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Introduction 

With the work of Broch (1960) a huge interest started among actuaries and academics 

in the field of optimal reinsurance. This interest was and is driven by the potential risk 

management effects of reinsurance as a technique for mitigating and managing insurer 

risk exposure. This exposure is the sum of the retained risk by the insurer and the 

premium paid to the reinsurer, which represents a trade-off: the more risk is retained 

the lower will be the premium owed, on the other hand if the insurer wishes to transfer 

more risk to the reinsurer, the premium will increase. Therefore, the optimal 

reinsurance is of fundamental importance to determine the right balance between the 

risk retention and the risk transfer.  

The entrance into force of Solvency II from first January 2016, aims to harmonies the 

regulatory insurance sector environment within the European Union. It applies to both 

insurance and reinsurance undertakings operating in the European Union. The 

Commission delegated regulation (EU) 2015/35 and the quantitative impact study five 

(QIS5) recognize reinsurance as a risk mitigating technique, so that this risk management 

tool is becoming more and more important for insurance companies. 

The studies of Chi and Tan (2013) propose an optimal reinsurance model from the 

perspective of an insurance company by minimizing its total risk exposer under value at 

risk, assuming a large class of premium principles for the calculation of the reinsurance 

premium that satisfy three basic axioms: distribution invariance, risk loading and stop-

loss order preserving. 

The work of Tan and Weng (2014), studies an empirical approach to design the optimal 

reinsurance, assuming the variance as risk measure to minimize the total risk exposer of 

the insurance undertaking. In this paper, an empirical approach will be applied on the 

model proposed by Chi and Tan (2013), to study the performance and the results on 

different loss distributions which are characteristic for insurance losses, and on real data 

provided by Copenhagen Reinsurance, assuming the expected value premium principle. 

The first chapter describes reinsurance, underlying its functions and defining the main 

possible arrangements. In particular, the difference between facultative and treaty 



 

reinsurance is specified and the distinction between proportional and non-proportional 

forms is explained. In the last part of the first chapter, five principles are reported as a 

technical guidance for the recognition of reinsurance as a risk mitigation technique, 

under Solvency II standard formula. 

In the second chapter, the underlying assumption of the optimal reinsurance model of 

Chi and Tan (2013) are illustrated and the derivation of the model is explained in detail, 

providing the definition of the value at risk and the limited stop-loss reinsurance form. 

The final chapter briefly introduces the most common loss distributions that model the 

insurance claim sizes and thereafter it reports an empirical analysis of the optimal 

reinsurance model proposed in the second chapter, applying the expected value 

premium principle. The analysis is performed using the Matlab software, assuming the 

Monte Carlo method for the expected value calculation for the simulations. In particular, 

the behaviours and the impacts of the premium principle safety loading, the dispersion 

of the distribution and the ruin probability on the priority, capacity and value at risk are 

studied. 

In other words, this paper describes the important reinsurance advantages, underlying 

the principles that recognise reinsurance as a risk mitigating technique under Solvency 

II. After a deep analysis of the optimal reinsurance model under value at risk studied by 

Chi and Tan (2013), an empirical analysis is applied on this model to determine the 

behaviour of the variables of the limited stop-loss reinsurance contract. This empirical 

analysis is performed using loss distributions that represent real insurance losses and 

finally the model is tested on real losses of the Danish fire loss data. 
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I Chapter 

1.1. What is reinsurance? 

Essentially, reinsurance is insurance for insurance companies. It is a transaction in which 

an insurance company (the “reinsurer”) agrees to indemnify another insurance 

company (the “reinsured”, “cedant” or “primary insurer”) for a specified share of 

specified type of insurance claim of a policy or policies it has issued, in exchange of a 

premium. The original policyholder is not involved in the reinsurance transaction.  

The purpose of insurance is to reduce the financial cost of individuals, companies and 

other entities emerging from the possible occurrence of contingent events. The insurer 

selling an insurance policy is committed to indemnify the policyholder for part of the 

losses arising from these contingent claims. In such a way, individuals, companies and 

other entities can perform riskier activities, increasing competition, efficiency and 

innovation. The purpose of reinsurance is similar. It reduces the financial costs of an 

insurance company, increasing competition, innovation and efficiency in the market. 

Reinsurance helps protect insurance companies against extraordinary and 

unpredictable losses by allowing them to spread their risks. Finally, in the same way, 

also reinsurers can transfer part of their risk to other reinsurers, such a cession is called 

“retrocession”. 

The following figure describes how risks are transferred from individuals and 

corporations to reinsurers, passing through the primary insurer. The last step in the 

figure 1.1., represents the retrocession, in which the reinsurer enters into a reinsurance 

agreement with another reinsurer.  
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Figure 1.1. The risk transfer from policyholders to reinsurer 

The providers of reinsurance are direct writers, brokers, reinsurance departments of the 

insurer and pools or associations. The writes contract the reinsurance relationship with 

the primary insurer. Brokers work as intermediaries between the insurance company 

and the reinsurer, providing the production or sale support. Usually, they represent the 

cedant and are compensated in form of a commission or fee (generally paid by the 

reinsurer). Often, they also collect premiums and manage the claim payments. The 

reinsurance departments of an insurer assume the reinsurance business of an insurance 

company, typically reinsuring subsidiaries and affiliates. Finally, pools or associations are 

unions of insurance companies that increase their underwriting capacity, premium 

capacity or to cover risks which are not insurable in conventional ways. Pools or 

associations assume a predetermined and fixed interest of the risks jointly underwriting 

for insurance or reinsurance operations. They are generally run by a separate company, 

which administrate, underwrite and manage the loss.   
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1.2. Functions of Reinsurance 

Reinsurance does not change the nature of an insurance coverage. In the long run, it 

cannot transform bad business into good. However, it can provide direct assistance to 

the insurer. The main reasons for purchasing reinsurance are the following: 

- Capacity relief: purchasing reinsurance coverage allows the reinsured to write 

higher policy limits maintaining manageable risk level. Thus, smaller insurers can 

write policies beyond their capacity. 

- Stabilization: reinsurance can smooth the cedant’s underwriting and operating 

results from year to year and protects the cedant’s surplus against shocks from 

larger unpredictable losses. Usually, the smaller and predictable claims are 

retained by the reinsured, whereas the reinsurer protects against shares of 

larger and infrequent claims. 

- Surplus relief: in a growing period, an insurance company can have a stressed 

surplus, by ceding part of its liabilities to the reinsurer it can make use of the 

reinsurer’s surplus. Basically, it is a loan of surplus, so that the cedant can use 

the reinsurer’s surplus until the cedant’s surplus is large enough to support the 

new business. 

- Catastrophe protection: reinsurance can provide protection to the reinsured 

against a large single, catastrophic loss or multiple large losses. This decreases 

the cedant’s probability of financial ruin. 

- Expertise and experience: reinsurers have the knowledge and ability to advise 

their clients, the cedants. This informal consulting service is of self-interest and 

includes the review of the reinsured’s operations to be able to offer advice. The 

service provided includes assistance on underwriting, marketing, pricing, loss 

prevention, risk management, claims handling, reserving investment and 

personnel issues. The reinsurer’s contacts with many similar insurance 

companies provide experience in the pricing of potential high loss policies and 

the handling of large and rare claims.  
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- Market entrance: reinsurers help spread the risk of lines of business until the 

premiums portfolio reaches a certain maturity. Often, reinsurance is taken into 

consideration when the business is in a new area, where claim history and data 

are not available.  

 

1.3. Types of reinsurance arrangements and forms 

Essentially, there exist two type of reinsurance arrangements: facultative reinsurance 

and treaty reinsurance. These two types are now described in detail. 

1.3.1. Facultative reinsurance 

Under facultative reinsurance, the insurance company negotiates a contract for each 

insurance policy or each single risk (in this case risk is considered as the object under 

reinsurance protection), it wishes to reinsure. In other words, the reinsurer underwrites 

individually each contract accepting the risk. Basically, it is the same idea as primary 

insurance, in which individual risks are underwritten between the insurance company 

and the policyholder. As the word facultative implies, the reinsurer has the right to 

accept or reject the individual risk that has been offered by the primary insurance 

company. The main function is to underwrite large and specific risks to provide 

additional capacity, usually because the primary insurer is either unwilling or unable to 

retain all the risk on its own. Often, for the primary insurer it is useful to get facultative 

reinsurance assistance when it has no experience with a particular risk. This type of 

arrangement is expensive for the primary insurer, mainly because it allows some degree 

of adverse selection for the reinsurer, and it is reasonable only if the risks are few. 

Usually, the duration of the facultative reinsurance depends on the duration of the 

original policy of the individual risk.  
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1.3.2. Treaty reinsurance 

In treaty reinsurance, also called obligatory reinsurance, the primary insurer purchases 

reinsurance coverage for a specific portfolio and all risks thereof are automatically 

ceded, within the terms and conditions of the treaty. The cedant has not to decide to 

cede each individual risk but he commits to cede part of the portfolio. A treaty 

reinsurance is a more stable contractual relationship between the cedant and the 

reinsurer, in which type, terms and conditions of reinsurance are agreed in advance. The 

risk exposure is usually defined by the annual statement line of business, some variant 

or subset thereof. The reinsurer does not analyse each individual risk and must cover all 

risks within the treaty, without the possibility to refuse a specific one. For these reasons, 

treaty reinsurance is easier to operate and administer and less expensive than the 

facultative method. The cedant is provided with expertise and services by the reinsurer; 

usually, the two parties establish a close and long-term working partnership, which 

makes adverse selection less likely to occur. The duration of a treaty reinsurance 

depends on the line of business. Usually, non-life reinsurance treaties are renewed 

annually. For life and health policies (like medical insurance or personal accident 

insurance), treaty reinsurance is renewed on an annual or five-year basis; whereas for 

many life insurance products (like term or endowment insurance), the life treaty 

reinsurance has a duration up to 30 years, depending on the original contracts. 

In other words, the reinsurance of a single risk is undertaken arranging facultative 

reinsurance, whereas treaty reinsurance is preferred for the reinsurance of an entire 

portfolio.  
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The characteristics of these two arrangements are summarized in the following table: 

Facultative reinsurance 

(Individual Risk) 

Treaty reinsurance 

(Book of Business) 

– Individual risk review 

– Right to accept or reject each risk 

on its own merit 

– A profit is expected by the 

reinsurer in the short and long 

term, and depends primarily on 

the reinsurer’s risk selection 

process 

– Adapts to short-term ceding 

philosophy of the insurer 

– A facultative certificate is written 

to confirm each transaction 

– Can reinsure a risk that is 

otherwise excluded from a treaty 

– Can protect a treaty from adverse 

underwriting results 

– No individual risk acceptance by 

the reinsurer 

– Obligatory acceptance by the 

reinsurer of covered business 

– A long-term relationship in which 

the reinsurer’s profitability is 

expected, but measured and 

adjusted over an extended period 

of time 

– Less costly than “per risk” 

reinsurance 

– One treaty contract encompasses 

all subject risks 

Table 1.3.2.1.: Characteristics of facultative and treaty reinsurance (Source: Munich Re 

(2010)) 

Besides the choice of the reinsurance arrangement, the insurance company has to 

decide between proportional and non-proportional reinsurance, which differ in how the 

premiums and the potential losses are shared. Both facultative and treaty reinsurance 

can be written on either a proportional or non-proportional basis. Proportional 

reinsurance involves the reinsurer taking a pre-agreed percentage share of the original 

premiums and liabilities of the individual risk or portfolio. Whereas, non-proportional 
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reinsurance pays for losses above a fixed amount of the individual risk or portfolio. 

Usually, it involves a fixed limit up to which the primary reinsurer accounts for all losses 

on its own, called deductible, retention or priority, and a maximum limit up to which the 

reinsurer pays the part in excess of the deductible, called capacity or layer. 

Now, proportional and non-proportional reinsurance are described in detail. 

1.3.3. Proportional reinsurance 

The proportional reinsurance contract states the ratio at which premiums and liabilities 

are shared. The reinsurance company’s share of liabilities is directly proportional to the 

amount of premium received. The reinsurer pays a reinsurance commission to the 

primary insurer, which are costs related to the acquisition and administration of original 

policies. Reinsurance commissions are usually a percentage of the optimal premium; 

however, they can be increased or reduced depending on the quality of the individual 

risk or portfolio written by the insurer.  

There exist two types of proportional reinsurance: quota share reinsurance and surplus 

share reinsurance. 

Quota share is the simplest form of proportional reinsurance. The reinsurer assumes a 

pre-agreed percentage or quota of the individual policy or policies written by the insurer 

within the terms of the contract. The retained portion of premiums is a fixed percentage 

of each policy’s premium and the remaining part is ceded to the reinsurer. Losses are 

shared at the same ratio. This form is particularly suitable for homogenous portfolios, 

like in the case of motor and household insurance, in which the written risks are all 

similar.  

Quota share reinsurance is usually used by: 

- Young and fast-growing insurance companies. 

- Insurance companies which enter a new line of business. 

- Primary insurance companies which are seeking capital relief due to solvency 

capital requirements or protection against random fluctuations.  
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However, this form of reinsurance does not protect against extreme losses, like a 

catastrophe because if the loss is large the retained proportion is also large, and since it 

is not flexible the insurer can retain too much or cede too much, at the expense of 

profitability. 

Surplus share is the most used proportional reinsurance form. The primary insurer 

retains all risks up to a specific amount for each policy in the portfolio, called retention. 

On the other side, the reinsurer accepts the amount which is in excess of the retention. 

Usually, it participates to each loss up to a limit amount which is a multiple of the 

retention. Also in the surplus share reinsurance, the reinsurer pays commissions to the 

primary reinsurer.  

In the past, the commissions were supposed to cover administration and acquiring costs, 

but since the market place became more competitive, the remaining original premium 

was not sufficient to cover the total losses incurred. Therefore, many reinsurers adopt 

the procedure of reimbursing only the original premium that is not paid out for losses 

to the primary insurer. Surplus share reinsurance is more flexible than quota share 

reinsurance since it allows the primary insurer to better calibrate reinsurance setting 

the proper retention limit depending on the type of risk, the size of risk and the overall 

company’s risk appetite. However, it is more complicated and more expensive, since 

there are significant administration costs. This form of proportional reinsurance is a 

particularly suitable tool for balancing the reinsurer’s portfolio by ceding part of the 

exposure to single large risks in its portfolio. Nevertheless, such attitude results in 

possible adverse selection from the point of view of the reinsurer. Moreover, surplus 

share reinsurance provides the reinsured with capacity to underwrite larger risks, 

stabilize results and it can minimize the exposure to large losses and catastrophic events. 

1.3.4. Non-proportional reinsurance 

Conversely to proportional reinsurance, in which the value of the sum insured is 

considered to determine shares of premiums and liabilities, for non-proportional 

reinsurance the amount of loss is of primary importance. As the name implies, there is 

no proportional relationship between the original premium and the premium paid by 

the primary insurer to the reinsurer. The latter is calculated individually and negotiated 
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by the two parties. The reinsurance premium is influenced by many factors: primary 

insurer’s prior loss experience, potential loss and premium estimates from the book of 

business, geographic area of business and desired retention level. 

As has been seen before, the primary insurer participates to the loss up to the deductible 

or priority, and the reinsurer contributes to the loss up to the capacity in excess of the 

priority. The total random loss function can be defined as follows: 

 𝑋[𝑃] = 𝑋[𝑟𝑒𝑡] + 𝑋[𝑐𝑒𝑑]  (1.1) 

where 𝑋[𝑃] is the total random loss insured by the primary insurer, 𝑋[𝑟𝑒𝑡] is the retained 

random loss and 𝑋[𝑐𝑒𝑑] is the ceded random loss. According to non-proportional 

reinsurance, the retained loss 𝑋[𝑟𝑒𝑡] is defined as: 

 𝑋[𝑟𝑒𝑡] = {

𝑥                         𝑖𝑓                             𝑥 ≤ 𝑑
𝑑                          𝑖𝑓               𝑑 < 𝑥 < 𝑑 + 𝑐
𝑥 − 𝑐                𝑖𝑓                      𝑥 ≥ 𝑑 + 𝑐

 (1.2) 

where 𝑥 is the occurred loss, 𝑑 is the priority and 𝑐 is the capacity. Whereas the ceded 

random loss is defined as: 

 𝑋[𝑐𝑒𝑑] = {

0                      𝑖𝑓                          𝑥 ≤ 𝑑
𝑥 − 𝑑                  𝑖𝑓               𝑑 < 𝑥 < 𝑑 + 𝑐
𝑐                        𝑖𝑓                      𝑥 ≥ 𝑑 + 𝑐

 (1.3) 

The advantages of non-proportional reinsurance are: 

- The priority can limit the liabilities reflecting the capacity and the risk appetite of 

the insurer. 

- Potential earnings are greater because the premium paid is lower, since small 

losses are retained by the insurer and are not ceded to the reinsurer. 

- The administration is less complicated and less expensive for both parties. 

- The reinsurer is able to define the price of risk on its own and it does not depend 

on the original premium.  
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The main forms of non-proportional reinsurance are: 

- Excess of loss cover, which includes: per risk working excess of loss (in short 

WXL/R) and catastrophe excess of loss (in short CatXL) or per event excess of 

loss. 

- Stop-loss cover. 

Under insurance cover, the claim payment depends on a defined insured loss event 

having taken place. The loss occurrence and the amount may vary and depend on the 

insured peril and on the line of business. Therefore, an excess of loss reinsurance cover 

must be designed differently depending on the various types of losses that can take 

place in a line of business. For example, a building destroyed by a fire is a huge loss for 

the insurance industry, as well as many small losses caused by a windstorm. Therefore, 

the design of the right excess of loss reinsurance is fundamental. Now, to better 

understand the differences, the different forms of non-proportional reinsurance are 

described in detail. 

The per risk working excess of loss is used by insurers whenever they seek to limit losses 

on any one risk. The term “working” indicates that the cover is triggered by a loss on a 

single risk. In other words, the cedant is indemnified up to a certain limit (capacity), 

against the amount of loss in excess of the priority, with respect to the risk involved in 

each loss. It protects against large losses involving any one risk and it is very effective as 

risk mitigation tool (often used in fire reinsurance). The WXL/R is not effective for 

frequent and cumulative losses, where many policies are triggered by the same event, 

such as a natural catastrophe (Bumann (1997)). 

The excess of loss per event is designed to provide protection against accumulation of 

losses affecting several risks, independently from the number of risks. The term “loss 

event” defines the number of risks affected by the loss that trigger the treaty. This term 

must be well defined in each excess of loss reinsurance treaty. 

It is important to notice that this cover must be negotiated by the insurer in such a way 

that the trigger is not a single loss on a single risk. The essential difference with the per 

risk excess of loss is that the unit of loss is not the individual loss of each policy but the 

aggregate loss of the portfolio caused by and event, defined in the reinsurance treaty. 
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The CatXL is an effective instrument for risk mitigation of large catastrophe losses, made 

up by the sum of hundreds of thousands of relative small losses caused by the same 

event (Brahin et al (2013)).  

Finally, the stop-loss reinsurance is a less frequent form of treaty reinsurance, in which 

the reinsurer covers any loss of the total annual loss which exceed the priority (often 

defined as a percentage of the annual premium). Primary insurers use this form of 

coverage to protect itself against large claims fluctuations at the expense of potential 

earning, therefore it is not used to guarantee profits. Usually, it is chosen when the 

insurer’s claims and administration cost has been higher than premiums (called 

technical loss). Stop-loss reinsurance allows the most comprehensive protection 

compared to other non-proportional reinsurance forms. 

The following table summarizes the different types of reinsurance depending on 

facultative or treaty reinsurance and on proportional and non-proportional reinsurance. 

 Proportional Non-proportional 

Facultative reinsurance 

(per risk) 

Quota share 

Surplus share 
WXL/R 

Treaty reinsurance 

(per portfolio) 
 

CatXL 

Stop-loss 

Table 1.2.: Reinsurance forms and arrangements (Source: Olivieri and Pitacco (2011)) 
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1.4. Recognition of reinsurance under Solvency II 

Actually, many insurance companies use risk mitigation techniques to reduce capital 

requirements and to stabilize their earnings. Under Solvency II, reinsurance is 

recognized as a risk mitigation instrument. Art. 208 of Commission Delegated Regulation 

(EU) 2015/35 states that insurance and reinsurance undertakings, using reinsurance or 

special purpose vehicles to transfer risks, can benefit from these risk mitigation effects, 

allocating them to the scenario-based calculation in a manner that captures the 

economic effect of the protection provided, without double-counting (meeting the 

requirements of art. 209, art. 211 and art. 213 of this regulation).  

Under the Solvency II standard formula, the following principles can be considered as a 

technical guidance, for the recognition of reinsurance as a risk mitigation technique 

(Swiss Re (2011)): 

- If a transaction from one company to another is recognised in a legal form or 

accounting treatment (for example, IFRS), but there is no or just little risk transfer 

from an economical point of view, the risk transfer is not considered as a 

reduction in risk and hence it gives no or very little capital relief. Moreover, the 

additional risk of the transfer should be taken into consideration, as well as the 

basic risk, when entering into a reinsurance transaction. This principle assures 

the protection of policyholders and that risks are valued on a real economic 

basis. 

- The contractual arrangement between the two parties and the risk transfer must 

be clearly defined, legally effective and enforceable in all relevant jurisdictions. 

This principle protects policyholder as the previous one and avoid that the 

economic effects of the risk transfer are disputable. 

- The risk transfer from the primary insurer to the reinsurer should be valued using 

sound economic principles and at real market value of asset and liabilities. This 

principle assures a true picture of the insurer’s balance sheet value, allowing a 

proper cash flow if the reinsurance contract is triggered. 
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- The reinsurer must have a solvency ratio higher than 100% and at least a BBB 

credit rating. It guaranties that the primary insurer is entering into a transaction 

with a creditworthy party and that the policyholders are protected. The credit 

rating influences the capital relief: the higher it is the higher the potential capital 

relief, and vice versa. Moreover, a higher credit rating of an individual reinsurer 

has a higher weight for the primary insurer than many diversified reinsurers, 

holding other things constant. 

- The last principle covers only financial risk mitigating techniques, as ILSs. It 

defines when they can be used as capital relief. It requires the reinsured to have 

a direct claim on the reinsurer, the clauses of the contract cannot be outside the 

control of the primary insurer and the terms and conditions of the cover must be 

clearly defined. The principle assures the protection of the policyholders and the 

avoidance of disputes for the economic effect of the transfer.  

Given the new framework of Solvency II, in which insurance and reinsurance 

undertakings have to operate from the 1st January 2016, and the new restrictive 

solvency capital requirements it causes, the recognition of reinsurance as a risk 

mitigation technique is very important to reduce these limits. Therefore, the 

optimization of reinsurance is of fundamental importance for insurance and reinsurance 

companies that seek such risk mitigation technique.  
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II Chapter 

Due to the important rule of reinsurance as a recognised risk mitigation technique, in 

this chapter a model will be presented to find the optimal reinsurance under value-at-

risk. The purposed model has been studied by Chi and Tan (2013), which allows the 

application of eight premium principles (see chapter three, section 3.2.). Therefore, it is 

a more general model, whereas Chi and Tan (2007), Chi and Tan (2011) and Cai et all 

(2008) consider a specific premium principle, the expected value premium principle, for 

the optimal reinsurance under value at risk. 

2.1. Preliminaries and Assumptions 

Let 𝑋 denote the (aggregate) amount of loss initially assumed by the insurer (i.e. before 

underwriting a reinsurance contract with the reinsurer). The amount 𝑋 represents the 

set of the possible outcomes that the insurer is obliged to pay to the beneficiary, for this 

reason it is possible to assume that 𝑋 is a non-negative random variable. It is defined on 

a probability space (Ω, ℱ, ℙ), with cumulative distribution function (cdf) 𝐹𝑥(𝑥) =

ℙ(𝑋 ≤ 𝑥), survival function 𝑆𝑋(x) = (1 − 𝐹𝑥(𝑥)) = ℙ(𝑋 > 𝑥) and expected value 0 <

𝔼[𝑋] < ∞ (Cai et al. (2008)). The cdf is a right-continuous and non-decreasing1 function 

with: 

 𝐹𝑋(0) = lim
𝑥→0

𝐹𝑋(𝑥) = lim
𝑥→0

ℙ(X ≤ x) = 0 (2.1) 

 𝐹𝑋(∞) = lim
𝑥→0

𝐹𝑋(𝑥) = lim
𝑥→∞

ℙ(X ≤ x) = 1. (2.2) 

  

                                                      
1 In this paper, increasing and decreasing mean non-decreasing and non-increasing respectively. 
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Figure 2.1.: The cumulative distribution function  

Under a reinsurance agreement, the insurer (the cedant) transfers part of its loss 

exposure to another insurer (the reinsurer). Thus, the loss 𝑋 is split between the two 

parties: 

 𝑋 = 𝑅𝑓(𝑋) + 𝑓(𝑋) (2.3) 

where the 𝑅𝑓(𝑋) is the residual loss retained by the insurer and 𝑓(𝑋) is the loss ceded 

to the reinsurer, satisfying 0 ≤ 𝑓(𝑋) ≤ 𝑋. Consequently, 𝑅𝑓(𝑥) is the retained loss 

function and 𝑓(𝑥) is known as the ceded loss function, satisfying 0 ≤ 𝑓(𝑥) ≤ 𝑥. The 

optimal reinsurance problem is regarded with the optimal proportioning of the loss 𝑋 

between 𝑅𝑓(𝑋) and 𝑓(𝑋). More precisely, the choices of the constraints on the ceded 

loss function as well as the risk measure show interesting insights on the optimal design 

of reinsurance treaties. The latter will be considered in the next pages, whereas for what 

concerns the former, it is possible to consider three feasible classes (Chi and Tan (2011)): 

- 𝑓(𝑥) is an increasing convex function. 

- Both 𝑓(𝑥) and 𝑅𝑓(𝑥) are increasing functions. 

- 𝑅𝑓(𝑥) is an increasing and left continuous function. 

Since an insurance contract is an agency relationship with possible asymmetry of 

information, there exists moral hazard, which can be seen as the change of an 

individual’s behaviour after entering into a contract.  The second mentioned class 



16 
 

partially avoids moral hazard, so that as the loss 𝑋 increases both parties are obligated 

to pay more. Formally, the set of admissible ceded loss functions 𝒞 is defined as: 

 𝒞 ≜ {0 ≤ 𝑓(𝑥) ≤ 𝑥 ∶ 𝑏𝑜𝑡ℎ 𝑅𝑓(𝑥) 𝑎𝑛𝑑 𝑓(𝑥) 𝑎𝑟𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠}.   (2.4) 

The ceded loss function has the property of been not only increasing but also Lipschitz 

continuous; this means that: 

 0 ≤ 𝑓(𝑥𝑎) − 𝑓(𝑥𝑏) ≤ 𝑥𝑎 − 𝑥𝑏     ∀ 0 ≤ 𝑥𝑎 ≤ 𝑥𝑏 . (2.5) 

In addition, the non-proportional reinsurance equation (1.1) is contained in 𝒞 and as 

shown in Chi and Tan (2011) this set of admissible ceded loss functions contains the set 

of increasing convex ceded loss functions. 

As it has been seen in the first chapter, by underwriting a reinsurance contract, the 

cedant incurs in an additional cost payable to the reinsurer. The premium principle used 

𝜋(. ) is a function from the set of non-negative random variables 𝒵 to the set of non-

negative real numbers ℝ+. In this case the reinsurance premium 𝜋(𝑓(𝑋)) is function of 

the ceded loss function 𝑓(𝑋). It is defined as follows: 

 𝜋: 𝑓(𝑋) → ℝ+. (2.6) 

According to Chi and Tan (2013), the premium principle must satisfy three weak but 

necessary axioms: distribution invariance, risk loading and stop-loss order preserving. 

They are defined as: 

- Distribution invariance: For 𝑌 ∈ 𝒵, 𝜋(𝑌) depends only on the cdf 𝐹𝑌(𝑦). It is an 

implicit assumption in actuarial science. 

- Risk loading: 

 𝜋(𝑌) ≥ 𝔼[𝑌], ∀ all 𝑌 ∈ 𝒵. (2.7) 

It is applied to assure the safety of the reinsurance company, otherwise it will go 

bankrupt.  

- Stop-loss ordering preserving: For 𝑌, 𝑋 ∈ 𝒵, 𝜋(𝑌) ≤ 𝜋(𝑋), if  𝑌 is smaller than 𝑋 

in the stop-loss order, that is if: 

 𝔼[max((𝑌 − 𝑑), 0)] ≤ 𝔼[max((𝑋 − 𝑑), 0)] ∀ 𝑑 ∈ ℝ (2.8) 

provided that the expectations exit. It is denoted as 𝑌 ≤𝑠𝑙 𝑋.   
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Under the presence of reinsurance, the insurer total risk exposure 𝑇𝑓(𝑋) becomes: 

 𝑇𝑓(𝑋) = 𝑅𝑓(𝑋) + 𝜋(𝑓(𝑋)). (2.9) 

This equation shows that the insurer is no longer exposed to the whole risk 𝑋, but to the 

sum of the premium paid to the reinsurer 𝜋(𝑓(𝑋)) and the residual loss retained 𝑅𝑓(𝑋). 

This new risk exposure of the insurer clearly shows a trade-off: 

- If the ceded loss 𝑓(𝑋) is small, then the premium paid to the reinsurer 𝜋(𝑓(𝑋)) 

will be relatively low, but the residual loss retained 𝑅𝑓(𝑋) will be relatively high. 

- On the other hand, if the insurer will decrease the residual loss retained exposure 

𝑅𝑓(𝑋), the ceded loss function 𝑓(𝑋) increases as well as the premium to be paid 

to the reinsurer 𝜋(𝑓(𝑋)). 

For this reason, a criterion should be chosen to determine the optimal ceded loss 

function 𝑓∗ in the total risk exposure of the insurer 𝑇𝑓(𝑋). The criterion consists in 

choosing an appropriate risk measure 𝜑 that minimizes the total risk exposure of the 

insurer 𝑇𝑓(𝑋): 

 𝜑 (𝑇𝑓∗(𝑋)) = min
𝑓∈𝒞

𝜑 (𝑇𝑓(𝑋)). (2.10) 

The risk measure used for this purpose is the Value at Risk (VaR): 

Definition 2.1. The Value at Risk of a non-negative random variable 𝑋 at confidence level 

1 − 𝛼, where 0 < 𝛼 < 1, is defined as follows: 

𝑉𝑎𝑅𝛼(𝑋) ≜ inf{𝑥 ≥ 0:ℙ(𝑋 > 𝑥) ≤ 𝛼} ≜ inf{𝑥 ≥ 0: 𝐹𝑋(𝑥) ≤ 1 − 𝛼}. (2.11) 

The value-at-risk is also defined as the quantile risk measure, since 𝑉𝑎𝑅𝛼(𝑋) is exactly 

the (1 − 𝛼) − 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 of the random variable 𝑋.  
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Figure 2.2.: The value-at-risk 

From the definition (2.11), it follows that: 

 𝑉𝑎𝑅𝛼(𝑋) ≤ 𝑥 ⟺ 𝑆𝑋(𝑥) ≤ 𝛼  ∀𝑥 ∈ ℝ
+ (2.12) 

 𝑉𝑎𝑅𝛼(𝑋) ≤ 𝑥 ⟺ ℙ(𝑋 > 𝑥) ≤ 𝛼 ∀𝑥 ∈ ℝ+. (2.13) 

This means that if 𝑥 = 0 then the 𝑉𝑎𝑅𝛼(𝑋) = 0 for 𝛼 ≥ 𝑆𝑋(0). In order to avoid the 

discussion of trivial cases, it is assumed that the parameter 𝛼 is restricted to 0 < 𝛼 <

𝑆𝑋(0).  

For the purpose of this project, the VaR has another important property, discussed in 

the Dhaene et all (2002). It is possible to prove that for any given increasing continuous 

function 𝜓,  

 𝑉𝑎𝑅𝛼(𝜓(𝑋)) = 𝜓(𝑉𝑎𝑅𝛼(𝑋)). (2.14) 
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In this paper, the VaR is taken into consideration for several reasons: 

- Huge interest among practitioners and academicians for this risk measure.  

- Widely used within the insurance and banking industry for quantifying market 

risk, portfolio optimization, setting capital adequacy and so forth. 

- It has become the benchmark risk measure in the financial world because 

regulators accept this model as the basis to set capital requirements. 

The concept of VaR answers the following question: how much is it expected to lose in 

a specified period of time with a given probability. For example, if a portfolio of an 

insurer has a yearly 𝑉𝑎𝑅0.005 = € 10 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 then a loss of € 10 𝑚𝑖𝑙𝑖𝑜𝑛 or more is 

expected every 200 years. 

2.2. Value-at-risk optimal reinsurance model 

Summarizing, the optimal reinsurance model subject to the feasible set of ceded loss 

functions 𝒞 becomes: 

 𝑉𝑎𝑅𝛼 (𝑇𝑓∗(𝑋)) = min
𝑓∈𝒞

𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) .  (2.15) 

To solve this model, a limited stop-loss reinsurance treaty is constructed for any given 

ceded loss function 𝑓 ∈ 𝒞 , such that it is better than 𝑓, in the sense of minimizing the 

VaR of the total exposure of the reinsurer. This limited stop-loss reinsurance treaty 

denoted by ℎ𝑓(𝑥), is defined as follows: 

ℎ𝑓(𝑥) ≜ min{max[𝑥 − 𝑉𝑎𝑅𝛼(𝑋) − 𝑓(𝑉𝑎𝑅𝛼(𝑋)), 0], 𝑓(𝑉𝑎𝑅𝛼(𝑋))},𝑤𝑖𝑡ℎ 𝑥 ≥ 0 (2.16) 

or equivalently, 

ℎ𝑓(𝑥) ≜ {

0                                                           𝑖𝑓                          𝑥 ≤ 𝑉𝑎𝑅𝛼(𝑋) − 𝑓(𝑉𝑎𝑅𝛼(𝑋))

𝑥 − 𝑉𝑎𝑅𝛼(𝑋) − 𝑓(𝑉𝑎𝑅𝛼(𝑋))      𝑖𝑓   𝑉𝑎𝑅𝛼(𝑋) − 𝑓(𝑉𝑎𝑅𝛼(𝑋)) < 𝑥 < 𝑉𝑎𝑅𝛼(𝑋)

𝑓(𝑉𝑎𝑅𝛼(𝑋))                                     𝑖𝑓                                                         𝑥 ≥ 𝑉𝑎𝑅𝛼(𝑋)

 (2.17) 

with 𝑥 ≥ 0, where 𝑉𝑎𝑅𝛼(𝑋) − 𝑓(𝑉𝑎𝑅𝛼(𝑋)) is the deductible and 𝑓(𝑉𝑎𝑅𝛼(𝑋)) is the 

upper limit.  



20 
 

The retained loss function purchasing insurance coverage becomes: 

𝑅ℎ𝑓(𝑥) = {

𝑥                                                       𝑖𝑓                                    𝑥 ≤ 𝑉𝑎𝑅𝛼(𝑋) − 𝑓(𝑉𝑎𝑅𝛼(𝑋))

𝑉𝑎𝑅𝛼(𝑋) − 𝑓(𝑉𝑎𝑅𝛼(𝑋))           𝑖𝑓             𝑉𝑎𝑅𝛼(𝑋) − 𝑓(𝑉𝑎𝑅𝛼(𝑋)) ≤ 𝑥 ≤ 𝑉𝑎𝑅𝛼(𝑋)

𝑥 − 𝑓(𝑉𝑎𝑅𝛼(𝑋))                         𝑖𝑓                                                                  𝑥 ≥ 𝑉𝑎𝑅𝛼(𝑋).

      (2.18) 

 

Figure 2.3.: The limited stop-loss reinsurance 

Moreover, if 𝑥 = 𝑉𝑎𝑅𝛼(𝑋) then  

 ℎ𝑓(𝑉𝑎𝑅𝛼(𝑋)) = 𝑓(𝑉𝑎𝑅𝛼(𝑋)) (2.19) 

and 

 ℎ𝑓(𝑥) ∈ 𝒞. (2.20) 

Now it is possible to write the total risk exposure of the insurer with the corresponding 

ceded loss function ℎ𝑓(𝑥) as follows: 

 𝑇ℎ𝑓(𝑋) = 𝑅𝑓(𝑋) + 𝜋 (ℎ𝑓(𝑋)). (2.21) 
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Comparing the 𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) and 𝑉𝑎𝑅𝛼 (𝑇ℎ𝑓(𝑋)) the following important result can 

be proven: 

Theorem 2.1. For the VaR-based optimal reinsurance model (2.15), the limited stop-loss 

reinsurance ℎ𝑓(𝑥) is optimal in the sense that: 

 𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) ≥ 𝑉𝑎𝑅𝛼 (𝑇ℎ𝑓(𝑋))      ∀ 𝑓 ∈ 𝒞 (2.22) 

Proof: 

First of all it is possible to prove that for any ceded loss function 𝑓 ∈ 𝒞, the limited stop-

loss reinsurance treaty ℎ𝑓(𝑥) is always smaller or equal: 

 𝑓(𝑥) ≥ ℎ𝑓(𝑥) ∀ 𝑥 ≥ 0. (2.23) 

Given that 𝑓(𝑥) ≤ 𝑥 and if 𝑥 ≤ 𝑉𝑎𝑅𝛼(𝑋), it implies that: 

 𝑓(𝑥) ≤ 𝑉𝑎𝑅𝛼(𝑋). (2.24) 

Since the ceding loss function 𝑓 ∈ 𝒞 is Lipschitz-continuous and non-negative, it is 

possible to state: 

 𝑓(𝑉𝑎𝑅𝛼(𝑋)) − 𝑓(𝑥) ≤ 𝑉𝑎𝑅𝛼(𝑋) − 𝑥 (2.25) 

 −𝑓(𝑥) ≤ 𝑉𝑎𝑅𝛼(𝑋) − 𝑥 − 𝑓(𝑉𝑎𝑅𝛼(𝑋)) (2.26) 

 𝑓(𝑥) ≥ 𝑥 − 𝑉𝑎𝑅𝛼(𝑋) + 𝑓(𝑉𝑎𝑅𝛼(𝑋)). (2.27) 

Recalling again that 𝑥 ≤ 𝑉𝑎𝑅𝛼(𝑋), the right-hand side can be rewritten as: 

 𝑓(𝑥) ≥ max(𝑥 − 𝑉𝑎𝑅𝛼(𝑋) + 𝑓(𝑉𝑎𝑅𝛼(𝑋)), 0). (2.28) 

Because for 0 ≤ 𝑥 ≤ 𝑉𝑎𝑅𝛼(𝑋) the value of the ceded loss function is non-negative, and 

hence max(𝑥 − 𝑉𝑎𝑅𝛼(𝑋) + 𝑓(𝑉𝑎𝑅𝛼(𝑋)), 0). Since from the definition of ℎ𝑓(𝑥), in this 

partition of the domain the max(𝑥 − 𝑉𝑎𝑅𝛼(𝑋) + 𝑓(𝑉𝑎𝑅𝛼(𝑋)), 0) coincide with  ℎ𝑓(𝑥): 

ℎ𝑓(𝑥) = max(𝑥 − 𝑉𝑎𝑅𝛼(𝑋) + 𝑓(𝑉𝑎𝑅𝛼(𝑋)), 0) ∀ 0 ≤ 𝑥 ≤ 𝑉𝑎𝑅𝛼(𝑋). (2.29) 

Hence: 

 𝑓(𝑥) ≥ ℎ𝑓(𝑥) ∀ 0 ≤ 𝑥 ≤ 𝑉𝑎𝑅𝛼(𝑋). (2.30)  
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On the other side, given 𝑥 ≥ 𝑉𝑎𝑅𝛼(𝑋) and due to the increasing property of 𝑓(𝑥), it 

implies: 

 𝑓(𝑥) ≥ 𝑓(𝑉𝑎𝑅𝛼(𝑋)). (2.31) 

Hence: 

  𝑓(𝑥) ≥ 𝑓(𝑉𝑎𝑅𝛼(𝑋)) = ℎ𝑓(𝑥), ∀ 𝑥 ≥ 𝑉𝑎𝑅𝛼(𝑋). (2.32) 

It has been proven that ℎ𝑓(𝑋) ≤ 𝑓(𝑋) in the usual stochastic order ∀ 𝑥. This means that 

ℎ𝑓(𝑋) is less likely than 𝑓(𝑋) to take on larger values and this is true for all values of 𝑥 

(Denuit et al (2005)). Furthermore, since the premium function 𝜋(. ) maintains the stop-

loss order property, it follows that 𝜋 (ℎ𝑓(𝑋)) ≤ 𝜋(𝑓(𝑋)). 

The value at risk of the total risk exposure of the insurer 𝑇𝑓(𝑋), due to the translation 

invariance property of VaR, can be written as: 

 𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) = 𝑉𝑎𝑅𝛼 (𝑅𝑓(𝑋)) + 𝜋(𝑓(𝑋)). (2.33) 

From the property (2.14), the 𝑉𝑎𝑅𝛼 (𝑅𝑓(𝑋)) = 𝑅𝑓(𝑉𝑎𝑅𝛼(𝑋)), substituting this equality 

into the equation (2.33), it follows 

 𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) = 𝑅𝑓(𝑉𝑎𝑅𝛼(𝑋)) + 𝜋(𝑓(𝑋)). (2.34) 

Recalling that 𝑅𝑓(𝑋) = 𝑋 − 𝑓(𝑋), it is possible to write 𝑅𝑓(𝑉𝑎𝑅𝛼(𝑋)) = 𝑉𝑎𝑅𝛼(𝑋) −

𝑓(𝑉𝑎𝑅𝛼(𝑋)) and it is substituted into the equation: 

 𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) = 𝑉𝑎𝑅𝛼(𝑋) − 𝑓(𝑉𝑎𝑅𝛼(𝑋)) + 𝜋(𝑓(𝑋)). (2.35) 

Since the  ℎ𝑓(𝑉𝑎𝑅𝛼(𝑋)) = 𝑓(𝑉𝑎𝑅𝛼(𝑋)), the equation can be rewritten as: 

 𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) = 𝑉𝑎𝑅𝛼(𝑋) − ℎ𝑓(𝑉𝑎𝑅𝛼(𝑋)) + 𝜋(𝑓(𝑋)). (2.36) 
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Since the insurance company purchase the limited stop-loss reinsurance treaty, the 

premium to be paid to the reinsurer is the limited stop-loss reinsurance premium 

𝜋 (ℎ𝑓(𝑋)) and since 𝜋 (ℎ𝑓(𝑋)) ≤ 𝜋(𝑓(𝑋)), it implies that: 

 𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) ≥ 𝑉𝑎𝑅𝛼(𝑋) − ℎ𝑓(𝑉𝑎𝑅𝛼(𝑋)) + 𝜋 (ℎ𝑓(𝑋)) (2.37) 

 𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) ≥ 𝑉𝑎𝑅𝛼 (𝑇ℎ𝑓(𝑋)). (2.38) 

Hence, the limited stop-loss reinsurance of the form (2.16) is optimal. 

Now, setting 𝑑 = 𝑉𝑎𝑅𝛼(𝑋) − 𝑓(𝑉𝑎𝑅𝛼(𝑋)), where 𝑑 represents the deductible, it 

follows that: 

 0 ≤ 𝑑 ≤ 𝑉𝑎𝑅𝛼(𝑋). (2.39) 

As reductio ab absurdum, if 𝑑 > 𝑉𝑎𝑅𝛼(𝑋) it would imply that: 

 𝑉𝑎𝑅𝛼(𝑋) − ℎ𝑓(𝑉𝑎𝑅𝛼(𝑋)) > 𝑉𝑎𝑅𝛼(𝑋) (2.40) 

 −ℎ𝑓(𝑉𝑎𝑅𝛼(𝑋)) > 𝑉𝑎𝑅𝛼(𝑋) − 𝑉𝑎𝑅𝛼(𝑋) (2.41) 

 ℎ𝑓(𝑉𝑎𝑅𝛼(𝑋)) < 0. (2.42) 

This can never be true since ℎ𝑓(𝑥) ∈ 𝒞 and so it assumes only non-negative value.  

The VaR-based optimal reinsurance model becomes: 

min
𝑓∈𝒞𝑣

𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) = min
0≤𝑑≤𝑉𝑎𝑅𝛼(𝑋)

{𝑑 + 𝜋(𝑚𝑖𝑛{𝑚𝑎𝑥{𝑋 − 𝑑, 0} , 𝑉𝑎𝑅𝛼(𝑋) − 𝑑})}. (2.43) 

where 

 𝒞𝑣 ≜ {min{𝑚𝑎𝑥{𝑋 − 𝑑, 0} , 𝑉𝑎𝑅𝛼(𝑋) − 𝑑} ∶  0 ≤ 𝑑 ≤ 𝑉𝑎𝑅𝛼(𝑋)}. (2.44) 

This set 𝒞𝑣 contains all admissible limited stop-loss reinsurance treaties ℎ𝑓(𝑥) and 

satisfies the condition: 𝒞𝑣 ⊆ 𝒞.  
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III Chapter 

In this chapter, an empirical analysis will be provided of the theoretical results of the 

previous chapter, taking into consideration different possible distributions to model the 

insurance’s losses (called loss distributions) and the impact of the different parameters 

will be analysed. Finally, using the Danish fire loss data provided by Copenhagen 

Reinsurance the different limited stop-loss reinsurance variables of the model (2.43) will 

be analysed. 

Considering insurance losses from a single policy or a portfolio, the possible random 

values are non-negative and the distribution that best fit these losses are positively 

skewed and very often they have high probabilities in the right-hand tails. These 

distributions can be described as long tailed or heavy (fat) tailed (Gray and Pitts, 2012). 

Distributions with fat tails are suitable to model claim sizes, since they allow losses to 

take very high values. 

The distributions that meet these conditions and are representative for insurance losses 

are: 

- Lognormal. 

- Pareto. 

- Weibull. 

- Exponential. 

- Gamma. 

These models are informative to the insurance and reinsurance companies and provide 

them tools to make decisions on premium loading, expected profits, reserves and the 

impact of reinsurance and priorities (Achieng, 2010). Moreover, according to Packová 

and Brebera (2015), the Pareto distribution is often used for modelling insurance losses 

and it plays a central role in quoting non-proportional reinsurance.  

In chapter 2, the VaR-based optimal reinsurance model has been provided (2.43); it is a 

minimization problem in one variable (𝑑 the priority), which will be solved using Matlab. 

Matlab (Math laboratory) is a software environment for engineers and scientists 

developed by MathWorks, which is used for matrix and array computations, to develop 
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and run algorithms, for data visualization and for many other issues such as optimization 

and graphical representations useful for the purpose of this project. 

3.1. Loss distribution    

This section will briefly analyse the five different distributions in order to better 

understand their characteristics for the following analysis.  

The probability distribution can be characterized by different parameters depending on 

the particular distribution. These parameters are: 

- Location parameter: it shifts the distribution to the right or left without changing 

the shape or the volatility. 

- Scale parameter: it quantifies the dispersion of the random variable and its 

inverse quantifies the precision of it. 

- Shape parameter: it is any parameter that is not changed by the changes of the 

location or scale parameters. It describes the shape of the graph for particular 

distributions. Often the skewness or tail weight of a distribution can be specified 

by the shape parameters (Ruppert (2010)). 

3.1.1.  Exponential distribution 

It is described by one parameter, the scale one 𝜆(> 0), and it is considered a sub-family 

of the gamma distribution (for 𝛼 = 1, see below gamma distribution). It is denoted as: 

𝑋~𝐸𝑥𝑝(𝜆) 

The probability density function of the exponential family is defined as:  

 𝑓(𝑥) = 𝜆𝑒−𝜆∙𝑥,    𝑥 > 0 (3.1) 

The expected value and the variance are defined as follows: 

 𝔼(𝑋) =
1

𝜆
 (3.2) 

and 

 𝕍𝑎𝑟(𝑋) =
1

𝜆2
. (3.3)  
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3.1.2.  Gamma distribution 

A gamma distribution is characterized by a shape parameter 𝛼(> 0) and a scale 

parameter 𝜎(> 0). It is denoted as: 

𝑋~𝐺(𝛼, 𝜎). 

It is considered a gamma distribution if the probability distribution function is equal to: 

 𝑓(𝑥) =
𝜎𝛼

Γ(𝛼)
∙ 𝑥𝛼−1 ∙ 𝑒−𝜎∙𝑥,     𝑥 > 0 (3.4) 

where Γ(𝛼) = ∫ 𝑥𝛼−1 ∙ 𝑒−𝑥𝑑𝑥
∞

0
. This is the gamma function. 

The parameter 𝛼 determines the skewness and kurtosis of the distribution: the more 

the it increases the more the random variable becomes symmetrical and tend to a 

normal distribution. For 𝛼 > 1, the density decreases more slowly than the exponential 

distribution and due to the second parameter, it is more flexible in modelling data than 

a one parameter distribution like the exponential one.  

The expected value and the variance of this distribution are defined as: 

 𝔼(𝑋) = 𝜎 ∙ 𝛼    𝑎𝑛𝑑    𝕍𝑎𝑟(𝑋) = 𝜎2 ∙ 𝛼. (3.5) and (3.6) 

3.1.3.  Lognormal distribution 

This family of distributions is described by two parameters, the location parameter 𝜇 

and scale parameter 𝜎, which are sometimes called “mean log” and “standard deviation 

log”, respectively. It is denoted as: 

𝑋~𝑙𝑜𝑔𝑛𝑜𝑚𝑎𝑙 (𝜇, 𝜎) 

with probability density function: 

 𝑓(𝑥) =
1

𝜎∙√2𝜋
∙
1

𝑥
∙ exp {−

1

2
∙ (
𝑙𝑜𝑔(𝑥)−𝜇

𝜎
)
2

} ,    𝑥 > 0. (3.7) 

The name of this distribution derives from the fact that: 

 𝑋~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎) ⟺ 𝑌 = log(𝑋)~Ν(𝜇, 𝜎2). (3.8) 

This means that log(𝑋) is normally distributed with mean 𝜇 and standard deviation 𝜎.   
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The expected value and the variance of the lognormal distribution can be defined as: 

                     𝔼(𝑋) = 𝑒𝜇+
𝜎2

2     𝑎𝑛𝑑    𝕍𝑎𝑟(𝑋) = (𝑒𝜎
2
− 1) ∙ (𝑒2𝜇+𝜎

2
). (3.9) and (3.10) 

3.1.4.  Pareto distribution 

The Pareto family has several sub-families. The one with shape parameter 𝛼(> 0) and 

scale parameter 𝜎(> 0), sometimes called “American Pareto”, is widely used in 

modelling losses in general reinsurance. It is denoted as: 

𝑋~𝑃𝑎(𝛼, 𝜎). 

The probability density function of the Pareto distribution is defined as: 

 𝑓(𝑥) =
𝛼∙𝜎𝛼

(𝜎+𝑥)𝛼+1
,     𝑥 > 0. (3.11) 

The exponential, gamma and lognormal distributions tail off faster than the Pareto one.  

Here, the expected value and the variance of the Pareto distribution can be defined as: 

 𝔼(𝑋) =
𝛼∙𝜎

𝛼−1
,       𝑤𝑖𝑡ℎ 𝛼 > 1   (3.12) 

and 

 𝕍𝑎𝑟(𝑋) =
𝛼∙𝜎2

(𝛼−1)2∙(𝛼−2)
,   𝑤𝑖𝑡ℎ 𝛼 > 2.   (3.13) 

3.1.5.  Weibull distribution 

It is a family of distributions characterized by two parameters: shape parameter 𝛼(> 0) 

and scale parameter 𝜎(> 0). If 𝜎 = 1, the Weibull distribution is equal to the 

exponential one. It is denoted as: 

𝑋~𝑊𝑒𝑖(𝛼, 𝜎). 

The probability density function is defined as follows: 

 𝑓(𝑥) = 𝛼 ∙ 𝜎 ∙ 𝑥𝜎−1 ∙ 𝑒−𝛼∙𝑥
𝜎
,    𝑥 > 0. (3.14) 

The expected value of this distribution is defined as:  

 𝔼(𝑋) = Γ (1 +
1

𝜎
) ∙ 𝛼−

1

𝜎. (3.15)  
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Whereas, the variance is defined as: 

 𝕍𝑎𝑟(𝑋) = Γ (1 +
2

𝜎
) ∙ 𝛼−

2

𝜎 − Γ(1 +
1

𝜎
) ∙ 𝛼−

1

𝜎. (3.16) 

3.2.  Empirical analysis 

For the empirical analysis of the VaR-based optimal reinsurance model (2.43), a 

premium principle for the calculation of the reinsurance premium must be assumed. 

According to Chi and Tan (2013), the premium principles that satisfy the three basic 

axioms analysed in the previous chapter are: net, expected value, exponential, 

proportional hazard, principle of equivalent utility, Wang’s, Swiss, and Dutch’s. These 

eight premium principles have different assumptions and the used of one instead of 

another could lead to a different optimal solution. 

In this paper, the expected value premium principle will be assumed, since it has 

remained the most fundamental and widely used (Cai et al (2008)). It is defined as 

follows: 

 𝜋(𝑋,𝜔) = (1 + 𝜔) ∙ 𝔼(𝑋) (3.17) 

where 𝜔 (> 0) is the so-called safety loading. It is a parameter that increases the 

premium and so the potential profit of the insurance or reinsurance undertaking, 

leading the basic axiom of risk loading to satisfy 𝜋(𝑌) > 𝐸(𝑌) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑌 ∈ 𝒵, stronger 

condition than (2.7). It is one of the simplest premium principles. 

Substituting this premium principle (3.17) in the equation (2.43), the optimization 

problem becomes:   

min
𝑓∈𝒞𝑣

𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) = min
0≤𝑑≤𝑉𝑎𝑅𝛼(𝑋)

{𝑑 + (1 + 𝜔) ∙ 𝔼𝑋(𝑚𝑖𝑛{𝑚𝑎𝑥{𝑋 − 𝑑, 0} , 𝑉𝑎𝑅𝛼(𝑋) − 𝑑})}. (3.18) 

The implementation of the optimization problem in Matlab follows the Monte Carlo 

method, which is very often used for the optimization and for generation of draws from 

a probability distribution. The expected value can be seen as: 

 
1

𝑁
∙ ∑ 𝑓(𝑋𝑖)

𝑁⟶∞
→    𝑁

𝑖=1 𝔼𝑋 [𝑓(𝑋)], 𝑓𝑜𝑟 𝑋
𝑖~𝑖𝑖𝑑𝐷(. )      (3.19) 

where 𝐷(. ) Is a given distribution. 
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Moreover, the optimization problem (3.18) can be seen as: 

 𝑚𝑖𝑛
𝑓∈𝒞𝑣

𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) = 𝑚𝑖𝑛
0≤𝑑≤𝑉𝑎𝑅𝛼(𝑋)

{𝑑 + (1 + 𝜔) ∙ 𝔼𝑋[𝑔(𝑋
𝑖 , 𝑑)]}   (3.20) 

where, 

 𝑔(𝑋𝑖 , 𝑑) = 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑋𝑖 − 𝑑, 0} , 𝑉𝑎𝑅𝛼(𝑋) − 𝑑}. (3.21) 

Substituting (3.19) in the optimization model (3.18), it is possible to write: 

 min
𝑓∈𝒞𝑣

𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) ≃ min
0≤𝑑≤𝑉𝑎𝑅𝛼(𝑋)

{𝑑 + (1 + 𝜔) ∙
1

𝑁
∙ ∑ 𝑔(𝑋𝑖, 𝑑)𝑁

1 } (3.22) 

for  𝑋𝑖 ~𝑖𝑖𝑑𝐷 (. ) ∀ 𝑖 = 1,… ,𝑁. Substituting the equation (3.21) into (3.22): 

min
𝑓∈𝒞𝑣

𝑉𝑎𝑅𝛼 (𝑇𝑓(𝑋)) ≃ min
0≤𝑑≤𝑉𝑎𝑅𝛼(𝑋)

{𝑑 + (1 + 𝜔) ∙
1

𝑁
∙ ∑ 𝑚𝑖𝑛{𝑚𝑎𝑥{𝑋𝑖 − 𝑑, 0} , 𝑉𝑎𝑅𝛼(𝑋) − 𝑑}

𝑁
𝑖=1 }. (3.23) 

Now, choosing the probability level 𝛼, the safety loading 𝜔 and a probability distribution 

of 𝑋 it is possible to determine the optimal priority, with corresponding value-at-risk and 

capacity, and the premium payment.  

The probability distributions are created randomly using Matlab, changing the 

parameters of the distributions it is possible to obtain distributions with different 

characteristics. The probability levels 𝛼 are chosen differently depending on the 

particular focus of the analysis; sometimes the ruin probability is kept fixed and 

sometimes it is the parameter let free to vary. 

In the following subsections, the impact of each parameter on the optimization problem 

will be analysed, reporting data from simulations and providing graphics, holding the 

other ones fixed.  
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3.2.1.  Safety loading 𝝎 

The safety loading is set by the reinsurer and since the cedant point of view is taken into 

consideration, the safety loading 𝜔 is given. However, it is worth to mention that the 

magnitude of this parameter has a direct impact on the variable subject to optimization. 

If the safety loading increases, the optimal priority increases and the capacity decreases, 

for a given probability level 𝛼 and for a particular distribution. In other words, if the price 

of reinsurance increases, holding the 𝑉𝑎𝑅𝛼(𝑋) constant (due to the probability level 𝛼) 

the only parts that can change are the capacity and the priority, simply noticeable from 

the relationship 𝑉𝑎𝑅𝛼(𝑋) = 𝑑 + 𝑓(𝑉𝑎𝑅𝛼(𝑋)). 

However, the equation (3.17) on the reinsurance contract (2.16) , it is not possible to 

state that 𝜋(ℎ𝑓(𝑋),𝜔1) ≤ 𝜋(ℎ𝑓(𝑋),𝜔2)  𝑓𝑜𝑟 𝜔1 ≤ 𝜔2, because the change in the risk 

sharing amounts (capacity and priority) can compensate the increase in safety loading, 

so that the premium does not necessarily increase.  

Considering 0 < 𝜔 < 1, the probability level equal to 0.5% and the Pareto loss 

distribution with shape and a scale parameter 20 and 1800, respectively, the results of 

a simulation are provided for 10 values of the safety loading in table 3.2.1.1. (see 

appendix A.1. for Matlab algorithm). The mean and the standard deviation are constant 

because the simulation has been performed on the same distribution, as the value at 

risk since the probability level 𝛼 has been fixed; the priority increases with consequent 

decrease in the capacity. This means that if the reinsurer charges a higher safety loading, 

the optimal limit stop-loss reinsurance coverage parameters change, in terms of lower 

capacity and higher priority. In this case, the premium tends to increase, however from 

55% to 65% of safety loading it does not. However, the capacity decrease and the 

premium increase for an increase in safety loading are difficult to analyse simply looking 

at the figure: the ROL (Rate On Line) is a ratio representing the amount that has to be 

paid by the insurer to receive coverage, expressed in %. It is the ratio between the 

premium and reinsurance recoverable in case of losses, defined as: 

 𝑅𝑂𝐿 =
𝑃𝑟𝑒𝑚𝑖𝑢𝑚

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 (3.24)  
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If the ratio increases the cedant has to pay more for reinsurance coverage. It is possible 

to notice that the ROL increases with the increase in safety loading. This means that the 

relative cost of reinsurance increases with increasing safety loading. 

Omega Priority Capacity 𝑽𝒂𝑹𝟎.𝟓% Premiums Mean St. Dev. ROL 

5% 94.0 570.1 664.1 91.1 181.4 99.1 16% 

15% 101.8 562.2 664.1 91.6 181.4 99.1 16.3% 

25% 109.5 554.5 664.1 91.5 181.4 99.1 16.5% 

35% 116.6 547.5 664.1 91.5 181.4 99.1 16.7% 

45% 123.0 541.1 664.1 91.6 181.4 99.1 16.9% 

55% 129.0 535.1 664.1 91.8 181.4 99.1 17.2% 

65% 135.1 529.0 664.1 91.4 181.4 99.1 17.3% 

75% 139.4 524.6 664.1 92.4 181.4 99.1 17.6% 

85% 144.2 519.9 664.1 92.7 181.4 99.1 17.8% 

95% 147.7 516.4 664.1 94.2 181.4 99.1 18.2% 

Table 3.2.1.1.: The impact of the safety loading on the optimization problem 

This can be seen graphically in the following pictures: 

 

Figure 3.2.1.1.: The Gamma distribution with  𝑋~𝑃𝑎(20,1800)   
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Figure 3.2.1.1. shows the simulated loss distribution (Pareto distribution), with different 

measures describing it. The distribution is very far from a normal one due to a high 

kurtosis equal to 13.43 and high positive skewness of 2.57. The loss is in the interval 

between 90.05 and 972.91. For this loss distribution, two separated graphs are provided, 

showing the ceded loss function and the retained loss function at the probability level 

𝛼 = 0.005 for a safety loading 𝜔1 = 0.15 and 𝜔2 = 0.65. 

 

Figure 3.2.1.2. (a): Comparison and impact of different safety loadings with 𝜔1 = 0.15 

 

Figure 3.2.1.2. (b): Comparison and impact of different safety loadings with 𝜔2 = 0.65  
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It is possible to notice that the first graph (figure 3.2.1.2. (a)) and the second one (figure 

3.2.1.2. (b)) have both the same 𝑉𝑎𝑅0.005 = 664.1 (meaning that the loss will be 

expected to be greater than 664.1 every 200 years, if the period of time is one year), 

because the ruin probability is fixed and the distribution is the same (therefore, the 

mean value and the standard deviation are constant); the priority increases from 101.8 

to 135.1 and the capacity decreases from 562.2 to 529.0, for 15% and 65% safety loading 

respectively.  

Summarizing, the safety loading has a directly impact on the optimization model for the 

priority and relative capacity. The premium is affected, since it depends on the priority 

and the capacity amount. 

3.2.2.  Dispersion of the distribution 

The meaning of dispersion of a distribution refers to how the data is spread out; as the 

dispersion increases the range of values that losses can assume increases. It is 

interesting to analyse the impact of distributions with different dispersion on the 

optimized variables of the limited stop-loss reinsurance model. The standard deviation 

is a measure of dispersion, which is considered the only factor free to vary in the 

following simulation, in which the expected value of the Gamma distribution is set equal 

to 360 (Since the generation of random numbers using Matlab for each distribution 

requires the input of specific parameter, like shape and scale parameters, the mean 

value is in the interval between 359.9 and 360.1, because the parameters are obtained 

from the reverse formula of the mean value (3.5), for more details see the Matlab codes 

in the appendix A.2.), the probability level is 0.5%, safety loading equal to 20%. 

In the following table 3.2.2.1. the results of the simulation are reported, it is possible to 

notice that with increasing standard deviation the skewness and kurtosis increase, 

meaning that the distribution has a right tail that extends with increasing skewness and 

the peak increases too (not always these two parameters increase with an increase of 

the standard deviation, because the distribution is generated randomly). As expected, 

the value at risk tends to increase with the increase of the dispersion of losses (also here 

this is not always the case, as for values 228.6 and 249.0 of standard deviation, where 

the value at risks are 2095.6 and 2088.5, respectively, due to random generation of 
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distributions), meaning that the loss distribution is riskier for a higher value of the 

standard deviation. The priority does not increase with the dispersion, it decreases, 

whereas the capacity increases with the value at risk, because for a riskier loss 

distribution and a fixed ruin probability the insurer cedes more risk and retains less in 

terms of priority, however the value at risk increases. 

St. Dev. Priority Capacity 𝑽𝒂𝑹𝟎.𝟓% Premium Mean Skewness Kurtosis ROL 

83.6 278.9 331.1 610.0 104.0 359.9 0.4 3.2 31.4% 

119.2 247.9 482.3 730.2 143.0 360.0 0.7 3.5 29.7% 

148.6 219.4 642.7 862.2 177.9 359.9 0.8 4.1 27.7% 

166.3 202.2 709.2 911.4 198.6 360.0 0.9 4.2 28.0% 

187.9 184.4 839.1 1023.5 220.8 360.1 1.0 4.6 26.3% 

208.0 169.5 941.2 1110.7 238.1 360.0 1.1 4.8 25.3% 

223.8 155.0 1047.3 1202.3 255.4 360.0 1.2 5.1 24.4% 

242.7 143.2 1160.0 1303.2 268.7 360.0 1.5 6.7 23.2% 

255.2 131.3 1194.8 1326.1 283.1 360.0 1.4 5.5 23.7% 

266.3 122.7 1282.4 1405.1 293.1 360.1 1.5 6.2 22.9% 

281.1 112.5 1398.0 1510.5 304.6 359.9 1.6 7.1 21.8% 

289.4 106.5 1438.8 1545.3 312.0 360.0 1.6 6.5 21.7% 

310.0 95.7 1529.4 1625.1 324.0 360.0 1.8 7.6 21.2% 

315.6 89.4 1579.3 1668.7 331.4 360.0 1.7 7.1 21.0% 

324.4 83.0 1638.2 1721.2 338.4 359.9 1.8 7.6 20.7% 

340.2 75.8 1710.1 1785.9 346.8 360.0 1.8 7.5 20.3% 

350.3 73.6 1779.4 1853.0 349.4 360.0 1.9 7.9 19.6% 

364.7 64.7 1887.4 1952.1 359.4 360.0 2.0 8.2 19.0% 

370.4 59.4 1917.7 1977.0 364.7 360.0 2.0 9.0 19.0% 

385.5 56.4 2019.8 2076.1 367.3 359.9 2.4 12.4 18.2% 

388.1 53.2 2042.4 2095.6 371.9 359.9 2.1 9.0 18.2% 

397.1 49.5 2039.0 2088.5 375.8 360.1 2.1 9.9 18.4% 

409.8 43.0 2142.8 2185.8 382.3 359.9 2.2 10.4 17.8% 

420.2 40.3 2266.4 2306.8 386.3 360.1 2.3 10.5 17.0% 

424.1 39.1 2296.6 2335.7 386.8 360.0 2.3 10.9 16.8% 

426.0 36.3 2270.0 2306.3 390.0 360.0 2.3 10.8 17.2% 

444.5 31.8 2412.2 2444.0 395.6 360.0 2.3 10.4 16.4% 

451.0 28.5 2470.5 2499.0 398.3 360.0 2.4 11.7 16.1% 

462.3 26.8 2515.0 2541.8 400.5 360.0 2.5 11.5 15.9% 

466.9 25.7 2598.0 2623.7 400.4 360.0 2.7 14.9 15.4% 

Table 3.2.2.1.: The impact of the dispersion on the optimization model 

If the cedant faces a portfolio with higher standard deviation, it is exposed to a higher 

potential loss (holding everything else constant) and hence it has a higher risk exposure: 

since the priority decreases and the capacity increases for an increase in dispersion, the 
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premium must increase to compensate the reinsurer for reinsuring a riskier portfolio 

and his higher relative potential risk contribution. However, the ROL decreases meaning 

that the price of reinsurance coverage decreases in relative terms for a higher standard 

deviation, due to the high capacity increase. 

3.2.3.  Probability level 𝜶 and relative 𝑽𝒂𝑹𝜶(𝑿) 

The following analysis is particularly important for the cedant point of view, since for 

different risk levels the values of the optimal limited stop-loss reinsurance can be 

examined. After such analysis, the ceding company could choose the probability level of 

interest, according to his risk aversion and the purpose of its reinsurance coverage. 

𝜶 Priority Capacity 𝑽𝒂𝑹𝜶 Premium Mean St. Dev. ROL 

0.5% 202.2 672.0 874.2 156.1 327.0 139.9 23.2% 

1% 202.2 578.0 780.1 155.5 327.0 139.9 26.9% 

5% 202.2 384.2 586.4 149.4 327.0 139.9 38.9% 

9% 202.2 317.7 519.8 144.3 327.0 139.9 45.4% 

13% 202.2 276.9 479.1 138.1 327.0 139.9 49.9% 

17% 202.2 243.7 445.9 132.5 327.0 139.9 54.4% 

21% 202.2 217.2 419.4 126.2 327.0 139.9 58.1% 

25% 202.2 195.4 397.5 120.5 327.0 139.9 61.7% 

29% 202.2 176.7 378.8 114.6 327.0 139.9 64.9% 

33% 202.2 157.2 359.3 107.8 327.0 139.9 68.6% 

37% 202.2 140.7 342.9 100.9 327.0 139.9 71.7% 

41% 202.2 127.4 329.6 94.0 327.0 139.9 73.8% 

45% 202.2 113.4 315.5 87.0 327.0 139.9 76.7% 

49% 202.2 99.7 301.9 79.4 327.0 139.9 79.6% 

53% 202.2 87.8 290.0 72.0 327.0 139.9 82.0% 

57% 202.2 76.0 278.2 64.3 327.0 139.9 84.5% 

61% 202.2 65.5 267.6 56.8 327.0 139.9 86.7% 

65% 202.2 53.6 255.8 47.7 327.0 139.9 89.0% 

69% 202.2 42.9 245.1 39.3 327.0 139.9 91.6% 

73% 202.2 31.9 234.1 29.9 327.0 139.9 93.7% 

77% 202.2 19.6 221.8 18.8 327.0 139.9 95.9% 

81% 202.2 7.0 209.1 6.9 327.0 139.9 98.7% 

85% 197.4 0.0 197.4 0.0 327.0 139.9 - 

89% 182.4 0.0 182.4 0.0 327.0 139.9 - 

93% 166.0 0.0 166.0 0.0 327.0 139.9 - 

97% 140.0 0.0 140.0 0.0 327.0 139.9 - 

99% 116.8 0.0 116.8 0.0 327.0 139.9 - 

Table 3.2.3.1. The impact of the probability level 𝛼 on the optimization model  
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For the following simulation, reported in table 3.2.3.1., the lognormal distribution and a 

safety loading of 20% have been assumed, whereas the probability is the parameter free 

to vary. The mean value and the standard deviation of the distribution are equal to 327.0 

and 139.9, respectively and the histogram and probability density function of the 

distribution are reported in figure 3.2.3.1.. 

The distribution is positive skewed with 1.34 skewness and has high kurtosis, equal to 

6.04. 

 

Figure 3.2.3.1. Lognormal distribution 𝑋~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(5.7,0.4) 

As the risk in terms of probability increases, the priority stays constant until a certain 

point (see figure 3.2.3.2.), which does not mean that the ceding company contributes 

less to the potential loss, since the related value at risk decreases with increasing 

probability (see figure 3.2.3.3.). Hence the insurance company is exposed to the higher 

potential losses for large losses present in the right tail of the distribution.   
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Figure 3.2.3.2. The impact of 𝛼 on the optimal priority  

 

Figure 3.2.3.4. The impact of 𝛼 on the value at risk 

The capacity decreases and the relative premium decreases, reaching a ruin probability 

equal to 85% where no reinsurance take place since it does not seem to be convenient. 

The curve is reported in figure 3.2.3.3..   
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Figure 3.2.3.3. The impact of 𝛼 on the capacity 

Since the capacity decreases, and so the potential contribution of the reinsurer to the 

loss, the premium owed, decreases with increasing probability. Nevertheless, the ROL 

increases meaning that the relative price of reinsurance for a lower value at risk 

increases.  The premium payment curve is reported in the following figure: 

 

Figure 3.2.3.4. The impact of 𝛼 on the premium  
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In this simulation, the whole range of probability levels have been simulated to study 

the behaviour of the variables. It is worth to mention that some further assumptions 

should be taken into consideration: for example, if a cedant is seeking coverage for high 

loss, it should never take a value at risk that is close or below the expected value of the 

loss. Suppose that the insurer chooses a ruin probability equal to 45% in the above 

simulation (see table 3.2.3.1.), it means that the loss is expected to be greater than 315.5 

forty-five percent of the times in a given period (𝑉𝑎𝑅45% = 315.5), but the expected 

value of the loss is 327, so any loss value greater than 315.5 must be covered by the 

cedant, which is below the expected loss value. This is not really the purpose of 

reinsurance. Therefore, if the ceding company seek reinsurance protection for large 

losses the ruin probability level should be taken such that the value at risk is greater 

than the expected value, and the particular level should reflect the risk aversion of the 

ceding company. Such analysis is important for the insurer to choose the right ruin 

probability looking at the figure of the expected value and the value at risk. 

The figure 3.2.3.5. shows that risk sharing between the cedant and the reinsurer for 

different probability level in one graph. 

 

Figure 3.2.3.5.: The impact of 𝛼 on the value at risk, priority and capacity  
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The optimal model predicts that for a given safety loading and a certain distribution the 

optimal priority stays constant until a certain point and then decreases. However, this 

decreasing point depends on the value of the safety loading. To see this the results of a 

further simulation are provided in table 3.2.3.2., assuming a Pareto distribution with 

shape and scale parameter equal to 20 and 1800, respectively, and a safety loading of 

20%; whereas in table 3.2.3.3., the results for the same distribution are reported, 

assuming a safety loading equal to 50%. 

The distribution is shown in the following figure: 

 

Figure 3.2.3.5.: Pareto distribution  𝑋~𝑃𝑎(20,1800) 

It is possible to notice that for an increase in the safety loading and the increase in the 

probability level the optimal model results are different. The value of the priority 

increases with the increase in the safety loading, and the point from which the priorities 

starts to decrease changes: for the value  𝜔 = 20% the priority starts to decrease at a 

probability level equal to 81% (table 3.2.3.2.), whereas for 𝜔 = 50%, the decreasing 

point is at a ruin probability equal to 65% (table 3.2.3.3.). It is possible to see this 
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relationship on figure 3.2.3.6. and 3.2.3.7., in which the sharing of the risk is reported 

for both values of the safety loading. 

𝜶 Priority Capacity 𝑽𝒂𝑹𝜶 Premium Mean St. Dev. ROL 

0.5% 106.7 541.3 648.0 94.7 184.9 100.7 18% 

1% 106.7 459.3 566.1 94.1 184.9 100.7 20% 

5% 106.7 271.0 377.7 88.7 184.9 100.7 33% 

9% 106.7 214.1 320.9 84.0 184.9 100.7 39% 

13% 106.7 178.0 284.7 79.3 184.9 100.7 45% 

17% 106.7 150.6 257.3 74.3 184.9 100.7 49% 

21% 106.7 129.8 236.5 69.6 184.9 100.7 54% 

25% 106.7 112.6 219.3 64.9 184.9 100.7 58% 

29% 106.7 98.3 205.0 60.3 184.9 100.7 61% 

33% 106.7 85.9 192.6 55.7 184.9 100.7 65% 

37% 106.7 74.1 180.8 50.7 184.9 100.7 68% 

41% 106.7 65.0 171.7 46.4 184.9 100.7 71% 

45% 106.7 56.4 163.1 42.0 184.9 100.7 75% 

49% 106.7 47.8 154.5 37.2 184.9 100.7 78% 

53% 106.7 40.9 147.6 33.0 184.9 100.7 81% 

57% 106.7 34.4 141.1 28.7 184.9 100.7 83% 

61% 106.7 28.6 135.3 24.6 184.9 100.7 86% 

65% 106.7 22.9 129.7 20.3 184.9 100.7 89% 

69% 106.7 17.7 124.4 16.1 184.9 100.7 91% 

73% 106.7 12.1 118.8 11.4 184.9 100.7 94% 

77% 106.7 7.3 114.0 7.0 184.9 100.7 96% 

81% 106.7 2.7 109.4 2.6 184.9 100.7 99% 

85% 104.9 0.0 104.9 0.0 184.9 100.7 - 

89% 100.6 0.0 100.6 0.0 184.9 100.7 - 

93% 96.7 0.0 96.7 0.0 184.9 100.7 - 

97% 93.0 0.0 93.0 0.0 184.9 100.7 - 

99% 91.0 0.0 91.0 0.0 184.9 100.7 - 

Table 3.2.3.2.: The impact of 𝛼 on the optimization model for 𝜔 = 20%  
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Alpha Priority Capacity VAR Premiums Mean St. Dev. ROL 

0.5% 127.5 520.5 648.0 95.1 184.9 100.7 18% 

1% 127.5 438.5 566.1 94.3 184.9 100.7 21% 

5% 127.5 250.2 377.7 87.5 184.9 100.7 35% 

9% 127.5 193.3 320.9 81.7 184.9 100.7 42% 

13% 127.5 157.1 284.7 75.8 184.9 100.7 48% 

17% 127.5 129.7 257.3 69.6 184.9 100.7 54% 

21% 127.5 109.0 236.5 63.7 184.9 100.7 58% 

25% 127.5 91.8 219.3 57.8 184.9 100.7 63% 

29% 127.5 77.5 205.0 52.0 184.9 100.7 67% 

33% 127.5 65.0 192.6 46.3 184.9 100.7 71% 

37% 127.5 53.3 180.8 40.1 184.9 100.7 75% 

41% 127.5 44.1 171.7 34.7 184.9 100.7 79% 

45% 127.5 35.6 163.1 29.3 184.9 100.7 82% 

49% 127.5 26.9 154.5 23.1 184.9 100.7 86% 

53% 127.5 20.1 147.6 17.9 184.9 100.7 89% 

57% 127.5 13.6 141.1 12.6 184.9 100.7 92% 

61% 127.5 7.8 135.3 7.4 184.9 100.7 96% 

65% 127.5 2.1 129.7 2.1 184.9 100.7 99% 

69% 124.4 0.0 124.4 0.0 184.9 100.7 - 

73% 118.8 0.0 118.8 0.0 184.9 100.7 - 

77% 114.0 0.0 114.0 0.0 184.9 100.7 - 

81% 109.4 0.0 109.4 0.0 184.9 100.7 - 

85% 104.9 0.0 104.9 0.0 184.9 100.7 - 

89% 100.6 0.0 100.6 0.0 184.9 100.7 - 

93% 96.7 0.0 96.7 0.0 184.9 100.7 - 

97% 93.0 0.0 93.0 0.0 184.9 100.7 - 

99% 91.0 0.0 91.0 0.0 184.9 100.7 - 

Table 3.2.3.3.: The impact of 𝛼 on the optimization model for 𝜔 = 50%  
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Figure 3.2.3.6.: The impact of 𝛼 on the value at risk, priority and capacity for 𝜔 = 20% 

 

Figure 3.2.3.7.: The impact of 𝛼 on the value at risk, priority and capacity for 𝜔 = 50%  
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What is clearly visible from the tables 3.2.3.1., 3.2.3.2. and 3.2.3.3. and from the figures 

3.2.3.5., 3.2.3.6. and 3.2.3.7. is that there exists only one optimal priority value, since 

when it starts to decrease, the capacity is equal to zero and so no reinsurance takes 

place, meaning that it is not worth to enter into such a reinsurance agreement for that 

probability level.  

3.3.  Danish Fire Loss analysis 

In this analysis, the optimal value at risk reinsurance model (3.23) is applied to real data 

on Danish fire loss collected by Copenhagen Reinsurance between 1980 and 1990. The 

amount of losses is expressed in millions of Danish Krone and has been adjusted for 

inflation to reflect 1985 values. Each loss amount is the sum of the damage to building, 

damage to content (for example, furniture and personnel property) and loss of profit 

(Beirlant et al (2017)). This data has been used by Tan and Weng (2014) to study the 

optimal reinsurance model under variance risk measure. 

 
Figure 3.3.1.: Danish fire loss distribution  
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The distribution is reported in figure 3.3.1. (excluding 17 values from the figure, for a 

better view of the data, since the las few values are very high with respect to the mean 

value). The mean of the distribution is equal to 3.39 and the standard deviation is equal 

to 8.51. The data ranges from 1 million to 363.3 million. Supposing that the insurer has 

a large fire insurance portfolio to reinsure and that potential losses can be describe by 

the Danish fire loss distribution, it is possible to conduct a similar analysis as the one 

conducted in section 3.2.3.. The insurer facing such a loss distribution, has to choose the 

ruin probability that better represents its risk aversion looking at different possibilities. 

The simulation of the different possible ruin probabilities is reported in the following 

table 3.3.1.: 

𝜶 Priority Capacity 𝑽𝒂𝑹𝜶 Premium Mean St. Dev. ROL 

0.5% 1.21 35.60 36.81 2.33 3.39 8.51 6.5% 

1% 1.21 24.96 26.17 2.24 3.39 8.51 9.0% 

5% 1.21 8.81 10.02 1.79 3.39 8.51 20.3% 

9% 1.21 4.61 5.82 1.46 3.39 8.51 31.8% 

13% 1.21 3.45 4.65 1.31 3.39 8.51 38.0% 

17% 1.21 2.76 3.96 1.19 3.39 8.51 43.0% 

21% 1.21 2.16 3.36 1.05 3.39 8.51 48.7% 

25% 1.21 1.76 2.97 0.94 3.39 8.51 53.5% 

29% 1.21 1.42 2.62 0.83 3.39 8.51 58.6% 

33% 1.21 1.19 2.40 0.75 3.39 8.51 62.7% 

37% 1.21 0.98 2.19 0.66 3.39 8.51 67.2% 

41% 1.21 0.83 2.03 0.59 3.39 8.51 71.0% 

45% 1.21 0.70 1.90 0.52 3.39 8.51 74.7% 

49% 1.21 0.59 1.80 0.46 3.39 8.51 77.8% 

53% 1.21 0.50 1.71 0.41 3.39 8.51 80.8% 

57% 1.21 0.43 1.64 0.36 3.39 8.51 83.1% 

61% 1.21 0.36 1.57 0.31 3.39 8.51 85.7% 

65% 1.21 0.28 1.49 0.25 3.39 8.51 88.7% 

69% 1.21 0.22 1.42 0.20 3.39 8.51 91.1% 

73% 1.21 0.15 1.36 0.14 3.39 8.51 93.6% 

77% 1.21 0.08 1.29 0.08 3.39 8.51 96.5% 

81% 1.21 0.04 1.24 0.04 3.39 8.51 98.7% 

85% 1.18 0.00 1.18 0.00 3.39 8.51 - 

89% 1.12 0.00 1.12 0.00 3.39 8.51 - 

93% 1.08 0.00 1.08 0.00 3.39 8.51 - 

97% 1.03 0.00 1.03 0.00 3.39 8.51 - 

99% 1.01 0.00 1.01 0.00 3.39 8.51 - 

Table 3.3.1.: The impact of 𝛼 on the Danish fire loss data 
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The results on real data behave as the theoretical ones. It is possible to notice that the 

priority decreases from the 85% as before. However, the choice of such a ruin probability 

does not seem reasonable, as has been seen before, because the value at risk is below 

the expected loss and because for such a ruin probability no reinsurance agreement 

takes place. The optimal priority is therefore equal to 1.21. The capacity deceases for an 

increasing probability level, such as the value at risk. The relationship between the three 

variables for each probability level 𝛼 can be seen in figure 3.3.2.: 

 

Figure 3.3.2.: The impact of 𝛼 on the value at risk, priority and capacity for Danish fire 

loss data 

Looking at the ROL in table 3.3.1., the reinsurance coverage payment is lower for a lower 

ruin probability. This mean that a low ruin probability 𝛼 is convenient in term of 

reinsurance contribution, since the relative payment is lower. This parameter suggests 

that the insurer should purchase a reinsurance contract with very low ruin probability. 

Supposing that the reinsurer chooses a 0.5% probability level, the priority is very low 

(1.21 million), the capacity is equal to 35.6 million and the value at risk is equal to 36.8. 

The following figure 3.3.3. shows the ceded loss function and the retained loss function: 
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Figure 3.3.3.: Limited stop-loss reinsurance for Danish fire loss data at 0.5% ruin 

probability 

Since the priority is very low, it is not possible to see behaviour of the first parts of the 

lines of the ceded loss function and of the retained loss function in the figure 3.3.3. (until 

the priority). The simulation has been performed using the algorithm in appendix A.3., 

without the generation of a random distribution but inputting directly the loss 

distribution data. 
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Conclusion 

In the theoretical approach studied in the second chapter, the ceded loss function and 

the retained loss function have been assumed to be increasing functions, to prevent 

moral hazard. However, there are other two possibilities according to Chi and Tan 

(2011), under VaR risk measure: 

- The ceded loss function can be assumed to be in the class of convex and 

increasing functions, leading the stop-loss reinsurance (without an upper limit) 

to be optimal. 

- The retained loss function can be assumed to be left continuous and increasing, 

leading the truncated stop-loss reinsurance to be optimal. 

The first case is not really applicable in reality since no upper limit is considered, meaning 

that up to a certain amount only the reinsurance company covers the loss in excess of 

the priority. Such a reinsurance coverage will be very expensive if a reinsurance 

company accepts to enter into such a contract. A truncated stop-loss reinsurance has 

the property that if the loss exceeds the upper limit (the sum of priority and capacity), 

the reinsurance undertaking will have zero obligation to the cedant. Even this form of 

reinsurance agreement does not seem to find application in practice, and if it does, just 

in limited cases, since the insurer would be interested in reinsuring only moderate losses 

and not large ones. The assumption that both the ceded loss function and the retained 

loss function are increasing, which lead the optimal limited stop-loss reinsurance to be 

optimal, is very close to reality, since it is a very common form in the reinsurance 

industry.  

The advantage of non-proportional reinsurance is that the priority can limit the liabilities 

reflecting the risk appetite of the insurance company and its needs. The risk appetite 

can be reflected in the ruin probability level, and the relative value at risk; whereas the 

optimal priority is the output of the optimization problem, solving the right balance 

between the risk retention and the risk transfer. This objective is captured by the (2.43) 

and (3.23) models studied in this paper. 

The empirical analysis of section 3.2.1. showed that the increase in the safety loading 

rises the optimal priority and decreases the potential reinsurance contribution to the 
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loss for a given level of ruin probability. However, the premium does not necessarily rise 

in absolute terms because the change in risk sharing, in terms of priority and capacity, 

could compensate the increase in safety loading, but in terms of ROL the reinsurance 

coverage becomes more expensive. This could be expected, since if the reinsurer rises 

the price of reinsurance the insurer retains more and cedes less. 

In section 3.2.3. it has been shown that the increase in the dispersion of a loss 

distribution, and the riskiness of the loss, increases the capacity and the relative 

premium due to the reinsurer, whereas the insurer has a lower potential loss 

contribution in terms of priority. This behaviour of the variables seems reasonable, since 

the riskier the distribution, the more the insurer will be willing to cede; hence, the 

reinsurer will have a higher potential loss contribution in terms of capacity and he will 

demand a higher premium. However, the relative premium payment in terms of ROL 

decreases.  

Finally, the empirical analysis of section 3.3., using the Danish fire loss data provided the 

same conclusions of section 3.2.3., using a random generated loss distribution. The rise 

in the ruin probability lead the priority unchanged for a given loss distribution and a 

given safety loading, while the premium and the capacity decreases. However, the 

relative premium in terms of ROL increases with the rising ruin probability. It is worth to 

mention that if the capacity increases (holding the safety loading constant), the ROL 

decreases, and vice versa. This inversely proportional relationship means that if the 

amount reinsured increases, the relative price for the coverage decreases. 

The choice of the premium principle has a determinant effect on the optimization 

problem (2.43), but in this paper the cedant point of view was taken into consideration 

and therefore the effect of different premium principles has not been analysed, since 

this choice is taken by the reinsurance undertaking. The use of other premium principles 

to calculate the reinsurance premium is left for future research.  
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 Appendix A 

A.1. Safety loading 𝝎 simulation: Matlab algorithm 

The following algorithm can be used to reproduce a similar simulation as the one of 

section 3.2.1., inputting a vector of values for the safety loading, a desired ruin 

probability and the scale and shape parameters of a desired Pareto distribution. 

%% Impact of Safety Loading on Optimal Limited Stop-Loss reinsurance 

  
% This script provides an Excel file reporting the optimal priority, the 
% capacity, the value at risk, the premium payment, the mean value, the  
% standard deviation and the Rate Online (ROL) for each chosen value of  
% the safety loading.  
% It also provides a figure with histogram and the probability density  
% function of the Pareto distribution. 

  
% OPTIMIZATION PROBLEM (assuming expected value premium principle and 
% Pareto distribution): 

  
% min Priority+(1+omega)*E(min(max(X-Priority,0),VaR-Priority)) 

  
% subject to 0<=Priority<=VaR 
% where X is loss random variable, VaR is the value at risk and E(.) is the 
% expected value function. 

  
% INPUT: - omega = safety loading value or vector; 
%        - alpha = probability level; 
%        - mu = shape parameter of Pareto distribution; 
%        - sigma = scale parameter of Pareto distribution; 
% OUTPUT: - Excel file 'SafetyLoading_vs_Optimization.xls' 
%         - Histogram and PDF figure 

  
clear; % Clean Workspace 
clc; % Clean Command window 
% INPUTS 
omega=input('Enter the value/range of values of the safety loading (row 

vector):'); % Reinsurer safety loading range 
alpha=input('Enter the ruin probability:'); % Ruin probability 
mu=input('Enter the shape parameter of the Pareto distribution:'); % Shape 

parameter 
sigma=input('Enter the scale parameter of the Pareto distribution:'); % Scale 

parameter 
N = 10000; 
% LOSS DISTRIBUTION GENERATION AND FIGURE 
X =random('Generalizedpareto',1/mu,sigma/mu,sigma/mu,1,N); % Generation of 

10000 random number 
L = sort(X); % Sort data to determine the quantile 
figure; 
histfit(X,50,'Generalizedpareto'); % histogram with pdf 
title({'Pareto distribution:' , ' histogram and PDF'},... 
    'Color','b','FontSize',14); % Title of graph 
xlabel('Loss'); % x-axis label 
ylabel('Frequency'); % y-axis label 
lgd=legend('Bins','PDF','Location','northeastoutside'); % Create legend 
title(lgd,'Legend'); 
MIN=min(L); MAX=max(L); MEAN=mean(L); % Computation of descriptive statistics 
SD=std(L); kur=kurtosis(L); sk=skewness(L); % Computation of descriptive 

statistics 
% Create text annotation on the figure with descriptive statistics 
str={'Data:'  ['min = ' num2str(MIN)] ['max = ' num2str(MAX)]... 
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    ['mean = ' num2str(MEAN,'%.2f')] ['standard dev. = ' 

num2str(SD,'%.2f')]... 
    ['skewness = ' num2str(sk)] ['kurtosis = ' num2str(kur,'%.2f')] };  
annot=annotation('textbox',[0.78 0.45 0.1 

0.1],'string',str,'FitBoxToText','on',... 
    'VerticalAlignment', 'bottom','HorizontalAlignment', 'left' ); % Put 

annotation on figure 
annot.Margin=2; % Set margin width of annotation 

  
% OPTIMIZATION 
Priority = NaN(length(omega),1); % Vector of NaN to store for loop values (for 

speed) 
Premiums = NaN(length(omega),1);  
VaR = quantile(L,1-alpha); % Value at risk (the 1-alpha quantile) 

  
for k=1:length(omega)         
        ob  = @(d)(0); 
        for i=1:N 
        f_i = @(d)((min(max(X(i)-d,0),VaR-d))); % Computation for each X(i) of 

expected value object 
        ob = @(d)(f_i(d) + ob(d)); % Sum of expected value object 
        end 
ob = @(d)(d+(1+omega(k))*(ob(d)/N)); % Final optimization object 
Priority(k) = fminbnd(ob,0,VaR); % Optimal priority 

     
P=0; 
for l=1:N 
         % Calculation of the premium for each omega 
         pr = (1+omega(k))*(min(max(X(l)-Priority(k),0),VaR-Priority(k))); 
         P = P + pr; % Sum of premiums 
end 
     Premiums(k)=P/N; % Calculation of mean value of premium 
     disp(['Iterations left ' num2str(length(omega)-k) ' of ' 

num2str(length(omega))])  
     % Display the number of simulations left 
end 

  
% EXCEL FILE 
Omega = omega'; % Transpose of omega for table creation 
VAR = VaR*ones(length(omega),1); % Value at risk vector for table creation 
Capacity = VaR-Priority; % Capacity calculation 
Mean = MEAN*ones(length(omega),1); % Mean value vector for table creation 
StDev = SD*ones(length(omega),1); % Standard deviation vector for table 

creation 
ROL = Premiums./Capacity; % ROL calculation 
VALUE = table(Omega,Priority,Capacity,VAR,Premiums,Mean,StDev,ROL);  
% Create a table with all values of interest 
writetable(VALUE,'SafetyLoading_vs_Optimization.xls'); % Save table in Excel 

file 

 

A.2. Dispersion simulation: Matlab algorithm  

The following algorithm can be used to reproduce a similar simulation as the one of 

section 3.2.2., inputting the safety loading, the ruin probability, the desired expected 

value of the Gamma distribution and different values of the scale parameter (in an 

increasing order), which generate different distributions with increasing standard 

deviation, since there exists a correlation between expected value and variance of the 

distribution and the parameters of the distribution (see equation (3.5) and (3.6)). 
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%% Impact of Dispersion on Optimal Limited Stop-Loss Reinsurance 

  
% This script provides an Excel file reporting the standard deviation, the 
% priority, the capacity, the value at risk, the premium, the mean value, 
% the skewness, the kurtosis and the Rate On Line (ROL), of the following 
% optimization problem: 

  
% OPTIMIZATION PROBLEM (assuming expected value premium principle and 
% Gamma distribution): 

  
% min Priority+(1+omega)*E(min(max(X-Priority,0),VaR-Priority)) 

  
% subject to 0<=Priority<=VaR 
% where X is loss random variable, VaR is the value at risk and E(.) is the 
% expected value function. 

  
% INPUT: - omega = safety loading value (omega>0); 
%        - alpha = probability level; 
%        - E = expected value of Gamma distribution; 
%        - sigma = scale parameter of Gamma distribution; 
% OUTPUT: - Excel file 'Dispersion_vs_Optimization.xls' 

  

  
clear; % Clean Workspace 
clc; % Clean Command window 
omega = input('Enter the value of the safety loading (for example, 0.3):'); % 

Reinsurer safety loading 
alpha = input('Enter the ruin probability:'); % Ruin probability 
E = input('Enter the desired expected value of the Gamma distribution:'); % 

Expected value Gamma 
sigma = input('Enter a range of values for the scale parameter of a Gamma 

distribution (increasing order):'); % Scale parameter 
N = 10000; 
Priority = NaN(length(sigma),1); % Vector of NaN to store for loop values (for 

speed)  
Mean = NaN(length(sigma),1); 
StDev = NaN(length(sigma),1); 
VAR = NaN(length(sigma),1); 
Skewness = NaN(length(sigma),1); 
Kurtosis = NaN(length(sigma),1); 
Premiums = NaN(length(sigma),1); 
STD_1=std(random('Gamma',E/sigma(1),sigma(1),1,N)); % Initial standard 

deviation 
for k=1:length(sigma) 
    range=false;  
    while~range % Creation of random distribution with constant mean and 
                % increasing standard devaition at each iteration for each 
                % sigma 
            mu=E/sigma(k); % Calculation of shape parameter (mu=Expected 

value/sigma) 
            X = random('gamma',mu,sigma(k),[1,N]); % Random distribution 
            L=sort(X); % Sort data for VaR calculation 
            MEAN=mean(X);  
            STD=std(X); 
            if MEAN>=(E-E*0.05) && MEAN<=(E+E*0.05) && STD>STD_1  
                range=true; % Exit while loop if conditions are met 
            else 
                range=false; % Restart while loop to generate another random 

distribution 
            end 
    end 
    VaR=quantile(L,1-alpha); % VaR, the 1-alpha quantile 
    ob=@(d) (0); 
    for i=1:N 
            f_i = @(d)((min(max(X(i)-d,0),VaR-d))); % Compuation for each X(i) 

of expected value object 
            ob = @(d)(f_i(d) + ob(d)); % Sum of expected value object 
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    end 
    ob = @(d)(d + (1+omega)*(ob(d)/N)); % Final optimization object 
    Priority(k) = fminbnd(ob,0,VaR); % Optimal priority         
    VAR(k) = VaR; 
    Mean(k) = MEAN; 
    StDev(k) = std(X); 
    Prem = NaN(1,N); 
    P = 0; 
    for l=1:N % Number of premium calculation foe each sigma 
         pr = (1+omega)*(min(max(X(l)-Priority(k),0),VaR-Priority(k))); 
         P = P + pr; % Sum of premium calculation for each X(i) 
    end 
    Premiums(k) = P/N; % Calculation of mean value of premium 
    STD_1  =std(X); % Calculation of the standard deviation to met next random 

distribution conditions 
    Skewness(k) = skewness(X); % Skewness 
    Kurtosis(k) = kurtosis(X); % Kurtosis 
    disp(['Iterations left ' num2str(length(sigma)-k) ' of '  

num2str(length(sigma)) '.']) 
    % Display remaining interations  
end 

  
Capacity = VAR-Priority; % Capacity 
ROL = Premiums./Capacity; % ROL calculation 
dispersion = 

table(StDev,Priority,Capacity,VAR,Premiums,Mean,Skewness,Kurtosis); % Creation 

of table 
writetable(dispersion,'Dispersion_vs_Optimization.xls'); % Save table in Excel 

file 

 

A.3. Probability level 𝜶 simulation: Matlab algorithm 

The following algorithm can be used to reproduce a simulation as in section 3.2.3., 

inputting the safety loading, the parameters of a lognormal distribution (location 

parameter and scale parameter, see section 3.1.3. for more details) and a vector (or 

single value) of probability levels 𝛼. This script has also been used for the Danish fire loss 

analysis in section 3.3.. 

%% Impact of the ruin probability on Optimal Limited Stop-Loss reinsurance 

  
% This script provides and excel file reporting the chosen ruin probability, 
% the priority, the capacity, the value at risk, the premium, the mean 
% value and the standard deviation of the distribution and the Rate On Line 
% (ROL), of the following optimization problem: 

  
% OPTIMIZATION PROBLEM (assuming expected value premium principle and 
% Gamma distribution): 

  
% min Priority+(1+omega)*E(min(max(X-Priority,0),VaR-Priority)) 

  
% subject to 0<=Priority<=VaR 
% where X is loss random variable, VaR is the value at risk and E(.) is the 
% expected value function.  

  
% The script provides also the following graphs: 
% - Histogram and PDF of the distribution. 
% - Optimal priority vs ruin probability. 
% - Value at risk vs ruin probability. 
% - Capacity vs ruin probability. 
% - Premium vs ruin probability. 
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% - Risk sharing vs ruin probability. 
% INPUT: - omega = safety loading value(omega>0); 
%        - alpha = probability level; 
%        - mu = location parameter of Lognormal distribution; 
%        - sigma = scale parameter of Lognormal distribution. 
% OUTPUT: - figures; 
%         - Excel file 'Alpha_vs_Oprimization.xls'. 

  
clear; % Clean Workspace 
clc; % Clean Command window 
% INPUTS 
omega=input('Enter the value of the safety loading (for example,0.3):'); % 

Reinsurer safety loading range 
alpha=input('Enter the ruin probability vector (row vector):'); % Ruin 

probability 
mu=input('Enter the shape parameter of the Lognormal distribution:'); % 

Location parameter 
sigma=input('Enter the scale parameter of the Lognormal distribution:'); % 

Scale parameter 
N = 10000; % Number of losses generated 
X = random('Lognormal',mu,sigma,[1,N]); % Generation of the loss distribution 
L=sort(X); % Sort data to determine the quantile 

  
% HISTOGRAM AND PDF 
figure; 
histfit(X,50,'Lognormal'); % Histogram with pdf 
title({'Lognormal distribution:' , ' histogram and PDF'},... 
    'Color','b','FontSize',14); 
xlabel('Loss'); 
ylabel('Frequency'); 
lgd=legend('Bins','PDF','Location','northeastoutside'); 
title(lgd,'Legend'); 
MIN=min(L); MAX=max(L); MEAN=mean(L); standard_dev=std(L); kur=kurtosis(L); 

sk=skewness(L); 
str={'Data:'  ['min = ' num2str(MIN)] ['max = ' num2str(MAX)]... 
    ['mean = ' num2str(MEAN,'%.2f')] ['standard dev. = ' 

num2str(standard_dev,'%.2f')]... 
    ['skewness = ' num2str(sk)] ['kurtosis = ' num2str(kur,'%.2f')] ['Safety 

loading = ' num2str(omega)]}; 
annot=annotation('textbox',[0.78 0.40 0.1 

0.1],'string',str,'FitBoxToText','on',... 
    'VerticalAlignment', 'bottom','HorizontalAlignment', 'left' ); 
annot.Margin=2; 

  
% OPTIMIZATION 
Priority = NaN(length(alpha),1); % Vector of NaN to store for loop values (for 

speed)  
Premiums = NaN(length(alpha),1); 
VAR = zeros(length(alpha),1); 
for k=1:length(alpha) 
    VaR = quantile(X,1-alpha(k)); % Value at risk calculation 
    ob  = @(d)(0); 
    for i=1:N 
    f_i = @(d)((min(max(X(i)-d,0),VaR-d))); % Computation for each X(i) of 

expected value object 
    ob = @(d)(f_i(d) + ob(d)); % Sum of expected value object 
    end 
    ob = @(d)(d+(1+omega)*(ob(d)/N)); % Final optimization object 
    Priority(k) = fminbnd(ob,0,VaR); % Optimal priority 

  
    P=0; 
    for l=1:N % Number of premium calculation simulations 
             % Calculation of the premium for each omega by simulation 
             pr = (1+omega)*(min(max(X(l)-Priority(k),0),VaR-Priority(k))); 
             P = P + pr; 
    end 
    Premiums(k)=P/N; % Calculation of mean value of premium simulation 
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    VAR(k)=VaR; 
    disp(['Iterations left ' num2str(length(alpha)-k) ' of '  

num2str(length(alpha)) '.']) 
    % Display remaining iterations  
end 
% OPTIMAL PRIORITY VS RUIN PROBABILITY GRAPH 
figure; 
plot(alpha,Priority,'Color','b','LineWidth',3); 
xlabel("\alpha"); 
ylabel("Optimal priority"); 
title('Optimal priority vs \alpha','Color','b','FontSize', 14); 

  
% PREMIUM VS RUIN PROBABILITY GRAPH 
figure; 
plot(alpha,Premiums,'Color','b','LineWidth',3); % Reinsurer payment curve 
hold on 
xlabel("\alpha"); 
ylabel("Premium"); 
title('Premium vs \alpha','Color','b','FontSize', 14); 
lgd1=legend('Premium','Location', 'southeast'); 
title(lgd1,'Legend'); 
hold off 

  
% CAPACITY VS RUIN PROBABILITY 
Capacity=VAR-Priority; % Capacity calculation 
figure; 
plot(alpha,Capacity,'Color','b','LineWidth',3); 
hold on 
lgd1=legend('Capacity','Location', 'southeast'); 
title(lgd1,'Legend'); 
title('Capacity vs \alpha','Color','b','FontSize', 14); 
xlabel("\alpha"); 
ylabel("Capacity"); 
hold off 

  
% VALUE AT RISK VS RUIN PROBABILITY 
figure; 
plot(alpha,VAR,'Color','b','LineWidth',3); 
hold on 
lgd1=legend('VaR','Location', 'southeast'); 
title(lgd1,'Legend'); 
title('Value at risk vs \alpha','Color','b','FontSize', 14); 
xlabel("\alpha"); 
ylabel("VaR_\alpha"); 

  
% RISK SHARING VS RUIN PROBABILITY 
figure; 
plot(alpha,Priority,'Color','b','LineWidth',3); 
hold on 
plot(alpha,Capacity,'Color','g','LineWidth',3); 
plot(alpha,VAR,'Color','r','LineWidth',3); 
u=legend('Priority','Capacity','VaR_{\alpha}','Location', 'Best'); 
title(u,'Legend') 
xlabel("\alpha"); 
title('Risk sharing vs \alpha','Color','b','FontSize', 14); 
ylabel("VaR_\alpha, Priority, Capacity"); 
hold off 

  
% EXCEL FILE 
Alpha=alpha'; % Transpose of ruin probability for table creation 
ROL = Premiums./Capacity; %ROL calculation 
Mean=ones(length(alpha),1)*MEAN;  
StandardDeviation=ones(length(alpha),1)*std(X); 
A=table(Alpha,Priority,Capacity,VAR,Premiums,Mean,StandardDeviation); % 

Creation of table 
writetable(A,'Alpha_vs_Oprimization.xls'); % Save table in Excel file 
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A.4. Limited stop-loss reinsurance: ceded loss function and retained loss 

function 

The following script provides a graph representing the limited stop-loss reinsurance 

curves for the reinsurer and the cedant. It indicates the respective potential loss 

contributions for the two parties. It is necessary to input the priority, the value at risk 

and the sorted loss distribution. These values can be calculated using one of the previous 

scripts. An example of the output of this scrips is figure 3.3.3..  

%% Limited stop-loss reinsurance: ceded loss function and retained loss 

function 

  
% This script provides a graph for the ceded loss function and the retained 
% loss function of a limited stop-loss reinsurance. 

  
% INPUT: - Priority. 
%        - VaR. 
%        - Sorted loss distribution. 
% OUTPUT: - Figure. 

  
% INPUTS 
P = input('Enter the priority:'); 
V = input('Enter the value at risk:'); 
Loss = input('Enter the sorted loss distribution:'); 

  
% CEDED LOSS FUNCTION 
RT = min(max(Loss-P,0),V-P); 

  
% RETAINED LOSS FUNCTION 
Cedant = Loss - RT; 

  
% CREATION OF THE FIGURE 
figure; 
subplot(2,1,1) % Divide figure 
plot(Loss,RT,'Color','b','LineWidth',3); % Reinsurer curve 
hold on 
xlabel("Loss"); 
ylabel("Ceded loss"); 
title({'Limited stop-loss Reinsurance:' 'Reinsurer'},'Color','b','FontSize', 

14); 
lgd1=legend('Ceded loss function','Location', 'southeast'); 
title(lgd1,'Legend'); 
hold off 

  
subplot(2,1,2); % Divide figure 
plot(Loss,Cedant,'Color','r','LineWidth',3); % Insurer curve 
hold on 
xlabel("Loss"); 
ylabel("Retained loss"); 
title('Cedant','Color','b','FontSize', 14); 
lgd2=legend('Retained loss function','Location', 'southeast'); 
title(lgd2,'Legend'); 
hold off 
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