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Abstract

In this thesis we present several different approaches for constructing generative models
to be used in both graphs and shapes. The central problem that we address in this work
is how data that are defined in a non-vectorial space can be processed in order to tackle
problem like data clustering and classification.

While there exists a huge framework of techniques that deal with classification and
regression with real-valued data which can be embedded into the Euclidean vector space,
dealing with data that lay in different spaces is another matter. As an example, relational
graphs represent a convenient way to represent real world data. However, working with
graphs presents two problems: firstly, the order over the vertices of a graph is arbitrary.
Secondly, the number of vertices may vary among different graphs. This leads to several
practical problems when it comes to define statistical quantities like mean and variance
of the data. Working with shapes brings similar issues. Methods of shape analysis field
are often defined on manifolds which represent different spaces. In order to define a
common intrinsic-space, a map between the surfaces must be defined. However, finding
such map in a non-rigid setting presents several issues, in particular from a dimension of
the problem point of view.

One solution is to define an embedding space endowed with an intrinsic measure
in which a statistical framework is used to learn the parameters of a generative model.
Such model can then be used, for example, in classification tasks. In the first part of
the thesis we introduce two generative models for shape classification. Both methods
are based on spectral descriptors. However, in the first one we lift the one-to-one node-
correspondence assumption. In the second approach, in which we study the variations of
a metric defined on a special manifold, we deal the problem of missing correspondences
casting it as a bipartite matching problem. Finally, we present a technique based on
functional correspondences that computes an injective map between two surfaces.

In the second part we deal with the problem of embedding data represented as rela-
tional graphs. In particular, the first methods we present is based on the spectral compo-
nents of a graph which are used to define a generative model. In another work, we lift the
problem of the missing common intrinsic space by generalizing a structural kernel based
on the Jensen-Shannon divergence. Finally, we investigate the use of multi-graph match-
ing techniques in the context of graph kernels and how to transform any given matching
algorithm to a transitive multi-graph matching approach.





Sommario

In questa tesi presentiamo diversi approcci per la costruzione di modelli generativi utiliz-
zati sia su grafi sia su modelli. Il problema principale su cui questo lavoro verte riguarda il
problema di processare dati che vengono definiti in spazi non vettoriali in modo da poterli
utilizzare in operazioni di clustering e classificazione.

In letteratura sono state proposte un gran numero di tecniche utilizzate per la classifi-
cazione e la regressione di dati reali che possono essere immersi in uno spazio vettoriale
Euclideo. Processare dati che giacciono in spazi differenti è una questione diversa. Ad
esempio, i grafi rappresentano un mezzo conveniente per rappresentare dati provenienti
dal mondo reale. Purtroppo lavorare con i grafi presenta diverse difficoltá. Innanzitutto,
l’ordine dei vertici di un grafo è arbitrario. Inoltre, il numero di vertici è variabile tra grafi
differenti. Questo porta a diversi problemi di natura pratica quando si vogliono definire
quantitá statistiche come la media e la varianza dei dati. Lavorare con le forme porta
a problematiche simili. I metodi proposti per l’analisi delle forme sono spesso definiti
su varietá che rappresentano spazi diversi. Per definire uno spazio intrinseco comune è
necessario trovare una mappa tra le superfici. Tuttavia, trovare tale mappa può risultare
particolarmente ostico (in particolare se trasformazioni non rigide sono coinvolte), soprat-
tutto dal punto di vista della dimensione del problema.

Una possibile soluzione consiste nella definizione di uno spazio di embedding su cui
é stata definita una misura intrinseca. Su tale misura é possibile definire un framework
statistico in modo da imparare i parametri che contraddistinguono un modello generativo.
Tale modello può quindi essere utilizzato, tra le altre cose, per la classificazione dei dati.
Nella prima parte di questa tesi introduciamo due modelli generativi per la classificazione
di forme. Entrambi i metodi presentati utilizzano descrittori spettrali. Tuttavia, nel primo
approccio non assumiamo che la corrispondenza tra i vertici sia nota. Nel secondo in-
vece, studiamo la variazione di una metrica definita in una varietá speciale e gestiamo il
problema della mancanza delle corrispondenze proiettandolo in un problema di match-
ing bipartito. Infine, presentiamo una tecnica basata sulle corrispondenze funzionali che
calcola la mappa iniettiva tra due superfici.

Nella seconda parte della tesi affrontiamo il problema dell’embedding dei dati rapp-
resentati da grafi relazionali. In particolare, il primo metodo proposto é basato sulle com-
ponenti spettrali di un grafo che vengono utilizzate per definire un modello generativo.
In un altro lavoro, eliminiamo l’assunzione di spazio intrinseco comune generalizzando
un kernel basato sulla divergenza di Jensen-Shannon. Infine, investighiamo l’utilizzo di



tecniche di matching multi-grafo nel contesto di kernel sui grafi e come é possibile trasfor-
mare un qualsiasi algoritmo per il matching in un algoritmo per il matching multi-grafo
transitivo.
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1
Introduction

In 1959, Arthur Samuel defined machine learning as a “Field of study that gives computers
the ability to learn without being explicitly programmed” [158]. In fact, the machine
learning field can be seen as the answer given by artificial intelligence researchers on how
a machine could learn from data.

The modern approach to the machine learning is closely related to statistics, and pro-
vide useful tools in the definition of models that can be used to “understand” data. In
these years, the researchers produced a large amount of different approaches that can be
classified as machine learning approaches. Decision tree learning is an example of such
approaches in which a predictive model is build using a decision tree which maps ob-
servations about an object to conclusion about the object’s target value. Artificial neural
networks are another interesting example of learning algorithm that is inspired by the
structure and functionalities of biological neural networks (i.e. brain simulation). Several
other tools can be counted in the machine learning toolbox, from clustering techniques,
Bayesian networks, dictionary learning and genetic algorithms. Most of them will be
introduced in the literature review chapter, while the others are just tangential to the ob-
jective of this thesis and thus will not be covered.

The majority of the research in the machine learning field concerns with classifica-
tion and regression for real-valued data which can easily be embedded into the Euclidean
vector space. Unfortunately, the real world does not work always so straightforwardly.
Indeed, in real world problems data are often highly structured, characterized by combi-
nation of features (e.g., natural language and speech processing), a sequence of symbols
(e.g. bioinformatics), a mixture of different modalities, may have missing variables, etc..
The data represented in such structured way are often referred to as non-vectorial data,
and the items which belong to this category can be one dimensional structures (e.g. se-
quences), two dimensional (e.g. images), three dimensional (e.g.molecular descriptions),
trees (e.g. xml documents), or other hybrid and not-so-easily classified data structures.

More generally, objects which are not given in a vectorial form, and thus objects
that do not have an intrinsic-space, fall in the non-vectorial data class. The first issue
which raises from the adoption of a non-vectorial representation for the data is the need
of a different way to process them and different learning techniques must be employed.
To address this problem, various methods have been proposed. A common approach is
to embed the structures in Hilbert spaces (e.g. via Kernels), or try to extract and select
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Figure 1.1: Example of surfaces used in the shape retrieval or shape registration tasks.
Here, each vertex is coloured with the corresponding component of the first non-trivial
eigenvector of the mesh Laplacian computed on the surface itself.

features (and their embedding spaces). Furthermore, proximity based approaches, param-
eter constraints in Graphical Models, Inductive Logic Programming, Decision Trees, or
hand-crafted models have been applied to tackle the non-vectorial data problem by the
community of researchers.

The main goal of this thesis is to devise novel learning techniques which are able to
deal with data that are represented in a non-vectorial fashion. In particular, we deal with
this problem from two points of view through the definition of generative models to be
used in classification tasks and explore several approaches to embed non-vectorial data in
some common intrinsic space.

In the first part of the thesis we review the literature relevant to the work proposed
in the subsequent parts. As mentioned above, even if the main goal is to deal with non-
vectorial data in all their forms, here we focus mainly on classification and embedding
tasks. In particular, we introduce learning techniques whose input are both shapes and
relational graphs (structure-based represented data). Classification methods applied to
the surface world are often called shape retrieval methods, and regard the ability to re-
trieve similar 3D objects given a query object. Furthermore, the objects yielded as output
should be ordered by similarity, which implies that some kind of metric is defined in order
to compute numerically how similar two surfaces are. An example of surfaces represent-
ing the database to be queried is shown in figure 1.1. Assuming the first shape (centaur on
the left) to be the query object, a good shape retrieval algorithm should yield the second
shape (the same centaur in a different pose) as the first object of the result set since the
similarity computed between the two centaurs should be much higher with respect to the
one computed with the other surfaces. Indeed, the first two surfaces represent the same
“shape”, just in different poses. In the rest of the thesis we will denote with shape the
quotient group of surfaces modulo isometries. We refer to surfaces when we want to de-
note a specific exponent of such group (i.e. a shape in a particular pose). More formally,
a surface is defined as a smooth compact 2-manifold S without boundary isometrically
embedded in the Euclidean space R3 with geometry induced by the embedding. Unfortu-
nately, such manifold is usually unknown or too hard from a dimensional point of view to
deal with. Hence, a discrete approximation of such surface which takes the name of mesh
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Figure 1.2: Example of a sparse set of correspondences between three pairs of surfaces.

is usually used. It approximates the surface as a triangulated set of vertices.
One of the first problem that must be faced when defining an algorithm that deals with

surfaces is the dimension of the problem space. As said above, a mesh is the embed of a
surface in R3. In order to get a good (i.e. fine) approximation of the underlying surface, a
high number of vertices is needed. But if the number of vertices is too high, the algorithm
developed to process them becomes too slow. As often happens in this field of research,
the code word here is compromise.

Another problem regards the number of classes of transformation that surfaces may
undergo. In the simpler scenario, surfaces are all the same up to isometries (i.e. rotation,
translation, scale changes, etc.). In the more challenging setting of non-rigid surfaces,
the distances between points are not preserved. Transformations like dilation and stretch
are an example of non-isometric transformations. As a result, when devising techniques
to deal in this setting through the definition of an embedding method or defining a new
similarity measure, the classes of transformation by which the defined metric should be
invariant must be chosen accurately.

In this thesis we deal with the shape retrieval problem through the definition of two
generative models. Generative models come from probability and statistics and specify a
joint probability distribution over observations. In particular, a generative model answer
to the question “how could I generate the data of a certain set of observation?”. Gener-
ative models are characterized by a set of parameters which are learned from a training
set of data during a learning phase. If employed in the classification task, such param-
eters are used to define a posterior probability used to assign an observation to the class
which yields the highest probability. Generative models are widely used when data are
in vectorial form, but due to the problems outlined above, it is difficult to construct vec-
torial representation out of non-vectorial ones. In particular, the lack of correspondences
between the points of two surfaces is the problem to address.

This leads to the second problem this thesis deal with, namely the shape matching
problem. The problem can be defined as the finding a meaningful relation (i.e. mapping)
between points of two or more surfaces. In a discrete setting, this could be interpreted as
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list of correspondences between vertices of two meshes. Obviously, the problem is not
restricted to the discrete case, but is often defined in a continuous setting in which we
seek for a continuous smooth map between surfaces. More formally, given two manifolds
N and M , we seek for a map T : N → M such that y = T (x), ∀x ∈ N and ∀y ∈ M .
An example of the process is shown in figure 1.2. In particular, the image shows a set of
sparse correspondences between three pairs of surfaces. From a practical point of view,
the solution to this problem boils down to the formulation of an optimization process
which usually try to minimize some intrinsic distortion induced by the mapping. Thus, the
distortion metric used in the process is central for the success of the proposed approach,
and the same observations about distortion metrics made before still holds. Finally, note
that the intrinsic distortion induced by a mapping could be used as a similarity measure
of surfaces, hence shape registration algorithms are often employed as part of a shape
retrieval pipeline.

In the second part of the thesis we present our result on the shape analysis field. In
particular, we present two generative models to deal with the shape retrieval problem.
Finally, we present a novel technique based on the functional maps.

The first attempt at solving the shape retrieval problem is showed in Chapter 5. It is
defined as a supervised data-driven approach whose main goal is the construction of a
generative model based on the spectral decomposition of the Laplace-Beltrami operator
of a discrete surface. The statistical framework defined in the chapter models a shape
as two independent models for the eigenvector and the eigenvalue components of the
spectral representation of the Laplacian, making no assumption about the distribution
of the spectral embedding space of the eigenvector part and estimating it through kernel
density estimation. Moreover, the eigenvalues are assumed to be log-normally distributed.

In Chapter 6 we show another supervised learning method for the definition of an
invariant representation of an arbitrary shape. The main contribution is the definition of
an efficient intrinsic metric to approximate the geodesic distance between points over a
manifold. Furthermore, we propose an approximative approach to deal with the lack of
correspondences between surfaces. In the experimental section we show how the perfor-
mance of the proposed approach are tied to the quality of the approximate solution to the
registration task.

Finally, in Chapter 7 we tackle the surface registration problem directly, defining a
novel approach to the computation of dense correspondence maps between shapes in a
non-rigid setting. The problem is defined in terms of functional correspondences. One
problem with the functional map framework is that the correspondences are only intrinsi-
cally captured by the map between the functional spaces and the extracted transformation
between functions is not guaranteed to correspond to a bijective point-wise mapping be-
tween points in the two shapes. A symptom for this problem is given by the fact that
impulse functions on one surface are mapped onto diffuse functions over the other shape,
resulting in a fuzzy assignment. Further, even selecting the maximum of the mapped
function over the target shape as the corresponding point as suggested in the original
work, this results in a non-injective set of correspondences, with several correspondences
clustered in relatively few points on the target shape (see Figure 1.3). We deal with
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Figure 1.3: Example of non-injectivity of the functional map solution. Here, the maxi-
mum of the mapped function over the target shape is selected as the corresponding point,
resulting in many-to-one relation between the mesh and the target one.

the non-injectivity of the solution of the functional map framework due to the under-
determinedness of the original problem. Key to the approach is the injectivity constraint
plugged directly into the problem to optimize, achieved by casting it as an assignment
problem. This leads to an iterative process which yields a high quality bijective map be-
tween the shapes. In the experimental section we present both quantitative and qualitative
results, showing that the proposed approach is competitive with the current state-of-the-art
on quasi-isometric shape matching benchmarks.

In the third part of the thesis we tackle the non-vectorial data problem from the
structured-data point of view. In order to do so, we propose a generative model to tackle
the graph classification task. Such model is detailed in Chapter 8. In particular, we intro-
duce a novel model of structural representation based on a spectral descriptor of graphs
which lifts the one-to-one node-correspondence assumption and is strongly rooted in a
statistical learning framework. The generative model is defined as the combination of
two separate models, one for the eigenvalues and one for the eigenvectors. We assume
these models to be independent, and we tackle the graph classification task through the
definition of a posterior probability whose parameters are learned from a training set (su-
pervised learning).

In Chapter 9 we show how to generalize a structural kernel based on the Jensen-
Shannon divergence between quantum walks over the graph. In particular, we introduce
a novel alignment step which, rather than permuting the nodes of the structures, aligns
the quantum states of their walks. We prove that the resulting kernel maintains the local-
ization within the structures, but still guarantees positive definiteness. We test our kernel
against a number of alternative graph kernels and we show its effectiveness in a number
of structural classification tasks.

In the final chapter of the third part of this thesis we investigate the use of multi-graph
matching techniques in the context of graph kernels. By forcing the correspondences
between the structures under study to satisfy transitivity, we obtain an alignment kernel
that, not only is positive definite, but also makes use of more reliable locational informa-
tion obtained through the enforcement of global consistency constraints. We proposed a
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general framework for the projection of (relaxed) correspondences onto the space of tran-
sitive correspondences, thus transforming any given matching algorithm to a transitive
multi-graph matching approach. The resulting transitive correspondences where used to
provide an alignment-based kernel that was able to both maintain locational information
and guarantee positive-definiteness. Experimental evaluation shows that the projection
onto the transitive space almost invariably increases the classification performance of the
alignment kernel, often taking it to a performance level that is at least statistically equiv-
alent to the best performing well-tuned graph kernels present in the literature.

Finally, in Chapter 11 we give our conclusions. In particular, we give a summary of
the contributions we have made in dealing with non-vectorial data, which is the common
denominator of this thesis. Then, we show a selection of future work that we would like
to pursue in the near future.



I
Literature Review





2
Related work

As introduced in previous chapter, the machine learning field can count on a large arsenal
of techniques that deal with classification and regression. Unfortunately, the majority of
these techniques are defined on real-valued data which can be easily embedded into the
Euclidean vector space. Clearly, the world is often far more complex than a vector, and
graphs and manifolds are ubiquitous in several research fields, like language processing,
bioinformatics or shape analysis. All the problems studied in these fields have a common
denominator: they all involve some sort of non-vectorial data.

The goal can be achieved in several ways. For example, a first approach consists of
defining techniques directly in the space of the data (e.g. graph space). Even if this seems
to be the more straightforward solution, there are some issues that restrict the applica-
tion of such methods. The first one is the dimension of the problem space. For exam-
ple, search-based deterministic approaches defined to solve the shape matching problem
(i.e. find an injective map between two shapes) can be applied only to very small shapes.
The second issue is related to the lack algebraic properties in those spaces, despite the
numerous theoretical results obtained on graphs, for example.

Alternatively, we can define techniques that allow to embed non-vectorial data into a
vectorial space. One of the drawbacks is the “representativeness” of the embedded data.
Indeed, an important aspect to consider when using a technique to embed data in a vecto-
rial space is the amount of information preserved and lost. Usually, different techniques
tend to preserve different aspects (portions) of the original data. For example, a technique
may focus on preserving the global structural information of the data, while another could
focus on local characteristics. Another issue that we are going to deal with when “select-
ing” the embedding technique to use in the solution of a problem is the similarity metric
we are going to employ. Indeed, an embedding technique is worth as much as how dis-
criminative can be the embedded data. The key point of an embedding technique is the
definition of the injective map that project the data into another space and some metric
that allows to define what similar means in the problem we are dealing with. For ex-
ample, with a feature extraction technique applied to a graph, we are able to represent a
graph as a feature vector. The more similar (for some similarity function) a set of feature
vectors (extracted from a set of graphs) are, the less discriminative (with respect to that
similarity function) the embedding technique result. So, the problem involves much more
than the mere injective map to be used. On the other hand, the definition of an embed-
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ding technique into a vectorial space allows to use the whole (and huge) machine learning
framework that have been studied and perfected for years by the researcher community.

In this part of the thesis, we introduce some of the most interesting techniques that
deal with non-vectorial data. In particular, we present different techniques, some dealing
with graphs while others with shapes. The trivial difference between these techniques are
the space in which they are defined. For example, shape analysis techniques exploit the
properties of topological spaces and the branch of mathematics that studies problems in
geometry (i.e. differential geometry). This is due to the fact that a shape (i.e. surface) is
formally defined as a smooth compact 2-manifold without boundary with a neighbour-
hood that is homeomorphic to the Euclidean space of dimension 2. Furthermore, the
surface can be properly embedded within a three-dimensional real space. Hence, we can
draw a parallel with the paragraphs above and define both techniques that work directly
on the manifold or on the embedding space (with all the issues mentioned above).

Most of these techniques will not work when applied to the graph space, since graphs
are mathematical structures used to model pairwise relations between objects. Graphs are
usually defined as ordered pair of a set of vertices and a set of links among these vertices
(i.e. edges), and since the order over the vertices of a graph is arbitrary and the number of
vertices in each sample graph may vary, dealing with them is often problematic.

However, there are some frameworks that can be used to deal with both graph spaces
and shape spaces. Spectral theory is an example of such frameworks. Spectral theory is
a branch of linear algebra that deals with the spectrum of a matrix (i.e. the results of an
eigendecomposition). The eigen-system of the Laplacian matrix is used, for example, to
compute the heat kernel (i.e. the fundamental solution to the heat equation). The study
of the evolution of the heat kernel over time has been used effectively to characterize the
object from which it has been computed. Since the Laplacian matrix is defined in both a
graph and a shape version (graph Laplacian and mesh Laplacian respectively), the study
of the heat kernel has been used to characterize both shapes and graphs.

In the next two chapters we will propose a review of works related to the goals of this
thesis. In particular, in Chapter 3, several shape analysis approaches are presented. Here,
we will focus on methods that attempt to solve the shape matching problem (i.e. define a
correspondence map between two shapes) and methods that deal with the shape retrieval
problem. In Chapter 4, we will review some of the most interesting approaches that deal
with graphs, like graph features extraction methods, graph similarity metrics and graph
matching problem solutions.



3
Shape Analysis

In this chapter we will review literature relevant to the work that is described in the sec-
ond part of the thesis. In particular, we will explore several approaches that deal with
the shape matching problem and the shape retrieval problem. Central in this topic is the
definition of shapes. A shape is usually defined as a surface which is invariant to rigid
and non-rigid transformations, or, quoting D.G. Kendall [100], a shape is ‘what is left
when the differences which can be attributed to translations, rotations, and dilatations
have been quotiented out’. A representation of such shape is modelled as a smooth com-
pact 2-manifold without boundary isometrically embedded in the Euclidean space R3 with
geometry induced by the embedding. Unfortunately, the underlying surface is usually un-
known (or too complex to work with). Hence, a discrete representation of a particular
instance (i.e. a particular pose) is used. It is usually called 3D mesh, a triangulated set
of points that approximates the surface. In order to get a faithful approximation of the
underlying surface, a finer discretization (i.e. a discrete representation with a high num-
ber of faces) is needed. Unfortunately, this also increase the dimension of the problem
space. Indeed, this is one of the first issues that must be faced when working in the shape
analysis field. Different approaches deal in different ways to the dimension problem. For
efficiency purposes, the meshes are usually simplified in order to work with more man-
ageable data structures. Furthermore, an entire set of meshes representing the same shape
in different poses could be needed (in particular if we are dealing with the shape retrieval
problem) in order to approximate the shape as defined above. An explanatory example is
represented by the human body shape. To understand the shape of a single subject, and
in particular to understand the shape of an articulated object, a set of meshes depicting
such shape must be used in order to catch the possible variations by which the shape can
undergo. Figure 3.1 shows an example of such set. In particular, it shows two shapes
(both human being, a female on the left and a male on the right) represented through a set
of four meshes of the shape in different poses.

The shape retrieval problem regards the ability to retrieve similar 3D objects given a
query object. It has become of great importance in several field, like medical research,
automatic information retrieval systems and copyright protection. The main challenge in
3D object retrieval algorithms is to define an invariant representation of a shape capable
of capturing geometrical and topological properties of a shape [20, 147, 175]. A large
number of methods for 3D shape retrieval have been proposed [10, 98, 127, 140, 167], but
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Figure 3.1: Example of two shape (female and male) in different poses, represented by a
set of four discrete representation of the shape.

most of them are only suitable for the representation of rigid 3D shapes. Non-rigid 3D
shape descriptors are more challenging to define. Indeed, those representations still need
to capture the most distinctive properties of a shape, but they should be also insensitive
to many other transformations (e.g. inelastic transformation, acquisition resolution, noise,
etc.).

On the other hand, methods that attempt to solve the shape matching problem usu-
ally try to retrieve a map between two meshes. It is important to note that the map is
not necessarily defined between vertices of the two meshes, but could be, for example, a
continuous map between the meshes. Several successful approaches have been proposed
in the rigid setting, while in the non-rigid one the problem remains difficult, even if we
limit the space of deformations to approximate isometries. This is due to the fact that
the rigid matching allows to represent the deformations compactly (i.e. a rotation and a
translation), while in the non-rigid setting the problem is cast in terms of correspondences
(of points or regions), rendering the space of the solution untreatable. Nevertheless, sev-
eral popular approaches have been proposed in the previous ten years. These approaches
can be divided into sparse [32, 102, 142, 151] and dense [103, 141]. Sparse approaches
strive to extract a few good point correspondences between the shapes under exam and,
in general, trade completeness for precision, while dense approaches strive to extract the
full bijection between isometric shapes.

Even if the two problem have significant differences (in both the definition and the
approaches employed in their solutions), it is important to note that they are tightly tied
since the shape retrieval problem, which regards the clustering of shapes in classes, can
make use of shape matching techniques to define similarity metrics. Furthermore, shape
matching methods are often employed as a pre-processing step in many shape retrieval
methods [69,153]. Indeed, one of the main issues when defining a shape retrieval problem
is the unknown correspondence map between two meshes, since it prevents the definition
of compact representatives that lie in the same intrinsic space.
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3.1 Shape Retrieval
The ability to retrieve similar 3D objects given a query object has become of great impor-
tance in several field, like medical research, automatic information retrieval systems and
copyright protection. The main challenge in 3D object retrieval algorithms is to define
an invariant representation of a shape capable of capturing geometrical and topological
properties of a shape [20, 147, 175]. A large number of methods for 3D shape retrieval
have been proposed [10,98,127,140,167], but most of them are only suitable for the rep-
resentation of rigid 3D shapes. Non-rigid 3D shape descriptors are more challenging to
define. Indeed, these representations still need to capture the most distinctive properties
of a shape, but they should be also insensitive to many other transformations (e.g. inelastic
transformation, acquisition resolution and noise etc.).

Various methods have been proposed to address the non-rigid shape retrieval prob-
lem. These can be mainly categorized according to two main directions: topology-based
approaches against surface-based methods and the employment of shape descriptors that
can be local or global.

3.1.1 Surface-based methods
With surface-based methods we denote the approaches that try to represent a shape as a
frequency histogram of deformation invariant local distances or vertex signatures. Sur-
face based methods are quite popular in the research community due to their highly ef-
fective representation ability and low memory requirement. In this section we will deal
in particular with methods that exploit spectral shape analysis in order to build a spectral
descriptor.

Rustamov [155] propose a deformation invariant representation of surfaces, called
the GPS embedding (Global Point Signature. It uses the eigen-system of the Laplace-
Beltrami differential operator. In previous works, the geodesic distance has been used
to define a deformation invariant representation, since the geodesic distance is somewhat
invariant to natural articulation of shapes. Unfortunately, geodesic distance is sensitive
to topology changes. The GPS embedding is a possible answer to this problem and is
based on combining the Laplace-Beltrami eigenvalues and eigenfunctions. The Laplace-
Beltrami operator is a natural choice for this application since its eigenfunctions are in-
trinsic in the sense that allows to associate values to points on the surface that are in-
dependent on the surface embedding. Given a point p on the surface, the Global Point
Signature GPS(p) is defined as the infinite-dimensional vector

GPS(p) =
(

1

λ1
φ1(p),

1

λ2
φ2(p),

1

λ3
φ3(p), . . .

)
where φi (p) is the value of the eigenfunction φi at the point p. The first eigenfunction,
which is associated with the eigenvalue 0, is the constant one, hence it is left out in the
signature definition. GPS can be seen as a map of the surface into an infinite-dimensional
space. The image of such map is what the author call the GPS embedding of the surface.



14 3. Shape Analysis

GPS embedding owns several properties. First, GPS embedding is an isometry invariant,
which means that two isometric surfaces will have the same image under the GPS map-
ping. Second, the GPS embedding is absolute in the sense that it is not subject to rotations
or translations of the ambient infinite-dimensional space.

From a more practical point of view, the computation of the GPS and its image is
made within a discrete setting. In particular, the eigendecomposition is performed on
the discrete Laplacian defined in [197]. Once the GPS embedding is computed, it is
subdivided into adjacent patches which are used to compute the histogram of pairwise
distances between the points sampled from the surface. The result is a set of histograms
that capture the distribution of distances between points one of which belongs to one inter-
shell patch, the other to another patch. In the experimental section, the author shows the
behaviour of the proposed signature in a shape classification task.

Sun et al. [174] propose a point signature based on the heat kernel. It takes the name
of Heat Kernel Signature (HKS), and is obtained by restricting the heat kernel to the
temporal domain. The heat kernel is the fundamental solution to the heat equation. Let
M be a compact Riemannian manifold. The heat diffusion process over M is governed by
the heat equation

∆M u(x, t ) =−∂u(x, t )

where ∆M is the Laplace-Beltrami operator of M . Let f : M →R be the initial heat distri-
bution. Let Ht ( f ) be the operator that satisfies the heat equation for all t . Furthermore, for
the spectral mapping theorem, Ht ( f ) = exp{−t∆m}, meaning that the Laplace-Beltrami
operator and the heat operator share the same eigenfunctions and if λ is an eigenvalue of
∆M , then e−λt is an eigenvalue of Ht corresponding to the same eigenfunction. For any
manifold in the form of M , there exists a function kt (x, y) : R+×M ×M →R such that

Ht f (x) =
∫

M
kt (x, y) f (y)d y

The minimum function that satisfies the above equation is called the heat kernel. The
heat kernel represents the evolution of temperature in a region whose boundary is held
fixed at a particular temperature. The eigendecomposition of the heat kernel is expressed
as

kt (x, y) =
∞∑

i=0
exp(−λi t )φi (x)φi (y)

where λi and φi are the i th eigenvalue and eigenfunction of the Laplace-Beltrami operator
∆M . The heat kernel has many useful properties. For example, it is symmetric, isometric
invariant and very stable. Refer to the original work [174] to get a comprehensive list of
the properties and their proofs.

As mentioned above, in order to get a concise feature descriptor, the authors restrict
the heat kernel to the temporal domain. As a result, the heat kernel signature is defined as
follow
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kt (x, x) =
∞∑

i=0
exp(−λi t )φ2

i (x)

Unfortunately, like in the work proposed by Rustamov [155] and introduce above, the
underlying manifold of the object is not known. Instead, a discrete representation of the
shape is used (i.e. a mesh). In this setting, the HKS can be computed (approximated)
starting from a discrete representation of the Laplace-Beltrami operator. In their work,
the authors follow the algorithm proposed by Belkin et al. [16], since it offers point-wise
convergence guarantees and was experimentally shown to be quite robust. Let L be the
mesh Laplacian. The eigensystem is computed through eigendecomposition of L, such
that L = ΦΛΦT . In particular, Λ is a diagonal matrix of eigenvalues of L, ordered by
magnitude, while Φ is the matrix of corresponding orthonormal eigenvectors. With the
spectral components at hand, the heat kernel can be defined as

Ht =Φexp(−tΛ)ΦT

The elements ht (i , j ) represents the heat diffusion between vertices i and j after time
t . The HKS is then given by the diagonal entries of this matrix, sampled at discrete time
intervals.

The HKS presents some limitations. The first one is related to the presence of the
time parameter, which is chosen heuristically but with no guarantees. Furthermore, HKS
is able to efficiently characterize a shape up to isometries if the eigenvalues of the sur-
face are non-repeating. This is the case of shapes with internal symmetries. Finally, the
performance guarantees for HKS only hold for truly isometric transformations. However,
deformations for real shapes are often not isometric (i.e. topology changes).

In another seminal work, Aubry et al. [12] propose the Wave Kernel Signature (WKS).
Like in the work described above, the goal is to characterize points on non-rigid shapes.
The WKS is based on the quantum mechanics theory, since it represents the average
probability of measuring a quantum mechanical particle at a specific location. The trick
here is to let the energy of the particle to change, which allows the WKS to encodes and
separates information from various different Laplace eigenfrequencies.

Like in the definition of the HKS, the basic idea is to characterize a point x by the
average probabilities of quantum particles of different energy levels to be measured in
point itself. The evolution of a quantum particle on the surface is governed by the wave
function ψ(x, t ), which is a solution to the of the Schrödinger equation:

∂ψ

∂t
(x, t ) = i∆ψ(x, t ) (3.1)

The huge difference between the wave equation and the heat equation lies in the in-
duced dynamics, oscillations in the former and dissipation in the latter. A common lim-
itation between the two approaches is represented by the assumption that the Laplace
eigen-system of the shape has no repeated eigenvalues. In this case, the wave function is
defined as
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ψE (x, t ) =
∞∑

i=0
e i Ek tφk (x) fE (Ek )

where fE is an energy probability distribution with expectation value E . The authors
choose to not consider the time parameter since it has no straightforward interpretation
in the characteristics of the shape. Hence, they define the WKS in terms of the average
probability over time to measure a particle in x, getting to the final (refer to the original
work for the details) function definition:

W K S(E , x) =
∞∑

i=0
φ2

k (x) f 2
E (Ek )

By fixing a family of these energy distributions fi (x), the WKS can be obtained as a
discrete sequence {p f1 (x), . . . , p fn (x)}.

Another interesting result is the proposed stability analysis of eigenenergies. In par-
ticular, they show that the eigenenergies of an articulated shape are log-normally dis-
tributed random variables. This results has been used in several contributions of this
thesis (i.e. [3, 4]). In the experimental section, the authors show that the WKS allows for
more accurate feature matching even when the data are strongly perturbed.

An extension to the HKS has been proposed by Bronstein and Kokkinos [33]. They
propose a scale-invariant version of the heat kernel descriptor. The construction of this
new signature is based on a logarithmically sampled scale-space in which shape scaling
corresponds to a translation up to a multiplicative factor. The Fourier transform of this
HKS changes the time-translation into the complex plane, and the dependency on trans-
lation can be eliminated by considering the modulus of the transform.

In particular, given a shape S and given a scale parameter β, the HKS can be define as

hS(x, t ) =
∞∑

i=0
e−λiβ

2tφ2
i (x)β2 =β2hS(x,β2t )

The local normalization of the heat kernel signature defined in this work begin by
sampling the heat kernel signature logarithmically in time (i.e. t = ατ) for each point of
the shape. Then, in order to remove the multiplicative constant from the equation above,
the discrete derivative of the logarithm of hS is computed, turning the multiplicative fac-
tor into an additive constant which then vanish in the differentiation. Finally, taking the
modulus of the Fourier Transform of the result of the derivative, we obtain the scale-
invariant quantity, which takes the name of SI-HKS. For the numerical computation of
the heat kernel signature, a discrete version of the Laplace-Beltrami operator is used. In
particular, the authors rely on the cotangent weight scheme [145]. The experimental sec-
tion presents results in both shape retrieval and shape matching tasks on the ShapeGoogle
Database [31], a popular non-rigid shape retrieval benchmark.

Gong et al. [73] propose two kinds of semantic signatures. The key idea is that hu-
mans are capable of describing an object using attributes like “symmetric” or “flyable”
or using its similarities with other objects. Hence, in this work the authors propose to
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translate such qualitative descriptions into attribute signature and reference set signature
and use them for the shape retrieval task. The former is defined as a set of attributes
(i.e. symmetry, flexibility, rectilinearity, circularity, dominant-plane, long, thin, swim, fly,
stand with leg and natural, all associate to a binary value). For each attributes a detec-
tor (a binary classifier) is trained on a training set (supervised training). The detector
will yield a probability measure of the presence of a certain attribute given an object. To
train the detector, LIBSVM is employed with an RBF kernel. Since the svm require a
vectorial representations of the objects, the authors used the depth buffer descriptor, the
wavelet transform and the mutual absolute-angle distance histogram as complementary
shape features. Then, the attribute signature is built concatenating detectors output.

AS(x) = {
(p(ai |x)

}11
i=1

In order to compare two objects x and y , a dissimilarity measure is defined as the
weighted sum of a divergence measure:

d(x, y) =
11∑

i=1
wi f (p(ai |x), p(ai |y))

where f (px , py ) is the symmetric Kullback-Leibler divergence.
On the other hand, the reference set signature is based on the idea that humans often

describe an object by similarities with respect to other known object (or class of objects).
Let C = {

c j
}n

j=1 be the set of considered classes, and let s j (x) be the similarity of the
object x with respect to class j . Then the reference set signature of the shape x is defined
as

RSS(x) = (s1(x), s2(x), . . . , sn(x))

The similarity function is compute again with LIBSVM using the same shape features
mentioned above. In the experimental section the authors assess the quality of the defined
signature over two shape retrieval datasets.

Reuter et al. [149], in the seminal work know as “Shape-DNA”, propose a signature
(also called fingerprint in the work) of a two or three dimensional manifold (i.e. a surface
or a solid) by taking the eigenvalues of its Laplace-Beltrami operator. In particular, it
is the normalized beginning sequence of the eigenvalues of the Laplace–Beltrami oper-
ator. Differently from the approaches seen before, here the authors are not casting the
proposed method in a discrete setting by computing the spectrum in the mesh Laplacian.
Since the spectrum is symmetry invariant, it is independent of the object’s representation
(both parametrization and spatial position). Furthermore, uniform scaling factors can be
obtained easily by eigenvalues normalization. Therefore, in order to compare two objects,
only the spectrum is needed. The resulting fingerprint consist of a family of non-negative
numbers (i.e. eigenvalues) that can be compared easily and fast, allowing to employ the
method to time critical task like database retrieval. In this work, the input is represented
by a parametrized shapes (e.g. NURBS curves) on which the Laplace-Beltrami operator
is computed. The eigenvalues of such differential operator are computed using the Finite
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Element Method. Like the DNA, this signature is not guaranteed to be unique, but it is
still capable of performing really well in the task of shape retrieval.

El Khoury et al. [101] propose a solution to the shape retrieval problem based on
indexed closed curves generated from an invariant mapping function defined on the mesh
using the commute time distance. The first step involves the detection of feature points
in the shape. These points will then be used in order to define a scalar function based on
the commute time distance. The diffusion distance is the metric used to extract feature
points. The diffusion distance is computed as the Euclidean distance but in the spectral
embedding space. In particular, given the time parameter t and K (t , x, y) the heat kernel
between the points x and y , the diffusion distance is defined as

dS(t , x, y) = ‖K (t , x, x)−K (t , y, y)‖L2(S)

A point is a feature point if the diffusion distance with respect to its one-ring neigh-
bourhood is the lower.

With a set of feature points at hand, the mapping function can be defined using the
commute time distance. Let ψi and λi be the i -th eigenfunction and eigenvalue computed
on the discrete Laplacian of the shape. The commute time distance is define as

dcS(x, y)2 =
∞∑

i=1

1

λi

(
ψi (x)−ψi (y)

)2

Hence, the mapping function Fm is defined for each vertex of the mesh as the max-
imum commute time distance between the point and all the feature point defined above.
The minimum of such function corresponds to the farthest vertex among all feature points,
which is then used to generate indexed closed curves. The value of the mapping function
at that point is then used as a scalar factor. Here, each curve describes a small region
of the shape, and through the similarity measure defined in [94] (a metric that assesses
how similar two curves are), a similarity value between the sets of curves of two shapes
is produced. Finally, such similarity measure is used to address the shape retrieval task.

Jain and Zhang [88] propose to represent a shape by the eigenvectors of an affinity
matrix, forming a spectral embedding invariant to rigid-body transformations, uniform
scaling and shape articulation (i.e. bending). Given a discrete representation of a shape
(i.e. a mesh) with n vertices, the authors aim at computing an n ×n affinity matrix A
such that each entry ai j represents the affinity between vertex i and vertex j . The eigen-
system of the affinity matrix is then computed through eigendecomposition, yielding the
ordered vector of eigenvalues and the corresponding normalized eigenvectors. The eigen-
vectors are then scaled by the square-root of the corresponding eigenvalues (to decouple
the eigenvectors value from the number of vertices of the mesh). Finally, the first k scaled
eigenvectors are retrieved in order to construct the spectral embedding.

In order to compute a spectral embedding which is invariant to shape articulation,
an affinity matrix based on the geodesic distance between intra-points of the mesh is
employed. In their work, the authors tackle the problem of disconnected parts within a
shape by defining a heuristic approach to the computation of an approximate geodesic
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distance matrix. Once such matrix is computed, the Gaussian affinity matrix can be built
as follow

Ai j = e−
d2

i j

2σ2

where d 2
i j is the approximate geodesic distance between vertices i and j while σ is the

Gaussian width. In the proposed work, the authors select the maximum distance between
all the vertices of the mesh as the Gaussian width. For efficiency purposes, the com-
putation of the affinity matrix and of the eigen-system of A is achieved using Nyström
approximation [60].

The first spectral descriptor that is proposed in the work takes the name Eigenvalue
Descriptor. The eigenvalues of the affinity matrix represent the variation of the shape
along the axes represented by the corresponding eigenvectors. The first issue that arises
from this definition regards the spaces in which those spectral descriptors lie. Indeed,
eigenvalues are affected by both mesh size and resolution. Thus, they cannot be used
directly in a comparison between different descriptors. However, since the spectrum is
yielded by Nyström approximation (which returns the first k eingevalues), it is sufficient
to choose the same k for all the shapes in order to make the affinity matrices comparable.
With the descriptor at hand, the authors define the dissimilarity measure as

DEV D (X ,Y ) = 1

2

k∑
i=1

(
|λX

i | 1
2 +|λY

i |
1
2

)2

|λX
i | 1

2 +|λY
i |

1
2

The second spectral descriptor that the authors propose takes the name Correspon-
dence Cost Descriptor. Here, the distance between two shapes is derived from the corre-
spondence between the vertices of two shapes. In particular, let ΦX and ΦY be the matrix
with the first three eigenvectors of the shape X and Y respectively. Let matchY (p) be a
function that yields the vertex of Y which is in correspondence with p. Finally, let Φ(i )
be the i -th row of the spectral embedding. Then, the dissimilarity measure is defined as

DCC D (X ,Y ) = ∑
x∈X

‖ΦX (x)−ΦY (matchY (x))‖

To assess the performance of the proposed descriptors, the authors test both approaches
with the McGill database [170] of articulated shapes in the shape retrieval task.

Litman and Bronstein [118] propose a parametric spectral descriptor that is learned
taking into account both the statistics on the shape and the class of transformations to
which the descriptor is made insensitive. In particular, they propose a data-driven ap-
proach to learn the descriptor from examples. To this end, a learning scheme based on the
Wiener filter and related to the Mahalanobis metric is presented. The work seeks the solu-
tion to the drawbacks from which the heat and wave kernel descriptors suffer. The WKS is
known to emphasize local-scale feature. This results in a higher sensitivity (i.e. enhanced
positives identification). On the other hand, HKS emphasizes global features, which leads
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to a higher specificity (i.e. enhanced negatives identification). Furthermore, both descrip-
tors suffer of overlapping elements in what the authors call the frequency response (i.e. the
descriptors components).

Another drawback of both the heat and wave kernel descriptors is the fact that the
frequency responses forming their elements have significant overlaps. As the result, the
descriptor has redundant dimensions. Finally, the only invariance that both the descriptors
assure is with respect to truly isometric deformations. This is clearly not the standard
setting, since most shapes undergo non-isometric transformations, in particular along the
articulations.

The authors suggest to build a descriptor which generalizes the heat and wave ker-
nel emphasizing information-carrying frequencies while attenuating noise-carrying ones
through a learning process. The descriptor takes the same form of the HKS and WKS,
and can be defined as

p(x) = ∑
i≥1

f(λi )φ2
i (x)

parametrized by a vector f(λ) = ( f1(λ), . . . , fn(λ))T of frequency responses. Differ-
ently from the HSK and WKS, here the f(λ) is not restricted to positive values. Let
b1(λ), . . . ,bm(λ) be a fixed basis which spans a sufficiently wide interval of frequencies
(e.g. [0,λmax]). Then the frequency response vector can be rewritten as f(λ) = Ab(λ),
where A is an n ×m matrix of coefficients representing the response using the basis b.
Taking the first k elements of the spectrum, the descriptor definition can be rewritten as

p(x) = A(b(λ1), . . . ,b(λk ))

φ1(x)
...

φk (x)

= Ag(x)

where g(x) is a vector whose elements are defined g j (x) =∑
i≥1 b j (λi )φ2

i (x). g(x), which
takes the name geometry vector, captures all the shape-specific geometric information
about the point x.

The adopted learning scheme aims at finding the coefficients matrix A introduced
above. Given a set of classified shapes to be used in the learning process, the authors aim
at finding a matrix A minimizing the Mahalanobis distance over the set of positive pairs,
while maximizing it over the negative ones. The efficacy of the descriptor is assessed
using the the TOSCA and SCAPE datasets in a shape retrieval task, with the spectrum of
the shapes computed using the same finite elements scheme introduced above and used to
compute the WKS.

Huang et al. [84] build the signature directly over local features, selecting discrimina-
tive volumetric features over pre-aligned shapes. In particular, the problem of multi-label
shape classification (i.e. a shape can belong to multiple classes) is addressed. This is a
semi-supervised method that takes a homogeneous shape collection with sparse and noisy
labels as an input and yields a refined version (label-wise) of such collection.
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The approach counts three different steps. Let S = Si |1 ≤ i ≤ N be the shapes collec-
tion which belong to the same category. The shapes are assumed to be aligned in the same
way (up-right direction along z axis) and normalized. In order to made-up the training
set, the labels associated to each shapes are known. In the first step, the shapes are aligned
(matched) with each other. The process is divided in two phase. The first is the global
phase, in which an affine transformation for each shape is computed jointly. The result
is a roughly aligned set of shapes. The second phase takes the name of local phase, and
it consists of a jointly optimization of a free-form deformation for each shape in order to
improve the raw alignment.

In the second step a distance metric is learned for each class. The goal here is to
define a metric that allows to minimize intra-class differences and maximize inter-class
differences. This stage exploits the fact that the shapes belong to the same space (first step
result) and the authors define a distance metric as a linear combination of several other
primitive distance metrics, each involving a different descriptor.

The final stage of the approach uses the learned distances to build a similarity graph
for each class. Then, graph based multi-label classification is performed in order to as-
sign a class (or more) to each shape. The authors propose a select-from-candidate strategy
(i.e. pre-process a list of good candidate to be tested) in order to handle even large col-
lections of shape. Finally, the authors show in the experimental section that the proposed
method is competitive with respect to the state-of-the-art multi-label shape classification
techniques.

The aggregation of local descriptors in order to build a global descriptor is a general
thread in the literature. For this purpose, the Bag-of-Features (BoF) paradigm is quite
popular and has been successfully applied to 3D shape description [31, 50, 109, 177]. Li
and Hamza [114] used the BoF paradigm combining the exploitation of hierarchical struc-
tures of the shape, such as pyramid matching [74] and spatial relationship [31, 50, 109].
They proposed to adopt the eigenfunction associated with the second-smallest eigenvec-
tor of the Laplace-Beltrami operator in order to build a global surface coordinate system
which is insensitive to shape deformation, showing that the introduction of global spatial
context could improve the effectiveness of their descriptor in 3D shape recognition. Spa-
tial pyramid [110, 114, 120], is the term used to identify this approach. Other approaches
inspired by text-analysis have been proposed. For instance, in [22, 82] the authors adopt
higher-order models defining relations between “geometric words”.

Within the bag of features model, features quantization is generally performed through
unsupervised learning. Departing from this approach, Litman et al. [117] recently pro-
posed a new supervised BoF framework mapping the discriminative training directly into
the dictionary construction step. In particular, the authors define a task-specific dictionary
learning approach designed specifically to deal with the shape retrieval task. Interestingly,
both positives and negatives examples are used in the learning process of the dictionary.
The whole process can be interpreted as supervised metric learning, with the key differ-
ence with respect to other approaches of this kind that the metric learning is not pursued
linearly (allows to learn more complicated metrics).

Spectral local descriptors like the HKS and its scale-invariant variation (i.e. SI-HKS)
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have been already introduce above. Refer to the beginning of this chapter for their formal
definition. Here, we will introduce the Bag Of Features approach. Let X be a matrix k×n
collecting a set of k dimensional feature vectors, one for each point p in a mesh, such that

X = (x1, . . . , xn) = (x(p1), . . . , x(pn))

A Bag of Feature is defined as a global descriptor of a shape built through a quan-
tization process in which the local descriptors are replaced by the closest entries in a
geometric dictionary. This first step is followed by the computation of the frequency of
appearance of these geometric words (i.e. representative descriptors). Hence, the geomet-
ric dictionary is a collection (column-wise) of geometric words and can be defined as a
k × v matrix D = (d1, . . . ,dv ). The geometric dictionary is built commencing from a large
dataset of shapes and using clustering techniques on the descriptors computed on them
(e.g. k-means). So, given a dictionary D and the matrix X , the quantization process (also
known a vector quantization) mentioned above can be defined for each local descriptor x
as

i∗ = argmin
i=1,...,v

‖x−di‖2

Hence, the quantization process yields the index of the geometric word of the dictio-
nary which is closest to the descriptor. The index is the used to build an indicator vector in
which all components are 0 except the i -th one. As a result, the v ×n matrix Z∗ contain-
ing the indicator vector for each point of the shape. With the matrix X, D and Z∗ at hand,
the pooling phase can be defined. The goal is to compute the frequency of appearance of
different geometric words on the shape while taking into account possible non-uniform
sampling (i.e. weighting each point by its area element). The result is a v-dimensional
vector containing such frequencies and that takes the name of bag-of-features vector.

All the steps from the descriptor matrix to the bag-of-features vector are independent
with respect to each other. Since this could lead to worse discriminative performance
(i.e. loss of invariances), the authors propose a different approach to the construction of
the BoF. In their work, the authors propose to replace the quantization step with sparse
coding. This results in a Z∗ matrix in which each column has more elements with a value
different from 0 which represents the magnitude of similarity with that particular geo-
metric word. Furthermore, instead of the unsupervised dictionary learning, the authors
adopt a supervised approach which maximized the end-to-end retrieval performance. In
particular, the supervised learning problem is defined as a bi-level minimization problem
in which even negative examples are used in the learning process. Also, this supervised
learning is embedded into the same optimization problem defined to solve synthesis prob-
lem (i.e. the problem solved using sparse coding). This reduce the independence between
the different stages and which lead to a task-specific dictionary that yields better perfor-
mance.
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3.1.2 Topology-based methods

Topology-based approaches capture the global topological structure of the shape. These
methods exploit the topological relations between surface features, often coding them as
graphs that can be compared through matching algorithms.

Hilaga et al. [80] propose a technique called Topology Matching, in which similarity
between polyhedral models is calculated by comparing a variant of the Reeb graph build
on the shape. The Reeb graph tracks topology changes in level sets (i.e. a set of points
where the function attains a given value) of a scalar function. In particular, in their work
the authors define the Multiresolutional Reeb Graphs. The key idea is to develop a series
of Reeb graphs for an object at various levels of detail. In order to build the Reeb graph
for a certain level set, the surface is partitioned into regions which depend on the function
used. A new component in the graph is created when a critical point is met (e.g. minimum,
maximum or saddle point, region centroid, etc.). Components that belong to adjacent re-
gions are connected (the type of connection depends on the type of critical point). In order
to obtain Reeb graphs of different resolutions, the regions are furtherly partitioned and the
process is repeated. In the shape analysis field, the Reeb graph is obtained by partitioning
the object surface following regular intervals of the function values, and linking the con-
nected regions to each other. In each interval, a node is associated to a set of connected
triangles (the triangles that belong to that particular region). In this work, the authors use
the geodesic distance (i.e. shortest path over the surface between two points, computed in
this work using Dijkstra’s algorithm) as the function to be used to partition the shape in
intervals since it is invariant to translation and rotation and it is also robust with respect
to mesh simplification or subdivision (i.e. change in connectivity).

The resulting graph represents the skeletal and topological structure of a 3D mesh
at various levels of resolution, and can be used as a search key in a shape dataset. The
authors employ a coarse-to-fine (coarse resolution Reeb graphs first) strategy to compute
the similarity between 3D objects, trying to establish a correspondence between their
parts. The performance of the proposed method is assessed in both matching between
shapes and on a small shape retrieval dataset.

Exploiting the invariance of medial descriptor (i.e. shock graphs) to transformation
like traslation, rotation, scale, articulation and within-class deformation, Macrini et al. [126]
propose an algorithm to compute a medial shape abstraction that deals with the liga-
tures instability issue. A medial descriptor describes a shape as a set of connected parts
(e.g. limbs of a human shape), but often suffers of instability along the parts attachment.
They introduce a heuristic-driven ligature analysis whose first step involves the detection
of all the ligatures in the skeleton. Then, in order to address the problem that more than
one skeletal segment can represent the same shape part, they define a set of rules that
analyse ligature properties, detecting locations of over and under segmentation, editing
the skeleton accordingly. The result is a new skeleton. In addition, they present a novel
graph abstraction of medial structure that partitions the skeleton into its bone graph. In
the experimental section, the authors assess the efficacy of the resulting bone graph in
object recognition and pose estimation tasks.
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Li and Hamza [112] propose a skeleton path based approach to analyse and retrieve
non-rigid 3D shapes. The main idea is to match skeleton graphs by comparing the
geodesic paths between skeleton end-points. In their work, the authors prove the sta-
bility of the geodesic path between two endpoints in presence of articulation-point. The
approach is defined as a two-phase process.

The first phase aims at computing the skeleton paths of a shape, and begin with the
curve-skeleton extraction. In particular, the authors use the algorithm proposed by Cornea
et al. [47]. The algorithm computes the curve-skeleton by computing repulsive force field
over the shape and uses topological characteristics of the resulting vector field like critical
points and critical curves to define the curves (sequence of skeleton points that identify a
curve) of the skeleton. With the skeleton at hand, the proposed method proceeds with the
detection of the endpoints. They are simply defined as the points in the skeleton having
only one adjacent point. Articulation-points, on the other hand, are points with three or
more adjacent points. Connection points are those points with an adjacency degree of two.
The final step of phase one is the construction of the skeleton paths, which are simply the
shortest path between all pairs of endpoints detected in the skeleton.

The second phase of the proposed work is the endpoints matching between endpoints
of two different skeletons. They define a matching cost based on optimal subsequence
bijection algorithm [108] to build a dissimilarity matrix for each pairs of endpoints in the
matched skeletons. Finally, the Hungarian algorithm [26] to compute a one-to-one cor-
respondence map between the endpoints. To address the diverse dimensionality problem
between skeletons, the authors pad the dissimilarity matrix with constant values based on
the dissimilarity computed, obtaining a square matrix.

In the experimental section, the authors assess the performance of the proposed ap-
proach by applying it to symmetric components discovery, skeleton matching and shape
retrieval.

3.2 Shape Matching
The shape matching problem plays a central role in computer graphics and geometry
processing fields. Solutions to this problem have multiple applications, ranging from
texture mapping to animation, to name just a few. Several successful approaches have
been proposed in the rigid setting, while in the non-rigid one the problem remains difficult,
even if we limit the space of deformations to approximate isometries. This is due to
the fact that the rigid matching allows to represent the deformations compactly (i.e. a
rotation and a translation), while in the non-rigid setting the problem is cast in terms of
correspondences (of points or regions), rendering the space of the solution untreatable.
The shape matching approaches that will be reviewed in this section can be categorized
into three different class. In section 3.2.1 methods that deal with the sparse matching
problem are presented. These methods usually trade the injectivity of the mapping with
a hopefully more reliable sparse correspondence set. On the other hand, in section 3.2.2
we present a collection of methods that deal with the dense matching problem. Figure 3.2
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Figure 3.2: Sparse set of correspondences extracted using [151] on three different shapes.

shows some examples of sparse matching results.

3.2.1 Sparse Matching
The first approach that we present in this section is the Generalized Multidimensional
Scaling [32] (GMDS). This method copes with both a sparse and a dense solution to the
matching problem. In particular, it can be defined as a procedure that computes the map
that best preserves the inter-geodesic distances while embedding one surface into another.

The input of this method are two surfaces S and Q endowed with a metric dS and
dQ and represented by their discrete approximation SN and QN . Let Ψ be an isometric
embedding from Q to S , i.e.Ψ : Q →S . The partial embedding distance (PE) is defined
as

dPE (S ,Q) = inf
Ψ:Q→S

dis Ψ

and measures the metric distortion while using the “most isometric” embedding between
Q and S . Here, dis Ψ is a measure of the distortion of the isometric embedding (i.e. if
dis Ψ= 0, then Ψ is an isometry while S and Q are isometric).

Let DSN = dSN (si , s j ) and DQN = dQN (si , s j ) be respectively the geodesic distance
matrices between the vertices of SN and QN . In particular, in this work the fast marching
method (FMM) is used to compute such matrices.

The first step of the GMDS algorithm involves the embedding of the sampled surfaces
into an m-dimensional Euclidean space by a near-isometric embedding. This is achieved
by minimizing the “generalized stress function”, a stress function defined as follow.

σp (U;DQN ,dS ,W) =
(

1∑
j>i wi j

∑
j>i

(wi j (dS (ui ,u j )−dQ(qi , q j )))p

) 1
p

where U represents the positions of the points of S in a local or global parametric co-
ordinates ui , while W is a symmetric weight matrix. In the paper the authors show that
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the minimization of the generalized stress function leads to the computation of the partial
embedding distance. Let USN = argminU;DQN ,dS ,W) be the canonical form of S . Both
canonical forms are then aligned in Rm by diagonalizing the matrix of the second-order
moments of the canonical form and re-arranging the axes in a decreasing order. Once both
shapes are embedded in the new space, a metric based on high dimensional moments is
used to compare them from a distortion point of view. Such distance is then used in a
rigid matching setting to easily find a match between the meshes.

Lipman and Funkhouser [116] propose an algorithm to find sparse point correspon-
dences between surfaces that are approximately isometric. The method exploits the key
idea that isometries are a subset of the Möbius group. Another interesting idea presented
by the authors is that the deviation from isometry can be modelled as transportation-like
functions between corresponding points.

In particular, given two genus zero surfaces S and Q, the authors suggest to search
for near-isometries in the space of Möbius transformations since it contains the entire set
of conformal maps between the surfaces. The low dimensionality of Möbius transfor-
mations are exploited by first mapping the two discrete representations of the surfaces
(i.e. meshes) to the extended plane Ĉ = C∪ {∞} with the mid-edge flattening scheme.
Then, the meshes are sampled using the farthest point algorithm. This yields two uniform
sets of points of both meshes. Finally, the algorithm generate triplets of potential point
correspondences randomly and for each triplet the unique Möbius transformation is used
to map into a canonical domain. In this space, the deformation error (i.e. deviation from
isometry) between mapped point is computed. Such error measures are then accumulated
in a fuzzy correspondence matrix which is used to find the set of correspondences through
a greedy algorithm. As a refinement step, a final set of correspondences is extracted using
validating correspondences using the geodesic consistency between matches.

A work based on similar consideration is the one proposed by Kim et al. [102]. They
propose a method for automatic and robust detection of intrinsic symmetries. The keys
idea are that critical point of the average geodesic distance function can be exploited to
detect symmetry invariant points. Furthermore, intrinsic symmetries are self-isometries
of surfaces which are contained in the Möbius group.

The algorithm is divided in three steps. The first one aims at extracting a sample of
symmetric points. Let S be the surface whose intrinsic symmetries must be retrieved. In
particular, this step produces two sets of points. A coarse one which is used to produce
anti-Möbius transformations (i.e. Möbius transformations augmented with a reflection),
while the dense one is used to find the final set of correspondences. The key idea in
constructing a symmetry-invariant set is to extract critical points of a symmetry invariant
function. The average geodesic distance is used in this context. In a continuous setting,
such function is defined as

Φag d =
∫
S

dg (p, q)dvolS (q)

where p, q ∈ S . In the discrete setting, given a mesh S = (V ,E) where V are the ver-
tices while E the edges, the symmetry invariant sets are computed by approximating the
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geodesic distances on the surfaces with Dijkstra’s algorithm. Then, the average geodesic
distance to all vertices is computed as

ˆΦag d = ∑
v j∈V

Ai

3
dg (vi , v j )

with Ai the area of the 1-ring neighbourhood of vertex i . The critical points are then
selected inside this neighbourhood (both maxima and minima).

The second step seeks for the anti-Möbius transformations and involves the compu-
tation of several stages. In the first one, the mesh is mapped to the extended complex
plane Ĉ introduced above. Then, the coarse symmetry invariant set is used to generate
triplets and quadruplets which will be the candidate anti-Möbius transformations. In or-
der to prune the generating set, a heuristic approach is used. In particular, the distance
between two matched points is checked and if lower of a threshold, the set is pruned.
Even if the average geodesic distance is too similar between two matched points the set
is pruned. Finally, each candidate anti-Möbius transformations is associated with a score
which measures the quality of the alignment (i.e. how well the transformations align the
surface with itself).

The final step aims at extracting the correspondences from the dense symmetry-invariant
set exploiting the anti-Möbius transformations computed in the previous step. The pro-
cess commences applying the best anti-Möbius transformations to this set of points and
mapping back to the surface. Then, the pairs of points that are geodesically mutually
closest are extracted. Those points are then used within the dense set to predict more cor-
respondences. This is done computing a feature vector for each non-assigned point based
on the geodesic distance with respect to each assigned points. Then, a deviation measure
over these feature vectors is defined and the pairs that yields the smallest deviation are
selected as points into correspondence.

The proposed approach is finally tested over several challenging datasets of meshes.
Among the limitations, the proposed method cannot deal with small symmetric parts and
heavily relies on the smoothness of both the mesh and the symmetry invariant function.

Ovsjanikov et al. [142] propose a spectral method to deal with intrinsic symmetries,
isometric shape matching and partial and incomplete models matching. The method is
based on the heat kernel and on the definition of what is called the heat kernel map.

Given a compact Riemannian manifold M without boundary, let u(x, t ) : M×R+ →R+

be the amount of heat at a point x after timer t for some initial heat distribution f . u
satisfied the heat equation and can be computed using the heat operator Ht , defined as

u(x, t ) = (Ht f )(x) = (
e−t∆M f

)
(x) =

∫
M

kM
t (x, y) f (y)d y

with∆M the usual Laplace-Beltrami operator computed on the manifold M while kM
t (x, y)

is the heat kernel. Intuitively, the heat kernel yields the heat value on the point y from the
point x after time t . The heat kernel owns several interesting properties, like its invariance
to isometry (i.e. intrinsic) and it is multiscale (through the time parameter).
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Figure 3.3: Example of feature points extracted from two meshes which represent the
same elephant. p and p represent a landmark. In the graph, the Heat Kernel Map Φp (x)
computed on the feature points over time. Points with the same color are into correspon-
dence.

Another interesting result reported by the authors is that, given two compact con-
nected Riemannian manifold without boundary M and N , if a map T from M to N then
kM

t (x, y) = kN
t (T (x),T (y)) for all the points in the manifold.

Furthermore, the authors show that the multi-scale property of the heat kernel allows
to approximate its value for small values of t by the heat kernel of a small geodesic
neighbourhood of a point x. From these considerations, the author introduce the heat
kernel map (HKM).

Given a fixed source point p, the HKM ΦM
p : M → F (F the space of the functions

from R+ to R+) of any point x is defined as

ΦM
p (x) = kM

t (p, x)

In other words, the HKM define a feature vector for each point x of the manifold.
Furthermore, any point of the manifold can be used as the source point p. As an extension
of the property introduced above, the authors show that under mild genericity conditions,
the HKM is injective, i.e. ΦM

p (x) =ΦM
p (y) iff x = y . Hence, since any isometry T : M → N

must preserve the heat kernel, then for any point x ∈ M , ΦM
p (x) =ΦN

p (T (x)) holds. Thanks
to the injectivity of the map, the authors conclude that for every point x ∈ M there exist a
unique corresponding point T (x) ∈ N such that the heat kernel is preserved.

From a practical point of view, the authors implement what described above as a four
stages process. The first one is the feature detection and aims at extracting a subset of
relevant points. For this purpose, the local maxima of the heat kernel signature with a
large time parameter t is used. Hence, a point x ∈ M is extracted as a feature point if
kM

t (x, x) > kM
t (y, y) for each y belonging to the two ring neighbourhood of x. These fea-

ture points, that have been shown to be robust and reliable, are the input of the second
stage, namely the single feature matching. Here, the compatibility between pairs of fea-
ture points of different shapes is tested. In particular, let p ∈ M be a feature point of M ,
while Q ⊂ N is the feature points extracted from N . For each qi ∈ Q, the quality of the
match is computed as



3.2. Shape Matching 29

Figure 3.4: Performance of [142] in the symmetry detection scenario. In particular, the
right image shows intrinsic detection without the augmentation of the HKM with the
HKS. The right one has been augmented. The graph shows the quality of the match using
different discretization of the Laplace-Beltrami opearator.

E(p, qi ) = ∑
x∈M

min
y∈N

∥∥ΦM
p (x)−ΦN

qi
(y)

∥∥
and the pairs that yield the highest quality value are selected as initial matches. Which,

in turns, are used as the input of the third phase, namely the correspondence propagation
stage. The authors here use a very simple propagation rule exploiting the injectivity of
the HKM. Given a pair of points in correspondence (p, q), the propagation is defined as

f (x) = argmin
y∈N

∥∥ΦM
p (x)−ΦN

q (y)
∥∥

Thus, each point of N is associated to the point of M whose HKM is closer. The
fourth and last stage deals with the non-perfectly-isometric problem. Indeed, most of the
shapes are not a perfect isometry with respect to another, even if they represent the same
shape. In order to make the proposed method more robust, the authors introduce two
heuristics that improve the quality of the results. The first regards the augmentation of
the HKM of a certain point by concatenating the HKS computed on the same point. The
second assume the knowledge of a landmark, which is a known correspondence between
two shapes. The heat kernel signature compute in both the points of the landmark are
then used to augment the HKM again by simply concatenating them. Figure 3.3 shows an
example of the proposed approach.

The resulting algorithm is tested against symmetry detection (see 3.4), isometric match-
ing and partial and approximate matching tasks, showing interesting results.

Rodolà et al. [151] propose a different solution to the minimum distortion intrinsic
correspondence problem defined as a quadratic assignment problem (QAP). The main
contribution regards the adoption of L1 relaxation of the QAP which leverage the game
theoretic framework. In particular, the authors firstly show an interpretation of the QAP
in terms of the Gromov and Lipschitz distances between metric spaces. The family of
distances defined in the paper constitute metrics on the space of equivalence classes of
shapes under the isomorphism relation of metric-measure spaces.
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The second contribution is the adaptation of the game theoretic framework to solve the
relaxed QAP. In particular, the authors model strategies as candidate assignments (x, y) ∈
X ×Y . The choice of these candidates is based on the Euclidean distance of the scale
invariant heat kernel signature [33] descriptors computed on each point of the shapes.
The game-theoretic solver searches for the most coherent group of matches according
to a compatibility measure between them (i.e. the Gromov-Wasserstein metric). Then,
pairs of players (pairs of possible matches) are repeatedly extracted from the population
to play a symmetric game, receiving a certain payoff from other players proportional to
compatibility measure introduced above. The game is repeated until the strategies that
yield larger payoffs are selected as solution to the initial problem. Which means that the
most robust matches are extracted from the candidate set.

As a result, the approach yields a sparse set of correspondences between shapes. In
the third contribution the authors show how several sparse sets (resulting from several
independent iterations of the proposed method) can be aggregated together into a denser
correspondence. This is achieved using again a game-theoretic solver. The performance
of the proposed method is assessed on the SHREC’10 correspondence dataset [30].

3.2.2 Dense Matching
The approaches presented in this section deal with the dense matching problem. Here the
goal is to find an injective map between two shapes, both in the form of a point-to-point
correspondence or as a smooth map between surfaces.

In a recent work, Ovsjanikov et al. [141] propose modelling the correspondences be-
tween the spaces of square-integrable functions L2(N ) and L2(M ) in terms of a linear
operator T : L2(N ) → L2(M ) mapping functions over the manifold N onto functions
over the manifold M . Clearly, this setting generalizes classical vertex-wise correspon-
dences as this can be achieved by a T that maps delta-functions onto delta-functions.

Given bases {φi }i≥1 and {ψi }i≥1 on L2(N ) and L2(M ) respectively, the functional
correspondence can be expressed with respect to these bases as follows:

T f = T
∑
i≥1

〈 f ,φi 〉N φi =
∑
i≥1

〈 f ,φi 〉N Tφi

= ∑
i j≥1

〈 f ,φi 〉N 〈Tφi ,ψ j 〉M︸ ︷︷ ︸
ci j

ψ j , (3.2)

where the coefficients ci j depend on the choice of the bases. Taking only k elements of
each basis, one obtains a rank-k approximation of T as a k ×k matrix C = (ci j ).

In order to compute C, the authors assume to be given a set of q corresponding func-
tions { f1, . . . , fq } ⊆ L2(N ) and {g1, . . . , gq } ⊆ L2(M ). Denoting by ai j = 〈 f j ,φi 〉N and
bi j = 〈g j ,ψi 〉M the k × q matrices of the respective coefficients onto the selected bases,
functional correspondence boils down to the linear system

CA = B . (3.3)
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If q ≥ k, the system (7.4) is (over-)determined and is solved in the least squares sense
to estimate C.

It is convenient to use the eigenfunctions of the Laplace-Beltrami operators of N and
M as the bases {φi ,ψi }i≥1, since under these bases truncating the series at the first k
coefficients has the effect of “low-pass” filtering over the functional representations. In
fact, while the Laplacian eigenbasis suffers from issues like mixing eigenspaces and sign
ambiguity, it has been shown in [97] that the space of functions spanned by the first n
eigenfunctions of the Laplace-Beltrami operator are stable under near-isometries as long
as the nth and the (n +1)th eigenvalues are well separated.

Furthermore, expressed in the Fourier bases, the matrix C has interesting properties
making it more efficient to estimate. In fact, Ovsjanikov et al. [141] proved that if the
correspondence preserves areas, then the matrix C is orthogonal, i.e. , CT C = I = CCT .
Further, if it is also an isometry, then we have ci j =±δi j .

In the discrete setting, the manifold N is sampled at n points x1, . . . , xn which are
connected by edges E and faces F , forming a manifold triangular mesh (V ,E ,F ). In
this setting, a function on the manifold is represented by an n-dimensional vector f =
( f (x1), . . . , f (xn))T . The inner product is discretized as

〈
f,g

〉= fT Sg, where S = diag(s1, . . . , sN )
and si = 1

3

∑
j k:i j k∈F Ai j k denotes the local area element. Hence, a basis Φ = (φφφ1, . . . ,φφφk )

over the vertices of the mesh represents the discretization of an orthogonal functional
basis if ΦT SΦ= I.

The discretization of the Laplacian takes the form of an n×n sparse matrix L =−S−1W
using the classical cotangent formula ( [52, 125, 145]),

wi j =


(cotαi j +cotβi j )/2 i j ∈ E ;
−∑

k 6=i wi k i = j ;
0 otherwise.

where αi j ,βi j denote the angles ∠i k j ,∠ j hi of the triangles sharing the edge i j .
Like in most scenarios, the manifolds in which the functional map is built on are

unknown and a discrete setting must be defined. The discretized Fourier basis Φ =
(φφφ1, . . . ,φφφk ) is obtained by finding k orthogonal functions that satisfy the eigenvalue equa-
tion for the Laplacian, i.e. , −S−1WΦ=ΦΛ with Λ= diag(λ1, . . . ,λk ) the diagonal matrix
of the corresponding eigenvalues. This results in the standard generalized eigenvalue
problem

WΦ̂=−SΦ̂Λ (3.4)
s.t . ΦT SΦ= I

The Fourier coefficients of a (discretized) function f are then obtained by taking dot
products of the function with the basis elements, ai =

〈
φφφi , f

〉=φφφT
i Sf, resulting in

a =ΦT Sf (3.5)
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With the discrete setting in place, the algorithm for the computation of a correspon-
dence map can be introduced. The first step involves the computation of a set of descrip-
tors for each point of the two manifold M and N . The algorithm is independent on
the local descriptor used. Nevertheless, the authors suggest to use the wave kernel map
(WKM, a declination of the heat kernel map introduced in [142] and reviewed above)
augmented with the wave kernel signature. Encouraging results have been shown even
for HKM augmented with the HKS. Interestingly, the descriptor to be used as augmen-
tation is independent on the main descriptor of choice. Hence, it is possible to use the
WKM augmented with the HKS.

The descriptor created at the first step is then eventually augmented with descriptor as-
sociated to know correspondences between the manifold. Usually, a robust sparse match-
ing method is employed in order to detect a low number of very accurate correspondences
between the meshes that can be used to augment furtherly the descriptor defined before.
This augmenting procedure, which has been introduced in [142], has been reviewed in
section 3.2.1. An alternative way to augment the descriptor is to embed information
about the segment it belongs to and a map that matches the segment of the two manifolds.
However, the “landmarks augmentation” represents a more robust approach to descriptors
augmentation. The augmentations can be seen as constraints that have been added to the
problem. The flexibility of the functional representation allows to integrate several other
constraints easily. For example, operator commutativity constraints for relevant linear op-
erators (like Laplace-Beltrami or symmetry) are included, leading to a linear system that
is solved in the least squares sense in order to get the optimal C .

The authors define additional refinement steps that can be used to furtherly improve
the solution, like an alignment process between the columns of the basis (in particular, be-
tween the transferred base CΦM and the second base ΦN ). To this end, the ICP algorithm
is used iteratively in order to find the best C .

Finally, in order to retrieve a point-to-point correspondence, a simple yet effective
method involves the definition of a function f : M → R (like the indicator function) and
the computation of its image g = TF ( f ) using C . Then, y ∈N corresponds to the point at
which g (y) obtains the maximum.

Besides the shape matching problem, the authors show that the proposed approach
could be used also to improve existing point-to-point maps and finally to transfer seg-
mentation functions between shapes (i.e. segments projection).

Kim et al. [103] propose an automatic pipeline to address the non-isometric genus-
zero shape matching problem. The key idea is to define a weighted combination of already
existing maps (e.g. Heat Kernel Maps, Möbius Voting Maps, etc.). As a result, the map
provides low-distortion everywhere even for highly deformed shapes. The process takes
the name of blended maps.

In particular, the authors aim at computing a map that smoothly blends multiple low-
dimensional maps. Given a pair of surface meshes M and N , the goal is to compute k
candidate maps mi

k
i=1 : M →N and a blending weights bi (p) for every point p such that

the final blended map f has low distortion everywhere. Hence, f can be defined as
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f (p) = argmin
p ′∈N

k∑
i=1

bi (p)dN (p ′,mi (p))2

where dN is the geodesic distance on the surface N . Intuitively, the process maps every
point to the weighted geodesic centroid between the point projected by each map mi . In
this work, the authors focus on algorithms that produce conformal maps to be blended.
This allows to simplify the problem of finding blending weights by partitioning it into the
two factors computation bi (p) = ci (p) ·wi (p), where the ci (p) measure the confidence of
the conformal map mi , while the wi (p) are the consistency weights (and measure to what
extent a map should be used in the blending).

The process which leads to the blending map starts with the generation of a set of fea-
ture points. This is achieved extracting from the vertex set of a shape the points in which
the Average Geodesic Distance is at maxima. Then, the conformal maps are generated.
To this end, the authors use the same approach used in [102] (Möbius Voting method)
which has been review in section 3.2.1. As a result, a set of candidate conformal maps
are generated. With the candidate maps at end, the authors show how to compute the
confidence weights and the consistency weights. The computation of the former is based
on how well the area is preserved while mapping a point into the other surface. The latter
is computed minimizing an objective function that ideally yields zero for conformal maps
that induce high distortion while yielding non-zero weights for conformal maps that are
consistent with one another.

With the conformal maps and the weights at hand, the blended map can be computed
as defined above. In order to get a smooth map as a result of the process, the confidence
weights must change smoothly over the surface.

Rodolà et al. [153] propose a shape matching method that produces dense correspon-
dence tuned to a specific class of shapes and deformations. In particular, the authors de-
vise an application-specific data-driven algorithm. Hence, a set of training meshes which
represent the same shape up to some class of non-isometric deformation is used as the
input of the learning process proposed in the work. This learn process produces a shape
descriptor which is able to capture deformation variations in the given shape. One of the
major contribution is the employment of a random forest classifier which allows the WKS
(used as descriptor) to detect a wider set of classes of deformation.

In order to use the random forest classifier to compute the map between two surfaces,
a canonical transformation is learned from examples. Random forests [49] are sets of
decision trees. In this context, each decision tree routes a point x of a shape S from
the root to a leaf node, where a probability distribution defined on a discrete label set
L is assigned to the point. The route of each points is determined by a binary decision
function, the split function, which yields left (L) or right (R). In other words, every non-
leaf node is a split function that will forward the point on the left or right sub-tree of the
decision tree. This leads to the posterior probability P (l |x, t ) for each tree t of the forest
F of label l ∈ L given a point x ∈S and is associated to the leaf node reached by a certain
point. The process is repeated for each point and for each tree of the forest, leading to
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global average posterior probability computed as

P (l |x,F ) = 1

|F |
∑

t∈F

P (l |x, t )

The learning phase uses a set of training shapes whose canonical transformation is
known in order to build the trees of the forest. The canonical transformation represents
a bijection T which map the vertices of a shape into the label set L. Hence, let Ri be a
shape whose canonical transformation is Ti (1 ≤ i ≤ m), then the training set is the set of
edges induced by the mesh set and the canonical transformation set. Hence, we define it
as T= {(r,Ti (r ) : r ∈VRi }1≤i≤m . The trees that will compose the forest are then generated
randomly while a recursive procedure iteratively split the terminal nodes according to
some policy while each point of the training set is routed in the tree. Central in the whole
definition of random forest is the concept of split function. It can be seen as the rule by
which a certain tree in the forest is created through the learning process or it determines
which route a shape point will take while traversing a tree. To this end, the authors propose
to define a family of randomized split function based on the WKS introduced above. From
a physical point of view, the WKS evaluates the probability of a quantum particle to be
located at a point x of a shape S under a certain energy distribution. Let ∆S be the
Laplace-Beltrami operator, whose eigensystem components are the first k eigenvalues
λk and corresponding eigenfunctions φk and e an energy level. Then, the WKS can be
defined as

p(x;e,k) =
k∑

i=1
f 2

e (λi )φ2
i (x)

In order to generate a randomized split function for each node of a tree, an energy
level e, an embedding dimension of the spectra k and a threshold τ are sampled, allowing
to define a function as

Ψ(x;e,k,τ) =
{

L if p(x;e,k) > τ
R otherwise

The training process suffers of a major drawback: it is based on local information
(point-wise computation) and it ignores completely the structure of the underlying man-
ifold. To address this problem, the authors augment the prediction formulation with a
spatial regularization term based on the functional maps. The effectiveness of the pro-
posed approach is assessed on the TOSCA and Kids datasets, comparing it to other dense
matching approaches and showing interesting results.

Chen and Koltun [43] present a non-rigid registration approach of surfaces which
casts isometric embedding as a Markov Random Field (MRF) optimization whose solver
is based on a linear programming relaxation. Differently from other approaches, this
method is able to deal with topological variations of the surfaces.

The authors follow Bronstein et al. [32] and define the problem as an embedding of a
surface into another, without intermediate embeddings. As a reminder of what has been
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introduce in section 3.2.1, the GMDS is the embedding objective in terms of the distance
distortion induced by the mapping and is defined as

E( f ) =∑
i , j

wi , j |dS (si , s j )−dτ( f (si ), f (s j ))|p

where dS and dτ are geodesic distances while wi , j are weights that can be used to disable
some distortion terms. The authors express this objective function in terms of a MRF.
Since it is continuous, the first step involves the discretization of the label space. Let
T = {t j }m

j=1 be the mesh which densely represents the underlying surface τ. Let L be a
set of m labels. The goal is to define a map : S → L. Using standard MRF notation, the
objective define above can be rewritten as labelling ∗ that minimizes an energy function.
Let θi j (li , l j ) = wi , j |dS (si , s j )−dτ( f (si ), f (s j ))|p , where li = (si ), then the LP relaxation
is defined as

min0≤x≤1
∑
i , j

∑
a,b
θi j (a,b)xab

i j

s.t.
∑
b

xab
i j = xa

i , ∀i , j ∈ S,∀a ∈ L∑
a

xa
i = 1 ∀i ∈ S

where xa
i and xab

i j represents distributions over the space of labellings. A linear program-
ming solver can then be used to solve the problem above. Note that the authors rewrite the
problem to both solve it in a more efficient way and to exploit the structure of the problem,
relying on a tree-reweighted message passing algorithm. Furthermore, a penalty function
is added to the objective function in order to deal with topological variations among the
shapes. In particular, such function is used to bound penalties imposed on good mappings
due to topological violations.

To assess the efficacy of the proposed approach, the authors make extensive test on
FAUST [23] dataset, achieving state-of-the-art results on very challenging real-world data.
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4
Structure-based representation

In this chapter we will review literature relevant to the work that is described in the third
part of the thesis, that is, structure based representation of data and embedding techniques
of such data in order to achieve, among the other, classification task. The first section
of the chapter considers the work on the extraction of graph features. Representing a
graph as a set of features allows a more compact and expressive form. Feature selection
and extraction represent a viable solution when dealing with complex structures with
intrinsically high dimensionality.

We then discuss graph similarity. The works described in this section try to answer to
the question of how two graphs can be compared. The problem is often solved through the
definition of a similarity measure between the graphs, which opens to a debate about the
meaning of similarity. In one application we could be interested in assess in two graphs
are identical, while in another we may be more interested in how many changes a graph
must undergo in order to be identical to the reference one.

This leads naturally to the discussion on graph matching algorithms since the may
also be used to assess similarity. The techniques reviewed in this section aim at finding a
correspondence map between the nodes of two or more graphs. This is clearly a hard task
due to the arbitrary order of the nodes. And it gets even more complex when we deal with
more than two graphs. In this scenario, properties like transitiveness of the found matches
are a very interesting yet very difficult result to achieve.

We then discuss the graph segmentation field, which considers how a graph may be
decomposed in a set of subgraphs in order to maximize some similarity measure intra-
subgraph while minimizing the same measure between the nodes that belong to different
subgraphs.

In the last section of this chapter, we discuss graph means and medians and then detail
approaches to building generative models of graphs. The set of techniques introduced in
this section allows to define models that can be used as a compact representative of a set
of graphs or to study the variation among the graphs of a set.
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4.1 Graph Features
The techniques discussed in this section deal with the problem of how the best set of
features can be extracted from a graph representation. The study and the use of methods
that allows to extract features from graphs is of great importance due to intrinsically high
dimension of graphs. This phenomenon is known as the curse of dimensionality [186]. In
the seminal book [21], it has been shown that for a simple look up classifier (that asso-
ciates a cell of the feature space with its classification) the number of training examples
required to accurately train the system is exponential in the number of features. There-
fore, the construction of a good set of features accurately describing the structure of a
graph can be a useful tool.

As a first example of a feature extraction process, one can think about the eigen-
decomposition of a matrix representation of a graph, like the adjacency matrix. Such
decomposition leads to the spectral representation of the graph, whose components can
be used or combine a feature set of the graph itself. This field take the name of spectral
graph theory [45] and has led to many different approaches and applications [191].

More formally, let X be a matrix representation of a graph. Then the spectral decom-
position X =V EV T results in a set of eigenvalues E (one for each node of the graph) and
eigenvectors V . Let suppose that the eigenvalues are ordered by magnitude. Then, such
eigenvalues can be used as a feature vector for the graph. Furthermore, the following
properties hold:

• The eigenvalues are invariant to the order of the vertices of the graph

• The eigenvalues are able to capture some structural information about the graph

The vector of eigenvalues associated to a graph is known as its spectrum.
In order to assess the uniqueness of the spectrum associated to several matrix repre-

sentations of a graph, Haemers and Spence [76] have enumerated all graphs whose cardi-
nality is 11 or less and retrieving the spectrum of respectively the adjacency, the Laplacian
and the signless Laplacian matrices of the graph. In this work the authors coined the term
cospectral mate. A graph that is structurally different but share the same spectrum of
another one is called cospectral mate of the other. The main result of the paper is to give
the fraction of all graphs with at most n vertices that have cospectral mates. It is easy
to see that the lower this fraction is, the better is the discriminative power of the features
extracted from a particular matrix representation of the graph. The results show that the
signless Laplacian representation has the lowest fraction of graphs with cospectral mates,
followed by the Laplacian and then the adjacency matrix. In fact, most of the approaches
based on spectral graph theory make use of the signless Laplacian matrix as matrix graph
representation.

Luo et al. [123] work with the spectral decomposition of the adjacency matrix of a
graph k. For each eigenmode ω, an adjacency matrix is built as

Sωk =φωk (ωk )T (4.1)
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where φi is the i -th eigenvector. The authors investigate whether graphs can be rep-
resented in a stable way using vectors of spectral attributes for the leading eigenmodes of
the adjacency matrix. The attributes studied include the perimeter length, the volume and
the Cheeger constants for the mode adjacency matrices. In order to vectorize the graphs,
each component of the vector is taken to represent a different spectral mode of the original
graph adjacency matrix. The order of the components of the vector is the magnitude order
of the eigenvalues of the adjacency matrix. For each spectral mode, the components of
the associated eigenvectors are used to compute spectral attributes. In this way, invariance
in vertex ordering is achieved.

Zhu and Wilson [205] have studied the issue of stability and discriminative power of
the spectrum obtained from computed on several matrix representations of graphs. In par-
ticular, they test the stability of the spectrum computed on the adjacency matrix, combi-
natorial Laplacian, normalized Laplacian matrix, heat kernel and path length distribution
matrix. In their work, they use two methods to evaluate the performance of each repre-
sentation. The first experiment attempts to find if the relationship between the graph edit
distance and the distance between graph spectra is linear. The second test considers the
classification accuracy of each representation method when some of the graph structure
is perturbed. The evaluation section shows that the Euclidean distance between spectra
tracks the edit distance over a wide range of edit costs. An analysis of the stability of
this relationship is proposed. Finally, they employ the spectra to match and classify the
graphs and demonstrate the effect of the graph matrix formulation on error rates. In both
test sessions, the heat kernel and path length distribution representations yield the best re-
sults, followed by the various Laplacian representations, with the adjacency matrix whose
spectrum is the less stable and discriminative among the others.

Wilson et al. [194] tackle the problem of embedding graphs in low dimensional pat-
tern spaces using manifold learning methods. In particular, spectral methods are em-
ployed in order to vectorize graphs. The main advantage of the proposed method regards
the computation of spectral features which are permutation invariants and which make use
of the full spectral matrix. To construct these invariants, symmetric polynomials are used.
The arguments of the polynomials are the elements of the spectral matrix. The authors
use the values of the symmetric polynomials to construct graph pattern-vectors, while
the differences between graphs are tackled by padding the spectral matrix with trailing
vectors of zeros, which is equivalent to pad graphs with dummy nodes.

The authors explore how the spectral feature vectors may be used to construct pattern
spaces for sets of graphs through a number of different approaches, starting with the
application of the principal components analysis to the covariance matrix for the vectors.
This has shown to locate a variance preserving embedding for the pattern vectors. The
second approach is multidimensional scaling. In this case, the distance between vectors
is preserved. The third approach, which demonstrates to be the one yielding the better
results, is locally linear projection, which aims to preserve both the variance of the data
and the pattern of distances.

Another interesting method of embedding graphs in a vector space comes from Riesen
et al. [150]. In their work, the authors try to achieve their goal using a dissimilarity
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measure. Basically, given a set of graphs S , the authors selected a subset of graphs
P ⊂ S to use as a prototype set of the original set. In other words, the graphs in P are
elected as representatives of the population of S . Like in many other approaches, the edit
distance is used in this work as a similarity metric. In particular, the edit distance between
a graph and all the prototypes is computed and then used to build a dissimilarity vector
for that particular graph of dimension |P |. One of the main drawback of the proposed
method is that it heavily relies on the graphs that belong to the prototype set P . Indeed,
a poor selection of graphs could result in a not meaningful feature vector. The authors
suggest several possible solutions to this problem, ranging from a random selection of the
graphs to use as the prototype set to the employment of a k-means clustering like approach
to define the prototype sets.

Differently from the approaches described above, Caelli and Kosinov [40] suggest to
embed each vertex in a vector space rather than the graph as a whole. The reason behind
this is to allow inexact graph matching. In particular, they compute the spectral decompo-
sition of the adjacency matrix and then project each column of the adjacency matrix into
the eigenspace resulting from the decomposition. Since the features constructed for two
different graphs result from two different spectral decompositions, they belong to differ-
ent spaces. To deal with this issue, a re-normalization step is applied. Furthermore, in
order to handle graphs of different sizes, the spectral information is truncated to a com-
mon dimension (the lower one), resulting in the same dimensionality for both graphs. In
their evaluation section, the authors show that even if the individual features are not very
useful, the relative distances between the features and the trajectory of the features as a
whole provide much information about the graph.

4.2 Graph Similarity Methods
A common problem in structural pattern recognition regards the definition of good simi-
larity measure of two or more graphs. For instance, in a data retrieval problem we would
like to be able to query a large database by computing the similarity between a query
structure (query graph) and all the structures in the database. This goal is often achieved
through the definition of metric on the features extracted from the graphs, like seen in the
previous section. In this section, we will review some of the most widespread methods
to define similarity measure between graphs. In particular, we will start this section with
the introduction of a simpler, more intuitive and widely used measure of graph similar-
ity known as graph edit distance. In the second part of the section, iterative methods for
graph similarity will be presented.

Graph Edit Distance
One of the most consolidated technique to compute the similarity between two graphs
is the graph edit distance [36, 66, 157]. It is based on the simple concept that a graph
can be transformed to another one by a finite sequence of graph edit operations. The
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Figure 4.1: A visual representation of a transformation of a graph in another. The collec-
tion S represent the edit operation sequence.

list of possible edit operations (and the cost of each operation) depends on the algorithm
employed, but each algorithm yields the operation sequence with the minimum cost. A
visual example of such operation can be seen in figure 4.1.

As said above, a cost function is defined for each operation and the cost for this edit
operation sequence is the sum of costs for all operations in the sequence. Even if the
sequence of operation needed to transform a graph into a reference one is not unique, the
one with the minimum cost is a good starting point. Hence, the similarity of two graphs
is inversely proportional to the graph edit distance.

The list of edit operations that can be used to build the edit sequence and how much
each edit operation cost are the key issues in the methods that employ the graph edit
distance as similarity measure. There are a lot of literature in this regards. These cost
functions are usually defined in a manual fashion, adapting the cost of each edit operation
to the data the researcher is working with. Of course, this process is highly prone to er-
rors. In this regard, Neuhaus and Bunke [137] proposes a method to automatically learn
cost functions from a labelled sample set of graphs. In their work, the authors formulate
the graph edit process in a stochastic context and perform a maximum likelihood param-
eter estimation of the distribution of edit operations. The underlying distortion model
is learned using an Expectation Maximization algorithm. The cost functions are then
derived from the model.

The idea of using graph edit distance as a similarity measure appears frequently in
the literature and methods of improving its usability have been developed. For example,
Bunke [34] has established a relationship between the graph edit distance and the maxi-
mum common subgraph under a certain cost function. The maximum common subgraph,
termed mcs(G1,G2), is a subgraph of both G1 and G2 such that there is no subgraph pos-
sible with more vertices. The cost function in question is as follows: vertex insertions
and deletions have cost 1, identical vertex and edge substitutions have cost 0 but different
substitutions have cost inf and finally edge insertions or deletions have no cost. While this
cost function appears simple, the authors only consider complete graphs. This simplifies
the proofs and results in no loss of generality. A standard graph is mapped onto a complete
graph by setting the weights of edges that do not appear in the standard graph to zero in the
complete graph. In this way the vertex insertions and deletions actually encode the edge
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insertions and deletions. The graph edit distance d(G1,G2) and the maximum common
subgraph are related as follows:

d(G1,G2) = |G1|+ |G2|−2|mcs(G1,G2)|
Bunke [35] has conducted an extensive analysis of cost functions and related the con-

cept of graph edit distance to graph isomorphism and subgraph isomorphism under certain
cost functions. In the tree domain, Torsello and Hancock [183] have shown how the tree
edit distance may be estimated from the minimum description length of a tree set that they
use in their generative model of tree structure.

Iterative Methods
The other approach that will be introduced in this section of the chapter is the iterative
one. The basic idea behind the iterative approach is quite simple: two nodes are similar
if their neighbourhoods are also similar. This leads naturally to an iterative approach
for computing similarity scores for the elements of these graphs, in which scores for
similarity between elements propagate along to neighbouring elements at each time step.
The process ends when convergence is achieved.

There are several examples of successful algorithms that belong to this category. The
flooding algorithm by Melnik et al. [128] is one of them. In their work, they propose a
structural algorithm that can be used for matching of diverse data structures. Such data
structures are called models. The algorithm is based on the idea of converting the models
to be matched into directed labeled graphs. Then, these graphs are used in an iterative
computation whose results tell us what nodes in one graph are similar to nodes in the sec-
ond graph. The similarity computation follows directly from the iterative methods basic
idea: two distinct models are similar when their adjacent elements are similar. In other
words, a part of the similarity of two elements propagates to their respective neighbours,
with a mapping between two graphs as the final result. In their work,

Jeh et al. [89] propose a different approach, in which the self-similarity of a graph
is measured. In other words, the algorithm assesses the similarities between all pairs of
nodes in one graph. The algorithm computes iteratively all pairs similarity scores, by
propagating similarity scores in the A2 matrix, where A is the adjacency matrix of the
graph. The process ends when convergence is achieved.

Zager and Verghese [203] propose another graph similarity measures, applied to the
task of graph matching. Like in the approaches seen before, the graph similarity mea-
sures they define uses the structural similarity of local neighbourhoods to derive pairwise
similarity scores for the nodes of two different graphs. Interestingly, in their work they
introduce the idea of coupling the similarity score of nodes and edges in order to compute
the similarity between two graph.

Finally, Bayati et al.in [15] propose an algorithm to find approximate isomorphisms,
or alignments, between large graphs. The problem is formulated in a classic fashion as
graph isomorphism, maximum common subgraph, and the quadratic assignment problem.
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Since all these problems are intractable, the authors focus on practical heuristics, solving
it using a Belief Propagation approach.

4.3 Graph Matching Methods

The graph matching problem consists of mapping two or more graphs to each other such
that a given cost function is optimized. Hence, a solution of the matching problem should
provide a map that makes the graphs as similar as possible, where the similarity is assessed
by the cost function. The efficacy of the similarity measure is central in the definition of
a good solution to the matching problem.

The graph matching problem is tightly tide to the isomorphism between graphs. In-
deed, if a bijective matching between two graphs exists, then an isomorphism exists. This
is known as the graph isomorphism problem, a well-studied graph problem with no de-
terministic solution in polynomial time. We can consider the graph matching problem
as a more general instance of the graph isomorphism problem since the former seeks an
alignment even between different graphs (different dimension, in which case we look for
a partial matching, or a matching between subgraphs).

Due to the complexity of the graph matching problem, researchers often rely on
heuristics approaches for practical applicability. In this section, after a brief more for-
mal introduction of the problem, we will introduce some of the most successful methods
that deal with the graph alignment problem.

Problem Definition

In this section, we will briefly introduce a general definition to the graph matching prob-
lem.

Let G1(V1,E1) and G2(V2,E2) be two undirected and unweighted graphs. The graph
matching problem consists of finding a bijective map f : V1 → V2 such that the score
of the alignment, denoted by S(G1,G2, f ), is maximized. The function S represents our
similarity function. Hence, it evaluates how similar the two graphs are with each other
given the map that transform G1 into G2. In other words, we can define the graph matching
problem as

max
f

S(G1,G2, f )

It is important to note that f is required to be total and injective. This will ensure
that all the nodes of the domain of the function (G1) are mapped to different nodes of
G2. Since we are not requiring f to be a bijection, we can use the solution to the graph
matching problem even when the graphs have different cardinality (|V1| ≤ |V2|).
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Main approaches
The methods that attempt to solve the graph matching problem can be divided in two
macro groups. The first group contains the search based methods, while in the second
we find methods based on non-linear optimization. The former tries to build a state space
representing all possible mappings between two graphs. Then, this space is searched in
order to find the mapping that minimizes some criterion.

For example, Wang et al. [190] propose a genetic-based search approach to solve
the problem of error-correcting graph isomorphism. Genetic algorithms [72] are adap-
tive search methods which are devised based on the natural genetic processes. They are
general-purpose optimization methods which have been successfully applied to difficult
search, optimization, and machine learning tasks. The author, to address the performance
issues of a direct implementation of the genetic algorithm on this problem, defines two
local search strategies in order to form a hybrid search mechanism. Furthermore, in their
work they also address the premature convergence problem, which is a well-known issue
of genetic algorithms.

Unfortunately, the state space grows exponentially in the number of vertices of the
graphs. As a results, even with very advanced technique like genetic algorithms, those ap-
proaches cannot provide a solution in a reasonable time. Non-linear optimization methods
are the answer to this problem.

Umeyama [187] propose a solution to the weighted graph matching problem in both
the undirected and directed cases. In its work, the author uses the eigendecomposition
of the adjacency matrix of a graph and shows that it is almost always able to retrieve the
optimum matching when a pair of graphs are nearly isomorphic. Let two graphs G1 and
G2 be isomorphic. Then there exists a permutation matrix P that solve

PA1P T = A2

which represents the map between G1 and G2. But, since this equation is difficult to
solve, the author devises a method to estimate a permutation matrix P ′ which represents
a very good estimation of the optimum permutation. In particular, he shows that the
permutation matrix P ′ that maximizes

Tr
(
P ′T φ̄1φ̄2

)
will be very close to the optimum permutation matrix (still assuming G1 and G2 nearly

isomorphic). Here, φ̄1 and φ̄2 are the absolute eigenvectors of G1 and G2). The Hungarian
algorithm [26] can maximizes the trace and thus find the solution to the problem. The two
biggest drawback of Umeyama’s work are that it does not work if the graphs are not
sufficiently close to each other (in which case the proposed method could fail to give the
optimum matching) and it requires a pair of graphs of the same size.

Gold and Rangarajan [71] propose a different solution to the graph matching problem.
The main contributions of their work is two-fold. Firstly, they use iterative projective scal-
ing in order to enforce two-way assignment constraints (i.e. the vertices of both graphs
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are equally constrained). Secondly, they use the graduated non-convexity technique as
optimization technique. This global optimization technique usually try to break a difficult
optimization problem into a sequence of optimization problems, such that the first prob-
lem is convex and the next ones are always “less convex”, until the last function solved is
the non-convex initial one. This technique allows to avoid getting stuck in local minima.
In this particular instance, graduated non-convexity is used to turn a matrix describing the
discrete mappings into one containing continuous values. Thanks to a control parameter,
the proposed method can move the solution from continuous (initial execution) to almost
discrete (in the last iterations). Unfortunately, event at the highest value of the control
parameter, the resulting solution is just “almost” discrete. A post-process must be applied
in order to get the final map. In the original work, they adopt a naive solution in which
the maximum element in each column is set to 1, while all other values are set to 0. This
could lead to a sub-optimal solution since this discretization process is done sequentially
on each columns, and not simultaneously. In order to find a global solution (i.e. all the
mappings are considered simultaneously), algorithms like Auction algorithm [17] or the
Hungarian algorithm [107] could be used.

A similar proposal comes from Van Wyk and Van Wyk [188]. In their work, they de-
scribe an algorithm similar to the one proposed by Gold and Rangarajan. Differently, they
do not employ the iterative projective scaling technique to enforce two-way assignment
constraints. Instead, they use a POCS (Projections onto Convex Sets) method. The two
convex sets used in this case are the set of matrices that satisfy assignment constraints on
the columns and the set of matrices that satisfy assignment constraints on the rows. Each
of these corresponds to the assignment constraints in one direction and used together they
can enforce two way constraints. The algorithm proceeds as that of Gold and Rangarajan’s
with the row and column normalizations being performed using the POCS approach.

The last method we will review try to solve a slightly different problem. All the
approaches that we have seen before try to find a solution to the one-to-one vertex corre-
spondence problem. However, sometimes it can be more convenient to produce a many-
to-many solution. This allows to define more flexible frameworks and to find better
matching too. The graph features described in section 4.1 by Caelli and Kosinov [40]
is an example of such approach. In their work, they suggest to embed each vertex in a
vector space rather than the whole graph. We can do the same with the vertices of two
graphs, projecting them in the same subspace. This results in two sets of points represent-
ing the vertices of the graphs. Then, a clustering technique can be applied to these groups
of points in order to map the vertices of two graphs. Clearly, the clustering technique
allows to retrieve a many to many correspondence map between the vertices (i.e. with a
density based clustering technique, in crowded region). In fact, the main advantage of the
approach is its ability to perform matching between structures of different sizes where it
is suited, while performing a one to one matching in others.
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4.4 Segmenting Graphs
Clustering, also known as clustering analysis, is a set of techniques which aim at select-
ing and grouping homogeneous elements in sets of data. Usually, the criteria by which
an element is assigned to a certain group is a metric between the elements (i.e. a distance
measure in some multidimensional space). It is easy to see how this is related to the con-
cept of similarity. The final objective is to group together “near” elements (i.e. elements
whose distance is low) minimizing the intra-group distances. Like for the methods in-
troduced in section 4.2, the performance of a method heavily relies on the quality of the
metric used. Furthermore, different metrics allows to find different relations between the
data we are working on.

Graph segmentation is, from a certain point of view, very similar to a clustering tech-
nique. Indeed, graph segmentation methods aim at splitting a graph into k subgraphs in
order to maximize some measure of similarity between the vertices within the same sub-
graph while minimizing the similarity between vertices that belong to different subgraphs.
One of the most used technique to accomplish this goal is the graph cut. As the name sug-
gests, it aims at selecting a number of subsets of vertices of a graph by “cutting” some
edges of the graph, resulting in the creation of several virtual connected components.

Hence, let G = (V ,E) be a graph. Let G1 and G2 be the two subgraphs that we obtain
when we split G . Let V1 and V2 be the sets of vertex of the subgraphs G1 and G2 respec-
tively. Then, the value of the cut is the sum of all the edges that begin in one subgraph
and end in the other.

cut (V1,V2) = ∑
u∈V1,v∈V2

wε(u, v) (4.2)

where wε(u, v) is a weight function on the edge (u, v). Clearly, if the edge does not
exist in G , i.e. (u, v) ∉ E , the weight function would yield 0. Otherwise, if the edge exists,
the function would return some value, depending on how the weight function has been
defined. Various criteria have been proposed to split the graph in segments. One of the
most famous is the Minimum Cut by Wu and Leahy [195]. In particular, the method they
propose is applied to image segmentation. In their work, they take the image pixels to
be vertices in an undirected graph with weighted edges between neighbouring pixels and
solve the min-cut/max-flow problem between every pair of pixels in the image, using the
K smallest cuts to partition the original image into K regions. The problem is solved
by recursively finding the minimum cuts that bisect the existing segments. The main
drawback of this approach is that it tends to cut very small subgraphs without taking into
account the global structure. This is due to the fact that 4.2 increases with the number of
edges involved in the cut.

This problem has been addressed by Shi and Malik in their Normalized Cut method [166].
In their work, they propose a new measure of disassociation between two groups. Instead
of looking at the value of total edge weight connecting the two partitions, their measure
computes the cut cost as a fraction of the total edge connections to all the nodes in the
graph. This disassociation measure is called normalize nut and is defined as:
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N cut (V1,V2) = cut (V1,V2)

assoc(V1,V )
+ cut (V1,V2)

assoc(V2,V )

where assoc(V1,V ) = ∑
u∈V1,v∈V w(u, v) is the total connection from nodes in A to

all nodes in the graph. This alternative definition of the cut score avoids the issue intro-
duced before because the cut that partitions out small isolated points will no longer have
small cut value, since the cut value will almost certainly be a large percentage of the total
connection from that small set to all other nodes.

The algorithm begins from an image (or a sequence of images) that is used to build a
graph where the weight on the edge connecting two nodes is set to be a measure of the
similarity between the two nodes. With this graph at hand, the discrete Laplacian is built
as D−W, with D the diagonal matrix whose diagonal elements are the degree of a node
andW the adjacency matrix of a weighted graph. An eigendecomposition is performed on
the Laplacian and the eigenvector associated to the second smallest eigenvalue is used to
bipartite the graph. Then the process is repeated recursively with the two partition created
in the previous step, using some measure to determine if the process can be stopped (if
the graph has been segmented enough or if some fixed number of partitions is reached) or
if it has to continue. In their test section, the authors show that the propose approach is
able to give good performance when used in still images and in motion sequences.

4.5 Median and Mean Graphs

One of the main goal pursued in this thesis, and in the machine learning field in general,
regards the definition of algorithms by which a system can automatically construct mod-
els. And part of the job, regards the construction of such models from a bunch of data.
The advantages of building models and prototypes are various, but mainly we aiming for
compact summaries of the data that can be managed in a faster fashion with respect to the
whole database of data. That is one of the reason that median graph has received much
attention in the literature.

Before getting to the heart of the topic, note that in graph theory the term median
graph is also used to define a specific class of graph [14]. According to [134], a median
graph is a connected graph, such that for any three vertices u, v and w there is exactly
one vertex x that lies simultaneously on a shortest (u, v)-path, a shortest (v, w)-path and
a shortest (u, w)-path. “Famous” median graphs are trees and hypercubes.

Instead, in this section with median graph we refer to the solution to the generalized
median problem, in which we try to find a good representative (a prototype) of a set
of graphs. Indeed, one use is as a model for representing a set of graphs in a compact
notation. It can also serve as the starting point for generating new graphs or expressing the
variation in a graph set. Given the mean graph, each graph in the set can be produced from
the mean by applying some transformation. If the distribution of these transformations
can be found, then it can be sampled from and used to generate new graphs.
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The problem was originally stated by Jiang et al. [92]. In their work, the authors pro-
pose two different definitions for median graphs, one called generalized median graphs
and the other set median. The difference lies in the space of graphs where the respective
median is searched for, while in both cases the problem aims at minimizing the sum of
distances to all input graphs. Indeed, central in the concept of median graph is a distance
function d(g1, g2) that measure dissimilarity between two graphs g1 and g2.

In particular, the generalized median graph is defined on the space of all graphs. Let
G be the set of all graphs. Let G = {

g1, g2, . . . , gn
}

be the set of graphs whose median
graph we are trying to retrieve. Then, the generalized median graph ḡ is defined as

ḡ = argmin
g∈G

n∑
i=1

d(g , gi )

The second definition, which takes the name of set median, the space where the media
graph is searched for is the set of graphs in question. Hence, the set median ĝ is defined
as

ĝ = argmin
g∈G

|G|∑
i=1

d(g , gi )

It is easy to see that, since the generalized median graph is drawn from a larger set
of potential medians, it is a better representation than the set median. Unfortunately, the
complexity of finding the generalized median graph is much greater than finding the set
median. For this reason, the authors investigated in a search strategy that provides good
approximate solutions in a reasonable time. For this reason, they developed a genetic
search algorithm to tackle the optimization task. In their results, they show the advantage
of generalized median graphs in comparison to set median graphs.

Bunke and Günter [38] present a solution to a similar but simpler problem. In their
work, they aim at finding the mean graph between a pair of graphs, which takes the name
of weighted mean. They take the standard weighted mean defined on a n-dimensional
vector space as z = γx+ (1−γ)y and define the concept in the domain of graphs. Given
two graphs G1 and G2 and a scalar γ, the weighted mean of G1 and G2 is defined as the
graph Ḡ for which

d(G1,Ḡ) = (1−γ)d(G1,G2) and d(Ḡ ,G2) = γd(Ḡ ,G2)

holds, with 0 ≤ γ≤ 1. Hence, the authors firstly find the set of edit operations that trans-
form one graph into the other. As we seen in section 4.2, when we deal with a graph
edit distance a cost function must be assigned to each edit operation. This bring us to the
definition of the total cost c as the sum of all the costs of the edit operations in the edit
sequence.

We are now able to produce the mean graph by applying the the subsequence of edit
operations with cost c

γ
. Note that this weighted median may not be unique. The authors

apply their approach to line drawing analysis and produce sequences of weighted means
between the line drawings of two different letters.
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Bunke et al. [39] present two solutions to the generalized median graph problem. The
first approach is based on combinatorial search in which the simultaneous transformation
of an initially unknown graph into the set of graphs questioned is examined. This simulta-
neous transformation is described by a structure termed multi match. Several multi match
structure are defined. The search for the generalized media graph is done with an algo-
rithm based on A* whose space of search is represented by the multi matches found. The
second approach employs a genetic algorithm in order to solve the initial problem and
comes in two variants. The first, called GA Random, initialize the population completely
randomly. The second one takes the name of GA Init. In this case, the initial popula-
tion are initialized with transformations that represent the given input graphs. From the
performances point of view, the two algorithms are very different. The combinatorial
search algorithm has exponential worst case execution time and very high memory re-
quirements, meaning that the approach can be applied only to a set of graphs with a low
number of nodes. On the contrary, the genetic algorithm performs much better in both its
incarnations.

The common issue in all the works presented in this section is the dimension of the
search space when it comes to search for the generalized median graph. An attempt to
solve this problem is proposed by Ferrer et al. [55], in which they propose a method to
place an upper bound on the sum of distances (SOD) from the generalized median graph
to all graphs in the set. This result is achieved using the concept of maximum common
subgraph of a graph set and establishing a relation with the generalized median graph
itself. A maximum common subgraph of a graph set aims at finding the largest subgraph
of a reference graph of the set which is isomorphic to a subgraph of each other graph of
the set. This is a problem known to be NP-hard. Let Ge denote the empty graph while Gu

be the union graph set. For any pairwise partition p of the set G , with SOD(p) the sum
of distances between the elements of the partition, then the bound on such distances from
the median graph ḡ to all the graphs in G can be defined as

max(SOD(p)) ≤ SOD(ḡ ) ≤ mi n(SOD(Ge ),SOD(Gu))

In their work, the authors prove that the sum of distances to the generalized median
ḡ has as an upper bound the sum of distances with respect to the maximum common
subgraph mcs(G). Hence, the following holds.

max(SOD(p)) ≤ SOD(ḡ ) ≤ SOD(mcs(G)) ≤ mi n(SOD(Ge ),SOD(Gu))

In another work, Ferreret al. [56] use again the concepts of maximum common sub-
graph (mcs) and minimum common supergraph (MCS) to present a reduction to the
bounds defined in [92] in order to improve the efficiency of the algorithms used to tackle
the problem of finding the median graph. In their work, they show that the number of
nodes of the median graph must be in between the number of nodes of the maximum
common subgraph and the number of nodes of the minimum common supergraph of a set
of graphs:
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0 ≤ |mcs(G)| ≤ |ḡ | ≤ |MC S(G)| ≤
|G|∑
i=1

|Gi |

In their paper, the authors prove this result both from a theoretical point of view and
give a detailed example to validate the theoretical results. Furthermore, the experimen-
tal results show a lower search time and hence an improved performance for both the
combinatorial search and genetic algorithm presented above in this section.

Taking advantage of the results in both [55] and [56], Ferrer et al. [57] propose a new
genetic algorithm for finding the approximate generalized median graph. The new bounds
are used to reject population representing median graphs that fall outside the space where
the median graph is supposed to be. They tested their approach on web pages (represented
as graphs), and the results they show are more than positive.

Ferrer et al. [58,59] propose other two methods to tackle the generalize median graph
problem. The first searches for generalized median graph in a reduced space. The second
directly computes an approximation of the generalized median graph.

They both make use of an interesting graph embedding method proposed by Riesen
et al. [150]. The key idea in Riesen’s work is to use the distances of an input graph to a
number of training graphs as a vectorial description of the graph. In Ferrer et al.search
based method [58], this embedding technique is used to produce a vector describing each
graph in a set G . All the graphs in the set are used as prototypes, meaning that the
dissimilarity matrix produced by the algorithm is of dimension |G| × |G|, while a vector
describing a graph contains the dissimilarity with respect to each other graph of the set
G . The dissimilarity function is a graph edit distance function with costs deletions and
insertions of vertices of 1. The deletions and insertions of edges cost 0. Finally, edge
and vertex substitutions have cost of 0 or inf (identical substitution or not). The result
is that the Manhattan distance can be employed to compute the mean feature vectors.
The mean feature vector represents the median graph feature vector. Unfortunately, this
feature vector cannot be translated back to a graph directly. However, it can be used to
limit the search space of the median graph. Under the cost function introduced above,
the search space is composed of the vertex induced subgraphs of the minimum common
supergraph of G . Furthermore, in their work the authors describe the search space of the
generalized median graph as a rhombus with the minimum common supergraph at one
end and the empty graph at the other. The graphs from the set G must all fall within this
rhombus.

This rhombus search space is restricted by the graph in the set G with the smallest
dissimilarity with respect to the median (smallest edit distance). Thus, the graph that has
the minimum sum of distances to the graphs in G which is selected from the reduced
search space must be the generalized median. The authors describe good results, in terms
of time complexity, when the approach is applied to line drawings of letters.

The second method proposed by Ferrer et al.in [59] aims at computing an approxima-
tion of the generalized median graph. The method shares the same steps seen in the [58]
until the search stage. In this work they employ the weighted mean of a pair of graphs
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Figure 4.2: Triangulation steps from the approximate generalized median algorithm [59].

introduced at the beginning of this section (see [38]) in order to compute the approximate
generalized median. In particular, the triangulation procedure depicted in figure 4.2 is
performed. Figure 4.2(a) show the n-dimensional (n = 3 in the figure) points representing
every graphs in the set G . The first step involves the selection of the three closest graphs
to the mean point vm . Let g1, g2, g3 ∈ G be these graphs, while v1, v2 and v3 are the
respective points. The median vector v ′

m . Two out of three points are selected (e.g. v1

and v2), and the remaining points (v3) is projected onto the line joining v1 and v2, ob-
taining the point vi as Figure 4.2(c) shows. The next step involves the computation of the
percentage of the distance of vi between v1 and v2 (see Figure 4.2(d)). This allows to
retrieve the graph gi corresponding to the point vi (Figure 4.2(e)). With gi at hand, the
percentage of distance between vi and v3 of v ′

m can be computed, allowing to retrieve the
graph g ′

m (Figure 4.2(f)), which represents the approximate median graph the algorithm
was looking for.

In the evaluation section, the authors compute the sum of distances of both the approx-
imate median graph and the set median with respect to all the graphs in the set. In their
tests, the approximate median graph results to outperform the set median. Unfortunately,
a comparison with the exact generalized median graph is not possible due to size of the
data sets, which make its computation infeasible from a computational time point of view.

Another very interesting results by Ferrer et al.is their extension of the definition of
generalized median and set median in the spectral domain [54]. The space in which the
median graph (in this case called respectively generalized spectral median and set spectral
median) is searched is the same as in the original definition.

To conclude, we have seen several different approaches that try to tackle the general-
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ized median graph problem from different perspectives. Even if initially the solutions to
this problem were computationally too heavy to be applied to something different from
a simple example, the recent approaches proposed in [57–59] showed that the usage for
real world data sets is becoming feasible.

4.6 Generative Model
The last section of this chapter will deal with generative models for graphs. Generative
models allow to define a probabilistic model that learn how data have been generated.
This is usually done through the learning of some parameters which can then be used in
tasks like categorization of new data or generation of new data. A lot of effort has been
put in the research community on generative models in vectorial domain. Unfortunately,
the contribution in the graphs domain is minor. In this section we will review some of the
most interesting approaches.

Luo et al. [122] propose a method to construct a linear deformable model for graph
structure through principal component analysis of the vectorized adjacency matrix of each
sample graph. This allows to build a vectorial description of the whole set of graphs. The
first issue that has been addressed before the construction of the vectorial descriptor is
the lack of correspondences between the nodes of the graphs belonging to the sample set.
Thus, an alignment step is defined. For this task, the algorithm for inexact graph matching
proposed by Luo and Hancock [121] is used. Furthermore, to tackle the problem of graphs
of different size, all the graphs in the sample have been padded adding dummy vertices
(vertex with no connections). Once this pre-processing stage has been completed, the
aligned and padded adjacency matrix Ak of each graph are vectorized.

ak = vec(Ak )

These vectors are used to build the linear deformable model in order to express struc-
tural variations among the graphs in the set. Practically speaking, the mean µ and the
covariance matrix Σ of the vectors representing the graphs are computed. Then, the eigen-
decomposition of the covariance matrix is performed, resulting in the ordered eigenvalues
Λ and the corresponding eigenvectors Φ. The former matrix is used to retrieve the vari-
ance in the data through principal component analysis, while the eigenvalues determines
the degree of variance associated with each component. The vectorial descriptor of the
sample data is thus defined as the mean summed with a vector which encodes how the
graph varies structurally. The vector is projected into the principle components of the
distribution:

âk =µ+Φb

where b is a parameter vector describing the degree of variation experienced by a
graph k in the direction of the principle component. The authors test the model defined
above with a dataset of face-representing graphs.
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In another work, Xiao and Hancock [196] propose a similar method to build a gener-
ative model for graph structure. In their work, the authors commence from a sample of
graphs where the correspondences between nodes are unknown. The proposed method
deals with structural differences between graphs (i.e. different number of nodes in the
graphs that belong to the sample set). The key idea is to embed the nodes of the graphs
into a vector space by performing kernel PCA. Differently from the approach introduced
before, here the PCA is performed on the heat kernel computed on each graphs. After the
computation of the heat-kernel Hk representation of each graph, the Young-Householder
decomposition [201] Hk = Y T

k Yk is performed. Here, Yk is the coordinate matrix and each
column u of Y represents the vectorial coordinate of the node u of the graph k. Since
the heat kernel is defined as Ht =Φexp[−Λt ]ΦT (with t the time parameter, Λ and Φ the
eigenvalues and the eigenvector of the normalized Laplacian associate to the graph k),
then we can define the coordinate matrix as

Yk = exp

[
−1

2
Λk t

]
ΦT

k

When different graphs undergo structural variations, the coordinate matrices are trun-
cated. Furthermore, to deal with the non-correspondence problem, the algorithm proposed
by Scott and Longuet-Higgins [163] is used to align the coordinate matrices, electing the
largest graph as the reference one. Finally, the model is built performing the principal
component analysis on the resulting coordinate matrices.

In the experimental section, the authors assess the performance of the proposed model
for shape-analysis. In particular, experiments on the COIL dataset [135] are performed.
The results show that the model can be adopted to both construct pattern spaces for sets of
graphs and to perform graph clustering. Also, a scalability analysis of the model (i.e. com-
pactness of the model) is performed, showing adequate results with very compact models.

Torsello [178] addresses the problem of learning archetypal structural models from
examples. In particular, a generative model for graphs is devised. In this work, the author
assumes nodes and edges to be governed by a set of independent Bernoulli trials, whose
parameters must be estimated. Furthermore, the correspondences between the nodes of
the samples are unknown. The parameters are estimated maximizing the likelihood of the
observed graphs, marginalizing it over all possible node correspondences. To limit the
exponential explosion of the set of correspondences, an Importance Sampling approach
is employed. In the experimental section, the author uses the generative model in two
different structural abstraction of shapes. The first one is represented by the Delaunay
graph build over a set of image features. The second test bed is made up of shock graphs
constructed from objects.

An extension of this work is presented Torsello and Dowe [180]. In this work, the
authors define the generative models in the same way, assuming that each vertex and
edges of the graphs are distributed following a set of independent Bernoulli trials. The
assumption of no node-to-node correspondence is still valid. In this work, this problem
is tackled by an EM-like approach in which the estimation of the node correspondences
is alternated with the model parameters estimation. In particular, the first phase of the
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process is cast as an instance of graph matching. The new correspondence set is then
used to estimate the model parameters while the second phase. The model parameters
are estimated employing a Minimum Message Length criterion which states that the best
model describing the data is the one resulting in the shortest length description of both
the model and the encodings of the data given the model. The model is then tested on a
shape recognition task, where the effectiveness of the learning approach is assessed.

Extending this work, Torsello and Hancock [183] propose an unsupervised learning of
tree structures in an information theoretic setting. The problem is posed as that of learning
a union structure from the set of examples with unknown correspondences. The structure
is built through a set of edit operations. Furthermore, each node is endowed with a random
variable which represents its probability. In order to estimate the correspondences, the
union structure and the node probabilities, an iterative optimization process is employed.
The optimization process is based on the assumption (proved in the paper) that a relation
between the edit distance and the description length exists. The optimization process
counts three steps. In the first one, correspondences are located in order to minimize
the edit distance between graphs. The second step involves the construction of the union
structure by editing an initial one. In this step, the description length is the function to
minimize. The last step sees a maximum likelihood estimation of the nodes probabilities.
The model is tested in classification and clustering tasks of a set of shapes based on their
shock graphs.
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5
Non-Parametric Spectral Model for

Shape Retrieval

Non-rigid 3D shape retrieval is an active and important research topic in content based
object retrieval. This problem is often cast in terms of the shapes intrinsic geometry due to
its invariance to a wide range of non-rigid deformations. In this chapter, we devise a novel
generative model for shape retrieval based on the spectral representation of the Laplacian
of a mesh. Contrary to common use, our approach avoids the ubiquitous correspondence
problem by transforming the eigenvectors of the Laplacian to a density in the spectral-
embedding space which is estimated non-parametrically.

In this chapter we show that this model can efficiently be learned from a set of 3D
meshes. The experimental results on the SHREC’14 benchmark show the effectiveness
of the approach compared to the state-of-the-art.

5.1 Introduction

Non-rigid 3D shape retrieval is an active and important research topic in content based
object retrieval. 3D models are widely-used in many application areas, such as computer
aided design, medical modelling, bioinformatics, and a large number of 3D models have
become available on the web. Hence, the ability to recognize a deformable object’s shape
has become central in modern shape retrieval methods. A shape retrieval algorithm can
be defined as a query executor where, given a shape, the result set is the collection of
shapes which belong to the same class. Moreover, the shapes returned should be ordered
by decreasing similarity to the query shape. Several different approaches have been pro-
posed to address the non-rigid shape retrieval problem. Depending on the paradigm used
to represent the objects, there are view based methods and model based methods. The
former try to exploit the observation that similar 3D shapes look similar from the same
perspective. Hence, several 2D projections have been used to represent the shape, e.g.
silhouettes [42]. On the other hand, model based techniques make use of the 3D shape
directly. Both structural and topological techniques and geometric techniques belong to
this class of approaches. Structural and topological techniques take into account structural
properties like connected components or the holes in the shape. An example of such ap-
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proach is the Surface Penetration Map by Yu et al. [202], where topological information is
extracted from a model by morphing it into a sphere. Finally, geometric techniques make
use of the quantitative properties of the shapes (e.g. volume, aspect ratio, surface area,
curvature) that could be used to characterize the shape either globally or locally. Global
methods aim to capture the characteristics of the whole shape and tend to be more com-
putationally efficient. As an example, Zhang and Chen [204] propose several methods to
compute efficiently global features and use them for 3D shape retrieval purpose. Features
are also employed indirectly in the methods which exploit the distributions of those mea-
surements in place of the value of the feature itself [140]. With respect to global methods,
local approaches can be used for partial matching, but they are usually less computa-
tionally efficient. These methods consider local properties around the neighbourhoods of
points on the surface, such as curvature, volume and area [93].

5.1.1 Related works
One of the most popular approach within the geometric techniques involves the definition
of an invariant representation of a shape capable of capturing its geometrical and topo-
logical properties, but at the same time being insensitive to transformations like bending
and stretching, and robust to acquisition resolution or noise. On top of that, storage and
computational costs of the representation should be taken into account. For these reasons,
a widely used approach to define shape descriptors is through spectral shape analysis.
Research efforts have recently resulted in several spectral descriptors [12, 149, 174] usu-
ally based on the spectral decomposition of the Laplace-Beltrami operator, due to its
invariance to isometries. In particular, the mesh-Laplacian, the discrete counterpart of the
Laplace-Beltrami operator applied to surfaces, has been extensively used to provide spec-
tral representations of structures [118]. Reuter et al. [148] suggest to use the sequence
of eigenvalues (spectrum) of the Laplace-Beltrami operator of a surface as fingerprints,
while Jain and Zhang [88] propose to use the eigenvalues of the geodesic distance matrix
of a 3D object in order to build the associated shape descriptor. Huang et al. [84], on
the other hand, build the signature directly over local features, selecting discriminative
volumetric features over pre-aligned shapes.

The aggregation of local descriptors to build a global descriptor is a general thread
in the literature. For this purpose, the Bag-of-Features (BoF) paradigm is quite popular
and has been successfully applied to 3D shape description [31, 114, 120, 177]. Li and
Hamza [114] used the BoF paradigm combining the exploitation of hierarchical struc-
tures of the shape, such as pyramid matching [74] and spatial relationship [31]. They
proposed to adopt the eigenfunction associated with the second-smallest eigenvector of
the Laplace-Beltrami operator in order to build a global surface coordinate system which
is insensitive to shape deformation, showing that the introduction of global spatial context
could improve the effectiveness of their descriptor in 3D shape recognition. Spatial pyra-
mid [114, 120], is the term used to identify this approach. Other approaches inspired by
text-analysis have been proposed. For instance, in [22, 82] the authors adopt higher-order
models defining relations between ‘geometric words’. Within the bag of features model,
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features quantization is generally performed through unsupervised learning. Departing
from this approach, Litman et al. [117] recently proposed a new supervised BoF frame-
work mapping the discriminative training directly into the dictionary construction step.
Finally, methods which aim at finding the correspondences between two or more shapes
have been used for shape retrieval, using the correspondences found as a similarity mea-
sure between shapes and classifying the query shape accordingly [18, 41].

5.1.2 Main contribution
In this chapter, we propose a novel and efficient supervised approach for the construc-
tion of a generative model based on the spectral decomposition of the Laplace-Beltrami
operator. To this end, we define a statistical framework that models a shape as two in-
dependent generative models for the eigenvector and the eigenvalue components of the
spectral representation of the Laplacian. In particular, we assume the spectral embedding
space of the eigenvector part to be a set of independent observations which follows an
unknown distribution. We estimate the underlying distribution in a non-parametric way,
through kernel density estimation. The two most important benefits brought by this point-
wise approach regard the robustness (and somehow, the scalability) of the algorithm and
its acquired invariance to vertex correspondences. In fact, the adoption of kernel density
estimation allows to avoid sampling density issues, that is, the underlying probability den-
sity remains the same even if the meshes are sampled with different resolutions. Finally,
two alignment steps are defined and applied to the eigenvector model in order to take
care of the residual rotations between eigenvector matrices. On the other hand, in order
to define a descriptor that is robust to small non-isometric perturbations, we assume the
eigenvalues to be log-normally distributed.

5.2 Background
In this section we briefly introduce the notations and some theoretical aspects used in this
work. A surface is a smooth compact 2-manifold S without boundary isometrically em-
bedded in the Euclidean space R3 with geometry induced by the embedding. With shape,
we denote the quotient group of surfaces modulo isometries. Finally, we define a mesh
as a discrete representation of a surface embedded in R3. In order to address the shape
retrieval task, we define an invariant representation of a shape obtained as the result of a
data-driven process. To this end, let us define the discrete Laplacian as the discretization
of the continuous Laplace-Beltrami operator on the mesh. The Laplacian operator is a dif-
ferential operator which stores intrinsic geometry information (vertex-wise) about a mesh,
allowing to preserve the relationship among vertices when isometric transformations are
applied. Several approaches have been proposed to compute the Laplacian matrix from
a mesh. In this work we adopt the algorithm proposed by Belkin et al. [16] which offers
point-wise convergence guarantees and was experimentally shown to be quite robust. In
particular, it approximates the Laplace operator of a surface from a mesh with point-wise
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convergence and they show that it converges (for fine meshes) to the Laplace-Beltrami
operator. The Laplacian matrix is computed as L = A−1∗W , with A the area elements on
the diagonal and W a symmetric weight matrix. L is not symmetric but satisfyΦT A Φ= I

(I the identity matrix). By setting Ψ = A
1
2Φ and LN = A1/2L A− 1

2 = A− 1
2 ∗W A−1/2, the

normalised Laplacian matrix LN has the same eigenvalues as L and its eigenvectors Ψ
are a discrete approximation of the eigenfunctions by taking integrals over the area el-
ements rather than point samples over the vertices as in Φ. Indeed LN is symmetric,
positive definite and its eigenvectors are robust with respect to changes in sampling den-
sities. The spectral representation of a mesh can be computed from the Laplacian through
singular value decomposition. Given a discrete Laplacian L , its eigendecomposition is
L = ΦΛΦT , where Λ = di ag (λ1,λ2, ...,λ|V |) is the matrix whose diagonal contains the
ordered eigenvalues, while Φ = (φ1|φ2|...|φ|V |) is the matrix whose columns are the or-
dered eigenvectors. This decomposition is unique up to a permutation of the vertices of
the mesh, a change of sign of the eigenvectors, or a change of basis over the eigenspaces
associated with a single eigenvalue, i.e., the following properties hold:

L ' PL P T = PΦΛ(PΦ)T (5.1)
L = ΦΛΦT =ΦSΛSΦT (5.2)

where ' indicates isomorphism of the underlying surfaces, P is a permutation matrix and
S is a diagonal matrix with diagonal entries equal to ±1.

5.3 Model definition
The main contribution of the proposed work consists in the definition of a generative
model based on the spectrum of the Laplacian matrices associated to a set of meshes rep-
resenting the same shape. The defined model is able to capture the structural variations
between the meshes that belong to the same class, and it takes into account all the in-
variances of the spectral representation. The use of spectral representation to perform a
vertex embedding is an approach underlying several approaches. Many use the so called
heat kernel embedding [31, 118, 174] using a low rank approximation of the Heat kernel
to embed vertices in an Euclidean space in a manner that is invariant to surface isometries

X X T ≈ exp(−L t ) =Φexp(−Λt )SΦT (5.3)

X ≈ Φexp(−Λ t

2
) (5.4)

However, this representation is unique only up to isometries in the Euclidean embed-
ding space. Indeed, applying an isometric transformation O to X we obtain X OOT X T =
X X T . Hence, this representation is insensitive to eigenvectors orthogonal mixing, in par-
ticular for the eigenvectors associated to very similar eigenvalues. Similar analysis holds
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with the commute time embedding [78]. In all these approaches the embedding model
mixes eigenvectors and eigenvalues, using the eigenvalues to modulate the variability of
the eigenvector, with an exponential decay in the case of the heat kernel embedding, and
with an inverse-law in the case of the commute time. In the definition of our model,
we follow White and Wilson [192] and we build two separate and independent mod-
els, one for the eigenvectors and one for the eigenvalues of the Laplacian matrix. The
lack of eigenvalue modulation in the spectral embedding is compensated by a data driven
modelling of the variation in each spectral dimension through non-parametric density es-
timation. Hence, let M be a mesh, and let LM =ΦMΛMΦ

T
M be the eigendecomposition

of the associated Laplacian matrix. The eigenvector component ΦM is modelled as an un-
known distribution F on the d-dimensional spectral embedding space Ωd ⊆Rd . The d-
dimensional embedding of the eigenvector matrix is obtained from a simple sub-sampling
operation over the matrix ΦM , taking the first d columns (first d non-constant eigenvec-
tors) of the matrix or, in other words, taking the first d non-constant eigenvectors which
are associated with the d smallest non-trivial eigenvalues. The resulting n ×d matrix is
assumed to be a collection of n d-dimensional points that belong to the embedding space
Ωd . Eigenvectors are often assumed to be of unit Euclidean norm. Unfortunately, this re-
sults in a compression of the value of the components of the spectral embedded points as
the number of the vertices of the mesh (or alternatively, the n points of our representation)
increases. To overcome this issue, we scale the d eigenvectors which belong to the em-
bedding by multiplying for the number of vertices of the mesh n. So, let Φ̂M = (

Φ̄M
) ·n,

with Φ̄M ∈Rn×d , be the resulting embedded eigenvector matrix. Note that we are not as-
suming nor requiring the meshes to have the same number of vertices. Indeed, the number
of vertices of the meshes belonging to the datasets used in the experimental section are
different.

After this pre-processing stage, we are able to cast the learning phase of the eigenvec-
tor component into a non-parametric density estimation of the distribution of the spectral
embedding points φ̂M

1 , ..., φ̂M
n . With those assumptions in mind, let the eigenvector model

parameter ΘΦ consists of a collection of N d-dimensional vectors θΦ1 , ...θΦN . We assume
that all these points are samples from the unknown density function F . In the learning
phase, the parameter ΘΦ is obtained aligning and stacking (and eventually sub-sampling)
all those spectral embedding points together from the sample meshes which belong to the
same class, or in other words, all the meshes that belong to the training set and represent
the same shape. The density model allows us to avoid the vertex-alignment problem al-
lowing many-to-many relations among vertices from different meshes and the separation
of eigenvector and eigenvalue constrains the set of isometries of the embedding space to
the discrete set of sign changes. However, sampling noise and approximate isometries
of the surfaces result in mixing of the eigenspaces, especially between those with similar
eigenvalues. We address this by adopting a kernel Procrustes alignment approach, locally
optimizing over the orthogonal group O(d). Thus, the posterior probability P

(
ΦM |ΘΦ)

can be computed solving the problem:
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max
O∈O(d)

max
S∈{±1}d

(N hd )−n
n∏

i=1

N∑
j=1

e−
‖OSφM

i −θΦj ‖2

2h2 (5.5)

expressing the optimization problem in terms of the product of Parzen-Rosenblatt kernel
density estimators. In particular, φM

i is one of the sample points obtained taking the first
d components of the i -th row of the eigenvector matrix associated to the mesh M , while
θΦj is the j -th component (still a d-dimensional row vector) of the eigenvector model ΘΦ.
Here the eigenvector model is assumed to be a collection (an array) of samples taken from
the training set during the learning phase. Furthermore, in order to minimize the variance
between all the eigenvector matrices of the meshes of the training set (and simultaneously
increasing the variance with the eigenvector matrices which does not represent the same
shape), we introduce two alignment steps. In particular, the matrix O that appears in the
optimization problem 5.5 represents an orthogonal transformation used to align as much
as possible all the points of our representation, while S (to not be confused with S and S

introduced in section 5.4) is a matrix containing just ±1 used to solve the sign ambiguity
problem (see 5.4.1).

In the computation of the kernel density estimator, a rule of thumb must be chosen in
order to estimate the bandwidth h of the kernel. In this work, we employ the Silverman’s
rule of thumb for the multivariate case [171] and we estimate the bandwidth as

h =
(

N
d +2

4

)− 1
d+4

σ (5.6)

where d is the embedding dimension, N is the number of meshes employed in the con-
struction of the model ΘΦ (i.e. the dimension of the training set) and σ is the standard
deviation computed as the squared root of the mean variance (the trace of the covariance
matrix Σ divided by the n nodes of the model) of the eigenvector model

σ=
√

1

n
Tr (Σ) (5.7)

Note that we are not assuming that the eigenfunctions are independent. Indeed, we
build our eigenvector model as a point cloud. Given an eigenvector matrix (as columns),
each point is given by a row of this eigenvector matrix. We assume those points to be
independent observations of an unknown underlying distribution which we estimate non
parametrically. And that’s why we state that our model is independent of the sampling,
since even if we prune out part of those points, the underlying distribution remains the
same. Robustness analysis presented in section 8.3 confirms the assumption. A more
practical analysis about the construction of such model is demanded to section 5.4.

As regards to the eigenvalue model ΘΛ, we follow Aubry et al. [12] for the choice
of the distribution to be used. In their work, they showed empirically that the eigenener-
gies of an articulated shape are log-normally distributed random variables due to stability
considerations derived from matrix perturbation theory. As a result, we model the set
of eigenvalues as a series of independent log-normal distributions, one for each of the
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d eigenvalues involved in the construction of the model. More formally, we define the
posterior probability (relative to the eigenvalue component) of a mesh M to belong to the
class modelled by ΘΛ as

P (ΛM |ΘΛ) = (2π)
d
2

d∏
i=1

1

λiσi
e

−(lnλi −µi )2

2σ2
i (5.8)

In particular, µi and σi represent the model parameters to be learned from the training
set and d is the number of eigenvalues used in the model (i.e. the embedding dimension).
Note that the log-normal distribution concerns corresponding eigenvalues among the dif-
ferent meshes of the training set. Finally, note that we are not assuming the eigenvalues
to be independent, but rather that they follow the same underlying distribution. It is the
deviation from that distribution that is considered as independent noise and modelled as
log-normals following [16].

To address the classification task, those models are employed inside a statistical frame-
work in the prediction phase of a new mesh. Let Θ = {

ΘΛ,ΘΦ
}

be such model. Still
assuming the independence of the two models, we define the posterior probability of a
given mesh M , whose spectral components of the associated Laplacian matrix are the
eigenvalue matrix ΛM and the eigenvector matrix ΦM , as

P (M |Θ) = P (ΛM |ΘΛ)P (ΦM |ΘΦ) (5.9)

5.4 Learning phase

In order to address the retrieval task, we define two separate phases. The first one is
the learning phase. The main goal of the learning process is to estimate the model pa-
rameters for both the eigenvector model and the eigenvalue model. Before estimating
the parameters, the training dataset must undergo a pre-processing phase. Given a set
of meshes S = {M1, M2, . . . , MN } representing the same shape S in different poses (and
which represents our training set), the first step involves the computation of the Laplacian
matrix associated to each mesh Mi , obtaining the set {L1,L2, . . . ,LN }. Applying a sin-
gular valued decomposition to each Laplacian matrix, we obtain the eigendecomposition
Li =ΦiΛi ,ΦT

i where the diagonal elements of Λi are in ascending order and we remove
the trivial eigenvalue and the corresponding eigenvector (which results to be constant).
Finally, we are not interested in the whole Laplacian eigendecomposition, but just an em-
bedding of it. In other words, given d as the embedding dimension, we keep the first d
eigenvalues and the first d eigenvectors of the eigendecomposition of the Laplacians. As
a result of this pre-processing phase, we obtain the set {(Λi ,Φi )}i=1,...,N , where Λi ∈Rd×d

and Φi ∈Rni×d (ni the number of vertices of the mesh i ).
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5.4.1 Eigenvector model
As said before, the result of the pre-processing phase is the set of embedded eigenvector
and eigenvalue matrices of the Laplacians of the meshes which represent the same shape
S . The next step in the construction of the eigenvector model involves a simple stacking
operation of all the matrices that belong to the set. Hence, the eigenvector model of the
shape S , denoted as ΦS , is defined as

ΦS =


φ1

1 φ1
2 . . . φ1

d
φ2

1 φ2
2 . . . φ2

d
...

...
...

...
φN

1 φN
2 . . . φN

d


In particular, φi

j denotes the j -th non-trivial eigenvector (which is still a column vec-
tor) of the i -th mesh of the training set. In other word, we perform a simple vertical
concatenation of the embedded eigenvector matrices of the meshes in the training set.
Therefore, the final dimension of the model ΦS can be expressed as

(∑N
i=1 ||Mi ||

)×d ,
with ||Mi || the number of vertices of the i -th mesh.

As the quantity of available training data grows, this matrix becomes very big. The
main advantage of the point-wise approach adopted by the proposed method consists in
the ability to overcome the issue deriving from the dimension of the model. In particular,
treating each row of the eigenvector model as an independent observation in order to
estimate the posterior probability through equation 5.5, allows to randomly sub-sample
the model ΦS still preserving the underlying distribution of the points.

Eigenvector sign ambiguity

It is well known that the eigenvectors computed by eigendecomposition are unique only
up to a linear transformation. In particular, since eigenvectors are often assumed to be of
unit Euclidean norm, they are recovered up to a sign factor. Since the proposed method
characterize each vertex of a mesh with a feature vector, a sign disambiguation is manda-
tory. There are several approaches that can be used to solve the sign ambiguity issue. A
reliable approach involves the computation of the correlation between two functions (the
probability density function in our instance). If the correlation grows after a sign flip, then
the eigenvector should be flipped. However, this technique results computationally heavy
as the size of the model grows. For this reason, we have to rely on an heuristic-based
method in order to solve the sign ambiguity issue, even if it does not guarantee the iden-
tification of all the sign flips that should be performed. Given the eigenvector matrices
ΦA and ΦB , computed through the eigendecomposition of the Laplacian of two meshes
MA and MB (which represent the same shape in different poses), let φA

i and φB
i be the

i -th eigenvector. We assume the eigenvectors to be random variables whose probability
density functions are unknown. In addition, we assume all i -th eigenvectors associated
to each mesh representing the same shape to share a similar probability density function
(up to a linear transformation). Such linear transformation does not influence the shape of
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Figure 5.1: Orthogonal transformation of the eigenvector matrix example. a) shows the
mesh which is used as the reference mesh. The graph below shows the plot of the first
three non trivial eigenvectors of the reference mesh, while the graph on the right of the
mesh shows the kernel density estimation computed on the eigenvector matrix. Hence,
here we want to align the eigenvectors of the mesh b) according to the eigenvectors of a).
The result of the optimization process can be seen in c).

the pdf, but it influences the sign of the peak of such function. In other words, if the sign
of the peaks disagree, a sign flip occurs. More formally, after the selection of a mesh as
reference mesh (for example A), we define our heuristic approach to the sign ambiguity
solution as

φB
i =


φB

i (−1) if x A∗
i < 0 and xB∗

i ≥ 0 ,
φB

i (−1) if x A∗
i ≥ 0 and xB∗

i < 0 ,
φB

i otherwise.
(5.10)

where x A∗
i and xB∗

i are the peaks of the pd f computed through kernel density es-
timation. The densities are evaluated at 100 points covering the range of values in the
eigenvectors. Hence, before the construction of the eigenvector model ΦS , we randomly
select a mesh M j as the reference mesh. Then we flip the eigenvector matrices associated
to the other meshes according to 8.9. As mentioned in section 5.3, the main drawback
of the proposed solution to the sign-ambiguity problem is its non-robustness to multi-
plicity of eigenvalues. Furthermore, similar eigenvalues could result in mixing of the
eigenspaces. The problem is addressed through an additional alignment step, which is
explained in details in section 5.4.1.

Eigenvector orthonormal transformation

The alignment step introduced in section 5.4.1 acts as an orthonormal transformation and
thus it does not violate the orthogonality of the basis. Nevertheless, an isometric differ-
ence between the eigenvector matrix of the reference mesh and the eigenvector matrix of
an another mesh is expected. In order to overcome the misalignment and consequently
to minimize distances between feature vectors of the two matrices, a further alignment
step is employed. From this viewpoint, the formulation of such optimization problem
is similar to the Orthogonal Procrustes Problem (OPP), that is solving for the optimal
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orthogonal matrix that maps the first set of points into the second one. However, our al-
gorithm differs from the standard OPP since we seek for the orthonormal transformation
which maximizes a certain probability. In particular, we define the probability density in
terms of Parzen-Rosenblatt kernel density estimator (Gaussian kernel)

Ph(x) = 1

n ·h

n∑
j=1

e− 1
2

‖x−y j ‖2

h2 (5.11)

By integrating the constraints of the optimization problem into our definition of prob-
ability density, we get

argmax
O∈O(d)

m∏
i

n∑
j

e− 1
2

‖Oxi −y j ‖2

h2 (5.12)

where m is the number of vertices of the mesh we want to align to the reference mesh y
and the parameter h is the bandwidth computed according to equation 8.7.

In order to solve 5.12, we firstly have to calculate the gradient with respect to an
incremental variation and later compute iteratively the orthonormal transformation. The
log-likelihood of the problem, after the introduction of the additive rotation T , is given
by

`L (y |x) =
m∑
i

log

(
n∑
j

e− 1
2

‖T Oxi −y j ‖2

h2

)
(5.13)

Let αi , j be defined as αi , j = e− 1
2

‖Oxi −y j ‖2

h2 . Then, by deriving the function in 8.13, with
respect to the additional rotation T , we get

∂`L

∂T
=∑

i

∑
j αi j

(
−1

2

∂
∂T ‖T Oxi−y j ‖2

h2

)
∑

j αi j
(5.14)

In particular, the partial derivative obtained by deriving with respect to the identity I

(T = I ), results

∂

∂T
‖T Oxi − y j‖2 = −2y j (Oxi )T (5.15)

= −2y j xT
i OT (5.16)

We can rewrite 5.14 as

∂`L

∂T
=

(∑
i

∑
j αi j h−2 y j xT

i∑
j αi j

)
︸ ︷︷ ︸

A

OT = AOT (5.17)
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In order to find the maximum, we want to project the gradient to the null space. T

is an orthogonal rotation matrix, hence it belongs to the Lie group O(d) (with d the em-
bedding dimension). The tangent space (which we compute through the gradient of the
log-likelihood 5.17) at the identity element of a Lie group is its Lie algebra, which rep-
resents the skew-symmetric matrices space. Since the skew-symmetric component of a
matrix B is given by B−B T

2 , in order to nullify such component, we want to make B sym-
metric. More precisely, in order to find the maximum we want to make AOT symmetric
(which means AOT = (AOT )T . Indeed

AOT − (AOT )T

2
= 0 (5.18)

Treating the problem as an Orthogonal Procrustes Problem, the rotation matrix O

which symmetrizes AOT is computed through singular value decomposition of the matrix
A. The decomposition yields svd(A) =U LV T , while we can compute the rotation matrix
as O =UV T . It is easy to see that O symmetrizes the gradient defined above, indeed

AOT = (U LV T )(V U T ) =U LU T (5.19)

To summarize, the computation of the rotation matrix O is achieved using the follow-
ing algorithm.

1. Initialize O = I

2. Compute αi j (8.14) for each i = 1, . . . ,n (n the number of vertex of a mesh) and
j = 1, . . . , N (N the number of points of the model)

3. Compute the matrix A (according to 5.17)

4. svd(A) =U LV T

5. O =UV T

6. If the convergence is achieved, i.e. A ≈ AT , or the maximum number of iterations
allowed is reached, end the algorithm, otherwise repeat from 2

Once both the alignment steps are computed on the spectral decomposition of each
mesh belonging to the training set, we are able to build the matrixΦS through the stacking
operation mentioned at the beginning of this section. We decide to not combine the two
alignment steps (the sign disambiguation and the orthonormal transformation) since the
former represents just a coarse alignment, while the latter represents a fine alignment step
which is effective only for smaller and local alignments.
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5.4.2 Eigenvalue model

The second independent model involved in the proposed method regards the eigenvalues
computed on the Laplacian of each mesh of the training set S (see section 5.4). The
eigendecomposition produces the set of pairs {(Λi ,Φi )}i=1,...,N . Especially, Λi contains the
first d non-trivial eigenvalues of the i -th mesh of the training set as its diagonal elements.
Let ΛS be a N ×d matrix whose rows are the eigenvalues extracted from the Λi s.

ΛS =


di ag (λS

1 )
di ag (λS

2 )
...

di ag (λS
N )

=


λS

11,1
· · · λS

1d ,d

λS
21,1

· · · λS
2d ,d

... . . . ...
λS

N1,1
· · · λS

Nd ,d


We assume that all the j -th eigenvalues of ΛS , with j = 1, . . . ,d , are distributed as a

log-normal distribution (see equation 8.5). In order to learn the model parameters µ (the
mean) and σ2 (the variance), we do a maximum likelihood estimation using

µ̂=
∑

i ln xi

N
, σ̂2 =

∑
i (ln xi − µ̂)2

N
(5.20)

As a result of this learning phase, we compute a pair of parameter (µ,σ2) for each of
the d eigenvalues of the model. Hence, the eigenvalue model for a particular shape S is
represented by the set ΘΛ = {

(µi ,σ2
i )

}
i=1,...,d .

5.5 Model inference
The learning phase of the proposed method produces two separate models, both referring
to a shape S . The eigenvector model ΘΦ contains the embedded eigenvector matrices
stacked together after the two alignment steps introduced in section 5.4.1 and 5.4.1, while
the eigenvalue model ΘΛ contains the parameters set learned on the eigenvalues of the
training set. Once both models are computed, we can combine them to compute the
posterior probability of a new mesh M∗ (whose spectral decomposition is (Φ∗,Λ∗)) with
respect to the model representing a mesh S . Assuming the independence of the two
models, we can define the conditional probability as

P (S | M∗) = P (Φ∗ |ΘΦ)P (Λ∗ |ΘΛ) (5.21)

Since both P (Φ∗ |ΘΦ) and P (Λ∗ |ΘΛ) come from a log-derivation, equation 5.21 can
be rewritten as

log P (S | M∗) = `L (Φ∗ |ΘΦ)+`L (Λ∗ |ΘΛ) (5.22)

where the eigenvector model log-likelihood is defined as
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`L (Φ∗|ΘΦ) =
n∏

i=1
P (xi ) =

n∑
i=1

logP (x̄i |ΘΦ) (5.23)

Here, n is the number of vertices of the mesh M∗, while x̄i is a d-dimensional row
vector representing the i -th feature vector of the mesh. Note that the eigenvector matrix
associated to M∗ undergoes the same alignment steps defined in section 5.4.1 and 5.4.1.
On the other hand, the eigenvalue model log-likelihood is defined as

`L (Λ∗|µΘi ,σΘi ) =
d∏

i=1
P (λi ) =

d∑
i=1

logP (λi ) (5.24)

where µΘi and σΘi are the mean and the variance parameters learned according to 8.22.
The posterior probability is computed against each model of each shape contained in the
dataset. As a decision rule, we classify a certain mesh as representing the shape whose
model yields the highest probability. Even though we employ the proposed method as a
classifier, the output of the approach is still a probability value which can be employed as
a similarity score.

5.6 Experimental results
In this section we show the performance achieved by the proposed method while address-
ing a classification task. The evaluation is based on the comparison of the results obtained
by our method with respect to the current state-of-the-art on a very popular shape retrieval
benchmark, i.e. SHREC’14 benchmark. The implementation of our method has been
done in MATLAB, and the source code is available on the author web page. The efficacy
of the method is evaluated in terms of mean classification accuracy. Besides, we test the
robustness and its sensitiveness to sub-sampling, showing the retrieval performance with
different amount of data employed in the learning process and with different embedding
dimensions. Finally, a short performance analysis (in terms of execution time) is proposed
at the end of the section.
SHREC’14 Humans [144] is a dataset containing a large number of meshes which rep-
resent 55 different shapes. It consists of two different sub-sets. The first one (synthetic)
contains 15 different human models each in 20 different poses, while the second one
contains scans of 40 human subjects, each in 10 different poses. All shapes were down-
sampled to have about 6×103 triangles for efficiency purpose. Both datasets are extremely
challenging, as they contain geometrically similar human shapes. We employed a 10-fold
test over the datasets resulting respectively in 2 positives and 28 negatives per query for
the synthetic dataset and 1 positive and 39 negatives for the scanned dataset. The process
was repeated for each possible subset of the datasets and the whole test was averaged over
100 iterations. We compare our approach with the most accurate methods that participate
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Method Synthetic Scanned
ISPM [113] 90.2 25.8
DBN [144] 84.2 30.4
R-BiHDM [200] 64.2 64.0
HAPT [70] 81.7 63.7
ShapeGoogle (VQ) [31] 81.3 51.4
Unsupervised DL [117] 84.2 52.3
Supervised DL [117] 95.4 79.1
NPSR 95.0 79.0

Table 5.1: Comparison of different retrieval methods in terms of average retrieval preci-
sion on the SHREC’14 Humans datasets.

to the SHREC’14 benchmark: Histograms of Area Projection Transform (HAPT) [70],
Deep Belief Network (DBN) [144], Intrinsic Spatial Pyramid Matching (ISPM) [113],
Reduced Bi-harmonic Distance Matrix (R-BiHDM) [200] and to a group of approaches
based on the Bag-of-Features paradigm ( [117], [31]). Table 6.3 shows the results yielded
by those methods. The proposed method performs well and is competitive with the cur-
rent state-of-the-art. We are able to achieve high retrieval accuracies in both the synthetic
and scanned datasets, while the differences with respect to the current state-of-the-art are
not statistically significant.

Finally, we present a robustness analysis of the proposed method. The random sub-
sampling has been performed directly on the Laplacian matrices of the meshes which
belong to the same training set. Indeed, performing the sub-sampling after the model
construction through the elimination of some feature vectors (which means, taking out
some rows from the model ΘΦ) could lead to biased results since both the alignment steps
employed in our learning phase would have benefited from the contribution of data that
would no longer be available in the next steps. Figure 5.2 shows the average precision
while both the embedding dimension and the sampling percentage vary. As you can see,
for the lowest level of sub-sampling (respectively, 75% and 100% of data used in the
learning process) we were not able to produce the results with respect to all the embed-
ding dimensions due to the dimension of the model. Even so, it is easy to see that the
performance achieved are consistent at every sub-sampling level. In particular, the results
show that the defined model is robust with respect to the sub-sampling of points. This
allows to greatly reduce the dimension of the model itself and consequently increasing
the performance of the whole pipeline.

5.7 Conclusion

In this work, we proposed a supervised data-driven approach for the construction of a gen-
erative model based on the spectral decomposition of the Laplace-Beltrami operator. We
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defined a statistical framework that models a shape as two independent generative models
for the eigenvector and the eigenvalue components of the spectral representation of the
Laplacian, making no assumption about the distribution of the spectral embedding space
of the eigenvector part and estimating it through kernel density estimation. Moreover, we
modelled the eigenvalues as a log-normal distribution. We tested our method on one of
the most recent and popular dataset for shape retrieval. Experimental results show that the
proposed approach is competitive with the current state-of-the-art and it is able to achieve
high retrieval accuracy. Finally, robustness analysis showed that the proposed method is
resilient to sampling, allowing to remove data from the models in order to improve the
computation efficiency.
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Figure 5.2: Robustness analysis of the proposed method in both Real (top) and Synthetic
(bottom) datasets. The marks represent the average precision obtained with a certain em-
bedding dimension. Different lines represent different sub-sampling percentage, e.g. the
red line represents the average accuracy with respect to different embedding dimensions
after removing 75% of the data on the model (i.e. keeping only 25% of the data).



6
Statistical Model of Riemannian
Metric Variation for Deformable

Shape Analysis

The analysis of deformable 3D shape is often cast in terms of the shape’s intrinsic geom-
etry due to its invariance to a wide range of non-rigid deformations. However, object’s
plasticity in non-rigid transformation often result in transformations that are not com-
pletely isometric in the surface’s geometry and whose mode of deviation from isometry is
an identifiable characteristic of the shape and its deformation modes. In this chapter, we
propose a novel generative model of the variations of the intrinsic metric of deformable
shapes, based on the spectral decomposition of the Laplace-Beltrami operator. To this
end, we assume two independent models for the eigenvectors and the eigenvalues of the
graph-Laplacian of a 3D mesh which are learned in a supervised way from a set of shapes
belonging to the same class. We show how this model can be efficiently learned given
a set of 3D meshes, and evaluate the performance of the resulting generative model in
shape classification and retrieval tasks. Comparison with state-of-the-art solutions for
these problems confirm the validity of the approach.

In Chapter 5 we proposed another approach to tackle the shape retrieval problem.
Both methods devise generative models based on the spectrum of shapes. The central
difference between the approaches is the assumption on which they are based. In the
method proposed in this chapter, a common space is assumed to be known (or somehow
computed) between the meshes. In this space, a novel intrinsic metric is defined and used
to compute the invariant representation of a shape. On the other hand, in the method in-
troduced in the previous chapter, this space is not assumed nor necessary in the definition
of the generative model.

6.1 Introduction

The ability to retrieve similar 3D objects given a query object has become of great impor-
tance in several field, like medical research, automatic information retrieval systems and
copyright protection. The main challenge in 3D object retrieval algorithms is to define
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an invariant representation of a shape capable of capturing geometrical and topological
properties of a shape [20, 147, 175]. A large number of methods for 3D shape retrieval
have been proposed [10,98,127,140,167], but most of them are only suitable for the rep-
resentation of rigid 3D shapes. Non-rigid 3D shape descriptors are more challenging to
define. Indeed, those representations still need to capture the most distinctive properties
of a shape, but they should be also insensitive to many other transformations (e.g. inelastic
transformation, acquisition resolution, noise, etc.).

Various methods have been proposed to address the non-rigid shape retrieval prob-
lem. These can be mainly categorized according to two main directions: topology-based
approaches against surface-based methods and the employment of shape descriptors that
can be local or global. The first solution usually capture the global topological structure of
the shape [112, 126, 130], while the surface-based methods usually exploit spectral shape
analysis in order to build a spectral descriptor [12, 155, 174] to be used for the task. Fi-
nally, one can employ global descriptors in order to characterize the whole shape [33,174]
or define a set of of local descriptors [64, 73] that characterize only parts of the object
(e.g. segments or points).

6.1.1 Related works
The methods which define a shape descriptor (both local and global) to tackle the non-
rigid 3D shape recognition are the ones we are most interested in. A popular approach to
define shape descriptors is through spectral shape analysis. Research efforts have recently
resulted in several spectral descriptors [12, 101, 149, 174] usually based on the spectral
decomposition of the Laplace-Beltrami operator. In particular, the graph-Laplacian, the
discrete counterpart of the Laplace-Beltrami operator, has been extensively used to pro-
vide spectral representations of structures [118]. Reuter et al. [148] suggest to use the
Laplace-Beltrami spectra as fingerprints of surfaces, while Jain and Zhang [88] propose
to use the eigenvalues of the geodesic distance matrix of a 3D object in order to build
the associated shape descriptor. Huang et al. [84], on the other hand, build the signature
directly over local features, selecting discriminative volumetric features over pre-aligned
shapes.

The aggregation of local descriptors in order to build a global descriptor is a general
thread in the literature. For this purpose, the Bag-of-Features (BoF) paradigm is quite
popular and has been successfully applied to 3D shape description [31, 50, 109, 177]. Li
and Hamza [114] used the BoF paradigm combining the exploitation of hierarchical struc-
tures of the shape, such as pyramid matching [74] and spatial relationship [31, 50, 109].
They proposed to adopt the eigenfunction associated with the second-smallest eigenvec-
tor of the Laplace-Beltrami operator in order to build a global surface coordinate system
which is insensitive to shape deformation, showing that the introduction of global spatial
context could improve the effectiveness of their descriptor in 3D shape recognition. Spa-
tial pyramid [110, 114, 120], is the term used to identify this approach. Other approaches
inspired by text-analysis have been proposed. For instance, in [22, 82] the authors adopt
higher-order models defining relations between ‘geometric words’.
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Within the bag of features model, features quantization is generally performed through
unsupervised learning. Departing from this approach, Litman et al. [117] recently pro-
posed a new supervised BoF framework mapping the discriminative training directly into
the dictionary construction step.

6.1.2 Main contribution

In this chapter, we propose a new supervised technique to learn a statistical model build on
the Riemannian metric variations on deformable shapes based on the spectral decomposi-
tion of the Laplace-Beltrami operator. To this end, we define a statistical framework that
models a shape as two independent models for the eigenvectors and for the eigenvalues.
The eigenvector and eigenvalue matrices of a set of discrete representations (i.e. meshes
representing the shape in different poses) are assumed to be points of two separate smooth
Riemannian manifolds. The invariant representation of a certain shape is computed as the
centroid of such manifolds. The shape centroid acts as our invariant representation of the
shape. One of the main contributions is indeed the definition of an efficient algorithm
that compute the spectral decomposition of this centroid. In particular, we define it as a
supervised data-driven optimization process. For this purpose, we define a computation-
ally efficient intrinsic distance metric over the eigenvectors manifold. Finally, we define
a statistical model over the variations of such metric, assuming that the squared geodesic
distances follow a Γ-distribution. Moreover, in order to define a descriptor that is robust
to small non-isometric perturbations, we assume that the eigenvalues are log-normally
distributed for the same stability reasons presented by Aubry et al. [12].

6.2 Background

We model a shape as a surface which is invariant to rigid and non-rigid transformations,
or, quoting D.G. Kendall [100], a shape is ‘what is left when the differences which can be
attributed to translations, rotations, and dilatations have been quotiented out’. A represen-
tation of such shape is modelled as a smooth compact 2-manifold S without boundary
isometrically embedded in some Euclidean space R3 with geometry induced by the em-
bedding. A 3D mesh is a discretization of a shape embedded in R3, and a discrete Lapla-
cian is a discretization of the continuous Laplace-Beltrami operator on the mesh. There
are various ways by which such discretization can be obtained from the mesh. Here we
adopt the algorithm proposed by Belkin et al. [16] which offers point-wise convergence
guarantees and was experimentally shown to be quite robust.

The spectral representation of the mesh can be obtained from the Laplacian through
singular value decomposition. Given a Laplacian L , its decomposition is L = ΦΛΦT ,
where Λ= di ag (λ1,λ2, ...,λ|V |) is the matrix whose diagonal contains the ordered eigen-
values, while Φ = (φ1|φ2|...|φ|V |) is the matrix whose columns are the ordered eigenvec-
tors. This decomposition is unique up to a permutation of the vertices of the mesh, a
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change of sign of the eigenvectors, or a change of basis over the eigenspaces associated
with a single eigenvalue, i.e. , the following properties hold:

L ' PLP T = PΦΛ(PΦ)T (6.1)
L = ΦΛΦT =ΦSΛSΦT (6.2)

where ' indicates isomorphism of the underlying surfaces, P is a permutation matrix and
S is a diagonal matrix with diagonal entries equal to ±1.

6.3 Statistical model definition
One of the main contribution of this part of the thesis is the definition of an efficient
algorithm to compute the spectral decomposition of the manifold centroid from a set
of points lying on it. In order to address the classification task, we study the varia-
tions of the metrics in the manifold, casting them into a statistical framework. So let
MS = {

MS
1 , MS

2 , . . . MS
N

}
be a set of meshes which represent a discretization of the same

underlying shape S in different poses. In the proposed method, we assume that each com-
ponent of the spectral decomposition of the Laplacian of each mesh MS

i , i = 1, . . . , N , lies
on a Riemannian manifold. Let ∆M S

i
be the Laplace operator introduced in section 7.2 ap-

plied to the mesh MS
i . The spectral decomposition of ∆M S

i
yields the eigenvectors ΦMS

i

and the eigenvalues ΛMS
i

(Φi and Λi in short) such that

∆MS
i
=ΦMS

i
ΛMS

i
ΦT

MS
i

(6.3)

These components are used as a basis for our invariant representation of the shape S .
Let MS

0 = {
ΦS

0 ,ΛS
0

}
be such invariant representation. We treat the spectral components

independently, building a model for the eigenvectors and a model for the eigenvalues.
Since the Laplacian matrix is a positive-semidefinite matrix, the eigendecomposition of
such matrix yields an orthogonal basis of eigenvectors, φ ∈O (n).

The set of orthogonal matrix is composed by two disjoint subsets, one with matrices
with determinant +1 (i.e. the special orthogonal group S O (n)) and one with matrices with
determinant −1. In the computation of the geodesic distance, the two orthogonal matrices
must belong to the same subset. However, the arbitrarity of the sign of the eigenvectors
guarantee that we can always find representatives in the same connected component. In
particular, choosing the sign-flip S that minimizes the Frobenius distance between the
eigenvector matrices, we guarantee that we pick representatives that belong to the same
connected component and which are closest to one another in terms of geodesic distance.
This requires a pre-processing of the eigendecomposition of the Laplacians of the whole
class in such a way that the direction of the eigenvectors are concordant. To this end,
we take a reference mesh and flip the sign of the eigenvectors of the other meshes in
such a way as to make the dot product of corresponding eigenvectors form the different
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meshes positive. Under this assumption, we define ΦS
0 as the solution to the following

minimization problem:

argmin
ΦS

0∈O (n)

N∑
i

d 2(ΦS
i ,ΦS

0 ) (6.4)

where d 2 is the geodesic distance between the eigenvector matrices, while N is the num-
ber of meshes representing the same shape S . Given two orthogonal matrices R1 ∈O (n)
and R2 ∈ O (n) belonging to the same connected component of O (n), we can define the
geodesic distance as

dg (R1,R2) = ‖log (RT
1 R2)‖F (6.5)

where ‖ · ‖F is the Frobenius norm. For orthogonal matrices belonging to the same con-
nected component of O (n), we have

d 2
g (R1,R2) =

n∑
i
Θ2

i (6.6)

where Θi are the angles of the rotation RT
1 R2 ∈S O (n).

Using Taylor’s expansion of cosΘ, we obtain Θ2 = 2− 2cosΘ+O(Θ4). Recalling

that for A ∈S O (n) Tr(A) = Tr( 1
2 (A+ AT )) =

n∑
i

cos(Θi ), we can approximate the geodesic

distance as
d 2

g (R1,R2) = 2n −Tr
(
RT

1 R2
)+O(Θ4

i ) (6.7)

resulting in the following approximation of 6.4:

argmin
φ0∈O (n)

2N n −2Tr

((
N∑
i
φT

i

)
φ0

)
(6.8)

which is equivalent to

argmax
φ0∈O (n)

Tr

((
N∑
i
φT

i

)
φ0

)
(6.9)

For this work, we assume that the geodesic distances between eigenvector matrices
of the Laplacian of the meshes that represent the same shape follow a Γ-distribution with
shape parameter k and scale parameter θ.

Γ(x;k,θ) = 1

θkΓ(k)
xk−1e− x

θ (6.10)

where N is the number of meshes involved in the model construction, x are the geodesic
distances between the eigenvectors of the meshes and the eigenvectors centroid, and k and
θ are estimated using the maximum likelihood estimation. Since there is no closed form
solution for the parameter k, we approximate it using [129] and computing the parameter
s as



786. Statistical Model of Riemannian Metric Variation for Deformable Shape Analysis

s = log

(
1

N

N∑
i=1

p
xi

)
− 1

N

N∑
i=1

log(xi ) (6.11)

where xi in our instance is the geodesic distance between the eigenvectors of the Lapla-
cian of the mesh i and the eigenvectors centroid of the class. Using s, we can approximate
k as

k ≈ 3− s +
√

(s −3)2 +24s

12s
(6.12)

Once the shape parameter is computed, we use it to compute the second parameter of
the distribution, θ.

θ = 1

kN

N∑
i=1

p
xi (6.13)

Finally, thanks to 6.7, we are able to define the geodesic distance between two eigen-
vector matrices, which is computed as

d 2(φi ,φ0) = 2n −2Tr(φT
i φ0) (6.14)

The second component of the spectral decomposition of our manifold centroid is sim-
ply the exponentiation of the average of the logarithm of each j -th eigenvalue

Λ j 0 = e
1
N

N∑
i

logλ j i
(6.15)

We assume that the eigenvalues follow a log-normal distribution. In particular, we
assume that each i -th eigenvalue follows the same distribution, i.e. shares the same distri-
bution parameters.

logN (x;µ,σ) = 1

x
p

2πσ
e− (log x−µ)2

2σ2 (6.16)

where x is an eigenvalue, µ is the mean of the distribution and σ is the standard deviation.
Let λi 0 be the i -th eigenvalue of the spectral decomposition of the manifold centroid.
Then, the distribution mean is defined as

µi = logλi 0 (6.17)

Let λi j be the i -th eigenvalue of the mesh j . We define the standard deviation σ as

σi =
√√√√ 1

N

N∑
j=1

(
logλi j −µi

)2 (6.18)

Finally, we can define the density of the i -th eigenvalue of the j -th mesh as
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λdi j =
1

λi j
p

2πσi
e
−

(
log(λi j )−µi

)2

2σi (6.19)

Once both densities are computed, it is possible to compute the density of a particular
mesh as

p( j ) =
(∏

i
λdi j

)
Γ(k,θ)(gd j ) (6.20)

where gd j is the geodesic distance between the eigenvector matrix of the Laplacian of a
mesh and the eigenvector centroid of the shape we are considering.

6.4 Embedding, isometries and lack of correspondences
The use of the whole Laplacian eigendecomposition of a mesh is not necessary, nor en-
couraged, since we are usually more interested in the smallest eigenvalues and the associ-
ated eigenvectors. In fact, most of the structural information is stored in those eigenvalues
and eigenvectors. And that is why we embed the Laplacian matrix into a lower dimen-
sional space. Let p be the embedding dimension. In the formulation of the geodesic dis-
tances 6.7 and 6.14, the embedding dimension must be taken into account and p should
be used in place of n.

The use of spectral shape descriptor entails several advantages like the simple repre-
sentation, scale invariance and a very good performance for shape retrieval of non-rigid
shapes. But there are also several issues that raise from its employment. For example, the
isometric embedding of a Riemannian manifold on a lower dimensional space is unique
up to isometries. For this reason, we introduce a new rigid transformation Ri which
aligns the eigenvectors of the Laplacian of a mesh i with the eigenvector centroid of a
certain shape. Hence, we can rewrite 6.9 introducing the rotation matrix Ri , obtaining

argmax
φ0,Ri∈S O (p)

Tr

(
N∑
i

Riφ
T
i φ0

)
(6.21)

The construction of our invariant representation of a shape is based on the assumption
that the correspondences between the vertices of two meshes is known. But usually this
kind of information is not available. Thus, the second issue we dealt with is related to the
lack of correspondences between two meshes. There are several datasets available that
provide the ground-truth for the correspondences (at least of the meshes that represent the
same shape, i.e. meshes that belong to the same class), like TOSCA dataset [9] or the kids
dataset [153]. But most of the datasets used in shape retrieval task do not provide such
information. In order to make our method as flexible as possible, we cast the problem of
finding a fine matching between two meshes to a maximum bipartite matching, solving the
lack of correspondences as an assignment problem. So let φi ∈ Rn×p and φ j ∈ Rm×p be
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the eigenvectors of the embedded Laplacian of two meshes. Let R ∈S O (p) the rotation
matrix which aligns the two meshes. We define a weight matrix W as

W =φi RφT
j (6.22)

This matrix is then used as input for the Hungarian algorithm [26]. The Hungarian
algorithm yields a permutation matrix P that minimize the assignment cost. Since we
want to maximize that cost, the input of the algorithm is the negation of the weight matrix
W . Hence, we can define the introduced problem as the maximization problem

argmax
R,P

Tr
(
φ j RφT

i P
)

(6.23)

while the geodesic distance between two eigenvector matrices is defined as

d 2(φi ,φ j ) = 2n −2Tr(φ j RφT
i P ) (6.24)

6.5 Learning the invariant representation
The proposed method consists of two independent phase. In this section we present the
first one, whose main purpose is to learn the invariant representation of each shape of
a given dataset. In other words, given a shape S, characterized in the dataset by a set
of meshes {M1, M2, . . . , MN }, we want to solve the problem 6.9 in order to compute the
eigendecomposition of the manifold centroid {Φ0,Λ0} of the shape. For the eigenvec-
tors component, we employ an iterative optimization process. An iterative approach is
mandatory since we have to find the optimum eigenvector centroid Φ0 while simultane-
ously optimizing each rotation matrix Ri , one for each of the N meshes of the training
set. The adoption of the iterative optimization process allows to split the problem defined
in 6.21 in two parts, one for the eigenvector centroid, defined as

Φ0 = argmax
Φ0∈O (n)

Tr

((
N∑
i

RiΦ
T
i

)
Φ0

)
(6.25)

and one for the rotation matrix which align the i -th eigenvector matrix with Φ0.

Ri = argmax
Ri∈S O (n)

Tr

((
N∑
i
ΦT

i Φ0

)
Ri

)
(6.26)

So, we define our iterative optimization process as

1. Computation of the mesh Laplacian of each mesh of the training set, {∆1,∆2, . . . ,∆N },
using Belkin et al.formulation [16].

2. Eigendecomposition of the Laplacians, which yields the set {(Φ1,Λ1), (Φ2,Λ2), . . . , (ΦN ,ΛN )}.
The eigenvalues are used in the second part of the learning phase in order to com-
pute the eigenvalues centroid Λ0.
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3. After the application of the rotation matrix Ri to each Φi , we sum the eigenvector
matrices together ΣΦ =∑N

i RiΦi . To estimate the eigenvector centroidΦ0, we com-
pute the singular value decomposition svd(ΣΦ) = U LV T . We compute the eigen-
vector centroid as Φ0 =UV T .

4. To estimate the rotation matrix Ri , we compute the sum ΣR = ∑N
i Φ

T
i Φ0. We use

again the svd, obtaining svd(ΣR) =U LV T . Finally, we compute the rotation matrix
as Ri =V U T .

The steps 3− 4 are repeated till convergence, which is usually reached after a low
number of iterations (about 5 iterations).

Once the eigenvector centroid is obtained, we can proceed with the computation of
the geodesic distances between each mesh of the training set and the centroid itself, using
equation 6.14. This results in the vector dg = {d1,d2, . . . ,dN }. As already introduced in
section 6.3, we assume that the geodesic distances dg follow a Γ-distribution. We use 6.12
and 6.13 to compute the distributions parameters k and Θ.

The eigenvalues component of the invariant representation is computed in a more
straightforward manner. Λ0 of a certain class is computed through 6.15. The log-normal
distribution parameters µ and σ for the eigenvalues component of the centroid are com-
puted using 6.17 and 6.18.

To summarize, the learning phase of the proposed method applied to a training set
with meshes that represent a shape S produces the manifold centroid {Φ0,Λ0} and the
distribution parameters

(
µS

i ,σS
i

)
, i = 1, . . . , p, and

(
kS ,ΘS

)
. The described learning

process is repeated for each class of the dataset. Figure 6.2 shows the distributions yielded
by the learning phase introduced in this paragraph.

6.6 Models inference
In section 6.4, we introduced one of the problems which raises from the computation of a
distance metric between two meshes, namely the lack of correspondences between these
meshes. In the learning phase of the proposed method this was a minor issue, since the
meshes that belong to the same class can be assumed to be quite isometric between them
self. It is not the case for the meshes that represent different shapes. In this case, we
cast the lack of correspondences problem into an assignment problem (see 6.23). In order
to solve this problem, we make use of another iterative process where we are looking to
optimize the parameters R∗ (a rotation matrix) and P∗ (a permutation matrix). Let Φ∗
be the eigenvector matrix computed on the Laplacian applied to a mesh M∗. No prior
knowledge about the shape represented by M∗ is assumed. Let Φ0 be the eigenvector
centroid of a shape S . After a initialization step where we assign the identity matrix to
the rotation matrix R∗, we define the optimization process as

1. Computation of the weight matrix W to be used in our assignment problem, W =
Φ∗R∗ΦT

0
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2. The weight matrix −W is then used as the input of the Hungarian algorithm, whose
output is a cost matrix C and a permutation matrix P∗

3. The rotation matrix R∗ is the orthogonal matrix which most closely maps the per-
muted eigenvector matrix Φ∗ to the eigenvector centroid Φ0, which is the definition
of the orthogonal Procrustes problem [162]. So, to estimate the rotation matrix
R∗, we use the svd, svd(ΦT∗P∗Φ0) =U LV T . We compute the rotation matrix R as
R =V U T .

The process converges after a low number of iterations (≈ 3). Once the parameters
R∗ and P∗ are computed, we use 6.24 to compute the geodesic distance dS∗ between the
eigenvector matrix associated to M∗ and the eigenvector centroid of the shape S . Let
kS and ΘS be the Γ-distribution parameters computed as explained in section 6.5. The
probability density of M∗ with respect to the eigenvector model of the shape S is

φd(∗|S ) = Γ
(
dS
∗ ;kS ,ΘS

)
(6.27)

The eigenvalues of the mesh Laplacian are used straightforward after their compu-
tation. As introduced in section 6.3, we assume that all the i -th eigenvalues follow
a log-normal distribution with parameters µi and σi , i = 1,2, . . . , p, with p the num-
ber of eigenvalues used (embedding dimension). So, let Λ∗ be the eigenvalues of the
mesh M∗. Let ΛS

0 be the eigenvalue centroid of the shape S . The probability den-
sity of each eigenvalue of M∗ with respect to the eigenvalues model of the shape S is
λd(∗|S ) =

{
λd(∗|S )1

,λd(∗|S )2
, . . . ,λd(∗|S )n

}
, where λd(∗|S )i

is defined as

λd(∗|S )i
= logN

(
λ∗i ;µS

i ,σS
i

)
(6.28)

Finally, we combine the afore-computed density using 6.20. For numerical stability,
in place of the product of the densities, we compute the sum of the logarithms of the den-
sities. Hence, the probability density of a mesh M∗ with respect to the models computed
on a shape S is given by

log p (∗|S ) = logφd(∗|S ) +
n∑
i

log
(
λd(∗|S )i

)
(6.29)

Once the combined density is computed, a decision rule is applied in order to assign
the mesh to the most probable class.

It is interesting to note that the lack of correspondences does not affect the construction
and use of the eigenvalues model. This is due to the fact that we treat each eigenvalue
as an independent variable, while each i -th eigenvalue of a mesh belonging to the same
shape is an independent observation. The only implicit assumption regards the dimension
of the embedding p, which has to be consistent between all the meshes involved both
in the learning and in the inference phase. Since the Laplacian eigendecomposition of a
mesh is part of the pipeline, the former assumption holds as long as the chosen embedding
dimension is smaller than the minimum number of vertex of each mesh involved in the
process.
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Transformation VQ [31] Sup. DL [117] RMVM
Isometry 98.8 99.4 99.4

Topology 100 100 100
Isometry+Topology 93.3 95.6 99.5

Partiality 94.7 95.1 90.0
Triangulation 95.4 95.5 96.5

Table 6.1: Comparison of different retrieval methods, in terms of average precision on the
SHREC’10 datasets, broken down according to different transformations.

6.7 Experimental results
In this section we evaluate the performance achieved by our method, comparing our re-
sults with the current state-of-the-art. Our approach was implemented in MATLAB and
the source code is available at the web page of the author 1. Retrieval performance was
evaluated using mean average precision. The proposed method has been applied to several
popular datasets in the shape retrieval field.

SHREC’10 ShapeGoogle [31] dataset is the aggregation of three public domain col-
lections: TOSCA shapes [9], Robert Sumner’s collection of shapes [173] and Princeton
shape repository [8]. It consists of 1184 synthetic meshes, out of which 715 meshes
were obtained from 13 shape classes with simulated transformation (55 per shape) used
as queries, while the 456 unrelated distractor shapes, which are usually treated as nega-
tives, were not used. The transformations applied to the meshes show different levels of
strength. An example of the shapes included in this dataset is shown in figure 6.3 in the
first row. The results, which are shown in table 6.1, were obtained using a 10-fold test
over 100 iterations.

In particular, we subdivided the meshes belonging to the same class in 10 randomly
selected groups, using each one as a test set, while the remaining meshes were used as
the training set in order to learn the invariant representation of a particular shape and the
associated distribution parameters. This dataset contains a different number of represen-
tatives (i.e. meshes) for each class, hence the number of positives and negatives differs
from class to class. For the smallest subset of meshes (representing the same shape), we
had 3 positives and 63 negatives, while for the largest we tested our method against 13
positives and 54 negatives. Like in Litman et al.work [117], we removed the ‘don’t-care’
ground-truth labels used in the original benchmark (e.g., male and female shapes were
considered the same class). Furthermore, in order to make the dataset more challenging,
we re-scaled all the meshes to have the same size. We compared the performance of our
method (which takes the name of RMVM, i.e. Riemannian Metric Variation Model) with
respect to several methods that employ Bag-of-Features descriptors. As the table shows,

1http://www.dsi.unive.it/~gasparetto/publications.htm
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Transformation 1 ≤ 2 ≤ 3 ≤ 4

Partiality 100 100 97.5 76.7

Table 6.2: Average precision on the SHREC’10 datasets, broken down according to the
strength of the transformation applied.

Method Synthetic Scanned
ISPM [113] 90.2 25.8
DBN [144] 84.2 30.4
R-BiHDM [200] 64.2 64.0
HAPT [70] 81.7 63.7
ShapeGoogle (VQ) [31] 81.3 51.4
Unsupervised DL [117] 84.2 52.3
Supervised DL [117] 95.4 79.1
RMVM 96.3 79.5

Table 6.3: Comparison of different retrieval methods in terms of mean average precision
on the SHREC’14 Humans datasets.

the proposed method obtains a slight performance improvement (or be at least on par)
in 4 out of 5 transformations with respect to the current state-of-the-art approaches. We
achieved lower classification accuracy with meshes which represent only partially the un-
derlying shape. This is due to the fact that our approach exploits the prior-knowledge
about the correspondences between vertices of different meshes. The removal of some
parts of the mesh makes our assumption weaker, and this leads to a lower accuracy in the
retrieval task. This issue is clear once we analyse the accuracy variation broken down to
the strength of the transformation. Table 6.2 shows the results obtained for each level of
strength of the transformation, while figure 6.4 shows a partiality transformation applied
to a mesh.

SHREC’14 Humans [144] consists of two different sub-sets. The first part (synthetic)
contained 15 different human models created using DAZ Studio, each in 20 different
poses (total of 300 models, figure 6.3, middle row). The second one (scanned) contained
scans of 40 human subjects, each in 10 different poses (400 shapes in total, figure 6.3,
last row). All shapes were down-sampled to have about 6×103 triangles. Both datasets
are extremely challenging, as they contain geometrically similar human shapes. In par-
ticular, the scanned dataset contains human shapes very difficult to distinguish even for
a human observer (see figure 6.3, third row). We employed again a 10-fold test over the
datasets. After a random permutation of the datasets, we subdivided the meshes into a
training set and a test set. For the training set we used 90% of meshes for each class in
order to build our shape invariant representation. For the synthetic dataset test set, we em-
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ployed 2 positives and 28 negatives per query, while for the scanned dataset test set, the
number of positives was 1 and the number of negatives was 39. The process was repeated
for each possible subset of the datasets and the whole test was run 100 times. In addi-
tion to the same Bag-of-Features approaches seen before, we compared our model with
the most accurate methods that participate to the SHREC’14 benchmark. In particular,
we compared our approach to works based on Histograms of Area Projection Transform
(HAPT) [70], Deep Belief Network (DBN) [144], Intrinsic Spatial Pyramid Matching
(ISPM) [113], and Reduced Bi-harmonic Distance Matrix (R-BiHDM) [200]. Table 6.3
shows the results yielded by those methods. The proposed method performs slightly bet-
ter with respect to the current state-of-the-art, achieving high retrieval accuracies in both
the synthetic and scanned datasets.

Unfortunately, we are not able to conduct exhaustive experiments with regards to
the performance achieved by the compared methods, since the performance analysis of
the different approaches is not available. Just to have an insight about the performance
achieved by the proposed method, we compare with Litman’s approach [117], where the
training time was reported to be approximately of 4 hours with a 3.2 Ghz CPU. On our
2.4 Ghz machine, we are able to learn the model of a whole class in about 5s (about 80s
for the whole synthetic dataset). The prediction time is computed in 9s, which means that
the computation of the density of a mesh with respect to a certain class requires about
0.6s.

6.8 Conclusion
In this work, we proposed a supervised data-driven method for the definition of an invari-
ant representation of an arbitrary shape. Further, we defined a statistical framework based
on such representation that can be used to address shape classification tasks. Moreover, we
defined an efficient intrinsic metric to approximate the geodesic distance between points
over a manifold. One of the limitations of the proposed method involves the knowledge
of the correspondence ground-truth between meshes. We tested our method on several
standard shape retrieval datasets. Experimental results show that the proposed approach
is competitive with the current state-of-the-art for non-rigid 3D shape retrieval.
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Figure 6.1: Example of known vertex correspondences between meshes which represent
the same shape. These meshes, the Centaur (first row) and a human (second row), belong
respectively to the SHREC’10 and SHREC’14 dataset. For the former dataset the corre-
spondence ground-truth is known. In particular, we coloured the vertex accordingly to the
correspondence map between the meshes. Thus, the same part (e.g. the head) takes the
same color in both the representations if our map is consistent. The second row shows an
example of two meshes which are not in correspondence.
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Figure 6.2: Distributions computed on the invariant representation of 3 shapes of the
SHREC’10 dataset. The graphs in the second column of the image show the first four
distributions computed on the eigenvalues centroid of the shape represented in the first
row (see 6.19). In particular, the distributions refer to the first (red), second (blue), third
(black) and fourth (green) eigenvalues of the corresponding centroids.
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Figure 6.3: Example of the meshes from three datasets used in our experiments, from the
easiest to the hardest (top to bottom). SHREC’10 ShapeGoogle dataset contains shapes of
different bi and quadrupeds, SHREC’14 Humans (synthetic) dataset contains a collection
of human models created through 3D modelling/animation software. The last row shows
the "scanned" dataset which contains human models built from the point-clouds contained
within the CAESAR using the SCAPE method ( [11]). In the first column, a template of
the shape is shown. The central part shows meshes representing the same shape but in
different poses, while the rightmost part shows some negatives (i.e. , meshes representing
a different shape).
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Figure 6.4: Example of partiality transformation on the SHREC’10 dataset. On the left
there is the full mesh, on the right the same mesh after the application of a partiality
transformation of strength 3.
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7
Non-Rigid Dense Bijective Maps

In the previous chapters of this part of the thesis we dealt with the shape retrieval problem
devising two generative models both based on spectral theory. While the first attempt
avoids the problem of defining a common space between meshes involved in the process,
in the second one the existence of such space is assumed (or approximated). Indeed, the
proposed approximation is a sub-optimal solution to a problem that is ubiquitous in both
the shape retrieval and shape matching research field.

In this chapter we present a novel approach to the computation of dense correspon-
dence maps between shapes in a non-rigid setting. The problem is defined in terms of
functional correspondences. We deal with the non-injectivity of the solution of the func-
tional map framework due to the under-determinedness of the original problem. Key to
the approach presented in this chapter is the injectivity constraint plugged directly into
the problem to optimize, achieved casting it as an assignment problem. This leads to an
iterative process which yields a high quality bijective map between the shapes. In the
experimental section we present both quantitative and qualitative results, showing that
the proposed approach is competitive with the current state-of-the-art on quasi-isometric
shape matching benchmarks.

7.1 Introduction

The ubiquitous shape matching problem plays a central role in computer graphics and
geometry processing fields. Solutions to this problem have multiple applications, ranging
from texture mapping to animation, to name just a few. For instance, in the shape analysis
field, these approaches are employed as a pre-processing step in many shape retrieval
methods [69, 153]; although it must be said that some try to avoid it completely building
data-driven generative models [68].

Several successful approaches have been proposed in the rigid setting, while in the
non-rigid one the problem remains difficult, even if we limit the space of deformations to
approximate isometries. This is due to the fact that the rigid matching allows to represent
the deformations compactly (i.e. a rotation and a translation), while in the non-rigid setting
the problem is cast in terms of correspondences (of points or regions), rendering the space
of the solution intreatable. Nevertheless, several popular approaches have been proposed
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in the previous ten years. These approaches can be divided into sparse [32,102,142,151]
and dense [103, 141]. Sparse approaches strive to extract a few good point correspon-
dences between the shapes under exam and, in general, trade completeness for precision,
while dense approaches strive to extract the full bijection between isometric shapes.

A recent groundbreaking approach to the estimation of dense correspondences is rep-
resented by the functional maps framework [141], in which shape correspondences are
modeled as a linear operator between spaces of functions over the shapes. Such oper-
ators can be efficiently represented in the Laplace-Beltrami eigenbasis [105, 141, 146].
Interestingly, the approach has been shown to be able to handle also partial mapping. In
particular, Huang and Guibas [83] show that this appraoch can be used to analyze large
collections of shapes in which some shapes may be only partially similar, while Rodolà
et al. [152] generalize the framework to cope with partiality in the shapes. For an analysis
and an overview about the current state-of-the-art we refer to [23, 27, 48].

One problem with the functional map framework is that the correspondences are only
intrinsically captured by the map between the functional spaces and the extracted trans-
formation between functions is not guaranteed to correspond to a bijective point-wise
mapping between points in the two shapes. A symptom for this problem is given by the
fact that impulse functions on one surface are mapped onto diffuse functions over the
other shape, resulting in a fuzzy assignment. Further, even selecting the maximum of the
mapped function over the target shape as the corresponding point, this results in a non-
injective set of correspondences, with several correspondences clustered in relatively few
points on the target shape (see Figure 7.1).

In this chapter we address the problem of extracting dense bijective maps between
shapes. The problem is cast in terms of functional correspondences, which are constrained
in the way they map impulse functions. The bijectivity of the map is then achieved casting
the problem onto an equivalent bipartite matching problem.

7.2 Background

In the functional map framework shapes are modelled as compact connected 2-manifolds.
Given a manifold M , let f , g : M →R, real scalar fields on the manifold. We define the
standard inner product 〈 f , g 〉M = ∫

M f (x)g (x)d x, where integration is done using the
manifold’s Riemannian metric. Endowed with this scalar product and the resulting norm,
we can define the space of square-integrable functions over M , denoted as

L2(M ) = { f : M →R | 〈 f , f 〉M <∞} . (7.1)

This space features the positive semi-definite Laplace-Beltrami operator∆M : L2(M ) →
L2(M ), generalizing the notion of Laplacian to a non-Euclidean domain. The eigenfunc-
tions of the Laplace-Beltrami operator ∆Mφi (x) = λiφi (x) form an orthonormal basis
on L2(M ), i.e. , 〈φi ,φ j 〉M = δi j , generalizing the classical Fourier analysis. In fact, a
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function f ∈ L2(M ) can be expanded into the Fourier series as

f (x) = ∑
i≥1

〈 f ,φi 〉Mφi (x) . (7.2)

Functional correspondence Given two manifolds N and M , Ovsjanikov et al. [141]
proposed modelling the correspondences between the spaces of square-integrable func-
tions L2(N ) and L2(M ) in terms of a linear operator T : L2(N ) → L2(M ) mapping func-
tions over N onto functions over M . Clearly this setting generalizes classical vertex-wise
correspondences as this can be achieved by a T that maps delta-functions onto delta-
functions.

Given bases {φi }i≥1 and {ψi }i≥1 on L2(N ) and L2(M ) respectively, the functional
correspondence can be expressed w.r.t. to these bases as follows:

T f = T
∑
i≥1

〈 f ,φi 〉N φi =
∑
i≥1

〈 f ,φi 〉N Tφi

= ∑
i j≥1

〈 f ,φi 〉N 〈Tφi ,ψ j 〉M︸ ︷︷ ︸
ci j

ψ j , (7.3)

where the coefficients ci j depend on the choice of the bases. Taking only k elements of
each basis, one obtains a rank-k approximation of T as a k ×k matrix C = (ci j ).

In order to compute C, Ovsjanikov et al. [141] assume to be given a set of q cor-
responding functions { f1, . . . , fq } ⊆ L2(N ) and {g1, . . . , gq } ⊆ L2(M ). Denoting by ai j =
〈 f j ,φi 〉N and bi j = 〈g j ,ψi 〉M the k × q matrices of the respective coefficients onto the
selected bases, functional correspondence boils down to the linear system

CA = B . (7.4)

If q ≥ k, the system (7.4) is (over-)determined and is solved in the least squares sense to
estimate C.

It is convenient to use the eigenfunctions of the Laplace-Beltrami operators of N and
M as the bases {φi ,ψi }i≥1, since under these bases truncating the series at the first k
coefficients has the effect of “low-pass” filtering over the functional representations. In
fact, while the Laplacian eigenbasis suffers from issues like mixing eigenspaces and sign
ambiguity, it has been shown in [97] that the space of functions spanned by the first n
eigenfunctions of the Laplace-Beltrami operator are stable under near-isometries as long
as the nth and the (n +1)th eigenvalues are well separated.

Furthermore, expressed in the Fourier bases, the matrix C has interesting properties
making it more efficient to estimate. In fact, Ovsjanikov et al. [141] proved that if the
correspondence preserves areas, then the matrix C is orthogonal, i.e. , CT C = I = CCT .
Further, if it is also an isometry, then we have ci j =±δi j .

More realistically, when the shapes are only approximately isometric, the matrix C
would manifest a funnel-shaped structure, with the majority of elements distant from the
diagonal close to zero. This fact has been used as a regularization for (7.4) in [105, 146].
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Figure 7.1: Example of non-injectivity of the functional map solution. Here, the maxi-
mum of the mapped function over the target shape is selected as the corresponding point,
resulting in many-to-one relation between the mesh and the target one.

Discretization. In the discrete setting, the manifold N is sampled at n points x1, . . . , xn

which are connected by edges E and faces F , forming a manifold triangular mesh (V ,E ,F ).
In this setting, a function on the manifold is represented by an n-dimensional vector
f = ( f (x1), . . . , f (xn))T . The inner product is discretized as

〈
f,g

〉 = fT Sg, where S =
diag(s1, . . . , sN ) and si = 1

3

∑
j k:i j k∈F Ai j k denotes the local area element. Hence, a basis

Φ= (φφφ1, . . . ,φφφk ) over the vertices of the mesh represents the discretization of an orthogo-
nal functional basis if ΦT SΦ= I.

The discretization of the Laplacian takes the form of an n×n sparse matrix L =−S−1W
using the classical cotangent formula ( [52, 125, 145]),

wi j =


(cotαi j +cotβi j )/2 i j ∈ E ;
−∑

k 6=i wi k i = j ;
0 otherwise.

(7.5)

where αi j ,βi j denote the angles ∠i k j ,∠ j hi of the triangles sharing the edge i j .
The discretized Fourier basis Φ = (φφφ1, . . . ,φφφk ) is obtained by finding k orthogonal

functions that satisfy the eigenvalue equation for the laplacian, i.e. , −S−1WΦ=ΦΛ with
Λ= diag(λ1, . . . ,λk ) the diagonal matrix of the corresponding eigenvalues. This results in
the standard generalized eigenvalue problem

WΦ̂=−SΦ̂Λ (7.6)
s.t . ΦT SΦ= I

The Fourier coefficients of a (discretized) function f are then obtained by taking dot
products of the function with the base elements, ai =

〈
φφφi , f

〉=φφφT
i Sf, resulting in

a =ΦT Sf (7.7)
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7.3 Problem statement

In this work, we propose a novel approach to the computation of a dense bijective map
between two meshes. This is achieved through an optimization and refinement process
based on the well-known functional map approach introduced in section 7.2. In the func-
tional map framework, given a complete basis over the Hilbert space L2(M ) and L2(N ),
a non-singular function correspondence operator would indeed result in a bijection be-
tween the manifolds. However, after discretization and the adoption of a limited set of
basis functions, the bijectivity of the mapping cannot be guaranteed anymore.

In fact, delta functions are transformed into diffused functions by the low-frequency
mapping, and a maximum-response reassignment often concentrate mappings onto few
points on the target surface. Further, the space of linear functions from L2(M ) to L2(N )
contains the set of induced bijective correspondences, but is in fact larger, containing
several transfer functions that cannot be reduced to bijections between points on the two
manifolds. In other words, the bijections form a manifold on the space of functional
maps which is not identified in the framework, with only the transportation of known
functions in (7.4) to help driving the solution. In this chapter we address this issue by
introducing additional optimized mapping functions that not only enforce the one-to-one
correspondence, but also improve the quality of the map.

Let M and N be the two meshes for which we want to find bijective correspondences,
Ψ and Φ be the two Fourier bases for the functional spaces L2(M) and L2(N ) respec-
tively, and T : L2(N ) → L2(M) be the linear operator which models the functional cor-
respondence between shapes. Let DN and DM be descriptor matrices used to drive the
correspondence. Note that it does not matter which descriptors are employed and several
different options are available, however, in this work, we use the Wave Kernel Signa-
ture [12] as dense descriptors for the meshes, since it was proven to be locally quite
stable, a property we are most interested in.

In addition to the geometrical descriptors, we enforce bijectivity by adding constraints
mapping delta functions onto smoothed versions of the delta functions, and we optimize
over the location of these delta functions. In other words, to the mapping of DN onto
DM , we add a mapping of a set of delta functions, expressed in terms of a permutation P
over the vertices, onto the kernels KN and KM that represent localized descriptors, i.e. ,
smoothed versions of a delta function. This results in the following optimization problem:

min
T,P

〈T (DN |KN )− (DM |PKM ), (7.8)

T (DN |KN )− (DM |PKM )〉M

where (·|·) is the horizontal concatenation operation, P belongs to the permutation
group Σn , and KN and KM are Gaussian kernels built over the geodesic distances between
the points of the meshes N and M respectively. In particular, let i , j = 1, . . . ,n with n the
number of vertices of a mesh, we define a generic K as:
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Figure 7.2: On the left, the geodesic error evolution is shown as the colormap on the mesh
at a given iteration (red means higher error), while on the right the graph shows the mean
geodesic error computed at the first 10 iterations.

Ki , j = e− 1
2σ2 d 2(i , j ) (7.9)

where d 2(i , j ) is the geodesic distance between the i th and the j th vertex of the mesh.
Under this formulation, P represents an assignment map of the points of N onto the

points of M and we estimate the functional representation of the map T and the permuta-
tion matrix P which minimize the Frobenius norm of the difference between the functional
mapping of the descriptors DM augmented with the kernel KM , and the corresponding
functions DN concatenated with the kernel KN permuted by P . As a consequence of the
fact that P ∈ Σn , the permutation that minimizes (7.8) will represent a dense one-to-one
map between the vertices of the meshes, assuming equal cardinality of the sets of vertices.

7.4 Iterative Optimization
The problem defined in (7.8) is tackled through an iterative optimization process in which,
after an initialization step, we firstly optimize over the functional map T , and subsequently
over permutation matrix P .

The initialization step is two-fold. Firstly, we need to compute an initial sparse set of
matches S0 between the meshes. This will be used as a sub-sampled permutation matrix in
the computation of the first functional correspondence map. To tackle this problem in an
unsupervised way, we employ the game theoretic approach [151] which aims to solve the
problem of minimum distortion intrinsic correspondences between deformable shapes.
However, any method able to retrieve a sparse set of matches can be employed. With
S0 at hand, we augment DN and DM with a set of already-in-correspondence descriptors
D̂N = (DN |KN ) and D̂M = (DM |KM ). Then, following the original work, we minimize
‖T D̂N − D̂M‖2

2 over T . Let T 0 be the first functional map. Note that augmenting the
descriptor matrices with correspondent functions has been shown to improve the accuracy
of the resulting map (see [141] for more details).

For the sake of clarity, let us unfold (7.8), rewriting it in the equivalent form
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argmin
T,P

Tr
(
(DN |KN )T T T SM T (DN |KN )

)
(7.10)

+Tr
(
(DM |PKM )T SM (DM |PKM )

)
−2Tr

(
(DN |KN )T T T SM (DM |PKM )

)
where SM and SN (below) are matrices whose diagonal elements are the area elements

of the respective shapes. Following straightforwardly from section 7.1, we know that
DM = T DN . The discretization of T using the first k harmonics of the Fourier basis
allows to define T =ΨCΦT SN . Hence, we can rewrite (7.10) as

argmin
C ,P

Tr
(
ΦT SN (DN DT

N +KN K T
N )SNΦ

)
(7.11)

+Tr
(
(DM DT

M +KM K T
M )SM

)
−2Tr

(
CΦT SN (DN DT

M +KN K T
M P T )SMΨ

)
leaving the unkowns only in the last trace term, resulting in the equivalent problem

argmax
C ,P

Tr
(
(DN DT

M +KN K T
M P T )SMΨCΦT SN

)
(7.12)

Our iterative process begins with the computation of the permutation matrix P , which
will represent our dense injective solution. Solving (7.12) with respect to P allows to de-
fine W = SMΨCΦT SN KN K T

M , which brings us to the definition of the equivalent problem

argmax
P∈Σn

Tr
(
W P T )

(7.13)

which is a standard assignment problem that can be solved with one of the several
combinatorial optimization algorithms. In this work we use the Auction Algorithm [17],
which is known to be very efficient with sparse weight matrix. Which is our case, since W
is, practically speaking, a smoothed permutation matrix (smooth because of the intrinsic
symmetries).

With P at hand, we can compute the functional correspondences C . Since C ∈ O (k),
(7.12) can be solved as an orthogonal Procrustes Problem [162] through singular value
decomposition. Let

U LV T = ΦT SN (DN DT
M +KN K T

M P T )SMΨ (7.14)

= (
ΦT SN (DN |P T KN )

)(
ΨT SM (DM |K T

M )
)T

with U LV T computed through svd. The C which maximizes the objective function
can be computed as C =UV T .
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Figure 7.3: Qualitative example of the geodesic errors computed on the meshes by the
functional matching approach (first row) and the proposed one (bottom). The red color
on the surfaces indicates higher error.

Note that, while svd is computed over a manageable k ×k matrix (with k the number
of columns in the basis), its computation requires the computation and multiplication of
the n ×n matrix (DN DT

M +KN K T
M P T ). In particular, while the DN DT

M is low rank, the
KN K T

M P T is full rank, yet sparse. In order to render the computation of the Procrustes
matrix computationally feasible, we randomly sample t correspondences from P to use in
the estimation of C . This is equivalent to choose t columns of P T and the same t columns
of KN in (7.14). This, assuming that the descriptors DN and DM have dimensionality r ,
results in the multiplication of the k × (r + t ) matrix ΨT SM (DM |PKM ) by the (r + t )×k
matrix

(
ΦT SN (DN |KN )

)T , resulting in the rather more manageable complexity O
(
k2n(r +

t )
)
.
Once both the permutation matrix P , which represents our injective map, and the

functional correspondences C are computed, we check if the new solution reaches the
convergence criterion. As a convergence measure, we check how much the map has
changed with respect to the previous iteration in terms of geodesic distance. In particular,
let d 2(i t−1, i t ) be the squared geodesic distance between the vertices i t−1 and i t both be-
longing to the mesh N and both set into correspondence with the same vertex j belonging
to M at time t −1 and t respectively. We define our convergence measure as

1

n

∑
i

d 2(i t−1, i t ) < ε (7.15)

where n is the number of vertices of N while ε= 10−3. If the convergence criterion is
not satisfied, we take the dense injective map and randomly sub-sample it in order to get
a new set of matches S1 to be used to feed a new iteration of the whole process.

The algorithm of the process is listed in Algorithm 1, while an analysis about the
performance achieved is demanded to section 7.5.
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FunctionalProposed Approach Map

Figure 7.4: Proportion of points matched onto the mesh target. The gray patches represent
the areas that have not been mapped. Center: reference mesh. Left: our approach. Right:
standard functional maps. The colormap is projected from the reference onto the other
meshes.

7.5 Experimental Evaluation

We test our approach on benchmarks built from the TOSCA and SCAPE datasets. We
present a qualitative and quantitative analysis of the performance in various settings and
compare the results to several state-of-the-art methods for correspondences retrieval be-
tween non-rigid meshes. For the qualitative comparison, we use the standard functional
map results, since it is the method that performs better among the ones we are comparing
against.

Datasets

We selected the TOSCA and SCAPE datasets to assess the performance of the compared
methods, since they provide a large variety of objects with ground-truth correspondences.

SCAPE [11] is composed of a set of 71 models representing the same person in dif-
ferent poses. The meshes of the dataset are the result of the SCAPE (Shape Completion
and Animation of People) method application. It is a data-driven method used to build
a model of the human shape which varies both in the shape of the subject and in the
pose. The method is applied to a set of scanned human bodies with one-to-one vertex
correspondences among all the meshes of the dataset. Each mesh counts 12.5k vertices.

TOSCA [29] contains 76 nearly-isometric shapes subdivided in 8 classes (dog, cen-
taur, human males and female, etc.). Each class comes with a “null” mesh, which is a
representative of the class in a standard pose. Ground-truth correspondences are provided
for each mesh that belongs to the same class. Typical vertex count is about 50,000.

For the sake of efficiency, we have down-sampled the null meshes of each class in
TOSCA and the first mesh in SCAPE to approximately 10k vertices, while the non-null
ones have been re-sampled accordingly. The null meshes of the TOSCA dataset and
the first mesh of the SCAPE dataset are both almost extrinsically bilaterally symmetric,
which means that we are able to compute the intra-mesh symmetric map and use it in the
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evaluation of the performance. Indeed, since both symmetric maps are usually allowed
as a solution to the correspondence problem between meshes (in particular when intrinsic
methods are employed), we use as geodesic error the lower between the two symmetric
solutions.

Evaluation Methods

To assess the accuracy of the proposed method we use as measure the geodesic distance
of a match with respect to the ground-truth. Let M and N be two meshes. Let t : N → M
be the predicted map, and let t∗ : N → M be the ground-truth map. For every vertex v
on N we compute the geodesic distance on DN (t (v), t∗(v)). We aggregate these geodesic
distances into the error measure

Er r (t , t∗) = ∑
v∈N

DN (t (v), t∗(v))p
Ar ea(N )

(7.16)

Note that the geodesic distances are normalized over the square root of the area of
the mesh

p
Ar ea(N ). The error Er r (t , t∗) is averaged over all the meshes of a class of a

dataset. In order to study the distribution of the error, we plot cumulative curves showing
the percentage of matches whose errors are smaller than a threshold.

Comparison to other methods

The proposed approach is compared with several state-of-the-art correspondence retrieval
methods. In particular, we compare our work with:

• Blendend map [103]: Kim et al.propose a fully automatic pipeline for finding
smooth intrinsic map between non-isometric surfaces by blending a collection of
low dimensional maps (which provides a good solution locally) in order to get a
better solution globally.

• Functional map [141]: Ovjsanikov et al.introduce the functional maps framework,
in which shape correspondences are modelled as linear operator between spaces of
functions on the surfaces. This approach allows to represent the shapes in a very
convenient way and one of the main advantage is that the solution to the correspon-
dence problem is reduced to simple algebraic problem. Even if this method allows
to retrieve a dense set of matches between meshes, it does not guarantee an injective
solution for the reasons explained in section 7.1 and 7.3.

• Combinatorial Matching [156]: in this work, Sahilliog̃lu and Yemez solve the
correspondences problem minimizing the isometric distortion in the 3D Euclidean
space by using a coarse-to-fine combinatorial search algorithm.
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Figure 7.5: Comparison of the normalized error curves obtained on SCAPE and TOSCA
datasets using several shape matching algorithms while allowing the symmetric solutions,
which are the only meaningful results given the intrinsic nature of the proposed approach.

Results on SCAPE and TOSCA
Before diving into the quantitative results, we show the performance achieved by the
proposed method from a qualitative point of view. In Figure 7.3 we compare the maps
produced by our approach with those obtained with the original functional map approach.
In particular, we present a set of meshes that have been aligned with the proposed method
and whose errors computed point-wise are projected directly on the meshes: the redder
the surface, the higher the error. The proposed approach greatly reduces the error in areas
where the functional map is not able to find the correct correspondences.

In Figure 7.2 we show the mean geodesic error of the maps at 10 iterations of the
proposed approach, while on the left side of the image we give a qualitative glimpse of
the iterative process. More precisely, we show how the geodesic error (which is used as
colormap) changes on the mesh at different iterations.

Figure 7.4 shows the differences between the original functional map and the proposed
approach in terms of proportion of matched points on the target mesh. In the images, the
gray patches are vertices that are not target of a map. The central part of the image
shows the reference mesh (whose colormap is projected onto the other meshes). The two
columns on the left show the proportion of surface covered by the dense map yielded
by the proposed approach, while the ones on the right side show the results achieved by
standard functional maps. It is easy to see that the functional map solution produces a set
of matches which are clustered in relatively few points on the target shape, resulting in a
wider gray area over the surface with respect to the proposed approach.

Finally, to better characterize the performance of the proposed approach, we per-
formed a set of experiments extracting correspondences between nearly isometric pairs
of meshes from the TOSCA and SCAPE datasets. In particular, we randomly selected
a mesh as the reference mesh of a certain class. Then, we computed the dense injective
map between the reference mesh and all the other meshes belonging to the same class.
The error is computed as introduced in section 7.5, averaging all the errors computed ac-
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cording to 7.16 on all the meshes of the datasets. The results are shown in Figure 7.5,
where each curve represents the percentage of correspondences found whose normalized
geodesic errors are below a certain threshold.

7.6 Conclusion
In this chapter we proposed a novel solution to the problem of extracting bijective maps
between shapes. The problem has been cast in terms of functional correspondences while
the bijectivity of the map is achieved casting the problem onto an equivalent assignment
problem. The experimental session showed that the proposed approach is competitive
with the state-of-the-art matching methods.

One of the main issues of our method concerns the focus on particular deformations
and cannot, for example, tackle topological changes among the meshes. This is a known
limit of spectral methods in general. As a future work, we want to investigate the use of
different bases and descriptors, which could lead to an approach which is more robust to
a wider range of deformations.
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Algorithm 1: Iterative Optimization Process
Data: M , N ,S0

Result: C and P

1. Si = S0

2. Use the sparse set of correspondences Si to compute the functional map C i

through (7.14)

3. Compute the weight matrix W i and solve (7.13) using the Auction Algorithm [17],
getting the injective assignment P i

4. Randomly subsample P i , obtaining Si+1 ⊂ P i

5. If (7.15) is false and the maximum number of iterations has not been reached,
increase i and go to 2, otherwise C =C i and P = P i
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Structure-based Representation





8
Non-Parametric Spectral Model for

Graph Classification

Graph-based representations have been used with considerable success in computer vision
in the abstraction and recognition of object shape and scene structure. Despite this, the
methodology available for learning structural representations from sets of training exam-
ples is relatively limited. In this chapter we take a simple yet effective spectral approach
to graph learning.

In particular, we define a novel model of structural representation based on the spectral
decomposition of graph Laplacian of a set of graphs, but which make away with the
need of one-to-one node-correspondences at the base of several previous approaches, and
handles directly a set of other invariants of the representation which are often neglected.
An experimental evaluation shows that the approach significantly improves over the state
of the art.

8.1 Introduction

Graph-based representations have been applied with considerable success to several tasks
as convenient means of representing structural patterns. Examples include the arrange-
ment of shape primitives or feature points in images, molecules, and social networks [53].
Their success lies in their ability to concisely capture the relational arrangement of prim-
itives, in a manner which can be invariant to irrelevant transformation such as changes
in object viewpoint. Despite their many advantages and attractive features, the method-
ology available for learning structural representations from sets of training examples is
relatively limited, and the process of capturing the modes of structural variation for sets
of graphs has proved to be elusive.

Structural representations are widely adopted in the context of Bayesian networks, or
general relational models [61], where structural learning processes are used to infer the
stochastic dependency between these variables. However, these approaches rely on the
availability of correspondence information for the nodes of the different structures used
in learning. In many cases the identity of the nodes and their correspondences across
samples of training data are not known, rather, the correspondences must be recovered
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from structure.

In the last few years, there has been some effort aimed at learning structural archetypes
and clustering data abstracted in terms of graphs. In this context, spectral approaches have
provided simple and effective procedures. For example, Luo and Hancock [124] use graph
spectral features to embed graphs in a (low) fixed-dimensional space where standard vec-
torial analysis can be applied. While embedding approaches like this one preserve the
structural information present, they do not provide a means of characterizing the modes
of structural variation encountered and are limited by the stability of the graph’s spec-
trum under structural perturbation. Bonev et al. [24], and Bunke et al. [37] summarize
the data by creating super-graph representation from the available samples, while White
and Wilson [192] use a probabilistic model over the spectral decomposition of the graphs
to produce a generative model of their structure. While these techniques provide a struc-
tural model of the samples, the way in which the super-graph is learned or estimated is
largely heuristic in nature and is not rooted in a statistical learning framework. Torsello
and Hancock [182] define a superstructure called tree-union that captures the relations
and observation probabilities of all nodes of all the trees in the training set. The structure
is obtained by merging the corresponding nodes and is critically dependent on the order
in which trees are merged. Todorovic and Ahuja [176] applied the approach to object
recognition based on a hierarchical segmentation of image patches and lifted the order
dependence by repeating the merger procedure several times and picking the best model
according to an entropic measure. While these approaches do capture the structural vari-
ation present in the data, the model structure and model parameter are tightly coupled,
which forces the learning process to be approximated through a series of merges, and all
the observed nodes must be explicitly represented in the model, which then must specify
in the same way proper structural variations and random noise.

In more recent work [178,185] Torsello and co-workers proposed a generalization for
graphs which allowed to decouple structure and model parameters and used a stochastic
process to marginalize the set of correspondences. The process however still requires a
(stochastic) one-to-one relationship between model and observed nodes and could only
deal with size differences in the graphs by explicitly adding a isotropic noise model for
the nodes.

In this chapter we aim at defining a novel model of structural representation based on
a spectral description of graphs which lifts the one-to-one node-correspondence assump-
tion and is strongly rooted in a statistical learning framework. In particular, we follow
White and Wilson [192] in defining separate models for eigenvalues and eigenvectors, but
cast the eigenvector model in terms of observation over an implicit density function over
the spectral embedding space, and we learn the model through non-parametric density
estimation. The eigenvalue model, on the other hand, is assumed to be log-normal, due to
consideration similar to [12].
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8.2 Spectral Generative Model
Let G = (V ,E) be a graph, where V is the set of nodes and E ⊆ V ×V is the set of edges,
and let A = (ai j ) be its adjacency matrix. The degree d of a node is the number of edges
incident to the node and it can be represented through the degree matrix D = (di j ) which
is a diagonal matrix with di i =∑

j ai j . Starting from these two matrix representations of
a graph, it is possible to compute the Laplacian matrix, which is defined as the difference
between the degree matrix D and the adjacency matrix A:

L = D − A

The Laplacian is a symmetric positive-definite matrix. Its lower eigenvalue is equal
to 0 with multiplicity equal to the number of connected components in G . Further, the
Laplacian is associated with random walks over the graph and it has been extensively used
to provide spectral representations of structures [118]. The spectral representation of the
graph can be obtained from the Laplacian through singular value decomposition. Given
a Laplacian L, its decomposition is L = ΦΛΦT , where Λ = di ag (λ1,λ2, ...,λ|V |) is the
matrix whose diagonal contains the ordered eigenvalues, while Φ= (φ1|φ2|...|φ|V |) is the
matrix whose columns are the ordered eigenvectors. This decomposition is unique up to
a permutation of the nodes of the graph, a change of sign of the eigenvectors, or a change
of basis over the eigenspaces associated with a single eigenvalue, i.e. , the following
properties hold:

L ' PLP T = PΦΛ(PΦ)T (8.1)
L = ΦΛΦT =ΦSΛSΦT (8.2)
L = ΦΛΦT =ΦBλΛBλΦ

T (8.3)

where ' indicates isomorphism of the underlying graphs, P is a permutation matrix, S
is a diagonal matrix with diagonal entries equal to ±1, and Bλ is a block-diagonal matrix
with the block diagonal corresponding to the eigenvalues equal to λ inΛ and is orthogonal
while all the remaining diagonal blocks are equal to the identity matrices.

Our goal is to devise a model for the graph spectra that can capture the main modes
of variation present in a set of sample graphs, and that takes into account the invariances
of the spectral representation. Following [192] we make two separate and independent
models for the eigenvalues and eigenvectors of the Laplacian:

P (G|Θ) = P (ΛG |ΘΛ)P (ΦG |ΘΦ) (8.4)

where Θ is the graph-class model divided into its eigenvalue-model component ΘΛ

and eigenvector-model component ΘΦ.
For the eigenvalue model we follow [12] and opt to model the observation distribution

of a single eigenvalue as a log-normal distribution. In [12] it was shown that this model
derived directly from rather straightforward stability considerations derived from matrix
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perturbation theory. As a result, we model the set of eigenvalues as a series of independent
log-normal distribution, one per eigenvalue used, resulting in:

P (ΛG |ΘΛ) = (2π)
d
2

d∏
i=1

1

λiσi
e

−(lnλi −µi )2

2σ2
i (8.5)

where µi and σi are model parameters to be learned from data and d is the number of
eigenvalues/eigenvectors used in the model.

On the other hand, the eigenvector component is modelled as an unknown distribu-
tion F on the d-dimensional spectral embedding space Ωd ⊆ Rd . The d-dimensional
spectral embedding of a graph is obtained from the eigenvector matrix ΦG by taking its
first d columns, corresponding to the eigenvectors associated with the d smallest eigen-
values, excluding the trivial constant eigenvector corresponding to a 0 eigenvalue. With
the reduced n ×d eigenvector matrix Φ̂ at hand, we take its rows to be points in the d
dimensional spectral embedding space Ωd .

Note that there is a length invariance in the eigenvectors, which are usually assumed
to be of unit Euclidean norm. This, however, results in a size compression of the spectral
embedding points as the graph size grows. To correct this issue we scale the embedding
vectors by multiplying them by the graph size n.

With this model we cast the learning phase into a non-parametric density estimates
of the distribution of the spectral embedding points φG

1 , . . . ,φG
n . Under these assumptions,

the eigenvector model parameter ΘΦ is constituted of a collection of N d-dimensional
vectors θΦ1 , . . . ,θΦN corresponding to samples from the unknown density function. In the
learning phase these are obtained aligning and merging spectral embedding points from
the sample graphs belonging to each class.

This per-vertex sample approach takes care of the permutational invariance, but we
still need to explicitly deal with the other invariances, i.e., the sign of eigenvectors and
choice of an eigenbasis. We solve those invariances by optimizing over the respective
transformation groups. Furthermore, we lift the block constraint over the eigenbasis se-
lection, relaxing it to an optimization over the orthogonal group O(d). This results in the
following definition of the eigenvector probability:

P (ΦG |ΘΦ) = max
R∈O(d)

max
S∈{±1}d

(N hd )−n
n∏

i=1

N∑
j=1

e−
‖RSφG

i
−θΦj ‖2

2h2 (8.6)

which is the product of Parzen-Rosenblatt kernel density estimators. φG
i is the vector

obtained taking the first d elements of the i -th row of the eigenvector matrix ΦG and θΦj
is the j -th component of the eigenvector model ΘΦ. Here we assume that the model is
simply an array of samples from the graph class.

In this work we use Silverman’s rule-of-thumb [171] for the multivariate case to esti-
mate the bandwidth parameter h.

h =
(

N
d +2

4

)− 1
d+4

σ (8.7)
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where σ is computed as the squared root of the trace of the covariance matrix Σ of the
eigenvector model divided by the number of nodes of the model

σ=
√

1

n
Tr (Σ) (8.8)

8.2.1 Model Learning

The learning process aims to estimate the parameters for the eigenvector and eigenvalue
models. Given a set of graphs G = {G1,G2, . . . ,Gm}, belonging to the same class C , we
firstly compute their spectral decomposition, obtaining the set {(ΦC

1 ,ΛC
1 ), (ΦC

2 ,ΛC
2 ), . . . , (ΦC

m ,ΛC
m)}.

In particular, the ΦC
i s are composed by column vectors which are the first d non-trivial

eigenvectors of the Laplacian matrix of the corresponding graph, while the ΛC
i s contain

the first d non-zero eigenvalues. Hence, d represents our embedding dimension. The
eigenvector model of the class C , denoted as ΦC , is defined as

ΦC =


φ1

1 φ1
2 . . . φ1

d
φ2

1 φ2
2 . . . φ2

d
...

...
...

...
φm

1 φm
2 . . . φm

d


where φi

j denotes the j -th non-trivial eigenvector (still a column vector) of the i -
th graph of the set G . In other word, we perform a vertical concatenation of all the
eigenvectors matrices of the graphs that belong to class C . Thus, the dimension of the
eigenvector model of the class is

(∑m
i=1 ||Gi ||

)×d .

Estimating the Eigenvector Sign-Flips

The eigenvector matrix produced by the eigendecomposition is unique up to a sign factor.
Since our method characterize every node of a graph with a feature vector, a sign disam-
biguation is mandatory. There are several techniques that allow to detect and solve this
ambiguity, like using the correlation between two functions (i.e. probability density func-
tions). If the correlation grows after a flip, then the eigenvector sign should be flipped.
Unfortunately, with increasing size, this method becomes computationally heavy.

For such reason, we have to employ an heuristic-based method in order to solve the
sign-ambiguity problem. Since it is an heuristic approach, it does not guarantee the dis-
covery of all the correct signs. Given two graphs G A and GB , which belong to the same
class C , let ΦA

j and ΦB
j be the j -th eigenvectors of the spectral representation of the

graphs. We assume eigenvectors to be random variables having unknown probability
density function. We assume that all the j -th eigenvectors of graphs in the same class
share a very similar pdf among them, up to the sign. A flipped sign does not influence
the shape of a pdf, but the peak of the function results shifted. Once a reference graph is
selected (for example, A), the sign ambiguity is solved by checking the sign of the peaks
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of each eigenvector of the reference graph and the others. An eigenvector is flipped when
the signs of the peaks are different.

φB
j =


φB

j (−1) if x A∗
j < 0 and xB∗

j ≥ 0 ,

φB
j (−1) if x A∗

j ≥ 0 and xB∗
j < 0 ,

φB
j otherwise.

(8.9)

The pdf s of each eigenvector are estimated using kernel density estimation. The den-
sity estimates are evaluated at 100 points covering the range of the eigenvectors. Those
evaluations are then used to find the peaks, more precisely the related independent vari-
ables x A∗

j and xB∗
j of the functions.

Hence, to solve the sign-ambiguity issue, before the construction of ΦC , we flip each
graph according to a reference graph G f (chosen randomly within G) using (8.9).

The next step involves the rotation of each eigenvectors matrix according to the same
reference graph G f .

Estimating the Eigenvector Orthogonal Transformation

The sign disambiguation process produces a rough rotation which helps to align the eigen-
vectors of a graph with respect to the eigenvectors of a reference graph. In order to min-
imize the variance between the eigenvector matrices of a reference graph (one for each
class) and the eigenvector matrices of the other graphs, another rotation step is applied. In
particular, we are looking for the rotation which minimize the distance between the nodes
of two graphs. More formally, we want to maximize the following:

argmax
R∈O(d)

∏
i

P (Rx) (8.10)

where

P (x)∝
∑

j
e− 1

2

‖x−x j ‖2

h2 (8.11)

The above formulation of the optimization problem is then applied to our definition
of probability density applying the constraints to a Parzen-Rosenblatt kernel density esti-
mator, obtaining

argmax
R

∏
i

∑
j

e− 1
2

‖Rxi −y j ‖2

h2 (8.12)

We subdivide our rotation matrix in two rotation matrices, namely R (the initial ro-
tation) and S (an additive rotation). The log-likelihood obtained after the introduction of
the new rotation matrix to equation 8.12 can be written as
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Figure 8.1: Example of the computation of the rotation matrix. A) KDE applied to the
eigenvectors matrix of the Laplacian of a graph, B) KDE of a synthetically rotated eigen-
vectors matrix of the same graph, C) show the KDE of the eigenvectors matrix after the
application of the rotation matrix computed using the described method.

L =∑
i

log

(∑
j

e− 1
2

‖SRxi −y j ‖2

h2

)
(8.13)

Let αi j be defined as

αi , j = e− 1
2

‖Rφi −φC
j ‖2

h2 (8.14)

In order to solve 8.10, we compute the gradient with respect to the additive rotation
matrix S introduced in 8.13.

∂L

∂Shk
=∑

i

∑
j αi j

(
−1

2

∂
∂Shk

‖SRxi−y j ‖2

h2

)
∑

j αi j
(8.15)

where

∂

∂Shk
‖SRxi − y j‖2 =−2(yi )h(Rxi )k (8.16)

Since they are scalar

∂S =−2y j (Rxi )T =−2y j xT
i RT (8.17)

We can now rewrite 8.13 as
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∂L

∂S
=

(∑
i

∑
j αi j

1
h2 y j xT

i∑
j αi j

)
RT (8.18)

For the sake of readability, let A be defined as

A =∑
i

∑
j αi j

1
h2 y j xT

i∑
j αi j

(8.19)

Since S is an orthogonal rotation matrix, it belongs to the Lie group O(d). The tan-
gent space at the identity element of the Lie group is its Lie algebra, which is the skew-
symmetric matrices space. The skew-symmetric component of a matrix M is given by
M−M T

2 .
In order to project the gradient to the null space (to find the maximum), we have

to make ART symmetric. The rotation matrix R which symmetrizes the previously
computed gradient is obtained through the singular value decomposition (SVD) of A,
svd(A) =U LV T . In particular, we can compute R as

R =UV T (8.20)

which symmetrize the gradient. Indeed

ART = (U LV T )(V U T ) =U LU T (8.21)

which is symmetric. Refer to figure 8.1 for a graphical example of the described process.
To compute the rotation we used the following algorithm:

1. The initial value of R is the identity matrix

2. Compute αi j (8.14) for each i = 1, . . . ,n (where n is the number of nodes of a graph)
and j = 1, . . . , N (where N is the number of nodes of the model).

3. Compute the matrix A (8.19)

4. Compute the singular value decomposition of A, svd(A) =U LV T

5. Compute R as R =UV T

6. If the convergence is achieved, i.e. A = AT , or the maximum number of iterations
allowed is reached, end the algorithm, otherwise repeat from 2

The maximum number of iterations parameter was set to 10 for the results showed in
section 8.3.
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Estimating the eigenvalue model

Let GC = {G1,G2, . . . ,Gm} be a set of graphs belonging to the same class C , and let
{ΦC

i ,ΛC
i }, i = 1, . . . ,m, their spectral representation. The diagonal of the eigenvalue matrix

ΛC
i contains the eigenvalues {λi

1,λi
2, . . . ,λi

d } of the i -th graph of the set. Let

ΛC =


di ag (λC

1 )
di ag (λC

2 )
...

di ag (λC
m)


be a m ×d matrix containing the firsts d non-zero eigenvalues of the spectral representa-
tion. We assume that all the j -th eigenvalues of ΛC

i , with j = 1, . . . ,d , are distributed as a
log-normal distribution, as shown in 8.5. We do a maximum likelihood estimate for the
model parameters resulting in:

µ̂=
∑

i ln xi

m
, σ̂2 =

∑
i (ln xi − µ̂)2

m
(8.22)

8.2.2 Prediction
Once the models are computed, we can combine them in order to classify a graph which
does not belong to the training set used to compute {ΦC ,ΛC }. Let G∗ be such graph.
Let Φ∗ and Λ∗ be the spectral decomposition of the Laplacian of G∗. Thanks to the
assumption of independence between the two models, we can define the prediction as the
posterior probability

P (C |G∗) = P (Φ∗ |ΦC )P (Λ∗ |ΛC ) (8.23)

Once both the above mentioned probabilities are computed, i.e. the probabilities with
respect to the eigenvector model and to the eigenvalue model, and still assuming the
independence between them, we can compute the conditional distribution with respect to
the class C using equation 8.23. But since both P (Φ∗ |ΦC ) and P (Λ∗ |ΛC ) come from a
log-derivation (equation 8.25 and 8.26), it can be rewritten as

logP (C |G∗) = `L (Φ∗ |ΦC )+`L (Λ∗ |ΛC ) (8.24)

In particular, the eigenvector model log-likelihood is defined as

`L (Φ∗|ΘΦ) =
n∏

i=1
P (xi ) =

n∑
i=1

logP (x̄i |ΘΦ) (8.25)

where n is the number of nodes of the graph G∗, while x̄i is the row vector containing all
the d coordinates of the eigenvector matrix.

The eigenvalue model log-likelihood is defined as
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Figure 8.2: Average classification accuracy on all the datasets as we vary the embedding
dimension for both the eigenvalues and eigenvectors matrices.

`L (Λ∗|µΘi ,σΘi ) =
d∏

i=1
P (λi ) =

d∑
i=1

logP (λi ) (8.26)

with µΘi and σΘi which are the parameters estimated using 8.22.
Finally, a decision rule is applied in order to predict the membership of a graph to a

certain class. In particular, for this work we classify the graphs assigning them to the most
probable class (i.e. the class that yields the higher value).

8.3 Experimental Results
We now evaluate the proposed model comparing it with a number of well-known alterna-
tive classification methods. More specifically, we compare our structure-based classifier
with some popular graph kernels, like the unaligned QJSD kernel [13], the Weisfeiler-
Lehman kernel [164], the graphlet kernel [165], the shortest-path kernel [25], and the
random walk kernel [96]. Note that for the Weisfeiler-Lehman we set the number of
iterations h = 3 and we attribute each node with its degree.
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Table 8.1: Classification accuracy (± standard error) on unattributed graph datasets. OUR
denotes the proposed model. SA QJSD and QJSU denote the Quantum Jensen-Shannon
kernel in the aligned [181] and unaligned [13] version, WL is the Weisfeiler-Lehman
kernel [164], GR denotes the graphlet kernel computed using all graphlets of size 3 [164],
SP is the shortest-path kernel [25], and RW is the random walk kernel [96]. For each
classification method and dataset, the best performance is highlighted in bold.

Datasets PPI PTC COIL5 Reeb MUTAG
OUR 79.60±0.86 76.80±1.52 86.41±0.38 67.36±1.52 87.74±0.47
QJSD 68.86±1.00 55.78±0.38 69.83±0.22 35.03±0.26 81.00±0.51
SA QJSD 68.56±0.87 57.07±0.34 69.90±0.22 35.78±0.42 82.11±0.30
WL 79.40±0.83 56.86±0.37 29.08±0.57 50.73±0.39 77.94±0.46
GR 51.06±1.00 55.70±0.18 66.49±0.25 22.90±0.36 81.05±0.41
SP 63.25±0.97 56.32±0.28 69.28±0.42 55.85±0.37 83.36±0.52
RW 49.93±0.83 55.78±0.07 11.83±0.17 15.98±0.42 79.61±0.64

The experiments were run on the following datasets: the PPI dataset, which con-
sists of protein-protein interaction (PPIs) networks related to histidine kinase [90] (40
PPIs from Acidovorax avenae and 46 PPIs from Acidobacteria). The PTC (The Predic-
tive Toxicology Challenge) dataset, which records the carcinogenicity of several hundred
chemical compounds for male rats (MR), female rats (FR), male mice (MM) and female
mice (FM) [115] (here we use the 344 graphs in the MR class). 3) The COIL dataset,
which consists of 5 objects from [135], each with 72 views obtained from equally spaced
viewing directions, where for each view a graph was built by triangulating the extracted
Harris corner points. The Reeb dataset, which consists of a set of adjacency matrices
associated to the computation of reeb graphs of 3D shapes [19]. Finally, the Mutag (Mu-
tagenicity) dataset, which consists of graphs representing 188 chemical compounds, and
aims to predict whether each compound possesses mutagenicity [164]. Since the vertices
and edges of each compound are labeled with a real number, we transform these graphs
into unweighted graphs.

We use a binary C-SVM to test the efficacy of the kernels. We perform 10-fold cross
validation, where for each sample we independently tune the value of C, the SVM regular-
izer constant, by considering the training data from that sample. The process is averaged
over 100 random partitions of the data, and the results are reported in terms of average ac-
curacy ± standard error. We use a similar approach for the cross validation of our method.
We perform a 10-fold cross validation over the datasets, using the proposed model. We
tested our method using different numbers of eigenvectors and eigenvalues, which can be
seen as one of our free parameter. Furthermore, we tested the model with different levels
of sub-sampling, that is, we sub-sampled all the graphs of the datasets (both training and
test set) and apply our classification method to it.

Fig. 8.2 shows the average classification accuracy (± standard error) on all the datasets
as we vary the number of eigenvectors used. As you can see, every dataset behave differ-
ently based on the number of eigenvectors involved. In particular, for the COIL5 dataset,
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Figure 8.3: Average classification accuracy (with the interval segment representing the ±
standard error) on all the datasets as we vary the percentage of sub-sampling applied to
each graph of each dataset.

the use of more eigenvectors yields worst results, which means that the eigenvectors as-
sociated to the smaller non-zero eigenvalues of the spectra, models the classes better,
while the subsequent ones just add noise to our representation. In the contrary, the Mutag
dataset benefits from increasing the number of eigenvectors (and eigenvalues) involved in
the creation of the class model.

Fig.8.3 shows the average classification accuracy (± standard error) on all the datasets
as we vary the percentage of sub-sampling applied to each graph of each dataset. In
particular, the first accuracy measure corresponds to the application of our model on the
spectral decomposition of the graphs where only 10% of the nodes were preserved. All
the datasets (except for Mutag and PPI datasets) reach worse levels of accuracy with a
lower number of nodes, meaning that the structural information given by each node of the
model is useful for classification purpose. Conversely, the other datasets are more robust
to sub-sampling.

Table 9.1 shows the average classification accuracy (± standard error) of the different
kernels and of our method on the selected datasets. The proposed model yields an increase
of the performance with respect to the confronted graph kernels on all the used datasets. In
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Figure 8.4: Average classification accuracy (with the interval segment representing the ±
standard error) on all the datasets as we vary the percentage of graph of the training set
used to build the model.

particular, we obtained similar results with respect to the Weisfeiler-Lehman graph kernel
on the PPI dataset. This is probably due to the use of the node labels in order to mitigate
the localization problem and thus improving node localization in the evaluation process.
Even though our model does not exploit node attributes, we were able to outperform all
the kernels on all the other datasets.

8.4 Conclusion

In this chapter we have introduced a novel model of structural representation based on
a spectral description of graphs which lifts the one-to-one node-correspondence assump-
tion and is strongly rooted in a statistical learning framework. We showed how the defined
separate models for eigenvalues and eigenvectors could be used within a statistical frame-
work to address the graphs classification task. We tested the defined method against a
number of alternative graph kernels and we showed its effectiveness in a number of struc-
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tural classification tasks.



9
Transitive State Alignment for the
Quantum Jensen-Shannon Kernel

Kernel methods provide a convenient way to apply a wide range of learning techniques to
complex and structured data by shifting the representational problem from one of finding
an embedding of the data to that of defining a positive semidefinite kernel.

One problem with the most widely used kernels is that they neglect the locational
information within the structures, resulting in less discrimination. Correspondence-based
kernels, on the other hand, are in general more discriminating, at the cost of sacrificing
positive-definiteness due to their inability to guarantee transitivity of the correspondences
between multiple graphs.

In this chapter we generalize a recent structural kernel based on the Jensen-Shannon
divergence between quantum walks over the structures by introducing a novel alignment
step which rather than permuting the nodes of the structures, aligns the quantum states of
their walks. This results in a novel kernel that maintains localization within the structures,
but still guarantees positive definiteness.

Similarly to the considerations made for chapter 5 and 6, the main difference between
the approach proposed in this chapter and the one introduced in chapter 8 is the require-
ment of a common space in which all the graphs lie. Indeed, the method proposed in
the previous chapter avoid it completely through the definition of an alignment invariant
statistical model. On the other hand, in the method presented in this chapter we drop
the usual structure-permutation approach in favour of the alignment step introduced in
section 9.3.

9.1 Introduction

Structural representations have become increasingly popular due to their representational
power. However, the descriptiveness comes at the cost of an increased difficulty in ap-
plying standard machine learning and pattern recognition techniques to them, as these
usually require data that reside in a vector space. The famous kernel trick allows the fo-
cus to be shifted from the vectorial representation of data, which now becomes implicit,
to a similarity representation. This allows standard learning techniques to be applied to
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structural data for which no obvious vectorial representation exists.
One of the most influential works on structural kernels was the generic R-convolution

kernel proposed by Haussler [79]. Here graph kernels are computed by comparing the
similarity of the basic elements for a given decomposition of the two graphs. Depending
on the decomposition chosen, we obtain different kernels. Most R-convolution kernels
simply count the number of isomorphic substructures in the two graphs. For example,
Kashima et al. [96] compute the kernel by decomposing the graph into random walks,
while Borgwardt et al. [25] have proposed a kernel based on shortest paths. Here, the
similarity is determined by counting the numbers of pairs of shortest paths of the same
length in a pair of graphs. Shervashidze et al. [164] have developed a subtree kernel on
subtrees of limited size, where the number of subtrees common between two graphs is
computed efficiently using the Weisfeiler-Lehman graph invariant.

One drawback of these kernels is that they neglect the locational information for the
substructures in a graph. In other words, the similarity does not depend on the relation-
ships between substructures. As a consequence, these kernels cannot establish reliable
structural correspondences between the substructures. This limits the precision of the
resulting similarity measure. To overcome this problem, Fröhlich et al. [62] introduced
alternative optimal assignment kernels. Here each pair of structures is aligned before
comparison. However, the introduction of the alignment step results in a kernel that is not
positive definite in general [189]. The problem results from the fact that alignments are
not in general transitive. In other words, if σ is the vertex-alignment between graph A
and graph B , and π is the alignment between graph B and graph C , in general we cannot
guarantee that the alignment between graph A and graph C is π ◦σ. On the other hand,
when the alignments are transitive, there is a common simultaneous alignment of all the
graphs. Under this alignment, the optimal assignment kernel is simply the sum over all
the vertex/edge kernels, which is positive definite since it is the sum of separate posi-
tive definite kernels. While lacking positive definiteness the optimal assignment kernels
cannot be guaranteed to represent an implicit embedding into a Hilbert space, they have
nonetheless been proven to be very effective in classifying structures.

There has recently been an increasing interest in quantum computing because of the
potential speed-ups over classical algorithms. Examples include Grover’s polynomially
faster search algorithm [75] and Shor’s exponentially faster factorization algorithm [168].

Recently Bai et al. [13] introduced a graph kernel based on a Quantum analogue of
the Jensen-Shannon divergence between average states of continuous-time quantum walks
over the structures to be analysed. Being based on the divergence which is conjectured
to be negative definite [28], the kernel is thought to be positive definite. However it
lacks permutational invariance, thus different permutations of the same graphs result in
different values of the kernel. This fact, while mitigated by the long range interactions
reinforced by the interference patterns in quantum walks, is a rather undesirable property
for a structural kernel. For this reason in this chapter we modify the kernel by adding
a novel alignment step that rather than permuting the nodes of the structures, aligns the
quantum states of the walks. This results in a novel kernel that is permutationally invariant
and maintains similar localization property of the alignment kernels [62]. Further, we
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prove that the alignment transformations between multiple structures are transitive and
that, for this particular alignment, the kernel is always positive definite.

9.2 Quantum Mechanical Background
Quantum walks are the quantum analogue of classical random walks. Given a graph
G = (V ,E), the state space of the continuous-time quantum walk defined on G is the set
of the vertices V of the graph. Unlike the classical case, where the evolution of the
walk is governed by a stochastic matrix, in the quantum case the dynamics of the walker
is governed by a complex unitary matrix i.e. , a matrix that multiplied by its conjugate
transpose yields the identity matrix. As a consequence, the evolution of the quantum
walk is reversible, which implies that quantum walks are non-ergodic and do not possess
a limiting distribution. See [99] for an overview of the properties of quantum walks.
Using Dirac notation, we denote the basis state corresponding to the walk being at vertex
u ∈ V as |u〉. Here a ket |u〉 is simply representing a unit vector associated with state
u, for example, if we use the vertices as the basis for the space, |u〉 = eu , i.e., the u-th
vector in the canonical basis. Conversely, a bra 〈u| is the co-vector obtained taking the
conjugate-transpose of |u〉. A general state of the walk is a complex linear combination of
the basis states, such that the state of the walk at time t is defined as

∣∣ψt
〉=∑

u∈V αu(t ) |u〉
where the amplitude αu(t ) ∈C and

∣∣ψt
〉 ∈C|V | are both complex.

At each point in time the probability of the walker being at a particular vertex of the
graph is given by the square of the norm of the amplitude of the relative state. More
formally, let X t be a random variable giving the location of the walker at time t . Then
the probability of the walker being at the vertex u at time t is given by Pr(X t = u) =
αu(t )α∗

u(t ) where α∗
u(t ) is the complex conjugate of αu(t ). Moreover, in a closed system∑

u∈V αu(t )α∗
u(t ) = 1.

The evolution of the walk over graph G = (V ,E) is governed by Schrödinger equa-
tion, where we take the Hamiltonian of the system to be the graph Laplacian L, which,
eliminating scaling constants, yields

d

d t

∣∣ψt
〉=−i L

∣∣ψt
〉

(9.1)

Given an initial state
∣∣ψ0

〉
, we can solve Equation 9.1 to determine the state vector at

time t
∣∣ψt

〉= e−i Lt
∣∣ψ0

〉=Φe−iΛtΦ> ∣∣ψ0
〉
, where L =ΦΛΦ† is the spectral decomposition

of the Laplacian matrix.
While a pure state can be naturally described using a single ket vector, in general a

quantum system can be in a mixed state, i.e., a statistical ensemble of pure quantum states∣∣ψi
〉
, each with probability pi . The density operator (or density matrix) of such a system

is defined as
ρ =∑

i
pi

∣∣ψi
〉〈
ψi

∣∣ . (9.2)

Density operators are positive unit-trace matrices directly linked with the observables
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of the (mixed) quantum system. Let O be an observable, i.e., an Hermitian operator
acting on the quantum states and providing a measurement. The expected value of the
measurement O over a mixed state can be calculated from the density matrix ρ: 〈O〉 =
Tr

(
ρO

)
, where Tr is the trace operator.

The Von Neumann entropy of a density operator ρ is

HN (ρ) =−Tr (ρ logρ) =−∑
j
λ j logλ j , (9.3)

where the λ j s are the eigenvalues of ρ. With the Von Neumann entropy to hand, we can
define the quantum Jensen-Shannon divergence between two density operators ρ and σ

as
DJS(ρ,σ) = HN

(ρ+σ
2

)
− 1

2
HN (ρ)− 1

2
HN (σ) (9.4)

This quantity is symmetric, bounded between 0 and 1, and negative definite for pure
states and is conjectured with ample experimental evidence to be negative definite for all
states [28].

Finally, for a graph G(V ,E), let
∣∣ψt

〉
denote the state corresponding to a continuous-

time quantum walk that has evolved from time t = 0 to time t = T . We define the time-
averaged density matrix ρ†

G for G(V ,E)

ρ†
G = 1

T

∫ T

0

∣∣ψt
〉〈
ψt

∣∣dt . (9.5)

Let φx y denote the (x y)-th element of the matrix of eigenvectors Φ of the Laplacian.
Following [154], we compute the (r,c)-th element of ρT as follows:

ρ†
G (r,c) =

n∑
k=1

n∑
y=1

φr kφc yψ̄kψ̄y
1

T

∫ †

0
e i (λy−λk )t dt . (9.6)

If we let T →∞, Eq.(9.6) further simplifies to

ρ∞
G = ∑

λ∈Λ̃
Pλρ0P>

λ (9.7)

where Λ̃ is the set of distinct eigenvalues of the Laplacian matrix L and Pλ is the orthog-
onal projector onto the eigenspace associated with λ.

9.3 State-Aligned QJSD Kernel
In [13] the Bai et al.defined a kernel based on the Quantum Jensen Shannon divergence
between two continuous-time quantum walks between the graphs. The QJSD kernel was
defined as

KQJSD(G1,G2) = exp
(−βDJS(ρ1,ρ2)

)
(9.8)
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where ρ1 and ρ2 are the time-averaged density matrices associated with the quantum
walks over G1 and G2 respectively, and β is a decay parameter of the kernel. The walks
are initialized in the starting state

|Ψ0〉 =
∑

u∈V

√
du∑

v∈V dv
|u〉 . (9.9)

The kernel is positive definite under the conjecture that the quantum Jensen-Shannon
divergence is negative definite for all states, and exhibited good performance on several
graph classification tasks, but its value is dependent on the order under which the nodes
are presented due to the mixing term ρ+σ

2 in the definition of the divergence.
In this chapter we solve the permutational invariance problem of the QJSD kernel

by adding an alignment step to the computation of the kernel. In contrast to alternative
alignment kernels such as [62], the alignment is not performed over the node permutations
Σn of the graphs. Rather it is performed over the quantum basis under which the walker
can be observed. In classical random walks the nodes of the graph provide a preferred
basis for observation as the walker cannot be simultaneously on multiple nodes, thus the
only available degree of freedom is in the choice of an order within the basis vectors, i.e. ,
the observation basis is fully defined up to a permutation π ∈Σn . This is in stark contrast
with quantum mechanics where, due to quantum superposition, prior to observation a
quantum walker can be simultaneously at multiple nodes, and the observation itself can
be performed under any quantum superposition of states. This means that any orthogonal
basis is valid for observation and, thus, the basis is defined up to a unitary transformation
O ∈U (n), where U (n) is the Unitary group over Cn .

Following this property, we define a State-aligned QJSD kernel as

KSAQJSD(G1,G2) = max
O∈U (n)

exp
(
−βDJS(ρ1,Oρ2O†)

)
(9.10)

= exp

(
−β min

O∈U (n)
DJS(ρ1,Oρ2O†)

)
In the following we will prove some important properties of the state-aligned ker-

nel. Namely we will give a closed form solution to the alignment, prove that the optimal
transformation are transitive, and prove that the resulting kernel is positive definite with-
out making use of the negative-definiteness conjecture for the quantum Jensen-Shannon
divergence.

9.3.1 Properties of the State-Aligned QJSD Kernel
We start by enunciating a theorem relating the optimal state-alignment to the eigenvectors
of the density matrices. For a proof of this result see [179].

Theorem 9.3.1. Let ρ1 = Φ1Λ1Φ
†
1 and ρ2 = Φ2Λ2Φ

†
2 be the singular value decomposi-

tions of ρ1 and ρ2 respectively, with the eigenvalues in descending order in both Λ1 and
Λ2, then the global minimum of H̄N (O) is attained by O∗ =Φ1Φ

†
2.
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This theorem tells us how to efficiently compute the state alignment. Further, this
transformation aligns the eigenvectors resulting in a mixed density matrix 1

2 (ρ1+O∗ρ2O∗†)
with eigenvalues 1

2 (λ1 +µi ) where λ1, . . . ,λn and µ1, . . . ,µn are the eigenvalues of ρ1 and
ρ2 respectively taken in descending order with their multiplicity. This means that the
aligned Jensen Shannon divergence only needs the eigenvalues of ρ1 and ρ2 to be com-
puted, in fact:

min
O∈Un

DJS(ρ1,Oρ2O†) =
n∑

j=1
−λ j +µ j

2
log

(
λ j +µ j

2

)
+ λ j log(λ j )+µ j log(µ j )

2
. (9.11)

This reduces the computational complexity of computing the kernel for all times at which
the mixed density matrix is computed, as we do not need to perform the eigendecomposi-
tion of the mixed matrix 1

2 (ρ1 +ρ2) for each pair of graphs in the kernel. Rather, we only
need to compute the eigenvalues (not the eigenvectors) of all the density matrices before-
hand. The resulting complexity for the whole kernel computation is O(N n3+N 2n) where
N is the number of graphs and n their (maximum) size. In contrast, the QJSD kernel has
complexity O(N n3 +N 2n2) due to the eigenvalue computation for each pair of graphs.

Further, in the case of the infinite-time mixing matrix, we can significantly reduce
the computational burden of computing the eigenvalues of the density matrix, by using a
result presented in [154]. There it was proven that the infinite-time mixing matrix com-
muted with the graph Laplacian. As a consequence, ρ∞ expressed in the eigenbasis of the
Laplacian, is a block diagonal matrix where blocks correspond to eigenspaces associated
with a single eigenvalue. Let L =ΦΛΦ†, be the spectral decomposition of the graph Lapla-
cian, we denote with Φ j the matrix formed with the columns of Φ corresponding to the
eigenvectors associated with the j -th distinct eigenvalue. The j -th diagonal block of ρ∞

expressed in the eigenbasis Φ is Φ†
jρ

∞Φ j . using Eq. (9.7) and recalling that P j =Φ†
jΦ j ,

we have

Φ†
jρ

∞Φ j =Φ†
jρ

∞Φ j =Φ†
jρ

0Φ j =Φ†
j

∣∣ψ0
〉〈
ψ0

∣∣Φ j =
∣∣∣Φ†

jψ0

〉〈
Φ†

jψ0

∣∣∣ (9.12)

which is a rank 1 matrix with a single non-zero eigenvalue λ j = ‖Φ†
jψ0‖2. Hence, once

the singular value decomposition of the graph’s Laplacian is to hand, we can compute the
eigenvalues of the infinite-time mixing matrix directly, without the need for an additional
decomposition. This makes the infinite-time kernel particularly efficient to compute.

It is worth noting that as the graph Laplacian has eigenvalues with higher multiplic-
ity the infinite-time mixing matrix has more zero eigenvalues resulting in a lower Von
Neumann entropy. This is particularly interesting since higher multiplicities of the eigen-
values is associated with the presence of symmetries in the graph [133] which, in turn,
have been used to characterize the entropy of the structure [132].

We can now prove the following properties for the state-aligned kernel

Theorem 9.3.2. The Unitary transformations minimizing the quantum Jensen Shannon
divergence between pairs of density matrices in a set are transitive, i.e. let

Oi , j = argmin
O∈U (n)

DJS(ρi ,Oρ j O†)
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with i , j ∈ {1,2,3}, then

DJS
(
ρ1,O1,2O2,3ρ3O†

2,3O†
1,2

)= DJS
(
ρ1,O1,3ρ3O†

1,3

)
Proof The optimal transformation between two density matrices is completely determined
by the relation O∗

1,2 =Φ1Φ
†
2 up to a change of sign of the eigenvalue and a change of base

for each eignespace associated with an eigenvalue with multiplicity greater than one. In
any case these changes do not affect the value of the divergence. However,

O∗
1,2O∗

2,3 =Φ1Φ
†
2Φ2Φ

†
3 =Φ1Φ

†
3 =O∗

1,3 (9.13)

QED.

Theorem 9.3.3. The quantum aligned QJSD kernel is positive definite.

Proof As a consequence of the previous theorems, the value of the quantum Jensen Shan-
non divergence of the optimally aligned density matrices is equal to the normal Jensen
Shannon divergence of the sorted eigenvalues of the density matrices (taken as probability
distributions). Since the Jensen Shannon divergence is proven to be negative definite [28]
the state-aligned QJSD kernel, being an exponentiation of a negative definite kernel is
positive definite [104]. QED.

9.4 Experimental Results
We now evaluate the performance of the State-Aligned (SA) QJSD kernel and we compare
it with a number of well-known alternative graph kernels. More specifically, we compare
our kernel with the unaligned QJSD kernel [13], the Weisfeiler-Lehman kernel [164],
the graphlet kernel [165], the shortest-path kernel [25], and the random walk kernel [96].
Note that for the Weisfeiler-Lehman we set the number of iterations h = 3 and we attribute
each node with its degree.

We run our experiments on the following datasets: 1) The PPI dataset, which consists
of protein-protein interaction (PPIs) networks related to histidine kinase [90] (40 PPIs
from Acidovorax avenae and 46 PPIs from Acidobacteria). 2) The PTC (The Predic-
tive Toxicology Challenge) dataset, which records the carcinogenicity of several hundred
chemical compounds for male rats (MR), female rats (FR), male mice (MM) and female
mice (FM) [115] (here we use the 344 graphs in the MR class). 3) The COIL dataset,
which consists of 5 objects from [135], each with 72 views obtained from equally spaced
viewing directions, where for each view a graph was built by triangulating the extracted
Harris corner points. 4) The Reeb dataset, which consists of a set of adjacency matrices
associated to the computation of reeb graphs of 3D shapes [19].

We use a binary C-SVM to test the efficacy of the kernels. We perform 10-fold cross
validation, where for each sample we independently tune the value of C, the SVM regular-
izer constant, by considering the training data from that sample. The process is averaged
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Figure 9.1: The average classification accuracy as the time parameter of the continuous-
time quantum walk varies, for an optimal (left) and sub-optimal value of the decay factor
β.

over 100 random partitions of the data, and the results are reported in terms of average
accuracy ± standard error.

Fig. 9.1 shows the value of the average classification accuracy (± standard error)
on the PTC dataset as we let the time parameter of the continuous-time quantum walk
vary. Here the red horizontal line denotes the average accuracy for T → ∞. Note that
in Fig. 9.1(a) we set the decay parameter β of the kernel to a sub-optimal value, while
in Fig. 9.1(b) we set it to its optimal value, i.e. , the value that results in the best clas-
sification accuracy. The plot shows that when β is sub-optimal the choice of the time
parameter has a clear influence on the performance of our kernel. In fact, we see that the
average accuracy reaches a maximum before stabilizing around the asymptotic value. On
the other hand, when β is optimized the best classification performance is achieved when
T →∞. Moreover, in the latter case the average classification accuracy is higher than that
recorded for smaller values of T and a sub-optimal β.

Table 9.1: Classification accuracy (± standard error) on unattributed graph datasets. SA
QJSD and QJSD denote the proposed kernel and its original unaligned version, respec-
tively, WL is the Weisfeiler-Lehman kernel [164], GR denotes the graphlet kernel com-
puted using all graphlets of size 3 [165], SP is the shortest-path kernel [25], and RW is
the random walk kernel [96]. For each kernel and dataset, the best performing kernel is
highlighted in bold.

Kernel PPI PTC COIL Reeb
SA QJSD 75.69±0.85 60.13±0.51 67.84±0.15 38.50±0.26
QJSD 69.12±1.01 56.06±0.45 69.90±0.22 35.78±0.42
WL 79.40±0.96 56.95±0.31 29.00±0.57 50.53±0.41
GR 51.94±0.97 55.22±0.19 66.46±0.44 22.80±0.36
SP 63.31±0.80 56.51±0.36 69.68±0.36 55.93±0.36
RW 50.37±0.78 55.68±0.14 12.18±0.21 16.47±0.43
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Table 9.2: Runtime comparison on the four graph datasets.
Kernel PPI PTC COIL Reeb
SA QJSD 3.68” 13.30” 33.66” 15.35”
QJSD 126.09” 35.28” 2371.17” 544”
WL 4.10” 3.79” 22.52” 11.86”
GR 2.51” 0.73” 9.25” 1.98”
SP 3.85” 0.74” 19.13” 6.15”
RW 11.58” 231” 294.24” 757.67”

Table 9.1 shows the average classification accuracy (± standard error) of the different
kernels on the selected datasets. As expected, we see that the state alignment almost in-
variably yields an increase of the performance with respect to the standard QJSD kernel.
Indeed, the localization property of the kernel that results from the quantum state align-
ment leads to a better discrimination, and thus a higher classification accuracy. Moreover,
while the QJSD kernel has not been proven to be positive definite, as the quantum Jensen-
Shannon divergence has only been experimentally shown to be negative definite for mixed
states, our kernel is indeed positive definite, as proved in the previous Section.

Finally, Table 9.2 shows the runtimes of the different kernels on the four graph datasets.
Note that in terms of runtime the SA QJSD kernel easily outperforms the other spectral
methods, i.e. , the QJSD kernel and the random walk kernel, and it is still competitive
when compared with the remaining kernels.

With respect to the other kernels, the SA QJSD kernel achieves the best accuracy on
the PTC dataset, and it remains competitive with the best performing ones on the PPI
and COIL dataset. On the Reeb dataset, on the other hand, the shortest-path kernel and
the Weisfeiler-Lehman kernel outperform our kernel and the remaining ones. Note also
that the Weisfeiler-Lehman mitigates the localization problem by making use of the node
labels and thus improving node localization in the evaluation of the kernel. On the other
hand, our kernel does not take node attributes into account.

9.5 Conclusions
In this chapter we have generalized a recent structural kernel based on the Jensen-Shannon
divergence between quantum walks over the graph by introducing a novel alignment step
which, rather than permuting the nodes of the structures, aligns the quantum states of
their walks. We proved that the resulting kernel maintains the localization within the
structures, but still guarantees positive definiteness. We tested our kernel against a number
of alternative graph kernels and we showed its effectiveness in a number of structural
classification tasks.
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10
Transitive Assignment Kernels for

Structural Classification

Kernel methods provide a convenient way to apply a wide range of learning techniques to
complex and structured data by shifting the representational problem from one of finding
an embedding of the data to that of defining a positive semi-definite kernel. One problem
with the most widely used kernels is that they neglect the locational information within the
structures, resulting in less discrimination. Correspondence-based kernels, on the other
hand, are in general more discriminating, at the cost of sacrificing positive-definiteness
due to their inability to guarantee transitivity of the correspondences between multiple
graphs.

In this chapter we adopt a general framework for the projection of (relaxed) corre-
spondences onto the space of transitive correspondences, thus transforming any given
matching algorithm onto a transitive multi-graph matching approach.

The resulting transitive correspondences can then be used to provide a kernel that both
maintains locational information and is guaranteed to be positive-definite. Experimen-
tal evaluation validates the effectiveness of the kernel for several structural classification
tasks.

10.1 Introduction

Graph-based representations have proven invaluable in several application domains due
to their ability to characterize complex ensembles in terms of parts and binary relations.
Concrete examples include the use of graphs to represent shapes [169], metabolic net-
works [91], protein structure [85], and road maps [95]. However, the expressive power of
graphs comes at the cost of a reduced pattern analysis toolset available to the practitioner.
In fact, our ability to analyse data abstracted in terms of graphs is severely limited by
the restrictions posed by standard feature-based paradigm dominating pattern recognition
techniques, which require data to be representable in a vectorial form.

There are two reasons why graphs are not easily reduced to a vectorial form. First,
unlike the components of a vector, there is no canonical ordering for the nodes in a graph,
requiring correspondences to be established as a prerequisite for analysis. Second, the
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variation in the graphs of a particular class may manifest itself as subtle changes in struc-
ture. Hence, even if the nodes or the edges of a graph could be encoded in a vectorial
manner, the vectors would be of variable length, thus residing in different spaces.

The first 30 years of research in structural pattern recognition have been mostly con-
cerned with the solution of the graph matching problem as the fundamental means of
assessing structural similarity [46]. With the correspondences at hand, similarity-based
recognition and classification techniques can be used. Alternatively, graphs can be em-
bedded in a low-dimensional pattern space using either multidimensional scaling or non-
linear manifold leaning techniques.

Another alternative is to extract feature vectors from the graphs providing a pattern-
space representation by extracting structural or topological features. For example, spectral
features extracted from the singular value decomposition of the graph Laplacian have been
proven effective [67,123,181,194]. For an overall survey about the current state-of-the-art
in the graph matching problem, refers to the work by Livi and Lizzi [119].

10.1.1 Graph Kernels
The famous kernel trick [160] has shifted the problem from the vectorial representation of
data, which now becomes implicit, to a similarity representation. This has allowed stan-
dard learning techniques to be applied to data for which no easy vectorial representation
exists. Once we define a positive semi-definite kernel k : X ×X →R on a set X , there exists
a map φ : X →H into a Hilbert space H , such that k(x, y) =φ(x)>φ(y) for all x, y ∈ X .
Also, given the kernel value between φ(x) and φ(y) one can easily compute the distance
between them by noting that ||φ(x)−φ(y)||2 =φ(x)>φ(x)+φ(y)>φ(y)−2φ(x)>φ(y). Thus,
any algorithm that can be formulated in terms of dot products between the input vectors
can be applied to the implicitly mapped data points through the direct substitution of the
kernel for the dot product. For this reason, in recent years the structural pattern recog-
nition field has witnessed an increasing interest in graph kernels. However, due to the
rich expressiveness of graphs, this task has also proven to be difficult, with the problem
of defining complete kernels, i.e., ones where the implicit map φ is injective, sharing the
same computational complexity of the graph isomorphism problem [65].

One of the most influential works on structural kernels is the definition of the class
of R-convolution kernel proposed by Haussler [79]. Here graph kernels are computed
by comparing the similarity of the basic elements for a given decomposition of the two
graphs. Depending on the decomposition chosen, we obtain different kernels. Most
R-convolution kernels simply count the number of isomorphic substructures in the two
graphs. For example, Kashima et al. [96] compute the kernel by decomposing the graph
into random walks, while Borgwardt et al. [25] have proposed a kernel based on shortest
paths. Here, the similarity is determined by counting the numbers of pairs of shortest
paths of the same length in a pair of graphs. Shervashidze et al. [164] have developed
a subtree kernel on subtrees of limited size, where the number of subtrees common be-
tween two graphs is computed efficiently using the Weisfeiler-Lehman graph invariant.
Recently, Kriege et al [106] proposed that a kernel based on the number of isomorphisms
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between pairs of subgraphs, while Neumann et al. [138] have introduced the concept of
propagation kernels to handle partially labelled graphs through the use of continuous-
valued vertex attributes.

10.1.2 Assignment Kernels

One drawback of these kernels is that they neglect the locational information for the sub-
structures in a graph. In other words, the similarity does not depend on the relationships
between substructures. As a consequence, these kernels cannot establish reliable struc-
tural correspondences. This limits the precision of the resulting similarity measure. Ong
et al. [139] introduce several kernel methods about indefinite kernel for general struc-
tures, while Geibel et al. [86, 87] gives a solution to deal with not positive semidefinited
kernel based on Schur-Hadamard Inner Product applied on graphs. Further, Schietgat
et al. [159] propose a graph metric which is based on the maximum common subgraph,
while in [131] the authors exploit indefinte maximum common subgraph kernels using the
potential of support vector machine for indefinite matrices, extending the work proposed
by Hochreiter and Obermayer [81]. Another interesting solution described by Fröhlich
et al. [63] presents alternative optimal assignment kernels. Here each pair of structures
is aligned before comparison. Another example of alignment-based kernels are the edit-
distance-based kernels introduced by Neuhaus and Bunke [136]. Here the alignments
obtained from graph-edit distance are used to guide random walks on the structures being
compared.

Unfortunately, the introduction of the alignment step results in a kernel that is not
positive definite in general [189]. The problem results from the fact that alignments are
not in general transitive. In other words, if σ is the vertex-alignment between graph A
and graph B , and π is the alignment between graph B and graph C , in general we cannot
guarantee that the optimal alignment between graph A and graph C is π ◦σ. Lacking
positive definiteness the optimal assignment kernels cannot be guaranteed to represent an
implicit embedding into a Hilbert space. However, they have proven to be very effective
in classifying structures.

10.1.3 Multi-Graph Matching

The problem of estimating a transitive set of correspondences between structures, known
as the multi-graph matching problem, has received much less attention by the research
community than pairwise matching. One of the earliest work, due to Williams et al. [193],
imposes the transitive vertex-matching constraint in a softened Bayesian manner, induc-
ing inference triangles by forming fuzzy compositions of pairwise matching functions.
Sole-Ribalta and Serratosa [172] extended the Graduated Assignment algorithm [71] to
the multi-graph scenario by raising the assignment matrices associated to pair of graphs to
assignment hypercube, or tensors, between all the graphs. For computational efficiency,
the hypercube is constructed via sequential local pair matching. More recently, Yan et
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al. [198, 199] proposed a new framework explicitly extending the Integer Quadratic Pro-
gramming (IQP) formulation of pairwise matching to the multi-graph matching scenario.
The resulting IQP is then solved through alternating optimization approach. Pachauri et
al. [143], on the other hand, synchronize a given set of assignments through a spectral
relaxation.

10.1.4 Contribution
In this chapter we want to investigate the use of multi-graph matching techniques in the
context of graph kernels. By forcing the correspondences between the structures under
study to satisfy transitivity, we obtain an alignment kernel that, not only is positive def-
inite, but also makes use of more reliable locational information obtained through the
enforcement of global consistency constraints. In fact, when the alignments are transi-
tive, there is a common simultaneous alignment of all the graphs. Under this alignment,
the kernel is simply the sum over all the vertex/edge kernels, which is positive definite
since it is the sum of separate positive definite kernels.

Here we adopt an approach similar to Pachauri et al. [143] in avoiding the defini-
tion of a specific multi-graph matching algorithm. Rather, we project a set of (possibly
relaxed) assignments to the set of transitive correspondences. Transformation synchro-
nization techniques such as this have been proven effective in several fields due to their
effectiveness, their ability to leverage the state of the art in pairwise transformation esti-
mation, and their computational efficiency [77,184]. The proposed synchronization tech-
nique shares some similarities with [143], but we adopt a different relaxation scheme that
does not result in a generalized low rank Rayleigh problem, but can however be solved
with a projected power method, avoiding the requirement for an eigendecomposition of
the matching tensor.

10.2 Projection on the Transitive Alignment Space
Let G1,G2, . . . ,GN be graphs and let Pi j for i , j = 1, . . . , N be a matrix matching vertices
in Gi to vertices in G j obtained with any pairwise matching algorithm. Here we assume
that (Pi j )v w expresses a likelihood that node v in Gi is matched to node w in G j , but is
not required to represent a permutation, and can be in a relaxed space such as the space
of doubly stochastic matrices. Our goal is to find a set of permutation matrices P i j ∈ Σn

(with Σn the permutation space and i , j = 1, . . . , N ) as similar as possible, in the least
square sense, to Pi j , which satisfy the transitivity constraint. Namely,

∀i , j ,k = 1, . . . , N P i j P j k = P i k . (10.1)

In order to do this first we force the graphs all to the same size n by padding them
with dummy disconnected nodes to the maximum size of all the graphs of the set (see
figure 10.1).
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Figure 10.1: Graphical example about the refinement task of our datasets. In the figure,
the set is composed of three graphs G1,G2 and G3. The maximum number of nodes is 5
(the second graph), hence we add two disconnected nodes in G1 and three in G3 in order
to obtain respectively the extended graphs G ′

1 and G ′
2. The final dataset with the same

number of nodes n = 5 is composed by the graphs set G ′
1,G2 and G ′

3.

original graph �nal graphnode dummy node edge

G1’ G2 G3’
Max number nodes = 5

G1

G3

Once the graphs are all of the same size, we can enforce transitivity through the intro-
duction of an unknown reference canonical ordering and the alignment matrices Qi ∈ Σn

i = 1, . . . , N that map vertices in Gi to the reference order. With these matrices to hand
we set P i j =Qi QT

j . Note that there is no lack in representation power, as the transitivity
constraint guarantees the existence of such canonical ordering. In fact, let for example
Qi = P i 1. For transitivity, we have

P i j = P i 1P 1 j = P i 1P
T
j 1 =Qi QT

j . (10.2)

Furthermore, such canonical ordering is not unique, since for any permutation matrix
P ∈Σn , we have

P i j =Qi QT
j = (Qi P )(P T QT

j ) . (10.3)

With the canonical ordering representation the projection on the transitive space of
permutations cast as the following minimization process

argmin
Q∈(Σn )N

N∑
i , j=1

||Pi j −Qi QT
j ||22 =

argmin
Q∈(Σn )N

N∑
i , j=1

(
||Pi j ||22 +||Qi QT

j ||22 −2Tr(Q j QT
i Pi j )

)
=

argmin
Q∈(Σn )N

2N 2n −2
N∑

i , j=1
Tr(QT

i Pi j Q j ) =

argmin
Q∈(Σn )N

2N 2n −2
N∑

i , j=1
vec(Qi )T (

I ⊗Pi j
)

vec(Q j ) , (10.4)
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where || · ||2 is the Frobenius matrix norm while Tr is the linear trace operator.
This is equivalent to the following Integer Quadratic Problem

argmax
Q∈(Σn )N


vec(Q1)
vec(Q2)

...
vec(QN )


T

︸ ︷︷ ︸
vec(Q)T


I ⊗P11 I ⊗P12 . . . I ⊗P1N

I ⊗P21 I ⊗P22 . . . I ⊗P2N
...

... . . . ...
I ⊗PN 1 I ⊗PN 2 . . . I ⊗PN N


︸ ︷︷ ︸

Π


vec(Q1)
vec(Q2)

...
vec(QN )


︸ ︷︷ ︸

vec(Q)

. (10.5)

where ⊗ represents the Kronecker product while I is the identity matrix. Note that if
the pairwise matches are symmetric, i.e., Pi j = P T

j i , thenΠ is symmetric as well. However,
as in all quadratic problem, Π (and thus Pi j ) can be made symmetric without affecting the
result.

Our proposal is to relax this to the problem

maximize xTΠx
s.t. x ∈ (Sn)N (10.6)

where Sn is the unit sphere in Rn , and then project the solution to (Σn)N in order to obtain
the alignment matrices Si (which differs from the QI seen before since we are working
on a relaxed space) and, consequently, the transitive permutation matrices P i j = Si ST

j .
We solve 10.6 efficiently through a power iteration projected to (Sn)N by noting that

the gradient of the quadratic form can be computed in terms of multiplications and addi-
tions of the matching and alignment matrices:

Πx =


I ⊗P11 I ⊗P12 . . . I ⊗P1N

I ⊗P21 I ⊗P22 . . . I ⊗P2N
...

... . . . ...
I ⊗PN 1 I ⊗PN 2 . . . I ⊗PN N




x1

x2
...

xN



=


∑N

i=1 P1i Xi∑N
i=1 P2i Xi

...∑N
i=1 PNi Xi

 , (10.7)

where xT = (xT
1 , . . . ,xT

N )T expresses the N spherical components of x, and Xi is the matrix
representing the current relaxation of Qi , for which we have xi = vec(Xi ).

Hence, we can maximize 10.6 by iterating the recurrence

X (t+1)
i =

∑N
j=1 Pi j X (t )

j

||∑N
j=1 Pi j X (t )

j ||2
(10.8)

Once the matrices Xi are at hand, we obtain the closest (in the least square sense)
permutations Qi by solving N maximum bipartite assignment problems.
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10.3 Transitive Assignment Kernel
With transitive matches to hand, we follow Fröhlich et al. [63] in the definition of an
assignment kernel between graphs Gi = (Vi ,Ei ) and G j = (V j ,E j ): we define two sets of
kernels, one Kv : Vi ×V j →R for the vertices, and one Ke : V 2

i ×V 2
j →R for the edges and

fuse them with the transitive correspondence πi j : Vi → V j encoded in P i j , to obtain the
Transitive Assignment Kernel:

TAK(Gi ,G j ) = ∑
v∈Vi

Kv
(
v,πi j (v)

)+ ∑
v∈Vi

∑
w∈Vi

Ke
(
(v, w), (πi j (v),πi j (w))

)
(10.9)

Here, both kernels are assumed to be positive semidefinite and symmetric. In our
experiments we used the dot product between Heat Kernel Signatures [174] (HKS) for the
vertex kernel Kv . More precisely, given an undirected graph G of n nodes, let A = (ai j )
the n ×n adjacency matrix (where ai j is the weight of the edge between the nodes i and
j in G) and D the degree matrix, we compute the related n ×n Laplacian matrix L as

L = D − A

Let φi the i -th eigenvector of L (with i = 1, . . . ,n) and Λ= (λ1,λ2, . . . ,λn)T the eigen-
values of the Laplacian. Finally, let m be a set of time values {t1, t2, . . . , tm}. We define
the HKS feature vector f = ( f1, f2, . . . , fm)T as

f j =
n∑

k=1
exp(−t jλk )φ2

k

Once computed, the feature vectors are collected on a n ×m matrix F as columns

F = (
f1, f2, · · · , fm

)
Given two graph G i and G j (with the same number of nodes n), our HKS kernel is

defined as the sum of the dot product between the respective feature matrices k = Fi ·F j =
(k1,k2, . . . ,kn)T . Hence, the kernel matrix is defined as

Kv (G i ,G j ) =
n∑

w=1
kw

On the other hand, the edge kernel Ke was chosen to be a discrete enforcement of the
topological structure:

Ke
(
(u, v), (a,b)

)={
1 if

(
(u, w) ∈ Ei ∧ (a,b) ∈ E j

)∨ (
(u, w) 6∈ Ei ∧ (a,b) 6∈ E j

)
0 otherwise.

(10.10)

The positive semidefiniteness of the proposed kernel can be proved through the closure
properties of positive definite functions. The closure under sum states that, given a non-
empty set X and two positive semidefinite symmetric kernels K A,KB : X ×X →R, it holds
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K = K A +KB : X ×X →R (10.11)

Then, K is a positive semidefinite symmetric kernel. In other words, in order to con-
struct a new positive semidefinite kernel as the sum of existing ones (Kv and Ke in our in-
stance), first the kernels need to be positive semidefinite. Second, they all must be defined
in the same space. The kernels employed in 10.9 are positive semidefinite by hypothesis.
Furthermore, since the projection on the transitive alignment space introduces a reference
canonical order (and such canonical ordering is guaranteed by the transitivity constraints,
see section 10.2), the space of the kernels is the same. In fact, the kernels defined as the
sum of all Kv s (K A) and the sum of all Kes (KB ) are clearly positive semidefinite since all
Kv s and all Kes belong to the same respective spaces. Hence, the kernel defined in 10.9 is
positive semidefinite. Note that without the transitive alignment and its induced canonical
ordering, the assumption that all Kv s and Kes belong to the same respective spaces would
be wrong.

10.4 Experimental Evaluation
We evaluate the performance of the proposed method in terms of classification accuracy
and we compare it with a number of well-known kernels, namely the Weisfeiler-Lehman
kernel [164] (where the number of iterations parameter was set to h = 3 and we used
the degree of each node as the node attribute), the graphlet kernel [165], the shortest-
path kernel [25], the random walk kernel [96] and an experimental kernel based on the
Heat Kernel Signature [174] method. In particular, we employ the Heat Kernel Signature
to compute the feature descriptors with respect to k = 100 time parameters t uniformly
distributed within the range [1,10] and we build the kernel as described in section 10.3.

Furthermore, we compare the performance of the proposed method with respect to
the state-of-the-art of graph matching methods, namely the Spectral Matching (SM) [111]
and Reweighted Random Walks Matching (RRWM) [44]. In order to do so, we address
the classification task using several popular datasets with and without the permutations
computed by the graph matching methods.

Given a pair of graphs (G p ,G q ) with the same number of nodes n, we compute the
n2 ×n2 affinity matrix Mpq = (mi a, j b) as

mi a, j b = exp

− (ap
i j −aq

ab)2

σ2


where σ2 is a scale factor which is experimentally set to 0.15. This affinity matrix

is employed as the input of one of the graph matching technique (GM) introduced above
(SM and RRWM), obtaining the n ×n weight matrix Wpq = GM(Mpq ). Note that the
number of nodes of the graphs G p and G q are not required to be same, since if they are
different, we will just add some disconnected dummy nodes in order to make the number



10.4. Experimental Evaluation 139

of the nodes equal, as explained in section 10.2. Finally, we use the real matrix Wpq as
the input for the Hungarian algorithm, which is a well-known method that performs a
combinatorial optimization finding a maximum weight matching in a weighted bipartite
graph. This results in a discretized version of the weight matrix, which is, in practice, a
permutation matrix. Hence, we define the permutation matrix Ppq as

Ppq =Hungarian(Wpq )

We run our experiments on the following datasets:
MUTAG dataset [51] was constructed based on data from review of literatures about

mutagenicities in Salmonella Typhimurium based on 200 aromatic and heteroaromatic
nitro compounds. As a result, 188 congeners were extracted together with their structure-
activity relationship (SAR) data.

PPI dataset, which consists of protein-protein interaction (PPIs) networks related to
histidine kinase [90] (40 PPIs from Acidovorax avenae and 46 PPIs from Acidobacteria).

PTC (The Predictive Toxicology Challenge) dataset, which records the carcinogenic-
ity of several hundred chemical compounds for male rats (MR), female rats (FR), male
mice (MM) and female mice (FM) [115] (here we use the 344 graphs in the MR class).

COIL dataset, which consists of 5 objects from [135], each with 72 views obtained
from equally spaced viewing directions, where for each view a graph was built by trian-
gulating the extracted Harris corner points.

Reeb dataset, which consists of a set of adjacency matrices associated to the compu-
tation of reeb graphs of 3D shapes [19].

ENZYMES dataset [161] is based on graphs representing protein tertiary structures
consisting of 600 enzymes from the BRENDA enzyme database, which are correctly
assigned to one of the 6 EC top-level classes.

SHOCK dataset consists of graphs from the Shock 2D shape database. Each graph of
the 150 graphs divided into 10 classes is a skeletal-based representation of the differential
structure of the boundary of a 2D shape.

For efficiency purposes, the experiments do not involve the whole datasets. In partic-
ular, we select a certain number of classes and a certain number of graphs for each class.
The selection of these subsets is performed randomly on the original datasets. Table 10.1
shows the number of classes and the number of graphs of each dataset that has been used
to compute the results. In order to get an homogeneous number of nodes within the graphs
of the same dataset, we add to each graph nM AX −ni dummy nodes (i.e. not connected
nodes), where nM AX is the maximum number of nodes among the graphs of a certain
dataset, while ni is the number of nodes of the i -th graph.

We used a binary C-SVM to test the efficacy of the kernels. We performed 10-fold
cross validation, where for each sample we independently tune the value of C, the SVM
regularizer constant, by considering the training data from that sample. The process was
averaged over 100 random partitions of the data, and the results are reported in terms of
average accuracy ± standard error. In particular, at each 10-fold cross validation iteration,
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Table 10.1: Details of the datasets.
Dataset Name Classes Graphs per class Total Graphs Graph Nodes
MUTAG 2 ≈ 94 188 28
PPI 2 20 40 161
PTC 2 30 60 70
COIL 3 20 60 112
Reeb 3 20 60 86
ENZYMES 3 20 60 26
SHOCK 10 15 150 33

the dataset is randomly permuted and subdivided in 10 folds. Every fold is used as a
crossvalidation fold, while the remaining are use to train the SVM. The process is repeated
100 times. Finally, we define the standard error as

σ̂X =p
n ·

√∑n
i=1(x − x̄)2

n
=

√
n∑

i=1
(x − x̄)2

where x̄ is the mean accuracy obtained in a crossvalidation iteration with n samples
X = {x1, x2, . . . , xn}.

Table 10.2: Classification accuracy (± standard error) on unattributed graph datasets.
Respectively, HKS is the Heat Kernel Signature [174], WL is the Weisfeiler-Lehman
kernel [164], GR denotes the graphlet kernel computed using all graphlets of size 3 [165],
SP is the shortest-path kernel [25], and RW is the random walk kernel [96]. The second
part of the table collects the accuracy of HKS kernel employing the permutations from
Spectral Matching (SM) [111] and Reweighted Random Walks Matching (RRWM) [44]
with respect to the transitive versions produced by our method (denoted by the prefix T).
For each kernel and dataset, the best performing kernel is highlighted in italic, while the
bold highlights the maximum just considering data in the second part of the table for each
pair of graph matchings (non transitive w.r.t. transitive).

Kernel MUTAG PPI PTC COIL Reeb ENZYMES SHOCK
HKS 80.5 ± 0.2 63.6 ± 0.7 50.2 ± 0.5 87.8 ± 0.8 46.6 ± 0.6 56.9 ± 0.6 46.8 ± 0.3
WL 78.3 ± 0.2 70.4 ± 0.8 67.1 ± 0.6 70.6 ± 0.7 68.7 ± 0.4 55.4 ± 0.6 35.0 ± 0.2
SP 83.3 ± 0.2 58.5 ± 0.7 50.5 ± 0.6 86.7 ± 0.6 68.1 ± 0.4 52.2 ± 0.5 39.0 ± 0.3
RW 80.1 ± 0.2 48.5 ± 0.8 41.6 ± 0.6 65.2 ± 0.7 49.8 ± 0.6 13.6 ± 0.3 1.7 ± 0.1
GR 81.5 ± 0.2 30.3 ± 0.5 51.6 ± 0.6 87.1 ± 0.5 22.7 ± 0.6 47.0 ± 0.6 26.1 ± 0.3

HKS-SM 69.0 ± 0.3 60.9 ± 0.8 49.4 ± 0.6 84.8 ± 1.0 45.7 ± 0.6 49.1 ± 0.6 39.4 ± 0.4
HKS-TSM 80.7 ± 0.2 64.2 ± 0.8 50.1 ± 0.6 87.0 ± 0.9 46.2 ± 0.5 57.2 ± 0.7 46.7 ± 0.3
HKS-RRWM 79.8 ± 0.2 60.4 ± 0.9 52.1 ± 0.5 87.3 ± 0.9 44.5 ± 0.6 44.9 ± 0.6 25.7 ± 0.2
HKS-TRRWM 80.5 ± 0.2 64.3 ± 0.8 50.9 ± 0.5 86.1 ± 0.9 44.8 ± 0.6 45.5 ± 0.6 46.4 ± 0.3

Table 10.2 shows the average classification accuracy (± standard error) of the different
kernels on the selected datasets. The first part of the table shows the accuracy computed
using the datasets after the pruning operation mentioned before. The second part of the ta-
ble (after the double line) shows the classification accuracy achieved after the application
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of the permutations yielded by the compared graph matching methods. More precisely,
given Pi j the permutation matrix which defines the correspondences of the graph i with
respect to graph j , we compute the value of the kernel between the permuted graph i and
the graph j . In particular, HKS-SM shows the classification accuracy obtained permut-
ing the graphs using the Spectral Matching results, while HKS-TSM shows the results
obtained using the proposed method which has been initialized using Spectral Match-
ing. The results show that the proposed method is competitive and outperform the other
graph matching algorithms in almost all the datasets. COIL and PTC datasets are an ex-
ception, since HKS-RRWM performs slightly better with respect to our proposal. Note
that the first part of the table should be treated by the reader just as a reference of the
accuracies that the current state-of-the-art kernel methods achieve. Indeed, these kernels
work independently from the alignment of the graphs to be classified. The main goal
of the experimental results is the comparison between the proposed alignment method
with respect to the compared ones, namely Spectral Matching and Reweighted Random
Walks Matching. In particular, we want to show the performance achieved by the current
state-of-the-art in graph matching methods with respect to the transitive approach we are
presenting.

10.5 Conclusion
In this chapter we investigated the use of multi-graph matching techniques in the context
of graph kernels. By forcing the correspondences between the structures under study to
satisfy transitivity, we obtain an alignment kernel that, not only is positive definite, but
also makes use of more reliable locational information obtained through the enforcement
of global consistency constraints. We proposed a general framework for the projection of
(relaxed) correspondences onto the space of transitive correspondences, thus transforming
any given matching algorithm to a transitive multi-graph matching approach. The result-
ing transitive correspondences where used to provide an alignment-based kernel that was
able to both maintain locational information and guarantee positive-definiteness. Exper-
imental evaluation shows that the projection onto the transitive space almost invariably
increases the classification performance of the alignment kernel, often taking it to a per-
formance level that is at least statistically equivalent to the best performing well-tuned
graph kernels present in the literature.
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IV
Conclusion and Future Works





11
Conclusion

In this thesis we approached the problem of dealing with non-vectorial data from different
directions and proposed several methods that try to solve it.

In the second part of the thesis we proposed a brief introduction of the problem and
what has already been done in literature. In the second part of the thesis we tackled
the non-vectorial data problem in the shape analysis field, in which we proposed two
generative models employed in a shape retrieval task. Furthermore, we proposed a shape
matching algorithm based of functional maps.

In Chapter 5 we presented a supervised data-driven approach for the construction of a
generative model based on the spectral decomposition of the Laplace-Beltrami operator.
We defined a statistical framework that models a shape as two independent generative
models for the eigenvector and the eigenvalue components of the spectral representation
of the Laplacian, making no assumption about the distribution of the spectral embedding
space of the eigenvector part and estimating it through kernel density estimation. More-
over, we modelled the eigenvalues as a log-normal distribution. We tested our method
on one of the most recent and popular dataset for shape retrieval, obtaining encouraging
results.

In Chapter 6 we presented another supervised learning method for the definition of an
invariant representation of an arbitrary shape. Further, we defined a statistical framework
based on such representation that can be used to address shape classification tasks. One of
the main contributions is the definition of an efficient intrinsic metric to approximate the
geodesic distance between points over a manifold. Even if the proposed method is lim-
ited by the assumption that correspondence maps between involved surfaces are known,
we proposed an approximative approach that deal with it. We tested our method on sev-
eral standard shape retrieval datasets and the experimental results show that the proposed
approach is competitive with the compared non-rigid 3D shape retrieval methods.

Finally, in Chapter 7 we presented a novel approach to the computation of dense cor-
respondence maps between shapes in a non-rigid setting. The problem is defined in terms
of functional correspondences. We deal with the non-injectivity of the solution of the
functional map framework due to the under-determinedness of the original problem. Key
to the approach is the injectivity constraint plugged directly into the problem to optimize,
achieved by casting it as an assignment problem. This leads to an iterative process which
yields a high quality bijective map between the shapes. In the experimental section we
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present both quantitative and qualitative results, showing that the proposed approach is
competitive with the current state-of-the-art on quasi-isometric shape matching bench-
marks.

In the third part we showed how to deal with data represented through graphs. In
particular, we proposed three methods that deal with graph embedding and transitiveness
of graph matching solutions.

In Chapter 8 we have introduced a novel model of structural representation based on a
spectral descriptor of graphs which lifts the one-to-one node-correspondence assumption
and is strongly rooted in a statistical learning framework. We showed how the defined
separate models for eigenvalues and eigenvectors could be used within a statistical frame-
work to address the graphs classification task. We tested the defined method against a
number of alternative graph kernels and we showed its effectiveness in a number of struc-
tural classification tasks.

In Chapter 9 we have generalized a structural kernel based on the Jensen-Shannon
divergence between quantum walks over the graph by introducing a novel alignment step
which, rather than permuting the nodes of the structures, aligns the quantum states of
their walks. We proved that the resulting kernel maintains the localization within the
structures, but still guarantees positive definiteness. We tested our kernel against a number
of alternative graph kernels and we showed its effectiveness in a number of structural
classification tasks.

Finally, in Chapter 10 we investigated the use of multi-graph matching techniques in
the context of graph kernels. By forcing the correspondences between the structures un-
der study to satisfy transitivity, we obtain an alignment kernel that, not only is positive
definite, but also makes use of more reliable locational information obtained through the
enforcement of global consistency constraints. We proposed a general framework for the
projection of (relaxed) correspondences onto the space of transitive correspondences, thus
transforming any given matching algorithm to a transitive multi-graph matching approach.
The resulting transitive correspondences where used to provide an alignment-based kernel
that was able to both maintain locational information and guarantee positive-definiteness.
Experimental evaluation shows that the projection onto the transitive space almost invari-
ably increases the classification performance of the alignment kernel, often taking it to a
performance level that is at least statistically equivalent to the best performing well-tuned
graph kernels present in the literature.

11.1 Future Work
For the work in learning Riemannian variations on deformable shapes we would like
to apply the method to structure-based data. In particular, we want to try to use the
metric defined over the manifold to compute graph medians of a set of graphs. Since
graphs have usually a much lower cardinality with respect to shapes, we would use more
sophisticated matching algorithms to bring the graph embeddings in a common space.
The deviation from the true generalized median (introduced in Chapter 4) would provide
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a good indication of the true performance of the approach.
We would like to extend the work on shape matching presented in Chapter 7 lifting

the one-to-one correspondence constraint in the optimization formulation and defining it
as a transport problem. In this setting, the objective becomes to compute the map that
minimize the distortion while preserving the area transfer between the surfaces. Further-
more, a regulation factor could be added to the problem formulation in order to deal with
the ubiquitous problem of topological changes between surfaces, a problem that afflicts
every approach based on spectral descriptors.

Finally, we would like to employ the shape matching algorithm defined in Chapter 7
as the pre-processing step of a shape retrieval method based on statistical distributions
defined directly on special manifolds (i.e. Stiefel and Grassmanian manifolds). Hopefully,
this could lead to a generative model able to capture and characterize a broader class of
transformations between surfaces.
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