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Abstract

In recent years access control has been a crucial aspect of computer systems,
since it is the component responsible for giving users specific permissions en-
forcing a administrator-defined policy. This lead to the formation of a wide
literature proposing and implementing access control models reflecting dif-
ferent system perspectives. Moreover, many analysis techniques have been
developed with special attention to scalability, since many security properties
have been proved hard to verify. In this setting the presented work provides
two main contributions.

In the first, we study the security of workflow systems built on top of an
attribute-based access control in the case of collusion of multiples users. We
define a formal model for an ARBAC based workflow system and we state
a notion of security against collusion. Furthermore we propose a scalable
static analysis technique for proving the security of a workflow. Finally we
implement it in a prototype tool showing its effectiveness.

In the second contribution, we propose a new model of administrative at-
tribute-based access control (AABAC) where administrative actions are en-
abled by boolean expressions predicating on user attributes values. Subse-
quently we introduce two static analysis techniques for the verification of
reachability problem: one precise, but bounded, and one over-approximated.
We also give a set of pruning rules in order to reduce the size of the problem
increasing scalability of the analysis. Finally, we implement the analysis in a
tool and we show its effectiveness on several realistic case studies.
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Chapter 1

Introduction

Nowadays computer systems offer crucial services in almost all fields of our
lives and influence our way of living in a pervasive way. All the services we
normally access to are managed and controlled by sophisticated systems. A
main concern derived by the usage of those complex systems is the necessity
of restricting the access to sensitive resources. Access control became in the
last decades a very important field of research, aiming at defining an effective
way to specify correct security policies. The literature on this field is mainly
operating around three main topics: firstly defining expressive models to ex-
press in an effective way which resources are sensitive and who should be
entitled to access them (policy specification). Secondarily, there is a need for
guaranteeing a correct enforcement mechanism of the above-defined poli-
cies (policy enforcement). Finally, we have to consider the problem of policy
verification: namely, the crucial test which proves if the given policies satisfy
certain security-relevant properties. The main contributions of this thesis are
related to the first and especially the third topics.

Policy specification. Many ways of specifying policies have been proposed
in the literature, from the precise Access Control Matrix (ACM) to more ab-
stract ones such as Role-Based Access Control, Attribute-Based Access Con-
trol and Relationship-Based Access Control (ReBAC). In Access Control Ma-
trix there is a punctual mapping from user to permissions; this model al-
though extremely fine-grained is hard to maintain in large systems. In Role-
Based Access Control (RBAC), users obtain specific permissions based on the
roles they have. In Attribute-Based Access Control (ABAC) the permissions
are given on the basis of formulas predicating on the attribute of users and
in Relationship-Based Access Control (ReBAC) the permissions are granted
if there is a particular relationship between the user and the resource.
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To be able to work within these static systems, the problem of the policy
administration is crucial. In order to avoid the need of recurring to a central-
ized administrator every time we require to change the permissions of a user,
it is important to define a way to give users capability of managing permis-
sions of themself. For this reason several administrative versions of access
control models have been proposed. On one hand the self-administration
capability dramatically enhanced the expressiveness and the maintenance of
the policy. On the other hand, writing a correct administrative policy is a
challenging problem, since privileges assigned to users change dynamically
due to administrative actions, thus potentially leading to unintended secu-
rity breaches.

Policy verification. The main idea of policy verification is that we want to
verify if a certain access control policy satisfies specific security properties.
This is essential, especially when we have a dynamic policy such in the ad-
ministrative version of access control systems. Indeed, for an administrator
is very hard to write a policy that respects some security properties he has
in mind. For this reason, substantial researches have been carried out to ad-
dress the verification problem of access control policies, in order to check a
wide area of different security properties.

Let us briefly present ARBAC to give a more concrete example of the in-
fluence of the policy specification and verification in the real world.

Example: Role-Based Access Control. A sophisticated way of specifying
access control policies, that is widely used, is the so called Role-Based Ac-
cess Control (RBAC). It has been standardized by NIST [30], and it is used
in many commercial applications e.g., OpenMRS, Oracle DBMS, grsecurity,
Moodle. Its fame comes by the fact that it allows the deployment of access
control policies in systems with a large number of users and permissions.
The key idea is that sets of permissions, are abstracted into roles which are
assigned to users, so that every user is granted permissions depending on
the roles assigned to him. This way of specifying the access control policies
is very effective and intuitive since the number of roles is static and much
smaller than the number of users and permissions and each role intuitively
represents the position of users in the organization.

Although RBAC become a very famous access control model, its lack of
distributed administration severely limits its effectiveness. Indeed if we want
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to change the user role assignment, that is static, we need the administrator to
change it, making the maintenance unfeasible in case there is a large number
of users involved. To address this shortcoming, an administrative version of
it, namely ARBAC, has been proposed and adopted by many computer sys-
tems. In this version, we allow users involved in the system to assign and re-
voke roles to other users on the basis of an administration policy, thus greatly
enhancing the expressiveness of the system: now we do not have a central-
ized administrator, but users in the system are able to self-administrate them-
self. However writing correct ARBAC policies is hard, making the verification
process an almost necessary step. The main verification problem for ARBAC
is the role reachability one: given an ARBAC policy, a set of users with a cer-
tain initial configuration and a target role, we want to prove if it is possible
to reach a new configuration such that a user have the target role. Many de-
sirable security properties of ARBAC system have been encoded in terms of
instances of role reachability. This problem is notoriously hard to solve due
to the exponential explosion of the state space, but many scalable analysis
techniques have been developed [71, 31, 18, 41].

Contributions

This thesis makes its main contributions in the field of specification and verifi-
cation of access control systems.

In the first part of this thesis we conduct a study of workflow systems.
Workflow systems are a typical example where the access control compo-
nent is used to enforce a security policy in a wider computing system. In a
workflow system we have a set of tasks composing a business process and
a set of users that cooperate to complete them, and an access control system
enforcing a security policy that is responsible to allow or disallow users to
complete each workflow task.
In this work, we present several contributions on this topic: we propose a
model of workflow systems based on stable event structures, where the au-
thorization to complete tasks is managed by an ARBAC access control com-
ponent with the addition of binding and separation of duty constraints on
users. We then define a notion of security against collusion ensuring that ad-
ministrative actions cannot be abused to sidestep the workflow security pol-
icy. Subsequently, we propose a static analysis technique based on a reduc-
tion to a role reachability problem for ARBAC, which can be used to prove or
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disprove security against collusion for restricted yet useful classes of work-
flow systems. We also aggressively optimise the role reachability problem to
ensure its tractability. Finally we implement our static analysis in the WAR-
BAC tool, and we show its effectiveness in realistic case studies.

The second part of this work contains a study on Attribute-Based Ac-
cess Control systems. Attribute-Based Access Control, ABAC, proved to be a
very intuitive and effective access control system holding several advantages
compared to other systems. The key idea of ABAC, similarly to RBAC, is that
permissions are given using a declarative security policy that abstracts from
the users in the system. However, instead of predicating on an intermediate
layer such as roles in RBAC, here the policy predicates directly on attributes
of users, enabling a finer granularity of the access control system. In this
work we give a model for an administrative version of ABAC, AABAC, that
is deeply inspired by ARBAC. It allows a distributed management of the sys-
tem, where administrative actions are guarded by preconditions predicating
on the attributes of the involved users. We then give two scalable approx-
imated, but refinable, analysis techniques to verify the given model and a
pruning technique aimed at reducing the size of the problem enhancing scal-
ability of the analysis. Finally we discuss the results of the VACSAT tool, that
implements our verification techniques, on a large set of AABAC policies.

In the appendix of this thesis we also present a work on security of Google
Chrome browser extensions.

1.1 Structure of this thesis

This thesis is composed of three parts:

• in chapter 2 we present the study of collusion attacks in ARBAC-based
workflow systems. Proofs of this work are reported in chapter 3;

• in chapter 4 we propose a new administrative model for attribute-based
access control and we give various analysis techniques;

• in chapter 5 we conclude.
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Chapter 2

Static Detection of Collusion
Attacks in ARBAC-based
Workflow Systems

2.1 Introduction

A workflow is a temporally organised collection of tasks, representing a busi-
ness process specification. Workflow systems are software supporting a spe-
cific set of business processes through the execution of computerized task
definitions. These software not only ensure that the execution of the tasks
in a workflow respects the expected temporal order, but also that these tasks
are performed by authorized users.

Authorization in workflow systems is usually built on top of role-based
access control (RBAC). RBAC is a very natural choice for workflow systems,
since roles provide a convenient abstraction to represent a (possibly large)
set of users entitled to perform a given task [2, 10]. When role-based se-
curity policies on task execution are not expressive enough, security poli-
cies on workflows can also include constraints on the identity of the users
performing a set of tasks, like binding-of-duty and separation-of-duty con-
straints [13, 52]. Binding-of-duty (BoD) constraints enforce two different
tasks to be performed by the same user, e.g., to prevent an undesired dis-
closure of sensitive information or to ensure a single user takes full responsi-
bility for a set of related tasks. Separation-of-duty (SoD) constraints, instead,
play the dual role of ensuring that two different tasks are performed by two
different users, e.g., to prevent frauds or conflicts of interest.

An important observation for security is that, though both role-based and
identity-based security policies like BoD and SoD constraints are static and
declarative in nature, the set of roles assigned to the users of a workflow
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system is typically not. For instance, the Administrative RBAC (ARBAC)
standard [30] allows system administrators to specify which roles are enti-
tled to assign other roles to users, based on the sets of roles assigned (or
not assigned) to them; similarly, roles may be granted the ability of revok-
ing other roles from system users. Role administration is thus highly dis-
tributed in ARBAC systems, which is a very desirable feature for normal
system functionality; however, it is also well-known that such a feature poses
an important security challenge, since the sets of roles which may be dynam-
ically assigned to users is very hard to predict without automated tool sup-
port [45, 69].

In the case of workflow systems based on the ARBAC model, the fact
that potentially untrusted users contribute to the role assignment process en-
ables hard-to-spot collusions aimed at circumventing the intended workflow
security policies. Specifically, in a collusion attack a set of users of a work-
flow system collaborates by changing the user-to-role assignment, so as to
sidestep the security policies put in place by the system administrators and
run up to completion a workflow they could not complete otherwise.

2.1.1 Motivating Example

We graphically represent workflows as directed graphs, including one node
per task, a start node · and an end node X. We use directed arrows to rep-
resent temporal dependencies, dashed lines labelled with # to visualize ex-
clusive choices and dashed lines labelled with either = and 6= to represent
BoD and SoD constraints respectively. We annotate each task with a sub-
script including the set of roles entitled to perform it. For instance, Figure 2.1
represents a workflow with three tasks a, b, c, which can be performed by any
user who is granted role R1,R2,R3 respectively. After the execution of task a,
the workflow offers an exclusive choice between tasks b and c and, no matter
which task is chosen, the second task must be performed by the same user
who performed a.

Consider now two users u1 and u2 who are assigned roles R1,R2 respec-
tively. These users cannot complete the workflow just with their roles, since
they lack the privileges needed to perform a, b or a, c without violating the
BoD constraints. However, assume that any user who is assigned role R2 is
also allowed to assign role R3 to any user owning role R1: this kind of policies
is common in access control systems supporting role administration, includ-
ing the standard ARBAC model [30]. Under this policy, users u1 and u2 can
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b{R2}

· a{R1} X

c{R3}

=

#

=

FIGURE 2.1: Example of workflow

collude to complete the workflow as follows: user u2 assigns role R3 to user
u1, who thus becomes able to perform tasks a and c on her own. Though such
a possibility may be easy to spot in this simple example, detecting collusions
is hard in general, since they may be enabled by arbitrarily long sequences
of actions and the underlying ARBAC policy may include hundreds of rules
for role administration like the one we discussed.

2.1.2 Contributions

In this work, we make the following contributions:

1. we propose a formal model of workflows based on stable event struc-
tures [76], which generalizes previous proposals based on partial or-
ders [72, 74]. We then integrate this model with ARBAC, by defining
a small-step operational semantics for workflow systems where work-
flow actions (execution of a task) and administrative actions (assign-
ment or revocation of roles) are arbitrarily interleaved;

2. we define a precise notion of security against collusion for workflow
systems, ensuring that administrative actions cannot be abused to side-
step the workflow security policy. The definition is adapted from pre-
vious work on the security of delegation in access control systems [75];

3. we propose a static analysis based on a reduction to a role reachability
problem for ARBAC, which can be used to prove or disprove security
against collusion for restricted yet useful classes of workflow systems.
By reducing security to role reachability, it is possible to reuse avail-
able tools for role reachability analysis [31, 18, 41] to effectively check
it. We aggressively optimise the role reachability problem to ensure its
tractability;
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4. we implement our static analysis in a tool, WARBAC, and we experi-
mentally show its effectiveness on a set of publicly available examples,
including a realistic case study describing a first-aid procedure.

We make WARBAC, all the experimental data and an extended version of the
present work (with proofs) available online [19].

Structure of the Work Section 2.2 presents the operational model. Sec-
tion 2.3 introduces the formal definition of security and gives an example.
Section 2.4 details the reduction to role reachability and its optimization. Sec-
tion 2.5 shows a few example reductions. Section 2.6 presents WARBAC and
reports on the experimental results. Section 2.7 discusses related work. Sec-
tion 2.8 concludes and hints at future work.

2.2 Operational Model

Our operational model is obtained by integrating a standard ARBAC model,
as formalized, e.g., in [18, 31], with a workflow represented as a stable event
structure [76], extended with a security policy assigning required roles to
tasks and supporting both BoD and SoD constrains.

2.2.1 ARBAC

We presuppose the existence of finite sets of users U and roles R.

Definition 1 (ARBAC Policy). An ARBAC policy is a pair P = 〈CA, CR〉,
where CA ⊆ R × 2R × 2R × R is a can-assign relation and CR ⊆ R × R is a
can-revoke relation.

A can-assign rule (ra, Rp, Rn, rt) ∈ CA states that a user with role ra can
assign role rt to any user who has all the roles in the set Rp (the positive pre-
conditions) and none of the roles in the set Rn (the negative preconditions).
A can-revoke rule (ra, rt) ∈ CR, instead, states that a user with role ra can
unconditionally revoke role rt from any user.

Definition 2 (ARBAC System). An ARBAC system is a pair S = 〈P , UR〉,
whereP is an ARBAC policy and UR ⊆ U×R is an initial user-to-role assignment.

For any user u, let UR(u) = {r | (u, r) ∈ UR}. The operational semantics
of an ARBAC system S = 〈P , UR〉 is defined by the changes which can be
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performed to the initial user-to-role assignment UR according to the policy
P . This is defined by the reduction relation P B UR  UR′ in Table 2.1,
providing the formal counterpart of the intuitions above.

Table 2.1 Reduction semantics for ARBAC (P BUR UR′)

(R-ASSIGN)
(ua, ra) ∈ UR (ra, Rp, Rn, rt) ∈ CA

Rp ⊆ UR(u) Rn ∩UR(u) = ∅
〈CA, CR〉BUR UR∪ {(u, rt)}

(R-REVOKE)
(ua, ra) ∈ UR (ra, rt) ∈ CR
〈CA, CR〉BUR UR \ {(u, rt)}

2.2.2 Workflows

We propose a general, abstract model of workflows based on stable event
structures, a true concurrency model originally proposed by Winskel [76].
Since stable event can naturally model sequential and parallel execution of
tasks, as well as non-deterministic choices [51, 76], they are very appealing
candidates to represent workflows. Moreover, stable event structures are
more expressive than previous models of workflows based on a partially
ordered set of tasks [72, 74], since the latter correspond to elementary event
structures [77] and hence cannot represent non-determinism, which instead
is a desirable feature for many workflows (including the one in Figure 2.1).
Besides being an expressive model on their own, stable event structures have
also been proposed to define the semantics of several formalisms commonly
used to model workflows, including CCS, CSP and Petri nets (see [76] for
CCS/CSP and [5] for Petri nets). By working with stable event structures,
we make our theory general enough to be directly applicable to any work-
flow specification language whose semantics can be defined in terms of these
structures.

There are several slightly different definitions of stable event structure in
the literature, the one we use here is taken from [51]: it is more compact than
the original formulation in [76], but semantically equivalent to it. We just
omit the labelling function from the definition, since it does not play any role
in the present work.

Definition 3 (Stable Event Structure). A stable event structure is a triple E =

〈E, #,`〉, where:

1. E is a denumerable set of events;
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2. # ⊆ E× E is a symmetric, irreflexive conflict relation;

3. `⊆ 2E × E is an enabling relation;

4. for all events e ∈ E and all sets of events X, Y ⊆ E such that X 6= Y, the
following stability axiom is satisfied:

X ` e ∧Y ` e⇒ ∃e1, e2 ∈ X ∪Y : (e1, e2) ∈ #.

If X ` e for some set of events X ⊆ E, then the occurrence of all the events
in X enables the occurrence of the event e; if (e1, e2) ∈ #, instead, then the
occurrence of event e1 rules out the occurrence of event e2 and vice-versa.
The stability axiom requires that, if there are different enablings for the same
event, they are conflicting, which ensures that each event is enabled in an
essentially unique way.

The semantics of stable event structures is defined in terms of a set of
configurations, defined as follows [76].

Definition 4 (Configuration). Given a stable event structure E = 〈E, #,`〉, a
configuration of E is a finite set of events X ⊆ E such that:

1. ∀e, e′ ∈ X : (e, e′) 6∈ #;

2. ∀e ∈ X.∃e1, . . . , en ∈ X : en = e ∧ ∀i ≤ n.∃Y ⊆ {e1, . . . , ei−1} : Y ` ei.

We let F(E) be the set of all the possible configurations of E .

The first condition ensures that a configuration does not contain conflict-
ing events, while the second condition says that for each event e in a config-
uration there exists a sequence of events e1, . . . , en = e again in the configu-
ration such that each ei is enabled by a subset of {e1, . . . , ei−1}. Intuitively, it
is thus possible to build a chain of enablings that enables e starting from the
empty set and each configuration of a stable event structure can be under-
stood as a computation history up to a certain state.

In our model, we represent tasks in a workflow as events of a stable event
structure and we use the terms “event” and “task” interchangeably in the
work, picking the most natural choice based on the context of the discussion.
A workflow is a stable event structure including a special eventX, represent-
ing completion, and extended with a set of constraints C and a task-to-role
assignment function ρ. The constraints C allow one to specify that two tasks
must be performed by the same user (BoD) or by two different users (SoD),
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while the function ρ assigns to each task a role which is needed to perform
it1.

Definition 5 (Workflow). A workflow is a tripleW = 〈E , C, ρ〉, where:

1. E = 〈E ∪ {X}, #,`〉 is a stable event structure including an event X 6∈ E
such that, whenever X ` e for some X and e, we have X 6∈ X;

2. C ⊆ E× E× {=, 6=} is a relation defining a set of BoD and SoD constraints
such that:

(a) ∀e ∈ E : (e, e, 6=) 6∈ C;

(b) ∀e1, e2 ∈ E : (e1, e2,=) ∈ C ⇒ (e2, e1,=) ∈ C;

(c) ∀e1, e2 ∈ E : (e1, e2, 6=) ∈ C ⇒ (e2, e1, 6=) ∈ C;

(d) ∀e1, e2, e3 ∈ E : (e1, e2,=) ∈ C ∧ (e2, e3,=) ∈ C ⇒ (e1, e3,=) ∈ C;

(e) ∀e1, e2, e3 ∈ E : (e1, e2,=) ∈ C ∧ (e2, e3, 6=) ∈ C ⇒ (e1, e3, 6=) ∈ C;

3. ρ : E→ R is a function from events to roles.

To improve readability, in our examples we do not explicitly close the
set of constraints with respect to the rules above. Given a workflow W =

〈〈E, #,`〉, C, ρ〉, we use a subscript notation to extract its different compo-
nents, e.g., we let `W stand for ` and CW stand for C.

2.2.3 ARBAC + Workflows

Having introduced the ARBAC model and a formal definition of workflow,
we now study their interplay by giving a reduction semantics to ARBAC
workflow systems.

Definition 6 (ARBAC Workflow System). An ARBAC workflow system is a
pair A = 〈S ,W〉 including an ARBAC system S and a workflowW .

Since workflows in our model allow the specification of BoD and SoD
constraints, the reduction semantics of ARBAC workflow systems needs to
keep track of the author of the individual tasks. This is formalized by intro-
ducing the following notion of history.

1This is expressive enough to represent tasks which require multiple roles to be per-
formed or any role in a given set. For instance, if both r1 and r2 are needed for a task e,
one can introduce in the ARBAC policy a fresh role r which is only granted to users who are
assigned both r1 and r2. Then, it is enough to let ρ(e) = r.
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Definition 7 (History). Given a workflowW , a history H : EW → U is a partial
function from tasks to users such that dom(H) is a configuration of EW . We let ⊥
stand for the empty history.

Given a history H, we can readily check whether the workflow constraints
are satisfied or not. Clearly, a BoD/SoD constraint predicating on the authors
of two different tasks can only be checked when the second one is attempted,
which leads to the following definition.

Definition 8 (Satisfiability). Let ∼∈ {=, 6=}, we say that H satisfies the con-
straint (e1, e2,∼) whenever H |= (e1, e2,∼) can be proved by the following rules:

e1 6∈ dom(H)

H |= (e1, e2,∼)

e2 6∈ dom(H)

H |= (e1, e2,∼)

H(e1) ∼ H(e2)

H |= (e1, e2,∼)

Let H |= C whenever ∀(e1, e2,∼) ∈ C : H |= (e1, e2,∼).

The operational semantics of an ARBAC workflow systemA = 〈S ,W〉 is
defined by means of a labelled reduction relation on states σ = 〈UR, H〉, in-
cluding a user-to-role assignment UR and a history H (see Table 2.2). Labels
are drawn from the set of events EW in the workflow, extended with a dis-
tinguished event ◦ representing the occurrence of an administrative action
(assignment or revocation of roles). To update the history upon reduction,
we use the following notation: for a partial function f with x 6∈ dom( f ), let
f [x 7→ y] be the partial function g such that dom(g) = dom( f )∪ {x}, g(x) = y
and ∀z ∈ dom( f ) : g(z) = f (z).

Table 2.2 Reduction semantics (P ,W B σ
e−→ σ′)

(R-ADMIN)
P BUR UR′

P ,W B 〈UR, H〉 ◦−→ 〈UR′, H〉

(R-TASK)
ρW (e) ∈ UR(u) H[e 7→ u] |= CW

∃X ⊆ dom(H) : X `W e ∀e′ ∈ dom(H) : (e′, e) 6∈ #W
P ,W B 〈UR, H〉 e−→ 〈UR, H[e 7→ u]〉

Rule (R-ADMIN) is straightforward: it allows one to change the user-to-
role assignment in accordance with the underlying ARBAC policy. Rule (R-
TASK), instead, models the execution of a task. In words, it is possible to
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execute a task if: (1) there exists a user who is granted the required role for the
task; (2) the execution of the task by this user does not violate the BoD/SoD
constraints; (3) the task is enabled by the already performed tasks; and (4)
the task does not conflict with any of the already performed tasks.

Observe that the reduction relation in Table 2.2 is well-defined, since the
premises of rule (R-TASK) ensure that only valid histories are introduced
upon reduction when starting from the empty history ⊥.

2.3 Security Against Collusion

2.3.1 Formal Definition of Security

Let Uc ⊆ U be a set of colluding users. Intuitively, an ARBAC workflow
system is secure against collusion by Uc whenever no sequence of adminis-
trative actions performed by the users in Uc can allow them to complete a
workflow which they could not complete just with their original roles. We
now formalise this intuition, though we need a number of auxiliary defini-
tions first.

Given a user-to-role assignment UR and a set of colluding users Uc, we
let UR ↓Uc= {(u, r) ∈ UR | u ∈ Uc} stand for the subset of UR including
only users in Uc. We extend the notation to ARBAC workflow systems in the
expected way, by having 〈〈P , UR〉,W〉↓Uc= 〈〈P , UR↓Uc〉,W〉.

Given an ARBAC workflow system A = 〈〈P , UR〉,W〉, a trace of A is a
sequence of events t = e1, . . . , en such that:

∃σ0, . . . , σn : σ0 = 〈UR,⊥〉 ∧ ∀i ≤ n : P ,W B σi−1
ei−→ σi.

A trace t is successful iffX occurs in t. We let TX(A) denote the set of the suc-
cessful traces of A. A trace t is pure iff it does not contain any administrative
action, i.e., iff ◦ does not occur in t. We let PTX(A) stand for the set of the
pure, successful traces of A.

Definition 9 (Security Against Collusion). An ARBAC workflow system A is
secure against collusion by Uc iff:

TX(A↓Uc) 6= ∅⇒ PTX(A↓Uc) 6= ∅.
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2.3.2 Example

We now encode in our formalism the motivating example in Section 2.1.1
(Figure 2.1) and we show that it is not secure against collusion by {u1, u2}.

First, we defineW = 〈〈{a, b, c,X},`, #〉, C, ρ〉, where:

1. the enabling relation is:

`= {(∅, a), ({a}, b), ({a}, c), ({b},X), ({c},X)}

2. the conflict relation is # = {(b, c), (c, b)};

3. C = {(a, b,=), (a, c,=)} enforces BoD between tasks a, b and between
tasks a, c;

4. ρ(a) = R1, ρ(b) = R2, ρ(c) = R3 requires role R1 to perform task a, role
R2 to perform task b and role R3 to perform task c.

We then build on top of this workflow the ARBAC workflow system A =

〈〈P , UR〉,W〉, where:

1. P = 〈{(R2, {R1}, ∅,R3)}, ∅〉 is the ARBAC policy which allows users
with role R2 to assign role R3 to any user who is granted role R1;

2. UR = {(u1,R1), (u2,R2)} contains two users u1, u2 with roles R1,R2 re-
spectively.

We have that A is not secure against collusion by {u1, u2} according to Defi-
nition 9, since it is possible to put the eventX in the history by first assigning
role R3 to u1 and then letting her execute both a and c; however, without ad-
ministrative actions (the role assignment by u2) it is not possible for the two
users to complete the workflow.

2.3.3 Checking Security Against Collusion

By definition, given an ARBAC workflow system A, its security against col-
lusion by a set of users Uc ⊆ U can be checked as follows:

1. check if there exists a successful trace t ∈ TX(A ↓Uc): if this is not the
case, A is secure;

2. otherwise, A is secure if (and only if) there exists also a pure successful
trace t′ ∈ PTX(A↓Uc).
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Formally, point (2) amounts to checking the satisfiability (or consistency) of a
workflow, a problem which has received considerable attention in the past
[72, 74]. In particular, Wang and Li proved that the workflow satisfiability
problem is NP-hard in presence of SoD constraints [74]. Based on this result,
it is clear that also point (1) is at least NP-hard in the general case, since points
(1) and (2) coincide on the ARBAC workflow system implementing an empty
ARBAC policy.

To the best of our knowledge, no algorithm has been proposed so far to
deal with point (1). Building all the possible user-to-role assignments for the
colluding users based on the ARBAC policy and then checking workflow sat-
isfiability with respect to them is not feasible in practice, given the exponen-
tial blow-up of the possible role combinations and the inherent complexity of
workflow satisfiability itself. In the next section, we propose the first feasible
static analysis technique to solve point (1).

2.4 Static Analysis

2.4.1 Overview

We propose to check security against collusion in ARBAC workflow sys-
tems through a reduction to the well-known role reachability problem for AR-
BAC [45, 69].

Given an ARBAC system S = 〈P , UR〉, a role r is said reachable in S if and
only if it can be assigned to some user of the system at some point in time.
Formally, this means that there exist a user u and a sequence of user-to-role
assignments UR0, . . . , URn such that UR0 = UR and:

(∀i ≤ n : P BURi−1  URi) ∧ r ∈ URn(u).

We propose to encode the workflow as a set of can-assign rules, which extend
the original ARBAC policy P so that a specific role (introduced by the encod-
ing) is reachable if and only if the workflow can be completed by the colluding
users, possibly by making use of administrative actions; this characterization
is proved correct for a restricted, yet useful, class of worklow systems dis-
cussed below. Notably, however, even for workflow systems which do not
belong to this class, we prove that the unreachability of the role above en-
sures that the workflow cannot be completed by the colluding users, which
may be enough to prove security against collusion in many practical cases.
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By internalizing the workflow into the underlying ARBAC policy, we can
reuse efficient tools for role reachability analysis [31, 18, 41] to prove or dis-
prove security against collusion in workflow systems. Moreover, having a
unified representation (in terms of ARBAC) of both the ARBAC policy and
the workflow to analyse makes it possible to devise aggressive optimizations
which exploit as much information as possible to simplify the security prob-
lem and make it tractable.

2.4.2 Reduction to Role Reachability

LetA = 〈S ,W〉, for each task e ∈ EW we introduce three fresh roles: Done[e],
Allowed[e] and Author[e]. Moreover, for each pair of tasks e1, e2 such that
(e1, e2,=) ∈ CW , we introduce a fresh role Eq[e1, e2]. Finally, we introduce
a fresh role Super, which will always be assigned to a dummy user intro-
duced by the encoding. Notice that we can always ensure that the set of roles
in A does not clash with the set of roles introduced by the encoding just by
performing a preliminary renaming of the elements of the former.

The core of the encoding is a translation from a workflowW into a set of
can-assign rules JWK. The translation requires the generation of the set of the
configurations of EW and it assumes the following definition of precedence,
which can be used to identify the set of the predecessors of an event in a
stable event structure [51].

Definition 10 (Precedence). For a stable event structure E = 〈E,`, #〉 and a
configuration X ∈ F(E), we define the precedence relation≺X ⊆ X×X by having
e ≺X e′ if and only if ∃Y ⊆ X : e ∈ Y ∧ Y ` e′. We then let <X stand for the
transitive closure of ≺X.

We let JWK be the smallest set of can-assign rules derived by the infer-
ence rules in Table 2.3. The core intuitions underlying the translation can be
summarized as follows:

• we assume the existence of a dummy user with the Super role, which we
call the super user. We use the super user to trigger several can-assign
rules generated by the translation and to keep track in the encoding of
which tasks can be executed or have been performed so far. This is done
by assigning to the super user a specific set of roles (again introduced
by the translation) and by ensuring that they satisfy the invariants ex-
plained below;
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Table 2.3 Translation of a workflowW into a set of can-assign rules JWK

(T-ALLOWED)
X ∈ F(EW ) e ∈ X Done = {Done[e′] | e′ <X e}

Eqs = {Eq[e1, e2] | e1 <X e ∧ e2 <X e ∧ (e1, e2,=) ∈ CW}
(Super, Done∪ Eqs∪ {Super}, {Allowed[e′] | (e, e′) ∈ #W},Allowed[e]) ∈ JWK

(T-EQ)
(e1, e2,=) ∈ CW

(Super, {Author[e1],Author[e2]}, ∅,Eq[e1, e2]) ∈ JWK

(T-PROPEQ)
(e1, e2,=) ∈ CW

(Eq[e1, e2], {Super}, ∅,Eq[e1, e2]) ∈ JWK

(T-AUTHOR)
X ∈ F(EW ) e ∈ X Neqs = {Author[e′] | (e′, e, 6=) ∈ CW}

Eqs = {Author[e′] | e′ <X e ∧ (e′, e,=) ∈ CW}
(Allowed[e], {ρW (e)} ∪ Eqs, Neqs∪ {Super},Author[e]) ∈ JWK

(T-DONE)
e ∈ EW

(Author[e], {Super}, ∅,Done[e]) ∈ JWK

• rule (T-ALLOWED): to assign role Allowed[e], we must ensure that: (1)
all the predecessors of e have already been performed; (2) none of the
predecessors of e violates a BoD constraint; and (3) no event which is
conflicting with e has been previously allowed. Notice that Allowed[e]
can only be assigned to the super user: this ensures that all the infor-
mation about the allowed events is centralized on the super user, i.e., in
the encoding we can always be aware of all the tasks which have been
allowed so far;

• rule (T-AUTHOR): once Allowed[e] has been assigned to the super user,
it is possible to attempt the assignment of role Author[e]. This role can
only be assigned to a user who has the required role to perform e ac-
cording to the task-to-role assignment function ρ; moreover, the user
must satisfy all the BoD constraints between e and its predecessors, as
well as all the SoD constraints between e and the other tasks of the
workflow. Observe that the super user can never be assigned Author[e],
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reflecting the intuition that he is just a dummy user introduced by the
encoding and not a real user of the system;

• rule (T-DONE): once Author[e] has been assigned to some user, it is pos-
sible to assign role Done[e] to the super user. This role assignment tracks
that it was indeed possible to perform task e. Role Done[e] may be re-
quired to enable the assignment of role Allowed[e′] for some event e′

which is a successor of e;

• rule (T-EQ): if a user is assigned both Author[e1] and Author[e2], she can
also be assigned role Eq[e1, e2], thus proving that a BoD constraint be-
tween e1 and e2 has been satisfied. Afterwards, by rule (T-PROPEQ),
role Eq[e1, e2] can be further assigned to the super user: this may be
needed to enable the assignment of role Allowed[e] for some event e fol-
lowing both e1 and e2.

Finally, the translation is extended so as to map an ARBAC workflow
system A = 〈〈〈CA, CR〉, UR〉,W〉 into a corresponding ARBAC system JAK
as follows:

JAK = 〈〈CA− ∪ JWK, CR〉, UR∪ {(u0, Super)}〉,

where u0 is a fresh user extending the set of users U and CA− is the set of the
can-assign rules obtained by including Super in the negative preconditions of
all the rules in CA.

2.4.3 Formal Results

The first result we prove for the encoding we detailed is the following sound-
ness theorem.

Theorem 1 (Soundness). For any A such that TX(A) 6= ∅, the role Done[X] is
reachable in JAK.

Proof. See section 3.1.

The soundness theorem ensures that, if role Done[X] is not reachable in
JAK, then the ARBAC workflow system A will never reach a state where the
workflow has been completed by the system users, even by making use of
administrative actions. In terms of security this means that, given a set of
colluding users Uc, the unreachability of role Done[X] in JA↓UcK ensures that
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the users in Uc cannot complete the workflow, not even by changing roles,
hence we get a proof of security for A against collusion by Uc (by Defini-
tion 9).

Interestingly, we are also able to establish a completeness theorem for the
restricted case of ARBAC workflow systems without BoD constraints.

Theorem 2 (Completeness). For any A not including BoD constraints, if the role
Done[X] is reachable in JAK, we have that TX(A) 6= ∅.

Proof. See section 3.2.

The completeness theorem is useful to confirm the presence of a collusion
attack. Let A be an ARBAC workflow system and Uc be a set of colluding
users, and assume we proved, for instance by using the techniques in [72, 74],
that A↓Uc does not allow the users in Uc to complete the workflow just with
their original roles. By Theorem 2, if we show that role Done[X] is reachable
in JA ↓UcK and the workflow does not include any BoD constraint, we can
confirm that the users in Uc can complete the workflow by making use of
administrative actions, hence A is not secure against collusion by Uc (again
by Definition 9).

We conjecture that the completeness theorem can be actually extended to
arbitrary ARBAC workflow systems, but this stronger property looks signif-
icantly harder to prove than Theorem 2. We provide an intuition on why
excluding BoD constraints helps in the proof of Theorem 2. One of the sub-
tlest differences between ARBAC systems and ARBAC workflow systems is
that in the former any role, including the roles of the form Author[e] for some
task e, can be assigned to all users satisfying the preconditions of the can-
assign rules granting that role; conversely, a task can be performed only once
in an ARBAC workflow system, so the author of each task is uniquely deter-
mined there. Thus, in the encoding into ARBAC, a role like Author[e] can be
potentially assigned to multiple users, though only one of these users actu-
ally performs e in the ARBAC workflow system. To prove completeness, one
needs to show that assigning Author[e] to multiple users does not introduce
“false attacks”. Notably, if no BoD constraint is put in place in the workflow
system, roles like Author[e] do not occur in any positive precondition of the
can-assign rules generated by the encoding into ARBAC: this means that it is
enough to have just one user who is assigned the role, to trigger those can-
assign rules where Author[e] is in administrative position (i.e., it appears as
the first element of the rule). Without loss of generality, it is thus possible in
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the proof of Theorem 2 to only focus on well-formed traces, where each role
like Author[e] is assigned at most once.

It should not be surprising that the encoding we propose can also be used
to solve the classic workflow satisfiability problem [72, 74] in the case of AR-
BAC workflow systems without BoD constraints. Given A = 〈〈P , UR〉,W〉,
let:

JAK∗ = 〈〈JWK, ∅〉, UR∪ {(u0, Super)}〉,

where u0 is a fresh user extending the set of users U.

Lemma 1 (Workflow Satisfiability). For any A, PTX(A) 6= ∅ implies that the
role Done[X] is reachable in JAK∗. Moreover, ifA does not include BoD constraints,
then also the converse holds true.

Proof. Is enough to observe that PTX(〈〈P , UR〉,W〉) = TX(〈〈P⊥, UR〉,W〉),
where P⊥ = 〈∅, ∅〉 is the empty ARBAC policy. The result then is an imme-
diate consequence of the theorems above.

In terms of computational complexity, one can observe that the workflow
satisfiability problem is NP-hard in presence of SoD constraints [74], which
we consider in this work. The encoding J·K∗ generates an ARBAC system
without can-revoke rules, so the corresponding role reachability problem is
NP-complete [45]. Hence, in the general case, both problems are equally
hard, which in principle makes our approach a viable solution also for the
classic workflow satisfiability problem.

We conclude this section by summarizing in Table 2.4 how Theorem 1 and
Theorem 2 can be used to check the security of an ARBAC workflow system
A against collusion by Uc. Notice that, if Done[X] is not reachable in JA↓UcK,
we can immediately prove security and ignore JA↓UcK

∗. One case is missing
from the table, since it is not possible that Done[X] is reachable in JA ↓UcK

∗,
but not in JA↓UcK.

Table 2.4 Checking security of A against collusion by Uc

BoD Reach in JA↓UcK Reach in JA↓UcK
∗ Secure

no no no yes
no yes no no
no yes yes yes
yes no no yes
yes yes no ?
yes yes yes ?
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2.4.4 Optimizations

The encoding of ARBAC workflow systems into ARBAC we presented en-
joys important formal properties, but it may lead to the generation of large
and complex ARBAC systems, which do not admit an efficient role reach-
ability analysis. Luckily, there is a well-established approach to make role
reachability tractable for ARBAC, that is the use of pruning techniques, which
perform syntactic transformations shrinking the size of the analysed ARBAC
system, without affecting the reachability of a given role of interest [45, 33,
31].

We present here an effective pruning technique we devised to simplify the
role reachability problems generated by our encoding: though the pruning
has been designed to work at its best in this specific context, we expect sev-
eral ideas to be general enough to be useful for the simplification of arbitrary
ARBAC systems.

Definitions

A role r is administrative if and only if there exists at least one can-assign rule
of the form (r, Rp, Rn, rt) for some Rp, Rn, rt or one can-revoke rule of the
form (r, r′) for some r′. A role is positive (resp. negative) if and only if it occurs
in the positive (resp. negative) preconditions of some can-assign rule [31].
We say that a role is purely administrative iff it is administrative, non-positive
and non-negative. Purely administrative roles only need to be assigned to
grant the right of performing some administrative actions. As such, it is not
important to know who is granted a purely administrative role, as long as
there is one user having the role when the administrative actions it enables
are intended to be performed.

A role is positively stable if and only if it is irrevocable or non-negative.
A role is negatively stable if and only if it is not assignable or it is both non-
positive and non-administrative. If a user is assigned a positively stable role
r, we can assume that r will be assigned to her forever, either because it can-
not be removed (if r is irrevocable) or because removing it does not enable
new administrative actions (if r is non-negative). Dually, if a user is not as-
signed a negatively stable role r′, we can assume that r′will never be assigned
to her.
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Preprocessing

Before pruning, each rule of the form (Super, Rp, Rn,Allowed[e]) is replaced by
the set of rules:

{(Author[e′], Rp, Rn,Allowed[e]) | Done[e′] ∈ Rp}.

It can be shown that this preprocessing step does not affect the reachability
of any role, since each rule of the previous format is enabled if and only if all
the rules in the set generated from it are enabled. The intuition behind this
observation is that, for each event e′, role Done[e′] can be assigned if and only
if role Author[e′] is first assigned.

Moreover, as part of the preprocessing step, all roles of the form Allowed[e]
are removed from the negative preconditions of the can-assign rules gener-
ated by the encoding. Though this may look surprising, it can be shown that
it does not affect the reachability of role Done[X], since the negative precon-
ditions of the previous form are just an artefact to simplify the proof of the
main formal results. To understand why the reachability of Done[X] is not
affected by this change, observe that a role like Allowed[e] is only included in
the negative preconditions of a can-assign rule generated by the encoding in
Table 2.3 if e is conflicting with some other event. Assume then there are two
conflicting events e1, e2: according to the encoding, only one role between
Author[e1] and Author[e2] can be assigned, since only one between Allowed[e1]

and Allowed[e2] can be given to the super user. However, assume that both
Author[e1] and Author[e2] were assigned to some user, since we removed the
negative preconditions above. This may lead to two potentially troublesome
scenarios, which would never happen if only one of the two roles was as-
signed:

1. Done[e1] and Done[e2] get both assigned;

2. Eq[e1, e2] gets assigned (if Author[e1] and Author[e2] are given to the same
user).

Both these cases do not affect the reachability of Done[X], since e1 and e2 are
conflicting and thus never included in the same configuration of the stable
event structure underlying the workflow. By the definition of the encoding,
this implies that Done[e1] and Done[e2] never occur together in the positive
preconditions of a can-assign rule, and similarly Eq[e1, e2] is not included in
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any positive precondition, so the cases above do not enable more adminis-
trative actions.

Though the preprocessing we discussed increases the number of can-
assign rules generated by the encoding, the newly introduced rules have a
format which is more amenable for pruning and, pragmatically, eventually
leads to the generation of ARBAC systems which are smaller and easier to
analyse. Alternatively, one could skip the preprocessing and fine-tune the
pruning rules to improve their effectiveness, but this would make the rules
harder to present.

Pruning Rules

The pruning rules make use of a binary relation on roles�. Intuitively, r � r′

ensures that, whenever r′ is assigned to some user of an ARBAC system, then
also r is assigned to some user (not necessarily the same one). Formally, � is
defined as the least pre-order satisfying the following two clauses:

1. r � r′ for all r′ if r is initially assigned and positively stable;

2. r � r′ if r is positively stable, r′ is initially unassigned, and for all can-
assign rules of the form (ra, Rp, Rn, r′) we have r ∈ Rp ∪ {ra}.

We are finally ready to present the pruning rules, assuming an initial user-to-
role assignment UR:

1. Let rt be a non-negative role. If there exist a rule ca = (r, Rp, Rn, rt) and
a rule ca′ = (r′, R′p ∪ {rt}, R′n, r′t) with Rp ⊆ R′p, Rn ⊆ R′n and there ex-
ists r′′ ∈ R′p ∪ {r′} such that r � r′′, then replace ca′ with (r′, R′p, R′n, r′t);

2. Let rt be a role. If there exist a rule ca = (r, Rp, Rn, rt) and a rule ca′ =
(r′, R′p, R′n, rt) with Rp ⊆ R′p, Rn ⊆ R′n and there exists r′′ ∈ R′p ∪ {r′}
such that r � r′′, then remove ca′;

3. Let rt be a purely administrative role and let r � rt. If there exist a
rule ca = (r, Rp, Rn, rt) and a user u such that Rp ⊆ UR(u) and Rn ∩
UR(u) = ∅, the roles in Rp are positively stable and the roles in Rn are
negatively stable, then remove ca and replace all the occurrences of rt

with r in the can-assign/can-revoke rules.

Rule 1 says that, if there exist a rule ca assigning a non-negative role rt and
a rule ca′ including rt in the positive preconditions, we can drop rt from the
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positive preconditions of ca′, as long as we are guaranteed that ca is always
enabled when ca′ is enabled up to the absence of rt. Rule 2 says that, if we
have two rules ca and ca′ assigning the same role rt and ca is always enabled
when ca′ is enabled, we can remove rule ca′. These rules are reminiscent of
two pruning rules originally presented in [33], noted there as rules R2 and
R5 respectively, but they make use of the � relation to be more general and
more effective on our cases.

Rule 3 deals with the assignment of purely administrative roles and it is
trickier: it allows one to delegate the administrative rights of a purely ad-
ministrative role rt to any r � rt. Notice that this change always preserves
role reachability, since whenever rt is assigned to some user, also r must be
assigned to someone by definition of the � relation. However, this change
could alter the semantics of the ARBAC system if r is assigned, but rt is not
immediately assignable. To ensure that this does not happen, we have to
check a few additional conditions. In particular, rule 3 checks the existence
of a can-assign rule ca = (r, Rp, Rn, rt) whose preconditions are satisfied by
some user u in the initial user-to-role assignment: if the roles in Rp are pos-
itively stable and the roles in Rn are negatively stable, we can assume that
the preconditions of ca will always be satisfied by u, hence ensuring that rt is
always assignable when r is assigned to someone.

The pruning algorithm just amounts to continuously applying rules 1-
3 to the ARBAC system, until no more rules can be applied. Termination
is ensured by the observation that all rules reduce the size of the ARBAC
system, either in terms of the number of can-assign/can-revoke rules or in
terms of the size of the positive preconditions of the can-assign rules.

The pruning algorithm enjoys the following property:

Theorem 3. Role Done[X] is reachable in JAK if and only if it is reachable after
pruning JAK.

Proof. See section 3.3.

2.5 Examples

We show the static analysis at work on some simple, but representative ex-
amples. To improve readability, we only present the most interesting subset
of the can-assign rules generated by the encoding into ARBAC. We do not
apply the pruning algorithm to these simple examples, but we just present
the result of the direct application of the encoding.
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2.5.1 Exclusive Choice

Consider the workflow described in the motivating example in Section 2.1.1
(Figure 2.1), its translation into ARBAC is given in Table 2.5.

Table 2.5 Translation of the workflow in Figure 2.1

(Super, {Super}, ∅,Allowed[a])

(Super, {Done[a], Super}, {Allowed[c]},Allowed[b])

(Super, {Done[a], Super}, {Allowed[b]},Allowed[c])

(Super, {Done[a],Done[b],Eq[a, b], Super}, ∅,Allowed[X])

(Super, {Done[a],Done[c],Eq[a, c], Super}, ∅,Allowed[X])

(Super, {Author[a],Author[b]}, ∅,Eq[a, b])

(Super, {Author[a],Author[c]}, ∅,Eq[a, c]) (Eq[a, b], {Super}, ∅,Eq[a, b])

(Eq[a, c], {Super}, ∅,Eq[a, c]) (Allowed[a], {R1}, {Super},Author[a])

(Allowed[b], {R2,Author[a]}, {Super},Author[b])

(Allowed[c], {R3,Author[a]}, {Super},Author[c])

(Allowed[X], ∅, {Super},Author[X])

Notice that roles Allowed[b] and Allowed[c] are mutually exclusive, since
events b and c are conflicting and this implies that only one role between
Author[b] and Author[c] can be assigned. Correspondingly, there are two ways
to introduce role Allowed[X]: indeed, recall that role Done[b] / Done[c] can
only be assigned by a user with role Author[b] / Author[c]. Moreover, notice
that both Author[b] and Author[c] can only be assigned to a user who is as-
signed Author[a], thus ensuring that the BoD constraints in the workflow are
satisfied. Finally, observe that the roles required to perform a, b, c according
to the task-to-role assignment function of the workflow are included in the
positive preconditions of the rules assigning the corresponding author role.
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2.5.2 Sequential Execution

Consider the workflow in Figure 2.2, including three sequential tasks a, b, c
such that a and c must be performed by different authors. Its translation into
ARBAC is given in Table 2.6.

· a{R1} b∅ c{R2} X

6=

FIGURE 2.2: Sequential execution with separation-of-duty

Table 2.6 Translation of the workflow in Figure 2.2

(Super, {Super}, ∅,Allowed[a]) (Super, {Done[a], Super}, ∅,Allowed[b])

(Super, {Done[a],Done[b], Super}, ∅,Allowed[c])

(Super, {Done[a],Done[b],Done[c], Super}, ∅,Allowed[X])

(Allowed[a], {R1}, {Author[c], Super},Author[a])

(Allowed[b], ∅, {Super},Author[b])

(Allowed[c], {R2}, {Author[a], Super},Author[c])

(Allowed[X], ∅, {Super},Author[X])

Observe that role Author[c] can only be assigned to a user who is not as-
signed Author[a] and vice-versa, thus ensuring that the SoD constraint be-
tween a and c is satisfied.

2.5.3 Parallel Execution

Consider the workflow in Figure 2.3, including two parallel tasks a, b, which
must both be performed before completing the workflow, graphically noted
by joining the two edges enteringX (formally, this can be represented by the
enabling relation ∅ ` a, ∅ ` b and {a, b} ` X). Moreover, assume there
exists a BoD constraint between a and b.
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a∅

· X

b∅

=

FIGURE 2.3: Parallel execution with binding-of-duty

Table 2.7 Translation of the workflow in Figure 2.3

(Super, {Super}, ∅,Allowed[a]) (Super, {Super}, ∅,Allowed[b])

(Super, {Done[a],Done[b],Eq[a, b], Super}, ∅,Allowed[X])

(Super, {Author[a],Author[b]}, ∅,Eq[a, b]) (Eq[a, b], {Super}, ∅,Eq[a, b])

(Allowed[a], ∅, {Super},Author[a]) (Allowed[b], ∅, {Super},Author[b])

(Allowed[X], {Super}, ∅,Author[X])

The translation of the workflow into ARBAC is shown in Table 2.7. Since
there is no temporal dependence between a and b, it is not possible to pre-
dict which of the two tasks is executed before: hence, both Allowed[a] and
Allowed[b], as well as Author[a] and Author[b], can be liberally assigned with-
out checking the BoD constraint between a and b. However, Allowed[X] can
only be introduced whenever Eq[a, b] is assigned to the super user, which is
only possible when there exists a user who is assigned both Author[a] and
Author[b], i.e., when the BoD constraint between a and b is satisfied.

2.6 Implementation

We developed WARBAC, a tool for checking the security against collusion of
ARBAC workflow systems. Given an input file including the specification of
an ARBAC workflow systemA and a set of colluding users Uc, it runs a secu-
rity verification by: (1) removing from A all the users not included in Uc; (2)
encoding the security problem for the resulting system in terms of role reach-
ability for ARBAC, based on the presented theory; and (3) simplifying the
role reachability problem by running the pruning algorithm in Section 2.4.4.
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The generated role reachability queries for role Done[X] are then discharged
by an existing state-of-the-art tool, VAC [31].

2.6.1 Implementing the Analysis

WARBAC reduces security against collusion to role reachability by imple-
menting the checks summarised in Table 2.4 (in Section 2.4.3). Since role
reachability may be costly to check, WARBAC exploits a set of analysis back-
ends supported by VAC to make the security analysis more efficient:

1. INTERPROC [42]: efficient, sound, but over-approximated analysis. A
negative answer by INTERPROC proves role unreachability, but a pos-
itive answer may be incorrectly returned as the result of an over-ap-
proximation [32];

2. CBMC [50]: efficient bounded model-checking. A positive answer by
CBMC proves role reachability, but a negative answer may be incor-
rectly returned as the result of a bound on the search space [31];

3. NuSMV [21]: computationally expensive sound and complete analysis.
A positive/negative answer by NuSMV proves role reachability/un-
reachability [31].

When testing role reachability, WARBAC first tries to prove unreachability
by using INTERPROC; if this fails, it attempts to prove reachability by using
CBMC with a depth search empirically set to 14; if this also fails, it resorts to
running NuSMV to get a final answer.

Moreover, WARBAC tries to simplify as much as possible the generated
role reachability problems before attempting to solve them. In particular, it
applies the following procedure: 1) run the pruning algorithm described in
Section 2.4.4, and 2) run the pruning algorithm internally implemented in
VAC, until no further simplification is possible.

2.6.2 Experiments

We created a set of examples to test WARBAC, which we make available
online [19]. All the examples refer to a medical setting: specifically, we ex-
tended an existing ARBAC system (the Hospital case study in [31]) with the
specification of a number of different workflows. Most of the workflows we
developed are larger, more complicated variants of the examples shown in
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Section 2.5, implementing different patterns: sequential execution, parallel
execution and exclusive choice. We also developed more complex work-
flows, representing realistic first-aid procedures. All the experiments were
performed on a 64-bit Intel Xeon running at 2.4 GHz.

Synthetic Examples

Table 2.8 reports on the experimental results. The table shows for each exam-
ple the following information:

1. the main pattern underlying the workflow, e.g., sequential;

2. the number of tasks in the workflow;

3. the type of enforced constraints (BoD or SoD);

4. the number of colluding users originally in input, after the pruning im-
plemented in VAC is enabled, and after the full pruning is enabled;

5. the number of can-assign/can-revoke rules originally in input, after the
pruning implemented in VAC is enabled, and after the full pruning is
enabled;

6. the aggregate analysis time when only the pruning implemented in
VAC is enabled and when the full pruning is enabled (the analysis
never terminates within one hour if no form of pruning is enabled, so
we do not report this information);

7. the expected analysis result (safe or unsafe) and the answer reported by
WARBAC.

The first obvious observation from the table is that enabling the full prun-
ing algorithm is very important for the scalability of the analysis: in 13 out
of 21 examples the improvement in performances is dramatic, with 7 cases
failing to terminate within one hour if only the internal pruning of VAC is
enabled, but analysed in a few minutes if the full pruning is used. There are
8 cases where activating the full pruning turns out to be overshooting, since
the pruning performed by VAC is already very effective and the additional
overhead of running the full pruning is not justified. Still, all these cases can
be solved in seconds in both scenarios.

Most of the safe cases required WARBAC to only run INTERPROC. As ex-
pected, the over-approximated analysis implemented in INTERPROC is very
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fast, since it only takes a few seconds in all the test cases, even the most com-
plicated ones. Though over-approximated, the analysis performed by IN-
TERPROC is useful in many practical cases, e.g., when it finds that a role re-
quired to complete the workflow is neither assigned initially, nor assignable
to any of the colluding users. When INTERPROC is not able to prove se-
curity, WARBAC runs CBMC and possibly NuSMV to get a more precise
answer. Though the analysis implemented in NuSMV is potentially costly,
our optimization techniques proved very effective to provide good analysis
times, even for large settings.

We find it promising that realistic cases like the first-aid procedures de-
scribed in the next section are analysed in minutes, though in some cases
WARBAC is unable to prove security, since our analysis is not proved com-
plete for workflows using BoD constraints.

Case Study

The main case study we considered in our experiments is a workflow mod-
elling a procedure to assist a patient in need for a first aid treatment. The
workflow includes 10 different tasks:

a) a patient comes at the hospital and gets a ticket;

b) a doctor makes a preliminary evaluation and sends the patient in for a
visit ( f ), while she provides the relative documentation to a receptionist
(c);

c) a receptionist makes the paperwork summarizing the conditions of the
patient, possibly while her visits are still ongoing;

d) when the paperworks are ready (c done) and the patient has been dis-
missed (i done), a receptionist closes the patient case suggesting addi-
tional treatment (j) or not (e);

e) the patient is fine: she shows the paperwork at the exit and leaves the
hospital (X);

f ) after the preliminary evaluation, a nurse marks the case as urgent (g) or
not (h);

g) urgent case: a doctor treats the patient;

h) non-urgent case: a nurse treats the patient;
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i) treatment done: a doctor dismisses the patient;

j) the patient needs additional treatment: she takes an appointment for a
specialist examination and leaves (X).

The workflow enforces a SoD constraint between b and i: the doctor who first
evaluates the case must be different from the doctor who dismisses the pa-
tient, so as to ensure a more thorough examination of the patient’s conditions.
For readability, the workflow is graphically represented in Figure 2.4, where
we use the letters P,D,N to represent roles Patient,Doctor,Nurse respectively.

· a{P} b{D} c{R} d{R} e{P} X

f{N} h{N} i{D} j{P}

g{D}

6=
#

#

FIGURE 2.4: Case study: a first aid procedure

2.7 Related Work

The paper by Wang et al. on the security of delegation in access control sys-
tems [75] was one of the main sources of inspiration for the present work. The
paper studies how delegation can be abused by colluding users to bypass the
intended security policies in a workflow system. Though the security prop-
erty we consider in the present work is an adaptation of the security property
in [75] to the case of ARBAC administrative actions, there are several notable
differences between this work and [75]. First, static analysis is only briefly
mentioned in [75] as a possible way to check security, but no static analysis is
actually proposed by the authors: rather, the solution they develop requires
an extension of the workflow system with additional runtime checks, which
is inconvenient or even impossible in many practical scenarios. Second, we
experimentally validate the applicability of our theory: developing a sound -
yet precise - static analysis for workflow systems built on top of realistic AR-
BAC policies is hard, since intractability lurks around the corner [69]; indeed,
we observed the need to aggressively optimise our encoding into ARBAC to
obtain an efficient static analysis. Finally, the formal model in this work is
quite different and more general than the one in [75]: in particular, we focus



2.7. Related Work 35

on the ARBAC standard rather than on an ad-hoc extension of RBAC with
delegation and we consider a more expressive model of workflows based on
stable event structures rather than on a partially ordered set of tasks.

Bertolisi et al. introduced an approach for the synthesis of run-time mon-
itors to enforce separation and binding of duty security constraints to work-
flows [11]. Their work however focuses on runtime checks, so it could be
seen as a complement of this work as we focus only on static ones. Moreover
their work focuses mainly on enforcement of BoD and SoD constraints and
does not provide any enforcement on security against collusion.

The satisfiability (or consistency) of workflows is a classic problem in
computer security [72, 74, 78]. Roughly, a workflow is satisfiable with re-
spect to a given user-to-role assignment UR if and only if the users included
in UR are able to complete it. Checking security against collusion (Defini-
tion 9) may require one to check the satisfiability of a workflow. However, as
we discussed, checking security against collusion requires one to generalize
algorithms for workflow satisfiability to deal with the presence of adminis-
trative actions changing the initial user-to-role assignment UR. Building all
the possible user-to-role assignments and checking satisfiability with respect
to them is not feasible in practice, given the exponential blow-up of the pos-
sible role combinations assigned to the users of the system and the fact that
workflow satisfiability is NP-hard in most practical cases [74].

Crampton and Khambhammettu proposed algorithms to check the sat-
isfiability of workflows supporting delegation operations [24]. These algo-
rithms ensure that permitting a delegation request does not prevent the com-
pletion of a workflow. Their goal is then essentially dual to the static analysis
in this work, which ensures that administrative actions cannot be abused to
complete a workflow which could not be completed under the original user-
to-role assignment. Indeed, one should observe that there is often a trade-off
between security and business continuity: if collusions are the main concern
for system administrators, the present work proposes a viable solution; if in-
stead it is better to ensure workflow termination at the price of permitting
collusion, the approach in [24] should be considered. We argue that these
considerations strongly depend on the application scenario, the workflow
semantics and the considered set of users.

Basin et al. conducted a formal study on the tension between security
policies and business objectives in workflow systems represented as CSP pro-
cesses [9]. They formalize a notion of obstruction, generalizing the notion of
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deadlock for systems where access control policies are enforced. Roughly,
an obstruction happens when the enforcement of an access control policy
prevents a possible execution path in a workflow. The paper presents the
design and the implementation of an obstruction-free authorization enforce-
ment mechanism for workflow systems.

2.8 Conclusion

We studied the problem of collusion attacks in ARBAC-based workflow sys-
tems, where malicious users may change the user-to-role assignment in the
attempt of sidestepping the intended security policies. We formulated a for-
mal definition of security against collusion and we proposed a novel static
analysis technique which can be used to prove or disprove security for a
large class of ARBAC workflow systems. We discussed how to aggressively
optimise the static analysis to ensure its efficiency in practice and we showed
the feasibility of our approach by implementing a tool, WARBAC, and by
performing an experimental evaluation on a set of publicly available exam-
ples.

There are many avenues for future work. We would like to extend our
theory to the case of workflows including loops, which are quite popular
in practice, but were left out from the present work for the sake of simplic-
ity, most notably because the interaction between loops and BoD/SoD con-
straints is quite subtle [9]. Moreover, we plan to design and implement a
translator from high-level workflow description languages like BPMN into
event structures, thus making WARBAC easier to use. Again on the practical
side, we plan to extend WARBAC with a module which, given a role reacha-
bility trace returned by VAC, verifies whether this trace actually corresponds
to a successful trace of the workflow system: this would be very useful to im-
prove the practicality of WARBAC in absence of a st wronger completeness
result for our static analysis.
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Chapter 3

Proofs of Chapter 2

Here we detail the formal proofs of theorems 1, 2 and 3 introduced in chap-
ter 2.

The results in this chapter assume a disjointness condition between the set
of roles occurring in the ARBAC policy underlying the workflow system to
analyse and the set of roles introduced by our formal encoding. This disjoint-
ness condition can always be enforced by a suitable renaming of the roles in
the policy and we assume that such a renaming has been done. We say that
a role r is regular iff it is not introduced by the encoding and, when writing
P or using the unfolded notation 〈CA, CR〉 in the next results, we tacitly as-
sume that only regular roles occur in P , CA, CR. Similarly, we assume that
only regular roles occur in the initial user-to-role assignment of the ARBAC
systems we consider.

We write UR ≈reg UR′ if and only if, for all users u and regular roles r,
r ∈ UR(u) iff r ∈ UR′(u). We write UR ≈enc UR′ if and only if, for all users u
and non-regular roles r, r ∈ UR(u) iff r ∈ UR′(u).

3.1 Proof of Theorem 1

Lemma 2. If UR1 ≈reg UR2 and P BUR1  UR′1, then there exists UR′2 such
that P BUR2  UR′2 with UR′1 ≈reg UR′2 and UR2 ≈enc UR′2.

Proof. By a case analysis on the rule applied in the reduction step. Observe
thatP BUR1  UR′1 can only assign/revoke a regular role r to/from a user u
and the same can-assign/can-revoke rule can be used to derive P BUR2  

UR′2 by assigning/revoking r to/from u: this implies UR′1 ≈reg UR′2 and
UR2 ≈enc UR′2.

Definition 11 (Correspondence). We write 〈UR, H〉 'C UR′ if and only if all
the following conditions hold:
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a. H |= C

b. UR ≈reg UR′

c. for each event e and user u, H(e) = u if and only if Author[e] ∈ UR′(u)

d. there exists a distinguished user u0, the super user, such that Super ∈ UR′(u0).
Moreover, {e | Allowed[e] ∈ UR′(u0)} = dom(H).

Lemma 3 (Sound Simulation). For any workflow W = 〈E , C, ρ〉, we have that
〈UR1, H〉 'C UR2 and 〈CA, CR〉,W B 〈UR1, H〉 e−→ 〈UR′1, H′〉 imply 〈CA ∪
JWK, CR〉BUR2  ∗ UR′2 with 〈UR′1, H′〉 'C UR′2.

Proof. By a case analysis on the rule applied in the reduction step.
In case (R-ADMIN), we have 〈CA, CR〉 BUR1  UR′1 and H′ = H. By

Lemma 2, 〈CA, CR〉BUR2  UR′2 with UR′1 ≈reg UR′2 and UR2 ≈enc UR′2.
Since reachability is preserved when more can-assign rules are added to an
ARBAC policy, we also have 〈CA ∪ JWK, CR〉 BUR2  UR′2. We then get
〈UR′1, H〉 'C UR′2 by UR′1 ≈reg UR′2 and the hypothesis 〈UR1, H〉 'C UR2.
Notice that the observation UR2 ≈enc UR′2 is needed to conclude.

In case (R-TASK), we have UR′1 = UR1 and H′ = H[e 7→ u] and:

1. ρ(e) ∈ UR1(u)

2. H[e 7→ u] |= C

3. ∃X ⊆ dom(H) : X ` e

4. ∀e′ ∈ dom(H) : (e′, e) 6∈ #

We first show that it is possible to assign role Allowed[e] to some user. Since
H[e 7→ u] is a history, we know that e 6∈ dom(H) and Y = dom(H) ∪ {e} is a
configuration. By (T-ALLOWED), this implies that JWK contains the follow-
ing can-assign rule:

Done = {Done[e′] | e′ <Y e}
Eqs = {Eq[e1, e2] | e1 <Y e ∧ e2 <Y e ∧ (e1, e2,=) ∈ C}

Confl = {Allowed[e′] | (e, e′) ∈ #W}

(Super, Done∪ Eqs∪ {Super}, Confl,Allowed[e]) ∈ JWK

Since there exists a super user u0 by definition of corresponding states, to
trigger the rule we only need to show that the positive and the negative pre-
conditions can be satisfied by him. We start by observing that, since also
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dom(H) is a configuration by definition of history, we know that:

∀e′ ∈ dom(H).∃e1, . . . , en ∈ dom(H) : en = e′ ∧ ∀i ≤ n.∃Yi ⊆ {e1, . . . , ei−1} : Yi ` ei.

By point (3) there exists X ⊆ dom(H) such that X ` e, hence Y is a config-
uration such that, for any event e′ ∈ Y, we have that e′ <Y e implies e′ 6= e.
To prove it, assume by contradiction that e′ = e, then e′ <Y e implies the
existence of e′1, . . . , e′m ∈ Y and X1, . . . , Xm+1 ⊆ Y such that:

• X1 ` e′1, . . . , Xm ` e′m and Xm+1 ` e

• e ∈ X1 and ∀j ≤ m : e′j ∈ Xj+1

Let us focus now on the event e′1 ∈ Y such that X1 ` e′1 with e ∈ X1, we
have two cases. If e′1 = e, then we also have X ` e′1 with X ⊆ dom(H); if
e′1 6= e, then e′1 ∈ dom(H), hence we also have Yj ` e′1 for some Yj ⊆ dom(H).
Notably, both X and Yj are different than X1, since they do not include e.
Given that Y is conflict-free by definition of configuration and X, X1, Yj ⊆ Y,
this contradicts the stability axiom in the definition of workflow. Hence, for
any e′ <Y e, we have e′ ∈ dom(H), which is crucial for the continuation of the
proof.

We can finally show that the positive and the negative preconditions of
the rule above are satisfied by the super user u0, possibly after the application
of additional can-assign rules:

• Done: pick any e′ <Y e, we showed that e′ ∈ dom(H). By definition
of corresponding states, there exists a user u′ such that Author[e′] ∈
UR2(u′), hence we can apply rule (T-DONE):

(Author[e′], {Super}, ∅,Done[e′])

to assign role Done[e′] to the super user u0;

• Eqs: pick any e1, e2 such that e1 <Y e and e2 <Y e, we showed that
e1, e2 ∈ dom(H). Assume that (e1, e2,=) ∈ C. Since H[e 7→ u] |= C
implies H |= C, we know that there exists a user u′ such that H(e1) =

H(e2) = u′. By definition of corresponding states, we have {Author[e1],
Author[e2]} ⊆ UR2(u′) and we can apply rule (T-EQ):

(Super, {Author[e1],Author[e2]}, ∅,Eq[e1, e2])
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to assign Eq[e1, e2] to u′. By rule (T-PROPEQ):

(Eq[e1, e2], {Super}, ∅,Eq[e1, e2])

we can then assign role Eq[e1, e2] also to the super user u0;

• Confl: since Y = dom(H) ∪ {e} is a configuration, we know that for all
e′ ∈ dom(H) we have (e, e′) 6∈ #W . We then observe that by definition of
corresponding states the super user u0 satisfies the following property:

{e | Allowed[e] ∈ UR2(u0)} = dom(H).

Since JWK contains rule (T-ALLOWED):

(Super, {Super}, {Allowed[e′] | (e, e′) ∈ #W},Allowed[e])

it is possible to assign role Allowed[e] to u0.

We then prove that there exists a can-assign rule introducing role Author[e]
which can be fired. Specifically, by (T-AUTHOR), we know that JWK contains
the following can-assign rule:

Eqs = {Author[e′] | e′ <Y e ∧ (e′, e,=) ∈ C}
Neqs = {Author[e′] | (e′, e, 6=) ∈ C}

(Allowed[e], ρ(e) ∪ Eqs, Neqs∪ {Super},Author[e])

Since we already proved that Allowed[e] can be assigned to u0, to trigger the
rule we just need to show that the user u who performed the task e satisfies
the positive and the negative preconditions of the rule, possibly after the
application of additional can-assign rules:

• ρ(e): since ρ(e) ∈ UR1(u) by point (1) and UR1 ≈reg UR2 by definition
of corresponding states, we have ρ(e) ∈ UR2(u);

• Eqs: pick any e′ <Y e, we showed that e′ ∈ dom(H). Since H[e 7→ u] |=
C by point (2), we know that (e′, e,=) ∈ C implies H(e′) = u. Hence,
Author[e′] ∈ UR2(u) by definition of corresponding states;

• Neqs: pick any e′ such that (e′, e, 6=) ∈ C, we have two sub-cases. If
e′ 6∈ dom(H), we know that no user is assigned role Author[e′] in UR2

by definition of corresponding states and we are done. Otherwise, if
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H(e′) = u′ for some user u′, we observe that H[e 7→ u] |= C by point
(2), hence u′ 6= u. Since Author[e′] can be assigned only to one user by
definition of corresponding states, we have that Author[e′] 6∈ UR2(u);

• Super: by observing that u 6= u0, since u0 is a distinguished user ob-
tained by extending the set of users U.

Combining all the observations above, we get UR2  ∗ UR′2∪{(u,Author[e])}
for some UR′2. Showing 〈UR1, H[e 7→ u]〉 'C UR′2 ∪ {(u,Author[e])} amounts
to a simple syntactic check on the detailed construction.

We are now ready to prove Theorem 1:

Proof. Let A = 〈〈P , UR〉,W〉 and assume that there exists a sequence of
events t = e1, . . . , en includingX such that:

∃σ0, . . . , σn : σ0 = 〈UR,⊥〉 ∧ ∀i ≤ n : P ,W B σi−1
ei−→ σi.

Let P = 〈CA, CR〉, we have:

JAK = 〈〈CA∪ JWK, CR〉, UR∪ {(u0, Super)}〉,

where u0 is a distinguished user such that UR(u0) = ∅, obtained by extend-
ing the set of users U. Since 〈UR,⊥〉 'CW UR ∪ {(u0, Super)}, by multiple
applications of Lemma 3 there exists UR′ such that:

〈CA∪ JWK, CR〉BUR∪ {(u0, Super)} ∗ UR′,

and σn 'CW UR′. Let σn = 〈URn, H〉: since X occurs in t, there exists u
such that H(X) = u, which implies that Author[X] ∈ UR′(u) by definition
of σn 'CW UR′. The conclusion then follows by using rule (T-DONE) from
JWK.

3.2 Proof of Theorem 2

Given a user-to-role assignment UR, let:

• Ĥ(UR) = {(e, u) | Author[e] ∈ UR(u)}

• Evt(UR) = {e | ∃u : (e, u) ∈ Ĥ(UR)}

We write E `� UR if and only if both these conditions are satisfied:
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• ∀e, u1, u2 : (e, u1) ∈ Ĥ(UR) ∧ (e, u2) ∈ Ĥ(UR)⇒ u1 = u2

• Evt(UR) ∈ F(E)

Observe that, ifW = 〈E , C, ρ〉 and E `� UR, then Ĥ(UR) is a history forW ,
hence we can reuse the notation we introduced for histories.

Definition 12 (Well-formedness). A user-to-role assignment UR is well-formed
forW if and only if both these conditions are satisfied:

1. EW `� UR

2. Ĥ(UR) |= CW

Lemma 4. Let UR be a user-to-role assignment such that Super is only assigned to
a distinguished user u0. For any workflowW , if 〈CA ∪ JWK, CR〉BUR  ∗ UR′

and Evt(UR) ∈ F(EW ), then Evt(UR′) ∈ F(EW ).

Proof. Let EW = 〈E, #,`〉, we proceed by induction on the number of reduc-
tion steps. If no reduction takes place, the conclusion is immediate by the
hypothesis Evt(UR) ∈ F(EW ). Otherwise, assume there exists UR′′ such that
〈CA ∪ JWK, CR〉 BUR  ∗ UR′′ and 〈CA ∪ JWK, CR〉 BUR′′  UR′. By in-
duction hypothesis we have Evt(UR′′) ∈ F(EW ), we show that Evt(UR′) ∈
F(EW ). Notice that also in UR′′ there exists a unique user u0 such that
Super ∈ UR′′(u0), since no ARBAC rule assigns or revokes Super. Notably,
this also means that this user never changes upon reduction.

The only case which can break the property when moving from UR′′ to
UR′ is the application of a can-assign rule giving a role Author[e] to some user
u and:

1. either there exists ei ∈ Evt(UR′′) such that (e, ei) ∈ #

2. or there is no X ⊆ Evt(UR′′) such that X ` e

By rule (T-AUTHOR), the can-assign rule has the following format for some
configuration Y ∈ F(E) and e ∈ Y:

(T-AUTHOR)

Neqs = {Author[e′] | (e′, e, 6=) ∈ CW}
Eqs = {Author[e′] | e′ <Y e ∧ (e′, e,=) ∈ CW}

(Allowed[e], ρW (e) ∪ Eqs, Neqs∪ {Super},Author[e])

We show that both the possibilities above cannot happen:
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1. Since the can-assign rule is fired, there exists a user u′ s.t. Allowed[e] ∈
UR′′(u′). By rule (T-ALLOWED), this user is unique and coincides with
u0, since he must be granted the Super role, which is only assigned to
u0. By definition of Evt(UR′′), for each event ei ∈ Evt(UR′′) there ex-
ists a user ui such that Author[ei] ∈ UR′′(ui). By the definition of JWK,
Author[ei] can only be assigned if Allowed[ei] is first assigned to the su-
per user. Since no role of the form Allowed[ei] is revocable, this implies
that {Allowed[ei] | ei ∈ Evt(UR′′)} ⊆ UR′′(u0). We now observe that
the rule which grants Allowed[e] to u0 requires that {Allowed[e′] | (e, e′) ∈
#} ∩UR′′(u0) = ∅. Since we know that {Allowed[ei] | ei ∈ Evt(UR′′)} ⊆
UR′′(u0), we conclude that for each ei ∈ Evt(UR′′) we must have that
(e, ei) 6∈ #;

2. Since the can-assign rule is fired, there exists a user u′ s.t. Allowed[e] ∈
UR′′(u′). By rule (T-ALLOWED) and observing that no role of the form
Done[ei] is revocable, there exists a configuration Z ∈ F(EW ) such that
e ∈ Z and {Done[ei] | ei <Z e} ⊆ UR′′(u′). By the definition of JWK,
Done[ei] can only be assigned if Author[ei] is first assigned to some user.
Since no role of the form Author[ei] is revocable, for each event ei <Z e
there must exist a user ui such that Author[ei] ∈ UR′′(ui). We then know
that {ei | ei <Z e} ⊆ Evt(UR′′) by definition of the latter. Since Z is a
configuration and e ∈ Z, there exists Z′ ⊆ Z such that Z′ ` e. Given
that we have Z′ ⊆ {ei | ei <Z e} by definition of <Z and {ei | ei <Z e} ⊆
Evt(UR′′), we can conclude.

Lemma 5 (Well-formed Traces). LetA = 〈〈P , UR〉,W〉 be an ARBAC workflow
system without binding-of-duty constraints. If the role Done[X] is reachable in JAK
and UR is well-formed for W , then Done[X] is reachable using only user-to-role
assignments which are well-formed forW .

Proof. Let P = 〈CA, CR〉 and W = 〈E , C, ρ〉. Since Done[X] is reachable in
JAK, there exist a user u and a sequence of user-to-role assignments UR0, . . . ,
URn such that:

• UR0 = UR∪ {(u0, Super)}, where u0 is a distinguished user s.t. UR(u0)

= ∅

• ∀i ≤ n : 〈CA∪ JWK, CR〉BURi−1  URi ∧Done[X] ∈ URn(u)



44 Chapter 3. Proofs of Chapter 2

We proceed by induction on the number of ill-formed elements in UR0, . . . ,
URn. If there is none, we are done. Otherwise, assume there are k > 0
ill-formed elements and let URi with i > 0 be the first one, we now show
how to build a trace with k− 1 ill-formed elements which eventually assigns
Done[X]. This is enough to conclude by induction hypothesis.

We start by observing that ∀i ≤ n : Evt(URi) ∈ F(E) by Lemma 4. Hence,
there are only two potential ways to violate well-formedness and we show
how to deal with them:

1. assume that there exist two different users u1, u2 and an event e such
that Author[e] ∈ URi(u1) and Author[e] ∈ URi(u2). Since C does not
contain binding-of-duty constraints, Author[e] can only occur in the neg-
ative preconditions of a can-assign rule, hence assigning Author[e] to
u2 does not enable new role assignments for him. Moreover, since
Author[e] ∈ URi(u1), role Done[e] can already be assigned by u1. We
then deduce that the assignment of Author[e] to u2 is useless and we can
remove it;

2. assume that each role of the form Author[e] is assigned to at most one
user in URi, but Ĥ(URi) 6|= C. Since C does not contain binding-of-
duty constraints, there must exist two events e1, e2 such that (e1, e2, 6=
) ∈ C and {Author[e1],Author[e2]} ⊆ URi(u) for some user u. This is
not possible, since the rule assigning Author[e1] includes Author[e2] in
the negative preconditions and vice-versa.

Definition 13 (Weak Correspondence). We write 〈UR, H〉 ' UR′ if and only if
both the following conditions hold:

a. UR ≈reg UR′

b. for each event e and user u, H(e) = u if and only if Author[e] ∈ UR′(u)

Lemma 6 (Complete Simulation). For any workflowW without binding-of-duty
constraints, we have that 〈UR1, H〉 ' UR2 and 〈CA ∪ JWK, CR〉BUR2  UR′2
with UR2, UR′2 well-formed forW imply that either 〈UR1, H〉 ' UR′2 or there exists
〈UR′1, H′〉 such that 〈CA, CR〉,W B 〈UR1, H〉 e−→ 〈UR′1, H′〉 and 〈UR′1, H′〉 '
UR′2.

Proof. By a case analysis on the rule applied in the reduction step.
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If 〈CA ∪ JWK, CR〉 B UR2  UR′2 is derived by rule (R-REVOKE), then
we have UR′2 = UR2 \ {(u, r)} for some u, r and the same can-revoke rule
can be used to prove 〈CA, CR〉,W B 〈UR1, H〉 ◦−→ 〈UR1 \ {(u, r)}, H〉 and to
conclude.

Otherwise, 〈CA ∪ JWK, CR〉BUR2  UR′2 is derived by rule (R-ASSIGN)
and we have UR′2 = UR2 ∪ {(u, r)} for some u, r. If r is a regular role, then
the applied can-assign rule must belong to CA, hence the same rule can be
applied to prove 〈CA, CR〉,W B 〈UR1, H〉 ◦−→ 〈UR1 ∪ {(u, r)}, H〉 and to con-
clude. If r is not a regular role, we distinguish two sub-cases: if r does not
have the form Author[e] for some event e, then 〈UR1, H〉 ' UR2 ∪ {(u, r)} and
we are done.

Otherwise, let r = Author[e] for some event e, we show that 〈CA, CR〉,W B
〈UR1, H〉 e−→ 〈UR1, H[e 7→ u]〉, which is enough to conclude, since 〈UR1, H〉
' UR2 implies 〈UR1, H[e 7→ u]〉 ' UR2 ∪ {(u,Author[e])}. We first observe
that u cannot be the super user, since rule (T-AUTHOR) explicitly ensures that
this is not the case: hence, user u is also included in UR1 and can potentially
perform the task. We then prove that all the premises of rule (R-TASK) are
satisfied:

• e 6∈ dom(H): we known that Ĥ(UR2) = H by definition of weakly
corresponding states. We then observe that no user is assigned role
Author[e] in UR2, otherwise UR2 ∪ {(u,Author[e])} would not be well-
formed;

• ρW (e) ∈ UR1(u): since Author[e] is assigned to u, we know that ρW (e) ∈
UR2(u) by definition of rule (T-AUTHOR). Given that UR1 ≈reg UR2 by
definition of weakly corresponding states, we have the desired conclu-
sion;

• H[e 7→ u] |= CW : since UR2 ∪ {(u,Author[e])} is well-formed for W
by hypothesis, we have Ĥ(UR2 ∪ {(u,Author[e])}) |= CW . To conclude
then, it is enough to observe that Ĥ(UR2) = H by definition of weakly
corresponding states, hence Ĥ(UR2 ∪ {(u,Author[e])}) = H[e 7→ u];

• ∃X ⊆ dom(H) : X `W e: since UR2 ∪ {(u,Author[e])} is well-formed for
W by hypothesis, we have Evt(UR2 ∪ {(u,Author[e])}) ∈ F(EW ). To
conclude then, it is enough to observe that Ĥ(UR2) = H by definition
of weakly corresponding states;
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• ∀e′ ∈ dom(H) : (e′, e) 6∈ #W : since UR2 ∪ {(u,Author[e])} is well-formed
forW by hypothesis, we have Evt(UR2 ∪ {(u,Author[e])}) ∈ F(EW ). To
conclude then, it is enough to observe that Ĥ(UR2) = H by definition
of weakly corresponding states.

We are now ready to prove Theorem 2:

Proof. Let A = 〈〈〈CA, CR〉, UR〉,W〉 and assume that:

〈CA∪ JWK, CR〉BUR∪ {(u0, Super)} ∗ UR′,

for some UR′ such that Done[X] ∈ UR′(u) for some user u. Since no role of
the form Author[e] is assigned in the initial user-to-role assignment UR, we
have that UR is well-formed for W . By Lemma 5, we then know that there
exists a sequence of user-to-role assignments UR1, . . . , URn which are well-
formed forW and:

〈CA∪ JWK, CR〉BUR∪ {(u0, Super)} UR1  . . . URn,

and Done[X] ∈ URn(u′) for user u′. Since 〈UR,⊥〉 ' UR ∪ {(u0, Super)}, by
multiple applications of Lemma 6 there exists 〈UR′′, H′′〉 such that:

〈CA, CR〉,W B 〈UR,⊥〉 −→∗ 〈UR′′, H′′〉,

and 〈UR′′, H′′〉 ' URn. Since Done[X] ∈ URn(u′), there exists a user u′′

such that Author[X] ∈ URn(u′′), which implies H′′(X) = u′′ by 〈UR′′, H′′〉 '
URn. Given that each event included in the history occurs in the trace by the
definition of the reduction semantics, we can conclude.

3.3 Proof of Theorem 3

We show that the preprocessing phase and the pruning rules do not affect
the reachability of role Done[X], which is enough to prove the theorem.

Lemma 7 (Preprocessing). Role Done[X] is reachable in JAK if and only if it is
reachable after preprocessing JAK.

Proof. Recall that the processing amounts to two transformations of JAK:
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1. each rule (Super, Rp, Rn,Allowed[e]) is replaced by the rules contained in
the set {(Author[e′], Rp, Rn,Allowed[e]) | Done[e′] ∈ Rp};

2. all roles of the form Allowed[e] are removed from the negative precondi-
tions of the can-assign rules.

We show the result separately for the two transformations:

1. for the “if” direction, we observe that (Super, Rp, Rn,Allowed[e]) can be
activated only if there exists a user who is assigned (at least) all the roles
Done[e′] ∈ Rp. This means that, whenever the rule is activated, there
must exist at least one user with role Author[e′] for each e′ such that
Done[e′] ∈ Rp, since Done[e′] is initially unassigned and it can only be
granted by a user with role Author[e′], which is irrevocable. This implies
that all rules in the set {(Author[e′], Rp, Rn,Allowed[e]) | Done[e′] ∈ Rp}
can be activated, so it is possible to assign Allowed[e] when needed.

For the “only if” direction, assume that one rule contained in the set
{(Author[e′], Rp, Rn,Allowed[e]) | Done[e′] ∈ Rp} is activated. Since Super

is always assigned to the super user in the initial user-to-role assign-
ment and never revoked, we have that rule (Super, Rp, Rn,Allowed[e])
can also be activated, so it is possible to assign Allowed[e] when needed.

2. for the “if” direction, we observe that role reachability is preserved
when dropping roles from the negative preconditions of a can-assign
rule, since this makes the rule easier to activate.

For the “only if” direction, assume that there exist two events e1, e2 such
that e1#e2 and both Allowed[e1] and Allowed[e2] get assigned to the super
user, which is not possible without the preprocessing step. We show
that this possibility does not allow one to reach Done[X], if this was not
possible before. In particular, notice that having both Allowed[e1] and
Allowed[e2] assigned to the super user may lead to both Author[e1] and
Author[e2] being assigned to some user of the system. This, in turn, may
lead to the following scenarios:

• Done[e1] and Done[e2] get both assigned to the super user: this
was not possible without preprocessing, since only one between
Done[e1] and Done[e2] could be granted before;

• Eq[e1, e2] gets assigned to someone, whenever both Author[e1] and
Author[e2] are given to the same user: this was not possible without
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preprocessing, since only one between Author[e1] and Author[e2]

could be granted before.

However, by definition of the encoding, having Done[e1] and Done[e2]

together may only enable new transitions if there exist an event e and
a configuration X such that e1 <X e and e2 <X e. Similarly, having
Eq[e1, e2] may only enable new transitions if there exist an event e′ and
a configuration Y such that e1 <Y e′ and e2 <Y e′. Both possibilities are
excluded by the fact that e1#e2, hence e1 and e2 never occur together in
a configuration.

Lemma 8 (Positive Stability). Let r be positively stable and let UR be a user-to-
role-assignment such that r ∈ UR(u) for some user u. Let rt be a role, ut be a user
and assume there exists a sequence of user-to-role assignments UR0, . . . , URn such
that UR0 = UR and:

(∀i ≤ n : P BURi−1  URi) ∧ rt ∈ URn(ut).

Then, then there exists a sequence of user-to-role assignments UR′0, . . . , UR′m such
that UR′0 = UR and:

(∀i ≤ m : P BUR′i−1  UR′i ∧ r ∈ UR′i(u)) ∧ rt ∈ UR′m(ut).

Proof. Recall that a role r is positively stable if it is irrevocable or non-nega-
tive. If r is not revocable, the conclusion is trivial. If r is non-negative, there
exists no transition blocked by the presence of r, hence we can leave it as-
signed without altering the reachability of rt.

Lemma 9 (Negative stability). Let r be negatively stable and let UR be a user-to-
role-assignment such that r /∈ UR(u) for some user u. Let rt be a role, ut be a user
and assume there exists a sequence of user-to-role assignments UR0, . . . , URn such
that UR0 = UR and:

(∀i ≤ n : P BURi−1  URi) ∧ rt ∈ URn(ut).

Then, then there exists a sequence of user-to-role assignments UR′0, . . . , UR′m such
that UR′0 = UR and:

(∀i ≤ m : P BUR′i−1  UR′i ∧ r /∈ UR′i(u)) ∧ rt ∈ UR′m(ut).
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Proof. Recall that a role r is negatively stable if it is not assignable or both
non-positive and non-administrative. If r is not assignable, the conclusion
is trivial. If r is both non-positive and non-administrative, there exists no
transition enabled by the presence of r, hence we can leave it unassigned
without altering the reachability of rt.

Lemma 10 (Precedence). Let r, r′ be two roles such that r � r′ and let UR be
a user-to-role-assignment. Let rt be a role, ut be a user and assume there exists a
sequence of user-to-role assignments UR0, . . . , URn such that UR0 = UR and:

(∀i ≤ n : P BURi−1  URi) ∧ rt ∈ URn(ut).

Then, there exists a sequence of user-to-role assignments UR′0, . . . , UR′m such that
UR′0 = UR and:

(∀i ≤ m : P BUR′i−1  UR′i ∧ (∃u′ : r′ ∈ UR′i(u
′)⇒ ∃u : r ∈ UR′i(u))) ∧ rt ∈ UR′m(ut).

Proof. Recall that r � r′ if:

1. r � r′ for all r′ if r is initially assigned and positively stable;

2. r � r′ if r is positively stable, r′ is initially unassigned, and for all can-
assign rules of the form (ra, Rp, Rn, r′) we have r ∈ Rp ∪ {ra}.

So we have two cases:

1. the role r is initially assigned and positively stable: by the positive sta-
bility lemma (Lemma 8) we know that we can find a trace where r is
assigned in every UR′j leading to rt, so the conclusion follows;

2. the role r′ is initially unassigned, r is positively stable and for all can-
assign rule (ra, Rp, Rn, r′) we have r ∈ {ra} ∪ Rp. Assume r′ gets as-
signed: in this case, there must exist a user with role r to trigger a can-
assign rule granting r′. Since the role r is positively stable, by the posi-
tive stability lemma (Lemma 8) we can find a trace leading to rt, where
r is assigned in all UR′j starting from the assignment of r′. This means
that whenever r′ is assigned, also r is assigned.

Lemma 11 (Rule 1). For any role r̂, r̂ is reachable in an ARBAC system S if and
only it is reachable after applying rule 1.



50 Chapter 3. Proofs of Chapter 2

Proof. Let rt be a non-negative role. Assume there exist a rule ca = (r, Rp, Rn,
rt) and a rule ca′ = (r′, R′p ∪ {rt}, R′n, r′t) with Rp ⊆ R′p, Rn ⊆ R′n and there
exists r′′ ∈ R′p ∪ {r′} such that r � r′′. After the application of rule 1, we have
that ca′ is replaced by ca′′ = (r′, R′p, R′n, r′t).

For the “if” direction, we observe that role reachability is preserved when
dropping roles from the positive preconditions of a can-assign rule, since this
makes the rule easier to activate.

For the “only if” direction, assume ca′′ is activated in a user-to-role as-
signment UR. This means there exist a user ua such that r′ ∈ UR(ua) and a
user u such that R′p ⊆ UR(u) and R′n ∩UR(u) = ∅. Since all the roles in the
set R′p ∪ {r′} are assigned in UR, we have that r � r′′ implies that there exists
a user u′a such that r ∈ UR(u′a) by Lemma 10. Hence, rule ca can be activated
by u′a to grant rt to u and, afterwards, rule ca′ can be activated by ua to grant
r′t to u. Since role rt is non-negative, the application of rule ca cannot break
role reachability in the later transitions involving u.

Lemma 12 (Rule 2). For any role r̂, r̂ is reachable in an ARBAC system S if and
only it is reachable after applying rule 2.

Proof. Let rt be a role. Assume there exist a rule ca = (r, Rp, Rn, rt) and a rule
ca′ = (r′, R′p, R′n, rt) with Rp ⊆ R′p, Rn ⊆ R′n and there exists r′′ ∈ R′p ∪ {r′}
such that r � r′′. After the application of rule 2, we have that ca′ is removed.

For the “if” direction, assume ca′ is activated in a user-to-role assignment
UR. This means there exist a user ua such that r′ ∈ UR(ua) and a user u such
that R′p ⊆ UR(u) and R′n ∩UR(u) = ∅. Since all the roles in the set R′p ∪ {r′}
are assigned in UR, we have that r � r′′ implies that there exists a user u′a
such that r ∈ UR(u′a) by Lemma 10. Hence, rule ca can be activated by u′a to
grant rt to u, which makes the presence of rule ca′ immaterial.

For the “only if” direction, we observe that role reachability is preserved
when adding more can-assign rules to a policy.

Lemma 13 (Rule 3). For any role r̂ which is not purely administrative, r̂ is reachable
in an ARBAC system S if and only it is reachable after applying rule 3.

Proof. Let rt be a purely administrative role and let r � rt. Assume there
exist a rule ca = (r, Rp, Rn, rt) and a user u such that Rp ⊆ UR(u) and
Rn ∩ UR(u) = ∅ for the initial user-to-role assignment UR, the roles in Rp

are positively stable and the roles in Rn are negatively stable. After the ap-
plication of rule 3, we remove ca and replace all the occurrences of rt with r
in the can-assign/can-revoke rules.
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For the “if” direction, observe that:

1. the role rt is purely administrative, so it will never occur in the pos-
itive/negative preconditions of any can-assign rule. This means that
assigning rt is only relevant to trigger further administrative actions
available to rt;

2. since r � rt, the precedence lemma (Lemma 10) ensures that r will
always be assigned to some user if rt is assigned.

For this reason we can delegate to r all the administrative privileges granted
to rt and remove the rule ca without affecting the reachability of any role
different than rt. Since rt is purely administrative, this cannot falsify the con-
clusion.

For the “only if” direction, we observe that there exists a user u that sat-
isfies the positive/negative preconditions of ca = (r, Rp, Rn, rt) in the initial
user-to-role assignment UR and the roles in Rp/Rn are positively/negatively
stable. By Lemma 8 and Lemma 9, this means that we can assume that u will
always satisfy the positive/negative preconditions of ca. Assume ca is added
to the ARBAC policy: the consequence of the rule is that u can be granted rt

whenever the role r is assigned to some user of the system. Thus, after this
addition, we can delegate to rt all the administrative privileges previously
granted to r without affecting the reachability of any role different than rt.
Since rt is purely administrative, this cannot falsify the conclusion.

Lemma 14. If a role r is not administrative, then is not administrative also after the
pruning phase.

Proof. By a simple inspection of the preprocessing and pruning rules.

To prove Theorem 3, we can then proceed as follows:

Proof. It is enough to observe that:

1. Lemma 7 ensures that the reachability of Done[X] is not affected by the
preprocessing;

2. Lemmas 11, 12, 13 ensures that the reachability of Done[X] is not af-
fected by the pruning rules, as long as role Done[X] is not purely ad-
ministrative;
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3. role Done[X] is not administrative. This is indeed the case for all roles
of the form Done[e] for some event e. Lemma 14 ensures that Done[X]
never becomes administrative throughout the pruning phase. This, in
particular, means that Done[X] never becomes purely administrative.
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Chapter 4

Verification of Administrative
Attribute-Based Access Control
Policies

4.1 Presentation of the work

In this chapter we present a work on Administrative Attribute-Based Access
Control systems and their verification.

Attribute-Based Access Control. Attribute based access control (ABAC)
proved to be an intuitive and effective access control system. It provides
many advantages of other access control systems, since permissions are given
directly on formulas predicating on attributes of users, thus enabling a fine-
grained level of control. Moreover, it avoids intermediate layers like in other
systems, e.g., the RBAC, thus resulting more intuitive and expressive. Many
works addressed the problem of giving an administrative version of ABAC
[47], [46], [48], [38], [4], however most of them delegate the administration to
a set of roles as in ARBAC. In this work we give an administrative model for
attribute-based access control systems (AABAC) without using an intermedi-
ate layer. Instead we encode directly administrative operations on attributes
predicating only on them. This is done in a way that is similar to how AR-
BAC is administrated [68]; indeed, to set an attribute we require two users,
the administrator and the target user, that have to satisfy two boolean pre-
conditions each predicating on their attributes. We will show in section 4.2
that the proposed model is general enough to encode ARBAC systems, as
well as hierarchical ARBAC ones.
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Verification. Security analysis of access control systems is widely recog-
nized as a crucial problem, since it gives to administrators a way to check
whether their policies satisfy some security relevant properties. This in AR-
BAC systems is traditionally encoded in terms of the so called role reacha-
bility problem. In it we want to prove if a given role could be ever assigned
to a user in the system. Although this problem could appear simple, it has
been proved that it is hard to solve due to the exponential explosion of the
state space. For this reason, substantial researches have been carried out to
address the verification of the role-reachability problem [71], [41], [31], [32],
[33], [18], [64] and [40]. Moreover several works address the role-reachability
problem in systems that are extensions of ARBAC: [65] and [73] address
the verification of ARBAC policies with temporal constraints, while in [28]
is defined a verification techniques for ARBAC systems with temporal and
spatial constraints; in [4] is performed an analysis of an ARBAC system in
presence of immutable attributes. Finally in [70] is conducted an analysis
of parametrized ARBAC policies. In this work we present the dual of role
reachability problem for AABAC systems, namely the satisfiability problem.
In it we want to check if in an AABAC system a certain target formula could
be ever satisfied.

Thanks to the generality of the presented model we are also able to verify
all the problems for which there is a reduction to a standard ARBAC role
reachability problem, such as the work about workflow security presented at
chapter 2.

Contributions. In this chapter we make the following contributions:

• we provide a novel specification of an administrative version of the At-
tribute-Based Access Control system (AABAC) and we show that it is
more general than ARBAC systems;

• we devise a technique to reduce the number of users in a system that
could also be exploited to reduce systems with unbounded number of
users to bounded ones;

• we give two techniques, one under-approximated and one over-ap-
proximated, for the verification of satisfiability problems for AABAC
systems;

• we propose a simplification technique to reduce the size of the satisfia-
bility problem without affecting its satisfiability;
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• we implement all the aforementioned techniques in the VACSAT tool,
and we test its effectiveness against a large set of benchmarks from the
literature.

Structure of the chapter. This chapter is structured as follow:

• in section 4.2 we formally define an AABAC model, and give a notion
of satisfiability problem;

• in section 4.3 we give a technique used to reduce the number of users
in a satisfiability problem that could be exploited to reduce AABAC
systems where the number of users is unbound to systems where such
number is bound;

• in section 4.4 we introduce the syntax and the semantics of a language
for concurrent programs that will be used in sections 4.5 and 4.6;

• in section 4.5 we devise a novel precise, but under-approximated anal-
ysis technique based on concurrent program verification;

• in section 4.6 we give an over-approximated analysis technique based
on program verification;

• in section 4.7 we define a simplification technique aimed to reduce the
size of the satisfiability problem before the verification;

• in section 4.8 we describe VACSAT: a tool for checking satisfiability
problem in AABAC systems, and we show its results;

• in section 4.9 we draw our conclusions.

4.2 Model

In this section we introduce the novel Administrative Attribute-Based Access
Control (AABAC) formal model.

An Administrative Attribute-Based Access Control (AABAC) is an access
control system where we have a set of users each having a finite set of at-
tributes. To each attribute are assigned values taken from a finite domain.
Users are allowed to change the values of their attributes by means of ad-
ministrative actions. Those actions are subject to two preconditions: the for-
mer, called administrative precondition, must be satisfied by any user in the
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system (administrator), while the latter must be satisfied by the user whose
attribute will be changed (target user).

4.2.1 Components

Let U be a finite set of users, A a finite set of attributes and V a set of values,
and let u, a and v range respectively on them.

Definition 14 (Range). The function Range : A → 2V is a map assigning all the
possible values of each attribute a.

Definition 15 (Attribute-value assignment). An attribute-value assignment
AV : A → V is a map assigning values to each attribute in A such that ∀a ∈ A :
AV(a) ∈ Range(a),.

Definition 16 (User-attribute assignment). A user-attribute assignment UA :
U → AV is a map assigning values to each attribute of a user u.

In the AABAC model, the user-attribute assignment can be changed by
means of administrative actions, enabled by a user-attribute administration
policy defining conditions for setting values to user attributes. All administra-
tive actions are constrained by means of preconditions ϕ that must be satisfied
by both administrator and target user. Preconditions are defined as follow:

Definition 17 (Precondition). A precondition ϕ is a boolean formula predicating
on a set of attributes of A:

ϕ ::= true | a ∼ v | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

The set of all possible precondition is Φ. We decided to leave the relation
operators ∼ unspecified to support various comparison operators.

We introduce the domain Dom(ϕ) of a precondition as the set of attribute
appearing in it. Formally:

Definition 18 (Domain). Let ϕ be a precondition, its domain Dom(ϕ) is a set of
attribute such that:

Dom(ϕ) =



∅ i f ϕ = true

{a} i f ϕ = (a ∼ v)

Dom(ϕ′) i f ϕ = ¬ϕ′

Dom(ϕ′) ∪Dom(ϕ′′) i f ϕ = (ϕ′ ∧ ϕ′′)

Dom(ϕ′) ∪Dom(ϕ′′) i f ϕ = (ϕ′ ∨ ϕ′′)
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Let AV be an attribute-value-assignment and ϕ a precondition we say that
AV ` ϕ, or AV satisfies ϕ, as defined in table 4.1.

Table 4.1 Semantics of preconditions

P-TRUE

AV ` true

P-REL
AV(a) ∼ v
AV ` a ∼ v

P-NOT
AV 6` ϕ

AV ` ¬ϕ

P-AND
AV ` ϕ
AV ` ϕ′

AV ` ϕ ∧ ϕ′

P-OR1
AV ` ϕ

AV ` ϕ ∨ ϕ′

P-OR2
AV ` ϕ′

AV ` ϕ ∨ ϕ′

Here we give a notion of equivalence between two preconditions.

Definition 19 (Formulas equivalence). Let ϕ1 and ϕ2 be two preconditions. We
say that ϕ1 and ϕ2 are equivalent ϕ1 ≡ ϕ2 iff ∀AV : AV ` ϕ1 ⇐⇒ AV ` ϕ2.

Intuitively ϕ1 and ϕ2 are considered equivalent if they are satisfied by the
same attribute-value assignments.

Definition 20 (Policy). A policy is a tuple P = (U, A, V, CS) where CS ⊆ Φ×
Φ× (A×V).

A can-set rule (ϕa, ϕu : a = v) ∈ CS states that a user whose attribute
assignment satisfies the administrative precondition ϕa can set the attribute a
of any user who satisfies the precondition ϕu to value v.

Given a policy P = (U, A, V, CS), we define Φa = {ϕa | (ϕa, ϕu : a =

v) ∈ CS} and Φu = {ϕu | (ϕa, ϕu : a = v) ∈ CS} as the sets respectively of
administrative/user preconditions of the can-set rules.

All the syntactic ingredients introduced so far define an AABAC system
S = (P, UA). Though most of the definitions in this section are parametric
with respect to the choice of an AABAC system, when there is no ambiguity
we implicitly consider a system S with the above structure and such that
P = (U, A, V, CS).

Definition 21 (User count). Given a AABAC system S = ((U, A, V, CS), UA)

and an attribute-value assignment AV, we define countS(AV) = |{u | u ∈ U ∧
UA(u) = AV}| as the number of users having AV as attribute-value assignment.

We can now define the reduction semantics of AABAC. This is done by
means of judgments of the form UA r

 PUA′, reading as: the user-attribute
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assignment UA can be updated to UA′ by means of an administrative action
r allowed by the policy P. The definition of the judgment is given in Ta-
ble 4.2. The table provides the formal counterpart of the intuitive semantics
of attribute set as allowed by the policy P. As usual, we let ∗P stand for the
reflexive-transitive closure of P.

Table 4.2 Semantics of Administrative Actions

R-APPLY
r = (ϕa, ϕu : a = v) ∈ CS

UA(ua) ` ϕa UA(u) ` ϕu

UA r
 PUA[u→ UA(u)[a→ v]]

4.2.2 Satisfiability Problem

The satisfiability problem consists of checking whether a given formula ϕt,
called satisfiability query, can be satisfied by some user of an AABAC sys-
tem. Formally, an instance of the attribute-value satisfiability problem is a
pair I = (S, ϕ), where S is an AABAC system and ϕ is the satisfiability query.

Definition 22 (Satisfiability). Let I = (S, ϕt) be an instance of the satisfiability
problem such that S = (P, UA). We say that I is satisfiable iff there exist a user-
attribute assignment UAn and a user u ∈ U such that UA ∗P UAn and UAn(u) `
ϕt.

Though simple to formalize, such satisfiability problem is a very useful
tool for checking the security of an AABAC system, since many security rele-
vant properties could be encoded in term of formula ϕ. Indeed we can easily
encode problems such as the attribute dual of role reachability problem; a
more precise query stating if a given user u could have an attribute ai set
to value v; or again if a user u could have an attribute a with as value any
element of the set B.

4.2.3 AABAC with unbounded number of users

In this section we will extend the introduced model giving the possibility
to add/remove any number of users during the execution. This mimics the
hiring and retiring of a company. Each user that is added to the system enters
with a predetermined initial attribute-value configuration. We then show



4.2. Model 59

that, thanks to theorem presented in section 4.3, we can reduce it to a model
where the number of users is bound.

To generalize the aforementioned AABAC model we have to support two
different operations: in the first we allow users to exit the system, whereas
in the second an unbounded number of users can enter the system. While
to support users removal we do not have to do any syntactical change to
the model, to support user addition we need to add two components to the
AABAC model.

Definition 23 (AABAC∞ system). Let W be an unbounded set of users, and let
WA = {AV1, . . . , AVn} be a set of all the possibles attribute-value assignments of
users entering the system: we define an AABAC∞ system S∞ = ((U, A, V, CS, W,
WA), UA).

The reduction semantics of user entering/leaving the system are given
in table 4.3. In the first rule we allow a user in W, that is not part of the
system (u /∈ U) to enter it with the initial attribute-value assignment AV.
The second one, instead says that a user can leave the system. If it does so,
it will be removed from U, and its configuration will be removed from the
user-attribute assignment.

Table 4.3 Semantics of user add/remove - S∞ ↪→ S′∞

USER-ADD
u ∈W u /∈ U AV ∈ WA

((U, A, V, CS, W, WA), UA) ↪→ ((U ∪ {u}, A, V, CS, W, WA), UA[u→ AV])

USER-REMOVE
u ∈ U

((U, A, V, CS, W, WA), UA[u→ AV]) ↪→ ((U \ {u}, A, V, CS, W, WA), UA)

Notice that an AABAC system S = ((U, A, V, CS), UA) is equivalent to
an AABAC∞ one S∞ = ((U, A, V, CS, ∅, ∅), UA). Indeed the system S is an
AABAC∞ one where no users can be added or removed.

4.2.4 ARBAC to AABAC translation

We will now show that the AABAC model defined here is sufficiently gen-
eral to encode both the standard ARBAC model like the one introduced in
chapter 2 and a generalization of it with the addition of roles hierarchies.
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ARBAC. Here we will show how to reduce an Administrative Role-Based
Access Control instance, as defined in section 2.2, to an AABAC one. In-
tuitively, it is enough to model users as individuals with a boolean-valued
attribute for each role, identifying if the user has that role. Each can-assign
rule will introduce a can-set one having the check on the administrative role,
now attribute, a conjunction on positive and negative preconditions, and set-
ing the value of the target attribute as true. Each can-revoke, similarly, will
be encoded with a can-set rule checking only the administrative precondition
(it has true as precondition) and seting the target attribute to f alse as effect.
More formally let S = 〈P , UR〉 be an ARBAC system where P = 〈CA, CR〉,
we now construct a new AABAC ((U, A, V, CS), UA) model such that:

• U is the set of users in the ARBAC system;

• for each role r in the ARBAC system we create an attribute r with a
boolean domain;

• V = {0, 1} be the set of boolean values;

• for each can-assign rule of the ARBAC policy (ra, Rp, Rn, rt) ∈ CA we
add a can-set rule (ra = 1, (

∧
rp∈Rp(rp = 1)) ∧ (

∧
rn∈Rn(rn = 0)) : rt =

1) to CS;

• for each can-revoke rule of the ARBAC policy (ra, rt) ∈ CA we add a
can-set rule (ra = 1, true : rt = 0) to CS;

• for each user u and role r: UA(u)(r) = (r ∈ UR(u)).

Then we can easily encode each possible ARBAC role reachability prob-
lem, having role rt as target, as a satisfiability problem I = (((U, A, V, CS),
UA), rt = 1).

Hierarchical ARBAC. We can also encode, as an AABAC system, any in-
stance of hierarchical ARBAC. This is a little bit trickier than the standard
once since it comes with a partial order on roles� such that r � r′, which im-
plies that r′ has at least as many rights as r. The main part of the encoding is
identical to the one for standard ARBAC, the only difference is how we trans-
late the can-assign and can-revoke rules. Given a role r, let r↑ = {r′ | r ≺ r′}
be the set of roles higher than r. In this case, the can-assign rule (ra, Rp, Rn, rt)

is by having:
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(
∨

r′a∈r↑a

(r′a = 1), (
∧

rp∈Rp

∨
r′p∈r↑p

(r′p = 1)) ∧ (
∧

rn∈Rn

∧
r′n∈r↑n

(r′n = 0)) : rt = 1)

The encoding of the can-revoke rule (ra, rt) depends on the semantic of
revocation. If weak revocation is chosen, the rule is encoded as follows:

(
∨

r′a∈r↑a

(r′a = 1), true : rt = 0).

If strong revocation is chosen, the rule is instead encoded as follows:

(
∨

r′a∈r↑a

(r′a = 1),
∧

r′n∈r↑t \{rt}

(r′n = 0) : rt = 0)

This rule forces one to revoke all the senior roles before revoking rt.
This two encodings give us the capability of using our model and verifi-

cation techniques to check any other policy written in ARBAC, and moreover
even other access control systems where the analysis is done in terms of re-
duction to ARBAC role reachability e.g., temporal ARBAC analysis [73] and
the one done in chapter 2.

4.3 Bounding the number of user

In this section we introduce an important theorem that allows us to reduce
the number of users tracked in a satisfiability problem. Moreover it allows
us to transform an AABAC∞ satisfiability problem I∞ to a bounded one. The
theorem is a generalization for AABAC systems of [33, theorem 1]. For the
sake of readability in the theorem and its proof we refer to an AABAC system,
but we can apply it even to an AABAC∞ one.

Theorem 4. Let I = (((U, A, V, CS), UA), ϕt) be a satisfiability problem where
and Φ 6≡a = Φa/≡ be the set of non equivalent administrative preconditions of CS,
and k = |Φ 6≡a |. If there exists a trace leading to the satisfaction of ϕt, then there
exists another trace leading to satisfaction of ϕt where at most k + 1 users change
their attribute-value assignment.
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Proof of this theorem mimics the one shown in [33, theorem 1] replacing
administrative roles with administrative preconditions equivalence classes.
For completeness we report it here.

Proof. For any run π = UA1
r1 PUA2

r2
 P . . . UAn

rn PUAn+1 of S, let a(π) =

ϕa1, ϕa2, . . . , ϕan be the sequence of administrative preconditions where rj =

(ϕa j, ϕuj : aj = vj) is the rule applied in the jth transition of π. We say that

a user u is engaged in π if and only if there exists a transition UAi
ri PUAi+1

in π such that UAi(u) 6= UAi+1(u). Furthermore, we say that u is essential
in π iff it is engaged, and u is the only user in the system satisfying ϕa j for
j ∈ {1, . . . , n}. Notice that thanks to the notion of equivalence of formulas,
we know that if we have two administrative preconditions ϕa1, ϕa2 and two
users u1 and u2 such that ϕa1 6= ϕa2, ϕa1 ≡ ϕa2, if u1 satisfies ϕa1 and u2

satisfies ϕa2 then both u1 and u2 are not essential. Finally, let indexπ(u) be the
greatest j ∈ {1, . . . , n} such that u is the only user satisfying ϕa j in UAj.

We now show that, for each run π in which ϕt is satisfied by a user ut, it is
possible to construct another run π′ where there are only k + 1 engaged users.
For simplicity we assume that ut satisfies ϕt only in UAn+1. From π we create
π′ by repeatedly applying two simplification rules. In the following part we
assume π0 = π and πi be the run obtained after i simplification steps.

1. If πi contains an engaged user u such that u 6= ut, which is not essen-
tial, then remove from πi all transitions changing the attribute-value
assignment of u;

2. If all engaged users in πi are essential, then pick one of them different
from ut such that there exists a transition rj changing u’s attribute-value
assignment, with j ≤ indexπi(u), and remove from πi all transitions rl

targeting u with l ≥ indexπi(u).

We are guaranteed that this simplification process terminates since at each
step we reduce the length of the run. Moreover if πi is a valid run, each
simplification step produces a new valid run.This is because we always leave
a user in any administrative role to fire any transition of πi.

Finally, to conclude the proof, we show that any simplified run π′0 has at
most k + 1 engaged users. We know that each engaged user u, with u 6= ut,
in π′ is essential, and u’s attribute-value assignment does not change after
UAindexπ′ (u)

. Thanks to this for any two distinct users u1 6= u2 (both different
from ut), engaged in π′, it holds that ϕa j1 6≡ ϕa j2 with j1 = indexπ′(u1) and
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j2 = indexπ′(u2). Thus, the number of engaged users in π′ is at most equal
to the number of non equivalent administrative preconditions k = |Φ 6≡a | plus
one representing ut.

4.3.1 User removal

Thanks the aforementioned theorem, we are now able to bound users in an
AABAC∞ system, therefore obtaining a bounded AABAC one. Moreover
this procedure can be used even to reduce the users of an AABAC system.
Let S∞ = ((U, A, V, CS, W, WA), UA) be an AABAC∞ system and k = |Φ 6≡a |,
we can reduce the system to a new AABAC with bounded number of users
using the reduction function bS∞c = S where S = ((U, A, V, CS), UA). The
function bS∞c works applying to S∞ the simplification steps described be-
low:

1. for each attribute-value assignment AV ∈ WA, let j = countS(AV) be
the number of users in U sharing the attribute-value assignment AV; if
the j is less than k + 1, we then take m = (k + 1)− j fresh users from
W and we add them to the system with attribute-value assignment AV,
finally we remove AV from WA, since no more users are required to be
added with attribute-value AV;

2. for each attribute-value assignment AV, let j = countS(AV) be the num-
ber of users in U sharing the attribute-value assignment AV. If j is
greater than k + 1 then remove n = j− (k + 1) users from the system.

After the application of step (1) and (2) we obtain a new system S′∞ = ((U′, A,
V, CS, W, ∅), UA′) where for each attribute-value assignment AV we have
at maximum k + 1 users. Thanks to the aforementioned theorem we can
remove all the users not in the AABAC∞ system, obtaining an AABAC one
with bounded number of users S = ((U′, A, V, CS), UA′).

4.4 Concurrent Programs

In this section we will introduce the syntax and an informal semantics of the
language we will use for the analysis. Concurrent programs are imperative
programs operating on variables, whose procedures can be concurrently ex-
ecuted by multiple threads.
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4.4.1 Syntax and Informal Semantics

The syntax of concurrent programs is given in Table 4.4. A program p is a
sequence of declarations of global variables −→x followed by a sequence of dec-
larations of procedures

−→
f . Procedures have a name id, a sequence of parame-

ters −→y and a body s (a statement, see below). For simplicity, we identify the
local variables available to procedures with their parameters. We assume that
each procedure only operates on its local variables and on the global vari-
ables, and that all the global and local variables are pairwise distinct. Finally,
we require that the names of the procedures are pairwise distinct to avoid
ambiguities.

The syntax of statements is adapted from the syntax of CProver [50]. Be-
fore introducing it, it is convenient to describe the simple language of expres-
sions, which can be evaluated to values during statement execution. An ex-
pression e may be: a value v ∈ V, a variable x, the non-deterministic choice
operator ∗, which may evaluate to any value of its domain, a conditional
(ternary) expression e ? e : e, a procedure call id(−→e ) passing as arguments
the sequence−→v obtained from the evaluation of−→e . It may also be a set of ex-
pression compositions such as comparison e ∼ e, disjunction or conjunction
of expressions e ∨ e, e ∧ e, or negation of an expression ¬e.

The skip statement does nothing. The parallel assignment−→x := −→e atom-
ically evaluates the sequence of expressions −→e into a sequence of values −→v
and assigns each vi in −→v to the corresponding variable xi in −→x . The con-
ditional (if e then s else s) and loop (while e do s) statements are standard.
The assumption statement assume(e) checks whether e evaluates to true: if
not, it terminates the program silently, while assertion statement assert(e), if
e is false, moves the program into a failure state (represented by fail). The
spawn id(−→e ) statement creates a new thread running the body of the pro-
cedure id, passing, as arguments, the sequence of values obtained by evalu-
ating the expressions −→e . Statements atomic-begin and atomic-end are used
to enter and exit an atomic section, to avoid race conditions on the global
memory by different threads. Notice that statements can be combined with
the semi-colon operator to produce new statements.

4.4.2 Reachability Problem

The reachability problem for concurrent programs amounts to check whether
it is possible to reach a failure state under a given program. This is a well
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Table 4.4 Syntax of Concurrent Programs

Programs p ::= decl −→x ;
−→
f

Procedures f ::= procedure id(−→y ) s end procedure
Statements s ::= skip | s; s | −→x := −→e

| if e then s else s | while e do s
| assume(e) | assert(e) | fail
| spawn id(−→e ) | atomic-begin | atomic-end

Expressions e ::= v | ∗ | x | e ? e : e
| e ∼ e | ¬e | e ∨ e | e ∧ e

known problem, and the literature presents several approaches to solve it. In
sections 4.5 and 4.6 we will create a program that simulates a given satisfia-
bility problem, and then we will discharge the check of the obtained program
to state of the art checker.

4.5 Precise analysis

4.5.1 Analysis

Given an instance of the satisfiability problem I = (S, ϕt), we define an en-
coding of I as a concurrent program JIK such that I is satisfiable if and only
if JIK can reach a failure state. We now introduce our construction and argue
its correctness.

4.5.2 Structure of the Encoding

The key idea of the encoding is representing the reachable user-attribute as-
signments as thread pools, where each thread tracks all the attributes of a
given user of the AABAC system. Specifically, each thread has one local
variable l_ai for each attribute ai, satisfying the invariant that l_ai = vi if
and only if the attribute ai is set to value vi to the user encoded by the thread
(UA(u)(ai) = vi).

The code of each thread defines how the value of the local variables can be
updated to reflect the application of the administrative actions of the AABAC
system, setting value to attributes. The tricky part of the encoding is how
to efficiently check whether an administrative action can be performed. In-
deed, although the local memory of each thread stores enough information
to check whether the encoded user satisfies the precondition of a can-set rule
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ϕu, it does not track whether there exists an administrator who can trigger
the rule, since this information may only be available in the local memory of
another thread. Thus, in the encoding, we rely on the global memory: for
each administrative precondition ϕa we introduce a global variable g_ϕa sat-
isfying the invariant that, if g_ϕa = true, then there exists a user satisfying
the precondition ϕa (but not necessarily vice-versa).

The reason why we sacrifice the converse of the presented invariant is ef-
ficiency. Indeed, ensuring a stronger invariant which additionally includes
the converse would be costly: if an attribute of a user u appearing in ϕa is
set to a value v such that the precondition is not valid anymore after the
set, then one would need to check all the other users of the system to assess
whether u was the last user satisfying ϕa, and set the global variable g_ϕa

to f alse only in that case. In the encoding, this check would require a com-
munication between all threads, leading to a major impact on the verification
times. The good news, however, is that the proposed weaker invariant does
not introduce false negatives in the verification process, since we can always
compensate the apparent mismatch thanks to a smart treatment of the can-set
rules and a quantification over all the program runs (see below).

The structure of the encoding of the instance I = (S, ϕt) is shown in Ta-
ble 4.5. It is a program with just two procedures: the INIT procedure ini-
tializes all the global variables to f alse, which trivially satisfies the afore-
mentioned invariant, and spawns one thread running the user procedure for
each user of S, passing as parameters (local variables) the encoding of the
attribute assigned to the corresponding user in the initial user-attribute as-
signment. The USER procedure, which is run by all the spawned threads,
executes an infinite while loop, where three main operations are performed.
(1) The global memory is updated: if the interpretation of a precondition JϕaK
is satisfied, then we are guaranteed that there exists at least one user satisfy-
ing it and we can safely set g_ϕa to true. (2) In the second loop of the function
(rows 20-22), all the administrative actions allowed by the policy of S, call it
r ∈ CS, are simulated by statements JrK: the details of this compilation step
are explained in the next section. (3) The procedure executes an assert state-
ment to check whether the query is satisfied: if this is the case, the program
enters a failure state. Notice that the program runs all operations using the
global state atomically, to ensure the absence of race conditions on the global
memory.
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Table 4.5 Definition of the Encoding

Input: an instance of the satisfiability problem I = (S, ϕt), where S =
(U, A, V, CS, UA), U = {u1, . . . , uk}, A = {a1, . . . , an}.

Output: a concurrent program JIK with the following structure:

1: for ϕa ∈ Φa do
2: decl g_ϕa . one global variable for each administrative precondition
3: end for

4: procedure INIT() . initialization procedure
5: atomic-begin
6: for ϕa ∈ Φa do
7: g_ϕa := f alse . conservative global memory initialization
8: end for
9: for uj ∈ U do

10: spawn USER(l_aj
1, . . . , l_aj

n) . ∀i ∈ {1, . . . , n} : l_aj
i = UA(uj)(ai)

11: end for
12: atomic-end . after this, UA was encoded as a thread pool
13: end procedure

14: procedure USER(l_a1, . . . , l_an) . user thread code
15: while true do
16: atomic-begin
17: for ϕa ∈ Φa do
18: g_ϕa := g_ϕa ∨ JϕaK . user’s conservative global update
19: end for
20: for r ∈ CS do
21: JrK . encoding of the administrative rule r
22: end for
23: assert(¬JϕtK) . check whether ϕt is satisfied by the user
24: atomic-end
25: end while
26: end procedure

Precondition compilation Let ϕ be a precondition, JϕK is an expression rep-
resenting the interpretation of ϕ in the local memory context. To do that we
syntactically substitute all occurrences of any attribute ai in ϕ with its local
representation l_ai.
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4.5.3 Policy Compilation

Given a policy P, we define its compilation in terms of a loop which simu-
lates the encoding all the administrative rules of r ∈ P. Policy compilation
is shown in the second loop of the USER procedure (table 4.5, rows 20-22).
Given the definition of the compilation of the rules, the order of execution
is immaterial. In the following, we stick to the convention that g_ϕa is the
global variable such that g_ϕa = true implies the existence of a user satisfy-
ing precondition ϕa, and l_a is the local variable such that l_a = v if and only
if the user encoded by the running thread has the attribute a set to value v.
The definition of the compilation of the individual rules is given in Table 4.6
and explained below.

Can-Set The can-set rule (ϕa, ϕu : at = vt) ∈ CS is compiled into a condi-
tional statement as shown in table 4.6. Its guard is a conjunction of several
expressions:

1. ∗: the non-deterministic choice operator, modeling that the rule may
either be applied or not;

2. g_ϕa: the global variable g_ϕa must be true. This ensures the existence
of an administrator who can apply the can-set rule;

3. JϕuK: the rule’s precondition compilation under local memory. This
ensures that the local memory of the running thread encodes the role
assignment of a user satisfying the precondition of the can-set rule;

4. ¬(l_at = v): the local memory of the running thread should not have
the attribute set to v. This is just used to avoid useless computations.

If the conjunction is satisfied, the consequent of the conditional is taken. We
set the local variable l_at to vt to reflect the attribute assignment. For all ad-
ministrative precondition ϕa

′ whose domain contains attribute at, we check if
the current user satisfy them and we update the global memory g_ϕa

′ accord-
ingly, since after the application of the can-set rule we do not know if there
exists a user satisfying them. Notice, however, that this behaviour does not
introduce false negatives: intuitively, the reason is that, if there exists another
user satisfying an administrative precondition ϕa, the thread corresponding
to that user will be eventually scheduled for execution and for this thread we
would have JϕaK = true. Since the user procedure (in Table 4.5) sets g_ϕa to
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g_ϕa ∨ JϕaK, the global variable g_ϕa will be eventually set to true as required
for soundness.

Table 4.6 Compilation of the Administrative Rules
Input: a can-set rule (ϕa, ϕu : at = vt) where {ϕa

′
1, . . . , ϕa

′
j} =

{ϕa
′′ | (ϕa

′′, ϕu
′′, a′ = v′) ∧ at ∈ Dom(ϕa

′′)}
Output: a set of statements representing compilation of J(ϕa, ϕu : at = vt)wK

if ∗ ∧ g_ϕa ∧ JϕuK∧ ¬(l_at = vt) then
l_at := vt . Local memory update
for ϕa

′ ∈ {ϕa
′′ | ϕa

′′ ∈ Φa ∧ at ∈ Dom(ϕa
′′)} do

g_ϕa
′ := Jϕa

′K . Conservative global memory update
end for

end if

We are now ready to show the main property of the encoding JIK.

Claim 1. A satisfiability problem I = (S, ϕt) is satisfiable if and only if an assertion
of the program JIK fails.

A failure in an assertion means that the local memory of the thread satis-
fies the target formula JϕtK. Since we work under the assumption that each
thread satisfies the invariant stating that l_ai = vi if and only if the attribute
ai is set to value vi to the user encoded by the thread (UA(u)(ai) = vi), we
know that UA(U) ` ϕt. Formal proof is left as future work.

4.5.4 Bounded Analysis

Checking if a concurrent program fails any assertion is a well known prob-
lem in literature, and several solution are given, unfortunately even if the
state space is finite, the verification problem is hard since complexity of pro-
gram analysis and the exponential number of possible interleavings. For this
reason several approximated approaches have been tried. We noticed, how-
ever, that all abstract-interpretation based solutions that we tested showed to
be really inaccurate even in simple examples, since the high degree of non-
determinism of the encoded programs. For this reason we adopted another
approach derived from Lazy-CSeq [39]: one of the state-of-the-art tool for
BMC-based analysis of concurrent programs, that proved to be very efficient
winning several times the concurrency category of SV-COMP. Such approach
proved to be very precise and scalable in this specific setting.
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Bounded sequentialization of the program.

The adopted approach mimics the one used in Lazy-CSeq: bounded sequen-
tialization, but, before introducing it, let us make some preliminary consid-
erations on the program generated by JIK. The program obtained by JIK is
a concurrent program where we have a set of threads each having a local
variable l_ai for each attribute ai. In the INIT procedure we start initializing
the global memory, then we spawn a thread for each user ui, setting the lo-
cal memory on the basis of the initial attribute-value assignment of the user
UA(ui). At the end of INIT, each tread starts simulating users of the system.
Every thread repeats forever a sequence of operations that consists of updat-
ing the global memory, performing any number of administrative operations
and, finally, checking if they satisfies the ϕt with their local state. Notice that
the loop body is executed atomically, so context switches could happen only
at the end of each loop body.

Sequentialization In the sequentialization process defined thereafter we
use, with abuse of notation, J·Kuj , where uj ∈ U is a given user, to indicate the

compilation J·K on the memory of the user uj ({l_aj
1, . . . , l_aj

m}).
The result of the sequentialization process is reported in table 4.7 and 4.8

and it is done through several operations. Firstly each local variable l_ai of
the thread of user uj is added to the global state of the sequentialized pro-
gram as l_aj

i . We grant that no thread function will use a variable not belong-
ing to it since the only way to manage the local memory is through J·Kuj . Then
it is introduced a new initialization procedure INIT_SEQ (in table 4.7: rows
10-19) that, as the non sequential one, initializes the shared global memory,
then instead of spawning threads with the initial local state, it initializes the
sequentialized thread memory l_aj

i := UA(uj)(ai).
We then add a new procedure USER_SEQ (in table 4.7: rows 20-30) that

takes a user u as input and simulates the execution of one loop body of the
thread representing the user uj, but with one limitation: the number of ad-
ministrative operation we perform is at most one, depending on the value
of a program counter pc. Even if it seems that with this limitation we loose
traces of the original program, this is not true thanks to the possibility to
have an idle step where no administrative operations are executed. As an
example consider a trace where the thread representing the user ui was per-
forming two administrative operations in the same loop iteration. This trace
is identical to the one where ui performs the first operation, then all other
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Table 4.7 Sequentialized program
1: for ϕa ∈ Φa do
2: decl g_ϕa . one global variable for each administrative precondition
3: end for
4: for uj ∈ U do . user uj local variables
5: for ai ∈ A do
6: decl l_ai

j
7: end for
8: end for
9: decl pc . one global variable as program counter

10: procedure INIT_SEQ() . sequential initialization procedure
11: for ϕa ∈ Φa do
12: g_ϕa := f alse . conservative global memory initialization
13: end for
14: for uj ∈ U do . user uj local initialization
15: for ai ∈ A do
16: l_aj

i := UA(uj)(ai)
17: end for
18: end for
19: end procedure

20: procedure USER_SEQ(uj) . sequential encoding of individual user uj
21: for ϕa ∈ Φa do
22: g_ϕa := g_ϕa ∨ JϕaKuj . global memory update.
23: end for
24: for rk ∈ CS do
25: if pc = k then . if we want to apply rk
26: JrkKuj . encoding of the administrative rule rk
27: end if
28: end for
29: assert(¬JϕtKuj) . check whether ϕt is satisfied by uj
30: end procedure

users uj 6= ui skips their turn performing no operations (except updating
the global memory), and then ui performs the second operation. This treat-
ment introduces two additional advantages: the first one is that the shared
global memory is updated more frequently, so it will better reflect the system
status; the second is that we check more often if the assertion fails (proving
satisfiability of the problem I).

The final step of the sequentialization is done adding a new MAIN proce-
dure (in table 4.8) that performs the initialization phase calling INIT_SEQ and
then moves, in an infinite loop, the sequentialized user thread functions. To
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Table 4.8 Sequentialized main procedure
1: procedure MAIN() . main procedure
2: INIT_SEQ()
3: while true do . for ever
4: for uj ∈ U do
5: pc := ∗ . nondeterministically pick a can-set rule index
6: USER_SEQ(uj) . simulate the step of u. It can be an idle step
7: end for
8: end while
9: end procedure

do so, for each user uj in the system, it nondeterministically sets the program
counter pc := ∗, and then it invokes the sequentialized thread procedure of
user uj.

The sequential program obtained simulates the round-robin schedules of
JIK such that each iteration of the while loop represents a round where each
thread is scheduled exactly once.

Set the bound. To perform the analysis of the sequentialized program us-
ing a bounded model checker approach, we need to unwind the program to
a number of rounds k. Since the only unbounded loop in the program is the
while in the MAIN procedure, we unwind it k times replacing it with k copy
of its body obtaining the procedure MAIN_BOUND as shown in table 4.9. This
step gives us a program that is sequentialized and bounded, so we can an-
alyze it using a state of the art analysis tool such as CBMC [50] or ESBMC
[56].

Table 4.9 Sequentialized and bounded MAIN procedure
procedure MAIN_BOUND() . bounded main procedure

INIT_SEQ()
for c = 1 to k do . repeat the body k times

for uj ∈ U do
pc := ∗ . nondeterministically pick a can-set rule index
USER_SEQ(uj) . simulate the step of u. It can be an idle step

end for
end for

end procedure

Unfortunately the bounding step will sacrifice one direction of the impli-
cation of claim introduced before. Indeed if the number of rounds k is too
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small we will not reach any violation that could be reached if we use a larger
number of rounds.

Refinement Fortunately, since the state space of the problem is finite, to
refine this analysis technique we have to increase the number k until (1) an
assertion fails (2) we checked all reachable states. If we reach (1) we can
prove the satisfiability of the problem, while (2) proves that the problem is
unsatisfiable. To be sure we visited all reachable states we need to check that
each state obtained at the end of each round has not been reached before.
If for each trace there is at least one state repeated and we do not have any
violation on the assertions, we can conclude that even with a larger k we will
not reach any violations, and this proves that the satisfiability problem I is
not satisfiable.

4.6 Over-approximated analysis

In this section we introduce a novel over-approximated approach for check-
ing a satisfiability problem I = (S, ϕt). The encoding LIM represent a sequen-
tial program that is safe (i.e. cannot reach any failure state) only if I is not
satisfiable. Such technique makes two over-approximating assumption.

The first assumption consists of considering always satisfied the adminis-
trative precondition of all can-set rules, so we can track only one user of the
system.

The key idea of the second assumption, instead, is to encode the prob-
lem as a program where are tracked only administrative actions that set each
attribute “for the last time”, while assuming any possible action in the un-
tracked operations. Indeed in all traces of a user u leading to the satisfaction
of ϕt, we know that for each attribute that appears in the domain of the target
formula, there should be an intermediate configuration where the attribute
is set “for the last time”, and after such set it will not change anymore. Using
such property we put constraints on the execution of a trace only to find an
ordering of “last set operations” that satisfies the target formula.

The advantage of this is that even if the length of a trace satisfying a for-
mula could be exponential in the number of steps, we can track only the last
assignment of the attributes appearing in the formula, so we need to track
only k = |Dom(ϕt)| steps.
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4.6.1 Structure of the over-approximated encoding

The encoding tracks an execution of a nondeterministically picked user, lead-
ing to the satisfaction of the formula ϕt, tracking only the steps where each
attributes ai ∈ Dom(ϕt) are assigned “for the last time”. All other steps are
abstracted assigning nondeterministic values to attributes, respecting the fact
that if an attribute is assigned for the last time, it will not be re-assigned with
different values later. At the end all attributes appearing in the domain of the
target formula that have been changed during the trace must be set “for the
last time” at some point of the run.

Variables. In the encoding we use several variables, listed in table 4.10. We
have a variable u representing the chosen user that will be tracked. Then for
each attribute ai ∈ A: val_ai is the variable storing the value of the attribute;
set_ai, is the boolean variable tracking if the attribute has been set “for the
last time”; finally changed_ai is the variable tracking the fact that an attribute
has been changed at some point during the execution. In this encoding we
refer to the set {val_a1, . . . , val_an} as state.

Table 4.10 Over-approximation variables
1: decl u . one variable representing the tracked user
2: for ai ∈ A do . for each attribute
3: decl val_ai . variable storing ai value (state)
4: decl set_ai . variable stating if ai was set “for the last time”
5: decl changed_ai . variable stating if ai has been changed
6: end for

Encoding. The encoding represents a number of untracked operations end-
ing with a final tracked assignment. As said before we are not tracking all
the operations of a trace, instead we are recording only the last assignment
of each attributes used in the target formula.

To simulate all the untracked administrative operations occurring from
each tracked step to the subsequent we assign a nondeterministic value to all
the attribute state variables that could be changed. This clearly happens only
if the attribute is not set for the last time (set_ai = f alse).

The structure of the over-approximated encoding of the instance I =

(S, ϕt) is a sequential program with two procedures defined as showed in
Tables 4.11 and 4.13.
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For the sake of readability we use the procedure call syntax even if is
not supported by the language introduced in section 4.4. Indeed since all
procedures are not recursive we can easily inline them.

INIT procedure. The INIT procedure (table 4.11) initializes all the variables
of the program. First it nondeterministically picks the user that will be the
one tracked during the run; secondly it initializes each attribute variable ai

with the value taken from the user-attribute assignment of the chosen user.
This second set is done in three steps: (1,2) since ai has not been set “for the
last time” nor it has been changed yet, both set_ai and changed_ai takes value
f alse; (3) the state of ai is set assigning to val_ai the value of the attribute
taken from the initial user-attribute assignment.

Table 4.11 Over-approximation encoding: INIT procedure
1: procedure INIT() . initialization procedure
2: u := ∗ . nondeterministically pick a user
3: for ai ∈ A do
4: set_ai := f alse . ai is not set “for the last time”
5: changed_ai := f alse . ai has not been changed yet
6: val_ai := UA(u)(ai) . set the initial state of the tracked user
7: end for
8: end procedure

Formula compilation. Now we introduce the compilation of a formula. Let
ϕ be a formula, LϕM, is an expression representing the interpretation of ϕ in
the current state context. To do that we syntactically substitute all occurrences
of any attribute ai in ϕ with its corresponding state variable val_ai.

Policy compilation. Before introducing the main part of the encoding we
show how all the administrative rules contained in the policy are encoded.
In details, given a policy P, we define its over-approximated compilation LPM
in terms of a for loop which simulates the set “for the last time” of any number
of attribute using the administrative rules of P. The compilation, shown in
table 4.12, works by iterating on each rule and applying its encoding. The
result of the compilation of each individual rules is shown in the body of the
loop given in table 4.12 and detailed below.

Can-Set compilation. The can-set rule r = (ϕa, ϕu : at = vt) ∈ CS is
compiled into a conditional statement simulating the last set of attribute at
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through r. The conditional statement guard is a conjunction of several ex-
pressions:

1. ∗: the non-deterministic choice operator, modeling that the rule may
either be applied or not;

2. LϕuM: the check of rule precondition under local state. This ensures that
the local state of the program satisfies the precondition of the can-set
rule;

3. ¬(set_at): checks that the attribute has not been set “for the last time”
yet.

If the conjunction is satisfied, the consequent of the conditional is taken. To
simulate the final set of attribute at to value vt we perform three assignments:
(1) we set variable val_at to vt to reflect the attribute assignment; (2) we set
variable set_at to true since the attribute now is set “for the last time”; (3) we
set variable changed_at to true since the attribute’s value has been changed.

Table 4.12 Compilation of the Administrative Rules
1: for (ϕa, ϕu : at = vt) ∈ CS do
2: if ∗ ∧ LϕuM∧ ¬(set_at) then
3: val_at := vt . Update attribute value
4: set_at := true . Attribute is set “for the last time”
5: changed_at := true . Attribute has been changed
6: end if
7: end for

MAIN procedure. The MAIN procedure (in table 4.13), is the central part of
the encoding. In it the program is initialized calling procedure INIT, then the
last assignment of all attributes ai ∈ Dom(ϕt) is simulated through the out-
ermost loop (rows 3-11), finally, after the loop, the satisfiability check takes
place.

The loop body is executed k = |Dom(ϕt)| times, where each iteration
represent any number of untracked administrative operations terminating
with the potential set “for the last time” of one or more attributes. In each
loop body two operations are performed: (1) each attribute that has not been
not marked as final (set_ai = f alse) can be updated with a nondetermin-
istic value to over-approximate all possibles untracked administrative ac-
tions happened since the last tracked point. If an attribute ai is updated its
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Table 4.13 Definition of the over-approximation encoding
1: procedure MAIN() . encoding of the run
2: INIT()
3: for i = 1 to |Dom(ϕt)| do
4: for ai ∈ A do
5: if ∗ ∧ set_ai = f alse then . we want to update ai an we can
6: val_ai := ∗ . update state value
7: changed_ai := true . update changed value
8: end if
9: end for

10: LPM . encoding of the administrative rules of CS
11: end for
12: assume(LϕtM) . discard all the traces not satisfying ϕt
13: assume(∀ai ∈ Dom(ϕt) : changed_ai ⇒ set_ai)
14: fail . check if that statement is reachable or not
15: end procedure

changed_ai variable is set to true to record that it has been changed; (2) any
number of attributes are set “for the last time” using administrative actions
allowed by the policy of S, by the statements LPM as explained before.

At the end of the loop, finally, the satisfiability check is simulated (rows
12-14).

Final check. The final check, that is executed at the end of the MAIN proce-
dure, is used to check if ϕt is not satisfied by any configuration obtained from
UA tracking only the final set of each attribute. As stated before, if the pro-
gram is safe then the formula ϕt is never satisfiable. To perform such check
need three statements:

1. assume(LϕtM): with this statement we require that the trace obtained
by the main loop satisfies ϕt. In this way all traces not satisfying it
are terminated without error. If ϕt is never satisfiable then all traces
terminate silently and the program will never reach a failure state;

2. assume(∀ai ∈ Dom(ϕt) : changed_ai ⇒ set_ai): with this condition
we require that each attribute ai that has been changed during the exe-
cution changed_ai, have also been set “for the last time” at some point
set_ai. A trace that does not satisfy such condition is silently termi-
nated. If all traces are terminated, again, we know that it is impossible
to reach a failure state;
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3. fail: if this statement is reached, then the program enter in a failure
state. This statement is reachable only if at least a trace satisfy both
statements 1 and 2. Indeed in case that both checks holds we know that
there exists one trace leading to satisfaction of ϕt where all the attribute
that have been changed have also been set “for the last time”. Since
the over-approximating assumptions, in this case, we cannot conclude
anything.

Since we are under an over-approximating assumption, impossibility to
reach a fail statement implies that the given problem is not satisfiable, while
the converse does not hold.

Claim 2. Let I = (S, ϕt) be a satisfiability problem. If LIM cannot reach a fail
statement then the problem I is not satisfiable.

4.6.2 Examples

To better understand the proposed encoding, especially the two checks de-
scribed before, consider the following situations. A trace that does not satisfy
(1) is obviously not a candidate trace for the satisfiability problem instance I
and it is obviously discarded. As an additional consequence if all traces are
discarded at this point, then no traces satisfies I, and we can conclude that I
is not satisfiable.

Table 4.14 Examples of safe policies

U = {u1}
A = {a1}

UA = {u1 → {a1 : 0}}
CS = ∅
ϕt = (a1 = 1)

Unsatisfiable problem 1

U = {u1}
A = {a1, a2}

UA = {u1→ {a1 : 0; a2 : 0}}
CS = {(true, a2 6= 1 : a1 = 1),

(true, a1 6= 1 : a2 = 1)}
ϕt = (a1 = 1) ∧ (a2 = 1)

Unsatisfiable problem 2

U = {u1}
A = {a1, a2}

UA = {u1→ {a1 : 1; a2 : 0}}
CS = {(true, a1 = 1 : a2 = 1)}
ϕt = (a2 = 1)

Satisfiable problem 3

U = {u1}
A = {a1, a2}

UA = {u1→ {a1 : 0; a2 : 0}}
CS = {(true, a1 = 1 : a2 = 1)}
ϕt = (a2 = 1)

Satisfiable problem 4 (spurious)
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A trace that does not satisfy (2) is a trace where at least an attribute in
Dom(ϕt) has been changed, but has not been set “for the last time”. If all
traces does not satisfy (2) then in each was not possible to set “for the last
time” at least one attribute that has been changed. This means that the sat-
isfiability problem I is safe. A trivial example where (2) is never satisfied is
shown in table 4.14 on the upper left. In it, the attribute a1 ∈ Dom(ϕt) has to
be changed to a value 1 during the execution, but there are no can-set rules
setting a1 = 1. Another more interesting example is reported in table 4.14 on
the upper right. In this case the encoded satisfiability problem requires both
a1 and a2 to be set to value 1, but setting one to value 1 prevents the other
to be set to such value. In the loop of the encoded MAIN procedure we can
set a1 or a2 during the first iteration, but since the attribute set so far is then
set “for the last time” in the second iteration we cannot change its value, and
so the precondition of the can-set rule targeting the other attribute cannot be
satisfied, and consequently we are not able to set to true the variable set_ai.
This makes the assumption (2) to fail in all traces proving the safety of the
program and consequently the unsatisfiability of the given problem.
An example of a satisfiable problem is reported in table 4.14 on the lower
left. Here all traces satisfying ϕt have to set the value of the attribute a2 to 1.
This is trivially possible and there is no need to change any attribute value
nondeterministically. Indeed we can directly fire the can-set rule (true, a1 =

1 : a2 = 1) setting a2 “for the last time” since we satisfy its precondition. This
will set val_a2 = 2 and set_a2 = true, thus the assumption (1) is satisfied
as well as (2), since a2 is the only attribute that changed his value from the
initial configuration and it has been set “for the last time”. This will make
the fail statement reachable. Finally in table 4.14 on the lower right there
is a problem for which the over-approximated analysis gives a spurious re-
sult. Indeed in the given problem, similarly to the previous one, we require
a2 to be set to value 1, and this is possible only if a1 is set to 1. In this case,
however, a1 is initially set to 0 and we cannot set it to 1. Anyway, we can
use the nondeterministic assignment to set a1 to 1, even if it was not possible
in a precise simulation. We can then use it to satisfy the precondition of the
can-set rule (true, a1 = 1 : a2 = 1) setting a2 to 1 “for the last time”. Even in
this case (1) holds and (2) is also true since we are restricting the check only
to attributes ai ∈ Dom(ϕt). We will show now how to refine the analysis to
be able to prove unsatisfiable problems like this one.
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4.6.3 Recursive refinement

We now introduce a refinement technique to enhance precision of the analy-
sis reducing spurious results. To understand it better, consider a single step
of the over-approximated analysis: in it we have a state obtained by the pre-
ceding steps UA′; then we have a nondeterministic assignment leading to the
satisfaction of a precondition ϕu. To refine the analysis we can replace the
nondeterministic assignment with the over-approximated encoding of a new
satisfiability problem I′ = (((U, A, V, CS), UA′), ϕu). This obviously adds
constraints to the analysis improving its precision. When we enter in refine-
ment step (push), we save all the variables’ value and create two new sets
of variables {set_a′1, . . . , set_a′n} and {changed_a′1, . . . , changed_a′n} derived
from the old one. When we exit (pop), instead, we restore the old values
updating them to reflect the applied refinement step.

Here we show in detail the operation performed to enter and exit each
refinement step.

Push. When we enter a new refinement step we perform three main opera-
tions: (1) we save all variables; (2) we create a new set of variables {set_a′1, . . . ,
set_a′n} where set_a′i := set_ai, since all the attributes that have already been
set “for the last time” will not change; (3) we create a new set of variables
{changed_a′1, . . . , changed_a′n}where changed_a′ := f alse since in the tracked
step no attributes have been changed so far.

Pop. At the end of the refinement step we restore and update all the vari-
ables. This is done in two steps: (1) all the saved variables are restored; (2)
all the variables changed_ai are updated in order to reflect the fact that an at-
tribute value could have been changed in the refinement step: changed_ai :=
changed_ai ∨ changed_a′i. Notice that in this case we do not update any set_ai

variable since assignments “for the last time” are relative only of the refine-
ment step, and not for the outer one.

With this refinement we can prove the example of table 4.14 on the lower
right is not satisfiable. With a refinement step, indeed, we avoid that the
attribute a1 is ever set to 1, since there are no rules able to do so. With this
the refinement step we are able to prove that it is not possible to satisfy the
precondition of the required can-set rule.
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We can then notice that this refinement procedure has a double benefit.
The first one is that we constrain the nondeterminism of the solution, while
the second benefit is given by the fact that the information on which attribute
has been changed during the execution is more precise, thus the final check
expression is enforced. Another interesting point is that we can apply this
refinement technique in a recursive way achieving greater precision.

4.7 Pruning

In this section we introduce a set of pruning rules aimed at reducing the
size of the policy removing attributes and rules not relevant for the given
satisfiability problem. The rules defined here heavily inspired by the ones
given in [33], [32], [45]. For this reason, in several occasions, we decided to
keep the same name used in such works.

In the following section we refer to the given satisfiability problem with
unbounded number of users as I∞ = (S∞, ϕt), where S∞ = ((U, A, V, CS, W,
WA), UA).

The simplification is composed of two steps: a preprocessing phase and
the pruning rules application.

4.7.1 Preprocessing preconditions

In this phase we preprocess all the preconditions using boolean algebra rules
to remove all the formulas negations. The advantage of this is that each “nor-
malized” formula is equivalent to the original, but it has no negation, so,
while we apply the pruning rules, we can simplify its checks a ∼ v in an
easier way.

4.7.2 Pruning rules

Here we introduce the pruning rules that are applied to the system and argue
their correctness.

Backward slicing. With this rule we remove a set of uninteresting attributes
from the policy. Intuitively an attribute au is uninteresting if it is never re-
quired for the satisfaction of the target formula ϕt, i.e. it is not required by
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any rule applied in any trace that leads to the satisfaction of ϕt. Here we pro-
pose an over-approximated technique to find uninteresting attributes. Let IA
be the smallest set satisfying these two requirements:

1. Dom(ϕt) ⊆ IA

2. a ∈ IA =⇒ ∀(ϕa, ϕu : a = v) : Dom(ϕa) ⊆ IA ∧ Dom(ϕu) ⊆ IA

The set IA contains all the attributes that are possibly used by the rules
required for the satisfaction of ϕt. We then simplify the original policy re-
moving (1) all the attributes not in IA, (2) all the rules having as target an
attribute not in IA (3) the initial value of all roles not in IA from UA.

This procedure does not alter the satisfiability of the target formula ϕt,
since we remove only attributes that are not in ϕt, nor in any preconditions
of can-set rules required in a trace leading to satisfaction of ϕt.

Attribute used with value. In many of the rules defined thereafter we use
a particular property that says if an attribute is ever required with a certain
value.

Definition 24. Let a an attribute and v be a value, we say that a is used with value
v, say (a ↓ v) in the policy if and only if

∃AV, ϕ ∈ Φa ∪Φu ∪ {ϕt} : (AV[a→ v] ` ϕ) ∧ (AV[a 6→ v] 6` ϕ)

Intuitively a ↓ v if there exists a precondition ϕ and an attribute-value
assignment AV such that ϕ is satisfied when a = v, and not when a 6= v.
This means that attribute a is required to have value v in at least the attribute
assignment AV to satisfying ϕ.

Immaterial administrative precondition. As described in section 4.3, the
number of user to track (k + 1 where k = |Φ 6≡a |) depend on the number of
non equivalent administrative preconditions. To reduce such bound here we
give three sufficient conditions, that grants that an administrative formula ϕa

is always satisfied, making it immaterial. When an administrative formula is
immaterial we substitute it with the constant true.

In the first sufficient condition states that if in the system we have at least
k + 2 users with the same initial configuration UA, that satisfies the adminis-
trative precondition ϕa of a can-set rule, then ϕa is immaterial. Indeed, since
we track just k + 1 users, we know that at least one user satisfying ϕa will be
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excluded from the satisfiability analysis and its configuration will not change
during the trace leading to the satisfaction of ϕt, so such user can always trig-
ger the can-set rule. The same applies even if there exists an attribute-value
assignment AV ∈ WA such that AV ` UA. Even in this case, since we can
add to the system as many users we want with attribute-value assignment
AV, we know that a user satisfying ϕa will always exists.

The second condition says that if in a can-set rule (ϕa, ϕu : a = v) the
administrative precondition ϕa is implied by the user precondition ϕu, then
we know that every time we want to apply the can-set rule, the target user
can also satisfy the administrative precondition, and then trigger it. This
makes ϕa immaterial.

The key idea of the last condition is that we want to check if there exists
a user u satisfying ϕa in the initial configuration UA(u), that has no need to
change its configuration to one UA′(u) that does not satisfy ϕa anymore. If
such user exists then we are guaranteed that it can always satisfy ϕa, making
the precondition immaterial. To apply such condition we need to check if
there exists a user u able to keep ϕa satisfied without preventing any another
formula ϕ ∈ (Φa ∪Φu ∪ {ϕt}) \ {ϕa} from being satisfied.

This last condition is verified restricting the values that each attribute ai ∈
Dom(ϕa) can assume in the formula and checking if a user satisfies it. This is
done creating a new formula ϕ′ where each attribute check a ∼ v is enforced
by an additional constraint defined as:

ϕ′′ = ∀v ∈ Range(ai) : (a ↓ v)⇒ (a = v)

This constraint restrict the possible values for the attribute a in order to
guarantee that no other preconditions will fail if ϕa is satisfied. Indeed if a
is required to have two different values vi and vj in two formulas ϕa and ϕ,
then we cannot ensure that a user will always satisfy ϕa since it could have
to set a to vj to satisfy ϕ. Instead, if it is never used as values different than vi,
we are sure we can use a = vi in ϕa without preventing other formulas to be
satisfied. Thus if there exists a user u such that it can satisfy ϕ′ in the initial
user-attribute assignment UA, we are guaranteed that it has no reason to
change its user-attribute assignment making ϕa not satisfiable anymore. For
this reason we say that ϕa can be always satisfied and so immaterial. Even if
this condition seems very strict, we noticed that in practice it is very effective
in spotting immaterial preconditions.
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Infinite users BMC. In an AABAC∞ system we can apply this rule to re-
move administrative preconditions from the policy. Indeed if we have any
number of classes of unbounded users, thanks to the theorem of section 4.3,
in the satisfiability problem we track just k + 1 of them. All the other infi-
nite users that are not tracked, however, could be used to satisfy adminis-
trative preconditions since they will not change the satisfiability of the tar-
get formula ϕt. Intuitively in any trace, we can take an arbitrary number of
users from any class of unbounded users, move them without changing the
tracked users attribute-assignment until a set of administrative precondition
Φ∞ = {ϕa1, . . . , ϕan} is satisfied, then we start the tracked user trace with
the advantage that the administrative formulas in Φ∞ are always satisfied.
A sufficient condition to prove this is to create a new AABAC satisfiability
problem derived from I∞: Iϕai

= (((U′, A, V, CS), UA′), ϕai) for each admin-
istrative preconditions ϕai ∈ Φa, where U′ and UA′ are created taking for
each AV ∈ WA a set UAV of k + 1 users from W, adding them to U′ and up-
dating UA′ such that for each uj ∈ UAV, UA′(uj) = AV. For each of the so
obtained satisfiability pro satisfiability problem Iϕai

we check if JIϕai
K is satis-

fiable or not as shown in section 4.5. If JIϕai
K is satisfiable then we can remove

ϕa from the policy and substitute it with the constant true.

Irrelevant attributes. An attribute a is irrelevant if every can-set rule can
be fired regardless the value assumed by a. This happens if every time we
require a value v for it, we are also able to set a to v. When an attribute is
irrelevant we can remove it from the policy without affecting the satisfiability
of the target formula ϕt.

When we spot an irrelevant attribute we can remove it from the policy
with the following steps: (1) all the preconditions sub-expressions where the
attribute a is used (a ∼ v) are simplified substituting to them the constant
true; (2) all can-set rules targeting a from CS are removed; (3) the attribute a is
removed from the initial configuration UA. While steps 2 and 3 are straight-
forward, we know that we can apply the step 1 since: (a) we know that ev-
ery time we need the attribute with a specific value, we are able to set it to
such value, so all checks on it will succeed; (b) we work with “normalized”
preconditions, so we do not have any negation in the formula and, for this
reason, in order to consider a check always satisfied, we can simply replace
it with the constant true.
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The condition to mark an attribute a as irrelevant is defined in table 4.15.
It is composed of two parts: the former predicates on administrative usages
of a, while the latter on regular ones. In the first part, regarding the adminis-
trative usage of a, we check if there exists a scenario where: (1) a user u has
an attribute-value assignment AV = UA(u) such that a has not the value v in
it (AV(a) 6= v), (2) the administrative precondition ϕa is not satisfied by AV
(AV 6` ϕa), but (3) it is satisfied after setting a to v (AV[a → v] ` ϕa), (4) all
can-set rules ((ϕa

′, ϕu
′ : a = v)) setting a to v with exception of r, since we

are trying to trigger it, are not fireable by u ((AV 6` ϕa
′) ∨ (AV 6` ϕu

′)). If the
such scenario exists we cannot remove a, since in at least one case it cannot
be set to the required value, and the condition fails. The second part of the
condition, regarding the regular usage of a, is similar to the first one, but in it
there is an additional user ua involved that has an attribute-value assignment
AVA able to trigger the can-set requiring a with value v (AVA ` ϕa), an that
can trigger himself the administrative precondition of the rule assigning a to
v (AVA ` ϕa

′).

Table 4.15 Irrelevant condition for attribute a.

∀ v ∈ Range(a) :
@AV : AV(a) 6= v ∧

∀ r = (ϕa, ϕu : a′ = v′) ∈ CS :
AV[a→ v] ` ϕa ∧ (¬AV ` ϕa)∧∧

(ϕa ′, ϕu ′ :a=v)∈CS\r :
(¬(AV ` ϕa

′) ∨ ¬(AV ` ϕu
′))

∧ ∀ v ∈ Range(a) :
@AV, AVA : AV(a) 6= v ∧

∀ r = (ϕa, ϕu : a′ = v′) ∈ CS :
AV[a→ v] ` ϕu ∧ (¬AV ` ϕu)∧
AVA ` ϕa∧∧

(ϕa ′, ϕu ′ :a=v)∈CS\r :
(¬(AVA ` ϕa

′) ∨ ¬(AV ` ϕa
′) ∨ ¬(AV ` ϕu

′))

Rule merge. Given two can-set rules r1 = (ϕa, ϕu : a = v) and r2 =

(ϕa
′, ϕu

′ : a = v) we can merge them if (1) they have the same target, (2)
the administrative precondition is equivalent (ϕa ≡ ϕa

′). The first condition
ensures us that all users satisfying the former administrative precondition
also satisfies the latter. If such condition holds, we can combine r1 and r2 in
a new rule r3 = (ϕa, ϕu ∨ ϕu

′ : a = v).
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Implied rules. Given two rules r1 = (ϕa, ϕu : a = v) and r2 = (ϕa
′, ϕu

′ :
a = v) with the same target. We say that r1 implies r2 if every time a user u is
able to trigger r2, than it can also fire r1. Here we give a sufficient condition
to check if r1 implies r2.

∀AV, AVA : (AVA ` ϕa
′ ∧AV ` ϕu

′) =⇒ (AVA ` ϕa ∧AV ` ϕu)

Indeed if such condition holds we know that every time we are ready to fire
r2, we are also able to trigger r1. For this reason we can remove r2 from CS.

Precondition simplification. With this rule we give a sufficient condition to
simplify a precondition in order to remove all disjunction branches that are
not necessary. Intuitively a disjunction branch is not necessary if no attribute-
value assignments satisfies it, or, when they do, even the other branch is
satisfied. If one branch of a disjunction is unnecessary we can replace the
whole disjunction with the other branch.

More formally let ϕ be a formula, having a disjunction ϕ1 = (ϕ2 ∨ ϕ3) as
sub-formula. Let ϕ′ be another formula that is equal to ϕ with the exception
that the sub-formula ϕ1 is substituted by ϕ′1 = (ϕ2 ∨ f alse). Then if there
exists no attribute-value assignment AV such that (AV ` ϕ) ∧ (AV ` ϕ′)

then we know that ϕ3 is never required for the satisfiability of ϕ, thus we can
replace ϕ with ϕ′ removing ϕ3. The same clearly applies for ϕ2.

Even though this rule seems pretty simple and not very effective, in sec-
tion 4.7.4 we show how it could be strengthened becoming dramatically ef-
fective.

Not fireable rules. This rule gives us a way to prove that a rule r = (ϕa, ϕu :
a = v) could never be fired. Intuitively a rule could be fired if there exists
two users satisfying respectively ϕa and ϕu. Checking if this condition is true
is hard as solving the original satisfiability problem, but we can use the over-
approximated analysis introduced in section 4.6 to check if ϕa and ϕu can
be satisfied. To do so, given the AABAC system ((U′, A′, V′, CS′), UA′) =

bS∞c derived by the original AABAC∞ one, we create two new satisfiability
problems Ia = (((U′, A′, V′, CS′ \ {r}), UA′), ϕa) and Iu = (((U′, A′, V′, CS′ \
{r}), UA′), ϕu) and check if LIaM or LIuM are not satisfiable. If they are not, we
know that in any trace we can not fire r. Notice that we remove r from the
policy of both Ia and Iu because we are tracing all executions leading to the
first activation of rule r.
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4.7.3 Pruning algorithm

The pruning algorithm for an administrative attribute-based access control
system takes a satisfiability problem I as input, it preprocess it, and then ap-
plies all the aforementioned rules until no further simplifications are possible
as we reached a fixpoint. It then returns the simplified problem I′. Notice
that since in all pruning rules we remove attributes, rules or we simplify the
precondition, the size of the satisfiability problem is reduced (or not altered)
at any step. Even though the fixpoint is not unique, since the order of appli-
cation of the rules changes the result, we are ensured that it will converge.

4.7.4 Restricting attribute-value assignments.

All the pruning rules described so far proved to be effective in reducing the
size of the policy without affecting the satisfiability of the formula ϕt. How-
ever in most of them (except the last one), we limit ourself to check if there
exists any attribute-value assignment AV, and we do not pose any reacha-
bility restriction on them. Unfortunately often it happens that the required
attribute-value assignment AV is spurious, i.e. not reachable from the ini-
tial user-attribute assignment UA. This severely limits the effectiveness of
the pruning. Taking inspiration from the “Not fireable rules” condition, we
make an additional refinement step by lifting many pruning rules to a se-
mantic level. The idea is to restrict the existential quantification over the
possible attribute-value assignment AV to only the reachable ones. Even
in this case a precise restriction is not feasible since it would be as hard as
solving the original satisfiability problem, but the good news is that we can
use the over-approximated analysis technique introduced in section 4.6 to
perform the restriction. Indeed, having a pruning rule that is applicable if
a certain precondition ϕ holds, we can encode a new satisfiability problem
I′ = (((U′, A′, V′, CS′), UA′), ϕ), where ((U′, A′, V′, R′), UA′) = bS∞c, and
check if it is satisfiable using over-approximation LI′M. To avoid useless com-
putation we apply this refinement step only when all the rules described so
far are not applicable, thus increasing scalability of the pruning.
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Table 4.16 Pruning standard ARBAC

Name Original policy Pruned policy Time#Users #Attr #Rules #Users #Attr #Rules
Bank 2000 533 5142 0 0 0 39.01 s
Bank 2000 533 5142 0 0 0 37.93 s
Bank 2000 533 5142 2 2 1 39.77 s
Bank 2000 533 5142 2 2 1 8.39 s

Hospital 1093 15 25 0 0 0 0.01 s
Hospital 1093 15 25 0 0 0 0.01 s
Hospital 1093 15 25 2 2 1 0.01 s
Hospital 1093 15 25 1 1 1 0.02 s

University 944 34 449 0 0 0 0.02 s
University 944 34 449 4 4 2 0.03 s
University 944 34 449 0 0 0 0.20 s
University 944 34 449 9 9 3 0.25 s

4.8 Experimental results

We implemented all the techniques for the analysis of sections 4.5 and 4.6
as well as the pruning algorithm described in section 4.7 in a experimen-
tal tool: VACSAT. To implement the pruning, as well as both analysis tech-
nique, we used a set of state of the art SMT solvers for quantifier-free boolean
and bitvectors logic formulas (QF_BV) such as YICES [29], Z3 [26], Boolec-
tor [60], MathSat [22]. We tested VACSAT against three different set bench-
marks taken from the literature: the first is the one used in [31, 71], the second
is the set of policies generated by the reduction from workflow systems de-
scribed in chapter 2 where the pruning technique of section 2.4 has not been
applied. The last set contains ARBAC policies with hierarchies where no flat-
tening have been applied. The first and the second sets contain only ARBAC
policies, while the third set contains an AABAC policy, obtained by the trans-
lation of the hierarchical ARBAC, where each attribute has a boolean domain.
This because we decided to avoid randomly-generated test cases, since these
often do not represent realistic systems. Results of our experiments are re-
ported in tables 4.16, 4.17, 4.18 and 4.19. For the analysis we choose YICES as
SMT backend, since it was the one with better performances among the oth-
ers on our benchmarks. However even if YICES is the default backend, VAC-
SAT leaves the choice to select another one of the aforementioned solvers. All
the tests are run on a Linux desktop with an i7-6700 processor and 12 GB of
RAM.
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Table 4.17 Pruning workflow

Name Original policy Pruned policy Time#Users #Attr #Rules #Users #Attr #Rules
Choice 121 55 66 37 43 43 0.84 s
Choice 121 55 66 78 42 38 0.94 s
Choice 121 55 66 0 0 0 0.12 s
Choice 121 46 57 23 34 34 0.42 s
Choice 121 46 57 0 0 0 0.08 s
Choice 121 46 57 49 27 23 0.37 s

First aid 121 49 65 25 37 37 0.76 s
First aid 121 49 65 38 33 33 0.73 s
First aid 121 49 65 0 0 0 0.15 s

Sequential 121 56 66 74 38 39 1.64 s
Sequential 121 55 64 80 43 43 1.51 s
Sequential 121 55 64 0 0 0 0.08 s
Sequential 121 47 57 56 30 31 1.05 s
Sequential 121 46 55 65 34 34 0.85 s
Sequential 121 46 55 0 0 0 0.08 s

Parallel 121 56 66 74 38 39 1.55 s
Parallel 121 56 66 0 0 0 0.12 s
Parallel 121 55 64 50 27 23 1.64 s
Parallel 121 46 55 65 34 34 0.88 s
Parallel 121 46 55 0 0 0 0.06 s
Parallel 121 47 57 0 0 0 0.08 s

4.8.1 VACSAT tool

The implemented tool, VACSAT, consists of approximatively 5000 lines of
C++ code. It could take as input an AABAC∞ satisfiability problem, or an
ARBAC role reachability one. If the input is an ARBAC role reachability
problem, the tool translates it to an AABAC instance, as described in sec-
tion 4.2.4. Then the AABAC∞ satisfiability problem is simplified applying all
the pruning rules defined in 4.7 until no more simplifications could be ap-
plied. VACSAT then checks if the problem is satisfiable by: firstly applying
the over-approximated analysis with 3 levels of refinement, then, if the given
problem is not proved unsatisfiable, it performs a bounded analysis with 30
rounds as bound.

Analysis. In the first versions of VACSAT, to perform both precise and
over-approximated analysis, we were generating a C program, as described
in sections 4.5 and 4.6. Then we were discharging the so generated program
to CBMC [50] or ESBMC [56], two well known state of the art checkers for
C programs. Unfortunately we noticed that this approach was introducing a
huge overhead, since both ESBMC and CBMC were applying lots of general
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Table 4.18 Pruning ARBAC with hierarchy

Name Original policy Pruned policy Time#Users #Attr #Rules #Users #Attr #Rules
Healthcare 100 15 27 2 2 1 0.01 s
Healthcare 100 15 27 2 2 1 0.01 s
Healthcare 100 15 27 2 2 1 0.01 s
Healthcare 100 15 27 2 2 1 0.01 s
Healthcare 100 15 27 2 2 1 0.01 s
Healthcare 100 15 27 2 2 1 0.01 s
University 101 36 59 2 2 1 0.05 s
University 101 36 59 2 2 1 0.05 s
University 101 36 59 2 2 1 0.05 s
University 101 36 59 5 4 3 0.01 s
University 101 36 59 4 4 3 0.01 s
University 101 36 59 5 4 2 0.01 s
University 101 36 59 4 4 3 0.01 s
University 101 36 59 2 2 1 0.08 s
University 101 36 59 2 2 1 0.06 s
University 101 36 59 2 2 1 0.06 s
University 101 36 59 4 4 3 0.05 s
University 101 36 59 4 4 3 0.01 s
University 101 36 59 4 4 2 0.05 s
University 101 36 59 5 4 3 0.05 s

optimizations that were not required in our specific case. To overcome this
overhead we decided to implement the analysis directly encoding the prob-
lem as an SMT formula, and then discharging it to the SMT backend. This
improved dramatically the performance of the analysis by several order of
magnitude.

Pruning. The simplification procedure, described in section 4.7, has been
implemented through a set of queries that are solved by the chosen SMT
backend. All the logic constructs that are not fully supported by some of
the backends, such as the universal quantifier, are rewritten in terms of sup-
ported constructs. The order of application of the simplification rules has
been chosen after an experimental evaluation to enhance scalability of the
analysis, thus slower rules are applied only when the simpler, but faster ones
are not applicable anymore.

4.8.2 Results discussions

Pruning evaluation. Tables 4.16, 4.17 and 4.18 reports in details times and
results of the simplification process in the three different sets of benchmarks.
We can notice that the simplification process is dramatically effective on the
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Table 4.19 Total analysis time

Name Without With Res Name Without With Respruning pruning pruning pruning

A
R

BA
C

Bank - 38.90 s N

W
O

R
K

FL
O

W Parallel 1.94 s 3.22 s S
Bank - 37.99 s N Parallel 0.94 s 0.12 s N
Bank - 39.81 s S Parallel 26.68 s 3.45 s ?
Bank - 8.27 s S Parallel 0.95 s 1.66 s S

Hospital 0.3 s 0.01 s N Parallel 0.60 s 0.06 s N
Hospital 0.02 s 0.01 s N Parallel 0.62 s 0.08 s N
Hospital 0.97 s 0.01 s S

H
IE

R
A

R
C

H
Y

Healthcare 0.06 s 0.01 s S
Hospital 1.74 s 0.02 s S Healthcare 0.05 s 0.01 s S

University 0.11 s 0.02 s N Healthcare 0.07 s 0.01 s S
University 2.25 s 0.03 s S Healthcare 0.08 s 0.01 s S
University 0.02 s 0.20 s N Healthcare 0.01 s 0.04 s S
University 12.20 s 0.24 s S Healthcare 0.05 s 0.01 s S

W
O

R
K

FL
O

W

Choice 1.48 s 2.66 s S University 0.44 s 0.05 s S
Choice 1.44 s 2.80 s S University 0.44 s 0.05 s S
Choice 0.91 s 0.13 s N University 0.43 s 0.05 s S
Choice 1.60 s 1.20 s S University 0.77 s 0.02 s S
Choice 0.63 s 0.08 s N University 0.64 s 0.02 s S
Choice 1.31 s 0.70 s S University 0.77 s 0.01 s S

First aid 3.03 s 2.10 s S University 0.67 s 0.02 s S
First aid 3.06 s 1.44 s S University 0.45 s 0.10 s S
First aid 0.71 s 0.15 s N University 0.46 s 0.06 s S

Sequential 15.10 s 3.12 s S University 0.48 s 0.07 s S
Sequential 1.51 s 3.22 s S University 0.80 s 0.05 s S
Sequential 0.58 s 0.07 s N University 0.66 s 0.02 s S
Sequential 1.49 s 1.67 s S University 0.82 s 0.05 s S
Sequential 1.69 s 1.58 s S University 0.68 s 0.05 s S
Sequential 0.88 s 0.08 s N - - - -

ARBAC policies of table 4.16, as well as in the ARBAC with hierarchy ones
reported in table 4.18, returning in all cases policies with less than 4 can-set
rules. The pruning technique, instead, was not so effective in the case of some
policies reported in table 4.17. This is because the reduction from workflow to
role reachability introduces lots of synchronizations that are hard to simplify
with the approaches given in section 4.7. Notice that, after the simplification
phase, no rules nor users are left in the system, this happens when the prob-
lem is not satisfiable. We can also notice that the times for the simplification
process are negligible in almost all cases, with exception to the Bank policies
of table 4.16. This slow simplification time is due to the great size in terms
of attributes and rules of those policies, anyway in table 4.19 we can notice
that those policies are not tractable without the simplification step. Finally
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is worth of mention that even if pruning times are greater than the ones ob-
tained by previous works [33], our simplification technique works on a more
general model where we need to use a SMT solver, since a faster syntactical
approach is not feasible.

Analysis evaluation. Table 4.19 reports times and results of the whole anal-
ysis for each set of benchmarks with and without the pruning phase. Here
we can notice that the analysis is able to prove that the problems are satisfi-
able (S) or not satisfiable (N) in all cases except one workflow instance. We
can also notice that the simplification process enhances the scalability of the
analysis in almost all examples, and when this is not true, the analysis time
is however very small. Another interesting point is that, as mentioned be-
fore, in all cases where the problem is not satisfiable, the time for the analysis
with pruning phase roughly coincides with the simplification time. This is
because the simplification phase is able to remove all the can-set rules from
the policy, thus trivially proving the unsatisfiability of the problem.

4.9 Conclusions

In this chapter we provided a novel specification of an administrative version
of Attribute-Based Access Control Model system (AABAC) and we showed
that it is more general than ARBAC systems. We devised a technique to re-
duce the number of users in a system that could also be exploited to reduce
systems with unbounded number of users to bounded ones. We also gave
two techniques for the verification of satisfiability problems for AABAC sys-
tems. Moreover we proposed a simplification technique to reduce the size
of the satisfiability problem without affecting its satisfiability. Finally we im-
plemented all the aforementioned techniques in the VACSAT tool, and we
tested its effectiveness against a large set of benchmarks from the literature.

Future work. As future works, we plan to formally prove correctness of the
pruning and of the presented analysis techniques. Moreover we plan to ex-
tend the over-approximated analysis technique in two ways: (1) we want to
track all the users in the system, thus enabling the possibility to check even
the administrative preconditions; (2) we want to find a way to reduce the
number of spurious results by dynamically selecting and refining all the in-
accurate steps. We also want to produce a human readable counterexample
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for the satisfiability problem even in presence of pruning. Finally we would
like to extend the model in order to support more sophisticated administra-
tive policies.
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Conclusions

In this thesis we attempted to provide formal methods for the specification
and verification of access control related systems. The contributions we gave
are the following:

• a model for workflows based on stable event structures where the secu-
rity is enforced by an Administrative Role-Based Access Control system
with the addition of binding and separation of duty constraints;

• a notion of security against collusion on workflow systems, and a static
analysis technique to state if a workflow satisfies it;

• a novel administrative model for Attribute-Based Access Control sys-
tems. We proved also that it is more general than the ARBAC one, and
we defined the satisfiability problem for AABAC systems that can be
exploited to verify if the given policy satisfies many security related
properties;

• a model for AABAC systems with unbounded number of users and we
gave a technique to reduce it to one with bounded number of users;

• two scaleable refineable approximated verification techniques, one un-
der-approximated and the other over-approximated, to solve the satis-
fiability problem, and a pruning technique aimed at reducing the size
of the problem before starting the verification.

Each contribution has been formally introduced and then implemented in
a tool to verify the effectiveness of the techniques for the analysis, and have
been tested against many realistic case studies from different domains.

Future work. As future works, we plan to continue the research in work-
flow systems in order to extend our theory to support workflows including
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loops. Furthermore we plan to extend the work by designing and imple-
menting a translator from high-level business process description languages
such as BPMN or BPEL into event structures.

We also plan to complete the work on Administrative Attribute-Based Ac-
cess Control by formally proving soundness of the pruning and the presented
analysis techniques. Moreover we plan to extend the over-approximated
analysis technique in order to find a way to reduce the number of spurious
results by dynamically selecting and refining the steps that are inaccurate.
We want to produce a human readable counterexample for the satisfiability
problem even in presence of pruning. Finally we want to extend the model
in order to support more sophisticated administrative policies.
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Appendix A

Fine-grained Detection of Privilege
Escalation Attacks on Browser
Extensions

A.1 Introduction

Browser extensions customize and enhance the functionalities of standard
web browsers by intercepting and reacting to a number of events triggered
by navigation, page rendering or updates to specific browser data structures.
While many extensions are simple and just installed to customize the nav-
igation experience, other extensions serve security-critical tasks and have
access to powerful APIs, providing access to the download manager, the
cookie jar, or the navigation history of the user. Hence, the security of the
web browser (and the assets stored therein) ultimately hinges on the security
of the installed browser extensions. Just like browsers, extensions typically
interact with untrusted and potentially malicious web pages: thus, all mod-
ern browser extension architectures rely on robust security principles, such
as privilege separation [67].

Browser Extension Architecture. Privilege separated architectures require
programmers to structure their code in separated modules, running with dif-
ferent privileges. In the realm of browser extensions, privilege separation is
implemented by structuring the extension in two different types of compo-
nents: a privileged background page, which has access to the browser APIs and
runs isolated from web pages; and a set of unprivileged content scripts, which
are injected into specific web pages, interact with them and are at a higher
risk of attacks [8, 20]. The permissions available to the background page are
defined at installation time in a manifest file, to limit the dangers connected
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to the compromise of the background page. Content scripts interacting with
different web pages are isolated one from each other by the same-origin pol-
icy of the browser, while process isolation protects the background page. The
message passing interface available to extensions only allows the exchange
of serialized JSON objects1 between different components, hence pointers
cannot cross trust boundaries.

Language Support for Privilege Separation. We are interested here in un-
derstanding to which extent current browser extension development frame-
works, such as the Google Chrome extension APIs, naturally support privi-
lege separation and comply with the underlying security architecture. Wor-
ryingly, we notice that in these frameworks a single privileged module typi-
cally offers a unified entry point to security-sensitive functionalities to all the
other extension components, even though not all the components need to ac-
cess the same functionalities and different trust relationships exist between
different components.

To make matters worse, current programming patterns adopted in brows-
er extensions do not safeguard the programmer against compromised compo-
nents, even though the underlying privilege separated architecture was de-
signed with compromise in mind. Compromise adds another layer of com-
plexity to security-aware extension development, since corrupted extension
components may get access to surprisingly powerful privileges.

A.1.1 Motivating Example

We illustrate our argument with a simple, but realistic example, inspired by
one of the many cookie managers available in the Chrome Web Store (e.g.,
EditThisCookie). Consider an extension which allows users to add, delete or
modify any cookie stored in the browser through an intuitive user interface.
Additionally, it allows web pages to specify a set of security policies for the
cookies they register: these client-side security policies are enforced by the
extension and can be used to significantly strengthen web authentication [14,
15].

The extension is composed of three components: two content scripts C
and O, and a background page B. The background page is given the cookies

permission, which grants it access to the browser cookie jar. The content

1http://json.org
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script O is injected in the options.html page packaged with the extension
and it provides facilities for cookie editing; when the user is done with his
changes, O sends B a message and instructs it to update the cookie jar. The
content script C, instead, is injected in the DOM of any HTTPS web page P
opened by the browser: it is essentially a proxy, which forwards to B the
security policies specified by P using the message passing interface. The
messages sent by P are extended by C with an additional information: the
website which specified the security policy.

A possible run involving all the described components is the following,
where the last message is triggered by a user click:

P→ C : {tag: "policy", spec: "read-only"}

C → B : {tag: "policy", site: "paypal.com", spec: "read-only"}

O→ B : {tag: "upd",

ck: {dom: "a.com", name: "res", value: "1440x900"}}

Using the Google Chrome extension API, the components are programmed
in JavaScript, typically by registering appropriate listeners for incoming mes-
sages. For instance, the content script C can be programmed as follows:

1 window.addEventListener("message", function(event) {

2 /* Accept only internal messages */

3 if (event.source != window) { return; }

4 /* Get the payload of the message */

5 var obj = event.data;

6 /* Extend the message with the site and forward it */

7 obj.site = window.location.hostname;

8 chrome.runtime.sendMessage (obj);

9 }, false);

Web pages can communicate with C by using the window.postMessage

method available in JavaScript, thus opting-in to custom client-side protec-
tion.

The background page B, instead, is typically programmed as follows:

1 chrome.runtime.onMessage.addListener(

2 function (msg , sender , sendResp) {

3 /* Handle the reception of new policies */

4 if (msg.tag == "policy") {

5 /* Store a new (valid) policy for the site */

6 if (is_valid (msg.spec))

7 localStorage.setItem (msg.site , msg.spec);

8 else console.log ("Invalid policy");

9 }

10 /* Handle requests for cookie updates */
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11 else if (msg.tag == "upd") {

12 chrome.cookies.set (msg.ck);

13 }

14 else console.log ("Invalid message");

15 });

This tag-based coding style featuring a single entry point to the back-
ground page is very popular, since it is easy to grasp and allows for fast
prototyping, but it also fools programmers into underestimating the attack
surface against the extensions they write. In this example, a malicious web
page can compromise the integrity of the cookie jar by exploiting the poorly
programmed content script C through the following method invocation:

window.postMessage ({tag: "upd", ck: {dom: "google.com",

name: "SID", value: "aQe73ajs..."}});

This allows the web page to carry out dangerous attacks, like session fixation
or login CSRF on arbitrary websites [15]. The issue can be rectified by includ-
ing a sanitization in the code of C and by ensuring that only messages with
the "policy" tag are delivered to the background page.

The revised code is more robust than the original one and it safeguards
the extension against the threats posed by malicious (or compromised) web
pages. Unfortunately, it does not yet protect the background page against a
compromised content script: if an attacker is able to exploit a code injection
vulnerability in C, he may force the content script into deviating from the
intended communication protocol. Specifically, an attacker with scripting
capabilities in C may forge arbitrary messages to the background page and
taint the cookie jar.

A much more robust solution then consists in introducing two distinct
communication ports for C and O, and dedicating these ports to the reception
of the two different message types (see Section A.5). This is relatively easy
to do in this simple example, but, in general, decoupling the functionalities
available to the background page to shield it against privilege escalation is
complex, since n different content scripts or extensions may require access to
m different, possibly overlapping sets of privileged functionalities.

A.1.2 Contributions

Our contributions can be summarized as follows:
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1. we model browser extensions in a formal language that embodies the
essential features of JavaScript, together with a few additional con-
structs dealing with the security aspects specific to the browser exten-
sion architecture;

2. we formalize a fine-grained characterization of the privileges which can
be escalated by an active opponent through the message passing inter-
face, assuming the compromise of some untrusted extension compo-
nents;

3. we propose a flow logic specification estimating the safety of browser
extensions against the threats of privilege escalation and we prove its
soundness, despite the best efforts of an active opponent. We show how
the static analysis works on the example above and supports its secure
refactoring;

4. we present CHEN (CHrome Extension aNalyser), a prototype tool that
implements our flow logic specification, providing an automated se-
curity analysis of existing Google Chrome extensions. The tool opens
the way to an automatic security-oriented refactoring of existing exten-
sions. We show CHEN at work on ShareMeNot [66], a real extension for
Google Chrome, and we discuss how the tool spots potentially danger-
ous programming practices.

A.2 Related Work

Browser Extension Security. Carlini et al. performed a security evaluation
of the Google Chrome extension architecture by means of a manual review of
100 popular extensions [20]. Liu et al. further analysed the Google Chrome
extension architecture, highlighting that it is inadequate to provide protec-
tion against malicious extensions [53]. Guha et al. [35] proposed a method-
ology to write provably secure browser extensions, based on refinement typ-
ing; the approach requires extensions to be coded in Fine, a dependently-
typed ML dialect. Karim et al. developed Beacon, a static detector of ca-
pability leaks for Firefox extensions [49]. A capability leak happens when a
component exports a pointer to a privileged piece of code. These leaks vio-
late the desired modularity of Firefox extensions, but they cannot be directly
exploited by content scripts, since the message passing interface prevents
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the exchange of pointers. Finally, information flow control frameworks have
been proposed for browser extensions [27, 6].

Privilege Escalation Attacks. Privilege escalation attacks have been exten-
sively studied in the context of Android applications, starting with [25, 63].
Fragkaki et al. formalized protection against privilege escalation in Android
applications as a noninterference property, which is then enforced by a dy-
namic reference monitor [34]. Bugliesi et al. presented a stronger security
notion and discussed a static type system for Android applications, which
provably enforces protection against privilege escalation [16]. The present
work generalizes both these proposals, by providing a fine-grained view of
the privileges leaked to an arbitrarily powerful opponent. Akhawe et al. [3]
pointed out severe limitations in how privilege separation is implemented
in browser extension architectures. Their work has been very inspiring for
the present paper, which provides a formal counterpart to many interest-
ing observations contained therein. For instance, [3] defines bundling as the
collection of disjoint functionalities inside a single module running with the
union of the privileges required by each functionality. Our formal notion of
privilege leak captures the real dangers of permission bundling.

Formal Analysis of JavaScript. Maffeis et al. formalized the first detailed
operational semantics for JavaScript [54] and used it to verify the (in)security
of restricted JavaScript subsets [55]. Jensen et al. proposed an abstract inter-
pretation framework for JavaScript in the realm of type analysis [43]. Guha
et al. defined λJS as a relatively small core calculus based on a few well-
understood constructs, where the numerous quirks of JavaScript can be en-
coded with a reasonable effort [36]. The adequacy of the semantics has been
assessed by extensive automatic testing. The calculus has been used to sup-
port static analyses to detect type errors in JavaScript [37] and to verify the
correctness of JavaScript sandboxing [62]. We also develop our flow anal-
ysis on top of λJS, extending it to reason about browser extension security.
An alternate solution would have been to base our work on S5 [61]. This
approach would have allowed to analyse browser extensions using ECMA5-
specific features, but at the cost of significantly complicating the formal de-
velopment.
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A.3 Modelling Browser Extensions

Our language embodies the essential features of JavaScript, formalized as in
λJS [36], up to a number of changes needed to deal with the security aspects
specific to the browser extension architecture. In our model, several expres-
sions run in parallel with different permissions and are isolated from each
other: communication is based on asynchronous message exchanges.

A.3.1 Syntax

We assume disjoint sets of channel names N (a, b, m, n) and variables V (x, y,
z). We let r range over a set of references R, and we assume a lattice of
permissions (P ,v), letting ρ range over P . The syntax of the language is
given below:

Constants c ::= num | str | bool | unit | undefined,
Values v ::= n | x | c | r` | λx.e | {−−−−→stri : vi}
Expressions e ::= v | let x = e in e | e e | op(−→ei ) | while (e) { e }

| if (e) { e } else { e } | e; e | e[e] | e[e] = e
| delete e[e] | ref` e | deref e | e := e
| e〈e . ρ〉 | exercise(ρ)

Systems s ::= µ; h; i Memories µ ::= ∅ | µ, r`
ρ7→ v

Handlers h ::= ∅ | h, a(x / ρ : ρ′).e Instances i ::= ∅ | i, a{|e|}ρ

All the value forms are standard, we just note that references r` bear a
label `, taken from a set of labels L. Labels identify the program point where
references are created: this is needed for the static analysis and plays no role
in the semantics. As usual, the lambda abstraction λx.e binds x in e.

As to expressions, the first three lines correspond to standard constructs
inherited from λJS, including function applications, basic control-flow oper-
ators, and the usual operations on records (field selection, field update/cre-
ation, field deletion) and references (allocation, dereference and update). As
anticipated, reference allocation comes with an annotation `. We leave un-
specified the precise set of primitive operations op. The expression let x =

e in e′ binds x in e′.
The last line of the productions includes the new constructs added to λJS.

The expression a〈v . ρ〉 sends the value v on channel a. In order for the sender
to protect the message, the expression specifies that the value can be received
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by any handler with at least permission ρ that is listening on a. The expres-
sion exercise(ρ) exercises the privilege ρ. This construct uniformly abstracts
any security-sensitive operation, such as the call to a privileged API, which
requires the permission ρ to successfully complete the task.

We let h range over multisets of handlers of the form a(x / ρ : ρ′).e. The
handler a(x / ρ : ρ′).e listens for messages on the channel a. When a value v
is sent over a, a new instance of the handler is spawned to run the expression
e with permission ρ′, with the bound variable x replaced by v. The handler
protects its body against untrusted senders by specifying that only instances
with permission ρ can be granted access. Intuitively, the body of a han-
dler corresponds to the function passed as a parameter to the addListener

method of chrome.runtime.onMessage. Different handlers can listen on the
same channel: in this case, only one handler is non-deterministically dis-
patched. We often refer to a handler with the name of the channel where it is
registered.

We let i range over multisets of running instances of the form a{|e|}ρ. The
instance a{|e|}ρ is a running expression e, which is granted permission ρ. The
instance is annotated with the channel name a corresponding to the handler
which spawned it.

We let µ range on memories, i.e., sets of bindings of the form r`
ρ7→ v. A

memory is a partial map from (labelled) references to values. The annota-
tion ρ on the arrow records the permission of the instance that created the
reference, and at the same time tracks the permissions required to have read-
/write access on the reference. Given a memory µ, we let dom(µ) = {r | r`

ρ7→
v ∈ µ}.

Finally, a system is defined as a triple s = µ; h; i. Intuitively, a system
evolves by letting running instances (i) communicate through the memory
µ when they are granted exactly the same permissions, (ii) spawn new in-
stances by sending messages to handlers in h, and (iii) perform internal com-
putations.

A.3.2 Semantics

The small-step operational semantics of the calculus is defined in terms of a
labelled reduction relation between systems s α−→ s′. Labels play no role in
the semantics of systems: they are just used to track useful information that
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Table A.1 Small-step operational semantics of systems (s α−→ s′)
(R-SYNC)
h = h′, b(x / ρs : ρb).e ρs v ρa ρr v ρb v serializable

µ; h; a{|E〈b〈v . ρr〉〉|}ρa

〈a:ρa,b:ρb〉−−−−−→ µ; h; a{|E〈unit〉|}ρa , b{|e[v/x]|}ρb

(R-SET)

µ; h; i α−→ µ′; h′; i′

µ; h; i, i′′ α−→ µ′; h′; i′, i′′

(R-EXERCISE)
ρ v ρa

µ; h; a{|E〈exercise(ρ)〉|}ρa

a:ρa�ρ−−−−→ µ; h; a{|E〈unit〉|}ρa

(R-INTERNAL)
µ; e ↪→ρ µ′; e′

µ; h; a{|e|}ρ
·−→ µ′; h; a{|e′|}ρ

E ::= • | let x = E in e | E e | v E | op(−→vi , E,−→ej ) | if (E) {e} else {e}
| E[e] | v[E] | E[e] = e | v[E] = e | v[v] = E | E; e | E〈e . ρ〉 | v〈E . ρ〉
| delete E[e] | delete v[E] | ref` E | deref E | E := e | v := E.

is needed in the proofs. The syntax of labels α is defined as follows:

α ::= · | a:ρa � ρ | 〈a:ρa, b:ρb〉.

The label a:ρa � ρ records the exercise of the privilege ρ by an instance a run-
ning with permissions ρa. The send label 〈a:ρa, b:ρb〉 records that an instance
a with permissions ρa is sending a message to a handler b with permissions
ρb. Finally, the empty label · tracks no information. We denote traces by −→α
and we write

−→α
=⇒ for the reflexive-transitive closure of α−→. Table A.1 collects

the reduction rules for systems and the definition of evaluation contexts. We
write E〈e〉 when the hole • in E is filled with the expression e.

Rule (R-SYNC) implements a security cross-check between the sender a
and the receiver b: by specifying a permission ρr on the send expression, the
instance a requires the handler b to have at least ρr, while by specifying a
permission ρs in its definition, the handler b requires the instance a to have at
least ρs. If the security check succeeds, a new instance of b is created and the
sent value v is substituted to the bound variable x in the body of the handler.
Communication is restricted to serializable values, according to the following
definition.

Definition 25 (Serializable Value). A value v is serializable iff either (1) v is a
name n or a constant c; or (2) v = {−−−−→stri : vi} and each vi is serializable.

This restriction is consistent with the browser extension security archi-
tecture, which prevents the exchange of pointers between different compo-
nents [20].
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Table A.2 Small-step operational semantics of expressions (µ; e ↪→ρ µ′; e′)

(JS-EXPR)
e1 ↪→ e2

µ; e1 ↪→ρ µ; e2

(JS-REF)

r /∈ dom(µ) µ′ = µ, r`
ρ7→ v

µ; ref` v ↪→ρ µ′; r`

(JS-DEREF)

µ = µ′, r`
ρ7→ v

µ; deref r` ↪→ρ µ; v

(JS-SETREF)

µ = µ′, r`
ρ7→ v′

µ; r` := v ↪→ρ µ′, r`
ρ7→ v; v

(JS-CONTEXT)
µ; e1 ↪→ρ µ′; e2

µ; E〈e1〉 ↪→ρ µ′; E〈e2〉

Rule (R-EXERCISE) reduces the expression exercise(ρ). Reduction takes
place only when the expression runs in an instance a which is granted per-
mission ρa w ρ. Rule (R-SET) allows for reducing any of the parallel instances
running in a system, while rule (R-INTERNAL) performs an internal reduc-
tion step based on the auxiliary transition relation µ; e ↪→ρ µ′; e′, annotated
with the permission ρ granted to the instance. The internal reduction relation
is defined in Table A.2; it relies on a basic reduction e ↪→ e′, which is directly
inherited from λJS and lifted to the internal reduction by rule (JS-EXPR). The
definition of the basic reduction is standard and given in the full version [17]..

A reference is allocated by means of rule (JS-REF). According to this rule,
two references may have the same label (e.g., when reference allocation oc-
curs inside a program loop) but each reference is guaranteed to have a dis-
tinct name. Since read/write operations on memory ultimately depend on
the reference name, this ensures that labels on references do not play any
role at runtime.

Finally, rules (JS-SETREF) and (JS-DEREF) deal with reference update and
dereference. Observe that, according to these rules, both read and write
access to memory requires exactly the permission ρ annotated on the refer-
ence. In other words, instances with different privileges cannot communi-
cate through the memory. This corresponds to the heap separation policy
implemented in modern browser extension architectures.

A.3.3 Privilege Leak

We now define the notion of privilege leak, which dictates an upper bound to
the privileges which can be escalated by an opponent when interacting with
the system. We start by defining when a system exercises a given permission.
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Definition 26 (Exercise). Given a system s, we say that s exercises ρ iff there exist

s′ and −→α such that s
−→α
=⇒ s′ and a:ρa � ρ ∈ {−→α }.

In our threat model, an opponent can mount an attack against the system
by registering new handlers, which may intercept messages sent to trusted
components, and/or by spawning new instances, which may tamper with
the system by writing in shared memory cells and by using the message pass-
ing interface.

Formally, an opponent is defined as a pair (h, i), with an upper bound ρ

for the permissions granted to h and i. For technical reasons, we assume that
the set of variables V is partitioned into the sets Vt and Vu (trusted and un-
trusted variables). We stipulate that all the variables occurring in the system
are drawn from Vt, while all the variables occurring in the opponent code
belong to Vu.

Definition 27 (Opponent). A ρ-opponent is a closed pair (h, i) where

• for any handler a(x / ρ : ρ′).e ∈ h, we have ρ′ v ρ;

• for any instance a{|e|}ρ′ ∈ i, we have ρ′ v ρ;

• for any x ∈ vars(h) ∪ vars(i), we have x ∈ Vu.

Definition 28 (Privilege Leak). A (initial) system s = µ; h; ∅ leaks ρ against ρ′

(with ρ 6v ρ′) iff, for any ρ′-opponent (ho, io), the system s′ = µ; h, ho; io exercises
at most ρ.

Our security property is given over initial systems, that is systems with
no running instances, since we are interested in understanding the interplay
between the exercised permissions and the communication interface exposed
by the handlers in the system. Intuitively, a system s is “more secure” than
another system s′ if it leaks fewer privileges than s′ against any possible ρ.

A.3.4 Encoding the Example

To illustrate, we encode in our formal language the example in Section A.1.1.
Consider the system s = µ; hc, ho, hb; ∅, where the handlers hc, ho and hb en-
code the two content scripts and the background page. The memory µ en-
codes the private memory of the background page, and it is used to store
library functions. We grant the background page two different permissions:
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MemB to access the references under its control and Cookies to access the
cookie jar.

Let B = MemBt Cookies, we let µ = lib`
B7→ obj, where:

obj = {“set” : λx.exercise(Cookies); set/update the cookie x,

“is_valid” : λx.check validity of policy x,

“store” : λx.λy.exercise(MemB); bind policy y to site x,

“log” : λx.print message x}

We omit the internal logic of the functions, we just observe that we put in
place the exercise expressions corresponding to the usage of the required
privileges. The definition of the handler hb modelling the background page
is given below, where C and O are the permissions granted to the two content
scripts in order to let them contact B through the message passing interface.

hb , b(x / CuO : B).
let mylib = deref lib` in
if (x[“tag”] == “policy”) {

if (mylib[“is_valid”] (x[“spec”])) {
(mylib[“store”] (x[“site”])) (x[“spec”])
}
else { mylib[“log”] “invalid policy” }
}
else {

if (x[“tag”] == “upd”) { (mylib[“set”]) (x[“ck”]) }
else { mylib[“log”] “invalid message” }
}

The handler can be accessed by both C and O, as modelled by the guard
CuO.

A simplified encoding of the content scripts, corresponding to the han-
dlers hc and ho respectively, is given below. This simple encoding will be
enough to explain the most important aspects of the flow analysis in Sec-
tion A.4.3.

hc , c(y / P : C).let y′ = (y[“site”] = . . .) in b〈y′ . B〉
ho , o(z /> : O).let z′ = {“tag” : “upd”, “ck” : . . .} in b〈z′ . B〉

The only notable point here is that ho is protected with permission >, since it
is injected in the trusted options page of the extension, while hc is protected
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with permission P, modelling access to window.postMessage method used to
communicate with C from a web page. As a consequence, any P-opponent
has the ability to activate hc through the message passing interface.

Based on the encoding, we estimate the robustness against privilege es-
calation attacks. It turns out that the system s leaks B against P, since a P-
opponent can force hc into forwarding an arbitrary (up to the choice of the
“site” field) message to hb, hence all the privileges available to hb may be
escalated.

Assume then that hc is replaced by a new handler h′c, defined as follows:

h′c , c(y / P : C). let ynew = {“tag” : “policy”, “site” : . . .} in
let y′ = (ynew[“spec”] = y[“spec”]) in b〈y′ . B〉

The new system stag = µ; h′c, ho, hb; ∅ leaks MemB against P, since a P-oppo-
nent can only communicate with hb through the proxy h′c, which ensures that
only messages tagged with “policy” are delivered to the background page
and the integrity of the cookie jar is preserved. However, stag leaks B against
C, since a C-opponent can send arbitrary messages to hb and thus escalate all
the available privileges.

A.3.5 Fixing the Example

The key observation here is that there is no good reason to let C and O share
the same entry point to B, since they request distinct functionalities. We can
then split the logic of hb into two different handlers: hb1 protected by permis-
sion C, and hb2 protected by permission O.

b1(x / C : B). b2(x /O : B).

let mylib = deref lib` in let mylib = deref lib` in

if (x[“tag”] == “policy”) { ... } if (x[“tag”] == “upd”) { ... }
else {mylib[“log”] “invalid policy”} else {mylib[“log”] “invalid message”}

Clearly, the code of hc and ho must also be changed to communicate on
the new channels b1 and b2 respectively: call these new handlers ĥc and ĥo.
Now the handler hb1 is only accessible by ĥc, while the handler hb2 can only
be accessed by ĥo, hence, if O is not compromised, the integrity of the cookie
jar is preserved.

Unfortunately, the current extension architecture does not support a fine-
grained assignment of permissions to different portions of the background
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page [3], hence we are forced to violate the principle of least privilege and
assign to both hb1 and hb2 the full set of permissions B = MemB t Cookies

available to the original hb, even though hb1 and hb2 only require a subset
of these permissions. Still, the system schan = µ; ĥc, ĥo, hb1 , hb2 ; ∅ only leaks
MemB against C.

Notice that this refactoring can be performed on existing Google Chrome
extensions by using the chrome.runtime.connect API for the dynamic cre-
ation of communication ports towards the background page.

A.4 Security Analysis: Flow Logic

To precisely reason about privilege escalation, it is crucial to statically cap-
ture the interplay between the format of the exchanged messages and the
exercised privileges: we then resort to the flow logic framework [57]. The
main judgement of our flow analysis is E 
 s despite ρ, meaning that the
environment E represents an acceptable analysis estimate for s, even when s
interacts with a ρ-opponent. This implies that any ρ-opponent will at most
escalate privileges up to an upper bound which can be immediately com-
puted from E (see Theorem 5).

A.4.1 Analysis Specification

Abstract Values. We let V̂ stand for the set of abstract values v̂, defined as
sets of abstract pre-values (we often omit brackets around singletons):

Abstract pre-values û ::= n | ĉ | ` | λxρ | 〈|−−−−→stri : vi|〉E ,ρ

Abstract values v̂ ::= {û1, . . . , ûn}.

Channel names n are abstracted into themselves. The abstract pre-value ĉ
stands for the abstraction of the constant c. We dispense from listing all the
abstract pre-values corresponding to the constants of our calculus, but we
assume that they include at least true, false, unit and undefined.

A reference r` is abstracted into the label `. A function λx.e is abstracted
into the simpler representation λxρ, keeping track of the privileges ρ exer-
cised by the expression e. The abstract pre-value 〈|−−−−→stri : vi|〉E ,ρ is the abstract
representation of the concrete record {−−−−→stri : vi} in the environment E , assum-
ing that the record is created in a context with permission ρ. We do not fix
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any apriori abstract representation for records, e.g., both field-sensitive and
field-insensitive representations are admissible.

We associate to each concrete operation op an abstract counterpart ôp on
abstract values. We also assume three abstract operations ĝet, ŝet and d̂el,
mirroring the standard get, set and delete field operations on records. Finally,
we assume that abstract values are ordered by a pre-order v containing set
inclusion, with the intuition that smaller abstract values are more precise (we
overload the symbol used to order permissions, to keep the notation lighter).
All the abstract operations and the abstract value pre-order can be chosen
arbitrarily, as long as they satisfy some relatively mild and well-established
conditions needed in the proofs. For instance, we require abstract operations
to be monotonic and to soundly over-approximate their concrete counter-
parts (see the full version [17] for details).

Abstract Environments. The judgements of the analysis are specified rel-
ative to an abstract environment E = Υ̂; Φ̂; Γ̂; µ̂, consisting of the following
four components, where Λ = {λx | x ∈ V} is used to store the abstract return
value for lambdas:

Abstract variable environment Γ̂ : V ∪Λ→ V̂
Abstract memory µ̂ : L×P → V̂
Abstract stack Υ̂ : N ×P → P ×P
Abstract network Φ̂ : N ×P → V̂.

Abstract variable environments are standard: they associate abstract values
to variables and to functions, corresponding to the abstraction of their return
value. Abstract memories are also standard: they associate abstract values
to labels denoting references. Specifically, if µ̂(`, ρ) = v̂, then v̂ is a sound
abstraction of any value stored in a reference labelled with ` and protected
with permission ρ.

Abstract stacks are novel and are central to the privilege escalation anal-
ysis. This part of the environment is used to keep track of the permissions
required to get access to each handler and the privileges which are exercised
(also transitively, i.e., by communicating with other components) by the han-
dlers themselves. Specifically, if Υ̂(a, ρa) = (ρs, ρe), then the handler a with
permission ρa can be accessed by any component with permission ρs and it
will be able to exercise privileges up to ρe, possibly by calling other handlers
in the system.
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Table A.3 Flow analysis for values

(PV-NAME)
n ∈ v̂

E 
ρ n v̂

(PV-VAR)
EΓ̂(x) v v̂
E 
ρ x v̂

(PV-CONS)
{ĉ} v v̂
E 
ρ c v̂

(PV-REF)
` ∈ v̂

E 
ρ r`  v̂

(PV-FUN)
λxρe ∈ v̂ E 
ρ e : v̂′ � ρ′ v̂′ v EΓ̂(λx) ρ′ v ρe

E 
ρ λx.e v̂

(PV-REC)
{〈|−−−−→stri : vi|〉E ,ρ} v v̂

E 
ρ {
−−−−→
stri : vi} v̂

Finally, abstract networks are adapted from flow logic specifications for
process calculi [59] and they are used to keep track of the messages sent to
the handlers in the system. For instance, if we have Φ̂(a, ρa) = v̂, then v̂ is a
sound abstraction of any message received by the handler a with permission
ρa. Given an abstract environment E , we denote by EΓ̂, Eµ̂, EΥ̂, EΦ̂ its four
components.

Flow Analysis for Values and Expressions. The flow analysis for values
and expressions consists of two mutually inductive judgements: E 
ρ v v̂
and E 
ρ e : v̂ � ρ′. The first judgement means that, assuming permission
ρ, the concrete value v is mapped to the abstract value v̂ in the abstract en-
vironment E . The judgement E 
ρ e : v̂ � ρ′ means that in the context of a
handler (or an instance) with permission ρ, and under the abstract environ-
ment E , the expression e may evaluate to a value abstracted by v̂ and exercise
at most ρ′.

The rules to derive E 
ρ v  v̂ are collected in Table A.3. Most of
these rules are straightforward. The only rule worth commenting on here
is (PV-FUN), which can be explained as follows: to abstract λx.e into v̂,
we first analyse the function body e to compute an approximation v̂′ of the
value it may evaluate to and an upper bound ρ′ for the exercised privi-
leges. Then, we check that λxρe ∈ v̂ for some ρe w ρ′, i.e., we ensure that
the exercised privileges are over-approximated in v̂. Finally, we check that
v̂′ v EΓ̂(λx), i.e., we guarantee that the abstract variable environment cor-
rectly over-approximates the return value of the function.

The analysis rules for expressions are collected in Table A.4. We com-
ment on some representative rules below. Rule (PE-LET) can be explained
as follows: to analyse let x = e1 in e2, we first analyse e1 to compute an ap-
proximation v̂1 of the value it may evaluate to and an upper bound ρ1 for the
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Table A.4 Flow analysis for expressions

(PE-VAL)
E 
ρs v v̂
E 
ρs v : v̂ � ρ

(PE-LET)
E 
ρs e1 : v̂1 v EΓ̂(x) � ρ1 v ρ
E 
ρs e2 : v̂2 v v̂ � ρ2 v ρ

E 
ρs let x = e1 in e2 : v̂ � ρ

(PE-APP)
E 
ρs e1 : v̂1 � ρ1 v ρ
E 
ρs e2 : v̂2 � ρ2 v ρ

∀λxρe ∈ v̂1. v̂2 v EΓ̂(x) ∧ EΓ̂(λx) v v̂ ∧ ρe v ρ

E 
ρs e1 e2 : v̂ � ρ

(PE-SEQ)
E 
ρs e1 : v̂1 � ρ1 v ρ
E 
ρs e2 : v̂2 v v̂ � ρ2 v ρ

E 
ρs e1; e2 : v̂ � ρ

(PE-OP)
∀i. E 
ρs ei : v̂i � ρi v ρ ôp(

−→̂
vi ) v v̂

E 
ρs op(−→ei ) : v̂ � ρ

(PE-COND)
E 
ρs e0 : v̂0 � ρ0 v ρ

true ∈ v̂0 ⇒ E 
ρs e1 : v̂1 v v̂ � ρ1 v ρ
false ∈ v̂0 ⇒ E 
ρs e2 : v̂2 v v̂ � ρ2 v ρ

E 
ρs if (e0) { e1 } else { e2 } : v̂ � ρ

(PE-WHILE)
E 
ρs e1 : v̂1 � ρ1 v ρ

true ∈ v̂1 ⇒ E 
ρs e2 : v̂2 � ρ2 v ρ
false ∈ v̂1 ⇒ undefined ∈ v̂
E 
ρs while (e1) { e2 } : v̂ � ρ

(PE-GETFIELD)
E 
ρs e1 : v̂1 � ρ1 v ρ
E 
ρs e2 : v̂2 � ρ2 v ρ

ĝet(v̂1, v̂2) v v̂
E 
ρs e1[e2] : v̂ � ρ

(PE-SETFIELD)
E 
ρs e0 : v̂0 � ρ0 v ρ
E 
ρs e1 : v̂1 � ρ1 v ρ
E 
ρs e2 : v̂2 � ρ2 v ρ

ŝet(v̂0, v̂1, v̂2) v v̂
E 
ρs e0[e1] = e2 : v̂ � ρ

(PE-DELFIELD)
E 
ρs e1 : v̂1 � ρ1 v ρ
E 
ρs e2 : v̂2 � ρ2 v ρ

d̂el(v̂1, v̂2) v v̂
E 
ρs delete e1[e2] : v̂ � ρ

(PE-REF)
E 
ρs e : v̂′ � ρ′ v ρ

v̂′ v Eµ̂(`, ρs) ` ∈ v̂
E 
ρs ref` e : v̂ � ρ

(PE-DEREF)
E 
ρs e : v̂′ � ρ′ v ρ
∀` ∈ v̂′. Eµ̂(`, ρs) v v̂
E 
ρs deref e : v̂ � ρ

(PE-SETREF)
E 
ρs e1 : v̂1 � ρ1 v ρ
E 
ρs e2 : v̂2 v v̂ � ρ2 v ρ
∀` ∈ v̂1. v̂2 v Eµ̂(`, ρs)

E 
ρs e1 := e2 : v̂ � ρ

(PE-SEND)
E 
ρs e1 : v̂1 � ρ1 v ρ′

E 
ρs e2 : v̂2 � ρ2 v ρ′

∀m ∈ v̂1.∀ρm w ρ. EΥ̂(m, ρm) = (ρr, ρe) ∧ ρr v ρs ⇒
(ρe v ρ′ ∧ v̂2 v EΦ̂(m, ρm) ∧ unit ∈ v̂)
E 
ρs e1〈e2 . ρ〉 : v̂ � ρ′

(PE-EXERCISE)
ρ v ρs ⇒ ρ v ρ′ ∧ unit ∈ v̂
E 
ρs exercise(ρ) : v̂ � ρ′
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exercised privileges. We then ensure that the abstract variable environment
EΓ̂(x) contains an over-approximation of v̂1 for the bound variable x, and we
analyse e2 to approximate its value as v̂2 and the exercised privileges as ρ2.
The analysis is acceptable if the abstract value v̂ given to the let expression is
an over-approximation of v̂2 and the estimated exercised privileges ρ are an
upper bound for ρ1 t ρ2.

Rule (PE-APP) deals with function applications: it states that, to analyse
e1 e2, we first analyse the ei’s to compute the approximations v̂i of the value
they may evaluate to and the upper bounds ρi for the exercised privileges.
We then focus on each λxρe contained in v̂1 and we check that: (1) the abstract
variable environment binds x to an over-approximation of the abstraction of
the actual argument of the function, (2) the abstract value v̂ given to the ap-
plication is an over-approximation of the abstract return value of the function
EΓ̂(λx), and (3) the exercised privileges ρ1 t ρ2 t ρe are bounded above by the
privileges ρ assigned to the application.

The rules in the central portion of the table should be relatively easy to
understand. Notice that the rules for control flow operators, i.e., (PE-COND)
and (PE-WHILE), allow for excluding from the static analysis some program
branches which are never reached at runtime. The rules for references use
the information ρs annotated on the turnstile, corresponding to the privileges
granted to the handler/instance that is accessing the reference. These rules
ensure that any value stored in a reference is correctly over-approximated by
the abstract memory; and dually, that any value retrieved from a reference is
abstracted with an over-approximation of the content of the abstract mem-
ory. This ensures that any value which is first stored in a reference and then
retrieved from it is over-approximated correctly by the flow logic.

Rule (PE-SEND) first analyses e1 and e2 to compute the approximations of
the recipient (v̂1) and the sent message (v̂2). Then, the last premise enforces
two invariants: (1) the privileges ρe escalated by communicating with other
handlers in the system are bounded above by the privileges ρ′ assigned to
the send expression, and (2) the abstraction of the sent message v̂2 is over-
approximated by the information in the abstract network for each possible
recipient. We also check that unit is included in the abstract value assigned
to the expression, accordingly to the operational semantics of the send con-
struct. Finally, rule (PE-EXERCISE) ensures that, whenever an instance with
permission ρs exercises ρ v ρs, then ρ is bounded above by the privileges ρ′

assigned to the expression.
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Flow Analysis for Systems. Finally, we extend the flow analysis to systems
by defining the main judgement E 
 s despite ρ, which follows from similar
judgements for memories, handlers and instances. The definition is given in
Table A.5.

Table A.5 Flow analysis for systems

(PM-EMPTY)
E 
 ∅ despite ρ

(PM-SINGLE)
E 
ρr v v̂
v̂ v Eµ̂(`, ρr)

E 
 r`
ρr7→ v despite ρ

(PM-MANY)
E 
 µ1 despite ρ
E 
 µ2 despite ρ

E 
 µ1, µ2 despite ρ

(PH-EMPTY)
E 
 ∅ despite ρ

(PH-MANY)
E 
 h despite ρ
E 
 h′ despite ρ

E 
 h, h′ despite ρ

(PH-SINGLE)
EΥ̂(a, ρa) = (ρ′s, ρ′e) ρa 6v ρ⇒ ρ′s = ρs

EΦ̂(a, ρa) 6= ∅ ⇒ EΓ̂(x) w EΦ̂(a, ρa) ∧ E 
ρa e : v̂ � ρe ∧ (ρa 6v ρ⇒ ρ′e = ρe)

E 
 a(x / ρs : ρa).e despite ρ

(PI-EMPTY)
E 
 ∅ despite ρ

(PI-SINGLE)
E 
ρa e : v̂ � ρe

ρa 6v ρ⇒ ∃ρs. EΥ̂(a, ρa) = (ρs, ρe)

E 
 a{|e|}ρa despite ρ

(PI-MANY)
E 
 i despite ρ
E 
 i′ despite ρ

E 
 i, i′ despite ρ

(PS-SYS)
E 
 µ despite ρ E 
 h despite ρ
E 
 i despite ρ E is ρ-conservative

E 
 µ; h; i despite ρ

In the rules for memories we just need to ensure (cf. rule (PM-SINGLE))
that, whenever a value v is stored in a reference r` protected with permis-
sion ρr, then v can be abstracted to some v̂ over-approximated by the abstract
memory entry Eµ̂(`, ρr). As for instances, rule (PI-SINGLE) computes an ap-
proximation of the privileges ρe exercised by the running expression. Then,
if the instance is granted permission ρa 6v ρ, i.e., if it is not compromised,
we check that the abstract stack correctly approximates with ρe the privileges
exercised by the instance body. This check is not enforced for instances that
might be under the control of the opponent, according to the idea that any
opponent must be accepted by a sufficiently weak abstract environment. This
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is needed to prove an opponent acceptability result (Lemma 16), which allows
for a convenient soundness proof technique for the analysis [1, 12].

Handlers are accepted by rule (PH-SINGLE), which states that, to analyse
a(x / ρs : ρa).e despite ρ-opponents, we first lookup the abstract stack Υ̂: let
Υ̂(a, ρa) = (ρ′s, ρ′e). If we are not analysing a (possibly) compromised handler,
i.e., if ρa 6v ρ, we ensure that the permission ρ′s in the abstract stack matches
the permission ρs guarding access to the handler. We then lookup the abstract
network Φ̂: if Φ̂(a, ρa) = ∅, no instance of the system will ever communicate
with the handler and we can skip the analysis of its body. Otherwise, we
ensure that the abstract variable environment maps the bound variable x to
an over-approximation of the incoming message, abstracted by Φ̂(a, ρa), and
we analyse the body of the handler, to detect the exercised privileges ρe. If
we are not analysing the opponent, we further ensure that ρe matches the
permissions ρ′e annotated in the abstract stack, i.e., we guarantee that the
abstract stack contains reliable information.

Finally, rule (PS-SYS) states that a system s = µ; h; i is acceptable for E
only whenever µ, h and i are all acceptable for E , and E is a ρ-conservative
abstract environment. This notion corresponds to the informal idea of “suf-
ficiently weak abstract environment” needed to prove the opponent accept-
ability result. In order to define ρ-conservativeness, we first define the notion
of static leak for an abstract environment.

Definition 29 (Static Leak). We define the static leak of E against ρ as:
SLeakρ(E) =

⊔
ρe∈L ρe, where L = {ρe | ∃a, ρa, ρs. EΥ̂(a, ρa) = (ρs, ρe) ∧ ρs v ρ}.

Intuitively, SLeakρ(E) is the upper bound of all the permissions ρe that can
be (transitively) exercised by any handler that can be called by a ρ-opponent.
We then define the set Vρ(E) of the opponent-controlled variables as:

Vρ(E) = Vu ∪ {x | ∃ρe, `, ρr v ρ. λxρe ∈ Eµ̂(`, ρr)}.

The set contains all the variables Vu occurring in the opponent code, together
with all the variables bound in lambda abstractions stored in references un-
der the control of the opponent. All these variables can be instantiated at
runtime with values chosen by the opponent. We use this set of variables also
to define a sound abstraction of any value which can be generated by/flow
to the opponent.
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Definition 30 (Canonical Disclosed Abstract Value). Given an abstract envi-
ronment E and a permission ρ, the canonical disclosed abstract value is defined
as: v̂ρ(E) = {û | vars(û) ⊆ Vρ(E)}.

The canonical disclosed abstract value is a canonical representation of any
abstract value under the control of a ρ-opponent in a system accepted by
E . It is the set of all the pre-values which contain only opponent-controlled
variables.

Based on the notions above, we define ρ-conservativeness.

Definition 31 (ρ-Conservative Abstract Environment). An abstract environ-
ment E is ρ-conservative if and only if all the following conditions hold true:

1. ∀n ∈ N , ∀ρ′ v ρ. EΥ̂(n, ρ′) = (⊥, SLeakρ(E));

2. ∀n ∈ N , ∀ρ′ v ρ. EΦ̂(n, ρ′) = v̂ρ(E);

3. ∀n ∈ N , ∀ρn, ρs, ρe. EΥ̂(n, ρn) = (ρs, ρe) ∧ ρs v ρ⇒ EΦ̂(n, ρn) = v̂ρ(E);

4. ∀` ∈ L, ∀ρ′ v ρ. Eµ̂(`, ρ′) = v̂ρ(E);

5. ∀x ∈ Vρ(E). EΓ̂(x) = EΓ̂(λx) = v̂ρ(E).

In words, an abstract environment is ρ-conservative whenever: (1) any
handler that can be under the control of the opponent is in fact assumed to
be accessible by the opponent and to escalate up to the static leak; (2) any
handler that can be under the control of the opponent, or (3) that can be con-
tacted by the opponent, is assumed to receive the canonical disclosed abstract
value v̂ρ(E); (4) any reference possibly under the control of the opponent is
assumed to contain v̂ρ(E); and (5) the argument of any function which can be
called by the opponent is assumed to contain the canonical disclosed abstract
value v̂ρ(E) and similarly these functions are assumed to return v̂ρ(E).

A.4.2 Formal Results

Our main formal result defines an upper bound for the privileges which can
be escalated by the opponent in a system accepted by the flow analysis. Com-
plete proofs are the full version [17]; here, we start proving the soundness of
the flow logic specification by means of a subject reduction result, which en-
sures that the acceptability of the analysis is preserved upon reduction.

Lemma 15 (Subject Reduction). If E 
 s despite ρ and s α−→ s′, then E 

s′ despite ρ.
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The next lemma states that any ρ-opponent is accepted by a ρ-conserva-
tive abstract environment. Intuitively, the combination of this result with
subject reduction ensures that the acceptability of the analysis is preserved at
runtime, even when the analysed system interacts with the opponent.

Lemma 16 (Opponent Acceptability). If (h, i) is a ρ-opponent and E is ρ-conser-
vative, then E 
 h despite ρ and E 
 i despite ρ.

Moreover, proving the safety theorem requires to explicitly track the call
chains carried out by the system reduction, to collect the privileges transi-
tively exercised by system components. The next lemma then relies on the
following definition of call chain to prove that the abstract stack contains a
static approximation of the privileges which are exercised by each system
component either directly or by communicating with other components.

Definition 32 (Call Chain). A call chain (−→α , a:ρa � ρ′) is a trace of length
(n + 1) such that:

1. the trace −→α = 〈a1:ρa1 , b1:ρb1〉, . . . , 〈an:ρan , bn:ρbn〉 is a sequence of send la-
bels where the sender occurring in each label is the receiver occurring in the
previous label, i.e., ∀i ∈ [1, n−1]. ai+1 = bi ∧ ρai+1 = ρbi , and

2. the component exercising the privilege ρ′ at the end of the call chain corre-
sponds to the last receiver, i.e., bn = a ∧ ρbn = ρa.

A trace
−→
β includes a call chain −→α iff −→α is a sub-trace of

−→
β .

According to the intuition given above, proving the soundness of the ab-
stract stack amounts to showing that, given a call chain leading to the ex-
ercise of some privilege ρ′ not available to the opponent, the abstract stack
EΥ̂ approximates the privileges exercised by any component involved in the
chain with a permission greater than or equal to ρ′. The proof uses the subject
reduction result.

Lemma 17 (Soundness of the Abstract Stack). If E 
 s despite ρ and s
−→
β
=⇒ s′

for a trace
−→
β including the call chain (−→α , a:ρa � ρ′) for some ρ′ 6v ρ, then for each

label αj = 〈aj:ρaj , bj:ρbj〉 ∈ {
−→α } we have EΥ̂(bj, ρbj) = (ρsbj

, ρebj
) with ρ′ v ρebj

and EΥ̂(aj, ρaj) = (ρsaj
, ρeaj

) with ρ′ v ρeaj
.

Theorem 5 (Flow Safety). Let s = µ; h; ∅. If E 
 s despite ρ, then s leaks
SLeakρ(E) against ρ.
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Proof. By contradiction. Let ŝ be the system obtained by composing s with a
ρ-opponent and assume that ŝ eventually reaches a state s′ such that s′ exer-
cises privileges ρbad, with ρbad 6v ρ and ρbad 6v SLeakρ(E).

By inverting rule (PS-SYS) on the hypothesis E 
 s despite ρ, we have
that E is ρ-conservative. Using Lemma 16 (Opponent Acceptability), we
show that E 
 ŝ despite ρ. Given that ρbad 6v ρ, the privileges ρbad can-
not be directly exercised by the opponent, hence there must exist a call chain
leading to ρbad from ŝ. Let ai range over the components in the call chain
and ρi range over their corresponding permissions. Consider now the first
sender a1 in the call chain: given that the original system s does not have
running instances, it turns out that a1 must be the opponent, hence ρ1 v ρ.
Since E is ρ-conservative and ρ1 v ρ, we have EΥ̂(a1, ρ1) = (⊥, SLeakρ(E)).
By Lemma 17 (Soundness of the Abstract Stack), for each component ai with
permissions ρi occurring in the call chain we must have EΥ̂(ai, ρi) = (ρsi , ρei)

for some ρsi and some ρei w ρbad. But then we get ρbad v SLeakρ(E), which is
contradictory.

A.4.3 Analysing the Example

We now show the analysis at work on our running example in its three vari-
ants, namely the systems s, stag and schan introduced in Section A.3. We as-
sume that the abstract domain for strings includes all the string literals syn-
tactically occurring in the program code, plus the distinguished symbol * to
represent all the other strings (or any string which we cannot statically recon-
struct). We let ŝtr range over elements of this abstract domain and we assume
that ŝtr v ∗ for any ŝtr. As to records, we choose the field-sensitive repre-

sentation 〈|
−−−−→
ŝtri : v̂i|〉 where both the field names and contents are inductively

abstracted. In the following we mostly focus on the intuitions behind the
analysis: additional details, including the formal definitions of the expected
abstract record operations and the abstract value pre-order, are given in the
full version [17].

The Original System. We start by studying the robustness of the original
system s against a P-opponent, i.e., an opponent with the only ability to dis-
patch the content script C attached to untrusted web pages. We have that
E 
 s despite P, where E = Γ̂; µ̂; Υ̂; Φ̂ satisfies the following assumptions:

Φ̂(c,C) = v̂P(E) Φ̂(o,O) = ∅ Φ̂(b,B) = {〈|“site” : v̂P(E), ∗ : v̂P(E)|〉}
Υ̂(c,C) = (P,B) Υ̂(o,O) = (>,⊥) Υ̂(b,B) = (CuO,B)
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Since C can be accessed by the opponent, the value of Φ̂(c,C) must be equal
to v̂P(E) to ensure the P-conservativeness of E . Conversely, O can never be
accessed by the opponent or by any other component in the system, hence
Φ̂(o,O) = ∅. By rule (PH-SINGLE), this implies that there is no need to anal-
yse the body of O, which allows for ignoring the format of the messages sent
by O: this explains why the value of Φ̂(b,B) includes just one element, corre-
sponding to the message sent by C. Indeed, observe that ŝet(v̂P(E), “site”, str)
v {〈|“site” : v̂P(E), ∗ : v̂P(E)|〉} for any str to accept the send expression in
the body of C.

Now observe that {“policy”, “upd”} v ĝet(〈|“site” : v̂P(E), ∗ : v̂P(E)|〉,
“tag”), hence both branches of the conditional in the body of B are reach-
able and the conditional expression may exercise B; we then let Υ̂(b,B) =

(C u O,B) by rule (PH-SINGLE). Given that C communicates with B, the
privileges exercised by C must be greater or equal than B by rule (PE-SEND),
and propagated into Υ̂(c,C) by rule (PH-SINGLE). Since SLeakP(E) = B, we
know that the system s leaks B against P by Theorem 5.

The System with Tags. Let us focus now on the system stag and a P-oppo-
nent. We have that E 
 stag despite P, where E = Γ̂; µ̂; Υ̂; Φ̂ is such that:

Φ̂(c,C) = v̂P(E) Φ̂(o,O) = ∅

Φ̂(b,B) = {〈|“tag” : “policy”, “site” : ∗, “spec” : v̂P(E)|〉}
Υ̂(c,C) = (P,MemB) Υ̂(o,O) = (>,⊥) Υ̂(b,B) = (CuO,MemB)

Based on this information, rule (PE-COND) allows for analysing only the
program branch of B corresponding to the processing of a message with tag
“policy”, which only exercises the privilege MemB: this motivates the precise
choice of Υ̂(b,B). Since SLeakP(E) = MemB, the system leaks MemB against
P.

Assume now an opponent with permission C, then E ′ 
 stag despite C,
where E ′ = Γ̂′; µ̂′; Υ̂′; Φ̂′ is such that:

Φ̂′(c,C) = v̂C(E ′) Φ̂′(o,O) = ∅ Φ̂′(b,B) = v̂C(E ′)
Υ̂′(c,C) = (⊥,B) Υ̂′(o,O) = (>,⊥) Υ̂′(b,B) = (CuO,B)

With respect to the previous scenario, the abstract network entry for B con-
tains v̂C(E ′), abstracting all the values which may be generated by a C-oppo-
nent: this is needed for C-conservativeness. The consequence is that all the



A.5. Implementation: CHEN 123

program branches of B are reachable, hence B may exercise its full set of priv-
ileges B. Since SLeakC(E ′) = B, the system leaks B against C by Theorem 5.

The System with Channels. We are able to prove E 
 schan despite C for
an abstract environment E = Γ̂; µ̂; Υ̂; Φ̂ such that:

Φ̂(c,C) = v̂C(E) Φ̂(o,O) = ∅ Φ̂(b1,B) = v̂C(E) Φ̂(b2,B) = ∅

Υ̂(c,C)=(⊥,MemB) Υ̂(o,O)=(>,⊥) Υ̂(b1,B)=(C,MemB) Υ̂(b2,B)=(O,⊥)

For the new abstract environment E we have SLeakC(E) = MemB, which
ensures that the new system only leaks MemB against C. Since the privilege
Cookies cannot be escalated by a compromised C anymore, there is no way
to corrupt the cookie jar without compromising the background page B itself
(or the options page O). Interestingly, this is a formal characterization of the
dangers connected to the development of bundled browser extensions in a
realistic setting [3].

A.5 Implementation: CHEN

CHEN is a prototype Google Chrome extension analyser written in F#. Given
a Chrome extension, CHEN translates it into a corresponding system in our
formalism and computes an acceptable flow analysis estimate by constraint
solving. CHEN can be used by programmers to evaluate the robustness of
their extensions against privilege escalation attacks and to support their se-
curity refactoring.

A.5.1 Flow Logic Implementation

Implementing the flow logic specification amounts to defining an algorithm
that, given a system s and a permission ρ characterizing the power of the
opponent, computes an abstract environment E such that E 
 s despite ρ.
Following a standard approach [58], we first define a verbose variant of the
flow logic, which associates an analysis estimate to each sub-expression of
s, and then we devise a constraint-based formulation of the analysis. Any
solution of the constraints is an abstract environment E which accepts s.

We initially implemented in CHEN a simple worklist algorithm for con-
straint solving. However, consistently with what has been reported by Jensen
et al. in the context of JavaScript analysis [44], we observed that this solution
does not scale, taking hours to perform the analysis even on small examples.
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Therefore, in our implementation we use a variant of the worklist algorithm
where most of the constraint generation is performed on demand during the
solving process. Even though this approach does not allow us to reuse ex-
isting solvers, it leads to a dramatic improvement in the performances of the
analysis.

The current prototype implements a context-insensitive analysis, which
is enough to capture the privileges escalated by the content scripts, provided
that some specific library functions introduced by the desugaring process
from JavaScript to λJS (see below) are inlined. The choice of the abstract pre-
values for constants is standard: in the current implementation, we represent
numbers with their sign and we approximate strings with finite prefixes [23].
The representation of records is field-sensitive, but we collapse into a single
label * all the entries bound to approximate labels (string prefixes). As to the
ordering, we consider a standard pre-order vp on abstract pre-values, and
we lift it to abstract values using a lower powerset construction, i.e., we let
v̂ v v̂′ if and only if ∀û ∈ v̂. ∃û′ ∈ v̂′. û vp û′.

A.5.2 Using CHEN to assess Google Chrome Extensions

Given an extension, CHEN takes as an input a sequence of component names,
along with the JavaScript files corresponding to their implementation. Com-
ponents represent isolation domains, in that different components must be
able to communicate only using the message passing interface. Different con-
tent scripts which may injected in the same web page should be put inside
the same component, since Google Chrome does not separate their heaps.
The background page should be put in a separate component, since it runs
in an isolated process2.

From JavaScript to the Model. Let c be a component name and f1, . . . , fn

the corresponding JavaScript files: our tool concatenates f1, . . . , fn into a sin-
gle file f , which is desugared into a closed λJS expression using an existing
tool [36]. The adequacy of the translation from JavaScript to λJS has been as-
sessed by extensive automatic testing, hence safety guarantees for JavaScript
programs can be provided just by analysing their λJS translation; see [36] for
further details.

2An appropriate mapping of JavaScript files to components can be derived from the man-
ifest file of the extension, but the current prototype does not support this feature.
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The obtained λJS expression is then transformed into a set of handlers:
more precisely, for any function λx.e′ passed as argument to the addListener
method of chrome.runtime.onMessage, we introduce a new handler on a
channel with the same name of the component, whose body is obtained by
closing e′ with the introduction of all the bindings defined before the regis-
tration of the listener. For each component we introduce a unique permission
for memory access, granted to each handler in the component; handlers cor-
responding to the background page are also given the permissions specified
in the manifest of the extension. Any invocation of chrome.runtime.send-
Message in the definition of a content script is translated to a send expression
over a channel with the name of the component corresponding to the back-
ground page.

Notice that CHEN exploits an existing tool to translate JavaScript to λJS,
but our target language has two new constructs: message sending and priv-
ilege exercise. In JavaScript, both operations correspond to function calls
to the Chrome extension API, hence, to introduce the syntactic forms corre-
sponding to them in the translation to our formalism, we extend the Java-
Script code to redefine the functions of interest in the Chrome API with stubs.
For instance, chrome.cookies.set is redefined to a function including the
special tag "#Cookies#", which is preserved when desugaring JavaScript to
λJS: we then post-process the λJS expression to replace this tag with the func-
tion exercise(Cookies).

Running the Analysis. The tool supports two analyses. With the option
-compromise CHEN is instructed to analyse the privileges which may be es-
calated by an opponent assuming the full compromise of an arbitrary content
script, i.e., it estimates the safety of the system despite the permission that
protects the background page. If the background page requests some per-
mission ρ intended for internal use, but ρ is available to some content script
according to the results of the analysis, then the developer is recommended
to review the communication interface.

Alternatively, the option -target n allows to get an approximation of the
privileges available to the content scripts in the component n in absence of
compromise. We model absence of compromise by considering a ⊥-oppo-
nent as the threat model, since this opponent cannot directly communicate
with the background page: if the option -target n is specified, CHEN trans-
forms the system by protecting with permission ⊥ all the handlers included
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in n, and computes a permission ρ such that the system is ρ-safe despite ⊥.
This allows to estimate which privileges are enabled by messages sent from
n, so as to identify potential room for a security refactoring, as we discuss
below.

Both the analyses additionally support the option -flag p, which allows
to define a dummy permission p assigned to the background page. The pro-
grammer may then annotate specific program points with the tag "#p#, corre-
sponding to the exercise of this dummy permission; by checking the presence
of the flag among the escalated privileges, CHEN can be used to implement
an opponent-aware reachability analysis on the extension code.

Supporting a Security Refactoring. To exemplify, we analyse with CHEN

our motivating example. By first specifying the option -target O, the tool
detects that the options page O is only accessing the privilege Cookies as part
of its standard functionalities, even though the background page B is given
the permissions MemBt Cookies. To support least privilege, the developer is
thus recommended to introduce a distinct communication port for B. No-
tably, the permission gap arises from the presence in the code of B of pro-
gram branches which are never triggered by messages sent by O in absence
of compromise: in principle, CHEN could then automatically introduce the
new port, replicate the code from the handler of the background page, and
improve its security against compromise by eliminating the dead branches,
even though the current prototype does not implement this feature.

Then, by using the option -target C, the tool outputs that the privilege
MemBt Cookies can be escalated by the content script C. Hence, no auto-
mated refactoring is possible, but the output of the analysis is still helpful
for a careful developer, who realizes that C should not be able to access the
Cookies privilege. Based on the output of the analysis, the developer may opt
for a manual reviewing and refactoring of the extension.

Current Limitations. Being a proof-of-concept implementation, the current
version of CHEN lacks a full coverage of the Chrome extension APIs. More-
over, CHEN cannot analyse extensions which use ports to communicate: in
our model, ports are just channels and do not pose any significant problem
to the analysis. Unfortunately, the current Chrome API makes it difficult to
support the analysis of extensions using ports, since the underlying program-
ming patterns make massive usage of callbacks. Based on our experience and
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a preliminary investigation, however, ports are not widely used in practice,
hence many extensions can still be analysed by CHEN.

A.5.3 Case Study: ShareMeNot

ShareMeNot [66] is a popular privacy-enhancing extension developed at the
University of Washington. The extension looks for social sharing buttons
in the web pages and replaces them with dummy buttons: only when the
user clicks one of these buttons, its original version is loaded and the cookies
registered by the corresponding social networks are sent. This means that
the social network can track the user only when the user is willing to share
something.

ShareMeNot consists of four components: a content script, a background
page, an option page and a popup, for a total of approximately 1,500 lines
of JavaScript code. The background page offers a unique entry point to all
the other extension components and handles seven different message types.
Interestingly, one of these messages allows to unblock all the trackers in an
arbitrary tab, by invoking the unblockAllTrackersOnTab function: this mes-
sage should only be sent by the popup page. We then put a flag in the
body of the function and we performed the analysis of ShareMeNot with
the -compromise option, observing that the flag is reachable: hence, a com-
promised content script could entirely deactivate the extension. The analysis
took around 150 seconds on a standard commercial machine.

We then ran the analysis with the -target C option, where C is the name
of the component including only the content script, and we observed that the
flag was not reachable. This means that C does not need to access the function
unblockAllTrackersOnTab as part of its standard functionalities, hence the
code should be refactored to comply with the principle of the least privilege
and prevent a potential security risk. The analysis took around 210 seconds
on the same machine.

A.6 Conclusions

We presented a core calculus to reason about browser extensions security
and we proposed a flow analysis aimed at detecting which privileges may
be leaked to an opponent which compromises some (arbitrarily chosen) un-
trusted extension components. The analysis has been proved sound and
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it has been implemented in CHEN, a prototype static analyser for Google
Chrome extensions. We discussed how CHEN can assist developers in writ-
ing more robust extensions.

As future work, we plan to further engineer CHEN, to make it support
more sophisticated communication patterns used in Google Chrome exten-
sions. We ultimately plan to evolve CHEN into a compiler, which automat-
ically refactors the extension code to make it more secure, by unbundling
functionalities based on their exercised permissions. Based on a preliminary
investigation, this will require a non-trivial programming effort.
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