings and

constructions, unfinished construction facilities, equipment, raw materials, fuel, household

property insurance, etc. Properties are not usually insured if they are in areas where

earthquakes, floods, hurricanes and other natural disasters are common. Insurance risks

include fire, lightning, explosions, natural disasters, including earthquakes, hurricanes,

floods, water penetration from neighboring areas, etc.

Cargo Insurance is one of the oldest, most common and important types of insurance.

In the past, merchants were trying to find ways to protect their goods from various dan-

gers. One of the most effective ways in that period was insurance. At present, cargo

insurance is one of the key elements of international trade and the insurance certificate

is an inseparable part of any transaction. In international trade practice, there is a large

number of agreements for the trades of goods, the most common of which are CIF, C&F,

FOB, FAC.

In case of trading goods with conditions of CIF (cost, insurance and freight), the seller

is obliged to deliver the cargo to the station, load the ship, pay for the carriage of the

goods, insure the goods throughout the transportation until it reaches to the buyer, as

well as send all the necessary transportation documents to the buyer. After the carriage of

the goods and the formulation of transportation documents in the name of the buyer, the

product becomes the buyer’s property, so the risks associated with sudden loss of goods

fall on the buyer.

In case of C&F (cost and freight) transaction, the seller is obliged to make a contract

for the carriage of goods on his/her behalf, as well as to load the vehicle. In this case the

buyer is responsible for the cargo insurance.

In case of FOB (free on board) the buyer is responsible for the carriage and the in-

surance of goods. The seller is obliged to load the board, notify the buyer and send the

transportation documents to him/her.

The only difference of FAC (free alongside ship) from FOB is that the seller should

load the ship and only after that it becomes the property of the buyer.
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It should be noted that the aforementioned transactions are made for sea freight.

However, freight transportation is often carried out by rail or automobile. Insurance is

carried out in accordance with one of the three types of insurance coverage which include

"liability for all risks", "limited liability" and "liability only for the loss of the whole load".

In case of "liability for all risks" (Institute Cargo Clauses "A"), the insurer compen-

sates all losses and damages of the whole cargo or only a part of it, except for some

non-indemnified cases. In "limited liability" (Institute Cargo Clauses" "B") the scope of

compensated cases is narrower. "Only for the loss of the whole load" (Institute Cargo

Clauses "C") covers the whole loss or the loss of a full part of the freight (container,

carriage, etc.).

Vehicle insurance is the next type of property insurance. The classes of vehicle insur-

ance include casco insurance, motor third party liability insurance and driver and pas-

sengers insurance from accidents. Casco insurance is vehicle insurance from the loss and

damage that include physical damage, fire and theft. Casco is an international term, and

in Spanish it means a car or ship skeleton. In insurance it means a vehicle skeleton in-

surance. Only the damage caused to the vehicle is insured. In case of insurance from

accidents all seats as well as separate seats can be insured.

Technical risks insurance is the 3-rd type of property insurance. In the 1950s, with

regard to scientific advancement, increase of production capacities, increase in the share

of technological equipment in foreign trade circulation, as well as buildings’ construction

and installation works in foreign countries, there was a need for technical risks insurance.

Today, construction insurance contracts are the largest in terms of sums insured. As a

result of buildings’ construction and installation works, the requirements for environmental

protection have grown, leading to the need of liability insurance. The number of insurance

companies involved in technical risk insurance has also grown significantly, especially in

developed countries such as USA, Japan, England and so on.

Aviation risk insurance has emerged at the beginning of the 20-th century, during

World War I, but started to develop in a rapid pace after the Second World War, along

with the development of civil aviation, parallel to the increase in air transport and air

traffic. The distinguishing feature of aviation insurance is its disastrous nature and the

huge amount of damage. This means that only large insurance companies can engage in

aviation insurance and reinsure most of the risks. Aviation risks insurance involves casco

insurance, civil liability insurance, airline personnel insurance, aircraft maintenance and

exploitation service insurance.

Agricultural risk insurance includes agricultural crops, crop and perennial seed insur-

ance, livestock insurance, agricultural and farm property insurance and other agricultural
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insurance risks.

1.3.2 Liability Insurance

The essence of liability insurance is that insureds pay a premium to insurers and, thus,

transfer the risks of damages of third parties from themselves to insurers. In case of insur-

ance event, the latter is liable for damages to third parties if those damages caused material

liability. Liability insurance is of double importance. First of all, it protects insureds from

losses. It compensates for the damage to the victims as a result of their actions. Secondly,

it guarantees compensation to victims for the damage caused to third parties. For this

reason, liability insurance in many countries is compulsory, since indemnification to the

third parties should be guaranteed.

The main fact of liability insurance for motor owners is that vehicles, first of all,

automobiles, are a major source of danger to their surroundings. Statistical data shows

that the damage caused by road accidents of motor vehicles is too high. In all countries of

the world there are relevant legislative norms, which state that the damages to property,

life or health of third parties is fully subject to compensation by the person who has

caused the damage. Therefore, it is important to apply the most effective mechanism for

the regulation of legal relations arising in the process of compensating the damage caused

by vehicle accidents. The solution to this problem is primarily through the use of civil

liability insurance of vehicle owners. The essence of this type of insurance is that the car

owner insures his/her civil liability to third parties, in which the insurer pays the damage

caused to the property, life or health of the injured party in case of an accident by the

insured.

In accordance with the insurance agreements of motor third party liability, insurers

compensate the damage caused to third parties within the insurance sum, which was

caused by the insured as a result of the use of vehicle.

The bonus-malus scheme is used in many countries. Discounting and rebates systems

are used in the calculation of each insurance policy depending on the number of accidents

occurred by the insureds during the previous years. Discounts are applied for long periods

of no claims, and on the contrary, in case of frequent claims, the insurance premium can

increase. Each insured is assigned to specific level depending on which coefficients are

established that increase or decrease the amount of the insurance premium. For example,

the premium of the first no-claim year can be reduced by 10%, second year by 20%, third

year by 30%, and so on. At the same time, the insurance premium will increase by 10%,

20% and 30% as a result of the first, second and third accidents. For the 1-st time of

registering the vehicle, the insured is assigned to the initial level, according to which no
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discounts or rebates are applied. In case of no accidents in the first year, the insured is

assigned to the first level that gets a discount, a second level in the second year, and a third

level in the third year. Thus, for each year without accident another level is added and, in

case of an accident, the level of the insured is usually reduced by one. This system works

in Italy and is based on the following criteria: in case of registering the vehicle for the first

time, the insured will be assigned to the default class that will determine conditions for

his/her policy - class 14, in a range from class 1 (the most virtuous) to class 18 (the least

virtuous drivers). Otherwise, the insurance company will consider the accidents that the

policyholder have been involved in recent five years.4

Freight liability insurance is another type of liability insurance and is classified ac-

cording to the type of vehicle and category of persons to which the insured is liable for

damages. Based on the type of vehicle, the insurance is divided water transport carriers’

liability insurance (shipowners), air transport carriers’ liability insurance, motor transport

carriers’ liability insurance, rail transport carriers’ liability insurance.

Professional liability insurance is a type of liability insurance that provides insurance

coverage to people who are frustrated by providing professional services to their cus-

tomers and inadvertently causing any malfunctions, mistakes, unforeseen defects in the

performance of their professional responsibilities, although they were originally trusted by

customers because of their professional skills. In other words, the essence of this insurance

is that the insurer takes on the responsibility of the insured in respect of compensation

for damage caused by insured errors in the course of professional activity. It should be

noted that this form of insurance protects the property interests of the professionals who

have higher education, possess special knowledge and have received special qualifications.

Professional activities are characterized by the intellectual work that has been based on

higher education and relevant years of work experience and professional ethics and other

ethical principles.

The property interests of the insured as well as the obligation of the insured to com-

pensate for the damage caused to the third parties and to the environment as a result

of the environmental hazard are the object of the environmental damage or environmen-

tal liability insurance. It should be noted that the liability insurance of enterprises that

danger environment should be based on the liability legislation.

Liability insurance of goods manufacturers and sellers is the next type of liability

insurance. Consumers can be damaged due to poor quality products. The causes of the

damage can be the product design, errors or omissions during production process, the

use of poor quality raw materials, materials, semi-finished products, unclear, stringent

4According to https://europa.eu
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Figure 1.3.1: Non-life insurance market shares in OECD countries, gross insurance premium,
2015.

instructions on the use of the product and so on. In such cases, consumers have rights to

make a claim for occurred damages to the manufacturers or distributors of the product.

Thus, manufacturers and sellers have the risk of unforeseen costs associated with the need

to compensate consumers for their products. An effective way of mitigating these risks is

the insurance of liability for damages caused by the use of their products.

Health insurance is one of the forms of social protection that directly stems from the

need to maintain the health of the population. It is associated with unforeseen accidents

or diseases that damage the health. This insurance covers insurance risk that is related to

the cost of medical care resulting from the accident.

Accident insurance is one of the most important types of private insurance that pro-

vides with the payment of insurance sum for the unexpected damage to health or in case

of insureds death. Accident insurance covers adults, children, schoolchildren, road passen-

gers, and individual groups of workers in more hazardous working conditions. Insurance

can be carried out on the basis of common rules for almost all citizens and the rules that

take into account the specific characteristics of the population (children, passengers, etc.).

In case of accident insurance, the old and sick persons’ insurance is subject to certain

restrictions.

Non-life insurance market is also continuing to develop. In 2015, the gross insurance

premiums in OECD countries were almost 1933.04 bn USD which is lower than life insur-

ance gross premiums. 44% of these premiums were health and accident premiums. But

only 12% of these money was for health insurance. The second largest premiums of 24%

were for motor vehicle insurance. 14% were for fire and other property damage insurance.

In 2016, the gross insurance premiums in OECD countries increased and were almost

2007.03 bn USD. The same groups of insurance were again majority and were respectively

45%, 23% and 14% in the gross insurance premiums.
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Figure 1.3.2: Non-life insurance market shares in OECD countries, gross insurance premium,
2016.

Figure 1.3.3: Non-life insurance gross premiums in Italy, 2007-2016.

Market shares of OECD countries in non-life insurance gross premiums for 2015 are

illustrated in fig. 1.3.1. US has the main part in here with 62% followed by Germany with

6%. For 2016, the shares are illustrated in fig. 1.3.2. The picture is almost the same as in

2015.

In Italy, the major groups of insurances in this group have always been vehicle insur-

ance, accident and health insurance and fire and other property damage insurance. But

interestingly enough vehicle insurance always takes almost the half or more than half of

the premium volumes (fig. 1.3.4).

1.4 The legislative framework

Insurance firms in EU rely on The Solvency II Directive 2009/138/EC as a prudential

framework. It was introduced in 2009, but came into effect only in 2016. The aim of this

Directive is to unify and harmonize the EU insurance regulation and establish an adequate

solvency margin.
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Figure 1.3.4: Vehicle insurance shares in total non-life insurance, 2007-2016.

The existing solvency margin requirements were established in 1973 under the First

Non-Life Directive (73/239/EEC) and in 1979 under the First Life Directive (79/267/EEC).

International Conferences on Insurance Solvency were held in 1986 and 1988. In 1988

D’Arcy gave the definition of risk for actuaries: that is the uncertainty, which is impor-

tant for reinsurance and solvency purposes, but could be ignored in pricing and reserving.

Meanwhile financial economists divide risks into diversifiable and systematic.

Solvency is a term that describes the state of having more assets than liabilities. The

purpose of Solvency I was to revise and update the current solvency system. Solvency II

covers wider range. Solvency capital requirement is the main control factor in this case.

Solvency I had realistic minimum capital requirements, but does not reflect the true risk

faced by insurance companies. Besides, Solvency I cannot tackle the range of insurance

risks.

According to ec.europa.eu, Solvency II promotes transparency, comparability and com-

petitiveness in the sector. Solvency II is based on 3 pillar approach like Basel II. 1-st pillar

includes quantitative requirements such as minimum capital and solvency capital require-

ments. Solvency capital is calculated based on either European Standard Formula or

companies can use their own internal models. It guarantees that the insurance company

has enough finances to withstand the hard times. The minimum capital requirement is

lower requirement and a threshold below which interventions are required by national

regulators.

The 2-nd pillar includes qualitative requirements such as adequate and transparent

governance and regular risk management system.

3-rd pillar includes supervisory reporting and public disclosure. Firms disclose some
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information publicly and report more information to the supervisor.5

The detailed requirements for applying Solvency II are described in Regulation (EU)

2015/35. It includes asset and liability valuation, the ways of managing insurance compa-

nies, the level of capital for investment assets, etc.

Italian Association of Insurance Companies (ANIA) has initiated a project to support

insurance undertakings in drafting their first Solvency and Financial Condition Report

under Solvency II rules.6

5Sandström, A. (2010), p. 21.
6ANIA. Italian Insurance (2016-2017), p. 19.
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Chapter 2

Individual Risk Prediction in Vehicle

Insurance: Bonus-Malus Systems

We are living in the era where the various types of risks need to be managed. As a

risk based civilization, the need of protection has become more pronounced. The result is

the need of a financial security against possible losses. The development of the insurance

business is related to the urgent need to protect the individuals and their assets against

possible losses caused by specific events. The process of insurance consists of offering an

equitable method of transferring the risk of an uncertain loss for some payment.

As we see insurance itself is a technique to hedge the risks, but risk management

decisions will help us to understand deeply the functions of insurance. The category of

risk, in fact, is of fundamental importance, since only if there is a risk for an insured

person, it is possible to build one or another insurance model.

Automobile insurance is one of the most large-scale sectors of the insurance market.

Insurance company takes the responsibility to reimburse the costs to the policyholder on

the basis of the signed contract. These expenses are compensated in case of the damage

and loss of the insured vehicle as a whole or just certain parts of it. These situations can

occur as a result of fire, an accident, a natural disaster, etc. Auto insurance holds an

increased interest because it is required to manage a large number of situations (both the

number of insured vehicles and the accidents) with a wide set of risks.1

The relevance of the topic is expressed by the fact that the current development of the

voluntary insurance market of vehicles is caused by the quantity of purchased vehicles.

1David, M., D.V. Jemna (2015), p. 152.
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2.1 Vehicle Insurance

In this thesis we will consider any event associated with a random phenomenon that

has more than one possible outcome as a risk which is quantifiable and calculable. The

latter is the 1-st characteristic of risk in insurance and is a crucial point, because it means

that insurance is radically different from lottery. For the event to be considered as a

risk in insurance it is necessary to evaluate its probability. Insurance has a dual basis:

the statistical table with the regularity of certain events and the calculus of probabilities

applied to that statistic. This helps to evaluate the chances of that class of event actually

occurring.

The 2-nd characteristic of risk in insurance is the risk collectivity. It means that

the accident affects the whole population. Risk is calculable when it is spread over the

population. Insurance covers groups.

The 3-rd characteristic of risk in insurance is that risk itself is a capital. What is

insured is the capital against which loss the insurer offers a guarantee.

From these 3 characteristics of risk as "the actual value of a possible damage in a

determined unit of time" we can define insurance as "the compensation of effects of chance

through mutuality organized according to the statistics law".2 Any risk is associated with

an individual who is either bearing the risk or is risky to another individual. The ways

to model risk can be parametric, nonparametric and semi-parametric. The parametric

approach is based on estimating the specific set of parameters of a specific distribution.

The nonparametric approach is based on the analysis of generic parameters, such as means,

variances, covariances and quantiles. The semi-parametric approach is the mixture of

parametric and nonparametric approaches.

Risk can be viewed from different perspectives such as the occurrence of the loss event

(if the loss occurred or no), the frequency of the loss event (the quantity of the recorded

losses in the accounting year which is, of course, a nonnegative integer), the time of the

loss event occurrence (the interval of time measured in reference to the beginning of the

contract) and the severity of the loss event (in currency units how much money is spent

to cover the losses).

According to this classification, risk variables can be dichotomous qualitative, count,

duration or continuous variable.

Dichotomous qualitative variables are variables which have only two levels (e.g., in case

of gender, we categorize someone as either "male" or "female"). In case of risk management

in automobile insurance, the dichotomous qualitative variable indicates if road accidents

2Ewald, F., (1991). pp. 201-205.
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were reported to the insurance company, or if any claims on the automobile insurance

were filed in the given year. There are two possible outcomes: either “yes” or “no”. To

quantify these responses dummy variables 1 and 0 are assigned to each of them respectively.

Depending on the variable choices, coverage choice of the policyholder can also be a

dichotomous explanatory variable. For example, Hsu et al. (2016), take coverage of

the policyholder as a dichotomous variable, where 1 indicates the high value of coverage

and 0 indicates the low value of coverage.

As we know count data is a type of data, where observations take only non-negative

integer values and these integer values arise from counting. Count variable is the individual

piece of count data. Count variable gives the number of claims filed on the automobile

insurance in the accounting year. Count variables are the basis of individual risks. Those

risks need to be predicted when calculating the pure premium or updating the premium

of policyholders. As a count variable we will consider the number of claims.

Duration variable can be the time between the issue of the insurance policy and the

moment of the first claim incidence or the time from the incidence of a claim to the time

of its report to the insurance company, the time from the claim report to the settlement.

Continuous variable is the amount paid by the insurer for the claim settlement or the

total costs of claims filed in the accounting year.

A good measure for individual risk is the score. Score is a quantified measure of

individual risk based on individual characteristics.3

Now, we will discuss each of risk variables separately.

2.2 Dichotomous Risk Variables

Van Hoorde et al. (2013), illustrate how simple dichotomous updating improve the

validity of multinomial prediction models. Dichotomous qualitative models are widely

studied using non-Bayesian techniques (Bermudez et al., (2008)).

Let denote the loss event by L. The following random variable is the indicator of that

event:

1L =











1 if L occurs

0 if L does not occur.
(2.2.1)

We define the random variable Y as follows:

3Gourieroux, C., J. Jasiak (2007), p. 2
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Y = 1 − 1L =











0 if L occurs

1 if L does not occur.
(2.2.2)

Both 1L and Y take only two values, so they are dichotomous qualitative variables. Y

is a better setup for risk analysis, because it will allow us to define the score as a decreasing

function of risk. To assess the probability of a loss event for fixed time horizon, we should

find the probability that Y is equal to 0. Therefore, Y is the risk variable. The probability

of Y is equal to 0 or 1 is the risk prediction.

So, how should we proceed with predicting individual risks? First of all in order to

predict the risks we need to consider the characteristics of an individual such as the gender,

age, marital status, car characteristics etc. One of the ways to do it is computing the

conditional probability of a loss event. For any discrete variable the conditional (marginal)

probabilities of outcomes form a conditional (marginal) probability function.

Suppose for the individual i we have the risk variable of the characteristic denoted by

Yi. Considering that X is the vector of individual covariates and Y is the dichotomous

risk variable, we have the joint distribution of (Y, X). Y takes only two values 0 and 1 as

mentioned above.

We will denote the conditional probability function of Y given X = x as follows:

p1(x) = P [Y = 1|X = x] (2.2.3)

and

p0(x) = 1 − p1(x) = P [Y = 0|X = x]. (2.2.4)

The marginal distribution of Y is denoted by

p0 = P [Y = 0] (2.2.5)

and

p1 = P [Y = 1]. (2.2.6)

We denote the conditional probability density functions of X given Y = 0 and Y = 1

respectively by f0(x) and f1(x).

If we have f(x) = p1f1(x)+p2f2(x), then for the marginal and conditional probabilities

we will have the following relationships:
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p0 =
∫

p0(x)f(x)dx (2.2.7)

and

p1 =
∫

p1(x)f(x)dx. (2.2.8)

p1 and p0 are the initial beliefs about the probabilities of not occurrence of the loss

event and the occurrence of it respectively (a priori beliefs). When new information comes

out, we update our beliefs about those probabilities according to the Bayes rule and we

get our a posteriori beliefs which are expressed as follows:

p1(x) = p1
f1(x)

f(x)
(2.2.9)

and

p0(x) = p0
f0(x)

f(x)
. (2.2.10)

At the end of the accounting period we will know if the loss event actually occurred or

not. This will lead to the final step of updating our beliefs:

P [Y = 1|Y, X] = Y. (2.2.11)

Another way of risk prediction is calculating the expected value of Y .

The conditional (marginal) expectation of Y is equal to the conditional (marginal)

probability that the individual will be a “good” risk:

E[Y ] = p1 (2.2.12)

and

E[Y |X = x] = p1(x). (2.2.13)

We can also write that E[Y ] = E[E(Y |X)].4

In order to assess our prediction accuracy we have to look at the variance of random

variable Y . The marginal (conditional) variance provides a measure of dispersion of a

random variable about the marginal (conditional) mean:

V ar[Y ] = p1(1 − p1) (2.2.14)

4 Gourieroux, C., J. Jasiak (2007),pp. 8-10.
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and

V ar[Y |X = x] = p1(x)(1 − p1(x)). (2.2.15)

On average, the conditional expectation provides more accurate prediction of Y than

the marginal expectation because V ar[Y ] ≥ E[V ar(Y |X)] (from the law of total variance).

In a very large number of repeated experiments, on average, the conditional expectation

provides a better prediction of risk than the marginal expectation.

We will try to find the relationship between dichotomous qualitative models and count

data models.

2.3 Premium Calculation in Insurance

Assume we have n individuals who set up a "pool" to pay money to the member who had

a loss because of the risk event. Let τ (j) be the random loss event. We define the random

loss as follows

X(j) =











x(j) if τ (j)

1 if τ̄ (j) j = 1, 2, ...n.
(2.3.1)

τ (j) and X(j) are independent. p(j) is the probability of suffering a loss. We also assume

that X(j), j = 1, 2, ...n, are independent and identically distributed.

Let

X(P ) =
n
∑

j=1

X(j) (2.3.2)

X(P ) is called outgo of the pool. From the independence hypothesis we have

E[X(P )] =
n
∑

j=1

E[X(j)] =
n
∑

j=1

x(j)p(j) (2.3.3)

and

V ar[X(P )] =
n
∑

j=1

V ar[X(j)] =
n
∑

j=1

(x(j))2p(j)(p(j)). (2.3.4)

If we assume that we have homogeneous probabilities and amounts of loss, then

x(j) = x̄, p(j) = p̄. (2.3.5)
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From the iid assumption it follows that

E[X(j)] = x̄p̄, E[X(P )] = nx̄p̄

and

V ar[X(j)] = x̄2p̄(1 − p̄) V ar[X(P )] = nx̄2p̄.

The calculation of pure premiums is very important for the insurance companies as

it somehow illustrates the health of the company. For this we consider short-term policies

and we can ignore the index of time. We denote by X̄ the benefit if the event τ that

causes financial loss occurs with probability p

X̄ =











x̄ if τ

1 if τ̄ .
(2.3.6)

The expected benefit will be

E(X̄) = x̄p̄, (2.3.7)

which is equal to the expected premium

P̄ = x̄p̄.

It is obvious that if there is an accident, the insurance company will suffer a loss equal

to the difference of P̄ and X̄. But if there is no accident, insurance company will gain

amount equal to P̄ .

The gains of the company can be expressed by M

M = P̄ − X̄. (2.3.8)

The expected gains will be

E(M) = P̄ − E(X̄) = x̄p̄ − x̄p̄ = 0. (2.3.9)

P̄ that is calculated in this way is called equivalence premium.

In case we have a pool with n risks and k number of claims, the equilibrium will be

achieved if

nP̄ = kx̄. (2.3.10)
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From where it follows that

nx̄p̄ = kx̄ (2.3.11)

or

np̄ = k. (2.3.12)

(2.3.12) means that in equilibrium the number of claims is equal to the expected

number of claims.

When p̄ and n are both very small, np̄ can be a non-integer, so the prefect balance

will never be achieved. If k > np̄, insurance company will suffer losses. For that case, the

insurer should apply a higher level of premium (Ph):

Ph = P̄ + h, (2.3.13)

where h illustrates the safety loading as it shows how the insurance company is playing

safe in order to avoid possible big losses.

(2.3.8) and (2.3.9) will respectively become

M = Ph − X̄, (2.3.14)

E(M) = Ph − E(X̄) = h. (2.3.15)

In the latter case Ph is charged directly from the contract.

If k = np̄, the total safety loading nm illustrates the profit of managing the pool or the

profit margin. Safety loading can be included in the calculations of premium in explicit

and implicit ways. They both show how the safety loading is connected to the quantitative

features of the contract.

Ph = (1 + α)E(X̄) = E(X̄) + αE(X̄) = E(X̄) + h = x̄p̄ + αx̄p̄ = (1 + α)x̄p̄. (2.3.16)

In this way when we choose α > 0 to calculate αP̄ , we adopt the explicit approach.

The example of explicit approach is the introduction of the variance of X̄ in the calculation

of Ph.5 Otherwise, the insurance company can "increase" the probability of the loss

p′ = (1 + α)p̄. (2.3.17)

5Olivieri, A., E. Pitacco (2011). pp. 58-60.
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Then

Ph = x̄p′. (2.3.18)

This is the implicit approach of the premium calculation. In this case

h = Ph − P = x̄(p′ − p̄). (2.3.19)

2.4 Poisson and Negative Binomial Regression

Models

Poisson regression model is one of the ways to predict the number of claims. The

probability function of number of the count variable Y for the given time interval will help

us to predict the number of the insurance claims.

This problem can be solved through individual and collective ways. In case of indi-

vidual approach, we take the portfolio that consists of individual policies. Each of them

has a certain probability of claim. The total number of claims is the sum of the con-

tributions from the individual policies. The probabilities are derived by means of the

addition theorem of probability calculus from the primary probabilities. In case of col-

lective approach-this was adopted by F. Lundberg. Portfolio of policies is considered as

a whole. A "process" is considered where only times and number of claims are recorded.

This process takes Poisson form.

The main disadvantage of Poisson distribution is that while applying it to the real

data, we get poor fit and the mean-variance equality is not often satisfied. In order to have

additional degree of freedom, we introduce an unobservable heterogeneity factor which is

a random variable. And as a random variable it has a gamma distribution. Heterogeneity

factors include the effects of all the relevant variables that are not in the explanatory

variables’ list. The Poisson regression model with gamma heterogeneity factor is called

negative binomial regression model.

Based on these approach, Gourieroux, C. and J. Jasiak (2007) proposed another way

of premium calculations that will be introduced in this section.

2.4.1 Poisson Regression

Let us consider the claim process arrivals. Y (t) is the number of events in the time

interval (0, t]. Y (0) = 0. The collection of random variables [Y (t) : t ≥ 0] is a stochastic
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process of number of events over time. For s > 0 the increment Y (t + s) − Y (t) is the

number of events in time interval (t, t + s].

We assume that the claim number process satisfies the independence of increments,

their stationarity and the exclusion of multiple events conditions.

Independence of increments means that events that occur in disjoint time intervals

are independent. For n = 2, 3, .... the numbers of events in k disjoint intervals given by

increments Y (t) : t ≥ 0 are independent.

This means that, for example, a car accident will not give a rise to another accident.

This is not always true because the accident can spread from one risk to another. This

condition is satisfied when we define the combination of some events as one risk unit (e.g.

the ship and its cargo are considered one risk unit).

Stationarity of increments means that the number of events in a specific time interval

depends only on the length of that interval. For all m > 0 and t ≥ 0, the distribution of

increments Y (t + m) − Y (t) depends only on m and not t.

Usually in insurance the intensity of claims is constant. This means that the portfolio

of policies is so large that the exit of individual policies and the entry of new policies can’t

affect the collective flow of the events to a significant degree.

This, however, is not applied to all the situations. For example, if there is a seasonal

variation in claim intensities or the risk intensities are changing, we can divide the time

interval into subintervals in a way that corresponding subprocesses approximately have

constant intensities. Thus, they are Poisson processes. As we know the sum of Pois-

son variables is a Poisson variable. So the total number of claims will have a Poisson

distribution. So we can ignore the seasonal variations in claims.

Exclusion of multiple events condition does not always hold. For example, there might

be an accident where two cars are involved. This issue can be solved by regarding the case

of two vehicles as one claim.6

As we see the assumptions of the basic Poisson regression model are not always satisfied.

For this reason, different extensions to the Poisson regression model have been introduced.

There is also another problem with Poisson distribution. We can not apply it in case of

heterogeneous insureds who have idiosyncratic risks related to their individual policies. We

solve this problem by taking this heterogeneity as a distinct unobserved random variable.

When the distribution of heterogeneity is unspecified, we have a semi-parametric model.

And if the heterogeneity has gamma distribution, we have a negative binomial model with

observable covariates.

The negative binomial model is used in automobile insurance in order to update the

6 Beard, R.E., T. Pentikainen and E. Pesonen (1984), pp. 19-22.
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Figure 2.4.1: Poisson probability mass function for different λ.

policy premiums (e.g. bonus-malus scheme that will be discussed later).

For now we will discuss Poisson distribution of number of claims.

The Poisson family of distributions has one parameter denoted by λ. λ is the expected

number of claims in per unit time or the mean of Poisson distribution. If Y has Poisson

distribution (Y ∼ Poi(λ)), The probability mass function then is given by

P (Y = y) = e−λ λy

y!
, y = 0, 1, 2.... (2.4.1)

The probability generating function of Poisson distribution is GY (n) = E(nY ), where

GY (n) = exp (λ(n − 1)). (2.4.2)

The moment generating function is

MY (t) = exp(λ(et − 1)). (2.4.3)

The mean and variance of Poisson distribution are equal to each other:

E[Y ] = V ar[Y ] = λ. (2.4.4)

The skewness of Poisson distribution is 1√
λ
. As λ intensity decreases, the coefficient of

skewness increases and the distribution becomes less symmetrical (figure 2.4.1). λ depends

on the values of observable covariates for each individual i:

λi = exp(z′
iβ), (2.4.5)
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where zi is the vector of different transformations of xi. The latter is a characteristic of

individual i. β is the vector of unknown parameters. The intensity parameter λ is always

positive.

It is obvious that

Yi|xi ∼ Poi(exp(z′
iβ)). (2.4.6)

Y1, Y2, ..., Yn are risk count variables. They are independent and conditional on covari-

ates. As the conditional distribution on xi is also Poisson, we will have the following:

E(Yi|xi) = V ar(Yi|xi) = exp(z′
iβ). (2.4.7)

Si = z′
iβ is the score that are used to rate the individuals in the sample with respect

to the risk. The high value of the score shows bad risk as the higher the score, the higher

the expected number of claims and its variance.

2.4.2 Maximum Likelihood Estimation of Poisson Regression

The log-likelihood function of Poisson regression model is the following:

L(β) = log(
n
∏

i=1

exp(− exp(z′
iβ)

exp(yiz
′
iβ)

yi!
)) =

n
∑

i=1

(yiz
′
iβ − exp(z′

iβ) − log(yi!)). (2.4.8)

First order conditions (FOCs) of the maximum likelihood function are

∂L(β̂n)

∂β
= 0, (2.4.9)

n
∑

i=1

(yi − exp(z′
iβ̂n))zi = 0. (2.4.10)

The residuals of the model for individual i are

ûi = yi − exp(z′
iβ̂n). (2.4.11)

When the covariates include the constant, the sum of residuals is 0.

Second order conditions (SOCs) of the maximum likelihood function are

∂2L(β)

∂β∂β′
= −

n
∑

i=1

ziz
′
i exp(z′

iβ̂n). (2.4.12)
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The MLE β̂n is consistent and asymptotically normal. The estimated variance matrix

of β̂n is

ˆV ar(β̂n) =

(

−
∂2L(β̂n)

∂β∂β′

)−1

=

(

n
∑

i=1

ziz
′
i exp(z′

iβ̂n)

)−1

. (2.4.13)

Now we turn to the discover the connection of dichotomous risk and count variables.

We can define the number of claims as follows:

Y ∗ =











1 if Y > 0

0 otherwise.
(2.4.14)

As Y ∗ is the occurrence of at least one claim, Y ∗ = 0 is for good risk individuals, and

Y ∗ = 1 for bad risk individuals. The conditional distribution of good risk given xi is

P (Y ∗
i = 0|xi) = exp(− exp(z′

iβ) (2.4.15)

and the conditional distribution of bad risk given xi is

P (Y ∗
i = 1|xi) = 1 − exp(− exp(z′

iβ)). (2.4.16)

The latter is the Gompit regression model for dichotomous risk.

In order to find MLE, the function to be maximized is

max
β

n
∑

i=1

(y∗
i log(1 − exp(− exp(z′

iβ))) − (1 − y∗
i ) exp(z′

iβ)). (2.4.17)

The MLE found in this case is less accurate than in case of count data variables,

because we have less qualitative information.

2.4.3 Negative Binomial Distribution

The negative binomial distribution has 2 parameters denoted by m and p, where m > 0

and 0 < p < 1. If Y is a random variable that has negative binomial distribution (Y ∼

nb(m, p)), then the probability mass function of Y is given as

P (Y = y) =
Γ(m + y)

Γ(y + 1)Γ(m)
=





k + y − 1

y



 pmqy, (2.4.18)

where y = 0, 1, 2, ... and q = 1 − p.
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Γ is the gamma function:

Γ(α) =
∫ ∞

0
xα−1e−x, (2.4.19)

Γ(α + 1) = αΓ(α), (2.4.20)

Γ(n) = (n − 1)! for n = 1, 2, 3, ... (2.4.21)

When m is an integer, calculation of the probability mass function is straightforward

as it can be expressed in terms of factorials.7

The possible outcomes can have two outcomes, “success” and “failure”. When m is an

integer, the distribution models the number of failures before the m-th “success” occurs

in a series of independent Bernoulli trials.8 And

P (success) = p. (2.4.22)

We can now express the probability mass function as

P (Y = y) =
(k + y − 1)!

y!(k − 1)!
pkqy, y = 0, 1, 2, ... (2.4.23)

There is an alternative way to calculate the probability mass function, regardless if m

is an integer or not, is

P (Y = y + 1) =
m + y

y + 1
qP (Y = y), y = 0, 1, 2, ... (2.4.24)

The probability generating function exists for |n| < 1 and is equal to

GY (n) =

(

p

1 − qn

)m

. (2.4.25)

When t < − log q, there exists a finite moment generating function:

MY (t) =

(

p

1 − qet

)m

. (2.4.26)

Respectively, the mean and the variance of the distribution are:

E(Y ) =
mq

p
, (2.4.27)

V ar(Y ) =
mq

p2
. (2.4.28)

7Dickson, D.C.M. (2016), pp. 3-4.
8Gray, R.J., S.M. Pitts, (2012), pp. 16-17.
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Figure 2.4.2: Negative binomial probability mass function for different λ.

V ar(Y ) > E(Y ) as p < 1. This means that the tails of negative binomial distribution

are heavier than the tails of Poisson distribution in case of equal means. This is why the

negative binomial distribution fits better to the real data than the Poisson distribution. If

we decrease parameter m and keep p fixed, the distribution will become less symmetrical

(figure 2.4.2).

This model is used in automobile insurance for bonus-malus scheme. If we take into

account the heterogeneity, we will have the following form for the individual intensity:

λi = exp (z′
iβ + ǫi) = µiexp(z′

iβ). (2.4.29)

µi or ǫi is the heterogeneity factor.

In order to model the negative binomial regression, we first assume that

Yi|xi, µi ∼ Poi(µiexp(z′
iβ)). (2.4.30)

Then we specify

µi|xi ∼ γ(a, a) (2.4.31)

and

f(µ) = aaµa−1 exp(−aµ)

Γ(a)
, (2.4.32)

where a is a scalar and measure the amount of heterogeneity and

Γ(a) =
∫ ∞

0
exp −µµa−1dµ. (2.4.33)
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Given that the explanatory variables include the constant term, we will introduce the

new not too restrictive constraint Eµ = 1. Then we will have

V ar(µ) = 1/a. (2.4.34)

For the conditional mean by the law of total expectations we have

E(Yi|xi) = E(E(Yi|xi, µi)|xi) = E(µiexp(z′
iβ)) = exp(z′

iβ). (2.4.35)

For the conditional variance by the variance decomposition formula we have

V ar(Yi|xi) = E(V ar(Yi|xi, µi)|xi) + V ar(E(Yi|xi, µi))

= E(µiexp(z′
iβ)) + V ar(µiexp(z′

iβ)) = exp(z′
iβ) + 1/ae2z′

i
β.

(2.4.36)

If a increases we have less heterogeneity in the population, and V ar(Yi|xi)/E(Yi|xi)

ratio, which is called overdispersion, decreases. We will have V ar(Yi|xi)/E(Yi|xi) = 1

(Poisson regression model) if a → +∞ so the distribution degenerates to the point µ = 1.

The conditional density of negative binomial distribution is

f(yi|xi) =
∫ ∞

0
exp (−µ exp (−z′

iβ))µyi
exp (yiz

′
iβ)

yi!
aaµa−1 exp −aµ

Γ(a)
dµ

=
aa exp (yiz

′
iβ)

yi!Γ(a)

∫ ∞

0
exp (−µµyi+a−1(a + exp(−z′

iβ)))dµ

=
Γ(yi + a)

Γ(yi + 1)Γ(a)

((1/a) exp (z′
iβ))yi

(1 + (1/a) exp (z′
iβ))yi+a

.

(2.4.37)

In order to find the MLE of this model, we just need to derive the log-likelihood of

this function with respect to a and β (find FOCs).

2.5 The Bonus-Malus Scheme

Third party liability vehicle insurance is compulsory within EU countries. Insurance in

one EU country is valid in another EU country although the calculation of motor insurance

premiums may differ from one country to another. Some EU countries adopted premium

assessment system which takes into account the claim histories or so called bonus-malus

scheme.

There are different designs for BMS. One example includes -1/top scale system that has

6 levels from 0 to 5 and the starting level is 5. In case of claims-free year, the policyholder
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is rewarded by 1 bonus class. In case of a claim, all discounts are vanished and the

policyholder transfers to 5-th level. Another examples include -1/+2 and -1/+3 systems.

The discounts for claim-free year work as in the case of -1/top scale system. If nt claims

are reported during the year t, then the policyholder goes up by respectively 2nt and 3nt

levels.

One way of calculating bonus-malus premiums is proposed by Gourieroux, C. and J.

Jasiak (2007). It is based on computing the relative increment of premium
Pi,T +1

Pi,T
at the

end of period.

Pi,T +1

Pi,T

=
Ci,T +2exp(zi,T +2

′β)µ̂i,T +1

Ci,T +1exp(zi,T +1
′β)µ̂i,T

. (2.5.1)

µ̂i,T is the expected heterogeneity factor at the end of period,
Ci,T +2

Ci,T +1
is the inflation

rate. In bonus case, the formula means that if the observed number of accidents Yi,T +1 is

lower than the expected one exp(zi,T +1
′β), the increment of heterogeneity factors will be

lower than 1.

This is not the only way of updating bonus-malus premiums. The ratemaking or pre-

mium determination process is very important to insurance companies. For this purpose

the observable characteristics of insureds should be taken into account. This will lead

to the initial segmentation of risk classes and a priori premiums determination. But the

problem here is that unlike life insurance, in vehicle insurance there will still be some

residual heterogeneity left among those risk classes. So, insurance companies need to de-

termine a posteriori premiums. This is the basis of bonus-malus scheme where the criteria

used for assigning an individual to an initial risk class is the number of claims. Discounts

are applied for good drivers with no accidents and claims and bad drivers who reported

accidents are punished. In other words, bonus-malus is a posteriori ratemaking scheme

that comes to complement a priori rates. Bonus-malus (BM) ratemaking consists of 3 very

important parts which include the levels, relativities and transition rules of the system.

The levels are the classes to which policyholders are assigned. As I already stated

in chapter 1, in Italy there are 18 BM levels: New drivers enter into this system with a

pre-specified level. In our notation let l be the level of the BM scheme (l = 1, 2, ..., s).

The level l is associated with relativity rl%. That relativity is a premium adjustment

coefficient. The meaning is that the policyholder of level l should pay rl × base premium

in order to be covered by the company. Base premium is the a priori premium that was

determined on the basis of policyholder’s observable characteristics.

Depending on their claim history, policyholders move among the levels according to
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some transitivity rules. Let tij(k) be the transition rule if k claims are reported:

tij(k) =











1 if the policy is transferred from level i to level j

0 otherwise.
(2.5.2)

Then T (k) defined as follows will be a matrix of 0 and 1, with a unique 1 in each row.

T (k) =

















t00(k) t01(k) ... t0s(k)

t10(k) t11(k) ... t1s(k)
...

...
. . .

...

ts0(k) ts1(k) ... tss(k)

















. (2.5.3)

Let
{

L1, L2, ...
}

be the trajectory of the policyholder in BM system. They are random

variables and take values from
{

0, 1, ..., s
}

. Lk is the level occupied by the policyholder

in the time interval of (k, k + 1). We assume that the current level and current year

claims number is enough to determine the next level and that annual claim numbers are

independent. The trajectory across the BM levels may be represented by a memoryless

Markov chain.

Let υ be the mean claim frequency and Yk be the number of reported claims in the

time interval of (k, k + 1). It is obvious that the trajectory will be dependent on the

claim frequency and we will have
{

L1(υ), L2(υ), ...
}

. We will also assume that Y1, Y2, ...

are independent and have Poi(υ) distribution. Let pl1l2(υ) be the probability that the

policyholder will move from level l1 to l2, where υ is the mean annual claim frequency.

Let P (υ) be one step transition matrix:

P (υ) =
{

pl1l2(υ)
}

, l1, l2 = 0, 1, 2, ...s, (2.5.4)

where

Pl1l2(υ) = Pr(Lk+1(υ) = l2|Lk(υ) = l1), l1, l2 ∈ 0, 1, ..., s, (2.5.5)

and

pl1l2(υ) ≥ 0 ∀ l1, l2, (2.5.6)

s
∑

l2=0

pl1l2(υ) = 1. (2.5.7)

Since Yk+1 and Lk(υ) the transition probabilities can be expressed
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pl1l2(υ) =
+∞
∑

n=0

Pr(Lk+1(υ) = l2|Yk+1 = n, Lk(υ) = l1)Pr(Yk+1 = n|Lk(υ) = l1)

=
∞
∑

n=0

υn

n!
exp(−υtl1l2(n))).

(2.5.8)

We know that

P (υ) =

















p00(υ) p01(υ) ... p0s(υ)

p10(υ) p11(υ) ... p1s(υ)
...

...
. . .

...

ps0(υ) ps1(υ) ... pss(υ)

















. (2.5.9)

It follows that in a matrix form we can write

P (υ) =
∞
∑

k=0

υk

k!
exp(−υ)T (k). (2.5.10)

Since Y1, Y2, ... are independent and identically distributed, each policyholder will even-

tually stabilize around the equilibrium level which corresponds to υ. The policy remains

unchanged after claim-free period. This is the equilibrium in the long-run or the stationary

equilibrium. The stationary distribution is π(υ) = (π1(υ), π2(υ), ..., πs(υ))T , where πl2(υ)

is the stationary probability for the policyholder with mean claim frequency υ to be in

level l2.

πl2(υ) = lim
n→+∞

pn
l1l2

(υ). (2.5.11)

π(υ) is the unique solution of the following equation systems:

πj(υ) =
s
∑

l=0

πl(υ)plj(υ), j = 0, 1, ..., s, (2.5.12)

or in a matrix notation











πT (υ) = πT (υ)P (υ)

πT (υ)e = 1,
(2.5.13)

where e = (1, 1, ..., 1)T .

According to Rolski–Schmidli–Schmidt–Teugels formula if E is (s + 1)x(s + 1) matrix

with all elements equal to 1 and P (υ) is a regular matrix then the stationary distribution

can be find as
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πT = eT (1 − P (υ) + E)−1. (2.5.14)

First of all with the help of a priori mean claim frequency the relativities should be

determined. Those a priori frequencies must be as distinguishable as possible in order to

prevent the further reinforcement of a priori risk classification at the BM steady state.

This BM levels are achieved by combining a priori and a posteriori ratemakings. The

purpose of a priori ratemaking is to put the policyholders into different tariff classes

according to a priori risk classification. The policyholders who belong to the same tariff

classes pay the same a priori premium. Then BM is used as a posteriori ratemaking to

tackle the residual heterogeneity.

Let Θi be the random parameter that captures the residual heterogeneity of i-th poli-

cyholder. As I mentioned before Yi are independent and identically distributed with mean

λiθ given Θi = θ.

P (Yi = k|Θi = θ) = exp(−λiθ)
(λiθ)k

k!
, k = 0, 1, 2, ... (2.5.15)

where Θ1, Θ2, ... are independent and follow Γ distribution:

f(θ) =
1

Γ(a)
aaθa−1 exp(−aθ), θ > 0. (2.5.16)

From here it follows that the number of claims Yi has a negative binomial distribution

with parameters E(Θi) = 1 and V ar(Θi) = 1
a
. The problem then becomes the estimation

of a.9 The consistent estimator of a is given by

1

â
=

∑n
i=1

{

(ni − λ̂i)
2 − ni

}

∑n
i=1 λ̂i

2 . (2.5.17)

The main purpose is to pick such rl that it will be as close as possible to Θ. For that

purpose mainly quadratic and exponential loss functions are used:

E

(

(Θ − rL)2

)

(2.5.18)

and

E(exp(−c(Θ − rL))), (2.5.19)

where L is the level of a random policyholder that will be picked after reaching the

9υ from the previous notation here becomes (λθ).
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steady state.

The solution of quadratic loss function is given by

rq
l = E(Θ|L = l) = E

(

E(Θ|L = l, Λ)|L = l
)

=
∑

k

E(Θ|L = l, Λ = λk)Prob(Λ = λk|L = l)

=
∑

k

∫ ∞

0
θ

Prob(L = l|θ = θ, Λ = λk)wk

Prob(L = l, Λ = λk)
dFΘ(θ)

Prob(Λ = λk, L = l)

Prob(L = l)

=

∑

k wk

∫∞
0 θπl(λkθ)dFΘ(θ))

∑

k wk

∫∞
0 πl(λkθ)dFΘ(θ))

(2.5.20)

and for the exponential loss function it is

rexp
L = 1 +

1

c
(E

[

lnE(exp(−cΘ)|L)

]

− lnE

[

(exp(−cΘ)|L)

]

), (2.5.21)

where wk is the weight assigned to the k-th risk class whose annual expected claim

frequency is λk. If Λ is the a priori mean claim frequency of randomly selected policy-

holder, then the actual annual mean claim frequency of this policyholder will be ΛΘ. c is

the severity parameter of BMS.10 It follows that

Prob(Λ = λk) = wk. (2.5.22)

The proportion of policyholders in l (the distribution of L) will be

P (L = l) =
∑

k

wk

∫ ∞

0
πl(λkθ)f(θ)dθ, l = 0, 1, ..., s. (2.5.23)

In addition,

πl(λkθ) = Prob(L = l|Θ = θ, Λ = λk). (2.5.24)

When a priori ratemaking is not taken into account, we will have the following formula

for calculations of relativities taking E(Λ) = λ̄:

rl =

∫∞
0 θπl(λ̄θ)dFΘ(θ)
∫∞

0 πl(λ̄θ)dFΘ(θ)
. (2.5.25)

The main purpose of bonus-malus is to deal with the heterogeneity within risk classes.

The insurer uses a priori variables to obtain λis. Unlike life insurance where those variables

can describe the estimated results very well, in vehicle insurance some heterogeneity will

10Denuit, M., X. Marechal, S. Pitrebois, J.F. Walhin (2007). Chapter 4.
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be left. There will be some unobservable variables that have not been considered in a

priori ratemaking. Heterogeneity between risk groups should be treated as given and be

included in the computation of optimal relativities. The transition levels are applied to

all policyholders unconditionally of their a priori mean claim frequency. Those transition

rules are applied in the majority of BMS, apart from old Belgian and Portuguese systems.

In both of those cases systems are dependent on the number of consecutive claim-free

years which violates Markovian property. In these cases fictitious levels are introduced

(for example, as Lemaire (1995) proposed splitting certain levels into sub-levels) to recover

the Markovian property.

In case of quadratic loss function the relationship between a priori and a posteriori is

described as follows:

E(Λ|L = l) =
∑

k

λkProb(Λ = λk|L = l) =
∑

k

λk

Prob(L = l|Λ = λk)wk

Prob(L = l)

=

∑

k λkwk

∫∞
0 πl(λkθ)dFΘ(θ)

∑

k wk

∫∞
0 πl(λkθ)dFΘ(θ)

.

(2.5.26)

First of all the insured with higher λk is expected to be on a higher level of BMS. The

formula expresses the idea that policyholders who were a priori given discounts, are being

discounted a posteriori as well, and the opposite, policyholders who are at the highest

ranks on the system a priori will be penalized a posteriori as well.

2.6 The Efficiency of Bonus-Malus System

The elasticity of BMS shows the system’s response to the change of mean claim fre-

quency. In order to assess the elasticity, Loimaranta’s efficiency is given by the formula is

used. If r̄(υ) =
∑s

l=0 πl(υ)rl is the average relativity in the steady state with annual mean

claim frequency υ, then Loimaranta’s efficiency is given by the formula

Eff(υ) =

dr̄(υ)
r̄(υ)

dυ
υ

. (2.6.1)

Eff(υ) is a positive number, as it is obvious that the increase in the expected annual

claim frequency will increase the average relativity. The value of Eff(υ) close to 0 implies

that BMS does not modify the structure of policyholders by classes when there is a change

in the annual mean claim frequency. The value close to 1 will describe the ideal bonus-

malus system.
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In order to calculate Loimaranta’s efficiency we use the stationary probabilities πl(θ).

We first need to solve the following equation system with respect to
dπ(υ)

dυ
:











dπT (υ)
dυ

= dπT (υ)
dυ

P (υ) + πT (υ)dP (υ)
dυ

∑s
l=0

dπT (υ)
d(υ)

= 0.
(2.6.2)

Then using
dπ(υ)

dυ
, we get the derivatives of r̄(υ).

dr̄(υ)

dυ
=

s
∑

l=0

dπT (υ)

d(υ)
rl. (2.6.3)

As we can see Loimaranta efficiency is a function of mean annual claim frequency. This

is a good tool for analyzing the efficiencies of different bonus-malus systems adopted by

insurance companies and compare them.
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Chapter 3

Italian Bonus-Malus System and The

Calculation of Relativities

The new Italian bonus-malus system was adopted in 1991. The old system consisted

of 13 classes and the levels were 70, 70, 70, 75, 80, 85, 92, 100, 115, 132, 152, 175, 200. The

starting level was at 115. Every claim free year was rewarded by going up with 1 in the

levels. Every claim was punished by going down by 1 in the levels. After 1991, the number

of classes increased and the punishment became more severe. The new system consists of 18

classes with the levels 50, 53, 56, 59, 62, 66, 70, 74, 78, 82, 88, 94, 100, 115, 130, 150, 175, 200.

Starting level is the same as in the old system. If no claims occurred in the respective year,

the policyholder will be discounted and move up by 1 position. If there is one accident,

the policyholder will be moved down by one position. If kt is the number of claims during

the respective year and it is bigger than 1, the policyholder will be moved down by 3kt

levels. This means that after 6-th claim, no matter what the level of policyholder is, all

his or her rewards will be canceled and he or she will be moved to 18-th level.

3.1 Transition Rules in Italian Bonus-Malus System

The transition rules for the Italian bonus-malus system are illustrated in table 3.1.1.1

1based on Lemaire, J., Z. Hongmin (1994).
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Table 3.1.1: Transition rules for Italian bonus-malus system.

Class Premium Class after

0 1 2 3 4 5 ≥ 6

claims

18 200 17 18 18 18 18 18 18

17 175 16 18 18 18 18 18 18

16 150 15 18 18 18 18 18 18

15 130 14 17 18 18 18 18 18

14 115 13 16 18 18 18 18 18

13 100 12 15 18 18 18 18 18

12 94 11 14 17 18 18 18 18

11 88 10 13 16 18 18 18 18

10 82 9 12 15 18 18 18 18

9 78 8 11 14 17 18 18 18

8 74 7 10 13 16 18 18 18

7 70 6 9 12 15 18 18 18

6 66 5 8 11 14 17 18 18

5 62 4 7 10 13 16 18 18

4 59 3 6 9 12 15 18 18

3 56 2 5 8 11 14 17 18

2 53 1 4 7 10 13 16 18

1 50 1 3 6 9 12 15 18

According to (2.5.3) we will have

T (0) =

































1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

































.

For k = 1, 2, 3, 4, 5 we will respectively have

44



T (1) =

































0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

































, T (2) =

































0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

































,

T (3) =

































0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

































,

T (4) =

































0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

































, T (5) =

































0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

































.

For all k ≥ 6

T (k) =

































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

































.

From (2.5.10) it follows that for the Italian bonus-malus system transition probabilities

P (υ) are the following:
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



































































e−υ 0 υe−υ 0 0 υ2

2!
e−υ 0 0 υ3

3!
e−υ 0 0 υ4

4!
e−υ 0 0 υ5

5!
e−υ 0 0 1−Σ1

e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 0 0 υ3

3!
e−υ 0 0 υ4

4!
e−υ 0 0 υ5

5!
e−υ 0 1−Σ2

0 e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 0 0 υ3

3!
e−υ 0 0 υ4

4!
e−υ 0 0 υ5

5!
e−υ 1−Σ3

0 0 e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 0 0 υ3

3!
e−υ 0 0 υ4

4!
e−υ 0 0 1−Σ4

0 0 0 e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 0 0 υ3

3!
e−υ 0 0 υ4

4!
e−υ 0 1−Σ5

0 0 0 0 e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 0 0 υ3

3!
e−υ 0 0 υ4

4!
e−υ 1−Σ6

0 0 0 0 0 e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 0 υ3

3!
e−υ 0 0 0 1−Σ7

0 0 0 0 0 0 e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 0 0 υ3

3!
e−υ 0 1−Σ8

0 0 0 0 0 0 0 e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 0 0 υ3

3!
e−υ 1−Σ9

0 0 0 0 0 0 0 0 e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 0 0 1−Σ10

0 0 0 0 0 0 0 0 0 e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 0 1−Σ11

0 0 0 0 0 0 0 0 0 0 e−υ 0 0 υe−υ 0 0 υ2

2!
e−υ 1−Σ12

0 0 0 0 0 0 0 0 0 0 0 e−υ 0 0 υe−υ 0 0 1−Σ13

0 0 0 0 0 0 0 0 0 0 0 0 e−υ 0 0 υe−υ 0 1−Σ14

0 0 0 0 0 0 0 0 0 0 0 0 0 e−υ 0 0 υe−υ 1−Σ15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 e−υ 0 0 1−e−υ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e−υ 0 1−e−υ

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e−υ 1−e−υ





































































,

where Σj is the sum of the rest of elements of j-th row.

Because of the private data that insurance companies do not give away, we will use

the estimated mean claim frequency by Denuit et al. (2007). In order to demonstrate the

long-term steady state of the Italian system, the maximum likelihood estimate of λ or υ of

Poisson distribution equal to 0.1462 is taken (obtained from the data of a Belgian motor

third party liability insurance portfolio observed during the year 1997, Appendix A).

































0.864 0 0.126 0 0 0.009 0 0 0.0004 0 0 0.00001 0 0 0.0000 0 0 0.0000
0.864 0 0 0.126 0 0 0.009 0 0 0.0004 0 0 0.00001 0 0 0.0000 0 0.0000

0 0.864 0 0 0.126 0 0 0.009 0 0 0.0004 0 0 0.00001 0 0 0.0000 0.0000
0 0 0.864 0 0 0.126 0 0 0.009 0 0 0.0004 0 0 0.00001 0 0 0.0000
0 0 0 0.864 0 0 0.126 0 0 0.009 0 0 0.0004 0 0 0.00001 0 0.0000
0 0 0 0 0.864 0 0 0.126 0 0 0.009 0 0 0.0004 0 0 0.00001 0.0000
0 0 0 0 0 0.864 0 0 0.126 0 0 0.009 0 0 0.0004 0 0 0.0000
0 0 0 0 0 0 0.864 0 0 0.126 0 0 0.009 0 0 0.0004 0 0.0000
0 0 0 0 0 0 0 0.864 0 0 0.126 0 0 0.009 0 0 0.0004 0.0000
0 0 0 0 0 0 0 0 0.864 0 0 0.126 0 0 0.009 0 0 0.0005
0 0 0 0 0 0 0 0 0 0.864 0 0 0.126 0 0 0.009 0 0.0005
0 0 0 0 0 0 0 0 0 0 0.864 0 0 0.126 0 0 0.009 0.0005
0 0 0 0 0 0 0 0 0 0 0 0.864 0 0 0.126 0 0 0.0097
0 0 0 0 0 0 0 0 0 0 0 0 0.864 0 0 0.126 0 0.0097
0 0 0 0 0 0 0 0 0 0 0 0 0 0.864 0 0 0.126 0.0097
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.864 0 0 0.136
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.864 0 0.136
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.864 0.136

































,

After 20 years and 30 years respectively, the transition probabilities will be P (20)(0.1462)

and P (30)(0.1462) as illustrated in table 3.1.2 and 3.1.3. As we can see even after 30

years, the system is not stable and has not reached to its steady state yet. If we apply

Rolski–Schmidli–Schmidt–Teugels formula, the system will converge to (0.6498, 0.1023,

0.1184, 0.0420, 0.0337, 0.0217, 0.0120, 0.0079, 0.0047, 0.0029, 0.0018, 0.0011, 0.0007,
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Table 3.1.2: Transition probabilities of Italian bonus-malus system after 20 years.

0.0004, 0.0002, 0.0002, 0.0001, 0.0001).

3.2 Calculation of Italian Bonus-Malus System

Relativities

Further we will calculate the relativities taking into account the heterogeneity. Again,

because of the luck of information, we will take already estimated results of λs and the

heterogeneity factor a as in the book by Denuit et al. (2007), table 2.7 (Appendix B). For

the stationary distributions we will use Rolski–Schmidli–Schmidt–Teugels formula. And

quadratic loss function will be assumed. 1 − P (υ) + E matrix is illustrated in 3.2.1.

Calculations are done by MatLab, generating gamma distribution for θ with parameters

(â, â). The long-term stationarity probabilities for each value of λk, k = 1, 2, ..., 23 will

be 23x18 matrix. The final distribution of policyholders will be calculated based on these

steady state transition probabilities according to (2.5.23). From formula we see that

heterogeneity factor is also included in the calculation of level distributions.
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Table 3.1.3: Transition probabilities of Italian bonus-malus system after 30 years.

Figure 3.2.1: 1 − P (υ) + E matrix of Italian BMS.
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Table 3.2.1: The share of policyholders occupying bonus-malus levels in Italian BMS.

level the percentage of policyholders level the percentage of policyholders

1 45.07% 10 1.86%

2 5.55% 11 1.61%

3 7.04% 12 1.4%

4 4.14% 13 1.3%

5 4.39% 14 1.37%

6 4.35% 15 1.63%

7 4.34% 16 2.19%

8 2.8% 17 3.27%

9 2.41% 18 5.37%

It is clear that after a priori ratemaking 45.07% of policyholders occupied the 1-st

level. 3-rd level is occupied by 7.04% policyholders followed by the 2-nd level occupied by

5.55% policyholders. The rest of policyholders (42.34%) are divided among the rest of the

levels. The default level is occupied only by 1.37% of policyholders.

When calculating the relativities with a posteriori ratemaking taking into account a

priori ratemaking, we use (2.5.20).
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Table 3.2.2: Relativities with a priori ratemaking.

level rl with a priori ratemaking level rl with a priori ratemaking

1 79.6% 10 264.3%

2 164.9% 11 273.6%

3 176.3% 12 286%

4 221.7% 13 302.2%

5 233.9% 14 319.4%

6 248% 15 333.4%

7 261.2% 16 343.1%

8 255% 17 353%

9 261% 18 369.6%

When a priori ratemaking is not recognized, we use (2.5.25) for the calculations of

relativities and get table 3.2.3. As the mean value of λ, the estimate from the book

Denuit, M., et al. (2007) is taken. That is equal to 0.1474 and the heterogeneity factor

â = 0.889. The gamma distribution of θ is generated with parameters â, â.
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Table 3.2.3: Relativities without a priori ratemaking.

level rl without a priori ratemaking level rl without a priori ratemaking

1 40.56% 10 227%

2 90.8% 11 251%

3 95.9% 12 279.1%

4 133% 13 311.8%

5 146.4% 14 337.4%

6 167.5% 15 344.6%

7 189.6% 16 327.7%

8 193.2% 17 304.4%

9 212.3% 18 285.4%

The connection between a priori and a posteriori ratemakings is shown in the table

3.2.4.
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Table 3.2.4: Connection between a priori and a posteriori ratemakings for Italian BMS.

level E(Λ|L = l) level E(Λ|L = l)

1 14.18% 10 13.75%

2 14.46% 11 14.03%

3 14.33% 12 14.57%

4 13.8% 13 15.32%

5 13.51% 14 16.21%

6 13.15% 15 17.28%

7 12.8% 16 18.46%

8 13.32% 17 19.72%

9 13.36% 18 20.96%

In table 3.2.4 we see that in general a priori expected mean claim frequency increases

with the occupied level.

In Italian system the policyholders who paid high without a priori ratemaking tend

to pay high with a priori ratemaking as well.

In the theory, a posteriori corrections are weaker when applying a priori ratemak-

ing. In our case it is correct only for 13-15 classes. The lowest percentage of relativities

45.07% without a priori ratemaking becomes 79.6% with a priori ratemaking. Thus in

this example a priori ratemaking is strict to policyholders with low claims and high claims.

These deviations from the theory are because of the absence of data and the differences

between Italian system and the Belgian bonus-malus systems. We take the estimated

parameters of Belgian system and apply it to Italian system. In Belgian system the

premium is dependent on claim history as a policyholder with no-claim history for 4 years

cannot be in a class above 14.

Another problem can be the fact that without a priori ratemaking, the steady state

probabilities for higher levels of the system are very low. Interestingly enough a priori
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ratemaking relativities are decreasing after the levels higher than the default level. This

means that in a steady state the policyholders should pay almost 2 times higher than their

a priori premiums. Meanwhile the rest of policyholders should pay more than 2 times of

their a priori premiums.

Besides, with this approach we consider that the number of claims is enough for pre-

dictions, but some studies show that taking into account the severity of those claims will

give more realistic results.
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Conclusion

While gross insurance premiums are quite high, over 2015-2016 those premiums de-

creased in OECD countries. Despite this, the main contributor to the world insurance

funds is USA and it is hardly going to change in the near future. USA owns almost half

of both life and non-life insurance premiums. The main part of the non-life premiums are

occupied by health and accident insurance in OECD countries.

Life insurance gross premiums are increasing in Italy over the recent year, thus, leading

to the average increase in gross insurance premiums. On the contrary non-life insurance

gross premiums are drastically decreasing. Interestingly enough, vehicle insurance premi-

ums are the highest among non-life insurance gross premiums in Italy. They were always

close to the half of non-life insurance premiums. This is the reason why it is good to know

what to expect in vehicle insurance in sense of premiums and risks.

The range of risks in vehicle insurance is very wide. But it is always good to have

good prediction tools for the risks in this insurance to avoid huge losses and to generate

profits. Those tools include the fact that the claim frequency in vehicle insurance has a

Poisson distribution and can be easily predicted by Poisson regression. But the latter has

a problem with treating the heterogeneity of risk characteristics of policyholders. That

is when another very important tool called negative binomial regression helps us. the

advantage of this tool is that we take into account the heterogeneity and assume that it

has a gamma distribution. But the problem with those tools is that the absence of micro

data limits the prediction accuracy. With proper data the maximum likelihood method

can be applied and the estimates of mean claim frequency and heterogeneity factor can

be discussed.

As we saw, there are few ways of calculating the premiums in insurance and vehicle

insurance. One includes the "safety loading" method, where insurance companies set higher

premium than the expected one. Another method is the calculation of premium increment

taking into account the expected number of claims and the inflation factor. The last one,

based on which our analysis was done, is the calculation of relativities of bonus-malus

system. It can also be used in another insurance systems with bonus-malus factor and not
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only in vehicle insurance.

When we don’t take into account the heterogeneity, the steady state transition proba-

bilities are not reached even after 20 years in Italian bonus-malus system.

But when we calculate transition probabilities taking into account the heterogeneity

of policyholders, we see that we get contradictory results for the Italian BMS. We saw

that according to steady state transition probabilities, the policyholders on the higher

levels of the system without a priori ratemaking have lower relativities in case of with

a priori ratemaking than those who occupied lower levels of the system without a priori

segmentation. This problem can be caused both by the absence of data, that would

help us to get more realistic estimates of mean claim frequency and heterogeneity factor

and by the fact that maybe the premiums that are initially attached to the higher level

occupants are too high. Another reason can be that in the steady state the transition

probabilities of occupying high levels are less possible. This is because initially the majority

of policyholders are the lowest level of the system. And having more than 6 claims in a

year is not very probable.

But of course, applying Belgian system estimates could bring to incorrect results as

the systems of both countries are different and in case of Belgian system the Markovian

property is not satisfied. This can cause problems with the use of parameters for the

Italian system.
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Appendix A

Data on Observed Claimed Distribution

Number of claims Number of policies Total exposure in years

0 12962 10545.94

1 1369 1187.13

2 157 134.66

3 14 11.08

4 3 2.52

Total 14505 11881.35
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Appendix B

The Estimated Mean Claim Frequencies and Heterogeneity

Factor

λ̂ weights â

0.1176 0.1049 1.65

0.1408 0.1396

0.1897 0.0398

0.2272 0.0705

0.1457 0.0076

0.1746 0.0122

0.2351 0.0013

0.2816 0.0014

0.1761 0.0293

0.2109 0.0299

0.284 0.0152

0.3402 0.0242

0.2182 0.0007

0.2614 0.0009

0.352 0.0002

0.0928 0.1338

0.1112 0.1973

0.1498 0.0294

0.1794 0.0661

0.1151 0.0372

0.1378 0.0517

0.1856 0.0025

57



Appendix C

Matlab Codes for Poisson and Negative Binomial Mass

Functions

1 c l c ;

2 c l e a r a l l ;

3 %draws Poisson pdf with lambda=45

4 x = 0 : 1 0 0 ;

5 y = po i s spd f (x , 4 5 ) ;

6 p lo t (x , y , ’ k ’ )

7 t i t l e ( ’ Poisson D i s t r i b u t i o n with lambda=45 ’ )

8 %%decrea se lambda=40, pdf i s l e s s symmetric

9 % x = 0 : 1 0 0 ;

10 % y = po i s spd f (x , 4 0 ) ;

11 % plo t (x , y , ’ k ’ )

1 c l c ;

2 c l e a r a l l ;

3 %draws negat ive binomial pmf with lambda=45

4 x = 0 : 8 0 ;

5 y = nbinpdf (x , 30 , 1/2 ) ;

6 p lo t (x , y , ’ k ’ )

7 %t i t l e ( ’ Negative Binomial D i s t r i b u t i o n with k=3 and p=1/2 ’)

8 %%i n c r e a s e k=30 l e av ing p f ixed , pdf i s l e s s symmetric

9 %x = 0 : 8 0 ;

10 %y = nbinpdf (x , 30 , 1/2 ) ;

11 %plo t (x , y , ’ k ’ )

12 %t i t l e ( ’ Negative Binomial D i s t r i b u t i o n with k=30 and p=1/2 ’)
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Appendix D

Matlab Code for Italian Bonus-Malus System’s 20 and 30 Years

Transition Probabilities Calculation

1 c l c ;

2 c l e a r a l l ;

3 A=x l s r e ad ( ’ s t s t ’ ) ; %( f i l ename in brackets , r e s o l u t i o n . x l s or .

x l sx )

4 row=A( 1 : end , 1 ) ;

5 c o l=A( 1 , 1 : end ) ;

6 prob=A( 2 : end , 2 : end ) ;

7 C=prob^20 %20 years l a t e r

8 D=prob^30 %30 years l a t e r

9 % converges to

10 A1=x l s r e ad ( ’ lambda ’ ) ;

11 B=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] ;

12 Pi=B∗ inv (A1)

59



Appendix E

Matlab Code for Calculation of Relativities

1 c l c ;

2 c l e a r a l l ;

3 a =1.065;

4 a1 =0.889;

5 lambda =0.1457;

6 %theta=gamrnd (a , a , 2 3 , 1 ) ; %gene ra t i on o f Gamma d i s t r i b u t e d

he t e r ogene i t y

7 %f a c t o r

8 %heta1=gamrnd( a1 , a1 , 2 3 , 1 ) ;

9 A0=x l s r e ad ( ’ lambda and weights ’ ) ;

10 A00=x l s r e ad ( ’ theta1 ’ ) ;

11 A1=x l s r e ad ( ’ lambda1 ’ ) ;%( f1lename 1n brackets , r e s o lu t1on . x l s or

. x l sx )

12 A2=x l s r e ad ( ’ lambda2 ’ ) ; % with a p r i o r i

13 A3=x l s r e ad ( ’ lambda3 ’ ) ;

14 A4=x l s r e ad ( ’ lambda4 ’ ) ;

15 A5=x l s r e ad ( ’ lambda5 ’ ) ;

16 A6=x l s r e ad ( ’ lambda6 ’ ) ;

17 A7=x l s r e ad ( ’ lambda7 ’ ) ;

18 A8=x l s r e ad ( ’ lambda8 ’ ) ;

19 A9=x l s r e ad ( ’ lambda9 ’ ) ;

20 A10=x l s r e ad ( ’ lambda10 ’ ) ;

21 A11=x l s r e ad ( ’ lambda11 ’ ) ;

22 A12=x l s r e ad ( ’ lambda12 ’ ) ;

23 A13=x l s r e ad ( ’ lambda13 ’ ) ;

24 A14=x l s r e ad ( ’ lambda14 ’ ) ;
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25 A15=x l s r e ad ( ’ lambda15 ’ ) ;

26 A16=x l s r e ad ( ’ lambda16 ’ ) ;

27 A17=x l s r e ad ( ’ lambda17 ’ ) ;

28 A18=x l s r e ad ( ’ lambda18 ’ ) ;

29 A19=x l s r e ad ( ’ lambda19 ’ ) ;

30 A20=x l s r e ad ( ’ lambda20 ’ ) ;

31 A21=x l s r e ad ( ’ lambda21 ’ ) ;

32 A22=x l s r e ad ( ’ lambda22 ’ ) ;

33 A23=x l s r e ad ( ’ lambda23 ’ ) ;

34 D1=x l s r e ad ( ’mean1 ’ ) ;%without a p r i o r i

35 D2=x l s r e ad ( ’mean2 ’ ) ;

36 D3=x l s r e ad ( ’mean3 ’ ) ;

37 D4=x l s r e ad ( ’mean4 ’ ) ;

38 D5=x l s r e ad ( ’mean5 ’ ) ;

39 D6=x l s r e ad ( ’mean6 ’ ) ;

40 D7=x l s r e ad ( ’mean7 ’ ) ;

41 D8=x l s r e ad ( ’mean8 ’ ) ;

42 D9=x l s r e ad ( ’mean9 ’ ) ;

43 D10=x l s r e ad ( ’ mean10 ’ ) ;

44 D11=x l s r e ad ( ’ mean11 ’ ) ;

45 D12=x l s r e ad ( ’ mean12 ’ ) ;

46 D13=x l s r e ad ( ’ mean13 ’ ) ;

47 D14=x l s r e ad ( ’ mean14 ’ ) ;

48 D15=x l s r e ad ( ’ mean15 ’ ) ;

49 D16=x l s r e ad ( ’ mean16 ’ ) ;

50 D17=x l s r e ad ( ’ mean17 ’ ) ;

51 D18=x l s r e ad ( ’ mean18 ’ ) ;

52 D19=x l s r e ad ( ’ mean19 ’ ) ;

53 D20=x l s r e ad ( ’ mean20 ’ ) ;

54 D21=x l s r e ad ( ’ mean21 ’ ) ;

55 D22=x l s r e ad ( ’ mean22 ’ ) ;

56 D23=x l s r e ad ( ’ mean23 ’ ) ;

57 B= [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] % steady s t a t e

p r o b a b i l i t y c a l c u l a t i o n

58 pi1=B∗ inv (A1) ;

59 pi2=B∗ inv (A2) ;
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60 pi3=B∗ inv (A3) ;

61 pi4=B∗ inv (A4) ;

62 pi5=B∗ inv (A5) ;

63 pi6=B∗ inv (A6) ;

64 pi7=B∗ inv (A7) ;

65 pi8=B∗ inv (A8) ;

66 pi9=B∗ inv (A9) ;

67 pi10=B∗ inv (A10) ;

68 pi11=B∗ inv (A11) ;

69 pi12=B∗ inv (A12) ;

70 pi13=B∗ inv (A13) ;

71 pi14=B∗ inv (A14) ;

72 pi15=B∗ inv (A15) ;

73 pi16=B∗ inv (A16) ;

74 pi17=B∗ inv (A17) ;

75 pi18=B∗ inv (A18) ;

76 pi19=B∗ inv (A19) ;

77 pi20=B∗ inv (A20) ;

78 pi21=B∗ inv (A21) ;

79 pi22=B∗ inv (A22) ;

80 pi23=B∗ inv (A23) ;

81 pi =[ p i1 ; p i2 ; p i3 ; p i4 ; p i5 ; p i6 ; p i7 ; p i8 ; p i9 ; p i10 ; p i11 ;

p i12 ; p i13 ; p i14 ; p i15 ; p i16 ; p i17 ; p i18 ; p i19 ; p i20 ; p i21 ;

p i22 ; p i23 ]

82 P1=A0 ( : , 2 ) ’∗ p i ( : , 1 )

83 P2=A0 ( : , 2 ) ’∗ p i ( : , 2 )

84 P3=A0 ( : , 2 ) ’∗ p i ( : , 3 )

85 P4=A0 ( : , 2 ) ’∗ p i ( : , 4 )

86 P5=A0 ( : , 2 ) ’∗ p i ( : , 5 )

87 P6=A0 ( : , 2 ) ’∗ p i ( : , 6 )

88 P7=A0 ( : , 2 ) ’∗ p i ( : , 7 )

89 P8=A0 ( : , 2 ) ’∗ p i ( : , 8 )

90 P9=A0 ( : , 2 ) ’∗ p i ( : , 9 )

91 P10=A0 ( : , 2 ) ’∗ p i ( : , 1 0 )

92 P11=A0 ( : , 2 ) ’∗ p i ( : , 1 1 )

93 P12=A0 ( : , 2 ) ’∗ p i ( : , 1 2 )
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94 P13=A0 ( : , 2 ) ’∗ p i ( : , 1 3 )

95 P14=A0 ( : , 2 ) ’∗ p i ( : , 1 4 )

96 P15=A0 ( : , 2 ) ’∗ p i ( : , 1 5 )

97 P16=A0 ( : , 2 ) ’∗ p i ( : , 1 6 )

98 P17=A0 ( : , 2 ) ’∗ p i ( : , 1 7 )

99 P18=A0 ( : , 2 ) ’∗ p i ( : , 1 8 )

100 %P=P1+P2+P3+P4+P5+P6+P7+P8+P9+P10+P11+P12+P13+P14+P15+P16+P17+

P18

101 r_w1=A0 ( : , 4 ) ’∗ p i ( : , 1 ) /P1 % r e l a t i v i t i e s with a p r i o r i ratemaking

102 r_w2=A0 ( : , 4 ) ’∗ p i ( : , 2 ) /P2

103 r_w3=A0 ( : , 4 ) ’∗ p i ( : , 3 ) /P3

104 r_w4=A0 ( : , 4 ) ’∗ p i ( : , 4 ) /P4

105 r_w5=A0 ( : , 4 ) ’∗ p i ( : , 5 ) /P5

106 r_w6=A0 ( : , 4 ) ’∗ p i ( : , 6 ) /P6

107 r_w7=A0 ( : , 4 ) ’∗ p i ( : , 7 ) /P7

108 r_w8=A0 ( : , 4 ) ’∗ p i ( : , 8 ) /P8

109 r_w9=A0 ( : , 4 ) ’∗ p i ( : , 9 ) /P9

110 r_w10=A0 ( : , 4 ) ’∗ p i ( : , 1 0 ) /P10

111 r_w11=A0 ( : , 4 ) ’∗ p i ( : , 1 1 ) /P11

112 r_w12=A0 ( : , 4 ) ’∗ p i ( : , 1 2 ) /P12

113 r_w13=A0 ( : , 4 ) ’∗ p i ( : , 1 3 ) /P13

114 r_w14=A0 ( : , 4 ) ’∗ p i ( : , 1 4 ) /P14

115 r_w15=A0 ( : , 4 ) ’∗ p i ( : , 1 5 ) /P15

116 r_w16=A0 ( : , 4 ) ’∗ p i ( : , 1 6 ) /P16

117 r_w17=A0 ( : , 4 ) ’∗ p i ( : , 1 7 ) /P17

118 r_w18=A0 ( : , 4 ) ’∗ p i ( : , 1 8 ) /P18

119 r_w=[r_w1 ; r_w2 ; r_w3 ; r_w4 ; r_w5 ; r_w6 ; r_w7 ; r_w8 ; r_w9 ; r_w10

; r_w11 ; r_w12 ; r_w13 ; r_w14 ; r_w15 ; r_w16 ; r_w17 ; r_w18 ]

120 pr1=B∗ inv (D1) ; % p r o b a b i l i t i e s without a p r o r i ratemaking

121 pr2=B∗ inv (D2) ;

122 pr3=B∗ inv (D3) ;

123 pr4=B∗ inv (D4) ;

124 pr5=B∗ inv (D5) ;

125 pr6=B∗ inv (D6) ;

126 pr7=B∗ inv (D7) ;

127 pr8=B∗ inv (D8) ;
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128 pr9=B∗ inv (D9) ;

129 pr10=B∗ inv (D10) ;

130 pr11=B∗ inv (D11) ;

131 pr12=B∗ inv (D12) ;

132 pr13=B∗ inv (D13) ;

133 pr14=B∗ inv (D14) ;

134 pr15=B∗ inv (D15) ;

135 pr16=B∗ inv (D16) ;

136 pr17=B∗ inv (D17) ;

137 pr18=B∗ inv (D18) ;

138 pr19=B∗ inv (D19) ;

139 pr20=B∗ inv (D20) ;

140 pr21=B∗ inv (D21) ;

141 pr22=B∗ inv (D22) ;

142 pr23=B∗ inv (D23) ;

143 pr=[pr1 ; pr2 ; pr3 ; pr4 ; pr5 ; pr6 ; pr7 ; pr8 ; pr9 ; pr10 ; pr11 ;

pr12 ; pr13 ; pr14 ; pr15 ; pr16 ; pr17 ; pr18 ; pr19 ; pr20 ; pr21 ;

pr22 ; pr23 ]

144 prob1=sum( pr ( : , 1 ) ) ;

145 prob2=sum( pr ( : , 2 ) ) ;

146 prob3=sum( pr ( : , 3 ) ) ;

147 prob4=sum( pr ( : , 4 ) ) ;

148 prob5=sum( pr ( : , 5 ) ) ;

149 prob6=sum( pr ( : , 6 ) ) ;

150 prob7=sum( pr ( : , 7 ) ) ;

151 prob8=sum( pr ( : , 8 ) ) ;

152 prob9=sum( pr ( : , 9 ) ) ;

153 prob10=sum( pr ( : , 1 0 ) ) ;

154 prob11=sum( pr ( : , 1 1 ) ) ;

155 prob12=sum( pr ( : , 1 2 ) ) ;

156 prob13=sum( pr ( : , 1 3 ) ) ;

157 prob14=sum( pr ( : , 1 4 ) ) ;

158 prob15=sum( pr ( : , 1 5 ) ) ;

159 prob16=sum( pr ( : , 1 6 ) ) ;

160 prob17=sum( pr ( : , 1 7 ) ) ;

161 prob18=sum( pr ( : , 1 8 ) ) ;
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162 r_wo1=A00 ( : , 1 ) ’∗ pr ( : , 1 ) /prob1 % r e l a t i v i t i e s without a p r o r i

ratemaking

163 r_wo2=A00 ( : , 1 ) ’∗ pr ( : , 2 ) /prob2

164 r_wo3=A00 ( : , 1 ) ’∗ pr ( : , 3 ) /prob3

165 r_wo4=A00 ( : , 1 ) ’∗ pr ( : , 4 ) /prob4

166 r_wo5=A00 ( : , 1 ) ’∗ pr ( : , 5 ) /prob5

167 r_wo6=A00 ( : , 1 ) ’∗ pr ( : , 6 ) /prob6

168 r_wo7=A00 ( : , 1 ) ’∗ pr ( : , 7 ) /prob7

169 r_wo8=A00 ( : , 1 ) ’∗ pr ( : , 8 ) /prob8

170 r_wo9=A00 ( : , 1 ) ’∗ pr ( : , 9 ) /prob9

171 r_wo10=A00 ( : , 1 ) ’∗ pr ( : , 1 0 ) /prob10

172 r_wo11=A00 ( : , 1 ) ’∗ pr ( : , 1 1 ) /prob11

173 r_wo12=A00 ( : , 1 ) ’∗ pr ( : , 1 2 ) /prob12

174 r_wo13=A00 ( : , 1 ) ’∗ pr ( : , 1 3 ) /prob13

175 r_wo14=A00 ( : , 1 ) ’∗ pr ( : , 1 4 ) /prob14

176 r_wo15=A00 ( : , 1 ) ’∗ pr ( : , 1 5 ) /prob15

177 r_wo16=A00 ( : , 1 ) ’∗ pr ( : , 1 6 ) /prob16

178 r_wo17=A00 ( : , 1 ) ’∗ pr ( : , 1 7 ) /prob17

179 r_wo18=A0 ( : , 1 ) ’∗ pr ( : , 1 8 ) /prob18

180 r_wo=[r_wo1 ; r_wo2 ; r_wo3 ; r_wo4 ; r_wo5 ; r_wo6 ; r_wo7 ; r_wo8 ;

r_wo9 ; r_wo10 ; r_wo11 ; r_wo12 ; r_wo13 ; r_wo14 ; r_wo15 ; r_wo16 ;

r_wo17 ; r_wo18 ]

181 E1=A0 ( : , 5 ) ’∗ p i ( : , 1 )

182 E2=A0 ( : , 5 ) ’∗ p i ( : , 2 )

183 E3=A0 ( : , 5 ) ’∗ p i ( : , 3 )

184 E4=A0 ( : , 5 ) ’∗ p i ( : , 4 )

185 E5=A0 ( : , 5 ) ’∗ p i ( : , 5 )

186 E6=A0 ( : , 5 ) ’∗ p i ( : , 6 )

187 E7=A0 ( : , 5 ) ’∗ p i ( : , 7 )

188 E8=A0 ( : , 5 ) ’∗ p i ( : , 8 )

189 E9=A0 ( : , 5 ) ’∗ p i ( : , 9 )

190 E10=A0 ( : , 5 ) ’∗ p i ( : , 1 0 )

191 E11=A0 ( : , 5 ) ’∗ p i ( : , 1 1 )

192 E12=A0 ( : , 5 ) ’∗ p i ( : , 1 2 )

193 E13=A0 ( : , 5 ) ’∗ p i ( : , 1 3 )

194 E14=A0 ( : , 5 ) ’∗ p i ( : , 1 4 )
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195 E15=A0 ( : , 5 ) ’∗ p i ( : , 1 5 )

196 E16=A0 ( : , 5 ) ’∗ p i ( : , 1 6 )

197 E17=A0 ( : , 5 ) ’∗ p i ( : , 1 7 )

198 E18=A0 ( : , 5 ) ’∗ p i ( : , 1 8 )

199 L1=E1/P1 % Connection between a p r i o r i and a p o s t e r i o r i

c o r r e c t i o n s

200 L2=E2/P2

201 L3=E3/P3

202 L4=E4/P4

203 L5=E5/P5

204 L6=E6/P6

205 L7=E7/P7

206 L8=E8/P8

207 L9=E9/P9

208 L10=E10/P10

209 L11=E11/P11

210 L12=E12/P12

211 L13=E13/P13

212 L14=E14/P14

213 L15=E15/P15

214 L16=E16/P16

215 L17=E17/P17

216 L18=E18/P18

217

218 L=[L1 ; L2 ; L3 ; L4 ; L5 ; L6 ; L7 ; L8 ; L9 ; L10 ; L11 ; L12 ; L13 ; L14 ;

L15 ; L16 ; L17 ; L18 ]
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