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Abstract

Cybersecurity risk modeling is a relatively new topic that has attracted the
attention of companies seeking to provide insurance coverage against cyberat-
tacks. In this study I introduce dynamic generalized Poisson panel-data models
for cybersecurity risk modeling. Following Zhu (2012), I extend the univariate
generalized Poisson INGARCH model to the case of panel data. I consider differ-
ent parsimonious specifications of the model such as partial pooling and complete
pooling of the model parameters, in addition to modeling the whole panel as one
or otherwise grouping the units of the panel into clusters based on certain char-
acteristic similarities. The stationarity conditions of the proposed models are
studied. As an application, I use cyberattack data on 491 consecutive victim IP
addresses which exhibit intrinsic spatiotemporal attack patterns (as analyzed by
Chen et al. (2015)). After the models are estimated I compare them according
to their likelihood value, AIC and BIC criteria. Finally, I provide a forecast com-
parison of the proposed models. The results of this study can be further used in
the cyber-insurance industry for example, for the pricing of insurance products.
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1 Introduction

Recent years have seen the advent of many new technologies and scientific break-

throughs that are revolutionizing business models in every sector of the economy. New

technologies not only transform daily lives but also expose the global economy to a

number of vulnerabilities including cyber-attacks. In this document I will focus on the

analysis of cyber-attacks by introducing new models for cybersecurity risk measuring

and forecasting.

Nowadays, cyber-security has become a major concern for organizations in every

sector of the economy. From internet banking to government infrastructure, the whole

world is networked together, thus calling for cyber-protection. These days almost all

banks provide online services and are therefore exposed to the risk of information and

identity theft of their customers. Data security breaches not only affect banking sector

but also governments who maintain enormous amount of personal data and records

of their citizens as well as confidential government information. Even businesses are

prone to data breaches that target their customer and employee information. The

technological developments in every sector and increasing volumes of available data

are providing increasing grounds for attacks by malicious hackers The growth of the

Internet of Things (IoT) has introduced new vulnerabilities. IoT refers to a system of

interrelated computing devices such as mobiles, home appliances, vehicles etc embed-

ded with sensors which allows these things to connect and transfer data over a network

without the involvement of humans. With increase in the number of IoT devices cy-

berattacks have become an increasingly physical rather than virtual threat because not

all of these connected devices are currently designed keeping security in mind (Camillo

(2017)). Specific threats that pose risks to cyber security range from user surveillance

algorithms, identity cloning and phishing to creating and distributing viruses.

Cyber-attacks not only have a negative impact on the performance of organizations

but also direct economic consequences. In 2016, the once dominant internet giant, Ya-

hoo reported two major data breaches that had occurred in late 2013 and 2014. Both

breaches are considered the largest reported in the history of the Internet which affected

all of Yahoo’s 3 billion user accounts resulting in a $350 million drop in Yahoo’s sale

price. Another data breach was suffered by retail giant Target store in 2013 in which

personally identifiable information (PII) of about 110 million customers was compro-

mised amounting to a loss of $162 million. This list of victims is ever increasing. In a

study entitled Cost of Cyber Crime, (Ponemon Institute, 2017) reveals that the global

average cost of cyber-crime has been steadily increasing over the last five years. The
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study reported a 23% increase in cost of cyber-crime as compared to 2016 with average

annualized cost of cyber-crime being 11.7 million USD in 2017. With this increase in

economic loss due to cyber-attacks, organizations started making tremendous efforts to

mitigate and cope with increasing cybersecurity threats. One such effort was the new

privacy regulation in the US as a consequence of increase in the number of cases involv-

ing identity theft and data breaches. In particular, the first data breach notification

law was enacted in California in 2002 which was eventually adopted by other states as

well. This law requires companies to notify individuals when their personal informa-

tion is exposed as a result of a data breach. In the EU, E-privacy Regulations were

introduced in 2009 for telecommunication companies and internet service providers.

Moreover, banks and insurers had been imposed with fines by financial regulators for

data-failings. These new notification requirements, as a step towards insuring against

the costs associated with a major data breach, led to a major shift in the demand for

cyber insurance products. In particular in US, the cyber insurance market saw a rapid

growth as the information about major data breaches and costs associated with them

became increasingly available (Camillo (2017)).

In a survey conducted by Ponemon Institute in 2017, 87% of risk management pro-

fessionals viewed cyber liability as one of their top ten business risks, however only 24%

of them reported that their companies had cyber insurance. Inadequate risk coverage

came out to be the main reason for not purchasing cybersecurity insurance. Neverthe-

less according to Aon (2018) Cybersecurity predictions report the situation is likely to

change in 2018 when companies will demand coverage for the full impact of cyber risk.

Moreover, the demand will come not only from the traditional buyers of cyber insur-

ance, such as the retail, financial, and health care sectors but also from other sectors

prone to cyber-related business disruption like airlines, power grids etc. The insurance

industry can therefore capitalize on the growing cyber market by designing enterprise

cyber insurance policies covering a wide range of cyber-related exposures and pricing

them effectively by accurately quantifying the risks to which their clients are exposed.

Insurers understanding of cyber liability and risk aggregation is an evolving process

as their experience on cyber-attacks increases. In case of natural calamities, such as

flood or earthquake, the expected losses for a given insured asset can be estimated

using years of historical data on occurrence and impact, scientific research into un-

derstanding the underlying drivers, engineering studies on structural vulnerabilities

and past insurance claims data (OECD and Marsh & McLennan Companies (2018)).

However, cybersecurity insurance is quite different from other insurance products be-

cause it has no standard scoring systems or actuarial tables constructed from historical
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records which can be used for pricing it (Xu and Hua (2017)). Underwriting insurance

coverage for cyberattacks involves a lot of uncertainty due to various factors such as

limited historical data, changing nature of risk and impact and limited understand-

ing of and access to security information. The emergence of cyber risk as a matter

of concern happened very recently due to which there is limited time-series data on

incident frequency. The dearth is also due to a low share of cyber incidents being

discovered and actually reported. Another special characteristic of cyber risk is that

its dynamic because attacks are driven by human behavior rather than natural forces.

Attack methods keep evolving alongside of improvements in defense strategies thereby

challenging the effectiveness of different security practices over time (OECD and Marsh

& McLennan Companies (2018)).

The modeling of cyber risk for the purposes of pricing insurance coverage, trans-

ferring risks to reinsurance and capital markets and calculating capital requirements is

just emerging. Most of the models currently used are scenario-based rather than prob-

abilistic and focused on extreme incidents for the purpose of managing accumulation

risk. Many modeling firms are also developing new approaches focused on the security

practices of companies instead of the attack nature (OECD and Marsh & McLennan

Companies (2018)). Due to concerns over risk aggregation, many insurers are cur-

rently reluctant to offer substantial limits for cyberattacks. There is thus a growing

need for better data and analytics surrounding the underlying risk which will assist

the reinsurance market to increase its support towards the cyber insurers. The better

cyber insurers are able to measure and monitor their accumulation risk, the more rein-

surance coverage they will be able to access which will in turn allow them to provide

broader insurance cover, resulting in the overall growth of the market (Camillo (2017)).

Therefore, keeping in mind these striking characteristics and dynamic nature of

cyber-risk underwriting cyber insurance requires a profound understanding of both the

likelihood of a cyber incident that would demand coverage along with expected finan-

cial implications of such incidents (OECD and Marsh & McLennan Companies (2018)).

For this, cyber risk data needs to be standardized and probabilistic models need to be

developed for higher frequency incident types. In order to have a better understanding

of the evolving risk the data needs to be regularly updated and analyzed to identify

potential attack patterns.

Indeed, analyzing and modeling the frequency of cyberattacks, plays an important

role in assessing and quantifying the cyber liability and risk exposure of a company.

Chen et al. (2015) analyzed an extensive dataset of time-dependent frequencies of at-
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tacks over 491 consecutive IP addresses, collected for a period of 18 days. These IP

addresses were simulated by Honeypot. Honeypot is a research organization that de-

velops open source security tools to investigate cyberattacks. Since these simulated

IP addresses did not correspond to any legitimate services, any traffic that arrived at

these was considered to be attacks. Due to the complexity of the modern cyberworld

one might think that the distribution of cyberattacks is random and so it is difficult to

predict them. However, their study revealed that cyberattacks are not so random and

that there are spatiotemporal patterns inherent in them (here the term spatio has been

used for the IP address space). The authors identified two types of attack patterns -

deterministic and stochastic, and used various quantitative measures to characterize

them in a comprehensive manner.

They identified blocks of IP addresses sharing similar attack patterns, where the

time series of different IP addresses within each block were approximately synchro-

nized and their amplitudes were of the same order of magnitude. Thus, each block

exhibited unique spatiotemporal features which points towards the existence of a set of

intimately correlated attackers or a single main attacker . Another important inference

that can be drawn from regularity in attack patterns of consecutive IP addresses is the

way attackers choose their targets, that is targeting each IP within a consecutive IP

sector instead of distantly separated IP addresses. These deterministic rules followed

by the attacks could be very helpful in predicting the location and time of next attack.

In addition to this the stochastic component of cyberattacks was characterized using

the flux-fluctuation relation where flux of a victim IP address refers to its attack fre-

quency and fluctuation refers to the standard deviation of flux when the traffic system

evolves in the presence of an external drive which in this case was the total number

of attacks on a certain IP region. They used this relation to identify and differentiate

the patterns of the external drives. For instance, in case of heavily attacked IP region

flux fluctuation relation indicated a non-Poisson type of external drive with strong

fluctuations. Another way of monitoring the attack behavior of a particular IP address

block could be using inference probability of a consecutive IP region which measures

how sufficient the information corresponding to one IP address is in capturing the key

features of the attack patterns in that whole IP region. A reliable measure for this was

constructed using Markov state transition probability matrix for each IP. IP addresses

sharing similar attack patterns were found to have high correlation coefficients which

points towards the fact that the attack frequencies of a group of IP addresses having

the same attack pattern type can be inferred from one of the IPs.

Another important finding of this research was that the attack time series of all IP
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addresses possessed high degrees of predictability, which was quantified using informa-

tion entropy. Information entropy gives a measure of the uncertainty associated with

the state transitions in the time series of attack frequencies taking into account both

the heterogeneous probability distribution in different states and the temporal correla-

tions among the states. The authors found out that while deterministic attack patterns

showed higher predictability than stochastic attacks for time resolution of 1000 seconds
1, the opposite was true in case of ∆t = 100s. This finding could be a motivation to

develop inference algorithms which can be very helpful in providing global insights into

cyber security based on limited information sources. Prediction algorithms can also be

designed to analyze current cyberattack data and forecast future cyberattacks.

The observations and results of Chen et al. (2015) can be used to anticipate and

consequently mitigate large-scale cyberattacks based on macroscopic approaches. The

revelations about the existence of intrinsic patterns of cyberattacks and correlation be-

tween the time series within each block could be further exploited to better understand

the risk profile of a single or a group of IP addresses in general or in particular risk

profile of a company or entity to which these IP addresses correspond.

Böhme and Kataria (2006) introduced a new classification of correlation properties

of cyber-risks. The authors discussed two types of cyber risk correlation, one is the

correlation of cyber-risks within a firm i.e. correlated failure of multiple systems on its

internal network and the other is the correlation in risk at a global level i.e. across in-

dependent firms in an insurers portfolio. While internal risk correlation (within a firm)

influences firms decision to seek insurance, the global correlation influences insurers

decision in setting the premium. Taking into account this potential correlation among

time series of attacks on different IP addresses gives better insights when modeling the

attack frequency for each of them. This idea, together with the findings of Chen et al.

(2015)motivate the present research.

Similar to the case of cyberattacks, time series of counts occur in a wide-variety of

real world contexts such as incidence of certain disease, insurance claim counts across

time, counts of accidents etc. Given the fame of count data in various research fields, a

number of time series models for count data have been proposed previously, account-

ing for different types of marginal distribution and autocorrelation structure. Due to

limitations of usual linear time series processes (ARMA processes) related to multi-

plication of a real constant by a non-integer random variable, discrete analogues of

the usual ones have been proposed where the scalar multiplication is replaced by an

1time resolution ∆t means the time unit of each time series
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integer-valued operator with similar properties, called the thinning operation (Steutel

and van Harn (1979)).

Out of the various integer-valued models that have been introduced, the condi-

tionally heteroskedastic models are very useful for modeling count time series due to

the presence of heteroskedasticity in most of the count series cases. Ferland et al.

(2006)proposed an integer valued analogue of the generalized autoregressive condi-

tional heteroskedastic (GARCH) (p,q) model with Poisson deviates. As an application

of this model they used time series data of the number of cases of campylobacterosis

infections in the north of the Province of Quebec for a period from January 1990 until

the end of October 2000. The authors show that the data exhibits higher variance as

the level increases justifying the use of INGARCH model in such cases. Count time

series are often overdispersed which means that their variance is larger than the mean.

In such cases Poisson distribution has some limitations since its conditional mean is

equal to its conditional variance due to which the Poisson INGARCH model can lead

to inaccurate results in case of potential extreme observations.

To account for this limitation, Zhu (2011)proposed a negative binomial INGARCH

model that can deal with both overdispersion and potential extreme observations. They

applied the model to a dataset of incidences of poliomyelitis in the US from 1970 to

1983 which displayed significant overdispersion. On the basis of AIC and BIC the

authors found out that both INGARCH(1,1) and INARCH(1) model well describe

overdispersion but the more sparsely parameterized INARCH(1) model should be pre-

ferred. However, amongst the different extensions of INARCH(1) model the one with

negative binomial distribution provided the best fit as compared to Poisson and Double

Poisson. Apart from overdispersion in counts time series some of them instead have

underdispersion, that is, cases in which the variance is smaller than the mean.

To this end, Zhu (2012) introduced a generalized Poisson INGARCH (GP-INGARCH)

model which can be used in cases of overdispersion as well as underdispersion. Bino-

mial distribution b(n,p) is another alternative to model underdispersion but it has a

limitation in terms of parameter estimation because the joint MLE of the discrete val-

ued parameter n and other parameters is not possible to obtain. For a similar reason,

GP-INGARCH model could perform better than the Negative binomial model as well.

The authors demonstrate the usefulness of the proposed model for the case of overdis-

persion by applying it to a series of annual counts of major earthquakes during the

years 1900-2006 and underdispersion by applying it to a dataset of number of different

IP addresses registered every 2 minutes at the server of the Department of Statistics of
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the University of Würzburg on November 29th 2005, between 10 am and 6 pm, a time

series of length 241. In the former case, based on AIC and BIC, INGARCH(1,1) models

give a better fit as compared to INARCH(1) models while out of the 3 INGARCH(1,1)

models GP model performs best as compared to double Poisson and Poisson models.

In the latter case, Poisson INAR(1), GP-INARCH(1) and Poisson INARCH(1) per-

form better than the other specifications and while these three give a good fit of mean

and FOAC, only the GP-INARCH(1) model is able to capture the variance dimension

of the under-dispersed data. Thus, GP model is able to capture peculiar character-

istics of these data and this motivates the modeling framework developed in this thesis.

I introduce new dynamic generalized Poisson panel-data models to analyze jointly

the cyberattack series on a set of victim IP addresses. As mentioned before, the gen-

eralized Poisson distribution (GP) is very useful in regression count models because

of the greater flexibility it provides as compared to Poisson distribution for modeling

both under dispersed as well as over dispersed data. Dynamic models of time series,

can be very useful in the presence of autocorrelation. Given the nature of the cyber-

attack data, combining GP distribution with INGARCH model can help account for

heteroskedasticity and serial correlation to provide better forecasts. Moreover, in case

of panel data, GARCH estimator proves to be parsimonious as it reduces the number

of parameters to be estimated owing to the pooling of GARCH parameters.

In this study, I extend the theoretical results on the generalized Poisson INGARCH

model introduced by Zhu (2012) to the case of panel data models with partial and

complete pooling. Partial pooling refers to the case in which pooling is done only on

the model parameters while complete pooling includes pooling on parameters as well

as in the intensity of the attacks. In partial pooling, I simply extend GP-INGARCH

model of Zhu (2012) to each unit (IP address) in the panel whereas in complete pooling

I assume that attacks are correlated across all IP addresses so the number of attacks

in each time period is given by the sample mean of attacks taken over all IP addresses

for the given period. For each of these two models I consider further two cases. In

the first case I model time series of all IP addresses as one whole panel. In the second

case I segregate the 491 IP addresses into 3 blocks as identified by Chen et al. (2015)

and then model the time series of all IPs falling in a particular block. In this case

I believe that modeling IPs which share similar attack patterns together could give

better estimates. After the models are estimated I compare them according to their

likelihood value, AIC and BIC criteria. Finally, I provide a forecast comparison of the

proposed models.
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This document is organized as follows. In Section 2, a brief review of the GP-

INGARCH model of Zhu (2012) is done followed by its extension to the case of panel

data with 4 variations. The conditions for the existence and stationarity of the pro-

posed processes are given. Section 3 discusses Maximum likelihood estimation of the

4 models proposed. Section 4 gives a real world application of the 4 models. In

particular, the 4 models are applied to a dataset of cyber-attacks on 491 consecutive

victim IP addresses. The estimated models are compared on the basis of negative

log-likelihood, AIC and BIC values. The proposed models are further compared based

on their forecasting accuracy using mean absolute error, mean squared error and mean

root error. Finally, Section 5 concludes.
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2 Models

2.1 The generalized Poisson INGARCH Model

Let us begin by looking at the generalized Poisson INGARCH model proposed by Zhu

(2012). Let X = (Xt, t ∈ Z) be a time series with values in N0, where Z is the set of

integers and N0 is the set of natural numbers including 0. For any t let Ft−1 be the

σ-field generated by Xt−j, j ≥ 1. Suppose that the random variables X1, X2 ..., Xn

are independent conditional on the past information. The process X is said to satisfy

a GP-INGARCH(p, q) model if ∀t ∈ Z,

Xt|Ft−1 ∼ GP(λ∗t ,K)

λ∗t
1−K

= λt = α0 +

p∑
i=1

αiXt−i +

q∑
j=1

βjλt−j
(2.1)

where

α0 > 0, αi ≥ 0, βj ≥ 0, i = 1, ..., p, j = 1, ..., q, p ≥ 1, q ≥ 0

and max(-1,-λ∗t/4) < K < 1.

Here, GP(λ∗t ,K) denotes the generalized Poisson distribution with parameters λ∗t and

K whose probability mass function is given by

P (X = x) =

λ∗t (λ∗t +Kx)x−1e−(λ
∗
t+Kx)/x! x = 0, 1, 2, ...

0 for x > m if K < 0

where λ∗t > 0, max(-1,-λ∗t/m) < K < 1 and m is the largest positive integer for which

λ∗t +Km > 0 when K < 0.

The conditional mean and conditional variance of Xt are given as follows:

E(Xt|Ft−1) =
λ∗t

1−K
= λt, V ar(Xt|Ft−1) =

λ∗t
(1−K)3

= φ2λt (2.2)

where φ = 1/(1−K).

The unconditional mean and variance of Xt are given as follows:

E(Xt) =
α0

1−
∑p

i=1 αi −
∑q

j=1 βj
, V ar(Xt) = φ2E(Xt) + V ar(λt) (2.3)
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2.2 Dynamic generalized Poisson panel-data models

In this section I propose 4 models extending (2.1) to the case of panel data. The first

two models involve pooling only on the GARCH parameters whereas in the other two

models pooling is also done on the Xi’s. The former allows the coefficients to vary

only across time while the latter also allows interaction among the different units of

the panel. Additionally, in the second and fourth model the panel is divided into 2

clusters and then each cluster is modeled separately. Therefore, in these 2 cases the

coefficients also vary across clusters.

Let X = {Xit, i ∈ 1, ..., N, t ∈ Z} be a panel of time series of counts where N is

the number of units in the panel. For any i ∈ {1, ..., N} and for any t let Fit−1 be the

σ-field generated by {Xit−j, j ≥ 1} and Ft−1 =
N⋃
i=1

Fit−1. Suppose that the random

variables Xi1, Xi2 ..., Xin are independent conditional on the past information.

2.2.1 Partial Pooling

We say that ∀i ∈ {1, ..., N} the process Xi = {Xit}t∈Z satisfies a GP-INGARCH(p, q)

model with partial pooling if ∀t ∈ Z,

Xit|Fit−1 ∼ GP(λ∗it,K)

λ∗it
1−K

= λit = α0 +

p∑
j=1

αjXit−j +

q∑
k=1

βkλit−k
(2.4)

where

α0 > 0, αj ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ..., q, p ≥ 1, q ≥ 0

and max(-1,-λ∗it/4) < K < 1.

The model (2.4) will be denoted as M1 from now onwards in the document.

2.2.2 Partial pooling with clustering

Here the X ′is {i = 1, ..., N} are grouped into different clusters. The clustering can

be done on the basis of certain characteristics of the time series. For instance while

modeling a panel data of cyberattacks on different IP addresses we can group the IP’s

into separate clusters on the basis of similarities in attack patterns such as amplitudes

of time series. Suppose A,B ⊂ {1, ..., N} such that A∩B = φ and A∪B = {1, ..., N}.
Let XA = {Xit, i ∈ A, t ∈ Z} and XB = {Xit, i ∈ B, t ∈ Z} be two clusters of X. In

this case, ∀i ∈ A the process Xi = {Xit}t∈Z satisfies a GP-INGARCH(pA, qA) model

with partial pooling if ∀t ∈ Z,
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Xit|Fit−1 ∼ GP(λ∗Ait ,K)

λ∗Ait
1−K

= λAit = αA0 +

pA∑
j=1

αAj Xit−j +

qA∑
k=1

βAk λ
A
it−k

(2.5)

where

αA0 > 0, αAj ≥ 0, βAk ≥ 0, j = 1, ..., pA, k = 1, ..., qA, pA ≥ 1, qA ≥ 0

and max(-1,-λ∗At /4) < K < 1.

∀i ∈ B the process Xi = {Xit}t∈Z can be defined in a similar manner. This model

(2.5) will be denoted as M2 henceforth.

2.2.3 Complete pooling

This model assumes that there is interaction between different units of the panel and

therefore involves complete pooling which includes pooling on GARCH parameters as

well as X ′is. In this case, ∀i ∈ {1, ..., N} the process Xi = {Xit}t∈Z satisfies a GP-

INGARCH(p, q) model with complete pooling if ∀t ∈ Z,

Xit|Ft−1 ∼ GP(λ∗t ,K)

λ∗t
1−K

= λt = α0 +

p∑
j=1

αjX̄t−j +

q∑
k=1

βkλt−k

X̄t−j =
1

N

N∑
i=1

Xit−j

(2.6)

where

α0 > 0, αj ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ..., q, p ≥ 1, q ≥ 0

and max(-1,-λ∗t/4) < K < 1.

This model (2.6) will be denoted as M3.

2.2.4 Complete pooling with clustering

Similar to M2 (2.5) this model also considers clustering and assumes that there is in-

teraction only among those time series which belong to a particular cluster. In this

case ∀i ∈ A the process Xi = {Xit}t∈Z satisfies a GP-INGARCH(pA, qA) model with

complete pooling if ∀t ∈ Z,
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Xit|Ft−1 ∼ GP(λ∗At ,K)

λ∗At
1−K

= λAt = αA0 +

pA∑
j=1

αAj X̄it−j +

qA∑
k=1

βAk λ
A
t−k

X̄t−j =
1

n(A)

∑
i∈A

Xit−j

(2.7)

where

αA0 > 0, αAj ≥ 0, βAk ≥ 0, j = 1, ..., pA, k = 1, ..., qA, pA ≥ 1, qA ≥ 0

and max(-1,-λ∗At /4) < K < 1. Here n(A) denotes the cardinality of A.

∀i ∈ B the process Xi = {Xit}t∈Z can be defined in a similar manner. Model (2.7) will

be denoted as M4 in the following document.

2.3 Stationarity properties

The following paragraphs will discuss the stationarity of the models proposed in Sec-

tion 2.2. It is very important to study the stationarity properties of time series models

in order to evaluate their stability over time and hence achieve a good forecast.The

following two theorems give a sufficient condition for the existence of a stationary GP-

INGARCH(p, q) process with partial and complete pooling, i.e., satisfying M1 and M3

respectively. The two theorems are also applicable in case of clustering,i.e., models M2

and M4 because the only difference in these two cases is that we are modeling specific

clusters instead of the complete panel as a whole.

2.3.1 Partial pooling

Theorem 1. If
p∑
j=1

αj +
q∑

k=1

βk < 1, then there exists a unique stationary process

{Xit}t∈Z that satisfies M1 such that its first two moments are finite.

Proof. This theorem can be proved using arguments similar to those in Ferland et al.

(2006). Let us begin by defining two polynomials C(B) = 1− β1B− β2B2− ...− βqBq

and D(B) = α1B − α2B
2 − ...− αpBp where B is the back-shift operator.

Let
λit = C−1(B)(α0 +D(B)Xit) = α0C

−1(1) +G(B)Xit

where

G(B) = C−1(B)D(B) =
∞∑
j=1

ψjB
j

(2.8)

Let {Uit}t∈Z be a sequence of independent GP random variables with parameters

(ψ0 = α0/C(1),K). For each t ∈ Z and j ∈ Z+, let {Zit,j,k}k∈Z+ represent a sequence of
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independent GP random variables having parameters (ψj,K). We assume that all the

random variables Us, Zit,j,k (s ∈ Z, t ∈ Z, j ∈ Z+, k ∈ Z+) are mutually independent.

Define

X
(n)
it =


0 n < 0

(1−K)Uit n = 0

(1−K)Uit + (1−K)
n∑
j=1

X
(n−j)
it−j∑
k=1

Zit−j,j,k n > 0

Using the thinning operation 2, X
(n)
it can be written as:

X
(n)
it = (1−K)Uit + (1−K)

n∑
j=1

ϕ
(t−j)
j ◦X(n−j)

it−j n > 0

where ϕj = ψj/(1 − K) is the common mean of the GP random variables Zit,j,k. In

the above notation ϕ
(τ)
j ◦ signifies that the thinning operation involves the sequence

{Zit,j,k}k∈N of GP random variables that correspond to time t = τ .We can see that

X
(n)
it is a finite sum of independent GP random variables and therefore its expectation

and variance are well-defined.

Using induction we can show that E(X
(n)
it ) doesn’t depend on t, it only depends on

n and we can denote it by µn. For the proof refer to Appendix section A.1.2. Since

µj = 0 for j < 0,

for n > 0,

µn = ψ0 +
∞∑
r=1

ψrµn−r = C−1(B)(α0 +D(B)µn)

⇐⇒ [C(B)−D(B)]µn = α0 ⇐⇒ K(B)µn = α0

(2.9)

Therefore, ∀i ∈ {1, ..., N}, {(X(n)
it : t ∈ Z, n ∈ Z+} is a sequence of first order station-

ary processes because the characteristic polynomial K(z) has all its roots outside the

unit circle using the fact
p∑
j=1

αj +
q∑

k=1

βk < 1.

From this stationarity we get

lim
n→∞

µn =
ψ0

1−
∑∞

r=1 ψr
=
α0C

−1(1)

1−G(1)
=

α0

C(1)−D(1)

=
α0

K(1)
=

α0

1−
∑p

j=1 αj +
∑q

k=1 βk
= µ

(2.10)

Note that for a fixed value of t, the sequence {X(n)
it }n∈Z+ is a non-decreasing se-

quence of non-negative integer valued random variables. This can be shown using

2For definition see Appendix section A.1.1
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induction with respect to n as

X
(n+1)
it −X(n)

it = (1−K)

Ut−n−1∑
k=1

Zit−n−1,n+1,k +
n∑
j=1

X
(n+1−j)
it−j∑

k=X
(n−j)
it−j +1

Zit−j,j,k

 ≥ 0

Using this property of the sequence {X(n)
it }n∈Z and following Propositon 2 of Ferland

et al. (2006) it can be shown that the sequence {X(n)
it }n∈N has an almost sure limit Xit.

Please refer to Appendix section A.1.3 for proof.

Moreover, using arguments similar to those in proposition 3 of Ferland et al. (2006) the

sequence {X(n)
it : t ∈ Z, n ∈ Z+} is a strictly stationary process for each n. Therefore,

we can conclude that Xit is a strictly stationary process.

Using 2.10 and Beppo Levi’s theorem we get that

µ = lim
n→∞

µn = lim
n→∞

E(X
(n)
it ) = E(Xit) (2.11)

and we conclude that the first moment of Xit is finite.

To show that the second moment of Xit is finite it is enough to show that E[(X
(n)
it )2]

is bounded.

E

[(
X

(n)
it

)2]
≤ (1−K)2

E(U2
it) + (2E(Uit) + 1)

n∑
j=1

ϕjE(Xit) +

(
n∑
j=1

ϕj

)2

E

[(
X

(n)
it

)2]

E

[(
X

(n)
it

)2]
≤

(1−K)2E(U2
it) + (1−K)E(Xit)(2E(Uit) + 1)

∑n
j=1 ψj

1− (
∑n

j=1 ψj)
2

≤
(1−K)2E(U2

it) + (1−K)E(Xit)(2E(Uit) + 1)
∑∞

j=1 ψj

1− (
∑∞

j=1 ψj)
2

≡ A

Using Lebesgue’s dominated convergence theorem, we can conclude that E(X2
it) ≤ A.

With this we get that the second moment of Xit is also finite.

Next step is to verify the distributional properties of Xit. The proof is available

in Appendix section A.1.4. Using arguments similar to those in Section 2.6 of Ferland

et al. (2006) and defining

r
(n)
it = (1−K)Uit + (1−K)

n∑
j=1

Xit−j∑
k=1

Zit−j,j,k

14



we can show that

Xit|Fit−1 ∼ GP(λ∗it,K)

where λ∗it = (α0C
−1(1) +

n∑
j=1

ψjXit−j)(1−K)

�

The conditional expectation and conditional variance of Xit are given by

E(Xit|Fit−1) =
λ∗it

1−K
= λit

V ar(Xit|Fit−1) =
λ∗it

(1−K)3
= φ2λit where φ = 1/(1−K)

Also, from (2.10) and (2.11) we get the unconditional mean and variance as follows,

E(Xit) = µ =
α0

1−
∑p

j=1 αj +
∑q

k=1 βk

V ar(Xit) = E(V ar(Xit|Fit−1)) + V ar(E(Xit)|Fit−1)

= E(φ2λit) + V ar(λit)

= φ2µ+ V ar(λit)

2.3.2 Complete pooling

Theorem 2. If
p∑
j=1

αj +
q∑

k=1

βk < 1, then there exists a unique stationary process

{Xit}t∈Z that satisfies M3 such that its first two moments are finite.

Proof. This theorem can be proved by following the same steps as in the proof of

Theorem 1. I begin by constructing the INGARCH process with successive approxi-

mations. Define two polynomials C(B) = 1 − β1B − β2B2 − ... − βqBq and D(B) =

α1B − α2B
2 − ...− αpBp where B is the back-shift operator.

Let
λt = C−1(B)(α0 +D(B)X̄t) = α0C

−1(1) +G(B)X̄t

where

G(B) = C−1(B)D(B) =
∞∑
j=1

ψjB
j

(2.12)

Let the sequences {Uit}t∈Z and {Zit,j,k}k∈Z+be defined as in Theorem 1 such that

all the random variables Us, Zit,j,k (s ∈ Z, t ∈ Z, j ∈ Z+, k ∈ Z+) are mutually in-
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dependent. Consider the case when N = 2, i.e., there are only two units in the

panel. The proof can be easily extended to N > 2. Define a bivariate sequence

{X(n)
t }n∈Z+ = {(X(n)

1t , X
(n)
2t )}n∈Z+ where

X
(n)
1t =


0 n < 0

(1−K)U1t n = 0

(1−K)U1t + (1−K)1
2

∑n
j=1

∑X
(n−j)
1t−j +X

(n−j)
2t−j

k=1 Z1t−j,j,k n > 0

X
(n)
2t =


0 n < 0

(1−K)U2t n = 0

(1−K)U2t + (1−K)1
2

∑n
j=1

∑X
(n−j)
1t−j +X

(n−j)
2t−j

k=1 Z2t−j,j,k n > 0

Using the thinning operation , X
(n)
it (i = 1, 2) can be written as:

X
(n)
it = (1−K)Uit + (1−K)

1

2

n∑
j=1

ϕ
(t−j)
j ◦ (X

(n−j)
1t−j +X

(n−j)
2t−j ) n > 0

where ϕj = ψj/(1−K) is the common mean of the GP random variables Zit,j,k.

The next step is to show that {X(n)
t }n∈Z+ is a sequence of first order stationary

processes. As before we can see that X
(n)
it is a finite sum of independent GP random

variables and therefore its expectation and variance are well-defined. Moreover, E(X
(n)
it )

doesn’t depend on t, it only depends on n and we can denote it by µn. Since µj = 0

for j < 0,

for n > 0,

µn = ψ0 +
2

2

∞∑
r=1

ψrµn−r = C−1(B)(α0 +D(B)µn)

⇐⇒ [C(B)−D(B)]µn = α0 ⇐⇒ K(B)µn = α0

(2.13)

Therefore, {X(n)
t : t ∈ Z, n ∈ Z+} = {(X(n)

1t , X
(n)
2t )}n∈Z+ is a sequence of first order sta-

tionary processes because the characteristic polynomial K(z) has all its roots outside

the unit circle using the fact
∑p

j=1 αj +
∑q

k=1 βk < 1.
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From this stationarity we get

lim
n→∞

µn =
ψ0

1−
∑∞

r=1 ψr
=
α0C

−1(1)

1−G(1)
=

α0

C(1)−D(1)

=
α0

K(1)
=

α0

1−
∑p

j=1 αj +
∑q

k=1 βk
= µ

(2.14)

Using arguments similar to those in the proof of Theorem 1 we can show that {(X(n)
1t , X

(n)
2t )}n∈Z+

has an almost sure limit Xt, t ∈ Z = (X1t, X2t)t∈Z and is a strictly stationary process

for each n. Therefore, {Xt}t∈Z is a strictly stationary process.

Using (2.14) and Beppo Levi’s theorem we get that

µ = lim
n→∞

µn = lim
n→∞

E(X
(n)
it ) = E(Xit) (2.15)

and we conclude that the first moment of Xit is finite and hence that of Xt = (X1t, X2t)

is finite.

Next, to show that the second moment of Xt is also finite, I will show that E[(X
(n)
1t +

X
(n)
2t )2] is bounded.

E
[
(X

(n)
1t +X

(n)
2t )2

]
≤ (1−K)2

E [(U1t+U2t)
2
]
+(2E(U1t+U2t)+1)

n∑
j=1

ϕjE(X1t+X2t)

+

(
n∑
j=1

ϕj

)2

E
[
(X

(n)
1t +X

(n)
2t )2

]
⇒E

[
(X

(n)
1t +X

(n)
2t )2

]
≤

(1−K)2E [(U1t + U2t)
2] + (1−K)E(X1t +X2t)(2E(U1t + U2t) + 1)

∑n
j=1 ψj

1− (
∑n

j=1 ψj)
2

≤
(1−K)2E [(U1t + U2t)

2] + (1−K)E(X1t +X2t)(2E(U1t + U2t) + 1)
∑∞

j=1 ψj

1− (
∑∞

j=1 ψj)
2

≡ A

Using Lebesgue’s dominated convergence theorem, we can conclude that E[(X1t +

X2t)
2] ≤ A. With this we get that the second moment of Xt is also finite.

We now have to verify the distributional properties of Xt = (X1, X2).The proof is

given in Appendix section A.1.5. Following the steps as in the proof of Theorem 1 and
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defining the sequence {(r(n)1t , r
(n)
2t )} where

r
(n)
it = (1−K)Uit + (1−K)

1

2

n∑
j=1

X1t−j+X2t−j∑
k=1

Zit−j,j,k for i = 1, 2

we can show that

Xt|Ft−1 = (X1t, X2t)|Ft−1 ∼ GP(λ∗t ,K)

where λ∗t =

(
α0C

−1(1) +
n∑
j=1

ψjX̄t−j

)
(1−K)

�

The conditional expectation and conditional variance of Xit are given by

E(Xit|Ft−1) =
λ∗t

1−K
= λt

V ar(Xit|Ft−1) =
λ∗t

(1−K)3
= φ2λt where φ = 1/(1−K)

Also, from (2.14) and (2.15) we get that the unconditional mean and variance are given

by,

E(Xit) = µ =
α0

1−
∑p

j=1 αj +
∑q

k=1 βk

V ar(Xit) = E(V ar(Xit|Ft−1)) + V ar(E(Xit)|Ft−1)

= E(φ2λt) + V ar(λt)

= φ2µ+ V ar(λt)
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3 Estimation

3.1 Maximum Likelihood Estimation

This section gives the MLE for models M1 and M3. The same formulas are applicable

for M2 and M4 because the only difference is that in M1 and M3 we are taking into

account panel as a whole whereas in M2 and M4 we consider each block of units within

the panel separately. For models M2 and M4 the formula for the conditional likelihood

function for X can be obtained by multiplying the conditional likelihood functions of

all the blocks into which the panel has been divided.

3.1.1 Partial pooling

Let the parameter vector be Θ = (α0, α1, ..., αp, β1, ..., βq, φ)T = (θ, φ)T where φ =

1/1−K
For any i ∈ {1, ..., N} let Xi = (Xi1, Xi2, ..., XiT ) be generated by model M1 with the

true parameter value Θ0. Let X = (X1, X2, ..., XN) be the collection of X ′is. Then for

any i ∈ {1, ..., N}, the conditional likelihood function is given by

Li(Θ) =
T∏

t=p+1

λit [λit + (φ− 1)Xit]
Xit−1 φ−Xitexp{− [λit + (φ− 1)Xit] /φ}

Xit!

where λit = α0 +
p∑
j=1

αjXit−j +
q∑

k=1

βkλit−k

and the conditional likelihood function for X is given by

L(Θ) =
N∏
i=1

T∏
t=p+1

λit [λit + (φ− 1)Xit]
Xit−1 φ−Xitexp{− [λit + (φ− 1)Xit] /φ}

Xit!

The log-likelihood is given by

L(Θ) = lnL(Θ) =
N∑
i=1

T∑
t=p+1

{
lnλit + (Xit − 1)ln[λit + (φ− 1)Xit]

−Xitlnφ−
λit + (φ− 1)Xit

φ
− ln(Xit! )

}
=

N∑
i=1

T∑
t=p+1

lit(Θ)
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The score function is given by

SiT (Θ) =
∂L(Θ)

∂Θ
=

N∑
i=1

T∑
t=p+1

∂lit(Θ)

∂Θ

∂lit(Θ)

∂φ
=

Xit(Xit − 1)

λit + (φ− 1)Xit

− Xit

φ
− Xit − λit

φ2

∂lit(Θ)

∂θ
=

(
Xit − 1

λit + (φ− 1)Xit

− 1

λit
− 1

φ

)
∂λit
∂θ

∂λit
∂α0

= 1 +

q∑
k=1

βk
∂λit−k
∂α0

∂λit
∂αj

= Xit−j +

q∑
k=1

βk
∂λit−k
∂αj

for j = 1, ..., p

∂λit
∂βk

= λit−k +

q∑
r=1

βr
∂λit−r
∂βk

for k = 1, ..., q

The conditional maximum likelihood estimator of Θ, denoted my Θ̂MLEis given by the

solution of the equation SiT (Θ) = 0.

The Hessian matrix is given by

HT (Θ) = −
N∑
i=1

T∑
t=p+1

∂2lit(Θ)

∂Θ∂ΘT
(3.1)

∂2lit(Θ)

∂φ2
= − X2

it(Xit − 1)

[λit + (φ− 1)Xit]2
+
Xit

φ2
− 2(Xit − λit)

φ3

∂2lit(Θ)

∂φ∂θ
= −

(
(Xit − 1)(Xit)

[λit + (φ− 1)Xit]2
− 1

φ2

)
∂λit
∂θ

∂2lit(Θ)

∂θ∂θT
= −

(
Xit − 1

[λit + (φ− 1)Xit]2
+

1

λ2it

)
∂λit
∂θ

∂λit
∂θT

+

(
Xit − 1

λit + (φ− 1)Xit

+
1

λit
− 1

φ

)
∂2λit
∂θ∂θT

∂2λit
∂α2

0

= 0
∂2λit
∂α0∂αj

= 0 for j = 1, ..., p

∂2λit
∂αu∂αj

= 0 for u, j = 1, ..., p

∂2λit
∂α0∂βk

=
∂λit−k
∂α0

+

q∑
r=1

βr
∂2λit−r
∂α0∂βk

for k = 1, ..., q
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∂2λit
∂αj∂βk

=
∂λit−k
∂αj

+

q∑
r=1

βr
∂2λit−r
∂αj∂βk

for j = 1, ..., p ; k = 1, ..., q

∂2λit
∂2βk

=
2∂λit−k
∂βk

+

q∑
r=1

βr
∂2λit−r
∂β2

k

for k = 1, ..., q

∂2λit
∂βv∂βk

=
∂λit−k
∂βv

+
∂λit−v
∂βk

+

q∑
r=1

βr
∂2λit−r
∂βv∂βk

for v 6= k, v, k = 1, ..., q

Using arguments in Bollerslev (1986), the maximum likelihood estimator Θ̂MLE is

asymptotically normal with mean Θ0 and as White (1982) suggested covariance matrix

of Θ̂MLE is given by

H−1T (Θ̂MLE)ST (Θ̂MLE)H−1T (Θ̂MLE)

where ST (Θ) =
N∑
i=1

T∑
t=p+1

∂lit
∂Θ

∂lit
∂ΘT

and HT (Θ) is given by (3.1)

3.1.2 Complete pooling

Let the parameter vector be defined as before Θ = (α0, α1, ..., αp, β1, ..., βq, φ)T = (θ, φ)T

where φ = 1/1−K
For any i ∈ {1, ..., N} let Xi = (Xi1, Xi2, ..., XiT ) be generated by model M3 with the

true parameter value Θ0. Let X = (X1, X2, ..., XN) be the collection of X ′is. Then for

any i ∈ {1, ..., N}, the conditional likelihood function is given by

Li(Θ) =
T∏

t=p+1

λt [λt + (φ− 1)Xit]
Xit−1 φ−Xitexp{− [λt + (φ− 1)Xit] /φ}

Xit!

where λt = α0 +
p∑
j=1

αjX̄t−j +
q∑

k=1

βkλt−k

and the conditional likelihood function for X is given by

L(Θ) =
N∏
i=1

T∏
t=p+1

λt [λt + (φ− 1)Xit]
Xit−1 φ−Xitexp{− [λt + (φ− 1)Xit] /φ}

Xit!

The log-likelihood is given by

L(Θ) = lnL(Θ) =
N∑
i=1

T∑
t=p+1

{
lnλt + (Xit − 1)ln[λt + (φ− 1)Xit]

−Xitlnφ−
λt + (φ− 1)Xit

φ
− ln(Xit! )

}
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=
N∑
i=1

T∑
t=p+1

lit(Θ)

The score function is given by

SiT (Θ) =
∂L(Θ)

∂Θ
=

N∑
i=1

T∑
t=p+1

∂lit(Θ)

∂Θ

∂lit(Θ)

∂φ
=

Xit(Xit − 1)

λt + (φ− 1)Xit

− Xit

φ
− Xit − λt

φ2

∂lit(Θ)

∂θ
=

(
Xit − 1

λt + (φ− 1)Xit

− 1

λt
− 1

φ

)
∂λt
∂θ

∂λt
∂α0

= 1 +

q∑
k=1

βk
∂λt−k
∂α0

∂λt
∂αj

= X̄t−j +

q∑
k=1

βk
∂λt−k
∂αj

for j = 1, ..., p

∂λt
∂βk

= λt−k +

q∑
r=1

βr
∂λt−r
∂βk

for k = 1, ..., q

The conditional maximum likelihood estimator of Θ, denoted my Θ̂MLEis given by the

solution of the equation SiT (Θ) = 0.

The Hessian matrix is given by

HT (Θ) = −
N∑
i=1

T∑
t=p+1

∂2lit(Θ)

∂Θ∂ΘT
(3.2)

∂2lit(Θ)

∂φ2
= − X2

it(Xit − 1)

[λt + (φ− 1)Xit]2
+
Xit

φ2
− 2(Xit − λt)

φ3

∂2lit(Θ)

∂φ∂θ
= −

(
(Xit − 1)(Xit)

[λt + (φ− 1)Xit]2
− 1

φ2

)
∂λt
∂θ

∂2lit(Θ)

∂θ∂θT
= −

(
Xit − 1

[λt + (φ− 1)Xit]2
+

1

λ2t

)
∂λt
∂θ

∂λt
∂θT

+

(
Xit − 1

λt + (φ− 1)Xit

− 1

λt
− 1

φ

)
∂2λt
∂θ∂θT

∂2λt
∂α2

0

= 0
∂2λt

∂α0∂αj
= 0 for j = 1, ..., p

∂2λt
∂αu∂αj

= 0 for u, j = 1, ..., p

∂2λt
∂α0∂βk

=
∂λt−k
∂α0

+

q∑
r=1

βr
∂2λt−r
∂α0∂βk

for k = 1, ..., q
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∂2λt
∂αj∂βk

=
∂λt−k
∂αj

+

q∑
r=1

βr
∂2λt−r
∂αj∂βk

for j = 1, ..., p ; k = 1, ..., q

∂2λt
∂2βk

=
2∂λt−k
∂βk

+

q∑
r=1

βr
∂2λt−r
∂β2

k

for k = 1, ..., q

∂2λt
∂βv∂βk

=
∂λt−k
∂βv

+
∂λt−v
∂βk

+

q∑
r=1

βr
∂2λt−r
∂βv∂βk

for v 6= k, v, k = 1, ..., q

Using arguments in Bollerslev (1986), the maximum likelihood estimator Θ̂MLE is

asymptotically normal with mean Θ0 and according to White (1982) covariance matrix

of Θ̂MLE is given by

H−1T (Θ̂MLE)ST (Θ̂MLE)H−1T (Θ̂MLE)

where ST (Θ) =
N∑
i=1

T∑
t=p+1

∂lit
∂Θ

∂lit
∂ΘT

and HT (Θ) is given by (3.2)

3.2 Lag selection for GP-INGARCH panel-data models

Selecting appropriate lag length for the INGARCH(p, q) process, that is, the values

of p and q, is an important part of estimation especially to get better forecasts. To

do this, each of the four models proposed in Section 2 can be estimated for different

values of p and q and then the different estimates of a model can be compared using

information criteria such as AIC and BIC. AIC (Akaike’s information Criterion) and

BIC (Bayesian information criterion) provide a good trade-off between fit and com-

plexity while comparing two models.

They are defined as follows,

AIC = −2log(L(ΘMLE)) + 2p

BIC = −2log(L(ΘMLE)) + log(n)p

where p is the number of parameters and n is the sample size.

For both criteria, the preferred model is the one for which the corresponding criterion

(AIC/BIC) value is minimum. The terms 2p and log(n)p in the formula for AIC and

BIC respectively are called complexity penalties since they penalize the model with a

large number of parameters.
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4 Application

Modelling Cyberattack Frequency

This section illustrates the applicability of the dynamic generalised Poisson panel-data

models proposed in Section 2 to real world data.

4.1 Brief description of the data

In particular I will use the dataset of cyberattacks on 491 consecutive victim IP ad-

dresses which has been previously analyzed by Chen et al. (2015) to identify different

attack patterns across time. The raw dataset contained two columns - IP address and

the time (in seconds) at which it was attacked. I aggregated and organized the raw

data into a structure where each row represents an IP and each column represents a

time period of 100 seconds, in total 15,155 periods accounting for approximately 18

days of data. Thus, each cell in the data structure corresponds to the total number of

attacks received by the corresponding IP during the corresponding time period.

(a) (b)

Figure 1: Time series of attack frequency f(t) for all IP addresses.

Let f(t) denote the number of attacks received by a victim IP address per unit

time ∆t = 100 seconds, called the attack frequency. The time series f(t) for all IP

addresses has been plotted in Figure 1 where the x-axis represents time t and y-axis

represents IP address index from 1 to 491. Figures (1a) and (1b) show two-dimensional

and three-dimensional representations of f(t) for the entire IP-space on a logarithmic

scale, respectively. Based on similarities in attack patterns as shown by distinct colored

blocks, the three IP regions - (1-246), (247-363) and (364-491) as identified by
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Chen et al. (2015), can be easily spotted from the figure. The IP region 1-246 is

identified by the acqua background, which is further overlaid by 4 particular patterns

corresponding to IP regions (19-31,35-47,50-130 and 131-191). The IP region 247-363

is marked by horizontal blue lines which are overlaid on the dark-blue background ly-

ing under the entire IP-space. Due to logarithmic scaling to the base 10 the walls of

length 1 are not visible in IP region 364-491. However, walls of higher length can be

observed in Figure (1b) which correspond to the light-blue vertical lines overlaid on

the dark-blue background in Figure (1a). From Figure (1b) it can be seen that the

amplitudes of the time series within each block have approximately same magnitude,

but the amplitudes from different blocks vary considerably. Having identified the three

major IP regions, (1-246), (247-363) and (364-491), within the IP-space, I will consider

these as 3 separate clusters of IPs while applying model M2 and M4 to this dataset. It

would be very interesting to see how similarity in attack patterns within a block affects

the parameter estimates and finally the forecast accuracy.

Figure 2: Mean/Variance plot for all IP addresses

Figure 2 shows a plot of variance vs mean for all IP addresses which indicates that

the data is highly overdispersed. The data also exhibits heteroskedasticity as can be

seen from figure 3.
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(a) IP 200 (Cluster A) (b) IP 339 (Cluster B) (c) IP 370 (Cluster C)

Figure 3: Rolling window volatility plot.

Figure 3 shows volatility change over time for three IP addresses, one from each

cluster respectively. The x-axis represents time windows ranging from 1 to 14156,

each of size 1000 periods and the y-axis represents volatility corresponding to the time

window. Figure 3 clearly displays that volatility of cyberattacks changes over time.

Thus, combining GP distribution with INGARCH model is appropriate for modeling

such a dataset.

4.2 Estimation Results

In this section I present the estimation results for the four models proposed in Section

2. For estimation purposes, I excluded data corresponding to the last one hour, that

is data corresponding to last 36 time periods, from the training set. These 36 time

periods will be used as the test set to compare the forecast accuracy of the 4 models.

I begin with lag selection for each of the 4 GP-INGARCH(p, q) panel data mod-

els proposed previously. For this each of the 4 models was estimated with different

combinations of values of p and q, each taking value 1, 2 or 3. For values of p greater

than 1, the models did not yield significant parameter estimates even at 10% signif-

icance level. Excluding such (p, q) combinations which yield insignificant estimates,

we are left with only three (p, q) pairs - (1,1),(1,2) and (1,3). Table 1 shows nega-

tive log-likelihood, AIC and BIC values corresponding to each of the three (p, q) pairs

for models M1(partial pooling without clustering) and M3(complete pooling without

clustering).
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Table 1: Lag selection (Without clustering)

Model M1 (Partial pooling)

Criteria

S. No. (p,q) Negative log-lik AIC BIC

1 (1,1) 9334781 18669570 18669625
2 (1,2) 9311388 18622786 18622855
3 (1,3) 9299161 18598335 18598418

Model M3 (Complete pooling)

Criteria

S. No. (p,q) Negative log-lik AIC BIC

1 (1,1) 11988102 23976212 23976267
2 (1,2) 11988070 23976150 23976219
3 (1,3) 11988070 23976152 23976234

From Table 1, it can be seen that based on AIC, BIC and negative log-likelihood

values, GP-INGARCH(1,3) gives the best fit in case of Partial pooling without clus-

tering (Model M1) whereas GP-INGARCH(1,2) gives the best fit in case of Complete

pooling without clustering (M3).

In case of models M2 and M4, the estimation was performed separately for each

cluster for each of the 3 (p, q) pairs and then the likelihood values of the three clus-

ters were multiplied to obtain the likelihood and subsequently AIC and BIC for the

corresponding model. Table 2 reports the negative log-likelihood, AIC and BIC val-

ues for models M2 (Partial pooling with clustering) and M4 (Complete pooling with

clustering). In Table 2, I present estimates for 3 cases that give lower values for the

3 criteria out of the total 27 cases. For complete Table 2 refer to Appendix section A.2.

From Table 2 we can see that in case of Partial pooling with clustering (Model

M2) GP-INGARCH(1,3) gives the best fit for all clusters with minimum values of

AIC, BIC and negative log-likelihood. However, in case of Complete pooling with

clustering (Model M4), GP-INGARCH process that gives the best fit for each of the

blocks (clusters) on the basis of AIC and BIC has different lag-lengths. The lag-length

for Block A should be (1,2), Block B should be (1,1) and Block C should be (1,3).
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Table 2: Lag selection (With clustering)

Model M2 (Partial pooling)

(p,q) Criteria

S. No. Block A Block B Block C Negative log-lik AIC BIC

1 (1,3) (1,2) (1,3) 8953898 17907830 17907912
2 (1,3) (1,3) (1,2) 8953897 17907828 17907911
3 (1,3) (1,3) (1,3) 8953864 17907764 17907852

Model M4 (Complete pooling)

(p,q) Criteria

S. No. Block A Block B Block C Negative log-lik AIC BIC

1 (1,2) (1,1) (1,3) 10187007 20374043 20374250
2 (1,2) (1,2) (1,3) 10187007 20374045 20374266
3 (1,3) (1,1) (1,3) 10187007 20374045 20374266

Table 3 summarizes the negative log-likelihood, AIC and BIC values for the 4 models

after selecting the appropriate lag-length for each of them. The rows of Table 3 have

been sorted in increasing order of negative log-likelihood, AIC and BIC with the model

having minimum values for all the three being on the top.

Table 3: Model Comparison

Model Neg. log-likelihood AIC BIC
M2 8953864 17907764 17907852
M1 9299161 18598335 18598418
M4 10187007 20374043 20374250
M3 11988070 23976150 23976219

From Table 3 we can see that based on the values of the two information criteria,

GP-INGARCH models with partial pooling (M1 and M2) give a better fit as compared

to complete pooling (M3 and M4). For each of these two cases, a further observation

is that the model with clustering performs better than the one without clustering.

Figure 4 and figure 5 show the model fit for Partial pooling without clustering (M1)

and partial pooling with clustering (M2) respectively for IP 200 from cluster A, IP 339

from cluster B and IP 370 from cluster C.
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(a) IP 200 (Cluster A) (b) IP 339 (Cluster B) (c) IP 370 (Cluster C)

Figure 4: Fit of Model M1 (Partial pooling without clustering)

(a) IP 200 (Cluster A) (b) IP 339 (Cluster B) (c) IP 370 (Cluster C)

Figure 5: Fit of Model M2 (Partial pooling with clustering).

4.3 Forecast Comparison

For all 4 models, let {Xit : i ∈ {1, ..., N} and t ∈ {1, ..., T}} be the training set. Con-

sidering data corresponding to the last 36 time periods out of a total of 15,155 let the

test set be {Xit : i ∈ {1, ..., N} and t ∈ {T + 1, ..., T + 36}}. Then one-step-ahead

forecast of the cyber-attack frequency can be done using the following formulas

Partial pooling without clustering

λ̂iT+m = α0 +

p∑
j=1

αjXiT+m−j +

q∑
k=1

βkλ̂iT+m−j (4.1)

where m ∈ {1, 2, ..., 36}, i ∈ {1, ..., N}
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Complete pooling without clustering

λ̂T+m = α0 +

p∑
j=1

αjX̄T+m−j +

q∑
k=1

βkλ̂T+m−j (4.2)

where m ∈ {1, 2, ..., 36}, i ∈ {1, ..., N}

For models M2 and M4 the same formulas can be applied to each cluster separately

and the results can be combined to get the forecast for all IPs.

Forecasts of the 4 models can be compared on the basis of their Mean absolute error

(MAE), Mean squared error (MSE) and Mean Root error (MRE) which was proposed

by Kourentzes et al. (2014). Let T ∗ be the total number of forecasting periods, Ŷit

be the prediction and Yit be the true value of the variable being predicted then these

errors can be calculated using the following formulas:

Mean Absolute Error

MAE =
1

N

N∑
i=1

1

T ∗

T ∗∑
t=1

|Yit − Ŷit|

Mean Squared Error

MSE =
1

N

N∑
i=1

1

T ∗

T ∗∑
t=1

(Yit − Ŷit)2

Mean Root Error

eit =

√
(Yit − Ŷit) = ait + ibit

MRE =
1

N

N∑
i=1

1

T ∗

T ∗∑
t=1

eit

=
1

N

N∑
i=1

1

T ∗

T ∗∑
t=1

(ait + ibit)

The Mean root error can be expressed in polar form to get the magnitude r which

is a measure of accuracy of the forecast and angle γ which is a measure of its bias.

γ = π/4 is the unbiased behavior using which γ can be normalised to a scale and unit

free bias coefficient B = 1 − γ
π/4

. B ∈ [−1, 1] where negative bias coefficient signifies

over-forecasting, positive coefficient signifies under-forecasting and 0 is unbiased. The

lower the value of r the more accurate the forecast is and the closer the B is to 0 the
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less(weakly) biased is the forecast.

The forecasting errors for each model have been summarised in Table 4.

Table 4: Forecast Comparison

Error Model All IPs Block A Block B Block C

MAE

M1∗ 0.88 1.61 0.28 0.02
M2∗c 0.96 1.83 0.18 0.01
M3∗∗ 2.83 3.74 1.83 1.99
M4∗∗c 2.55 5.0 0.18 0.01

MSE

M1 6.05 11.92 0.33 0.02
M2 6.48 12.82 0.23 0.01
M3 56.2 108.4 3.53 3.97
M4 52.13 103.9 0.23 0.01

MRE

M1 0.39 0.69 0.19 0.01
(-1.3%) (-0.7%) (-5.7%) (0.1%)

M2 0.42 0.80 0.16 0.01
(-20.9%) (-31%) (93.7%) (100%)

r (B) M3 1.09 0.97 1.33 1.41
(-59.7%) (-2.2%) (-99.7%) (-100%)

M4 0.77 1.52 0.16 0.01
(-54.1%) (-60.5%) (100%) (100%)

* Partial Pooling, ** Complete Pooling, c Clustering

Looking at the forecast errors it can be seen that GP-INGARCH panel-data models

with partial pooling (M1 and M2) give better forecast as compared to complete pooling

models (M3 and M4). In the former case looking at the MAE and MSE, the model

without clustering (M1) performs better while forecasting cyber attacks for the whole

panel and for Block A taken separately whereas for Block B and C the model with

clustering (M2) gives low error values. On the basis of mean root error, even though

the error magnitude shows a similar trend, however, M1 gives much lower forecast bias

overall as compared to M2. Models with clustering (M2 and M4) are over-forecasting

for all IPs taken together and for cluster A as can be seen from their negative bias

coefficient whereas in case of cluster B and C clustering models M2 and M4 are under-

forecasting more than 90% of the time as shown by their highly positive bias coefficient.

However, model M3 which is complete pooling without clustering has a high error

magnitude as compared to other models and is over-forecasting in all cases.
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5 Conclusion

In this document, four new dynamic generalized Poisson panel-data models were pro-

posed for modeling cyber-risk. The models can also be applied to other types of count

data which exhibit under-dispersion or over-dispersion and heteroskedasticity. In par-

ticular, the GP-INGARCH model of Zhu (2012) has been extended to the case of panel

data with 4 variations. First (M1), involved partial pooling where only the GARCH

parameters were pooled across all units of the panel for each time period, therefore

allowing them to vary only across time. Second (M2), introduced clustering in model

M1 on the basis of similarities between certain units of the panel. Third (M3), involved

complete pooling where along with GARCH parameters X ′is were also pooled by taking

their sample mean for each time period. This allowed interaction among different units

of the panel. Fourth (M4), introduced clustering in M3.

Stationarity properties of the proposed models were studied. Theorems establish-

ing sufficient conditions for existence and stationarity of the processes for the case

of partial pooling and complete pooling have been proved using arguments similar to

those in Ferland et al. (2006). In both the cases I started with constructing the GP

INGARCH process by successive approximations and then proving that it is a strictly

stationary process given the hypothesis on the model parameters. The expressions for

the unconditional as well as conditional mean and variance were also derived.

Maximum likelihood estimation of the models has been discussed. Expressions for

the score function and Hessian matrix have been given in each case. Procedure for

selecting appropriate lag length for the INGARCH process in each of the 4 models has

been described.

The proposed models were applied to a dataset of cyber-attacks on consecutive

victim IP addresses and then compared on the basis of negative log-likelihood, AIC

and BIC values. It was observed that GP-INGARCH models with partial pooling,

that is M1 and M2, give a better fit than complete pooling models (M3 and M4).

Additionally, the model with clustering which means M2 performed better than the

one without clustering (M1). A further comparison of the 4 models was done based

on their forecast accuracy using 3 types of errors namely - Mean absolute error, Mean

squared error and Mean root error. Similar to the case of model fit comparison, here as

well it was found that partial pooling models (M1 and M2) provide better forecast than

complete pooling models (M3 and M4). The forecast errors were significantly lower for

M1 and M2. While M1 gives lower magnitude of error on forecasting cyberattacks only
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for the whole panel and Block A taken separately, the bias coefficient of Mean root

error shows that overall the forecast of M1 is weakly biased as compared to that of M2

and therefore it can be concluded that the partial pooling model without clustering

(M1) provides a better forecast as compared to the model with clustering (M2).
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A Appendix

A.1 Detailed proofs for section 2.3

A.1.1

Definition A.1. Thinning operation Let X be a non-negative integer-valued random

variable and φ ≥ 0.The thinning operation is defined as φ ◦ X =
∑X

j=1 Zj where the

counting series {Zj} is a sequence of i.i.d. non-negative integer-valued random vari-

ables, independent of X and E(Zj) = φ.

A.1.2

To prove: E(X
(n)
it ) does not depend on t, it only depends on n.

Proof. This is trivial for n < 0.

For n = 0, E(X
(0)
it ) = (1−K)E(Uit) = ψ0 which is independent of t.

As an induction hypothesis, suppose for any arbitrary fixed value of t and until n > 0,

E(X
(n)
it ) is independent of t. For n+ 1, consider

E(X
(n+1)
it ) = (1−K)[ϕ0 +

n+1∑
r=1

ϕrE(X
(n+1−r)
it−r ) = g(E(X

(0)
it−n−1), ..., E(X

(n)
it−1))

which is independent of t using induction hypothesis.

�

A.1.3

To prove: The sequence {X(n)
it }n∈N has an almost sure limit.

Proof. Following propositon 2 of Ferland et al. (2006) let (Ω,F,P) be the common

probability space on which the random variables are defined. We know that X
(n)
it is

a non-decreasing sequence of non-negative integers. Therefore, we just have to show

that

∀ω ∈ Ω lim
n→∞

X
(n)
it (ω) = Xit is finite.

Define An = {ω : X
(n)
it (ω)−X(n−1)

it (ω) > 0}, for n > 1

Consider

A∞ = {ω : Xit(ω) =∞} =
∞⋂
n=1

∞⋃
k=n

Ak = lim sup
n

An

E(X
(n)
it −X

(n−1)
it ) ≥

∞∑
k=1

Pr{ω : X
(n)
it (ω)−X(n−1)

it (ω) = k} = Pr{An}
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Also, E(X
(n)
it −X

(n−1)
it ) = µn − µn−1 = vn (say)

The sequence vn satisfies a finite difference equation with characteristic polynomial

K(z) that has all its roots outside the unit circle. Also, from section 3.6 of Brockwell

and Davis(1991) ∃M ≥ 0 and a constant 0 < c < 1 s.t. vn ≤Mcn.

Since Pr{An} ≤ vn we get,

∞∑
n=1

Pr{An} ≤M
∞∑
n=1

cn <∞

∴ using Borel-Cantelli lemma, Pr{A∞} = 0.

Hence, we have proved that {X(n)
it : t ∈ Z, n ∈ Z} converges almost surely to a process

(Xit : t ∈ Z) that is almost surely finite.

�

A.1.4

To prove: Distributional properties of Xit

Proof. Given Fit−1 = σ(Xit−1, Xit−2, ...) for t ∈ Z let

λit = α0C
−1(1) +

∞∑
j=1

ψjXit−j

The sequence {λit} satisfies,

λit = α0 +

p∑
j=1

αjXit−j +

q∑
k=1

βkλit−k

For a fixed t, consider the sequence {r(n)it }n∈N defined as

r
(n)
it = (1−K)Uit + (1−K)

n∑
j=1

Xit−j∑
k=1

Zit−j,j,k

We claim there is a subsequence {nk} s.t. r
(nk)
it converges almost surely to Xit.

Consider

Xit − r(n)it = (Xit −X(n)
it ) + (X

(n)
it − r

(n)
it )

Let

Y
(n)
it = r

(n)
it −X

(n)
it = (1−K)

n∑
j=1

Xit−j∑
k=Xn−j

it−j+1

Zit−j,j,k

I will now show that there exists a subsequence of Y
(n)
it which converges almost surely
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to 0.

lim
n→∞

E(Y
(n)
it ) = (1−K) lim

n→∞

n∑
j=1

E

 Xit−j∑
k=Xn−j

it−j+1

Zit−j,j,k


= (1−K) lim

n→∞

n∑
j=1

E
[
Xit−j −X(n−j)

it−j

]
ϕj

= lim
n→∞

n∑
j=1

E
[
Xit−j −X(n−j)

it−j

]
ψj

= lim
n→∞

[
µ

n∑
j=1

ψj −
n∑
j=1

µn−jψj

]

=
α0G(1)

C(1)−D(1)
− lim

n→∞

n∑
j=1

µn−jψj from 2.10 and 2.8

=
α0D(1)

C(1)[C(1)−D(1)]
− lim

n→∞
µn + ψ0 from 2.9

=
α0D(1)

C(1)[C(1)−D(1)]
− lim

n→∞
µn +

α0

C(1)

=
α0D(1)

C(1)[C(1)−D(1)]
− α0

C(1)−D(1)
+

α0

C(1)
from 2.10

= 0

Since Y
(n)
it is non-negative we get that Y

(n)
it converges to 0 and hence there is a subse-

quence Y
(nk)
it converging almost surely to the same limit.

Therefore r
(nk)
it converges almost surely to Xit which implies r

(n)
it |Fit−1 converges

almost surely to Xit|Fit−1.

But

r
(n)
it |Fit−1 ∼ GP((α0C

−1(1) +
n∑
j=1

ψjXit−j)(1−K),K)

Therefore, it follows that

Xit|Fit−1 ∼ GP(λ∗it,K)

where λ∗it = (α0C
−1(1) +

n∑
j=1

ψjXit−j)(1−K)

�
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A.1.5

To prove: Distributional properties of (X1t, X2t)

Proof. Given Ft−1 = σ((X1t−1, X2t−1), (X1t−2, X2t−2), ...) for t ∈ Z let

λ1t = λ2t = λt = α0C
−1(1) +

∞∑
j=1

ψjX̄t−j

The sequence {λt} satisfies,

λt = α0 +

p∑
j=1

αjX̄t−j +

q∑
k=1

βkλt−k

For a fixed t, consider the sequence {(r(n)1t , r
(n)
2t )}n∈N defined as

r
(n)
it = (1−K)Uit + (1−K)

1

2

n∑
j=1

X1t−j+X2t−j∑
k=1

Zit−j,j,k

We claim there is a subsequence {nk} s.t. {(r(nk)
1t , r

(nk)
2t )} converges almost surely to

{(X1t, X2t)}.
For i = 1, 2 consider Xit − r(n)it = (Xit −X(n)

it ) + (X
(n)
it − r

(n)
it )

Let Y
(n)
t = (r

(n)
1t −X

(n)
1t )+(r

(n)
2t −X

(n)
2t ) =

1

2
(1−K)

 n∑
j=1

X1t−j+X2t−j∑
k=Xn−j

1t−j+X
n−j
2t−j+1

[Z1t−j,j,k + Z2t−j,j,k]


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We now have to find a subsequence of Y
(n)
t which converges almost surely to 0.

lim
n→∞

E(Y
(n)
t ) =

(1−K)

2
lim
n→∞

n∑
j=1

E

 X1t−j+X2t−j∑
k=Xn−j

1t−j+X
n−j
2t−j+1

(Z1t−j,j,k + Z2t−j,j,k)


=

(1−K)

2
lim
n→∞

n∑
j=1

2E
[
X1t−j +X2t−j −X(n−j)

1t−j −X
(n−j)
2t−j

]
ϕj

= lim
n→∞

n∑
j=1

E
[
X1t−j +X2t−j −X(n−j)

1t−j −X
(n−j)
2t−j

]
ψj

= lim
n→∞

[
2µ

n∑
j=1

ψj − 2
n∑
j=1

µn−jψj

]

= 2

[
α0G(1)

C(1)−D(1)
− lim

n→∞

n∑
j=1

µn−jψj

]
from 2.14 and 2.12

= 2

[
α0D(1)

C(1)[C(1)−D(1)]
− lim

n→∞
µn + ψ0

]
from 2.13

= 2

[
α0D(1)

C(1)[C(1)−D(1)]
− lim

n→∞
µn +

α0

C(1)

]
= 2

[
α0D(1)

C(1)[C(1)−D(1)]
− α0

C(1)−D(1)
+

α0

C(1)

]
from 2.14

= 0

This shows that Y
(n)
it converges to 0 because Y

(n)
t is non-negative. Hence, there is a

subsequence Y
(nk)
t converging almost surely to the same limit.

Therefore, (r
(nk)
1t , r

(nk)
2t ) converges almost surely to (X1t, X2t) which implies that

(r
(n)
1t , r

(n)
2t )|Ft−1 converges almost surely to (X1t, X2t)|Ft−1.

But

(r
(n)
1t , r

(n)
2t )|Ft−1 ∼ GP((α0C

−1(1) +
n∑
j=1

ψjX̄t−j)(1−K),K)

Therefore, we get that

Xt = (X1t, X2t)|Ft−1 ∼ GP(λ∗t ,K)

where λ∗t = (α0C
−1(1) +

n∑
j=1

ψjX̄t−j)(1−K)
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A.2 Table 2

Lag selection (With clustering) - Model M2 (Partial Pooling)

(p,q) Criteria

S. No. Block A Block B Block C Negative log-lik AIC BIC

1 (1,1) (1,1) (1,1) 8962780 17907830 17907912
2 (1,1) (1,1) (1,2) 8962655 17925336 17925399
3 (1,1) (1,1) (1,3) 8962622 17925272 17925340
4 (1,1) (1,2) (1,1) 8962726 17925478 17925542
5 (1,1) (1,2) (1,2) 8962601 17925229 17925298
6 (1,1) (1,2) (1,3) 8962568 17925165 17925238
7 (1,1) (1,3) (1,1) 8962692 17925413 17925481
8 (1,1) (1,3) (1,2) 8962567 17925164 17925237
9 (1,1) (1,3) (1,3) 8962534 17925100 17925178
10 (1,2) (1,1) (1,1) 8956427 17912881 17912944
11 (1,2) (1,1) (1,2) 8956302 17912632 17912700
12 (1,2) (1,1) (1,3) 8956269 17912568 17912641
13 (1,2) (1,2) (1,1) 8956373 17912774 17912843
14 (1,2) (1,2) (1,2) 8956248 17912526 17912599
15 (1,2) (1,2) (1,3) 8956215 17912462 17912540
16 (1,2) (1,3) (1,1) 8956340 17912709 17912782
17 (1,2) (1,3) (1,2) 8956214 17912460 17912538
18 (1,2) (1,3) (1,3) 8956181 17912396 17912479
19 (1,3) (1,1) (1,1) 8954110 17908249 17908317
20 (1,3) (1,1) (1,2) 8953985 17908000 17908073
21 (1,3) (1,1) (1,3) 8953952 17907936 17908014
22 (1,3) (1,2) (1,1) 8954056 17908142 17908215
23 (1,3) (1,2) (1,2) 8953931 17907893 17907971
24 (1,3) (1,2) (1,3) 8953898 17907830 17907912
25 (1,3) (1,3) (1,1) 8954022 17908077 17908155
26 (1,3) (1,3) (1,2) 8953897 17907828 17907911
27 (1,3) (1,3) (1,3) 8953864 17907764 17907852
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Lag selection (With clustering) - Model M4 (Complete pooling)

(p,q) Criteria

S. No. Block A Block B Block C Negative log-lik AIC BIC

1 (1,1) (1,1) (1,1) 10187231 20374486 20374652
2 (1,1) (1,1) (1,2) 10187098 20374222 20374402
3 (1,1) (1,1) (1,3) 10187054 20374137 20374330
4 (1,1) (1,2) (1,1) 10187231 20374488 20374667
5 (1,1) (1,2) (1,2) 10187098 20374224 20374418
6 (1,1) (1,2) (1,3) 10187054 20374139 20374346
7 (1,1) (1,3) (1,1) 10187231 20374490 20374683
8 (1,1) (1,3) (1,2) 10187098 20374226 20374434
9 (1,1) (1,3) (1,3) 10187054 20374141 20374362
10 (1,2) (1,1) (1,1) 10187183 20374392 20374572
11 (1,2) (1,1) (1,2) 10187050 20374129 20374322
12 (1,2) (1,1) (1,3) 10187007 20374043 20374250
13 (1,2) (1,2) (1,1) 10187183 20374394 20374588
14 (1,2) (1,2) (1,2) 10187050 20374131 20374338
15 (1,2) (1,2) (1,3) 10187007 20374045 20374266
16 (1,2) (1,3) (1,1) 10187183 20374396 20374603
17 (1,2) (1,3) (1,2) 10187050 20374133 20374354
18 (1,2) (1,3) (1,3) 10187007 20374047 20374282
19 (1,3) (1,1) (1,1) 10187183 20374394 20374588
20 (1,3) (1,1) (1,2) 10187050 20374131 20374338
21 (1,3) (1,1) (1,3) 10187007 20374045 20374266
22 (1,3) (1,2) (1,1) 10187183 20374396 20374603
23 (1,3) (1,2) (1,2) 10187050 20374133 20374354
24 (1,3) (1,2) (1,3) 10187007 20374047 20374282
25 (1,3) (1,3) (1,1) 10187183 20374398 20374619
26 (1,3) (1,3) (1,2) 10187050 20374135 20374370
27 (1,3) (1,3) (1,3) 10187007 20374049 20374298
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