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Abstract

The goal of the thesis is to present a refined segmentation abstract

domain for the analysis of strings in C programming language. We

properly extend the parametric segmentation approach to array rep-

resentation by P. Cousot to the case of text values. In particular, we

capture the so-called string of interest of an array of char, and we are

able to distinguish well-formed string arrays. A concrete and abstract

semantics of the main C header file string.h functions are presented in

full detail.
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Chapter 1

Introduction

In this thesis we present a refined segmentation abstract domain for the

analysis of strings in C programming language. We properly extend the

parametric segmentation approach to array representation by P. Cousot

[1] to the case of text values and we provide a sound static analysis of

char arrays as renderers of strings.

1.1 Context

In C programming language, strings (a string is a sequence of characters

treated as a single unit) are represented as char arrays structured data

types in which the last significant element of each string is followed by

the terminating null character. It is a programmer responsibility man-

aging a char array structure in a consistent way with the concept of

string, for example, ensuring the presence of the terminating null char-

acter in it. Programming with C strings is often error prone. The four

most common errors are: unbounded string copies, off-by-one errors,

null termination errors, and string truncation. There are many stan-

dard string handling functions that are highly susceptible to error, like

the strcpy() and the strcat() functions, that are frequent sources of

buffer overflows because they do not allow the caller to specify the size

of the destination array. However, since C-style strings are arrays of

characters, it is possible to perform an insecure string operation even

without invoking a function [8]. We aim to detect these strings manip-

ulation errors by taking advantage of the static program analysis, in

particular of the abstract interpretation technique.

Static program analysis is the art of reasoning about the behaviour

1
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of computer programs, defining their mathematical meaning, checking

all their possible executions and providing guarantees about their prop-

erties, with the right kind of approximation [10]. Static analysis aims

to generate code avoiding redundant and superfluous computations and

to validate software, in order to reduce the likelihood of malicious or

unintended behaviours, detecting program errors. One of the main

approaches to static program analysis is the abstract interpretation

technique that, starting from the analysed program concrete semantics

definition (the concrete semantics formalises the set of all the program

possible executions in all possible execution environments) and an ab-

stract domain (an abstract domain is an abstraction of concrete en-

vironments), derives the so-called abstract semantics, which allows to

run the program on the abstract domain to compute the property that

the abstract domain models. Informally, abstract interpretation deals

with expressing the semantics of a program as an approximation of

its concrete semantics, allowing the capture of safe (but not complete)

information on all the behaviour of the program.

In the context of string static analysis, the character inclusion do-

main, the prefix and suffix domains, the bricks domain, presented in

[11], the string set domain, the constant string domain, the prefix-suffix

domain and the string hash domain, defined in [12], are abstracts do-

mains for the static analysis of string values, each of which tracks a

different kind of information.

A concrete and abstract semantics about a parametric segmenta-

tion approach to array representation has been proposed by P. Cousot,

in [1]. In particular, Cousot introduced the FunArray parametric seg-

mentation abstract domain functor for the fully automatic and scal-

able analysis of array content properties. The functor enables a natu-

ral, painless and efficient lifting of existing abstract domains for scalar

variables to the analysis of uniform compound data-structures such as

arrays. This analysis aims to automatically and semantically divides

arrays into consecutive non-overlapping possibly empty segments. Seg-

ments are delimited by sets of bound expressions and abstracted uni-

formly. All symbolic expressions appearing in a bound set are equal

in the concrete. The FunArray can be naturally combined via reduced

product with any existing analysis for scalar variables. Cousot pre-

sented the analysis as a general framework, parametrized by the choice

of bound expressions, segment abstractions and the reduction opera-
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tor. Once the functor has been instantiated with fixed parameters,

the analysis is fully automatic. Array element values are related to

their indexes, assuming that the concrete value of an array A is a

quadruple a = (ρ,A.low,A.high,A) where ρ ∈ Rv is a scalar variable

environment, A.low and A.high denotes respectively the expressions

whose values, evaluated in the environment ρ, yield the integer lower

bound and the integer upper bound of the array indexes. Lastly, A is

a function that maps every index i ∈ [[[A.low]]ρ, [[A.high]]ρ) to the pair

A[i] = (i, v) of the index i and the corresponding array element value

v.

1.2 Problem

The parametric representation of arrays introduced in [1] is well defined

for any type of C array, but does not capture the specific features of

arrays representing strings. Precisely, is not able to detect in an explicit

way, the common strings manipulation errors mentioned above.

1.3 Metodology

Our goal is to capture the so-called “string of interest” of an array

of char, guaranteeing us to distinguish well-formed strings in a char

array from the rest of its content. For this purpose, we have defined

the “split” of a segmented char array, supported by an ad hoc concrete

semantics.

Given an array of char, str, and its segmentation, the split(str)

is equal to the pair (sstr, nsstr) such that sstr corresponds to the sub-

segmentation of the string of interest of str, that is the segmented

sequence of characters before the first terminating null character, and

nsstr corresponds to the sub-segmentation of the char array content

which falls outside the string of interest, that is the segmented se-

quence of characters after the first terminating null character. The

split segmentation over-approximates an array of characters and takes

into account the needful presence of the terminating null character in

it, to establish the existence of the string of interest of the considered

char array and to isolate the meaningful information, for further anal-

ysis on it. We have presented a refined unidimensional array concrete

semantics, suitable to the split array of character segmented repre-
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sentation: the concrete value of an array of char, str, is a quintuple

str = (ρ, str.low, str.high, S,Tstr), where the first fourth elements are

instantiated to be equal to the Cousot quadruple parameters and the

fifth element corresponds to the set of all the indexes i such that str[i]

= ‘\0’. Furthermore we have explicitly assumed that each possible sub-

segmentation of a char array has its own concrete value. This means

that, given a program managing an array of characters that, for exam-

ple, performs a string character function on it and print the output,

the function result is a portion of the analysed char array, a suffix of its

string of interest (if it is defined), represented by a sub-segmentation

that preserve its bound expressions. So, after the program point in

which the string character function is declared, we keep track of both

the managed char array, whose concrete value does not change from the

program point in which the function is stated, and the char sub-array

string character statement result. Notice that, also the split parame-

ters of a char array are sub-segmentations of the whole segmentation

of it and as such have their own concrete value.

We have defined in full detail the concrete and abstract semantics

of the main C header file string.h functions. In particular, we have cap-

ture the behaviour of the strcpy(), strcat(), strlen(), strchr(),

strcmp() functions in the cases in which both the manipulated char

arrays were well-formed strings both when the strings common error

occurred. We have also studied the behaviour of the modification op-

eration of a char array, constructing a suitable function. We have

implemented these functions, in C programming language, so that we

could exploit the segmentation of a char array and we tested the effec-

tiveness of our refined char array representation. Moreover, we applied

the bioinformatics structures of suffix array and longest common pre-

fix array [7] in the creation of alternative algorithms to express the

strchr() and the strcmp() functions.

1.4 Results

We designed a segmentation abstract domain for the analysis of string

in C programming language and a set of sound operations on it.

We implemented the reviewed string.h functions and collected them

in the M-String library, in order to test the correctness of our ad hoc

char array representation and to capture the string of interest, for fur-
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ther analysis on it.

Finally, some preliminary experimental results are discussed, that

show the effectiveness of the proposed domain for string analysis.

1.5 Structure

This thesis is organized as follows:

� Chapter 2 describes the basis of abstract interpretation analy-

sis, with particular attention to the abstract domains for static

analysis of string values;

� Chapter 3 presents in full detail the parametric segmentation ap-

proach to array representation introduced in [1];

� Chapter 4 introduces our refined segmentation abstract domain

for the analysis of strings in C programming language and de-

scribes our concrete and abstract semantics of the main C header

file string.h functions;

� Chapter 5 presents the M-String library of the reviewed string.h

functions defined in Chapter 4;

� Chapter 6 compares our ad hoc char array representation to the

one introduced in [1], the advantages and disadvantages of our

strings array abstract domain and the possible practical applica-

tions, by discussing some preliminary experimental results;

� Chapter 7 concludes;

� Appendix A provides the M-String library implementation.





Chapter 2

Abstract Interpretation

Abstract interpretation is a program verification analysis approach,

introduced in 1988 by Cousot.

The program verification problem is undecidable; this implies that

the possible solution to the program verification problem is by abstract

interpretation to simplify the given proof obligation [17]. The abstract

interpretation technique, starting from the analysed program concrete

semantics definition and an abstract domain, derives the so-called ab-

stract semantics, which allows to run the program on the abstract

domain to compute the property that the abstract domain models.

In this chapter will be informally introduced the main concepts of

the abstract interpretation analysis and will be defined the abstracts

domains for the static analysis of string values, presented in the Section

1.1.

2.1 Concrete and abstract semantics

The concrete semantics of a program provides a formal mathematical

model of all the possible behaviours of a computer system executing

this program in interaction with any possible environment, where an

environment can be regarded as a memory that holds the values for

each program variable, and it is the foundation on which abstract in-

terpretation is built [18].

The concrete semantics of a program is not computable and all

the non-trivial properties on the concrete program semantics are either

undecidable or very hard to solve. Abstract interpretation technique

helps to prove specific program properties and it consists in considering

7
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an abstract semantics that is an over-approximation of the concrete one

of a program. The abstract semantics guarantees correctness: if the

abstract semantics is safe then it is also the concrete semantics.

2.1.1 Abstract domain

The abstraction can be parametrized in order to tune it with respect to

different application domains. First of all we need to choose an abstract

domain, that is an abstraction of the concrete semantics in the form

of abstract properties and abstract operations [19]. So, an abstract

domain is a complete lattice whose elements capture the information to

be analysed. Then, it is necessary the definition of an abstract function

α which maps a set of concrete objects (the concrete domain 〈D,⊆〉) to

its most accurate representation in the abstract domain (〈D̄,v〉). The

inverse concretization function is γ, which maps an abstract object

to the concrete one that it represents. The correspondence between

concrete and abstract domains is given by a Galois Connection [21].

There exist non-relational and relational abstract domains. In a

non-relational domain all the program variables are abstracted inde-

pendently of the others. Relational domains are more precise than

non-relational ones since the relationships between values of the pro-

gram variables are preserved by the abstraction. Two well known

non-relational abstract domains are the sign domain and the inter-

val domain. The sign abstract domain consists in replacing integers by

their sign thus ignoring their absolute value (Sign = {⊥,−, 0,+,>})
[2]. The interval abstract domain approximates a set of integers by its

minimal and maximal values (Int = {[x, y]|x, y ∈ Z ∪ {−∞,+∞}})
[18] [19].

2.2 Strings abstract domains

We introduce different abstract domains that have been proposed for

string analysis. The character inclusion domain, the prefix and suf-

fix domains and the bricks domain, defined in [11], the string set and

the constant string domain, the prefix-suffix domain, the string hash

domain, presented in [12], are generic abstract domains to the static

analysis of string values, each of which tracks a different kind of infor-

mation.
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2.2.1 Character inclusion domain

The character inclusion domain [11], denoted by CI, approximates

strings with the characters we know the strings surely contain, and

once they could contain. In this domain, a string will be represented

by a pair of sets, the set of certainly contained characters C and the

set of maybe contained characters MC: CI = {(C,MC) : C,MC ∈
℘(K) ∧ C ⊆ MC} ∪ ⊥CI , where K is a given alphabet.

2.2.2 Prefix and suffix domains

The prefix domain [11], denoted by PR, abstracts strings by their

prefix. A prefix is represented by a sequence of characters followed by

an asterisk *. The asterisk represents any string. Because the asterisk

* at the end of the representation is always present, it is not included in

the domain and abstract elements are considered made only of sequence

of characters. Formally: PR = K∗ ∪ ⊥PR, where K∗ is a sequence of

characters.

The suffix domain, denoted by SU , abstracts strings by the end of

a certain sequence of characters. Formally: SU = K∗ ∪ ⊥SU .

2.2.3 Bricks domain

The bricks domain [11], denoted by BR, approximates strings by a

sequence of bricks. A single brick is defined by B = [℘(S)]min,max,

where min and max are two integer positive values and S is the set

of all strings. A brick represents all the strings, which can be built

through concatenation of the given strings, taken between min and max

times altogether. Elements in BR represent strings as ordered lists of

bricks. Formally, concatenation between bricks is defined as follows:

B1B2 = {αβ : α ∈ strings(B1) ∧ β ∈ stirngs(B2)}, where strings(B)

represents all the strings that can be built from the single brick B.

Because a particular set of strings could be represented by more than

one combination of bricks, it has been adopted a normalized form:

normBricks(L) is the function that, given a list of bricks L returns

its normalized version. So, the abstract domain of bricks is defined

by BR = normBricks(B∗), that is, the set of all finite normalized

sequences of bricks.
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2.2.4 String set domain and constant string domain

The string set domain [12], denoted by SS, enables precise representa-

tion of at most k > 1 concrete strings. Formally, SSk = {>SSk}∪{S ∈
℘(K∗)| |S| 6 k}. One instance of SSk is the constant string (CS) do-

main, which is able to represents a single concrete string exactly (i.e.,

CS = SSk).

2.2.5 Prefix-Suffix domain

The prefix-suffix domain [12], denoted by PS, is a pair 〈p, s〉 ∈ K∗×K∗,
corresponding to all the concrete strings that start as p and end as s.

The domain is PS = {⊥PS} ∪ (K∗ × K∗).

2.2.6 String hash domain

The string hash domain [12], denoted by SH, was proposed by Madsen

and Andreasen [20]. For some fixed integer range U = [0, b] and hash

function h : K∗ → U , a concrete string s is mapped into a “bucket” of

U according to the sum of the characters codes of s.



Chapter 3

Array Content Analysis

In this chapter will be introduced the array content analysis basic ele-

ments defined by Cousot in [1] and will be provided several examples,

in order to be able to better understand the subsequent char array

content analysis, ad hoc extension of the first one, object of this thesis.

We have also introduced appropriate changes of notation, in order to

make it coherent throughout the whole analysis.

Cousot defined FunArray, a parametric segmentation abstract do-

main functor for the fully automatic and scalable analysis of array

content properties. The analysis automatically and semantically di-

vides array into consecutive non-overlapping possibly empty segments.

Segments are delimited by sets of bound expressions and abstracted

uniformly. All symbolic expressions appearing in a bound set are equal

in the concrete. The FunArray can be naturally combined, via reduced

product, with any existing analysis for scalar variables. Cousot pre-

sented the analysis as a general framework, parametrized by the choice

of bound expressions, segment abstractions and the reduction opera-

tor. Once the functor has been instantiated with fixed parameters, the

analysis is fully automatic.

3.1 Concrete Semantics

In this section will be reported the elements of the semantics of pro-

gramming languages to which the Cousot array content analysis does

applies, such as: scalar variables, simple expressions and unidimen-

sional arrays and corresponding assignments.

11
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3.1.1 Scalar variables semantics

The operational semantics of scalar variables with basic types (bool,

char, int, float, etc.) is assumed to be expressed by concrete variable

environments ρ ∈ Rv, where Rv , X 7→ V , mapping variable names

x ∈ X to their values ρ(x) ∈ V .

We use the notation [[x]]ρ , ρ(x).

Example 3.1. Let x ∈ X a program variable. Assuming that the

values in V are integers, an environment ρ ∈ Rv , X 7→ Z maps the

variable x to its value ρ(x). For instance, if ρ(x) = 10, we say [[x]]ρ = 10.

4

3.1.2 Simple expressions semantics

The simple expressions e ∈ E, containing only constant, scalar vari-

ables, and mathematical unary and binary operators, have a semantics

[[e]]ρ in the concrete variable environment ρ so that [[e]] ∈ Rv 7→ V ,

where V is any type of values.

The semantics of scalar variable assignment is [[x := e]]ρ , ρ[x 7→
[[e]]ρ] where ρ[x 7→ a](x) = a and ρ[x 7→ a](y) = ρ(y) when x 6= y.

Example 3.2. Let x ∈ X a program variable and let the environments

be:

v ∈ V , Z
ρ ∈ Rv , X 7→ V

The value of an arithmetic expression like x + 2 depends on the value

of the free variable x in the expression. We take ρ(x) = 10 then, the

value of the expression x + 2 is given by ρ(x) + 2. Formally:

[[x + 2]]ρ , ρ(x + 2) = ρ(x) + 2

= 10 + 2

= 12
4

Example 3.3. Given x := x + 2 and ρ(x) = 10, then:

[[x := x + 2]]ρ , ρ[x 7→ [[x + 2]]ρ](x) = ρ[x 7→ ([[x]]ρ+ 2)](x)

= ρ[x 7→ (ρ(x) + 2)](x)

= ρ[x 7→ (10 + 2)](x)

= ρ[x 7→ 12](x)

= 12
4
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3.1.3 Unidimensional arrays semantics

Cousot, in [1], relates array element values with their indexes, as-

suming that the concrete value of an array A is a quadruple a =

(ρ, A.low, A.high,A) ∈ A, where:

� ρ ∈ Rv is a scalar variable environment;

� A.low ∈ E is an expression which value, [[A.low]]ρ, evaluated in

the variable environment ρ, yields the integer lower bound of the

array indexes;

� A.high ∈ E is an expression which value, [[A.high]]ρ, evaluated

in the variable environment ρ, yields the integer upper bound of

the array indexes;

� A maps every index i ∈
[
[[A.low]]ρ, [[A.high]]ρ

)
to the pair A[i] =

(i, v) of the index i and the corresponding array element value v.

The operational semantics of array variables (such as A ∈ A) are

concrete array environments θ ∈ Ra, where Ra , A 7→ A, mapping

array names A ∈ A to their values θ(A) ∈ A , Rv × E × E × (Z 7→
(Z× V)).

As we all know, an array is a collection of data that holds fixed

number of values of the same type. The size and type of arrays cannot

be changed after its declaration. Moreover, we can access elements of

an array by indexes and arrays always have 0 as the first index. It is

also important to remember that, given an array A with length |A| = n

and an index i, that describes the position of a given element within

the array itself, i ∈ [0, n). So, supposing we have declared an array

of n elements, we can use the array members from 0 to n − 1; if we

try to access array elements outside of its bounds, the compiler may

not show any error, however, this may cause unexpected output (unde-

fined behaviour). Informally, when we talk about sound static analysis

of program arrays, we have to consider the existence of a symbolic array

lower and upper bound. The presence of these bounds is regardless of

the array content. Given that, when we perform the array segmenta-

tion analysis presented by Cousot and we define the syntax quadruple

value of an array, we can easily assume that A.low and A.high can

be always re-conducted to the symbolic expressions whose results are,
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respectively, zero and the length of the analysed array, that always ex-

ists, even if its value is unknown. Indeed, Cousot considers a “buffer

overrun” runtime error when i < [[A.low]]ρ or i > [[A.high]]ρ, in which

case the value of A[e] (that identifies the semantics of an array element

access where the expression e is evaluated to an index i) is undefined,

so that program execution is assumed to stop. The explicit inclusion

of the array bounds in a is also useful to handle arrays of parametric

length such as JavaScript arrays or collections in managed languages.

Furthermore, the instrumented semantics of arrays, defined by Cou-

sot, makes explicit the fact that arrays relate indexes to indexed ele-

ment values by considering array elements to be a pair of an index

and an array element value. This instrumented semantics is in con-

trast with the classical semantics a ∈ [l, h) 7→ V of arrays, mapping

indexes in [l, h) to array element values in V . Storing (i, v) instead of v

is useless but for the fact that the instrumented semantics can be used

to make the array content analysis more precise and handles relational

abstract analysis, as we will see later.

Example 3.4. Given the array A = < 7, 2, 9, 4 >, of type int, with

length |A| = 4 and i ∈ [0, 4), its syntactically representation is given by

the tuple a = (ρ, A.low, A.high, A). Assuming that:

v ∈ V , Z
[[e]]ρ ∈ Rv , X 7→ V

A.low and A.high, evaluated in the environment ρ, are respectively

equal to [[A.low]]ρ , ρ(A.low) = 0 and [[A.high]]ρ , ρ(A.high) = 4.

The co-domain of the a quadruple parameter A corresponds to the set

of all the pairs {(i, v) | i ∈
[
[[A.low]]ρ, [[A.high]]ρ

)
}. So, we have that

codom(A) = {A[0] = (0, 7), A[1] = (1, 2), A[2] = (2, 9), A[3] = (3, 4)}.
4

3.2 Abstract Domains and Functors

An abstract domain D includes a set D of abstract properties as well as

abstract functions and operations D.op for the partial order structure

of abstract properties (v), the join (t), the meet (u), convergence

acceleration operators: widening (M) and narrowing (O), the abstract

property transformers involved in the definition of the semantics of the

programming language: the abstract evaluation of program arithmetic
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and boolean expressions, the assignment to scalar variables ... [4]. A

monotonic concretization function γ provides the meaning of abstract

properties in terms of concrete properties.

An abstract domain functor D is a function from the parameter ab-

stract domains D1, . . . ,Dn to a new abstract domain D(D1, . . . ,Dn).

The formal parameters D1, . . . ,Dn of the abstract domain functor

D can be instantiated to various actual abstract domains. The ab-

stract domain functor D(D1, . . . ,Dn) composes abstract properties

D1, . . . ,Dn of the parameter abstract domains D1, . . . ,Dn to build a

new class of abstract properties D and operations.

Example 3.5. The domain refinement reduced product ⊗ is an ab-

stract domain functor.

4

3.2.1 Scalar variable abstraction

Let X be an abstract domain encoding program variables including a

special variable v0 which value is assumed to be always zero; so, the

elements of the domain are X = X ∪ {v0} where v0 6∈ X.

Properties and property transformers of concrete variable environ-

ments in ℘(Rv) are abstracted by the variable environment abstract

domain R(X) which depends on the variable abstract domain X (so

that R is an abstract domain functor).

3.2.1.1 Concretization

The abstract properties ρ ∈ R are called abstract variable environ-

ments. The concretization γv(ρ) denotes the set of concrete variable

environments having this abstract property. It follows that γv ∈ R 7→
℘(Rv).

The static analysis of scalar variables may or may not be relational.

For non-relational abstractions, ℘(Rv) is first abstracted to X 7→ ℘(V)

and R , X 7→ V where the abstract domain V abstracts properties of

values in V with concretization γv ∈ V 7→ ℘(V).

Example 3.6. Given the concrete variable environments ρ ∈ Rv ,
X 7→ V and V = Z, let Sign be the sign abstract domain. Since Sign

is a non-relational abstract domain, properties of concrete variable en-

vironments in ℘(Rv) are first abstracted to X 7→ ℘(Z) and ρ ∈ R ,
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X 7→ Sign, where the abstract domain Sign abstracts properties of

values in Z with concretization γv ∈ Sign 7→ ℘(Z). So, given x ∈ X
and ρ(x) = +, its concretization is γv(ρ) = {ρ ∈ X 7→ Z | ρ(x) > 0}.

4

Example 3.7. Let ρ ∈ Rv , X 7→ Z and consider the powerset

operator abstract domain functor ℘ on Sign, such that ℘(Sign) ={
∅, [+], [−], [0], [+,−], [0,+], [−, 0], [−, 0,+]

}
[5], with ρ ∈ R , X 7→

℘(Sign). The abstract domain ℘(Sign) abstracts properties of values

in Z with concretization γv ∈ ℘(Sign) 7→ ℘(Z). So, given x ∈ X
and ρ(x) = [0,+], its concretization is γv(ρ) = {ρ ∈ X 7→ Z | ρ(x) =

0 ∨ ρ(x) > 0}.
4

3.2.2 Expressions abstraction

The symbolic expressions appearing in segment bounds belong to the

expression abstract domain E(X) that depends on the variable ab-

stract domain X and E is an abstract domain functor. The abstract

properties E consist in a set of symbolic expressions depending on the

variables in X restricted to a canonical normal form plus the bottom

expression, denoted by ⊥, corresponding to unreachability and the top

expression, denoted by >, abstracting all symbolic expressions which

cannot be put in the considered normal form.

The array bound expressions are assumed to be converted in canon-

ical normal form. Different canonical forms for expressions correspond

to different expression abstract domains E(X). In the analysis devel-

oped by Cousot, the abstract expressions E are restricted to the normal

form v+ k where v ∈ X is an integer variable plus an integer constant

k ∈ Z (v0 + k represents the integer constant k).

3.2.2.1 Concretization

Given an abstract domain for scalar variables with concretization γv ∈
R 7→ ℘(X 7→ Z), the concretization γe(e)ρ of an expression e ∈ E
depends on the abstract value ρ ∈ R of the scalar variables in X and

is the set of possible concrete values of the expression. So, γe ∈ E 7→
R 7→ ℘(V) such that γe(⊥)ρ , ∅, γe(>)ρ , V , γe(v0 + i)ρ , {i}, and

otherwise γe(v + i)ρ , {ρ(v) + i | ρ ∈ γv(ρ)}.
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Example 3.8. Let the concrete variable environments ρ ∈ Rv , X 7→
V , with V = Z and let Sign be the sign abstract domain. We want

to know the sign of the arithmetic expression x + 2, given that 2 is

positive and ρ(x) = +. So:

ρ(x + 2) = ρ(x) + ρ(2)

= + + +

= +

The expression concretization is γe(x + 2)ρ = {ρ(x) + 2 | ρ ∈ γv(ρ)}
where γv(ρ) = {ρ ∈ X 7→ Z | ρ(x) > 0}.

4

Example 3.9. Given the concrete variable environments ρ ∈ Rv ,
X 7→ Z and the ℘(Sign) abstract domain, we want to know the sign

of the arithmetic expression x + 2, given that 2 is positive and ρ(x) =

[−, 0]. So:

ρ(x + 2) = ρ(x) + ρ(2)

= [−, 0] + [+]

= [−, 0,+]

The expression concretization is γe(x + 2)ρ = {ρ(x) + 2 | ρ ∈ γv(ρ)}
where γv(ρ) = {ρ ∈ X 7→ Z | ρ(x) < 0 ∨ ρ(x) = 0}

4

3.2.3 Segment bounds abstract domain functor

The segment bound abstract domain functor B takes any of the ex-

pression abstract domains E previously discussed, and produces an

instantiated segment bound abstract domain B(E), whose abstract

properties are sets of expressions B , ℘(E \ {⊥,>}). The empty set ∅
denotes unreachability, while, non-empty sets {e1 . . . em} of expressions

e1, . . . , em ∈ E are all equivalent symbolic denotations of some concrete

value (generally unknown in the abstract except when one of the ei is

a constant).

3.2.3.1 Concretization

The concretization γb ∈ B 7→ ℘(Rv) of segment bounds is the set of

scalar variables concrete environments ρ making the concrete values of

all expressions in the set to be equal [[e1]]ρ = . . . = [[em]]ρ. So, γb(∅) = ∅
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and γb(S) = {ρ | ∀e, e’ ∈ S : [[e]]ρ = [[e’]]ρ}, where [[e]]ρ is the concrete

value of expression e in the concrete environment ρ.

When normal expressions and segment bounds are simplified and

compared in the context of variable abstract environments ρ ∈ R, the

concretization can be chosen as γb ∈ B 7→ R 7→ ℘(Rv) such that

γb(S)ρ = {ρ ∈ γv(ρ) | ∀e, e’ ∈ S : [[e]]ρ = [[e’]]ρ}.

Example 3.10. Consider:

� The concrete variable environments ρ ∈ Rv , X 7→ Z

� The sign abstract domain Sign

� An array A, of unspecified type, with length |A| = 5

� Two variables x, y ∈ X with ρ(x) = 3 and ρ(y) = 5

Assuming that {x + 2 y + 0} is the A segment upper bound then,

e1 = x + 2 and e2 = y + 0 belong to E, the set of expressions in the

considered bound. Since e1 and e2 belong to the same bound, [[e1]]ρ

and [[e2]]ρ have to be equal. As a matter of fact:

[[x + 2]]ρ , ρ(x + 2) = ρ(x) + 2 = 3 + 2 = 5

[[y + 0]]ρ , ρ(y + 0) = ρ(y) + 0 = 5 + 0 = 5

In the concrete, e1 and e2 are both equal to a strictly positive integer

value, so, under the sign abstract domain:

ρ(e1) = ρ(x + 2)

= ρ(x) + ρ(2)

= + + +

= +

ρ(e2) = ρ(y + 0)

= ρ(y) + ρ(0)

= + + 0

= +

The abstracted segment upper bound of A corresponds to {+ +}. Let

S = {+, +} be the set of the expressions in the abstracted A segment

upper bound, its concretization is γb(S)ρ = {ρ ∈ γv(ρ) | for e1, e2 ∈
S : [[e1]]ρ = [[e2]]ρ} where γv(ρ) = {ρ ∈ X 7→ Z | ρ(x) > 0 ∧ ρ(y) > 0}.

4
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Example 3.11. Consider:

� The concrete variable environments ρ ∈ Rv , X 7→ Z

� The abstract domain functor ℘(Sign)

� An array A, of unspecified type, with length |A| > 0

� Two variable x, y ∈ X

As in the previous example, the A segment upper bound is {x+2 y+4}
and E is the set of expressions appearing in the considered bound, such

that E = {x + 2, y + 4}. Assuming that:

i) [[x + 2]]ρ = [[y + 4]]ρ

ii) ρ(x) = ρ(y) = [0,+]

Then:

ρ(x + 2) = ρ(x) + ρ(2)

= [0,+] + [+]

= [+]

ρ(y + 4) = ρ(y) + ρ(4)

= [0,+] + [+]

= [+]

The abstracted segment upper bound of A corresponds to
{

[+] [+]
}

.

Let S =
{

[+], [+]
}

the set of the expressions values in the abstracted

A segment upper bound, its concretization is γb(E)ρ = {ρ ∈ γv |
for e1, e2 ∈ E : [[e1]]ρ = [[e2]]ρ} where γv(ρ) = {ρ ∈ X 7→ Z | ρ(x) >
0 ∧ ρ(y) > 0}.

4

3.2.4 Array element abstract domain

The array element abstract domain A abstracts properties of pairs

(index, value of indexed array element).
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3.2.4.1 Concretization

The concretization is γa ∈ A 7→ ℘(Z× V).

Properties in ℘(Z×V) may not or may be first abstracted to ℘(V)

when we do not want to relate array element values to their indexes.

In the first case we have a relational analysis, in the second a non-

relational.

Example 3.12. Consider:

� The concrete variable environments ρ ∈ Rv , X 7→ Z

� The sign abstract domain Sign

� A non-relational analysis

� An array A, of type int, such that:

[[(i, v)]]ρ = [[v]]ρ = +,∀i ∈
[
[[A.low]]ρ, [[A.high]]ρ

)
� The set V of all the A array elements values

The array elements concretization is γa(+)ρ = {ρ ∈ γv(ρ) | ∀v ∈ V :

[[v]]ρ > 0}.
4

Example 3.13. Consider:

� The concrete variable environments ρ ∈ Rv , X 7→ Z

� The powerset of sign abstract domain ℘(Sign)

� A non-relational analysis

� An array A, of type int, such that:

[[(i, v)]]ρ = [[v]]ρ = [0,+],∀i ∈
[
[[A.low]]ρ, [[A.high]]ρ

)
� The set V of all the A array elements values

The array elements concretization is γa([0,+])ρ = {ρ ∈ γv(ρ) | ∀v ∈
V : [[v]]ρ = 0 ∨ [[v]]ρ > 0}.

4
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3.2.5 Array segmentation abstract domain functor

The array segmentation abstract domain S(B(E),A,R) abstracts a

set of possible array contents by consecutive, non-overlapping segments

covering all array elements.

Abstract predicates

The Cousot array segmentation analysis has been instantiated with

constant propagation [3], thus automatically producing abstract in-

variant predicates. A:pi is the abstract invariant predicate at program

point i ∈ [0, n], related to array A. The array segmentation abstract

predicate pi belong to the set S , {(B×A)× (B×A×{ ,?})k×{B×
{ ,?} | k > 0} ∪ {⊥} and has the form {e1

1 . . . e
1
m1}P1{e2

1 . . . e
2
m2}[?2]P2

. . . Pn−1{en1 . . . enmn}[?n], where:

� n is the length of the array A;

� the segment bounds {ei1 . . . eimi} ∈ B, i ∈ [1, n], n > 1, are finite

non-empty sets of symbolic expressions in normal form eij ∈ E ;

� Pi ∈ A is an abstract predicate chosen in an abstract domain A

denoting possible values of pairs (index, indexed array element)

in a segment; and

� the optional question mark [?i] follows the upper bound of a seg-

ment. Its presence, denoted by ?, means that the segment might

be empty. Its absence, denoted by , means that the segment

cannot be empty. Because this information is attached to the

segment upper bound (which is also the lower bound of the next

segment), the lower bound {e1
1 . . . e

1
m1} of the first segment never

has a question mark. The tuple ({ ,?},�, ,?,g,f) form a com-

plete lattice with ≺ ?.

The symbolic expressions eki ∈ E in a given segment bound depend on

scalar variables but not on array elements.

Definition 3.1 (Seg function). We denote by αSeg the function that

maps an array A to the array representation A.

♦



22 Chapter 3. Array Content Analysis

3.2.5.1 Concretization

Given the concretization γv ∈ R 7→ ℘(Rv) for the variable abstract

domain and γa ∈ A 7→ ℘(Z × V) for the array elements abstract

domain, the concretization γs of an abstract array segmentation is an

array property, so γs ∈ S 7→ R 7→ ℘(A). The concretization of a

segment B P B′ [?] is the set of arrays whose elements in the segment

[B,B′) satisfy the abstract property P (< stands for <, while, <?

stands for 6):

γ′s(B P B′ [?])ρ ,
{(ρ, l, h, A) | ρ ∈ γv(ρ) ∧ ∀e1, e2 ∈ B : ∀e′1, e′2 ∈ B′ :

[[l]]ρ ≤ [[e1]]ρ = [[e2]]ρ < [?][[e′1]]ρ = [[e′2]]ρ ≤ [[h]]ρ ∧
∀i ∈ [[[e1]]ρ, [[e′1]]ρ) : A[i] ∈ γa(P )}

The concretization of an array segmentation B1P1B2[?2]P2 . . . Pn−1Bn

[?n] is the set of arrays whose elements in all segments [Bi, Bi+1), i =

1, . . . , n − 1 satisfy abstract property Pi and whose lower and upper

bounds are respectively given by B1 and Bn.

γs(B1P1B2[?2]P2 . . . Pn−1Bn[?n])ρ ,

{(ρ, l, h, A) ∈
n−1⋂
i=1

γ′s(Bi Pi Bi+1[?i+1])ρ |

∀e1 ∈ B1 : [[e1]]ρ = [[l]]ρ ∧ ∀en ∈ Bn : [[en]]ρ = [[h]]ρ}

and γs(⊥) = ∅

Example 3.14. Let A be an array, of type int, with length |A| = 10

and consider the sign abstract domain Sign, abstracting the A array’s

elements (no abstraction is applied to the expressions in the array

segment bounds) and a non-relational analysis. Suppose that the A

abstract segmentation corresponds to A: {0} + {10} then, its con-

cretization is γs({0} + {10})ρ , {(ρ, l, h, A) | ρ ∈ γv(ρ) ∧ 0 ∈ {0} :

10 ∈ {10} : [[l]]ρ 6 0 < 10 6 [[h]]ρ ∧ ∀i ∈ [0, 10) : A[i] ∈ γa(+)}.
4

3.2.6 Segmentation unification

Given two segmentations with compatible extremal segment bounds

(in general for the same array) or when given two segmentations, the

first (the last) segment bounds should have a non-empty intersection,

the objective of segmentation unification is to modify the two segmen-

tations so that they coincide. In practice this is always the case as
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the first segment bound always contains 0 and the last segment bound

always contains the symbolic name for the array length. Basically:

unify({e1
1 . . . e1

m1} P1 {e2
1 . . . e2

m2}[?2] P2 . . . Pn−1{en1 . . . enmn}[?n],

{f 1
1 . . . f 1

m1} P ′1 {f 2
1 . . . f 2

m2}[?2]′ P ′2 . . . P ′n−1 {fn1 . . . fnmn}[?n]′) =

{e1
1 . . . e1

m1} ∩ {f 1
1 . . . f 1

m1} P1 t P ′1 {e2
1 . . . e2

m2} ∩ {f 2
1 . . . f 2

m2}
[?2]t [?2]′ P2 tP ′2 . . . Pn−1 tP ′n−1 {en1 . . . enmn}∩ {fn1 . . . fnmn}

[?n] t [?n]′

The problem of segmentation unification admits a partially ordered

set of solutions, in general not forming a lattice. The minimal elements,

hence the least precise unifications are those where all the segments

are joined, and only the extremes are preserved. On the other end, the

maximal elements, hence the most precise unification are the coarsest

common refinements of both segmentations. Roughly speaking, what

can be considered a “good” segmentation unification is such that the

bounds: (i) do appear in one or the other initial segmentation; and (ii)

preserve the original orderings.

It is important to note that one segment can be empty in one seg-

mentations (like {0 i}) and non-empty in the other one (like {0} P
{1 i}). Therefore segmentation must include the splitting of empty seg-

ments (like {0 i} → {0} P ′ {1 i}). Such an empty segment splitting

is used in the comparison/join/meet/widening/narrowing of segments

(which are not all commutative) so that the abstract value P ′ of the

created empty segment must be chosen as the left/right neutral ele-

ment of the considered operation (e.g. P ′ is ⊥ for join, > for meet, ⊥
on the left and > on the right of the partial order v).

The segmentations involved in a unification are usually related to

different program contexts; therefore, the well-definedness of the coars-

est common refinement, if any, depends on the abstract variable en-

vironment, too. To sum up, the array segmentation analysis should

have: (i) the possibility of being completely independent of the variable

analysis; (ii) a deterministic behaviour in presence of several maximal

common refinements. Therefore, Cousot presented a segmentation uni-

fication which does not provide any guarantee on the maximality of the

result, but instead one which: i) is always well-defined in absence of

knowledge of the contexts of the segmentations; ii) does terminate; (iii)

is deterministic.

Algorithm 3.1 (Segmentation unification by Cousot - Unify algo-

rithm). The first step of the algorithm is checking the compatibility
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of the two input segmentations to verify that they do have common

lower and upper bounds. Then, the unification proceeds recursively

from left to right and maintains the invariant that the left part is al-

ready unified. Let Il (resp. Ir) denote the left (resp. right) neutral

element.

1 B[?1] P1 B′1[?′1] . . . and B[?2] P2 B′2[?′2] . . . have some lower

bounds and so keep the first segments as they are and go on with

B′1[?′1] . . . and B′2[?′2] . . .

2 In case (B ∪ B1)[?1] P1 B
′
1[?′1] . . . and B[?2] P2 B

′
2[?′2] . . . with

B1 6= ∅ and B ∩ B1 = ∅, let B1 be the set of expressions in B1

appearing in the second segmentation blocks B′2, . . . .

2.1 If B1 is empty, then go on with B[?1] P1 B′1[?′1] . . . and

B[?2] P2

B′2 [?′2] . . . following case 1.

2.2 Otherwise, go on with B[?1] Il B1? P1 B
′
1[?′1] . . . and B[?2] P2

B′2[?′2] . . . as in case 1.

3 The symmetrical case is similar.

4 In case (B ∪B1)[?1] P1 B
′
1[?′1] . . . and (B ∪B2)[?2] P2 B

′
2[?′2] . . .

with B1, B2 6= ∅ and B ∩ B1 = B ∩ B2 = ∅, let B1 (resp.B2) be

the set of expressions in B1 (resp. B2) appearing in the second

(resp. first) segmentation blocks B′2, . . . (B′1, . . . ).

4.1 If B1 and B2 are both empty, go on with B[?1] P1 B
′
1[?′1] . . .

and B[?2] P2 B
′
2[?′2] . . . as in case 1.

4.2 Else if B1 is empty (so that B2 in not empty) then go on with

B[?1] P1 B
′
1[?′1] . . . and B[?2] Ir B2? P2 B

′
2[?′2] . . . (where Ir

is the right neutral element).

4.3 The symmetrical case is similar.

4.4 Finally if B1 and B2 are both non-empty, then go on with

B[?1] Il
B1? P1 B

′
1[?′1] . . . and B[?2] Ir B2? P2 B

′
2[?′2] . . . as in case

1.

5 In case B1[?1] P1 B
′
1[?′1] . . . and B2[?2] P2 B

′
2[?′2] . . . with B1 ∩

B2 = ∅, we cannot be on the first left segment block so we have on
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the left B0[?0] P0 B1[?1] P1 B
′
1[?′1] . . . and B′0[?′0] P ′0 B2[?2] P2 B

′
2

[?′2] . . . and go on by merging these consecutive blocks B0[?0] P0t
P1 B

′
1[?1f?′1] . . . and B′0[?′0] P ′0 t P2 B2[?2f?′2] . . . .

6 Finally, at the end either we are left with the right limits that have

both been checked to be equal or else we have B1[?1] P1 B
′
1[?′1] and

B2[?2] with B′1 = B2. Because we have maintained the invariant

thatB1 is always equal toB2 in the concrete (so necessarily [?′1] =?

since thenB1 = B2 = B′1), and so we end up with (B1∪B′1∪B2)[?1]

and (B1 ∪B′1 ∪B2)[?2].

�

The algorithm never adds any new expression to the segment bounds

nor increments the total number of segment bounds in splits and so

does terminate.

Theorem 3.1. The Unify algorithm is a sound implementation of an

upper bound operator over A.

5

Array segmentation rules

1. At each program point, the program arrays content is described

by a segmentation without holes, since a hole can always be rep-

resented by a > segment, that is, a segment whose properties are

unknown, possibly empty if the hole may or may not be absent.

Note that the segments are not empty, except if the upper bound

of the segment is marked with ?.

2. A segmented array consists of consecutive non-overlapping seg-

ments.

3. Each segment uniformly describes the array elements within that

segment bounds, but different segments of a segmentation can

have different abstract properties.

4. The consecutive segment bounds are in strictly increasing order in

the concrete except when followed by a question mark, meaning

that the preceding block may be empty. The first block limit

always contains an expression in normal form denoting the array

lower bound, while, the last block always contains an expression

in normal form denoting the array upper bound.
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5. In case of program loop invariant the array segmentation analysis

performs a segmentation unification.

6. The array content analysis always terminates since the only two

reasons for non-termination are impossible: i) The array might

have infinitely many symbolic segments as in {0} . . . . . . {n-3}
. . . {n-2} . . . {n-1} . . . {n} which is prevented by segmenta-

tion unification and widening; ii) A segment might take succes-

sive strictly increasing abstract values which is prevented by the

use of a widening/narrowing convergence acceleration for segment

content analysis [4]. No widening was necessary for constant prop-

agation which satisfies the ascending chain condition (⊥ @ i @ >,

i ∈ Z).

The array content analysis presented by Cousot can be clarified through

a suitably extended array initialization example [1], involving a loop

invariant.

Example 3.15. Given the program:

void Init(int[] A) {

/* 0: */ int i = 0;

/* 1: */ while /* 2: */ (i < A.Length) {

/* 3: */ A[i] = 0;

/* 4: */ i = i+1;

/* 5: */ }

/* 6: */ }

The loop invariant at program point 2 states that if A.Length = 0

then i = 0 and the array A is empty. Otherwise A.Length > 1; in

this case either i = 0 and the array A is not yet initialized, or i > 0

so that A[0] = A[1] = ... = A[i − 1] = 0. Formally, the invariant

(A.Length = 0 ∧ i = 0) ∨ (A.Length > 1 ∧ 0 6 i 6 A.Length ∧ ∀j ∈
[0, i) : A[j] = 0) holds at point 2.

In our case A:pi is the abstract invariant predicate at program point

i ∈ [0,6] and we get:

A:p0 = A: {0} T {A.Length}?
A:p1 = A: {0 i} T {A.length}?
A:p2 = A: {0} 0 {i}? T {A.length}?
A:p6 = A: {0} 0 {A.Length i}?
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� At the program point 0, the array A content is described by the

segmentation:

{0} T {A.Length}?

which captures the initial condition A.Length > 0.

� At the program point 1, the array A content is described by the

segmentation:

{0 i} T {A.Length}?

where the symbolic segment bound {0 i} defines i = 0, since all

expressions in a bound are equal. The T element is the top element

of the domain A and it means that the array values, in the con-

sidered segment (lower bound included, upper bound excluded),

are unknown (>) and the symbolic segment bound {A.length}?
leads to 0 = i 6 A.Length, since the segment bounds are in

increasing order (strictly increasing without ?). So, the invari-

ant A:p1 states that i = 0 6 A.Length ∧ ∀j ∈ [0, A.Length) :

A[j] ∈ Z. In particular, when i = A.Length = 0, the interval

[0, A.length) is empty, so the quantified expression holds vacu-

ously.

Given A:p1 = A: {0 i} T {A.Length}? it is possible consider its

lower segment bound, that, taken individually, can be interpret

as an empty segment, and we can split it as follows:

{0 i} T {A.Length}? ≡ {0} ⊥ {i}? T {A.Length}?

� At the program point 2, the array A content is described by the

segmentation:

{0} 0 {i}? T {A.length}?

How can we get to A:p2? Initially A:p2 = A:p3 = . . . = A:p5 =

⊥ denotes the unreachability of the loop so that the abstract loop

invariant is initially A:p2 = A:p1 t A:p5 = A:p1, where, the join

t behaviour in the constant abstract domain for segments is:
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– x t ⊥ = ⊥ t x = x

– x t > = > t x = >
– i t i = i

– i t j = >, when i 6= j

So, A:p2 = A:p1 = A: {0 i} T {A.length}?
First iteration:

A:p3 = A: {0 i} T {A.Length}
A:p4 = A: {0 i} 0 {1 i+1} T {A.Length}?
A:p5 = A: {0} 0 {1 i} T {A.Length}?
Moreover:

– g =

– g ? = ? g = ? g ? = ?

Now we have to unify A:p1 = A: {0} ⊥ {i}? T {A.length}?
and A:p5 = A: {0} 0 {1 i} T {A.Length}?. The segmentation

unification produces:

– {0} ∩ {0} = {0}
– ⊥ t 0 = 0

– {i} ∩ {1 i} = {i}
– ? g = ?

– T t T = T

– {A.Length} ∩ {A.Length} = {A.Length}
– ?g ? = ?

A:p2 = A:p1 ∪ A:p5 = A: {0} 0 {i}? T {A.Length}?
Second iteration:

A:p3 = A: {0} 0 {i}? T {A.Length}
A:p4 = A: {0} 0 {i}? 0 {i+1} T {A.Length}?
A:p5 = A: {0} 0 {i-1}? 0 {i} T {A.Length}?

A:p2 = A:p1 ∪ A:p5 = A: {0} 0 {i}? T {A.Length}?.

Note that A:p2 is a maximal solution.
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After some iterations, the analysis reaches a fixpoint so, the in-

variant A:p2 states that 0 6 i 6 A.Length, that A[0] = A[1] =

. . . = A[i-1] = 0 when i > 0 and that the values A[i], A[i+1],

. . . , A[A.Length-1] are unknown when A.Length > i.

� At the program point 6, the array A content is described by the

segmentation:

{0} 0 {A.Length i}?

that is A:p2[i>=A.Length], where A.Length = i, since the seg-

mentation of A:p2 provides the information that 0 6 i 6 A.Leng-

th.

Furthermore, considering the additional assumption that A.Length >

1, at program point 6 the final values of the scalar variables are given by

ρ6, such that: ρ6(i) = ρ6(A.Length) = n where n > 1 is the unknown

array length. The final value of A is a6 = (ρ6, 0, A.Length, A6) with

A6[i] = (i, 0), ∀i ∈ [0, n).

4

Example 3.16. Given the program of the Example 3.15 and its ab-

stract invariant predicates, it is possible perform an abstraction anal-

ysis on them. The employed abstraction uses the reduced product [6]

of the powerset of sign and intervals where pairs of an element of the

sign’s powerset domain and an interval denote the conjunction of both

properties. In the following analysis, the abstraction is used both for

variables and array elements, ignoring their relationship to indexes,

such that [[(i, v)]]ρ = (℘(Sign)([[v]]ρ), Int([[v]]ρ)). Taking into account

the previously performed analysis we get that:

A:p0 = (A: {0} (>, [−∞,+∞]) {A.length}?,

A.length: ([0,+], [0,+∞]))

A.p1 = (A: {0 i} (>, [−∞,+∞]) {A.length}?,

i: (0, [0, 0]), A.length: ([0,+], [0,+∞]))

A.p2 = (A: {0} (0, [0, 0]) {i}? (>, [−∞,+∞]) {A.length}?,

i: ([0,+], [0,+∞]), A.length: ([0,+], [0,+∞]))

A.p6 = (A: {0} (0, [0, 0]) {A.length i}?,

i: ([0,+], [0,+∞]), A.length: ([0,+], [0,+∞]))

4
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Example 3.17. Given the program of the Example 3.15 and its ab-

stract invariant predicates, it is also possible abstract them in a rela-

tional way. The employed abstraction uses the reduced cardinal power

[6] of intervals by the powerset of sign, relating the sign of an array in-

dex to the interval of possible variation of the corresponding element,

such that [[(i, v)]]ρ is a map of ℘(Sign)([[i]]ρ) to interval Int([[v]]ρ). Since

the indexes of an array take values in [0, n), we can just consider in-

dexes abstracted to the elements of the sign’s powerset lattice equal to

0, + and [0,+]. So:

A:p0 = (A: {0} (0→ [−∞,+∞],+→ [−∞,+∞],

[0,+]→ [−∞,+∞]) {A.length}?,

A.length: ([0,+], [0,+∞]))

A:p1 = (A: {0 i} (0→ [−∞,+∞],+→ [−∞,+∞],

[0,+]→ [−∞,+∞]) {A.length}?,

i: (0, [0, 0]), A.length: ([0,+], [0,+∞]))

A:p2 = (A: {0} (0→ [0, 0],+→ [0, 0], [0,+]→ [0, 0]) {i}?
(0→ [−∞,+∞],+→ [−∞,+∞],

[0,+]→ [−∞,+∞]) {A.length}?,

i: ([0,+], [0,+∞]), A.length: ([0,+], [0,+∞]))

A:p6 = (A: {0} (0→ [0, 0],+→ [0, 0], [0,+]→ [0, 0]) {A.length i}?,

i: ([0,+], [0,+∞]), A.length: ([0,+], [0,+∞]))

4



Chapter 4

Char Array Segmentation

Analysis

Strings, in C programming language, are represented as char arrays,

containing the sequence of characters composing the string, plus the

string terminating character: ‘\0’. Char arrays that do not contain the

string terminating character, do not represent a string. Notice that a

char array may contain more than one string but, only the first one

is considered of our interest. If a char array contains more than one

string, excluding the first one, the others can be intended ad the strings

of some specific instances of the considered char array.

We apply the array segmentation abstract domain presented by

Cousot in [1] to a program that manages a string initialization and

we track the resulting information. Essentially, we want verify if the

Cousot array content analysis is able to capture if the declared char

array still contains a string of interest at the end of the program. For

this purpose, we modify the program presented in the Example 3.15

and we perform the analysis.

Example 4.1. Given the program:

void Init(char[] C) {

/* 0: */ int i = 0;

/* 1: */ while /* 2: */ (i < C.Length -1) {

/* 3: */ C[i] = ‘a’;

/* 4: */ i = i+1;

/* 5: */ }

/* 6: */ if(C.Length > 0) {

/* 7: */ C[C.Length -1] = ‘\0’;

31
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/* 8: */ }

/* 9: */ }

The while condition has been changed in order to reserve the space

for the string terminating character in the char array program result,

once it has been filled with one or more ‘a’ characters. Furthermore,

it has been added the final if condition in order to be sure to get a

char array containing a string as result in the case in which C.Lenght

is greater than 0. We get the following abstract predicates:

C:p0 = C: {0} T {C.Length}?

C:p1 = C: {0 i} T {C.Length}?

C:p2 = C:p1 = C: {0 i} T {C.Length}?

First iteration:

� if C.Length = 0 then C:p6 = C: {0 i} T {C.Length}? (in this

case the program execution stops at the program point 6 since

the if condition cannot be satisfied). Interpreting the analysis

we get that 0 = i = C.Length and the segmented array program

result can be rewritten as an empty segment C:p6 = C: ∅ that,

obviously, does not represent a char array containing a string.

Notice that in this case, the analysis does not explicitly capture

the nature of the execution stop.

� if C.Length = 1 then C:p8 = C: {0 i} ‘\0’ {C.Length}.

� if C.Length > 1 then:

C:p3 = C: {0 i} T {C.Length}
C:p4 = C: {0 i} ‘a’ {1 i+1} T {C.Length}
C:p5 = C: {0} ‘a’ {1 i} T {C.Length}

The next approximation of the loop invariant is C:p2 = C:p1 ∪
C:p5 = C: {0} ‘a’ {i}? T {C.Length}?.

The second iteration is similar to the following ones and a fixpoint is

immediately reached. It remains to compute C:p6, C:p7, C:p8 and

C:p9.

C:p6 = C: {0} ‘a’ {i}? T {C.Length}?
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At this point of the analysis we know for sure that in the case in which

the if condition is satisfied, then C.Length > 0 ∧ i = C.Length − 1

from which we derive that i is strictly smaller than C.Length, so:

C:p7 = C: {0} ‘a’ {i}? T {C.Length}

C:p8 = C:p9 = C: {0} ‘a’ {i C.length-1}? ‘\0’ {C.length}
4

As we can notice from the Example 4.1, the Cousot array segmenta-

tion analysis applied on a program that manages the fully initialization

of a string char array, results to be general and unable to track both

the correctness of the program result and the information of interest,

unless we do not interpret the analysis. The Cousot array segmenta-

tion analysis is a sophisticated representation of what is, at the static

analysis level, an array, but can not infer any implicit information from

it, specifically when it is applied on char arrays. In a char array seg-

mentation analysis, we want to highlight so-called string of interest ,

if it exists, compared to the whole char array content and we want a

“method” able to identify the presence of that string of interest.

We refine the Cousot array segmentation (C-segmentation) so that

it can be better applied to char arrays. The proposed char array seg-

mentation analysis will be called M-String segmentation.

Definition 4.1 (string of interest). Let str be an array of char, we

consider the string of interest of str the function string(str) defined

by: if ‘\0’ occurs in str, let k be the least index of C such that: str[k] =

‘\0’ in string(str) =< str[i]: i 6 k >, otherwise string(str) =

undef.

♦

Definition 4.2 (splitting). Let str be an array of char and given its

C-segmentation str:{str.low} . . . {i}? ‘\0’ {i+1} . . . {str.high}?,

where {i}? ‘\0’ {i+1} is the first segment in which occurs the string

terminating character, we define by split(str) the pair
(
sstr, nsstr

)
such that:

� sstr : {str.low} . . . {i}?

� nsstr : {i+1} . . . {str.high}?

Where:
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� sstr corresponds to the sub-segmentation representing string(str)

(the sequence of characters before the NULL one),

� nsstr corresponds to the sub-segmentation of the char array con-

tent which falls outside the string of interest.

In the case in which str does not contain the ‘\0’ character (i.e.

string(str) = undef), then sstr = ∅. So, depending by the presence

or not and by the position of the first string terminating character in

the considered char array, we have that:

1. if str: {str.low} . . . {str.high}?
then split(str) = (∅, {str.low} . . . {str.high}?)

2. if str: {str.low} ‘\0’ {str.low+1} . . . {str.high}?
then split(str) = ({str.low} , {str.low+1} . . . {str.high}?)

3. if str: {str.low} . . . {str.high-1} ‘\0’ {str.high}
then split(str) = ({str.low} . . . {str.high-1}, ∅)

4. if str: {str.low} . . . {i} ‘\0’ {i+1} . . . {str.high}
then split(str) = ({str.low} . . . {i}, {i+1} . . . {str.high})

♦

In this way it is possible to take into account the needful presence

of the string terminating character in a char array, to establish the

existence of the string of interest in the analysed char array and to

isolate the string of interest for further analysis on it.

Definition 4.3 (unification). Let str1 and str2 be two char arrays

and consider their splitting:

� split(str1) =
(
sstr1, nsstr1

)
and

� split(str2) =
(
sstr2, nsstr2

)
,

we define the unification of them (where ∪ is the segmentation unifi-

cation algorithm presented in the subsection 3.2.6) as:(
sstr1, nsstr1

)
∪
(
sstr2, nsstr2

)
=
(
sstr1 ∪ sstr2, nsstr1 ∪ nsstr2

)
♦
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Example 4.2. Recovering the program of the Example 4.1 and given

the split segmentation abstract representation of its managed C char

array, at each program point we get the following extended abstract

predicates:

C:p0 = split(C):
(
∅, {0} T {C.Length}?

)
C:p1 = split(C):

(
∅, {0 i} T {C.Length}?

)
C:p2 = C:p1 = split(C):

(
∅, {0 i} T {C.Length}?

)
First iteration:

� if C.Length = 0 then C:p6 = split(C):
(
∅, ∅
)
.

� if C.Length = 1 then C:p8 = split(C):
(
{0 i} , ∅

)
.

� if C.Length > 1 then:

C:p3 = split(C):
(
∅, {0 i} T {C.Length}

)
C:p4 = split(C):

(
∅, {0 i} ‘a’ {1 i+1} T {C.Length}

)
C:p5 = split(C):

(
∅, {0} ‘a’ {1 i} T {C.Length}

)
The next approximation of the loop invariant is C:p2 = C:p1 ∪
C:p5 =

(
∅, {0} ⊥ {i}? T {C.Length}?

)
∪(

∅, {0} ‘a’ {1 i} T {C.Length}
)
.

The segmentation unification produces:

◦ sC:p1 = split(C) ∪ sC:p5 = split(C)

- ∅ ∪ ∅ = ∅

◦ nsC:p1 = split(C) ∪ nsC:p5 = split(C)

- {0} ∩ {0} = {0}
- ⊥ t ‘a’ = ‘a’

- {i} ∩ {1 i} = {i}
- ?g = ?

- T t T = T

- {C.Length} ∩ {C.Length} = {C.Length}
- ?g = ?

C:p2 = split(C):
(
∅, {0} ‘a’ {i}? T {C.Length}?

)
.
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The second iteration is similar to the following ones and a fixpoint is

immediately reached. It remains to compute C:p6, C:p7, C:p8 and

C:p9.

C:p6 = split(C):
(
∅, {0} ‘a’ {i}? T {C.Length}?

)
C:p7 = split(C):

(
∅, {0} ‘a’ {i}? T {C.Length}

)
C:p8 = C:p9 = split(C):

(
{0} ‘a’ {i C.length-1}?, ∅

)
4

As we can notice, the M-String char array content representation

is able to infer the presence of well-formed strings at each point of the

program presented in the Example 4.1, capturing the real nature of the

execution stops and safely tracking the information flow.

4.1 Concrete Semantics

In this section we present an extension of the Cousot unidimensional

arrays concrete semantics, suitable to the previously settled ad hoc char

array split segmentation abstract representation.

Observe that the scalar variables and the simple expressions seman-

tics are the same as those defined by Cousot in [1].

4.1.1 Unidimensional char arrays semantics

We extend the previous concrete array representation in order to streng-

then the ad hoc char array segmented depiction, presented in the Defini-

tion 4.2. First of all, we retain A, the fourth element of the a quadruple

representing the concrete value of an array, defined in the sub-section

3.1.3, an invertible function.

Definition 4.4 (invertibility). Given an array A, let I be the set of all

the array indeces and let P be the set of all the (i, v) pairs, A : I→ P

is an invertible function if there exists a function S : P→ I such that:

� S (A[i]) = i, ∀i ∈ I

� A(S ((i, v))) = (i, v), ∀(i, v) ∈ P

If A is an invertible function, the function S is unique and it is the

inverse function of A (S = A−1).

♦
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From now on, we assume that the concrete value of a char array, C,

is represented by the quintuple c = (ρ, C.low, C.high, C,T) ∈ ACVal

where:

� ρ ∈ Rv is a scalar variable environment;

� C.low ∈ E is an expression which value [[C.low]]ρ evaluated in the

variable environment ρ yields the integer lower bound of the char

array;

� C.high ∈ E is an expression which value [[C.high]]ρ evaluated in

the variable environment ρ yields the integer upper bound of the

char array;

� C maps an index i ∈
[
[[C.low]]ρ, [[C.high]]ρ

)
to a pair C[i] = (i, v)

of the index i and the corresponding char array element value v;

� T is the set of indices to which the string terminating character

occurs. Formally: T = {i | C[i] = (i, ‘\0’),∀i ∈
[
[[C.low]]ρ,

[[C.high]]ρ
)
}. This result is guaranteed by the definition 4.4.

The operational semantics of char array variables are concrete array

environments σ ∈ Rc mapping char array names, C ∈ C, to their values

σ(C) ∈ ACVal , Rv × E × E × (Z 7→ (Z × ASCII)) × {Z}, where

ASCII is the considered characters domain, so that Rc , C 7→ ACVal

and ACVal denotes the set of all the quintuples. Afterwards, given

split(C) =
(
sC, nsC

)
, depending on the content of T, we can incur in

three different situations:

1. T = ∅ (no string terminating character occurs in the char array).

The sC = ∅, as presented in the Definition 4.2.

The nsC sub-segmentation is delimited by the parameters:

NS.lowC

– NS.lowC ∈ E
– NS.lowC is the greatest lower bound of nsC

– [[NS.lowC]]ρ = [[C.low]]ρ

NS.highC

– NS.highC ∈ E
– NS.highC is the least upper bound of nsC
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– [[NS.highC]]ρ = [[C.high]]ρ

2. T = {C.high-1} (the char array just contains the string of inter-

est).

The sC sub-segmentation is delimited by the parameters:

S.lowC

– S.lowC ∈ E
– S.lowC is the greatest lower bound of sC

– [[S.lowC]]ρ = [[C.low]]ρ

S.highC

– S.highC ∈ E
– S.highC is the least upper bound of sC

– [[S.highC]]ρ = [[C.high-1]]ρ

The nsC = ∅, as presented in the Definition 4.2.

3. T 6= {C.high-1} ∧ T 6= ∅ (the dimension of the chat array is

greater than the length of the string of interest).

The sC sub-segmentation is delimited by the parameters:

S.lowC

– S.lowC ∈ E
– S.lowC is the greatest lower bound of sC

– [[S.lowC]]ρ = [[C.low]]ρ

S.highC

– S.lowC ∈ E
– S.lowC is the least upper bound of sC

– [[S.lowC]]ρ = min(T)

The nsC sub-segmentation is delimited by the parameters:

NS.lowC

– NS.lowC ∈ E
– NS.lowC is the greatest lower bound of nsC

– [[NS.lowC]]ρ = min(T) + 1
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NS.highC

– NS.highC ∈ E
– NS.highC is the least upper bound of nsC

– [[NS.highC]]ρ = [[C.high]]ρ

Definition 4.5 (sub-segmentation). Let str be a char array, with con-

crete value represented by the quintuple str = (ρ, str.low, str.high,

S,Tstr). str[i, j] refers to the sub-segmentation of str that goes from

the index i ∈ [[[str.low]]ρ, [[str.high]]ρ) to the index j ∈ [[[str.low]]ρ,

[[str.high]]ρ).

♦

We assume that any sub-segmentation of the whole C-segmentation

of a char array is represented by its own concrete value. As just de-

clared, since the split segmentation components are, to all effects, sub-

segmentations of the entire C-segmentation of a char array, we have

that:

� sstr (6= ∅) corresponds to the sub-segmentation:

str[[[S.lowstr]]ρ, [[S.highstr]]ρ− 1]

with sstr = (ρ, S.lowstr, S.highstr, S,Tsstr).

We expect that the set Tsstr is always empty.

� nsstr (6= ∅) corresponds to the sub-segmentation:

str[[[NS.lowstr]]ρ, [[NS.highstr]]ρ− 1]

with nsstr = (ρ, NS.lowstr, NS.highstr, NS,Tnsstr).

Example 4.3. Given the char array C = < a a a a b b \0 c c c >,

such that:

c = (ρ, C.low, C.high, C,TC)

– [[C.low]]ρ = 0

– [[C.high]]ρ = 10

– codom(C) = {(0,‘a’), (1,‘a’), (2,‘a’), (3,‘a’), (4,‘b’), (5,‘b’),

(6,‘\0’), (7,‘c’), (8,‘c’), (9,‘c’)}
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– TC = {6}

Here, split(C) =
(
{0} ‘a’ {4} ‘b’ {6}, {7} ‘c’ {10}

)
. Recovering the

Definition 4.5 we have that sC is the sub-segmentation C[0, 5] and its

concrete value is represented by the quintuple:

sC = (ρ, 0, 6, sc, ∅)
codom(sc) = {(0,‘a’), (1,‘a’), (2,‘a’), (3,‘a’), (4,‘b’), (5,‘b’)}

On the other end, nsC is the sub-segmentation C[7, 9] and its concrete

value is represented by the quintuple:

nsC = (ρ, 7, 10, nsc, ∅)
codom(nsc) = {(7,‘c’), (8,‘c’), (9,‘c’)}

Consider now the C sub-segmentation C[3, 7]: {3} ‘a’ {4} ‘b’ {6} ‘\0’

{7} ‘c’ {8}. Its concrete value is represented by the quintuple:

c[3,7] = (ρ, 3, 8, C[3,7], {6})
codom(C[3,7]){(3,‘a’), (4,‘b’), (5,‘b’), (6,‘\0’), (7,‘c’)}

and it is over-approximated by the split segmentation:

split(C[3, 7]) = ({3} ‘a’ {4} ‘b’ {6}, {7} ‘c’ {8}) and:

– sC[3,7] = (ρ, 3, 6, sc[3,7]
, ∅)

codom(sc[3,7]
) = {(3,‘a’), (4,‘b’), (5,‘b’)}

– nsC[3,7] = (ρ, 7, 8, nsc[3,7]
, ∅)

codom(nsc[3,7]
) = {(7,‘c’)}

4

We highlight the role of the environment ρ ∈ Rv in “translating”

what a char array contains. Let str be a char array, with concrete value

represented by the quintuple str = (ρ, str.low, str.high, S,Tstr).

Every cell str[i], ∀i ∈ [[[str.low]]ρ, [[str.high]]ρ), behaves as a char

scalar variable representing the i-th array element. So, the concrete

variable environment ρ ∈ Rv maps variable names str[i] ∈ C to their

values ρ(str[i]) ∈ ASCII. In general, we are interested in the character

depiction of the element represented by a char array cell (ASCIIch) but,

as we will see, there will be situations in which we will be interested in

the constant numeric value of that element (ASCIIcn).

We also give a formal definition of what is a char array segment.
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Definition 4.6 (array segment). Let str be a char array. Given its

C-segmentation, we consider a segment as a triple:

seg(str)i = (lb, x, ub)

� i = 1, . . . , n denotes the segment number (in the order that the

segments appear in the C-segmentation)

� lb is the segment lower bound

� x is the character belonging to that segment (we assume that, less

than further specifications, ρ(str[k]) ∈ ASCIIch, ∀k ∈ [lb, ub))

� ub is the segment upper bound

♦

Example 4.4. Let C: < h e l l o \0 T T T > be a char array. Its

C-segmentation is {0} ‘h’ {1} ‘e’ {2} ‘l’ {4} ‘o’ {5} ‘\0’ {6} T {9}.
The C-segmentation of C has six segments, each of which characterized

by its triple, as presented in the Definition 4.6. Let Seg(C) be the set

of all the segments of the C-segmentation of C, its elements are:

� seg(C)1 = (0,‘h’, 1)

� seg(C)2 = (1,‘e’, 2)

� seg(C)3 = (2,‘l’, 4)

� seg(C)4 = (4,‘o’, 5)

� seg(C)5 = (5,‘\0’, 6)

� seg(C)6 = (6, T, 9)

Notice that, for example, the seg(C)3 = (2, ‘l’, 4) contains the charac-

ter ‘l’ that corresponds to the element represented by the char array

cells [[C[2]]]ρ , ρ(C[2]) = ‘l’ and [[C[3]]]ρ , ρ(C[3]) = ‘l’, in the ASCII

character domain.

4

Definition 4.7 (join of segments). Let str be a char array and let

u be the join segments operator. Given str and its C-segmentation,

we consider two successive segments of str, seg(str)i = (lb, x, ub) and
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seg(str)i+1 = (lb, x, ub), such that ubseg(str)i = lbseg(str)i+1
then, if

xseg(str)i = xseg(str)i+1
, the join segments operator behaves as follows:

seg(str)iuseg(str)i+1 = seg(str)i = (lbseg(str)i , xseg(str)i , ubseg(str)i+1
).

Otherwise, if xseg(str)i 6= xseg(str)i+1
, the join between the two successive

segments produces nothing (the result is the identity).

In the case in which it would be necessary to append one seg-

mentation to another, the join segments operator can be very use-

ful. As a matter of fact, given two char arrays, str1 and str2, and

their C-segmentations, let Seg(str1) be the set of all the segments

seg(str1)i = (lb, x, ub) of str1, for i ∈ [1, n] and let Seg(str2) be the

set of all the segments seg(str2)j = (lb, x, ub) of str2, for j ∈ [1,m].

Appending one segmentation to another means perform the “unifica-

tion” of the two set of segments by joining the last segment of str1,

seg(str1)n, with the first segment of str2, seg(str2)1 and by properly

modifying the str2 segments bounds. Informally, we expand str1.

1. If xseg(str1)n = xseg(str2)1 , then:

Seg(str1) ∪ Seg(str2) = {seg(str1)i : i ∈ [1, n)} ∪ seg(str1)n
u seg(str2)1 = seg(str1)n = (lbseg(str1)n , xseg(str1)n , (ubseg(str1)n

+ (ubseg(str2)1 − lbseg(str2)1)) ∪ {seg(str1)k = (ubseg(str1)k−1
,

xseg(str2)j , [ubseg(str1)k−1
+ (ubseg(str2)j − lbseg(str2)j)]) : k ∈ (n, (n

+ m− 1)] ∧ j ∈ (1,m]}

2. If xseg(str1)n 6= xseg(str2)1 , then:

Seg(str1) ∪ Seg(str2) = {seg(str1)i : i ∈ [1, n]} ∪ {seg(str1)k
= (ubseg(str1)k−1

, xseg(str2)j , [ubseg(str1)k−1
+ (ubseg(str2)j−

lbseg(str2)j)]) : k ∈ (n, (n+m)] ∧ j ∈ [1,m]}

♦

4.2 string.h functions semantics

In the rest of this section we formally introduce the concrete semantics

of some of the string.h statements, capturing the impact of a statement

with respect to the M-string abstract segmentation representation of

array of char.
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Definition 4.8. The concrete semantics:

S : Stm× ACState→ ACState ·∪ Z ·∪ ACVal

is a function that captures the effects of a statement.

� Stm denotes the set of string.h library functions.

� ACState denotes the set of σ functions mapping each char array

type variable in the concrete representation of its C-segmentation,

formally: ACState = {σ : ACVar → ACVal | ACVar ∈ Var(P)}
where ACVar is the set of all the char array variables declared

in a program and Var(P) represents the set of all the variables

declared in a program.

� Z denotes, as usual, the set of integer numbers.

� ACVal denotes the set of all the quintuples, as presented in the

subsection 4.1.1.

� ·∪ represents the disjoint union.

♦

We cannot modify strings literals, but we can modify the char arrays

holding strings. string.h is a header file that contains many functions

for manipulating C strings, the commonly used functions are:

� strcpy(s1, s2) copies s2 in s1 and s1 is modified.

� strcat(s1, s2) concatenates s2 to the end of s1 and s1 is modified.

� strlen(s1) returns the length of s1.

� strchr(s1, ch) returns a pointer to the first occurrence of ch in

s1.

� strcmp(s1, s2) performs a lexicographic comparison between s1

and s2.

strcmp(s1, s2) =


0 if s1 = s2

n < 0 if s1 < s2

n > 0 if s1 > s2
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Definition 4.9 (sub-segmentation semantics). Let str be a char array.

We consider σ[str](i, j) as the sub-segmentation representation of str

from the segmentation lower bound i to the segmentation upper bound

j, such that i, j ∈ [[[str.low]]ρ, [[str.high]]ρ) ∧ i < j.

♦

4.2.1 The string copy statement

strcpy(dest,src) is a library function that allows null-terminated mem-

ory blocks to be copied from one location to another, including the null

terminator. Since strings in C are not first-class data types and are im-

plemented instead as contiguous blocks of bytes in memory, strcpy()

will effectively copy strings given two pointers to blocks of allocated

memory. The formal declaration for string copy function is:

char *strcpy(char *dest, const char *src)

dest is the pointer to the destination array in which the content is to

be copied and src is the string to be copied. Implementation:

char *strcpy(char *dest, const char *src)

{
char *ret = dest;

while (*dest++ = *src++);

return ret;

}

Note that source and destination may not overlap. The returned value

is a pointer to the destination string dest; the function has no failure

mode and no error return [13].

The analysis will be performed on static arrays. As a matter of

fact, it is possible apply the string copy function on static arrays. Let

s1 and s2 be two char arrays declared in a program, the parameters

contained in the strcpy(s1, s2) correspond respectively to the memory

address of the first cell of s1 and to the memory address of the first

cell of s2. This permits to the string copy function to work on static

arrays despite it originally requires pointers. Trivially, all the others

functions presented in this section can be applied on static arrays.

The string copy original statement result - from the string.h header

in the C standard library - may be misleading, or even erroneous, in

the case in which one of the two char arrays function parameters, or
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both, had the string of interest equal to undef. Below, we stigmatize

the behaviour of the string copy function, also the ambiguous one.

Definition 4.10 (semantics of the string copy function). Let str1 and

str2 be two char arrays declared in a program (str1, str2 ∈ ACVar),

with concrete values respectively represented by the quintuples str1 =

(ρ, str1.low, str1.high, S1,Tstr1) and str2 = (ρ, str2.low, str2.hi-

gh, S2,Tstr2) (str1,str2 ∈ ACVal), then:

S[[strcpy(str1, str2)]]σ = σ' ∈ ACState

1. string(str1) 6= undef ∧ string(str2) 6= undef

a. If |string(str2)| 6 |str1|:

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.high

S'1 :



∀i ∈ [[[str1.low]]ρ, [[str1.low]]ρ +

|string(str2)|), str1'[i]→ (i, v) |
(n, v) ∈ codom(S2) ∧
[[S.lowstr2]]ρ 6 n 6 [[S.highstr2]]ρ

∀i ∈ [[[str1.low]]ρ+ |string(str2)|,
[[str1.high]]ρ), str1'[i]→ (i, v) |

(m, v) ∈ codom(S1) ∧m = i

T'str1 = {[[str1.low]]ρ+ |string(str2)| − 1} ∪
{i ∈ Tstr1 : i > [[str1.low]]ρ +

|string(str2)| − 1}
min(T'str1) = [[str1.low]]ρ+ |string(str2)| − 1

• σ'[sstr1] = σ[sstr2]

b. If |string(str2)| > |str1|:

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.low + |string(str2)|
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S'1 : ∀i ∈ [[[str1.low]]ρ, [[str1.low]]ρ +

|string(str2)|), str1'[i]→ (i, v) |
(n, v) ∈ codom(S2) ∧

[[S.lowstr2]]ρ 6 n 6 [[S.highstr2]]ρ

T'str1 = {[[str1.low]]ρ+ |string(str2)| − 1}
min(T'str1) = [[str1.low]]ρ+ |string(str2)| − 1

• σ'[sstr1] = σ[sstr2]

2. string(str1) = undef ∧ string(str2) 6= undef

undefined behaviour

a. If |string(str2)| 6 |str1|:
• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.high

S'1 :



∀i ∈ [[[str1.low]]ρ, [[str1.low]]ρ+

|string(str2)|), str1'[i]→ (i, v) |
(n, v) ∈ codom(S2) ∧
[[S.lowstr2]]ρ 6 n 6 [[S.highstr2]]ρ

∀i ∈ [[[str1.low]]ρ+ |string(str2)|,
[[str1.high]]ρ), str1'[i]→ (i, v) |

(m, v) ∈ codom(S1) ∧m = i

T'str1 = {[[str1.low]]ρ+ |string(str2)| − 1}
min(T'str1) = [[str1.low]]ρ+ |string(str2)| − 1

• σ'[sstr1] = σ[sstr2]

b. If |string(str2)| > |str1|:
• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.low + |string(str2)|
S'1 : ∀i ∈ [[[str1.low]]ρ, [[str1.low]]ρ +

|string(str2)|), str1'[i]→ (i, v) |
(n, v) ∈ codom(S2) ∧

[[S.lowstr2]]ρ 6 n 6 [[S.highstr2]]ρ
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T'str1 = {[[str1.low]]ρ+ |string(str2)| − 1}
min(T'str1) = [[str1.low]]ρ+ |string(str2)| − 1

• σ'[sstr1] = σ[sstr2]

3. string(str1) 6= undef ∧ string(str2) = undef

undefined behaviour

In this case we assume that all the elements in str2, explicitly

declared or not (>), are copied in str1.

a. If |str2| < |string(str1)|:

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.high

S'1 :



∀i ∈ [[[str1.low]]ρ, [[str1.low]]ρ+ |str2|),
str1'[i]→ (i, v) | (n, v) ∈ codom(S2) ∧

[[str2.low]]ρ 6 n < [[str2.high]]ρ

∀i ∈ [[[str1.low]]ρ+ |str2|, [[str1.high]]ρ),

str1'[i]→ (i, v) | (m, v) ∈ codom(S1)

∧ m = i

T'str1 = Tstr1

min(T'str1) = min(Tstr1)

• σ'[sstr1] = σ[nsstr2]u σ[sstr1](i, j)

where σ[sstr1](i, j) denotes the sub-segmentation repre-

sentation of sstr1 from the sub-segmentation lower bound

i = [[S.lowstr1]]ρ+ |str2| to the sub-segmentation upper

bound j = [[S.highstr1]]ρ, as presented in Definition 4.9.

b. If |str2| > |string(str1)| ∧ |str2| 6 |str1|:

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.high



48 Chapter 4. Char Array Segmentation Analysis

S'1 :



∀i ∈ [[[str1.low]]ρ, [[str1.low]]ρ+ |str2|),
str1'[i]→ (i, v) | (n, v) ∈ codom(S2) ∧

[[str2.low]]ρ 6 n < [[str2.high]]ρ

∀i ∈ [[[str1.low]]ρ+ |str2|, [[str1.high]]ρ),

str1'[i]→ (i, v) | (m, v) ∈ codom(S1)

∧ m = i

T'str1 = {i ∈ Tstr1 : i > [[str1.low]]ρ+ |str2|}

• T'str1 = ∅ ⇒ σ'[sstr1] = ∅

T'str1 6= ∅ ⇒ σ'[sstr1] = σ[nsstr2]u σ[nsstr1](i, j)

i = [[S.lowstr1]]ρ+ |str2|
j = min{k | str1[k] =‘\0’ ∧ k ∈ [[[NS.lowstr1]]ρ,

[[NS.highstr1]]ρ) ∧ k > [[S.lowstr1]]ρ+ |str2|}

c. If |str2| > |string(str1)| ∧ |str2| > |str1|:

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.low + |str2|
S'1 : ∀i ∈ [[[str1.low]]ρ, [[str1.low]]ρ+ |str2|),

str1'[i]→ (i, v) | (n, v) ∈ codom(S2) ∧
[[str2.low]]ρ 6 n < [[str2.high]]ρ

T'str1 = ∅
min(T'str1) does not exist

• σ'[sstr1] = ∅

4. string(str1) = undef ∧ string(str2) = undef

undefined behaviour

In this case we assume that all the elements in str2, explicitly

declared or not (>), are copied in str1.

a. If |str2| 6 |str1|:

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low
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str1.high'= str1.high

S'1 :



∀i ∈ [[[str1.low]]ρ, [[str1.low]]ρ+ |str2|),
str1'[i]→ (i, v) | (n, v) ∈ codom(S2) ∧

[[str2.low]]ρ 6 n < [[str2.high]]ρ

∀i ∈ [[[str1.low]]ρ+ |str2|, [[str1.high]]ρ),

str1'[i]→ (i, v) | (m, v) ∈ codom(S1)

∧ m = i

T'str1 = ∅
min(T'str1) does not exist

• σ'[sstr1] = ∅

b. If |str2| > |str1|:

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.low + |str2|
S'1 : ∀i ∈ [[[str1.low]]ρ, [[str1.low]]ρ+ |str2|),

str1'[i]→ (i, v) | (n, v) ∈ codom(S2) ∧
[[str2.low]]ρ 6 n < [[str2.high]]ρ

T'str1 = ∅
min(T'str1) does not exist

• σ'[sstr1] = ∅

Notice that, in any case, the concrete value of str2, after the ap-

plication of the string copy function on it, remain unchanged.

♦

Example 4.5. Given the program:

#include <stdio.h>

#include <string.h>

int main() {

/* 0: */ char dest [10] = ‘‘aaaaaaa ’’;

/* 1: */ char src[5] = ‘‘bb ’’;

/* 2: */ strcpy(dest ,src);

/* 3: */ return 0;

/* 4: */ }
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The concrete values of dest and src at the program point 2 are respec-

tively given by the quintuple dest = (ρ, dest.low, dest.high, D,Tdest)

and the quintuple src = (ρ, src.low, src.high, S,Tsrc). Entering into

the detail, we have that:

� dest = (ρ, dest.low, dest.high, D,Tdest)

[[dest.low]]ρ = 0

[[dest.high]]ρ = 10

codom(D) = {(0,‘a’), (1,‘a’), (2,‘a’), (3,‘a’), (4,‘a’), (5,‘a’),

(6,‘a’), (7,‘\0’), (8, T), (9, T)}
Tdest = {7}
min(Tdest) = 7

string(dest) = < a a a a a a a \0 >

� src = (ρ, src.low, src.high, S,Tsrc)

[[src.low]]ρ = 0

[[src.high]]ρ = 5

codom(S) = {(0,‘b’), (1,‘b’), (2,‘\0’), (3, T), (4, T), (5, T)}
Tsrc = {2}
min(Tsrc) = 2

string(src) = < b b \0 >

At this point it is possible to compute the concrete value of the strcpy(

dest,src) function result or, in other words, the concrete value of the

char array dest at the program point 4. From the Definition 4.10 we

have that S[[strcpy(dest, src)]]σ = σ', where:

� σ'(dest) = (ρ, dest.low', dest.high', D',T'dest)

[[dest.low']]ρ = [[dest.low]]ρ = 0

[[dest.high']]ρ = [[dest.high]]ρ = 10

codom(D') = {(0,‘b’), (1,‘b’), (2,‘\0’), (3,‘a’), (4,‘a’), (5,‘a’),

(6,‘a’), (7,‘\0’), (8, T), (9, T)}
T'dest = {2} ∪ {7} = {2, 7}
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min(T'dest) = 2 (= min(Tsrc))

string(dest) = < b b \0 >

� σ'[sdest] = σ[ssrc]

(sdest:p4 = {0} ‘b’ {2}) = (ssrc:p2 = {0} ‘b’ {2})

At the end of the analysis we have the certainty that the program

array dest is a char array representing a string since string(dest:p4)

exists and it is correct with respect to the string copy function result

(case 1.a.) presented in the Definition 4.10. The char array M-String

segmentation analysis, applied on the program above, produces the

following abstract predicates:

� dest:p1 = split(dest):
(
{0} ‘a’ {7}, {8} T {10}

)
� dest:p2 = split(dest):

(
{0} ‘a’ {7}, {8} T {10}

)
∧

src:p2 = split(src):
(
{0} ‘b’ {2}, {3} T {5}

)
Check(string(dest)) = TRUE, Check(string(src)) = TRUE

� dest:p3 = split(dest):
(
{0} ‘b’ {2}, {3} ‘a’ {7} ‘\0’ {8} T

{10}
)
∧ src:p3 = split(src):

(
{0} ‘b’ {2}, {3} T {5}

)
� dest:p4 = dest:p3 ∧ src:p4 = src:p3

4

Example 4.6. Given the program:

#include <stdio.h>

#include <string.h>

int main() {

/* 0: */ char dest [5] = ‘‘aaaa ’’;

/* 1: */ char src[6] = ‘‘bbbbb ’’;

/* 2: */ strcpy(dest ,src);

/* 3: */ return 0;

/* 4: */ }

The concrete values of dest and src at the program point 2 are respec-

tively given by the quintuple dest = (ρ, dest.low, dest.high, D,Tdest)

and the quintuple src = (ρ, src.low, src.high, S,Tsrc). Entering into

the detail, we have that:
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� dest = (ρ, dest.low, dest.high, D,Tdest)

[[dest.low]]ρ = 0

[[dest.high]]ρ = 5

codom(D) = {(0,‘a’), (1,‘a’), (2,‘a’), (3,‘a’), (4,‘\0’)}
Tdest = {4}
min(Tdest) = 4

string(dest) = < a a a a \0 >

� src = (ρ, src.low, src.high, S,Tsrc)

[[src.low]]ρ = 0

[[src.high]]ρ = 6

codom(S) = {(0,‘b’), (1,‘b’), (2,‘b’), (3,‘b’), (4,‘b’), (5,‘\0’)}
Tsrc = {5}
min(Tsrc) = 5

string(src) = < b b b b b \0 >

The concrete value of the char array dest at the program point 4 is

given by S[[strcpy(dest, src)]]σ = σ', where:

� σ'(dest) = (ρ, dest.low', dest.high', D',T'dest)

[[dest.low']]ρ = [[dest.low]]ρ = 0

[[dest.high']]ρ = [[dest.high]]ρ+ |string(src)| = 6

codom(D') = {(0,‘b’), (1,‘b’), (2,‘b’), (3,‘b’), (4,‘b’), (5,‘\0’)}
T'dest = {5}
min(T'dest) = 5 (= min(Tsrc))

string(src) = < b b b b b \0 >

� σ'[sdest] = σ[ssrc]

(sdest:p4 = {0} ‘b’ {5}) = (ssrc:p2 = {0} ‘b’ {5})
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At the end of the analysis we have the certainty that the program

array dest is a char array representing a string since string(dest:p4)

exists and it is correct with respect to the string copy function result

(case 1.b.) presented in the Definition 4.10. The char array M-String

segmentation analysis, applied on the program above, produces the

following abstract predicates:

� dest:p1 = split(dest):
(
{0} ‘a’ {4}, ∅

)
� dest:p2 = split(dest):

(
{0} ‘a’ {4}, ∅

)
∧

src:p2 = split(src):
(
{0} ‘b’ {5}, ∅

)
Check(string(dest)) = TRUE, Check(string(src)) = TRUE

� dest:p3 = split(dest):
(
{0} ‘b’ {5}, ∅

)
∧

src:p3 = split(src):
(
{0} ‘b’ {5}, ∅

)
� dest:p4 = dest:p3 ∧ src:p4 = src:p3

4

Example 4.7. Given the program:

#include <stdio.h>

#include <string.h>

int main() {

/* 0: */ char dest [5] = ‘‘aaaa ’’;

/* 1: */ char src[7] = ‘‘bbbbbbb ’’;

/* 2: */ strcpy(dest ,src);

/* 3: */ return 0;

/* 4: */ }

The concrete values of dest and src at the program point 2 are respec-

tively given by the quintuple dest = (ρ, dest.low, dest.high, D,Tdest)

and the quintuple src = (ρ, src.low, src.high, S,Tsrc). Entering into

the detail, we have that:

� dest = (ρ, dest.low, dest.high, D,Tdest)

[[dest.low]]ρ = 0

[[dest.high]]ρ = 5

codom(D) = {(0,‘a’), (1,‘a’), (2,‘a’), (3,‘a’), (4,‘\0’)}



54 Chapter 4. Char Array Segmentation Analysis

Tdest = {4}
min(Tdest) = 4

string(dest) = < a a a a \0 >

� src = (ρ, src.low, src.high, S,Tsrc)

[[src.low]]ρ = 0

[[src.high]]ρ = 7

codom(S) = {(0,‘b’), (1,‘b’), (2,‘b’), (3,‘b’), (4,‘b’), (5,‘b’),

(6,‘b’)}
Tsrc = ∅
min(Tsrc) does not exist

string(src) = undef

The concrete value of the char array dest at the program point 4 is

given by S[[strcpy(dest, src)]]σ = σ', where:

� σ'(dest) = (ρ, dest.low', dest.high', D',T'dest)

[[dest.low']]ρ = [[dest.low]]ρ = 0

[[dest.high']]ρ = [[dest.high]]ρ+ |src| = 7

codom(D') = {(0,‘b’), (1,‘b’), (2,‘b’), (3,‘b’), (4,‘b’), (5,‘b’),

(6,‘b’)}
T'dest = ∅
min(T'dest) does not exists

string(dest) = undef

� σ'[sdest] = ∅

At the end of the analysis we have the certainty that the program array

dest is a char array that does not contain a string since string(dest:p4)

does not exist, T'dest = ∅ and, of course, it has not a minimum element,

as presented in the Definition 4.10 (case 3.c.). The char array M-String

segmentation analysis, applied on the program above, produces the fol-

lowing abstract predicates:

� dest:p1 = split(dest):
(
{0} ‘a’ {4}, ∅

)
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� dest:p2 = split(dest):
(
{0} ‘a’ {4}, ∅

)
∧

src:p2 = split(src):
(
∅, {0} ‘b’ {7}

)
Check(string(dest)) = TRUE, Check(string(src)) = FALSE

� dest:p3 = split(dest):
(
∅, {0} ‘b’ {7}

)
∧

src:p3 = split(src):
(
∅, {0} ‘b’ {7}

)
� dest:p4 = dest:p3 ∧ src:p4 = src:p3

4

4.2.2 The string concatenation statement

strcat(dest,src) is a library function that allows one memory block

to be appended to another memory block. Both memory blocks are

required to be null-terminated. Since, in C, strings are not first-class

datatypes, and are implemented as blocks of ASCII bytes in memory,

strcat() will effectively append one string to another given two point-

ers to blocks of allocated memory. The formal declaration for string

concatenation function is:

char ∗strcat(char ∗dest, const char ∗src)

dest is the pointer to the destination array, which should contain a C

string, and should be large enough to contain the concatenated result-

ing string and src is the string to be appended. This should not overlap

the destination. Implementation:

char ∗strcat(char ∗dest, const char ∗src)

{
char ∗ret = dest;

while (∗dest)

dest++;

while (∗dest++ = ∗src++);

return ret;

}

The returned value is the pointer dest; the function has no failure mode

and no error return [13]. As before, the analysis will be performed on

static array.
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The string concatenation original statement result - from the string.h

header in the C standard library - may be misleading, or even erro-

neous, in the case in which one of the two char arrays function param-

eters, or both, had the string of interest equal to undef. Below, we

stigmatize the behaviour of the string concatenation function, also the

ambiguous one.

Definition 4.11 (semantics of the string concatenation function). Let

str1 and str2 be two char arrays declared in a program (str1, str2 ∈
ACVar), with concrete values respectively represented by the quintu-

ples str1 = (ρ, str1.low, str1.high, S1,Tstr1) and str2 = (ρ, str2.l-

ow, str2.high, S2,Tstr2) (str1, str2 ∈ ACVal), then:

S[[strcat(str1, str2)]]σ = σ'∈ ACState

1. string(str1) 6= undef ∧ string(str2) 6= undef

a. If |string(str1)|+ |string(str2)| − 1 6 |str1|:

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.high

S'1 :



∀i ∈ [[[str1.low]]ρ,min(Tstr1))

str1'[i]→ (i, v) | (m, v) ∈ codom(S1)

∧ m = i

∀i ∈ [min(Tstr1),min(Tstr1)+

|string(str2)|), str1'[i]→ (i, v) |
(n, v) ∈ codom(S2) ∧
[[S.lowstr2]]ρ 6 n 6 [[S.highstr2]]ρ

∀i ∈ [min(Tstr1) + |string(str2)|,
[[str1.high]]ρ), str1'[i]→ (i, v) |

(m, v) ∈ codom(S1) ∧m = i

T'= {min(Tstr1) + |string(str2)| − 1} ∪
{i ∈ Tstr1 : i > min(Tstr1)+|string(str2)|−1}

min(T'str1) = min(Tstr1) + |string(str2)| − 1

• σ'[sstr1] = σ[sstr1]u σ[sstr2]
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b. If |string(str1)|+ |string(str2)| − 1 > |str1|:

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.low + |string(str1)| +

|string(str2)| − 1

S'1 :



∀i ∈ [[[str1.low]]ρ,min(Tstr1))

str1'[i]→ (i, v) | (m, v) ∈ codom(S1)

∧ m = i

∀i ∈ [min(Tstr1), [[str1.low]]ρ +

|string(str1)|+ |string(str2)| − 1),

str1'[i]→ (i, v) | (n, v) ∈ codom(S2) ∧
[[S.lowstr2]]ρ 6 n 6 [[S.highstr2]]ρ

T'str1 = {min(Tstr1) + |string(str2)| − 1}
min(T'str1) = min(Tstr1) + |string(str2)| − 1

• σ'[sstr1] = σ[sstr1]u σ[sstr2]

2. string(str1) = undef ∧ string(str2) 6= undef

undefined behaviour

In this case we assume that the string of interest of str2 is con-

catenated to str1.

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.high + |string(str2)|

S'1 :



∀i ∈ [[[str1.low]]ρ, [[str1.high]]ρ)

str1'[i]→ (i, v) | (m, v) ∈ codom(S1)

∧ m = i

∀i ∈ [[[str1.high]]ρ, [[str1.high]]ρ +

|string(str2)|), str1'[i]→ (i, v) |
(n, v) ∈ codom(S2) ∧
[[S.lowstr2]]ρ 6 n 6 [[S.highstr2]]ρ
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T'str1 = {[[str1.high']]ρ− 1}
min(T'str1) = [[str1.high']]ρ− 1

• σ'[sstr1] = σ[nsstr1]u σ[sstr2]

3. string(str1) 6= undef ∧ string(str2) = undef

undefined behaviour

In this case we assume that str2 is concatenated to the string

of interest of str1.

a. If |string(str1)|+ |str2| − 1 6 |str1|
• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.high

S'1 :



∀i ∈ [[[str1.low]]ρ,min(Tstr1))

str1'[i]→ (i, v) | (m, v) ∈ codom(S1)

∧ m = i

∀i ∈ [min(Tstr1),min(Tstr1) + |str2|),
str1'[i]→ (i, v) | (n, v) ∈ codom(S2) ∧

[[str2.low]]ρ 6 n < [[str2.high]]ρ

∀i ∈ [min(Tstr1) + |str2|, [[str1.high]]ρ),

str1'[i]→ (i, v) | (m, v) ∈ codom(S1)

∧ m = i

T'str1 = {i ∈ Tstr1 : i > min(Tstr1) + |str2|}

• T'str1 = ∅ ⇒ σ'[sstr1] = ∅

T'str1 6= ∅ ⇒ σ'[sstr1] = σ[sstr1] u σ[nsstr2] u
σ[nsstr1](i, j)

i = min(Tstr1) + |str2|
j = min{k | str1[k] =‘\0’ ∧ k ∈ [[[NS.lowstr1]]ρ,

[[NS.highstr1]]ρ) ∧k > [[S.lowstr1]]ρ+ |str2|}
b. If |string(str1)|+ |str2| − 1 > |str1|

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)
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str1.low'= str1.low

str1.high'= S.highstr1 + |str2|

S'1 :



∀i ∈ [[[str1.low]]ρ,min(Tstr1))

str1'[i]→ (i, v) | (m, v) ∈ codom(S1)

∧ m = i

∀i ∈ [min(Tstr1),min(Tstr1) + |str2|),
str1'[i]→ (i, v) | (n, v) ∈ codom(S2) ∧

[[str2.low]]ρ 6 n < [[str2.high]]ρ

T'str1 = ∅
min(T'str1) does not exist

• σ'[sstr1] = ∅

4. string(str1) = undef ∧ string(str2) = undef

undefined behaviour

In this case we assume that str2 is concatenated to str1.

• σ'(str1) = (ρ, str1.low', str1.high', S'1,T'str1)

str1.low'= str1.low

str1.high'= str1.high + |str2|

S'1 :



∀i ∈ [[[str1.low]]ρ, [[str1.high]]ρ)

str1'[i]→ (i, v) | (m, v) ∈ codom(S1)

∧ m = i

∀i ∈ [[[str1.high]]ρ, [[str1.high]]ρ+ |str2|),
str1'[i]→ (i, v) | (n, v) ∈ codom(S2) ∧

[[str2.low]]ρ 6 n < [[str2.high]]ρ

T'str1 = ∅
min(T'str1) does not exist

• σ'[sstr1] = ∅

Notice that, in any case, the concrete value of str2, after the ap-

plication of the string concatenation function on it, remain unchanged.

♦
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Example 4.8. Given the program:

#include <stdio.h>

#include <string.h>

int main() {

/* 0: */ char dest [9] = ‘‘aaaa ’’;

/* 1: */ char src[5] = ‘‘bbbb ’’;

/* 2: */ strcat(dest ,src);

/* 3: */ return 0;

/* 4: */ }

The concrete values of dest and src at the program point 2 are respec-

tively given by the quintuple dest = (ρ, dest.low, dest.high, D,Tdest)

and the quintuple src = (ρ, src.low, src.high, S,Tsrc). Entering into

the detail, we have that:

� dest = (ρ, dest.low, dest.high, D,Tdest)

[[dest.low]]ρ = 0

[[dest.high]]ρ = 9

codom(D) = {(0,‘a’), (1,‘a’), (2,‘a’), (3,‘a’), (4,‘\0’), (5, T),

(6, T), (7, T), (8, T)}
Tdest = {4}
min(Tdest) = 4

string(dest) = < a a a a \0>

� src = (ρ, src.low, src.high, S,Tsrc)

[[src.low]]ρ = 0

[[src.high]]ρ = 5

codom(S) = {(0,‘b’), (1,‘b’), (2,‘b’), (3,‘b’), (4,‘\0’)}
Tsrc = {4}
min(Tsrc) = 4

string(src) = < b b b b \0>

At this point it is possible to compute the concrete value of the strcat(

dest,src) function result or, in other words, the concrete value of the

char array dest at the program point 4. From the Definition 4.11 we

have that S[[strcat(dest, src)]]σ = σ', where:
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� σ'(dest) = (ρ, dest.low', dest.high', D',T')

[[dest.low']]ρ = [[dest.low]]ρ = 0

[[dest.high']]ρ = [[dest.high]]ρ = 9

codom(D') = {(0,‘a’), (1,‘a’), (2,‘a’), (3,‘a’), (4,‘b’), (5,‘b’),

(6,‘b’), (7,‘b’), (8,‘\0’)}
T'= {8} ∪ ∅ = {8}
min(T') = min(Tdest) + |string(src)| − 1 = 4 + 5− 1 = 8

string(dest) = < a a a a b b b b \0>

� σ'[sdest] = σ[sdest]u σ[ssrc]

sdest:p4 = (sdest:p2 = {0} ‘a’ {4}) u (ssrc:p2 = {0} ‘b’ {4})
= {0} ‘a’ {4} ‘b’ {8}

In this case string(dest:p4) exists and it is correct with respect to the

string concatenation function result presented in the Definition 4.11

(case 1.a.). The char array M-String segmentation analysis, applied on

the program above, produces the following abstract predicates:

� dest:p1 = split(dest):
(
{0} ‘a’ {4}, {5} T {9}

)
� dest:p2 = split(dest):

(
{0} ‘a’ {4}, {5} T {9}

)
∧

src:p2 = split(src):
(
{0} ‘b’ {4}, ∅

)
Check(string(dest)) = TRUE, Check(string(src)) = TRUE

� dest:p3 = split(dest):
(
{0} ‘a’ {4} ‘b’ {8}, ∅

)
∧

src:p3 = split(src):
(
{0} ‘b’ {4}, ∅

)
� dest:p4 = dest:p3 ∧ src:p4 = src:p3

4

Example 4.9. Given the program:

#include <stdio.h>

#include <string.h>

int main() {

/* 0: */ char dest [8] = ‘‘aaaa ’’;

/* 1: */ char src[5] = ‘‘bbbbb ’’;
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/* 2: */ strcat(dest ,src);

/* 3: */ return 0;

/* 4: */ }

The concrete value of the char array dest at the program point 4 is

given by S[[strcat(dest, src)]]σ = σ', where:

� σ'(dest) = (ρ, dest.low', dest.high', D',T')

[[dest.low']]ρ = [[dest.low]]ρ = 0

[[dest.high']]ρ = [[S.highdest]]ρ+ |src| = 9

codom(D)'= {(0,‘a’), (1,‘a’), (2,‘a’), (3,‘a’), (4,‘b’), (5,‘b’),

(6,‘b’), (7,‘b’), (8,‘b’)}
T'= ∅
min(T') does not exist.

string(dest) = undef

� σ'[sdest] = ∅

At the end of the analysis we have the certainty that the program array

dest is a char array that does not contain a string since string(dest:p4)

does not exist, T'dest = ∅ and, of course, it has not a minimum ele-

ment, as presented in the Definition 4.11 (case 3.b.). The char array

M-String segmentation analysis, applied on the program above, pro-

duces the following abstract predicates:

� dest:p1 = split(dest):
(
{0} ‘a’ {4}, {5} T {8}

)
� dest:p2 = split(dest):

(
{0} ‘a’ {4}, {5} T {8}

)
∧

src:p2 = split(src):
(
∅, {0} ‘b’ {5}

)
Check(string(dest)) = TRUE, Check(string(src)) = FALSE

� dest:p3 = split(dest):
(
∅, {0} ‘a’ {4} ‘b’ {9}

)
∧

src:p3 = split(src):
(
∅, {0} ‘b’ {5}

)
� dest:p4 = dest:p3 ∧ src:p4 = src:p3

4
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4.2.3 The string length statement

strlen(str) is a string function that determines the length of a C char-

acter array, computing the number of bytes in the string to which the

null-terminated char array points, not including the terminating null

byte. The formal declaration for string length function is:

size t strlen(const char ∗str)

str is the string whose length has to be found. Implementation:

#include <stddef.h>

size t strlen(const char ∗str)

{
size t i;

for (i = 0; str[i] != ‘\0’; i++) ;

return i;

}

The returned value is the length of str; the function has no failure mode

and no error return [13]. The analysis will be performed on static array.

The string length original statement result - from the string.h header

in the C standard library - may be misleading, or even erroneous, in

the case in which the char array function parameter had the string of

interest equal to undef. Below, we stigmatize the behaviour of the

string length function, also the ambiguous one.

Definition 4.12 (semantics of the string length function). Let str be

a char array declared in a program (str ∈ ACVar), with concrete value

represented by the quintuples str = (ρ, str.low, str.high, S,Tstr)

(str1 ∈ ACVal) and Tstr 6= ∅, then:

S[[strlen(str)]]σ = n ∈ Z+

1. string(str) 6= undef⇒ n = min(Tstr)− [[S.lowstr]]ρ

2. string(str) = undef⇒ n = >

undefined behaviour

Notice that, in any case, the concrete value of str, after the appli-

cation of the string length function on it, remain unchanged.

♦
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Example 4.10. Given the program:

#include <stdio.h>

#include <string.h>

#include <stddef.h>

int main() {

/* 0: */ char str[8] = ‘‘aaaa ’’;

/* 1: */ size_t l = strlen(str);

/* 2: */ return l;

/* 3: */ }

The concrete value of the char array str throughout the program is

given by the quintuple str = (ρ, str.low, str.high, S,Tstr). Entering

into the detail, we have that:

� str = (ρ, str.low, str.high, S,Tstr)

[[str.low]]ρ = 0

[[str.high]]ρ = 8

codom(S) = {(0,‘a’), (1,‘a’), (2,‘a’), (3,‘a’), (4,‘\0’), (5, T),

(6, T), (7, T)}
Tstr = {4}
min(Tstr) = 4

string(str) = < a a a a \0 >

At the program point 2 we obtain that S[[strlen(str)]]σ = min(Tstr)−
0 = 4. The char array M-String segmentation analysis, applied on the

program above, produces the following abstract predicates:

� str:p1 = split(str):
(
{0} ‘a’ {4}, {5} T {8}

)
Check(string(str)) = TRUE

� str:p2 = split(str):
(
{0} ‘a’ {4}, {5} T {8}

)
∧ l.p2: 4

� str:p3 = str:p2 ∧ l.p3 = l.p2

4
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Example 4.11. Given the program:

#include <stdio.h>

#include <string.h>

#include <stddef.h>

int main() {

/* 0: */ char str[5] = ‘‘aaaaa ’’;

/* 1: */ size_t l = strlen(str);

/* 2: */ return l;

/* 3: */ }

The concrete value of the char array str throughout the program is

given by the quintuple str = (ρ, str.low, str.high, S,Tstr). Entering

into the detail, we have that:

� str = (ρ, str.low, str.high, S,Tstr)

[[str.low]]ρ = 0

[[str.high]]ρ = 5

codom(S) = {(0,‘a’), (1,‘a’), (2,‘a’), (3,‘a’), (4,‘a’)}

Tstr = ∅

min(Tstr) does not exist

string(str) = undef

At the program point 2 we obtain that S[[strlen(str)]]σ = >. The

char array M-String segmentation analysis, applied on the program

above, produces the following abstract predicates:

� str:p1 = split(str):
(
∅, {0} ‘a’ {5}

)
Check(string(src)) = FALSE

� str:p2 = split(str):
(
∅, {0} ‘a’ {5}

)
∧ l.p2:>

� str:p3 = str:p2 ∧ l.p3 = l.p2

4



66 Chapter 4. Char Array Segmentation Analysis

4.2.4 The string character statement

strchr(str,c) is a function in the C standard library that locates the

first occurrence of c (converted to a char) in the string pointed to by

str. The terminating null character is considered to be part of the

string. The formal declaration for string character function is:

char ∗strchr(const char ∗str, int c);

str is the C string to be scanned and c is the character to be searched

in str. Implementation:

char ∗strchr(const char ∗str, int c)

{
while (∗str != (char)c)

if (!∗str++)

return 0;

return (char ∗)str;

}

Observe that there is no check if str is null. strchr() returns a pointer

to the first occurrence of character c located within str. If character c

does not occur in the string, strchr() returns a null pointer [13]. Notice

that the subsequent analysis will be performed on static arrays.

The string character original statement result - from the string.h

header in the C standard library - may be misleading, or even erro-

neous, in the case in which the char array function parameter had the

string of interest equal to undef. Below, we stigmatize the behaviour

of the string character function, also the ambiguous one.

Definition 4.13 (semantics of the string character function). Let str

be a char array declared in a program (str ∈ ACVar), with concrete

value represented by the quintuples str = (ρ, str.low, str.high, S,

Tstr) (str ∈ ACVal), then:

S[[strchr(str, c)]]σ = σ'∈ ACState

1. string(str) 6= undef

In this case the string character function result is a suffix of the

string of interest of str (string(str) ≡ str[i,j] such that i ∈
[[[S.lowstr]]ρ, [[S.highstr]]ρ] ∧ j = [[S.highstr]]ρ). A suffix is a
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sub-string of the string of interest of str and as such its concrete

value is represented by its own quintuple, as presented in the

Definition 4.5.

a. If c ∈ string(str):

• σ'(str) = (ρ, str.low', str.high', S',T'str)

str.low'= min{i | str[i] = c ∧
[[S.lowstr]]ρ 6 i 6 [[S.highstr]]ρ}

str.high'= S.highstr + 1

S': ∀i ∈ [[[str.low']]ρ, [[str.high']]ρ),

str1'[i]→ (i, v) | (m, v) ∈ codom(S)

∧ m = i

T'str = {min(Tstr)}
min(T'str) = min(Tstr)

• σ'[sstr] = σ[sstr](i, j)

i = min{i | str[i] = c ∧
[[S.lowstr]]ρ 6 i 6 [[S.highstr]]ρ}

j = [[S.highstr]]ρ

b. If c 6∈ string(str) ∧ c ∈ str:

• σ'(str) = null

• σ'[sstr] = ∅
c. If c 6∈ string(str) ∧ c 6∈ str:

• σ'(str) = null

• σ'[sstr] = ∅

2. string(str) = undef

undefined behaviour

In this case we assume that the string character function result is a

suffix of str (str[i, j] such that i ∈ [[[str.low]]ρ, [[str.high]]ρ) ∧
j = [[str.high]]ρ− 1), that is a sub-array of str and as such its

concrete value is represented by its own quintuple, as presented

in the Definition 4.5.
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a. If c ∈ str:

• σ'(str) = (ρ, str.low', str.high', S',T'str)

str.low'= min{i | str[i] = c ∧
[[str.low]]ρ 6 i < [[str.high]]ρ}

str.high'= str.high

S': ∀i ∈ [[[str.low']]ρ, [[str.high']]ρ),

str1'[i]→ (i, v) | (m, v) ∈ codom(S)

∧ m = i

T'str = ∅
min(T'str) does not exist

• σ'[sstr] = ∅
b. If c 6∈ str:

• σ'(str) = null

• σ'[sstr] = ∅

Notice that σ'(str) ≡ σ(str[i, j])

♦

Example 4.12. Given the program:

#include <stdio.h>

#include <string.h>

int main() {

/* 0: */ char str [10] = ‘‘aabbcc ’’;

/* 1: */ char *p = NULL;

/* 2: */ p = strchar(str ,‘b’);

/* 3: */ printf(‘‘%s’’,p);

/* 4: */ return 0;

/* 5: */ }

The concrete value of the char array str at the program point 1 is

given by the quintuple str = (ρ, str.low, str.high, S,Tstr). Entering

into the detail, we have that:

� str = (ρ, str.low, str.high, S,Tstr)

[[str.low]]ρ = 0

[[str.high]]ρ = 10
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codom(S) = {(0,‘a’), (1,‘a’), (2,‘b’), (3,‘b’), (4,‘c’), (5,‘c’),

(6,‘\0’), (7,T), (8,T), (9,T)}
Tstr = {6}
min(Tstr) = 6

string(str) =< a a b b c c \0 >

At the program point 3 we obtain that S[[strchr(str, b)]]σ = σ',
where:

� σ'(str) = (ρ, str.low', str.high', S',T'str)

[[str.low']]ρ = 2

[[str.high']]ρ = 7

codom(S') = {(2,‘b’), (3,‘b’), (4,‘c’), (5,‘c’), (6,‘\0’)}
T'str = 6

min(T'str) = 6

� σ'[sstr] = σ[sstr](2, 6) = {2} ‘b’ {4} ‘c’ {6}

At the end of the analysis we have the certainty that the program result

is a char sub-array that contain a string corresponding to a specific

suffix of the string of interest of str, the char array to which the

string character function has been applied in the program above, as

presented in the Definition 4.13 (case 1.a.). The char array M-String

segmentation analysis, applied on the program above, produces the

following abstract predicates:

� str:p1 = split(str):
(
{0} ‘a’ {2} ‘b’ {4} ‘c’ {6}, {7} T {10}

)
� str:p2 = str:p1 ∧ p:p2 = split(p):

(
∅, ∅
)

Check(string(str)) = TRUE, Check(string(p)) = FALSE

� str:p3 = split(str):
(
{0} ‘a’ {2} ‘b’ {4} ‘c’ {6}, {7} T {10}

)
∧

p:p3 = str[2,6]:p3 = split(p):
(
{2} ‘b’ {4} ‘c’ {6}, ∅

)
� str:p4 = str:p3 ∧ p:p4 = p:p3

� str:p5 = str:p4 ∧ p:p5 = p:p4

4
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Observe that, given a char array, named C, it is possible implement

a string character statement that exploits the segmentation of the char

array function parameter in order to search for the minimum segment

in Seg(C) where xseg(C)i = c, as proposed in the algorithm below. To

avoid falling into wrong conclusions, the string character algorithm that

we will present, has been implemented in order to work only on char

arrays that certainly contain the string of interest. In the case in which

string(C) = undef, our string character function produce an error. So,

we are always in the case 1 of the Definition 4.13.

Algorithm 4.1. (m-string character function).

Given:

� str: a char array

� split(str)

� c: the character to search in str

if sstr 6= ∅
compute:

Seg(sstr) = {seg(sstr)i | i = 1, . . . , n}
then

for all i ∈ [1, n]

if xseg(sstr)i ≡ c

return str[lbseg(sstr)i ,S.highstr]

otherwise i++

else STOP!

�

We propose another string character implementation that exploits

the suffix array data structure [7]. Also in this case, in order to avoid

falling into wrong conclusions and to avoid huge computations, the

string character algorithm based on suffix array, that we will present,

has been implemented in order to work only on char arrays that cer-

tainly contain the string of interest, otherwise our string character func-

tion produce an error. So, we are always in the case 1 of the Definition

4.13. Below, we provide a refined definition of the suffix domain [7]

that inherits the features of our char array representation.
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Definition 4.14 (suffix array - a refinement). Consider a char array,

named str, with associated concrete value and splitting and consider

string(str) 6= undef.

Let string(str)[i, [[S.highstr]]ρ] be the sub-string of string(str)

ranging from [[S.lowstr]]ρ 6 i 6 [[S.highstr]]ρ to [[S.highstr]]ρ, the suf-

fix array Pos of string(C) is defined to be an array of integers providing

the starting position of suffixes of string(str) in lexicographical order;

namely, Pos[k] contains the start position of the kth smallest suffix in

the set:

{string(str)[[[S.lowstr]]ρ, [[S.highstr]]ρ], string(str)[[[S.lowstr]]ρ +

1, [[S.highstr]]ρ], . . . , string(str)[[[S.highstr]]ρ, [[S.highstr]]ρ]},
and we consider the partial order on suffixes satisfying:

string(str)[Pos[k − 1], [[S.highstr]]ρ] ≺
string(str)[Pos[k], [[S.highstr]]ρ]

where ≺ denotes the lexicographical order in the ASCII character do-

main.

♦

Example 4.13. Let C: < m i n n i e \0 m o u s e \0 > be a char

array, then:

� c = (ρ, 0, 13, C, {6, 12})

� string(C) = < m i n n i e \0 >
i 0 1 2 3 4 5 6

string(C)[i] m i n n i e \0

� split(C) = ({0} ‘m’ {1} ‘i’ {2} ‘n’ {4} ‘i’ {5} ‘e’ {6}, nsC)

The string of interest of C has the following suffixes:

Suffix i

string(C)[0, 6] < m i n n i e \0 > 0

string(C)[1, 6] < i n n i e \0 > 1

string(C)[2, 6] < n n i e \0 > 2

string(C)[3, 6] < n i e \0 > 3

string(C)[4, 6] < i e \0 > 4

string(C)[5, 6] < e \0 > 5

string(C)[6, 6] < \0 > 6

These suffixes can be sorted in lexicographical order:
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Suffix i

string(C)[6, 6] < \0 > 6

string(C)[5, 6] < e \0 > 5

string(C)[4, 6] < i e \0 > 4

string(C)[1, 6] < i n n i e \0 > 1

string(C)[0, 6] < m i n n i e \0 > 0

string(C)[3, 6] < n i e \0 > 3

string(C)[2, 6] < n n i e \0 > 2

The suffix array Pos contains the starting positions of these suffixes:

k 0 1 2 3 4 5 6

Pos[k] 6 5 4 1 0 3 2

So, for example, Pos[5] contains the value 3, and therefore refers to

the suffix starting at position 3 within string(C), which is the suffix

< n i e \0 >.

4

Algorithm 4.2. (m-string character function - suffix version).

Given:

� str: a char array

� split(str)

� c: the character to search in str

if sstr 6= ∅
compute:

Pos(string(str))

then

return Pos[k] = i → suffix(string(str))[i,j]

else STOP!

�

Lemma 4.1. Given the char array D, with string(D) 6= undef. Let

Pos[k] be the result of the Algorithm 4.2. Pos[k] contains the suffix

value i = min{l : [[[S.lowD]]ρ 6 l 6 [[S.highD]]ρ ∧ string(D)[l] =

c} that points to the suffix D[i, j], whose concrete value is represented

by σ' ∈ ACState that is the result of the string character statement

presented in the Definition 4.13 (case 1.a.).
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Example 4.14. Given the program:

#include <stdio.h>

#include <string.h>

int main() {

/* 0: */ char str[] = ‘‘minnie ’’;

/* 1: */ char *p = NULL;

/* 2: */ p = strchr(str ,‘n’);

/* 3: */ printf(‘‘%s’’,p);

/* 4: */ return 0;

/* 5: */ }

The concrete value of the char array str at program point 1 is given

by the quintuple str = (ρ, str.low, str.high, S,Tstr). Entering into

the detail, we have that:

[[str.low]]ρ = 0

[[str.high]]ρ = 7

codom(S) = {(0,‘m’), (1,‘i’), (2,‘n’), (3,‘n’), (4,‘i’), (5,‘e’), (6,‘\0’)}

Tstr = {6}

min(Tstr) = 6

From the Definition 4.13 we know that S[[strchr(str,n)]]σ = σ', where

σ'(str) ≡ σ(str[2, 6]) = (ρ, 2, 7, codom(str[2,6]) = {(2,‘n’), (3,‘n’), (4,‘i’

), (5,‘e’), (6,‘\0’)}, {6}). Recovering the Example 4.13 and the Algo-

rithm 4.2 it is possible to determine that σ'(str) is the concrete value

of the string(str) suffix to which points the value in Pos[6]. As a

matter of fact, Pos[6] = 2 (that is the minimum element of the set

{2, 3}) and therefore refers to the suffix starting at position 2 within

string(str), which is the suffix string(str)[2, 6] = < n n i e \0 >.

The char array M-String segmentation analysis, applied on the program

above, produces the following abstract predicates:

� str:p1 = split(str): ({0} ‘m’ {1} ‘i’ {2} ‘n’ {4} ‘i’ {5} ‘e’

{6}, ∅)

� str:p2 = str:p1 ∧ p:p2 = split(p):
(
∅, ∅
)

Check(string(str)) = TRUE, Check(string(p)) = FALSE



74 Chapter 4. Char Array Segmentation Analysis

� str:p3 = str:p2 ∧

p:p3 = str[2,6]:p3 = split(p): ({2} ‘n’ {4} ‘i’ {5} ‘e’ {6},

∅)

� str:p4 = str:p3 ∧ p:p4 = p:p3

� str:p5 = str:p4 ∧ p:p5 = p:p4

4

4.2.5 The string compare statement

strcmp(str1,str2) is a function in the C standard library that lexico-

graphically compares two C strings. The formal declaration for string

compare function is:

int strcmp(const char ∗str1, const char ∗str2);

str1 is the first string to be compared and str2 is the second string to

be compared. Implementation:

int strcmp (const char ∗str1, const char ∗str2)

{
while(∗str1 && (∗str1==∗str2))

str1++,str2++;

return ∗(const unsigned char∗)str1− ∗(const unsigned char∗)str2;

}

The returned value is an integer greater than, equal to, or less than

zero, accordingly as the string pointed to by str1 is greater than, equal

to, or less than the string pointed to by str2, considering a lexicographic

order [13].

Notice that the subsequent analysis will be performed on static

arrays.

The string compare original statement result - from the string.h

header in the C standard library - may be misleading, or even erro-

neous, in the case in which one of the two char arrays function param-

eters, or both, had the string of interest equal to undef. Below, we

stigmatize the behaviour of the string copy function, also the ambigu-

ous one.
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Definition 4.15 (semantics of the string compare function). Let str1

and str2 be two char arrays declared in a program (str1, str2 ∈
ACVar), with concrete values respectively represented by the quintu-

ples str1 = (ρ, str1.low, str1.high, S1,Tstr1) and str2 = (ρ, str2.

low, str2.high, S2,Tstr2) (str1, str2 ∈ ACVal), then:

S[[strcmp(str1, str2)]]σ = n ∈ Z

� string(str1) 6= undef ∧ (str2) 6= undef

n is


< 0 if string(str1) ≺ string(str2)

= 0 if string(str1) = string(str2)

> 0 if string(str1) � string(str2)

� string(str1) = undef ∧ (str2) 6= undef

undefined behaviour

n = >

� string(str1) 6= undef ∧ (str2) = undef

undefined behaviour

n = >

� string(str1) = undef ∧ (str2) = undef

undefined behaviour

n = >

Notice that, in any case, the concrete values of str1 and str2,

after the application of the string compare function on them, remain

unchanged.

♦

We are going to introduce two new implementations of the string

compare function. In order to avoid falling into wrong conclusions,

both the string compare algorithms that we will present, have been

implemented in order to work only on char arrays that certainly contain

the string of interest.

Our first string compare procedure is based on segments compar-

ison. In particular, given two char arrays, str1 and str2, we compare

the two strings segment-wise.
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Algorithm 4.3. (m-string compare function).

Given:

� str1 and str2: the char arrays to be compared

� split(str1) and split(str2)

if sstr1 ∧ sstr2 6= ∅

compute:

Seg(sstr1) = {seg(sstr1)i | i = 1, . . . , n}

Seg(sstr2) = {seg(sstr2)j | j = 1, . . . , m}

then

for all i ∈ [1, n] ∧ j ∈ [1, m] such that i = j

if xseg(sstr1)i 6≡ xseg(sstr2)j

return n

otherwise

if ubseg(sstr1)i − lbseg(sstr1)i 6≡ ubseg(sstr2)j − lbseg(sstr2)j

return n

otherwise i++ ∧ j++

return n

else STOP!

�

From now on, we will refer to the result of the Algorithm 4.3 as

n = Alg1(str1, str2), where str1 and str2 are the compared char arrays.

Lemma 4.2. Given two char arrays, D and R, with string(D) 6= undef

and string(R) 6= undef. Let n = Alg1(D, R). Then:

1. n < 0⇔ D ≺ R

a. If string(D) and string(R) do not share any prefix the com-

parison regards just the first segments of sD and sR. As a

matter of fact the seg(sD)1 and the seg(sR)1 differ for the

characters that they contain. Notice that the considered seg-

ments can also differ for the respectively upper bounds. In
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this case n corresponds to the difference between the corre-

sponding ASCII constant value to the character in seg(sD)1

and the corresponding ASCII constant value to the charac-

ter in seg(sR)1. Formally, given the char scalar variables

D[lbseg(sD)1 ] and R[lbseg(sR)1 ] and the environment ρ ∈ Rv map-

ping the given variables to their ASCII constant domain value,

then:

n = [[D[lbseg(sD)1 ]]]ρ− [[R[lbseg(sR)1 ]]]ρ

b. If string(D) and string(R) share a prefix of length |string(D)|−
1 (we are in the case in which the length of the string of in-

terest of D is strictly smaller than the length of the string of

interest of R), assume that the sD sub-segmentation has m

segments then, for all i=j such that i=1,...,m-1 we have that:

xseg(sD)i = xseg(sR)j
ubseg(sD)i − lbseg(sD)i = ubseg(sR)j − lbseg(sR)j

and, for i=j such that i=m:

xseg(sD)i=m = xseg(sR)j=m
ubseg(sD)m − lbseg(sD)m 6 ubseg(sR)m − lbseg(sR)m

The segments comparison procedure stops when it compares

the last segment of sD, that is seg(sD)m, in which the seg-

ment upper bound is equal to S.highD, with the respective

seg(sR)m. In this case we have two possibilities:

I. if ubseg(sD)m − lbseg(sD)m = ubseg(sR)m − lbseg(sR)m, n corre-

sponds to the negative ASCII constant value to the char-

acter in seg(sR)m+1. Formally:

n = −[[R[lbseg(sR)m+1 ]]]ρ

II. if ubseg(sD)m − lbseg(sD)m < ubseg(sR)m − lbseg(sR)m, n corre-

sponds to the negative ASCII constant value to the char-

acter in seg(sR)m. Formally:

n = −[[R[lbseg(sR)m ]]]ρ

Notice that, in both cases, string(D) and string(R) share a

prefix of length equal to |ubseg(sD)m − lbseg(sD)1 |.
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c. If string(D) and string(R) share a prefix of length strictly

smaller than |string(D)| − 1 means that, at least:

xseg(sD)1 = xseg(sR)1

ubseg(sD)1 − lbseg(sD)1 Q ubseg(sR)1 − lbseg(sR)1

The procedure stops to the first comparison in which or the

segments elements are not the same (xseg(sD)i>1
6= xseg(sR)j>1

)

or in which the differences between the upper bounds and the

lower bounds of the compared segments are different

(ubseg(sD)i>1
− lbseg(sD)i>1

6= ubseg(sR)j>1
− lbseg(sR)j>1

). In the

case in which the compared segments have different elements,

n is equal to the difference between the ASCII constant value

to the character in seg(sD)i>1 and the ASCII constant value

to the character in seg(sR)j>1. Formally:

n = [[D[lbseg(sD)i>1
]]]ρ− [[R[lbseg(sR)j>1

]]]ρ

In the case in which the differences between the upper bounds

and the lower bounds of the compared segments do not coin-

cide we distinguish two cases:

I. if ubseg(sD)i>1
− lbseg(sD)i>1

> ubseg(sR)j>1
− lbseg(sR)j>1

, n is

equal to the difference between the ASCII constant value

to the character in seg(sD)i>1 and the ASCII constant

value to the character in seg(sR)(j>1)+1. Formally:

n = [[D[lbseg(sD)i>1
]]]ρ− [[R[lbseg(sR)(j>1)+1

]]]ρ

II. if ubseg(sD)i>1
− lbseg(sD)i>1

< ubseg(sR)j>1
− lbseg(sR)j>1

, n is

equal to the difference between the ASCII constant value

to the character in seg(sD)(i>1)+1 and the ASCII constant

value to the character in seg(sR)j>1. Formally:

n = [[D[lbseg(sD)(i>1)+1
]]]ρ− [[R[lbseg(sR)j>1

]]]ρ

Here, string(D) and string(R) share a prefix of length equal

to |min(ubseg(sD)i>1
− lbseg(sD)1 , ubseg(sR)i>1

− lbseg(sR)1)|

Notice that in the case in which D lexicographically precedes R, sD
and sR could not have the same number of segments.

2. n = 0⇔ D = R

D and R are lexicographically equal if string(D) and string(R) are

of the same length, have the same number of segments and the dif-

ferences between the segment bounds and the contained elements
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coincides. Assume that the sD and the sR sub-segmentations have

m segments then, for all i=j such that i=1,...,m we have that:

xseg(sD)i = xseg(sR)j
ubseg(sD)i − lbseg(sD)i = ubseg(sR)j − lbseg(sR)j

The segments comparison procedure stops when it compares the

last segment of sD, seg(sD)m, in which the segment upper bound

is equal to S.highD, with the respective seg(sR)m, in which the seg-

ment upper bound is equal to S.highR ([[S.highD]]ρ = [[S.highR]]ρ).

In this case n is equal to the difference between the correspond-

ing ASCII constant value to the character in seg(sD)m and the

corresponding ASCII constant value to the character in seg(sR)m
(since the two segments contain the same element with the same

ASCII constant value, n will be always equal to 0). Formally:

n = [[D[lbseg(sD)m ]]]ρ− [[R[lbseg(sR)m ]]]ρ

Furthermore, string(D) and string(R) share a prefix of length

equal to |ubseg(sD)m − lbseg(sD)1| (= |ubseg(sR)m − lbseg(sR)1|).

3. n > 0⇔ D � R

a. If string(D) and string(R) do not share any prefix, the con-

siderations made in 1.a. hold.

b. If string(D) and string(R) share a prefix of length |string(R)|
−1 (we are in the case in which the length of the string of

interest of D is strictly greater than the length of the string

of interest of R), assume that the sR sub-segmentation has m

segments then, for all i=j such that j=1,...m-1 we have that:

xseg(sD)i = xseg(sR)j
ubseg(sD)i − lbseg(sD)i = ubseg(sR)j − lbseg(sR)j

and, for i=j such that j=m:

xseg(sD)m = xseg(sR)m
ubseg(sD)m − lbseg(sD)m > ubseg(sR)m − lbseg(sR)m

The segments comparison procedure stops when it compares

the seg(sD)m with the respective seg(sR)m, in which the seg-

ment upper bound is equal to S.highR. At this point, we have

two possibilities:
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I. if ubseg(sD)m − lbseg(sD)m = ubseg(sR)m − lbseg(sR)m, n cor-

responds to ASCII constant value to the character in

seg(sD)m+1. Formally:

n = [[D[lbseg(sD)m+1 ]]]ρ

II. if ubseg(sD)m − lbseg(sD)m > ubseg(sR)m − lbseg(sR)m, n corre-

sponds to the ASCII constant value to the character in

seg(sD)m. Formally:

n = [[D[lbseg(sD)m ]]]ρ

Notice that, in both cases, string(D) and string(R) share a

prefix of length |ubseg(sR)m − lbseg(sR)1|.
c. If string(D) and string(R) share a prefix of length strictly

smaller than |string(R)|−1, the considerations made in 1.c.

hold.

Notice that in the case in which D lexicographically follows R,

sD and sR could not have the same number of segments.

This is suitable also to the case in which one of the two compared

char array, or both, are sub-segmentations.

Example 4.15. Given the program:

#include <stdio.h>

#include <string.h>

int main() {

/* 0: */ char D[5] = ‘‘aaa ’’;

/* 1: */ char R[5] = ‘‘abb ’’;

/* 2: */ int n = strcmp(D,R);

/* 3: */ return 0;

/* 4: */ }

The strings of interest of the two char arrays, D and R, declared in the

program above, exist and correspond to string(D) = < a a a \0 > and

string(R) = < a b b \0 >. From the Definition 4.15, since D precedes

R in lexicographic order, we know that S[[strcmp(D, R)]]σ = −1.

Considering the Algorithm 4.3 and the Lemma 4.2, we notice that

string(D) and string(R) share a prefix of length strictly smaller than

|string(D)|−1. Given: Seg(sD) = {seg(sD)1 = (0,‘a’, 3)} and Seg(sR) =

{seg(sR)1 = (0,‘a’, 1), seg(sR)2 = (1,‘b’, 3)}, we initially compare the

first segment of sD with the first segment of sR. Since Seg(sD) has just

one element, we have that:
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� xseg(sD)1 = xseg(sR)1

� ubseg(sD)1 − lbseg(sD)1 > ubseg(sR)1 − lbseg(sR)1

The bounds differences of the first compared segments do not coin-

cide and n is equal to the difference between the ASCII constant

value to the character in seg(sD)1 and the ASCII constant value to

the character in seg(sR)2, that is: n = 97 − 98 = −1. So, D lex-

icographically precedes R, as stated before, and the strings of inter-

est of the two program char arrays share a prefix of length equal to

min(ubseg(sD)1 − lbseg(sD)1 , ubseg(sR)1 − lbseg(sR)1) = 1 (case 1.c. of Lemma

4.2). The char array M-String segmentation analysis, applied on the

program above, produces the following abstract predicates:

� D:p1 = split(D): ({0} ‘a’ {3}, ∅)

� D:p2 = split(D): ({0} ‘a’ {3},∅) ∧
R:p2 = split(R): ({0} ‘a’ {1} ‘b’ {3}, ∅)

� D:p3 = split(D): ({0} ‘a’ {3},∅) ∧
R:p3 = split(R): ({0} ‘a’ {1} ‘b’ {3}, ∅) ∧
n.p3: −1

� D:p3 = D:p4 ∧ R:p3 = R:p4 ∧ n.p3 = n.p4

4

Another possible string compare statement implementation, from a

static analysis point of view, can be made using the concepts of suffix

array and longest common prefix array [7]. The latter is an auxiliary

data structure to the suffix array introduced in the string character

statement section 4.2.4. Below, we provide a refined definition of the

longest common prefix suffix domain [7] that inherits the features of

our char array representation.

Definition 4.16 (longest common prefix array - a refinement). Con-

sider a char array str with associated concrete value and splitting and

consider string(str) 6= undef.

Let string(str)[i, [[S.highstr]]ρ] be the sub-string of the string of

interest of str ranging from [[S.lowstr]]ρ 6 i 6 [[S.highstr]]ρ to
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[[S.highstr]]ρ and let Pos be the suffix array of string(str), as pre-

sented in the Definition 4.14. Then the lcp array H is an array of size

|string(str)| storing in each element k, a value in Z∪{⊥}, where H[0] =

⊥ and for all k ∈ [1, [[S.highstr]]ρ], H[k] = lcp(string(str)[Pos[k −
1], [[S.highstr]]ρ], string(str)[Pos[k], [[S.highstr]]ρ]) is the length of the

longest common prefix between the lexicographically ith smallest suffix

of string(str) and its predecessor in the suffix array.

♦

Example 4.16. Recovering the Example 4.13 we have that the suffix

array Pos of the string of interest of C is:

k 0 1 2 3 4 5 6

Pos[k] 6 5 4 1 0 3 2

Then the lcp array H is constructed by comparing lexicographically

consecutive suffixes to determine their longest common prefix:

k 0 1 2 3 4 5 6

H[k] ⊥ 0 0 1 0 0 1

For instance, H[3] = 1 as the longest common prefix shared by the

suffixes Pos[2] = < i e \0 > and Pos[3] = < i n n i e \0 > that is

the string < i > whose length is equal to 1.

4

Definition 4.17 (glue operator). Consider two char arrays str1 and

str2 with string(str1) 6= undef and string(str2) 6= undef. The op-

erator ⊕ glues the strings of interest of str1 and str2, G(str1,str2),

maintaining the terminating null character between them as a separa-

tor.

♦

Example 4.17. Let D and R be two char arrays such that:

� D : < m i n n i e \0 x x x >

string(D) = < m i n n i e \0 > ∧ |string(D)| = 7

� R : < m o u s e \0 y y >

string(R) = < m o u s e \0 > ∧ |string(R)| = 6
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Then the glue between string(D) and string(R) is:

G(D,R) = string(D)⊕ string(R) = < m i n n i e \0 m o u s e \0 >

|G(D,R)| = |string(D)|+ |string(R)|.

4

Algorithm 4.4. (m-string compare function - suffix version).

Given:

� str1, str2: two char arrays

� split(str1) and split(str2)

if sstr1 6= ∅ and sstr2 6= ∅

compute:

G(str1,str2), Pos(G(str1,str2)) and H(Pos(G(str1,str2)))

then

given i 6= j compare:

Pos(G(str1,str2))[i]→
suffix(G(str1,str2))[0, |string(str1)|+ |string(str2)| − 1]

and

Pos(G(str1,str2))[j]→
suffix(G(str1,str2))[|string(str1)|, |string(str1)| +

|string(str2)| − 1]

return n and lcp(Pos(G(str1,str2))[i], Pos(G(str1,str2))[j])

else STOP!

�

From now on, we will refer to the result of the Algorithm 4.4 as

n = Alg2(str1, str2), where str1 and str2 are the compared char arrays.

Lemma 4.3. Given two char arrays, D and R, with string(D) 6= undef

and string(R) 6= undef, let n = Alg2(D, R), Pos be the suffix array of

G(D,R), that is the glue between the strings of interest of D and R, and

let H be the longest common prefix array of Pos.
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Then:

� n = −1⇔ D ≺ R

D lexicographically precedes R if there exist k1, k2 such that k1 < k2

and:

– Pos[k1] = G(D,R)[0, |string(D)|+ |string(R)| − 1]

– Pos[k2] = G(D,R)[|string(D)|, |string(D)|+ |string(R)| − 1]

D and R share a prefix if, given k2 − k1 = m, H[k1 + 1] 6= 0 >

· · · > H[k1 + m] 6= 0. In this particular case H[k1 + m] (= H[k2])

also corresponds to the longest common prefix between Pos[k1] and

Pos[k2].

� n = 0⇔ D = R

D and R are lexicographically equal if |string(D)| = |string(R)| and

if there exist k1, k2 such that k1 = k2 − 1 and:

– Pos[k1] = G(D,R)[|string(D)|, |string(D)|+ |string(R)| − 1]

– Pos[k2] = G(D,R)[0, |string(D)|+ |string(R)| − 1]

H[k2] = lcp(Pos[k1], Pos[k2]) = |string(D)|(= |string(R)|)

� n = 1⇔ D � R

D lexicographically follows R if there exist k1, k2 such that k1 < k2

and:

– Pos[k1] = G(D,R)[|string(D)|, |string(D)|+ |string(R)| − 1]

– Pos[k2] = G(D,R)[0, |string(D)|+ |string(R)| − 1]

D and R share a prefix if, given k2 − k1 = m, H[k1 + 1] 6= 0 >

· · · > H[k1 + m] 6= 0. In this particular case H[k1 + m] (= H[k2])

also corresponds to the longest common prefix between Pos[k1] and

Pos[k2].

Example 4.18. Given the program:

#include <stdio.h>

#include <string.h>

int main() {

/* 0: */ char D[5] = ‘‘aaa ’’;
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/* 1: */ char R[5] = ‘‘abb ’’;

/* 2: */ int n = strcmp(D,R);

/* 3: */ return 0;

/* 4: */ }

Given the C program of the Example 4.15, the strings of interest of

the two char arrays, D and R, exist and correspond to string(D) = <

a a a \0 > and string(R) = < a b b \0 >. Furthermore, from the

Definition 4.15, since D precedes R in lexicographic order (as before),

we know that S[[strcmp(D, R)]]σ = −1.

Consider now the concatenation between the strings of interest of D

and R: G(D,R) = string(D)⊕string(R) = < a a a \0 a b b \0 >. G(D,R)

has the following suffixes:

Suffix i

G(D,R)[0, 7] < a a a \0 a b b \0 > 0

G(D,R)[1, 7] < a a \0 a b b \0 > 1

G(D,R)[2, 7] < a \0 a b b \0 > 2

G(D,R)[3, 7] < \0 a b b \0 > 3

G(D,R)[4, 7] < a b b \0 > 4

G(D,R)[5, 7] < b b \0 > 5

G(D,R)[6, 7] < b \0 > 6

G(D,R)[7, 7] < \0 > 7

The suffixes can be sorted in lexicographical order:

Suffix i

G(D,R)[7, 7] < \0 > 7

G(D,R)[3, 7] < \0 a b b \0 > 3

G(D,R)[2, 7] < a \0 a b b > 2

G(D,R)[1, 7] < a a \0 a b b \0 > 1

G(D,R)[0, 7] < a a a \0 a b b \0 > 0

G(D,R)[4, 7] < a b b \0 > 4

G(D,R)[6, 7] < b \0 > 6

G(D,R)[5, 7] < b b \0 > 5

The suffix array Pos of G(D,R) contains the starting positions of these

suffixes:

k 0 1 2 3 4 5 6 7

Pos[k] 7 3 2 1 0 4 6 5
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Then the lcp array H is constructed:

k 0 1 2 3 4 5 6 7

H[k] ⊥ 1 0 1 2 1 0 1

Taking into account the Algorithm 4.4 and the Lemma 4.3, we have

that, there exist (k1 = 4) < (k2 = 5) such that:

� Pos[4] = G(D,R)[0, 7]

� Pos[5] = G(D,R)[4, 7]

� 5− 4 = 1 then H[5] = 1

So, D ≺ R in lexicographical order (as stated before) and they share

a prefix of length equal to 1. The char array M-String segmentation

analysis, applied on the program above, produces the following abstract

predicates:

� D:p1 = split(D): ({0} ‘a’ {3}, ∅)

� D:p2 = split(D): ({0} ‘a’ {3},∅) ∧
R:p2 = split(R): ({0} ‘a’ {1} ‘b’ {3}, ∅)

� D:p3 = split(D): ({0} ‘a’ {3},∅) ∧
R:p3 = split(R): ({0} ‘a’ {1} ‘b’ {3}, ∅) ∧
n.p3: −1

� D:p3 = D:p4 ∧ R:p3 = R:p4 ∧ n.p3 = n.p4

4

Theorem 4.1. Given two char arrays, D and R, let:

� n1 = Alg1(D, R)

� n2 = Alg2(D, R)

Then: n1 = 0⇔ n2 = 0 and if n1 6= 0,
n1

|n1|
= n2.

Proof. by Lemma 4.2 and Lemma 4.3.

5

Example 4.19. Let n1 be the result of the Example 4.15 and n2 be

the result of the Example 4.18. Since n1 6= 0, n1

|n1| = n2 = −1
|−1| = −1

and the Theorem 4.1 holds.

4
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4.2.6 The string modification statement

strmdf(str,c,i) is a C function opportunely constructed that, given a

char array and a specified position, substitutes the character in that

position with another one. The formal declaration for strmdf() function

is:

char *strmdf(char *str, int c, int i);

str is the C string to be modified, c (converted to a char) is the character

to be inserted in str and i is the position in str of the character to be

replaced with c. Implementation:

char *strmdf(char *str, int c, int i)

{
for(k = 0; k < length; k++) {

if(str[k] == ‘\0’) {
str[i] = (char)c;

}
}
return (char *)str;

}

where “length” corresponds to the length of the str char array. strmdf()

return a pointer to the first cell of the modified str. In the case in

which string(str) = undef, our string modification statement returns

an error.

Notice that the subsequent analysis will be performed on static

arrays.

Definition 4.18. Consider a char array str, its concrete representa-

tion str = (ρ, str.low, str.high, S,Tstr) and codom(S) = {(i, v) | i ∈[
[[str.low]]ρ, [[str.high]]ρ

)
}. We define m : codom(S)×℘(N,ASCIIch)

→ codom(S') as the function that maps the value of the couple (i, v) to

the new value (i, v') and returns the set codom(S) with the appropriate

modifications.

♦

Example 4.20. Given the char array C: < m i n n i e \0>

� C = (ρ, C.low, C.high, C,TC)

[[C.low]]ρ = 0
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[[C.high]]ρ = 7

C = {(0,‘m’), (1,‘i’), (2,‘n’), (3,‘n’), (4,‘i’), (5,‘e’), (6,‘\0’)}
TC = {6}

m(C, {(1,‘m’)}) = {(0,‘m’), (1,‘m’), (2,‘n’), (3,‘n’), (4,‘i’), (5,‘e’), (6,‘\0’)}
m(C, {(1,‘m’), (2,‘m’)}) = {(0,‘m’), (1,‘m’), (2,‘m’), (3,‘n’), (4,‘i’), (5,‘e’),

(6,‘\0’)}
4

Definition 4.19 (semantics of the string modification function). Let

str be a char array declared in a program (str ∈ ACVar), with con-

crete value represented by the quintuple str = (ρ, str.low, str.high, S,

Tstr) (str ∈ ACVal) and string(str) 6= undef. Given an index j ∈
[[[str.low]]ρ, [[str.high]]ρ) and a generic character x, then:

S[[strmdf(str,x,j)]]σ = σ' ∈ ACState

1. x = ‘\0’ ∧ j ∈ Tstr

� σ'(str) = (ρ, str.low', str.high', S',T'str)

str.low'= str.low

str.high'= str.high

S': ∀i ∈ [[[str.low]]ρ, [[str.high]]ρ)

str'[i]→ (i, v') | (i, v') ∈ m(S, {(j,‘\0’)})
T'str = Tstr

min(T'str) = min(Tstr)

� σ'[sstr] = σ[sstr]

2. x = ‘\0’ ∧ j /∈ Tstr ∧ j < min(Tstr)

� σ'(str) = (ρ, str.low', str.high', S',T'str)

str.low'= str.low

str.high'= str.high

S': ∀i ∈ [[[str.low]]ρ, [[str.high]]ρ)

str'[i]→ (i, v') | (i, v') ∈ m(S, {(j,‘\0’)})
T'str = j ∪ Tstr

min(T'str) = j
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� σ'[sstr] = σ[sstr](i, j)

i = [[S.lowstr]]ρ

j corresponds to the index specified in the strmdf() state-

ment.

3. x = ‘\0’ ∧ j /∈ Tstr ∧ j > min(Tstr)

� σ'(str) = (ρ, str.low', str.high', S',T'str)

str.low'= str.low

str.high'= str.high

S': ∀i ∈ [[[str.low]]ρ, [[str.high]]ρ)

str'[i]→ (i, v') | (i, v') ∈ m(S, {(j,‘\0’)})
T'str = j ∪ Tstr

min(T'str) = min(Tstr)

� σ'[sstr] = σ[sstr]

4. x 6= ‘\0’ ∧ j ∈ Tstr ∧ j = min(Tstr)

If Tstr has only one element, then:

� σ'(str) = (ρ, str.low', str.high', S',T'str)

str.low'= str.low

str.high'= str.high

S': ∀i ∈ [[[str.low]]ρ, [[str.high]]ρ)

str'[i]→ (i, v') | (i, v') ∈ m(S, {(j, x)})
T'str = ∅
min(T'str) = @

� σ'[sstr] = ∅

Observe that the resulting value does not represent a string

and the system may raise a type error warning.

If Tstr has more than one element, then:

� σ'(str) = (ρ, str.low', str.high', S',T'str)

str.low'= str.low
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str.high'= str.high

S': ∀i ∈ [[[str.low]]ρ, [[str.high]]ρ)

str'[i]→ (i, v') | (i, v') ∈ m(S, {(j, x)})
T'str = Tstr \ {j}
min(T'str) = min(Tstr \ {j})

� σ'[sstr] = σ[str|(j,v)→(j,x)](i, j)

i = [[S.lowstr]]ρ

j = min(Tstr \ {j})

5. ‘x’ 6= ‘\0’ ∧ j ∈ Tstr ∧ j > min(Tstr)

� σ'(str) = (ρ, str.low', str.high', S',T'str)

str.low'= str.low

str.high'= str.high

S': ∀i ∈ [[[str.low]]ρ, [[str.high]]ρ)

str'[i]→ (i, v') | (i, v') ∈ m(S, {(j, x)})
T'str = Tstr \ {j}
min(T'str) = min(Tstr)

� σ'[sstr] = σ[sstr]

6. ‘x’ 6= ‘\0’ ∧ j /∈ Tstr ∧ j < min(Tstr)

� σ'(str) = (ρ, str.low', str.high', S',T'str)

str.low'= str.low

str.high'= str.high

S': ∀i ∈ [[[str.low]]ρ, [[str.high]]ρ)

str'[i]→ (i, v') | (i, v') ∈ m(S, {(j, x)})
T'str = Tstr

min(T'str) = min(Tstr)

� σ'[sstr] = σ[sstr|(j,v)→(j,x)
]

7. ‘x’ 6= ‘\0’ ∧ j /∈ Tstr ∧ j > min(Tstr)

� σ'(str) = (ρ, str.low', str.high', S',T'str)
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str.low'= str.low

str.high'= str.high

S': ∀i ∈ [[[str.low]]ρ, [[str.high]]ρ)

str'[i]→ (i, v') | (i, v') ∈ m(S, {(j, x)})
T'str = Tstr

min(T'str) = min(Tstr)

� σ'[sstr] = σ[sstr]

♦

Example 4.21. Given the program:

#include <stdio.h>

#include <string.h>

int main() {

/* 0: */ char str [10] = ‘‘aabbcc ’’;

/* 1: */ strmdf(str ,‘b’,1);

/* 2: */ return 0;

/* 3: */ }

The concrete value of the char array str at the program point 1 is

given by the quintuple str = (ρ, str.low, str.high, S,Tstr). Entering

into the detail, we have that:

� str = (ρ, str.low, str.high, S,Tstr)

[[str.low]]ρ = 0

[[str.high]]ρ = 10

codom(S) = {(0,‘a’), (1,‘a’), (2,‘b’), (3,‘b’), (4,‘c’), (5,‘c’),

(6,‘\0’), (7,T), (8,T), (9,T)}
Tstr = {6}
min(Tstr) = 6

string(str) =< a a b b c c \0 >

At the program point 2 we obtain that S[[strmdf(str, b, 1)]]σ = σ',
where:

� σ'(str) = (ρ, str.low', str.high', S',T'str)
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[[str.low']]ρ = 0

[[str.high']]ρ = 10

S'= m(S, {(1, b)})
T'str = Tstr

min(T'str) = min(Tstr)

� σ'[sstr] = {0} ‘a’ {1} ‘b’ {4} ‘c’ {6}

At the end of the analysis we have the certainty that the program array

is a char array containing a string, as presented in the Definition 4.19

(case 6). The char array M-String segmentation analysis, applied on

the program above, produces the following abstract predicates:

� str:p1 = split(str):
(
{0} ‘a’ {2} ‘b’ {4} ‘c’ {6}, {7} T {10}

)
Check(string(str)) = TRUE

� str:p2 = split(str):
(
{0} ‘a’ {1} ‘b’ {4} ‘c’ {6}, {7} T {10}

)
� str:p3 = str:p2

4
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M-String library

The main C header file string.h functions have been re-implemented

and collected in the M-String library, exploiting the split char array

segmentation and the char array semantics presented in Section 4.1

and the string.h statements semantics defined in Section 4.2, in order

to test the correctness of our ad hoc char array representation.

The M-String library C code is presented in the Appendix A

5.1 Header files

The M-String library header files contain the prototypes of the library

functions and the definitions of the types that the library user can use.

We defined three header files:

1. my array.h

The definition of the my array type is presented. Furthermore,

the functions prototypes initArray and fillArray are intro-

duced.

2. m-string.h

The definitions of the quintuple, segment and m split types are

presented. Furthermore, the functions prototypes f rho, m strin

g, split, m strcpy, m strcat, m strlen, m strchr, m strcmp

and m strmdf are introduced.

Notice that the m string function returns the quintuple of a given

my array type, that is the concrete value of a C program char

array, defined in 4.1.1. The split function returns the splitting

93
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of a given quintuple type, that is the abstract representation of

a C program char array, presented in the Definition 4.2. For the

quintuple type and for the f rho and split outputs, a print

prototype function is provided.

3. suffix.h

The functions prototypes SuffixArray, m strchr suffix and

m strcmp suffix are presented.

For all the dynamic structures, a free() prototype function is de-

clared. The code of the provided header files is available in Section A.1

of the Appendix.

5.2 Body files

The M-String library body files contain the body of the functions and

the basic types definition used by the functions. In agreement with the

presented header files, we have defined three body files:

1. my array.c

The body of the initArray and fillArray functions is presented.

2. m-string.c

The body of the f rho, m string, split, m strcpy, m strcat,

m strlen, m strchr, m strcmp, m strmdf and of other useful func-

tions (like the print functions) is defined.

Notice that the m strcpy, m strcat and the m strmdf functions

have as input two quintuple types and they exploit the (index,va-

lue) pairs to compute the output. The m strlen function has as

input a quintuple type and it exploits the T set (the fifth quin-

tuple parameter) to compute the output. The m strchr function

has as input a quintuple type and an int type (converted to

a char), the m strcmp has as input two quintuple types; both

the m strchr and the m strcmp exploit the notion of segment,

presented in the Definition 4.6, to compute the output.

3. suffix.c

The body of the SuffixArray, m strchr suffix and m strcmp s

uffix functions is presented. The sorting algorithm used to sort

the suffix array is the bubble sort [22].
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Searching for the string character and the string compare func-

tions results using the suffix array is a positive attempt to connect

the segmentation representation of a char array to the main struc-

ture of the bioinformatics analysis. Furthermore, opportunely

manipulating the longest common prefix array structure we are

able to determine if two compared strings share a prefix and how

it is long.

For all the dynamic structures, the body of the free() functions

is declared. The code of the provided body files is available in Section

A.2 of the Appendix.





Chapter 6

Results

In this chapter we compare our ad hoc char array representation to the

one introduced by Cousot in [1], the advantages and disadvantages of

our strings abstract domain and the possible practical applications, by

discussing some preliminary experimental results.

6.1 Comparisons

The M-String Segmentation adds precision to the static analysis of C

strings with respect to the general C-Segmentation framework applied

on C char arrays, in terms of information loss.

We introduce an important formalization, relating to our M-String

abstract representation.

Definition 6.1 (segmentation mapping). Let ACVal, presented in the

sub-section 4.1.1, be our concrete domain and let M-String be our

abstract domain. Then:

f1 : ACVal→ M-String

f2 : M-String → ACVal

f1 and f2 are two monotonic functions between partial orders, (ACVal,

⊆) and (M-String,v). Let str be a char array in C, and given σ(str) ∈
ACVal and split(str) ∈ M-String, the two functions are defined by:

� f1(σ(str)) = split(str)

� f2(split(str)) = σ(str)
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♦

We may define a projection operator π, from the M-String segmen-

tation to the Cousot segmentation, that merges the two split parame-

ters into a single segmentation, proving the soundness and the precision

of our C strings abstract domain.

Definition 6.2 (projection operator). Given the M-String char array

segmentation abstract domain and given the Cousot segmentation (C-

Seg ≡ A) abstract domain then, π is the projection operator, such

that π : M-String→ C-Seg. Formally, let str be a program char array,

then:

� π((∅, {str.low} . . . {str.high}?)) =

{str.low} . . . {str.high}?

� π(({str.low} , {str.low+1} . . . {str.high}?)) =

{str.low} ‘\0’ {str.low+1} . . . {str.high}?

� π(({str.low} . . . {str.high-1}, ∅)) =

{str.low} . . . {str.high-1} ‘\0’ {str.high}

� π(({str.low} . . . {i}, {i+1} . . . {str.high})) =

{str.low} . . . {i} ‘\0’ {i+1} . . . {str.high}

♦

Lemma 6.1. Consider the segmentation unification presented in the

sub-section 3.2.6, the splitting unification introduced in Definition 4.3

and the projection operator defined in Definition 6.2. Let str1 and

str2 be two char arrays, then: π(unify(split(str1), split(str2))) ⊆
unify(π(split(str1)), π(split(str2))).

The M-String abstract domain is a more precise representation of a

C char array than the C-Segmentation abstract domain.

Lemma 6.2. Let str be a C char array, αSeg be the function defined in

3.1, f1 be the function defined in 6.1 and given the projection operator

defined in 6.2 then, π(f1(σ(str))) ⊆ αSeg(σ(str)).

Theorem 6.1 (correctness). The M-String segmentation semantics is

a sound refinement of the Cousot parametric segmentation semantics.
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Proof: by applying Lemma 6.2 to the semantics of each pair of cor-

responding functions defined on the abstract domains C-Seg and M-

String.

5

6.2 Advantages and disadvantages

The M-String segmentation is a refined abstract domain for static anal-

ysis of C programs. In particular, given a C program managing strings,

the M-String representation is able to identify, at each program point,

the correctness of a string, highlighting the so-called string of interest

of a char array. With the M-String abstract domain we can approxi-

mate the important information related to a string managed as a char

array, without information loss.

On the other end, the M-String representation is an ad hoc C strings

abstraction, and as such, limited to C programs. Appropriate exten-

sions are required in order to detect the correctness of strings managed

by other programming language.

6.3 Preliminary experimental results

We now introduce some possible applications of our char array repre-

sentation.

6.3.1 Italian fiscal code

The Italian fiscal code is similar to a Social Security Number in the

United States or the National Insurance Number in the United King-

dom. The Italian fiscal code is an alphanumeric code of 16 characters

and uniquely identifying individuals in the health system, or natural

persons who act as parties in private contracts [14].

Given a person, the first three letters of his Italian fiscal code belong

to the surname, the second three letters belong to the first name; then

we find the last two birth year digits, a letter associated to the month

of birth, the two birthday digits (if the person is a woman, 40 is added),

one letter and three numbers corresponding to the town of birth (notice

that each single Italian town - comune - has its own pre-determined

code) and lastly, a check character.
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Example 6.1. Consider these generality:

� Name: Martina

� Surname: Olliaro

� Birthday: December 31, 1991

� Birth town: Novara, Italy

The corresponding fiscal code is:

LLRMTN91T71F952L

4

Notice that, in general, in a fiscal code we have six characters, two

numbers, one character, two numbers, one character, three numbers

and one character.

Consider now the alphanumeric domain (AN), where AN = {⊥, c, n,
⊥} and ≺ = {(⊥, c), (⊥, n), (c,>), (n,>)}, where c stands for charac-

ter (a character is any element belonging to the considered alphabet)

and n stands for number (a number is any digit belonging to the set

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) and assume to have a C program that manages

fiscal codes as strings. We may abstract the array elements with the

AN domain and represents the results with the M-String segmentation,

as usual.

Example 6.2. Let F be a char array containing the fiscal code pre-

sented in the Example 6.1, such that:

F = < L L R M T N 9 1 T 7 1 F 9 5 2 L \0 >

It is possible abstract each array element AN([[F[i]]]ρ̄), ∀i ∈ [0, 16]

(≡ Fρ̄AN), using the alphanumeric domain.

Fρ̄AN = < c c c c c c n n c n n c n n n c ⊥ >

Notice that the terminating null character is abstracted by the sym-

bol ⊥, since it does not represent nor a character nor a number. We

consider it as the terminating character of the char array Fρ̄AN , whose

elements were abstracted, inheriting the properties in the M-String

representation.
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At this point we can represent the array Fρ̄AN with the appropriate

M-String segmentation. In particular, the concrete value of Fρ̄AN is given

by the quintuple f ρ̄AN = (ρ, 0, 17, F ρ̄AN , {16}) and its splitting is defined

as follows:

split(Fρ̄AN) = ({0} c {6} n {8} c {9} n {11} c {12} n {15} c {16}, ∅)

4

It is important to note that the representation given in the Exam-

ple 6.2 for a specific fiscal code is, to all effects, equal for any fiscal

code. So, combining the alphanumeric abstract domain and the M-

String representation on C programs that manage fiscal codes as char

arrays, we are able to track the correctness of the information that

flows in those programs. Furthermore we are able to identify cases of

“homocode - omocodia”, or when two people share the same personal

data and consequently they have the same fiscal code. It is possible

replace one or more of the seven code numbers, starting with the one

on the right, with corresponding letters in order to avoid “fiscal twins”.

In these particular cases, the corresponding split segmentation will op-

portunely change.

It is necessary define a way to distinguish between a case of ho-

mocode and an error in a fiscal code definition.

6.3.2 Italian car number plates

The current numbering process for Italian car number plates requires

that the same should be composed by two letters, three number and

two letters again [15]. So, assuming to have a C program that manage

car licence plates as char arrays, we can track the correctness of the

information that flows in that program by combining the alphanumeric

abstract domain and the M-String representation, as proposed in the

sub-section 6.3.1. In particular, the string of interest of a char array,

str, which contains a generic current Italian car number plates plus

the terminating null character, can be abstracted as follows: sstrρ̄AN =

{0} c {2} n {5} c {7}.

6.3.3 Product identifier code - Google Merchant Center

Google Merchant Center is a tool that lets you upload your store and

product data to Google and make them available on Google Shopping
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and other Google services [16].

Product identifier codes are not limited to the id[id] attribute to

define the product sold on the global marketplace. Common product

identifier codes include GTIN (Global Trade Item Number) gtin[gtin],

MPN (Manufacturer Part Number) mpn[mpn], and brand names brand

[brand]. There exist different types of Global Trade Item Number of

different lengths, like the UCP (Universal Product Code), the EAN

(European Article Number), the ISBN (International Standard Book

Number) and so on. Therefore, in general, given a C char array, str,

containing a product identifier code plus the terminating null charac-

ter and combining the alphanumeric abstract domain with the M-String

representation, we have that the string of interest of str, or the prod-

uct Id, is as follows: sstrρ̄AN = B1 n B2 c B3 > B4. Furthermore, if we

consider the reduced product of the prefix [11] and the alphanumeric

domains, combined with the M-String representation we are able to be

more precise in detecting information and an abstracted product Id ap-

pears, for example, as follows: sstrρ̄AN = B1 (s1s
∗
2, n) B2 (sis

∗
i+1, c) B3 (sn

s∗n+1,>) B4, where s denotes an alphanumeric element of a product Id

field (or segment).

6.3.4 Text analysis

Text plagiarism: consider a text, contained in a C char array, if we

perform an abstraction only on the non-significant words, like the con-

junctions, we obtain a text segmentation that highlights the position

of these words. If we perform this analysis on two different texts and

assuming to have an algorithm able to match the bounds of the seg-

ments of equally non-significant words of the two considered texts, we

may suppose an application able to detect the text plagiarism.

DNA sequencing: consider a sequence of DNA, contained in a C char

array, if we perform an abstraction only on particular sub-sequences of

characters, we obtain a DNA sequence segmentation that highlights the

presence of specific patterns in it. If we perform this analysis on two

different DNA sequences and assuming to have an algorithm able to

match the bounds of the abstract segments of these patterns, we may

suppose an application able to identify and to take trace of patterns

similarities between DNA strings.



Chapter 7

Conclusions

We designed M-String, a refinement of the segmentation array domain

for string analysis. The proposed domain allows to better capture the

string manipulation operators, detecting errors due to the absence of

the string terminating null character in the array representation.

The M-String abstract domain is an ad hoc segmentation approach

for strings as char array in C programming language. Given a C pro-

gram managing strings, the M-String representation is able to identify,

at each program point, the correctness of a string, highlighting the so-

called string of interest of a char array. With the M-String abstract

domain we can approximate the important information related to a

string managed as a char array, without information loss.

7.1 Future works

� Extend the M-String Segmentation abstract domain to other pro-

gramming languages and create a general method able to formal-

ize the concept of string and to verify the correctness of strings,

as program variables.

� Integrate the M-String Segmentation abstract domain, by apply-

ing composition operators, with different string abstract domains,

like the character inclusion domain, the prefix-suffix domain, the

bricks domain, the string set domain, the constant string domain

and the string hash domain.

� Customize the M-String Segmentation abstract domain for intent

string analysis in Android application.
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The inter-components communication (ICC) in Android applica-

tions is through intents exchange, i.e. particular text strings that

are created and broadcasted to other apps in the same environ-

ment which codify to capture them. In particular, intents strings

may carry device and user sensitive data. In this context, an infor-

mation leakage analysis can be based on taint analysis, in which

undesired information flows are tracked together with informa-

tion on the string value in Android’s messaging data structure.

There is the need to refine string analysis in order to improve

the precision of the Android information loss detection, to deter-

mine when there is actually information leakage and what kind

of string manipulations have been performed during the Android

apps execution.

� Customize the M-String Segmentation abstract domain for the

identification of malicious strings after the realization of a secu-

rity incident as the SQL injection attack on data management

applications. Since the SQL injection attack takes advantage of

the bad practice in concatenating strings, meant to be used by a

server database, the M-String domain could be opportunely ex-

tended in order to detect potentially SQL strings predisposed to

possibly concatenations and to model them.
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Appendix A

M-String library -

Implementation

The code of the M-String library, in C, is provided.

A.1 The library header files

/* ------------- MY_ARRAY.H -------------- */

typedef struct stmy_array {

char *text;

int counter;

int dim;

} my_array;

my_array *initArray(int dim);

my_array *fillArray(char *text , int counter , int dim);

void freeArray(my_array *C);

/* ------------- M-STRING.H -------------- */

typedef struct stindex_value {

int index;

char value;

} index_value;

/* --------------------------------------- */

typedef struct stquintuple {

char *(* rho) (struct stquintuple q);
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110 Chapter A. M-String library - Implementation

int lower_bound;

int upper_bound;

index_value *IV;

int *T;

} quintuple;

/* --------------------------------------- */

typedef struct stsegment {

int lb;

char c;

int ub;

} segment;

/* --------------------------------------- */

typedef struct stm_split{

int ssize;

int nssize;

segment *s;

segment *ns;

} m_split;

/* --------------------------------------- */

char *f_rho(quintuple q);

void print_rho(const quintuple q);

quintuple m_string(my_array *C);

void freeM_string(quintuple *q);

/* --------------------------------------- */

m_split *split(quintuple q);

void freeSplit(m_split *split);

void print_split(m_split *split);

/* --------------------------------------- */

void print_quintuple(const quintuple q);

int m_strlen(const quintuple q);

void m_strcpy(quintuple *dest , const quintuple src);
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quintuple *m_strcat(quintuple *dest , const quintuple src);

quintuple *splitTOquintuple(const m_split *split , int index);

quintuple *m_strchr(const quintuple q, int c);

int m_strcmp(const quintuple q1 , const quintuple q2);

void m_strmdf(quintuple *q, char c, int j);

/* -------------- SUFFIX.H --------------- */

int *SuffixArray(const quintuple q);

quintuple *m_strchr_suffix (const quintuple q, int c);

int m_strcmp_suffix(const quintuple q1 , const quintuple q2 ,
int *LCPlen);

A.2 The library body files

/* ------------- MY_ARRAY.C -------------- */

#include <stdio.h>

#include <stdlib.h>

#include "my_array.h"

/* --------------------------------------- */

my_array *initArray(int dim) {

int i;

my_array *newArray = malloc(sizeof(my_array));

newArray -> text = malloc(dim * sizeof(char));

newArray -> dim = dim;

newArray -> counter = 0;

for(i = 0; i < dim; i++) {

newArray -> text[i] = '-';

}

return newArray;

}

/* --------------------------------------- */

my_array *fillArray(char *text , int counter , int dim) {

int i;

my_array *C = initArray(dim);
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C -> counter = counter;

for(i = 0; i < counter; i++) {

C -> text[i] = text[i];

}

return C;

}

/* --------------------------------------- */

void freeArray(my_array *C) {

free(C->text);

free(C);

}

/* ------------- M-STRING.C -------------- */

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include "my_array.h"

#include "m-string.h"

const char endchar = '$';

const char emptyset = '@';

const int ERR_NO_INTEREST_STRING = -INT_MAX;

/* --------- the rho environment --------- */

char *f_rho(quintuple q){

int i = 0;

char *s = NULL;

if (q.T != NULL) {

s = malloc ((q.T[0]-q.lower_bound +1) * sizeof(char));

for(i = q.lower_bound; i <= q.T[0]; i++) {

s[i] = q.IV[i-q.lower_bound ]. value;

}

}

return s;

}



A.2. The library body files 113

/* ---- the char array concrete value ---- */

/* ------------ the quintuple ------------ */

quintuple m_string(my_array *C) {

int i;

int count = 0;

quintuple q;

q.rho = f_rho;

q.lower_bound = 0;

q.upper_bound = C -> dim;

q.T = NULL;

q.IV = malloc(C -> dim * sizeof(index_value));

for(i = 0; i < q.upper_bound; i++) {

q.IV[i]. index = i;

q.IV[i]. value = C -> text[i];

if( (C -> text[i] == '\0') ) {

if(q.T == NULL) {

q.T = malloc(sizeof(int));

}

else {

q.T = realloc(q.T, (count +1) * sizeof(int));

}

q.T[count] = i;

count ++;

}

}

return q;

}

/* --------------------------------------- */

void freeM_string(quintuple *q) {

if (q != NULL) {

free(q -> T);

free(q -> IV);
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}

}

/* --------------------------------------- */

int upper_bound(const index_value *IV, char c, int lb , int
limit){

int i = lb + 1;

while ((IV[i]. value == c) && (i < limit)) {

i++;

}

return i;

}

/* ---- the char array abstract value ---- */

/* ----------- the splitting ------------- */

m_split *split(quintuple q) {

int i = 0;

int k = 0;

int j;

int lb_ns;

m_split *split = NULL;

split = malloc(sizeof(m_split));

split -> s = NULL;

split -> ns = NULL;

split -> ssize = 0;

split -> nssize = 0;

if(q.T != NULL){

while (i + q.lower_bound < q.T[0]) {

if (split -> s == NULL) {

split -> s = malloc(sizeof(segment));

}

else {

split -> s = realloc(split -> s,(k+1)*sizeof(segment));

}
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split -> s[k].lb = i + q.lower_bound;

split -> s[k].c = q.IV[i]. value;

split -> s[k].ub = upper_bound(q.IV , split -> s[k].c, i,
q.upper_bound) + q.lower_bound;

i = split -> s[k].ub - q.lower_bound;

k++;

}

lb_ns = q.T[0] + 1;

}

else {

lb_ns = q.lower_bound;

}

split -> ssize = k;

j = lb_ns - q.lower_bound;

k = 0;

while (j + q.lower_bound < q.upper_bound) {

if (split -> ns == NULL) {

split -> ns = malloc(sizeof(segment));

}

else {

split -> ns = realloc(split -> ns ,(k+1)*sizeof(segment));

}

split -> ns[k].lb = j + q.lower_bound;

split -> ns[k].c = q.IV[j]. value;

split -> ns[k].ub = upper_bound(q.IV , split -> ns[k].c, j,
q.upper_bound) + q.lower_bound;

j = split -> ns[k].ub - q.lower_bound;

k++;

}

split -> nssize = k;

return split;

}
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/* --------------------------------------- */

void freeSplit(m_split *split) {

if (split !=NULL) {

if (split -> s != NULL ) {

free(split -> s);

}

if (split -> ns != NULL ) {

free(split -> ns);

}

free(split);

}

}

/* ----------- the print functions ------- */

/* ------------------ 1 ------------------ */

void print_rho(const quintuple q) {

int i;

char *s = q.rho(q);

if (s != NULL) {

for (i = q.lower_bound; i <= q.T[0]; i++) {

if (s[i] == '\0') {

printf("%c", endchar);

}

else {

printf("%c", s[i]);

}

}

}

else {

printf("undef");

}

}



A.2. The library body files 117

/* ------------------ 2 ------------------ */

void print_quintuple(const quintuple q) {

int i;

int counter = 0;

printf("\n-----------------------------------------
---------------------------------------\n");

printf("\nThe string of interest of the current char array is
:\n");

printf("\nstring(MyArray) = ");

print_rho(q);

printf("\n\nThe concrete value of the current char array is:
\n");

printf("\n(rho , %d, %d, f, {NULL indexes }) \n\n",
q.lower_bound , q.upper_bound);

printf("where: \n\n");

printf("codom(f) = {");

for(i = 0; i < q.upper_bound -q.lower_bound; i++){

if(q.IV[i]. value == '\0'){

printf("(%d, %c)", q.IV[i].index , endchar);

counter ++;

}

else {

printf("(%d, %c)", q.IV[i].index , q.IV[i].value);

}

if(i != q.upper_bound - q.lower_bound - 1){

printf(", ");

}

}

printf("} \n\n");

printf("{NULL indexes} = {");

if (counter != 0) {

for (i = 0; i < counter; i++) {

if ( i < counter -1 ) {
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printf("%d, ", q.T[i]);

}

else {

printf("%d", q.T[i]);

}

}

}

printf("} \n\n");

}

/* ------------------ 3 ------------------ */

void print_split(m_split *split){

if (split != NULL) {

int i = 0;

segment *s = split -> s;

segment *ns = split -> ns;

printf("The splitting of the current char array is:\n\n");

printf("split(MyArray) = ( ");

if (s != NULL) {

printf("{%d} ", s[i].lb);

if (s[0].c == '\0'){

printf("_ ");

}

for (i = 0; i < split ->ssize; i++) {

if (s[i].c != '\0') {

printf("%c {%d} ", s[i].c, s[i].ub );

}

}

}

else {

printf("%c ", emptyset);

}

printf (", ");
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i = 0;

if (ns != NULL) {

printf("{%d} ", ns[i].lb);

for (i = 0; i < split ->nssize; i++) {

if (ns[i].c != '\0') {

printf("%c {%d} ", ns[i].c, ns[i].ub );

}

else {

printf("%c {%d} ", endchar , ns[i].ub );

}

}

}

else {

printf("%c ", emptyset);

}

}

printf("); \n\n");

}

/* --------- m_strcpy function ----------- */

void m_strcpy(quintuple *dest , const quintuple src){

int i;

int k;

index_value *srcIV;

m_split *split_src = split(src);

m_split *split_dest = split (*dest);

segment *s = split_src -> s;

if (s != NULL) {

if (src.T[0] <= dest -> upper_bound) {

for (i = src.lower_bound; i <= src.T[0]; i++) {

dest -> IV[i-src.lower_bound ].index = src.IV[i-
src.lower_bound ]. index+dest ->lower_bound -

src.lower_bound;
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dest -> IV[i-src.lower_bound ].value = src.IV[i-
src.lower_bound ]. value;

};

free(dest -> T);

dest -> T = NULL;

k = 0;

for (i = dest -> lower_bound; i < dest -> upper_bound; i
++) {

if( dest -> IV[i-dest ->lower_bound ].value == '\0') {

if (dest -> T == NULL) {

dest -> T = malloc(sizeof(int));

}

else {

dest -> T = realloc(dest -> T, (k+1)*sizeof(int));

}

dest -> T[k] = i + dest -> lower_bound;

k++;

}

}

dest -> rho = src.rho;

}

else {

dest -> upper_bound = src.T[0] + 1 + dest -> lower_bound;

freeM_string(dest);

dest -> T = NULL;

dest -> IV = malloc ((dest ->upper_bound -dest ->lower_bound)
*sizeof(index_value));

for (i = src.lower_bound; i <= src.T[0]; i++){

dest -> IV[i-src.lower_bound ].value = src.IV[i-
src.lower_bound ]. value;

dest -> IV[i-src.lower_bound ].index = src.IV[i-
src.lower_bound ]. index + dest -> lower_bound;

}

dest -> T = malloc(sizeof(int));
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dest -> T[0] = src.T[0] + dest -> lower_bound;

dest -> rho = src.rho;

}

}

else {

srcIV = malloc ((src.upper_bound) * sizeof(index_value));

for (i = src.lower_bound; i <= src.upper_bound; i++) {

srcIV[i-src.lower_bound] = src.IV[i-src.lower_bound ];

}

if (src.upper_bound <= dest -> upper_bound) {

for (i = src.lower_bound; i < src.upper_bound; i++) {

dest -> IV[i-src.lower_bound ].value = src.IV[i-
src.lower_bound ]. value;

dest -> IV[i-src.lower_bound ].index = src.IV[i-
src.lower_bound ]. index + dest -> lower_bound;

}

k = 0;

free(dest -> T);

dest -> T = NULL;

for (i = dest ->lower_bound; i < dest ->upper_bound; i++) {

if ( dest ->IV[i-dest ->lower_bound ].value == '\0') {

if (dest -> T == NULL) {

dest -> T = malloc(sizeof(int));

}

else {

dest ->T=realloc(dest ->T, (k+1)*sizeof(int));

}

dest -> T[k] = i;

k++;

}

}

}

else {
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freeM_string(dest);

dest -> rho = src.rho;

dest -> upper_bound=src.upper_bound+dest -> lower_bound;

dest -> IV=malloc(dest ->upper_bound*sizeof(index_value));

dest -> T = NULL;

for (i=src.lower_bound; i < src.upper_bound; i++) {

dest -> IV[i-src.lower_bound ].value = srcIV[i-
src.lower_bound ]. value;

dest -> IV[i-src.lower_bound ].index = srcIV[i-
src.lower_bound ]. index + dest -> lower_bound;

}

}

free(srcIV);

}

freeSplit(split_src);

freeSplit(split_dest);

}

/* --------- m_strcat function ----------- */

quintuple *m_strcat(quintuple *dest , const quintuple src) {

int i;

int *T = NULL;

m_split *split_src = split(src);

m_split *split_dest = split (*dest);

if (( split_src -> s !=NULL) && (split_dest -> s !=NULL)) {

int dest_minT = dest -> T[0];

int src_minT = src.T[0];

index_value *srcIV = NULL;

index_value *destIV = NULL;

T = malloc(sizeof(int));

T[0] = src_minT - src.lower_bound + dest_minT ;

if (( src_minT + dest_minT) <= dest -> upper_bound) {

int j;
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srcIV = malloc ((src_minT -src.lower_bound +1) * sizeof(
index_value));

for (i = src.lower_bound; i <= src_minT; i++) {

srcIV[i-src.lower_bound] = src.IV[i-src.lower_bound ];

}

for (i = 0; i <= src_minT -src.lower_bound; i++) {

dest ->IV[dest_minT+i].index = srcIV[i].index +
dest_minT + dest -> lower_bound;

dest ->IV[dest_minT+i].value = srcIV[i].value;

};

for (j = i+1; j < dest -> upper_bound; j++) {

dest -> IV[j].index = j + dest -> lower_bound;

}

i = 1;

while (dest ->T[i-1] != 0) {

if (dest ->T[i-1] > T[0]){

T=realloc(T, (i+1)*sizeof(int));

T[i] = dest ->T[i-1];

}

i++;

}

free(srcIV);

free(dest ->T);

dest ->T=T;

}

else {

dest -> upper_bound = src_minT - src.lower_bound +
dest_minT + 1;

destIV = malloc ((dest -> upper_bound) * sizeof (
index_value));

for (i = dest -> lower_bound; i <= dest_minT; i++) {

destIV[i-dest ->lower_bound ].index = dest -> IV[i-dest ->
lower_bound ].index;

destIV[i-dest ->lower_bound ].value = dest -> IV[i-dest ->
lower_bound ].value;
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}

for (i = 0; i <= src_minT -src.lower_bound; i++) {

destIV[dest_minT+i-dest ->lower_bound ].index = i +
dest_minT;

destIV[dest_minT+i-dest ->lower_bound ].value =
src.IV[i]. value;

}

freeM_string(dest);

dest -> T = T;

dest -> IV = destIV;

}

return dest;

}

if (( split_src -> s !=NULL) && (split_dest -> s == NULL)) {

int j;

int src_minT = src.T[0];

index_value *destIV = NULL;

int upper_bound = src_minT - src.lower_bound + dest ->
upper_bound + 1;

destIV = malloc (( upper_bound)*sizeof(index_value));

for (i=dest -> lower_bound; i < dest -> upper_bound; i++){

destIV[i-dest ->lower_bound ].index = dest -> IV[i-dest ->
lower_bound ].index;

destIV[i-dest ->lower_bound ].value = dest -> IV[i-dest ->
lower_bound ].value;

}

for (j = i; j <= src_minT+i-src.lower_bound; j++) {

destIV[j-dest ->lower_bound ].index = j;

destIV[j-dest ->lower_bound ].value = src.IV[j-i].value;

};

dest -> upper_bound = upper_bound;

T = malloc(sizeof(int));

T[0] = src_minT+i-src.lower_bound;

freeM_string(dest);
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dest ->IV = destIV;

dest ->T=T;

}

if (( split_src -> s == NULL) && (split_dest -> s != NULL)) {

int j, k;

index_value *destIV = NULL;

int dest_minT = dest -> T[0];

int upper_bound;

if (( dest_minT+src.upper_bound) > dest -> upper_bound) {

upper_bound = dest_minT+src.upper_bound;

}

else {

upper_bound = dest -> upper_bound;

}

destIV = malloc(upper_bound * sizeof(index_value));

for (i = dest -> lower_bound; i < dest_minT; i++) {

destIV[i-dest ->lower_bound ].index = dest -> IV[i-dest ->
lower_bound ].index;

destIV[i-dest ->lower_bound ].value = dest -> IV[i-dest ->
lower_bound ].value;

}

for (j = i; j < i + src.upper_bound; j++) {

destIV[j-dest ->lower_bound ].index = j;

destIV[j-dest ->lower_bound ].value = src.IV[j-i-
src.lower_bound ]. value;

}

for (k = j; k < upper_bound; k++) {

destIV[k-dest ->lower_bound ].index = dest -> IV[k-dest ->
lower_bound ].index;

destIV[k-dest ->lower_bound ].value = dest -> IV[k-dest ->
lower_bound ].value;

}

dest -> upper_bound = upper_bound;

freeM_string(dest);

dest ->IV = destIV;
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dest ->T = NULL;

}

if (( split_src -> s == NULL) && (split_dest -> s == NULL)) {

int j;

index_value *destIV = NULL;

int upper_bound = dest -> upper_bound + src.upper_bound;

destIV = malloc(upper_bound * sizeof(index_value));

for (i=dest -> lower_bound; i < dest -> upper_bound; i++){

destIV[i-dest ->lower_bound ].index = dest -> IV[i-dest ->
lower_bound ].index;

destIV[i-dest ->lower_bound ].value = dest -> IV[i-dest ->
lower_bound ].value;

}

for (j = i; j < i + src.upper_bound; j++) {

destIV[j-dest ->lower_bound ].index = j;

destIV[j-dest ->lower_bound ].value = src.IV[j-i-
src.lower_bound ]. value;

}

dest -> upper_bound = upper_bound;

freeM_string(dest);

dest ->IV = destIV;

dest ->T = NULL;

}

freeSplit(split_src);

freeSplit(split_dest);

return dest;

}

/* --------- m_strlen function ----------- */

int m_strlen(const quintuple q) {

int len;

if(q.T != NULL) {

len = q.T[0]-q.lower_bound; /* + 1; */

}
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else {

len = -1;

}

return len;

}

/* --------- m_strchr function ----------- */

quintuple *splitTOquintuple(const m_split *split , int index) {

int i,j;

int ivcounter = 0;

int tcounter = 0;

quintuple *res = malloc(sizeof(quintuple));

segment *s = split -> s;

if (index < 0) {

return NULL;

}

res -> rho = f_rho;

res -> lower_bound = s[index].lb;

res -> upper_bound = s[split ->ssize -1].ub + 1;

res -> IV = malloc ((res -> upper_bound) * sizeof(index_value)
);

res -> T = NULL;

for(i = index; i <= split -> ssize; i++) {

for(j = 0; j < (s[i].ub - s[i].lb); j++) {

res -> IV[ivcounter ]. value = s[i].c;

res -> IV[ivcounter ]. index = res -> lower_bound +
ivcounter;

ivcounter ++;

}

}

res -> IV[res -> upper_bound - res -> lower_bound -1]. value =
'\0';

res -> IV[res -> upper_bound - res -> lower_bound -1]. index =
res -> upper_bound - 1;

for (i = res -> lower_bound; i < res -> upper_bound; i++) {
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if (res -> IV[i - res -> lower_bound ].value == '\0') {

if (res -> T == NULL) {

res -> T = malloc(sizeof(int));

}

else {

res -> T = realloc(res -> T, (tcounter +1)*sizeof(int));

}

res -> T[tcounter] = i ;

tcounter ++;

}

}

return res;

}

/* --------------------------------------- */

quintuple *m_strchr(const quintuple q, int c) {

int i = 0;

int index = -1;

m_split *split_q = split(q);

segment *s = split_q -> s;

if (s != NULL) {

for (i = 0; i < split_q -> ssize; i++) {

if(s[i].c == (char) c) {

index = i;

i = split_q -> ssize;

}

}

if (index > -1) {

return splitTOquintuple(split_q , index);

}

}

else {

printf("\nError: there is no string of interest !\n");
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}

freeSplit(split_q);

return NULL;

}

/* --------- m_strcmp function ----------- */

int m_strcmp(const quintuple q1 , const quintuple q2) {

int i = 0;

m_split *split_q1 = split(q1);

m_split *split_q2 = split(q2);

segment *sq1 = split_q1 -> s;

segment *sq2 = split_q2 -> s;

if ((sq1 != NULL) && (sq2 != NULL)) {

for (i = 0; i < split_q1 -> ssize; i++) {

if (sq1[i].c == sq2[i].c) {

if (sq1[i].ub - q1.lower_bound > sq2[i].ub -
q2.lower_bound) {

return (sq1[i].c - sq2[i+1].c);

}

if (sq1[i].ub - q1.lower_bound < sq2[i].ub -
q2.lower_bound ) {

return (sq1[i+1].c - sq2[i].c);

}

}

else if (sq1[i].c != sq2[i].c) {

return (sq1[i].c-sq2[i].c);

}

}

}

else {

printf("\nError: there is no string of interest !\n");

}

freeSplit(split_q1);

freeSplit(split_q2);
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return ERR_NO_INTEREST_STRING;

}

/* --------- m_strmdf function ----------- */

void m_strmdf(quintuple *q, char c, int j) {

int *T = NULL;

int i;

int k = 0;

int limit = q -> upper_bound;

m_split *split_q = split(*q);

if (split_q -> s != NULL) {

if (j >= q -> lower_bound && j < limit ) {

q -> IV[j]. value = c;

for (i = q -> lower_bound; i < limit; i++){

if (q -> IV[i - q->lower_bound ].value == '\0') {

if (T == NULL) {

T = malloc (sizeof(int));

}

else {

T = realloc (T, (k+1) * sizeof(int));

};

T[k] = q->IV[i - q->lower_bound ]. index;

k++;

}

}

free(q->T);

q->T = T;

}

}

else {

printf("\nError: there is no string of interest !\n");

}
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freeSplit (split_q);

}

/* -------------- SUFFIX.C --------------- */

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include "my_array.h"

#include "m-string.h"

/* --------------------------------------- */

int ivcmp(const index_value *IV1 , const index_value *IV2){

while (IV1 && IV2 && (IV1 ->value == IV2 ->value)) {

IV1 ++;

IV2 ++;

}

return ((const unsigned char) IV1 ->value - (const unsigned
char) IV2 ->value);

}

/* --------- sorting algorithm ----------- */

void BubbleSortSuffix (int *A, const quintuple q, int len) {

int sorted = 0;

int i;

for (i = 0; i <= len && !sorted; i++){

int j;

sorted = 1;

for (j=len; j>i; j--) {

if (ivcmp (&q.IV[A[j-1]], &q.IV[A[j]]) > 0) {

int temp = A[j-1];

A[j-1] = A[j];

A[j] = temp;

sorted = 0;

}

}

}
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}

/* --------------------------------------- */

void SortSuffix (int *A, const quintuple q, int len) {

BubbleSortSuffix(A, q, len);

}

/* ----------- suffix array -------------- */

int *SuffixArray(const quintuple q, int len){

if (q.T != NULL) {

int i;

int *sa = malloc ((len + 1) * sizeof(int));

if (sa) {

for ( i = 0; i <= len; i++) {

sa[i] = i;

}

SortSuffix(sa, q, len);

}

return sa;

}

return NULL;

}

/* ------ m_strchr suffix function ------- */

quintuple * m_strchr_suffix (const quintuple q, int c) {

int *sa;

int i;

m_split *split_q = split(q);

segment *s = split_q -> s;

if ( s != NULL) {

sa = SuffixArray(q, q.T[0]);

if (sa != NULL) {

for (i = 0; i <= q.T[0]; i++) {

if (q.IV[sa[i]]. value == c) {
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int j = 0;

while ((j <= split_q -> ssize) && (s[j].c != c)) {

j++;

}

return splitTOquintuple(split_q , j);

}

}

}

free(sa);

}

else {

printf("\nError: there is no string of interest !\n");

}

return NULL;

}

/* ------------ glue operator ------------ */

quintuple glue (const quintuple q1 , const quintuple q2) {

quintuple glue;

int i;

int k = 0;

glue.lower_bound = q1.lower_bound;

glue.upper_bound = q1.T[0] + q2.T[0] + 2;

glue.IV = malloc (glue.upper_bound * sizeof(index_value));

glue.T = NULL;

for (i = 0; i < glue.upper_bound; i++) {

glue.IV[i].index = i;

if (i <= q1.T[0]) {

glue.IV[i].value = q1.IV[i].value;

}

else {

glue.IV[i].value = q2.IV[i-q1.T[0] -1]. value;

}
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if (glue.IV[i].value == '\0') {

if (glue.T == NULL) {

glue.T = malloc(sizeof(int));

}

else {

glue.T = realloc(glue.T,(k+1) * sizeof(int));

}

glue.T[k] = i;

k++;

}

}

return glue;

}

/* ------- longest common prefix -------- */

int * Compute_LCP_Array (const quintuple G, int *sa, int len){

int i;

int *lcp = NULL;

if (sa != NULL) {

lcp = malloc ((len +1) * sizeof(int));

lcp [0] = -1;

for (i = 1; i <= len; i++) {

int j = 0;

index_value *IV1 = G.IV+sa[i];

index_value *IV2 = G.IV+sa[i-1];

while(IV1 && IV2 && (IV1 ->value == IV2 ->value)) {

IV1 ++; IV2 ++; j++;

};

lcp[i] = j;

}

}

return lcp;

}
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/* ------ m_strcmp suffix function ------- */

int m_strcmp_suffix(const quintuple q1 , const quintuple q2 , int
*LCPlen) {

int i, u, v;

int *sa , *H;

m_split *split_q1 = split(q1);

m_split *split_q2 = split(q2);

if (( split_q1 -> s != NULL) && (split_q2 -> s !=NULL)) {

int posu = 0;

int posv = q1.T[0] + 1;

quintuple G = glue(q1 , q2);

sa = SuffixArray(G, G.upper_bound -1);

H = Compute_LCP_Array(G, sa , G.upper_bound -1);

for (i = G.lower_bound; i < G.upper_bound; i++){

if (sa[i] == posu) { u = i; }

if (sa[i] == posv) { v = i; }

}

if (u < v) {

if (u == v-1) {

*LCPlen = H[v];

return -1;

}

if (u < v-1) {

int j = 1;

int existLCP = 1;

while ((j <= v-u) && (existLCP ==1)) {

if ((H[u+j-1] == 0) || (H[u+j] ==0) || (H[u+j-1]
< H[u+j])) {

existLCP = 0;

}

j++;

}

if (existLCP) {



136 Chapter A. M-String library - Implementation

*LCPlen = H[v];

}

else {

*LCPlen = 0;

}

return -1;

}

}

else {

if (v == u - 1) {

if ((H[u] == q1.T[0] + 1) && (H[u] == q2.T[0] + 1)) {

*LCPlen = q1.T[0] + 1;

return 0;

}

else {

*LCPlen = H[u];

return 1;

}

}

else {

int j = 1;

int existLCP = 1;

while ((j <= u-v) && (existLCP ==1)) {

if ((H[v+j-1] == 0) || (H[v+j] ==0) || (H[v+j-1] <
H[v+j])) {

existLCP = 0;

}

j++;

}

if (existLCP) {

*LCPlen = H[u];

}

else {
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*LCPlen = 0;

}

return 1;

}

}

free(sa);

free(H);

}

else {

printf("\nError: there is no string of interest !\n");

}

return 0;

}
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