Universita
Ca'Foscari
Venezia

Ca’ Foscari
Dorsoduro 3246
30123 Venezia

Corso di Laurea magistrale in
Economia — Economics

Curriculum Models and Methods in Economics and
Management

Tesi di Laurea

Crowdsourcing in real time.
Number of workers and

Expected Waiting Time:

the trade-off in the Retainer Model.

Relatori
Ch. Prof. Paola Ferretti
Ch. Prof. Andrea Ellero

Laureando
Giovanni Furlanetto

Matricola 838665

Anno Accademico

2012 /2013

To my always supportive families

Alle mie famiglie, sempre di sostegno

Title of the thesis:

Crowdsourcing in real time. Number of workers and Expected
Waiting Time: the trade-off in the Retainer Model.

Summary
Y1011 = 5
L0 0T Lo Q0 el 0 17 1 7
INAEX Of FiUIES...cociiicrmmsmsmssmsssnsssns s s s 8
INAEX Of TADIES ..o 9
IndeX of EQUAtiONS. ... s sssas s sss s s 10
0 0L 0T L1 00 14

Chapter 1: Crowdsourcing: how to develop common knowledge through sharing and

PATLICIPALION .o —————————————— 17
Chapter 2: Realtime Crowdsourcing: a new application in a new theme.........cccecvurune 26

Chapter 3: The Retainer Model: a mathematical model for realtime crowdsourcing33

Chapter 4: The EWT versus Total Cost: the trade-off in the Retainer Model 43
4.1: The Expected Waiting Time: description of the first part of this trade-off.................. 43
4.2: The Total Cost function C,, : description of the second part of this trade-off........... 47

Chapter 5: Analytical analysis of the trade-off in the Retainer Model and the

optimized nuMDbeTr 0f WOTKET'S ..o sssas 54
5.1: The probability of an Empty Pool G(n) ... 55
5.2: The function of Total Cost €, ..ccovrririiiiiiiiiiiiinice e 60

5.3: The automatic algorithmoeeveeiiiic e 67

5.4: Behaviour of p in n’: the mixed derivative in the Stationary Point...........cc........... 76
Chapter 6: CONCIUSIONS ... 81
Acknowledgements/Ringraziamenti.......crmmmmsmsssssssssssssss 87
APPENAIX: o ——————————— 89
BIbliography ... ——————— 104

Index of Acronyms

Expected Waiting Time
Expected Task Cost
First Order Condition

Second Order Condition

Index of Figures

Figure 1: Gartner, Hype Cycle for Social Software in 2008. Crowdsourcing in the first

Figure 3: the automatic correction done by the “simple stroke - correction method” in

LIMPAECREIS PAPET. et e es s s s s R 29
Figure 4: EWT with =2 and 0 = 0.5 cccsssess 47
Figure 5: G(n) with 0 = 0.5 -vs.- p_ =5%, finding 77" =3 wooeesresresrmssssssesssssssssssenn 50
Figure 6: C,, curve With 0 = 0.5 s ssssssssssssssssssssssess 51
Figure 7: graphs of the values of G(n) for different values of P .., 60
Figure 8: graph of different C,,, with different values of P ... 66
Figure 9: MATLAB code of the algorithm for the calculation of 72oeecomeerssrrsssessssesssees 90
Figure 10: automatic results by the algorithm with p =0.5, C,, =100 and s =1 92
Figure 11: automatic results by the algorithm with p =1.0, C,, =100 and s =1........... 92
Figure 12: automatic results by the algorithm with p =2.5, C,, =100 and s =1 93

Index of Tables

Table 1: values of C,, with fixed values of our variables, finding 7" = 4 ...orsrmssrsnn 52
Table 2: values of G(n) using Erlang’s B formula.... s 89
Table 3: values of G(n) using the recursive approach G(n)= ILn) .. 90
Table 4: values of C,, with s =1, C,, =100 and 0.1 =< 0 < 1 oo 94
Table 5: values of C,, with s =1, C,, =100 and 1.1 < 0 S 2 oo 95
Table 6: values of C,,, with s =1, C,, =100 and 2.1 0 <3 e 96
Table 7: values of C,, with s =1, C,, =100 and 3.1 0 <4 ccccccccvessssssssssssssnssrsecensnnsnssssssses 97
Table 8: values of C,, with s =1, C,, =100 and 4.1 0 <5 e 98
Table 9: values of C,, with s =1, C,, =100 and 5.1 = P S 6 ..ccccceerrrrerrcssssssnsesssssssssssns 99
Table 10: values of C,, with s =1, C,,, =100 and 6.1 < P < 7...cccccvvvrvvsssssssssssssssssssssssseee 100
Table 11: values of C,, with s =1, C,,, =100 and 7.1 = p < 8. 101
Table 12: values of C,, with s =1, C,,, =100 and 8.1 < P < 9. 102
Table 13: values of C,, with s =1, C,,, =100 and 9.1 =< P <10...ccccvvvvvvvvrssssssssssssssssssssssseees 103

Index of Equations

Equation 1:
Equation 2:
Equation 3:
Equation 4:
Equation 5:

Equation 6:

Equation 7:

Equation 8:
Equation 9:

Equation 10

Equation 11:

Equation 12:
Equation 13:
Equation 14:
Equation 15:

Equation 16:

Equation 17:

Equation 18:

Equation 19:

Equation 20:

number of retainer workers in the first paper..... s 36
Total Costin the firSt PAPET .. sesssesenns 36
Load Coefficient, p_, with the two inter-arrival times ... 40
average frequency Of arrivals, A .. 40
maximum frequency of the SEIVICE, [..o 40
load coefficient, 0., With A aNd L . 40
stability condition for O, . ———————— 41
probability mass function of the Poisson distribution ... 41
Erlang’s original formula of 1917 ... sssessesssensaees 44
: definition of traffic Intensity, P . 45
necessary condition in terms of P . ——————— 45
Erlang’s B formula applied to the Retainer Model...........mnensenseneeeneennens 46
Expected Waiting Time formula.....co e sessessssssssssssessssseesees 46
Expected number of busy workers formula........ccocoemeeneeneesernseneesseneeneens 48
number of crowdworkers, in the pool, waiting for a task......ccoenerneenecneennees 48
retainer salary per unit of time formula ... 48
Total Cost of the Retainer Model equation, C,, s 49
G11) WIth 0 = 0.5 e 52
C,, with p=0.5,5=1, C,_; =100 s 52
G(n) with p =% ... 55

10

Equation 21:

Equation 22:

Equation 23:

Equation 24:

Equation 25:

Equation 26:

Equation 27:

Equation 28:

Equation 29:

Equation 30:

Equation 31:

Equation 32:

Equation 33:

Equation 34:

Equation 35:
Equation 36:
Equation 37:
Equation 38:

Equation 39:
Equation 40:

Equation 41:

Equation 42:

Equation 43

limit of G(n) AS 71 BOES L0 ZETO v ssssssssssssssssssssssssssssssses 56
limit of G(n) as 71 g0es t0 INfINILY . 56
G(n) with the notation of S& ESteves, 1995.....cmsissssssssseens 57
first order derivative of G(n) With respect to 71 weieciecesssessiens 58
second order derivative of G(n) With respect to 77 e 58
G (n)> 0 forall 7 and O POSILIVE ... 59
C,, formula showing the behaviour of G(n) ... 61
limit of C,, @S 71 G0€S 10 ZETOvvvvvvvvvvsss 62
limit of C,, as 7 g0es t0 INfiNItYcccwuervrrsrmsssmssmmsmmmmmssssssssssssssssssssssssssssssss 62
first order derivative of C,,, with respectto #, general formula................... 63

first order derivative of C,,, with respect to n, integral formula of G(n) 64

tot

First Order Condition of C,,: C; = 0 orsensemsmssssmssssssssssssssssssssssssssssnns 64
second order derivative of C,, with respectto », general formula............... 65

second order derivative of C,, with respectto », integral formula of G(n)

tot
.. 65
C! . =0 equation for the fINdING O 717 w.ovrrrsrrmsrsmsrsssnsssnsssssssssesssso 66
[(n), the inverse of G(n) ... 69
[(n) formal manner definition ... ————— 70
G(n - 1) and](n - l) formal definitioncceeieessssssssssssssssssssssns 70
first passage finding the linking formula between G(n) and G(n - 1) 70
summation operator property used in the proof.......nn—. 71
second passage finding the linking formula between G(n) and G(n - 1) 71
third passage finding the linking formula between G(n) and G(n - 1) 71
= Equation 38: G(n - 1) and I(n - 1) formal definition.....nnncnnccecnscn, 72

11

Equation 44: proof of the linking formula between [(n) and](n - l) .. 72

Equation 45: proof of the linking formula between G(n) and G(n - 1) 72
Equation 46: I(n) and G(n) as recursive factors for the algorithm ... 73
Equation 47: [(n) formula With 72 =1 s s ssssss 73
Equation 48: last line of the algorithm showing C,,, .. using n" calculated automatically

.. 74
Equation 49: formula for the computation of the tables in appendiX.......coueerneerreeneereesseenenns 76
Equation 50: first order derivative of F' = C, With T€SPECttO 0 wwoervrrsmssmssomsssrssssssssn 77
Equation 51: Implicit FUNCtion ThEOTEIM ... ssessesssssssessssessenns 77

Equation 52: application of the Implicit Function Theorem for the first order derivative of

Clrop = F WItNTESPECLLO 0 oottt sssssssssss st s s 77
Equation 53: general form of the numerator of EQUation 52 ... 78
Equation 54: final equation of the numerator of EQUation 52 ... 78

Equation 55: Theorem found in the paper “Second order Conditions on the Overflow

Traffic from the Erlang-B SYSTEM” ... sesssesssesssssssssssesssssssesssesns 79
Equation 56: proof of the negativity of the numerator of Equation 52.......oonnrnnecrerrnennenn. 79
Equation 57: proof of the positivity of the first order derivative of C,',mt = I with respect

B0 D e RS R R 80
Equation 58: new Total Cost function for possible future Works.........oeneneeneereeneeneeneenenns 84

12

Introduction

Crowdsourcing, as a “participative online activity in which an individual, an
institution, a non-profit organization, or company proposes to a group of individuals
of varying knowledge, heterogeneity, and number, via a flexible open call, the
voluntary undertaking of a task” (Estellés-Arolas and Gonzalez-Ladron-de-Guevara,

2012), is becoming more and more popular.

The application of crowdsourcing in real time is something that the
crowdsourcing world is still studying and trying to solve, knowing its potentialities
concerning the future of marketing, security and some phone applications that

would simplify everyday life.

If crowdsourcing is the encounter between different intelligences, realtime
crowdsourcing represents the desire that this meeting produces a response in the

shortest possible time.

The Retainer Model is presented in this thesis. This model is the first, and

the only one, that mathematically analyzes crowdsourcing in real time.

This thesis wants to study the characteristics of this model, analyzing and
studying the two parts of its trade-off: the function of total cost of hiring some
workers and the Expected Waiting Time for a new incoming task.
The model assumes that it is possible to recruit paid crowdworkers and obtain

from them a response in few seconds.

This thesis finds the reasons of the existence of a minimum stationary point
that represents the minimum number of workers optimizing the Retainer Model’s
trade-off. If on the one hand we want the Expected Waiting Time to be the as low as

possible (reaching this, increasing the number of workers) on the other hand we

14

do not want the number of workers in the pool to become too large because it

increases the total cost.

After the identification and the study of the reasons and the proofs of the
existence of this minimum; an algorithm, to automatically find this optimal
number, is shown. This algorithm, using a cyclical process, is able to find the

optimal number of workers for given values of the parameters of the system.

In the first chapter is described the main theme of the thesis:
crowdsourcing. The main characteristics of it and the important features, that are

increasing its popularity and importance, are presented.

The second chapter is about realtime crowdsourcing. This is a new theme
because the application of the real time processes’rules in the crowdsourcing field
is something that researches are trying to solve, but it is currently used in many

applications.

The Retainer Model and its development are presented in chapter three.
It took two papers to build it, describe its characteristics and find mathematical

substance for the finding of the optimal number of workers.

Chapter four presents the two parts of the Retainer Model's trade-off.
The Expected Waiting Time for a new incoming task in one hand and the function of

total cost of hiring some workers on the other hand.

In chapter five there are my contributions on this theme: I find all the
proofs that determine the existence of a stationary point and the evidence which
state that this point, representing the optimal value in term of crowdworkers in
the pool, is a minimum. This because, as the Clay Mathematics Institute says, "[...]
we require a proof in mathematics. A proof gives certainty, but, just as important, it
gives understanding: it helps us understand why a result is true"!. After this, a faster

and more precise algorithm, usable to find this minimum point, has been created

! Riemann's 1859 Manuscript description
[http://www.claymath.org/millennium/Riemann_Hypothesis/1859_manuscript/]

15

using a cyclical approach. Now it is more easy to find this prophetic number in a

more precise manner.

The conclusions show the main passages of the thesis, but also some
contributions for further studies. One of these is a new possible function of total
cost, which has origin in the formula of the Retainer Model and could be useful,
explaining better the entire cost suffered by the system, in my next studies on this

field.

Math and network are the main fields of this thesis. One the definition of
concreteness and the other the explosion of the community without limits. This is
why I have chosen this thesis: to apply mathematical models to support the use of
the network and to use mathematics to improve and optimize systems that rely on

the network.

We have to exploit this so good fortune. It is on the web and with the web
that we can, smartly, find new solutions to old problems. The web is a large
network all the more wuseful as it is consist of many nodes.
A network is a virtual place where goals, ideas and solutions can come together to

produce the best end result.

16

Chapter 1:
Crowdsourcing: how to develop common knowledge

through sharing and participation

Why to write about crowdsourcing and why it is important to know and
study is highlighted in the preface to the Italian version of the book by Jeff Howe,
“CROWDSOURCING: Why the Power of the Crowd is Driving the Future of

Business” (J. Howe), which is, now, my favourite quotation. It states:

“Some people think: [am the best of them all in a given thing. Full stop.
They are many. They are often mistaken. Some even know they are not the best,
but do not care, no one will find out and never mind if the job done at the end will
not be the best. [...] And then there are those who know that, outside, somewhere,
there is definitely someone better. Or someone who can improve your idea. Or
many that can help you focus on it better and in a winning way.
It is not an act of faith, or lack of confidence in themselves: it is logic, indeed

statistics”.

And statistics always wins. It is from this victory that crowdsourcing was
born: we know that outside these walls there is a crowd of people that can help us.
But this crowd is not the entire rest of the world, but only a small portion.
The portion of human living in the planet who use the Internet. Jeff Howe, in his
book, names this portion: the Billion, due to the fact that this is the number of

people online in the world.

So crowdsourcing world can have one billion people - on a total of seven
billion - who can contribute in different ways to various crowdsourcing projects.
This billion people is “dispersed among innumerable over-lapping online
communities, composed of people whose interests align, however temporarily. These

communities aren’t so different from those we know from the offline world” (Howe).

17

In order to understand better and more deeply this world, we have to ask

what crowdsourcing is.

The definition that the Daily Crowdsource? gives is: “Crowdsourcing is the
process of getting work or funding, usually online, from a crowd of people. The word
is a combination of the words 'crowd’ and 'outsourcing’. The idea is to take work and

outsource it to a crowd of workers”3.

The principle is ancient: two brains are better than one.
Moreover, this principle belongs to a sociological theory called “the Wisdom of
Crowds”. It express that a group of individuals would be able to provide an
adequate and valid answer to a question better than an expert is able.
This theory bore in the 1907 from Francis Galton who wrote Vox Populi, which is
the first article on this theme published in Nature. He showed that “the crowd at a
county fair accurately guessed the weight of an ox when their individual guesses

were averaged”*.

Crowdsourcing “combines the efforts of crowds of self-identified volunteers or
part-time workers, where each one on their own initiative adds a small portion that
combines into a greater result. Crowdsourcing is different from an ordinary
outsourcing since it is a task or problem that is outsourced to an undefined public

rather than to a specific, named group” (Wikipedia).

The first appearance of this term in the scientific literature has been the
first February 2008, in the paper by Braham Daren that defines it as an “online,
distributed problem-solving and production model” (Daren). The main point of
crowdsourcing is the power of making actions available to anyone online,

with quick access for a huge number of users, collecting data and rewarding theme.

> An “open-format website that aims to educate the public on the topic of crowdsourcing”
[http://dailycrowdsource.com/about]

® Web site of the Daily Crowdsource with this definition
[http://dailycrowdsource.com/crowdsourcing-basics/what-is-crowdsourcing]

* Quoted in Wikipedia [http://en.wikipedia.org/wiki/The_Wisdom_of_Crowds]

18

One of the most beautiful comparison is that between the Encyclopaedia
Britannica> and Wikipedia®. The first, with data until 2012, used 4,000 experts to
write 80,000 articles and spent 200 years to develop. The second has more than
1.6 million articles and more than 100,000 amateurs who contribute to the
development of Wikipedia in six years. These numbers are incredibly different!
Moreover, Wikipedia can rely on a continuous real time update while

Encyclopaedia Britannica updates only on a yearly basis.

What about the quality aspect? This aspect opens more than one
parenthesis because a lot of studies tried to check and compare the quality of
Wikipedia. The prestigious journal Nature, in an investigation that caused a stir in
2005, shows that the quality of Wikipedia is not far from the quality of Britannica
(that costs, discounted, $ 1,295). In “Special Report Internet encyclopaedias go head
to head”, by Jim Giles, various experts, kept in the dark about the origin of specific
articles, researched errors and inaccuracies on 42 subjects taken from both
sources. The result is a substantial balance: four serious mistakes for the
Britannica and the same for Wikipedia. For Nature, discover "the quality of

Wikipedia in science" was a "nice surprise"”.

The reason for this alignment is not the fact that the unknown authors of
Wikipedia are gotten better over time, but that their number has increased:
increasing the "critical mass" increases the likelihood that, within an article, you

will find a much greater number of contributors, thus increasing the final quality.

This is the reason for the (alas!) still low quality of Wikipedia Italia:
the lack of this "critical mass" prevents the growth of quality and allows the
publications of large number of “rubbish” articles often containing glaring

mistakes.

> Web site of Encyclopedia Britannica [http://www.britannica.com/]

® Web site of Wikipedia [http://www.wikipedia.org/]

’ Web site of Nature with the article: “Special Report Internet encyclopaedias go head to head”
[http://www.nature.com/nature/journal/v438/n7070/full/438900a.html]

19

Thus, crowdsourcing is an online and distributed model producing
solutions for problems where users (the so-called crowd) are typically constituted
around a community, based on web sites. They provide solutions or produce
contents for the website. The crowd can also select the solution, finding the best
among them all. The solution becomes property of the crowdsourcer: the
requester who has posed the problem. Individuals in the crowd are usually
remunerated, but sometimes they participate only for the intellectual stimulation

or to be useful and help someone in producing a service.

Two important revolutions in the field of technology have taken place.
The first revolution, the revolution of the PC, was the result of powerful and
cheaper microprocessors which started with the IBM PC. The second revolution,
the revolution of communications, is the result of inexpensive broadband

communications starting from the Internet.

Nowadays, the critical mass of connections between people is the central
point, no longer the technology or innovation (which still are important points).
We have achieved this critical mass thanks to the ease of use, availability, cultural
change and, above all, to the effect that the web has brought. The two laws that link
these two important revolutions are the Moore’s Law® and the Metcalfe's Law °.
The first states that every two years the processing power doubles at the same
cost, and the second states that the utility of a network is a function of the square

of the number of potential users.

Every network and every social software have a life that can be divided into
phases. This is done by the Gartner Hype Cycles that “provide[s] a graphic
representation of the maturity and adoption of technologies and applications, and

how they are potentially relevant to solving real business problems and exploiting

® Web site of Computer History with Moore’s Law
[http://www.computerhistory.org/semiconductor/timeline/1965-Moore.html]

° Web site of Princeton University with Metcalfe’s Law
[http://www.princeton.edu/~achaney/tmve/wikil00k/docs/Metcalfe_s_law.html]

20

new opportunities”10. These graphs show how and when a technology or an
application will evolve over time. Thus, it is easier to manage and use the
technology in a specific business, knowing the phase where it is at that specific

moment.

We can check the evolution, in terms of phases, crowdsourcing has

undergone, starting with the position occupied in 2008.

visibility
{ gExper‘(ise Location and Management

Social Search
U TM;’[;I;E Somall Nteltworks :% @ Prediction Markets
nifie mmunications - .
and Collaboration Q Social Computing Platforms
Microblogging
Social Software Suites
Social Networks:

QO Social Bookmarking

Customer Service
Community Marketing Private
iqui i @- Virtual
Ubiquitous Collaboration Worlds o
Idea Marketplaces 3 Q Open-Source Social Software Presence
Crowdsourcing
Social Data Portability N Q Public Virtual Worlds O
Social Mining and O Activity Streams Blogs
Social Intelligence
Social Learning } Immersive Learning Q.
Platform Environments Wikis .
Social Networks -9 Folksonomies/ Social Network Analysis
for_ Sales Social Tagging RSS in the Enterprise
Hem ansd fSomaI Enterprise Internet Reputation Idea Management
oftware i
Management Corporate Blogging
Alumni Community Management As of July 2008
Peak of
Technology Trough of . Plateau of
Trigger Inflated Disillusionment Slope of Enlightenment Productivity

Expectations
time
Years to mainstream adoption:
obsolete

Olessthan2years O 2to5years @ 5to 10years A morethan 10years ® before plateau
Source: Gartner (July 2008)

Figure 1: Gartner, Hype Cycle for Social Software in 2008.

Crowdsourcing in the first phase

As we can see, in 2008, the year of the first appearance of this term in
scientific literature, crowdsourcing was in its first phase: the Technology Trigger

phase.

In this phase, a potential technology breakthrough is presented on the

market. There is no evidence of profitability and the new products are prototypes.

1% Gartner’s methodologies for the Hype Cycles [http://www.gartner.com/technology/research/
methodologies/hype-cycle.jsp]

21

As we can see from the colour of the point (dark blue) in the graph above,
Gartner, in 2008, said that mainstream adoption could required between five and

ten years.

Nowadays we are in this period: 2013 is the first of these five years.
Thus, it is admissible to ask where crowdsourcing is now and in which phase

Gartner set it.

Gamification

Social Content

Social Recruitment Software

Crowdsourcing

Social Commerce

Social Software Standards

Enterprise File Synchronization and Sharing (EFSS)

expectations
Social Network
Analysis
Social Media Metrics
Social Leaming Platform
Enterprise Video Content Management
Privacy Management Tools
Mobile Social Gaming
Collaborative Authoring Tools
Security Applications Embedded
in Social Media
Expertise Location and Management
Social Media Records Management
No-Email Initiatives
MDM and Social Data

Q Social Media Compliance

Mobile Collaboration Client
Social TV Cloud Office Systems
Social External Peer-to-Peet Unified Communications

Employee Communities and Collaboration

Recognition Social Analytics Idea Management

Systems Mobile Social Networks

Unstructured Process Soclal Media Distribution Social Media Monitors
| ial BPM)
Mobile Virtual '-'-‘or)ds_/ .Nass Internal Peer-to-Peer Communities
Customer-Centric Web Strategies ~allahors
Social IT Management Collaboration qSo«:ua Media Engagement Solutions
Social Co-browsing 9 Activity Streams
Persona Management Soclal Profiles Q Social Software Suites
Collaborative Customer Interfaces @ Personal Subscriptions Enterprise Internet Reputation Management
Virtual Reality :
As of July 2013
. Peak of
Innovation Trough of . Plateau of
. Inflated Slope of Enlightenment
Trigger Expectations Disillusionment Productivity
. |
time
Plateau will be reached in: obsolete

Olessthan2years O2toSyears @ 5to10years A morethan 10 years ® before plateau

Figure 2: Gartner, Hype Cycle for Social Software in 2013.

Crowdsourcing in the second phase

Gartner sets crowdsourcing in the second phase: the Peak of Inflated
Expectations phase. Here “early publicity produces a number of success stories -
often accompanied by scores of failures. Some companies take action; many do
not”11, We can also see that the time to reach the mainstream adoption is

decreased: now it is in only between two and five years.

! Web site of Gartner’s methodologies
[http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp]

22

So the life cycle of crowdsourcing is rapidly rising and this is due to the
benefits that it gives to those who use it. Some of these benefits are, for example,
that the problems can be analyzed and compared at low cost, the requester may
obtain products, processes and marketing efforts suggested by the users.

Some of the key elements of crowdsourcing are:

diversity of opinions: each person must have a different opinion from

the others (even an eccentric one);

independence: people's opinions should not be affected by others;

decentralization: people must be able to create their opinion from

their environment;

* aggregation: determine mechanisms for aggregating opinion and

judgments into a collective decision.

Crowdsourcing is an approach, a method that can be used in very different
ways and in a lot of different fields. This represents the multiplicity of
opportunities that crowdsourcing can deal with. Some of these are: microtasks,

graphic design, macrotasks and crowdfunding.

The first application in this list is microtasks. The main point is the small
size and the repetitiveness of the tasks done by the online crowdworkers. As the
Daily Crowdsource suggests, microtasking “is a great place to start when [one is]
new to crowdsourcing. Having a crowd of workers complete "small and repetitive"
tasks can significantly lower costs and save time”12. Some of this microtasks are, for
example, the creation of contents, the description of some products, the collection
of information researched on the Internet, the translation of sentences or portion
of documents, the organization of photos and documents (tagging, sorting,

labelling, digitizing, scanning) and the transcription of audio files.

© Daily Crowdsource’s article listing the different fields in which crowdsourcing can be useful
[http:// dailycrowdsource.com/crowdsourcing-basics/what-can-you-crowdsource]

23

The second application is graphic design. It is the most common task to
crowdsourcel3. It is important because it gives to the requester something that is
completely original and customized. The most famous, used and important
examples are the designs of new logos or their restyles for companies, the creation

or redesigning of web pages, web sites or business cards.

The third application is macrotasking. Because macrotasking involves more
people on a complex project, on its research and on its development,
communication and organization are extremely important to manage the different
skills of these crowdworkers. The most famous categories for macrotasking
application are: the development of eco-green solutions, social projects, medical

and public health, productivity innovation projects.

Crowdfunding is the last, but the best-known, application. By definition,
given by Forbes, it is “the practice of funding a project or venture by raising many

small amounts of money from a large number of people, typically via the Internet”14.

A report by Massolution about the crowdfunding industry states that the
“crowdfunding platforms raised $2.7 billion and successfully funded more than 1
million campaigns in 2012. Massolution forecasts an 81% increase in global
crowdfunding volumes in 2013, to $5.1 billion”15. At the moment, there are more
than 500 crowdfunding web sites and more than 9,000 domains related to

crowdfunding all over the word: this shows the size of this “new” item1¢.

Usually, some of the projects that can be crowdfunded are artistic projects,
like movies, documentary films, music albums or books. Other kind of projects,
financed by crowdfunding, are charitable projects that require resources to travel

and assist someone.

3 Web site of Design Crowd [http://www.designcrowd.com/crowdsourcing]

% Web site of Forbes, Tanya Prive, What is crowdfunding [http://www.forbes.com/sites/tanyaprive
/2012/11/27/what-is-crowdfunding-and-how-does-it-benefit-the-economy/]

> Web site of the Crowdfunding Industry Report by Massolution

[http://research.crowdsourcing.org/ 2013cf-crowdfunding-industry-report]

'8 Web site of Forbes, Ryan Caldbeck, “Crowdfunding trends”
[http://www.forbes.com/sites/ryancaldbeck/2013/06/23/crowdfunding-trends-which-crowdfunding-
sites-will-survive/]

24

This presentation is not meant to be a strict description of crowdsourcing.

It describes the main characteristics of crowdsourcing, the theme of this thesis.

It can be useful to understand the importance of this theme in the present
economy and, above all, for the future. It represents the next step in the
communication field and in the participation: we need to understand that there is
an incredible amount of people (a billion and it will increase) ready to help us.
Einstein said that “creativity is born from anguish. Just like the day is born from the
dark night”. We have the tools to overcome a lot of problems, sharing ideas,
collaborating and joining forces - because the power of sharing and participating is

greater than that of a single person.

25

Chapter 2:
Realtime Crowdsourcing: a new application in a new

theme

After the chapter about the illustration of crowdsourcing in general and its
importance, now the application of crowdsourcing in real time are presented.

This field is very mysterious, not yet studied in depth, because still very recent.

What does real time mean? Only by knowing this definition can we
understand when and why it is possible to study its application to crowdsourcing

(anticipating its applications in the near future).

By definition, indicated by Professor John Stankovicl’, “Real time systems
are defined as those systems in which the correctness of the system depends not only
on the logical result of computation, but also on the time at which the results are

produced”. The expression “real time” summarizes two fundamental concepts:

1. TIME: the validity of the results of a calculation process
depends on the time within which these results are
produced;

2. REAL: the system time must be equal to the environment

time in which the system operates.

Real time does not mean fast. The term fast has a relative meaning which
makes little sense if it is not concerning the environment in which the system
operates. Therefore, the characteristics of a realtime system are closely related to

the environment in which the system operates: the objective of a fast process is to

Y Web site of the University of Virginia — Engineering
[http://www.cs.virginia.edu/people/faculty/stankovic.html]

26

minimize the average response time of a set of processes; the goal of a realtime
process, instead, is to satisfy the timing requirements of each individual process or

task.

The interest in the realtime system is motivated by the many applications
that require this type of processing, for example, the regulation of nuclear and
chemical sites, the control of complex manufacturing processes (as robotics),
military systems or space missions, the flight control systems of airports, the

control systems of the traffic and, as in this thesis, the telecommunication systems.

So a realtime process is characterized by a predetermined time expiration,
called deadline. A result produced after this deadline is not only late, but can be
dangerous. Depending on the consequences resulting from a missed deadline,
realtime processes are usually divided into three types: hard, firm and soft. These

are:

* hard realtime process: if the violation of the deadline results
in a catastrophic effect on the system;

* firm realtime process: if the violation of the deadline does not
entail catastrophic effects, but the usefulness of the results
decreases with the increasing of the delay of the deadline;

* soft realtime process: if the violation of the deadline does not

affect the proper functioning of the system.

Responding to an event in real time means responding at a speed that can

be predetermined, whatever the operating context of the equipment.

Why could it be important to study crowdsourcing in real time?
Because there are a huge number of applications that are trying to decrease the
time between the instant that a request (a task) arrives and the instant that this

request is solved.

27

This is well written by Casey Armstrong, the founder of VineStove.com!8,
when he writes: “Real-time crowdsourcing of tasks is something that the
crowdsourcing world is trying to solve. It is a difficult problem, and the industry is
still learning how to harness the crowd in basic ways”1°. So, this theme is something

that the industry is trying to solve, but it is currently still using and developing.

An important sentence on this theme is one of the three predictions - that
Casey Armstrong “bets” - about where crowdsourcing will go in the coming years.
It states: “in the next 5-7 years real time crowdsourcing will be the norm”?° and

shows the growing importance of this field.

As I wrote above, there are not a lot of papers and models that explain this
connection, but as a first example I can mention the paper by Limpaecher, Feltman,

Treuille and Cohen, titled “Real-time drawing assistance through crowdsourcing”.

Their paper presents a method that uses a “crowdsourced drawing
database” (collected thanks to a mobile app game designed for this purpose) to
build a system able to understand when an incoming image was too different from
the others. They do so in order to build an automatic “artistic consensus at the

stroke level”.

The algorithm was able to find which strokes were too different from the
average of the rest of strokes, comparing thousands of images of the same person
drawn by different “crowdartists”. The authors present a “simple stroke-correction

method” that used this algorithm for correcting strokes in real time.

B A crowdsourcing web site that exchanges microtasks “for donations given to nonprofits”
[http://www.vinestove.com/#!about/c1j4r]

% Web site of Quora, “best source for knowledge” [http://www.quora.com/Crowdsourcing/Whats-the-
best-way-to-generate-real-time-crowdsourced-answers]

20 Daily Crowdsource’s article by Casey Armstrong [http://dailycrowdsource.com/8-resources/
index.php?option=com_content&view=article&id=1140:3-crowdsourcing-predictions-that-are-totally-
going-to-come-true-by-2020&catid=25:discussion&Itemid=214]

28

244

(A

Crowdsourced Database Raw Strokes Corrected Strokes

Figure 3: the automatic correction done by the “simple
stroke - correction method” in Limpaecher’s paper.

As Figure 3 shows, the algorithm is able to correct strokes too different
from the original picture (so too different from the crowdsourced database) and it

does this operation in real time.

Another application of realtime crowdsourcing has been applied in
everyday traffic jams. Drivers are often taken by surprise about traffic jams,
congestions and traffic accidents. Realtime crowdsourcing can be (and, actually, it
is) a great help to overcome all these problems: through timely informations, it is
possible to help many drivers to avoid certain routes and find alternative ways to

reach their destinations.

This is what TrafficTalk?! is trying to do: it aims to help drivers with traffic
informations in real time, offering them suggestions via mobile phone on the best

possible routes to take and those to avoid.

This new free phone app crowdsources information from drivers in a
specific area updating in real time all the drivers' iPhones with the information

they send about the condition of the traffic.

“TrafficTalk provides real time, live information on the present condition of

the road”?? as some radios do, but more slowly and not live (or in real time, as they

I Web site of TrafficTalk [http://www.traffictalk.info/]

29

say). For all these reasons, realtime crowdsourcing is helping drivers simplifying

their movements.

Realtime crowdsourcing could be important not only in everyday life,
simplifying it with new phone apps and new applications, but also in a very

important field: Public Security.

A first application of realtime crowdsourcing was implemented after the
tragedy of the Boston Marathon on April 15, 2013. The usual application (with
which users try to find something or someone in photos or videos), honestly, failed:
chaos, rivers of adrenaline and confusion exacerbates inaccurate information and

accused innocent people of being bombers, ruining their lives forever.

In fact, an alternative application of crowdsourcing worked well.
The point is that common people cannot substitute the Police and FBI, but what it
is possible to do is to use the crowd in simple tasks and leave the Police to do their
job. In the future, we will see more and more sophisticated data analysis tools able
to analyze the metadata stream (information describing a set of data) from iPhones
and other devices to map the behaviours of large crowds identifying particular

"events" with great precision (monitoring information from passive viewers).

The application used to help the Police in the Boston Marathon bombing,
was CrowdOptic. This application, originally born for advertisers and commercial
use, “can collect and analyze a wealth of data from smartphones to help determine
that - noting where smart phone cameras are pointed and correlating that with
social media and other information”?3. This tool helped investigators analyze
metadata from videos and photos, instead of asking unreliable and excited people
to look for some details in pictures. CrowdOptic, using an algorithm, can identify
“points of focus” of a crowd extracting information from images and using
triangulation. The idea is to overcome the “geolocation”, with a sort of “focus

awareness” found using the individual focus of the members of that crowd.

22 \Web site of Daily Crowdsourc [http://dailycrowdsource.com/20-resources/projects/346-real-time-
crowdsourced-road-tips-to-avoid-traffic-jams]

> Web site of Security Ledger [https://securityledger.com/2013/04/crowdsourcing-fail-in-boston-but-
can-technology-fix-it/]

30

CrowdOptic's technology played a key role in helping the authorities:
it was used to put together all the images that contain the position of the bomb in
the area, before and after the explosions and give investigators not only a view of
the scene, but also an image of the points of interest that people might have
captured. With this type of crowdsourcing, it was possible to help the Police in
finding the bombers using the crowd as a single entity and using the information of

this entity to collect and analyze evidence.

The first thing that we can note in every one of these examples is the
improper use of the term real time. It is not used as the definition wants: there is
never fixed deadline for the answer, but in general this deadline is “as soon as
possible”. The deadline is tacitly set within a range of few seconds and this is
because we are referring to crowdsourcing and not to computer science. This
should not be surprising or worrying: also in telecommunications and computing
the term real time is used with this meaning. The definition that
telecommunications and computing accept is: “the term [real time] implies that

there are no significant delays”?4.

So, if crowdsourcing is the encounter between different intelligences,
realtime crowdsourcing represents the desire that this meeting between produces
a response in the shortest possible time, or, even better, without any significant

delay.

As I anticipated above, not many papers discuss this theme, because it is

very recent and difficult to analyze.

In this thesis, I will focus on a particular model that was proposed and
developed in two recent papers. This model is important because it is the only one
(to my knowledge) that gives mathematical substance to this theme. It gives to this
theme meaning and rules, using mathematical concepts and formulas to achieve a

result, linking optimization and realtime crowdsourcing!

** Telecommunication engineering category by Wikipedia, page of Near Real Time
[http://en.wikipedia. org/wiki/Near_real-time]

31

The model is called “the Retainer Model” and the two papers are: “Crowds in
two seconds: enabling realtime crowd-powered interfaces” (Bernstein, Karger, Miller
and Brandt, 2011)25 and “Analytic Methods for Optimizing Realtime Crowdsourcing”
(Bernstein, Karger, Miller and Brandt, 2012)26.

As we can see, these papers are very recent: one of 2011 and the other of
2012. This expresses the freshness of this theme and suggests how much is

possible to do on this field.

In the next chapter, the model is described and in the following one I will

optimize it.

%> Web site of ACM Digital Library [http://dl.acm.org/citation.cfm?id=2047201]
%% Web site of Cornell University Library [http://arxiv.org/abs/1204.2995]

32

Chapter 3:
The Retainer Model: a mathematical model for realtime

crowdsourcing

As 1 wrote at the end of the previous chapter, the two papers are
complementary: the first paper presents the Retainer Model and the second

optimizes it, introducing some concepts of Queueing Theory.

We know, from the previous chapters, that a crowdsourcing system runs
when an incoming task finds some crowdworkers available to work on it.
Incoming tasks create a list and this list is emptied, task by task, by the

crowdworkers.

The first paper, "Crowds in two seconds: enabling realtime crowd-powered
interfaces" (Bernstein & al, 2011), wonders whether it is possible to lower
significantly the crowd latency. Crowd latency is the period of time that affects a
crowdsourcing system in the search for a new worker to answer a call in order to

solve a task.

As 1 said before, crowdsourcing is a tool useful not only to the requester
who has time for a response, but its popularity and importance are increasing for

the requesters who operate in short periods of time.

To get an idea of the amount of time and the actual value to be given to this
time we can mention: "VizWiz: Nearly Real-time Answers to Visual Questions"
(Bigham et al,, 2010) 27. This paper describes an iPhone app that allows blind users
to get quick answers to questions about their surroundings. A user with some
visual impairments takes a picture and records a question with its mobile phone

and then sends all these to anonymous crowdworkers. Once this task is received

%7 Web site of the paper [http://hci.cs.rochester.edu/pubs/pdfs/vizwiz.pdf]

33

from these services (like object recognition software, Twitter, Facebook or e-mail

contacts), the answer is sent to the requester's mobile phone.

This paper is useful in our case, because, through a new mobile application,

it promises an answer within 30 seconds.

Thus, the vision of a user pressing a button and having the results
(produced by a crowd) in real time starts from new approaches and new concepts.

One of the most important concepts is the so called on-demand synchronous crowd.

With this type of crowds, built in order to aggregate more than one person
per question, we can have several advantages: we can reduce the recruitment time
and we can also be able to solve more complex searches in less time.
In effect, even the fastest employee cannot get results in real time, and, above all,
it is not easy to find workers willing to answer quickly in real time.
These are the reasons why multiple users working together (a synchronous crowd)

could be a good answer to our desire for realtime crowdsourcing.

The model obtained by Bernstein & al. in "Crowds in two seconds: enabling
realtime crowd-powered interfaces" is the Retainer Model. With this model it is
possible to engage crowdworkers in advance, leaving them to stay in a so called
virtual pool. In this virtual pool they are paid also if no tasks are present and they
are free to work on other things; but, when a task arises, they are obliged to put
themselves to work. With this pool of speedy workers, the authors produced a
series of experiments, using not only the concept of this Retainer Model, but also

the rapid refinement algorithm.

This rapid refinement algorithm is the process used by the authors to
analyze the various responses to the experiments, gathered by the crowdworkers,

and find the best answer trough them.

34

Adrenaline, A|B and Puppeteer?® are experiments based on the Retainer
Model. The rapid refinement algorithm is used to guide the search towards the
optimal solution through the method that I call “sieve”. In these experiments, the
best answer is the answer with the highest frequency: it is given by a majority of
votes calculated from time to time. After x seconds, the system deletes the answer
with the lowest frequency and, using this “sieve process”, the “bad” answers are

removed gradually in order to get the final (optimal) answer.

What it is important for the purpose of this thesis is to understand the
construction of the Retainer Model. The Retainer Model addresses two questions:
how to optimize the response time minimizing the cost of the pool (because the
number of workers in the pool and the cost of having this pool are directly

proportional) and how to maintain a high response time.

The worker in the pool has to focus on the task as soon as it is asked.
To do this, the best incentive is to pay an extra amount of money, allowing these

workers to continue with other activities while waiting.

The model must, therefore, ensure quick responses, be cost-efficient (not
wasting money unnecessarily hiring too many workers) and maintain the ability to
respond after some time. A way that the authors found is to introduce an alert
sound needed to awake the workers and put them to work immediately in front of
the screen. The authors even mention in the paper a new payment as a reward for

the fastest reaction (but they do not describe it).

The structure of the cost is very innovative and interesting, because the
requester pays workers even when they are not working, compared with the pay
to repeat old tasks at the top of the list of all tasks (which is the usual way to sort

the tasks on websites such as Amazon Mechanical Turk??).

The cost, in this first paper, depends on three factors: the right arrival time

T, the empirical distribution arrival P and the desired number of workers w .

%% These are the names of the three experiments built by the authors
9 Web site of Amazon Mechanical Turk [https://www.mturk.com/mturk/]

35

The number of retainer workers r the requester needs, then, is defined as:

B w
P(arrive < 1)

Equation 1: number of retainer workers in the first paper

So, the total hour cost C,,, is » multiplied by the cost per minute (the

tot ?

so-called retainer wage) and the base cost for the task C, _, thatis:

base ?
Ctot =r (60 ’ Cbase + 60 ’ Cret.wage)
T

Equation 2: Total Cost in the first paper

After describing the general characteristics of the Retainer Model and
defining this first cost structure, the authors describe the rapid refinement
approach, showing an algorithm using an experiment called “Adrenaline”.
This algorithm is a process by which instead of taking a single photo, an entire

video is recorded. The video is divided in f parts called frames. In order to find

the best photo frame, the less interesting parts of a video are skimmed obtaining
frames of the video that are more interesting and intense. The final frame is

declared as the best and most interesting photo frame of the whole video.

The Retainer Model in this paper is not optimized, it is only presented and
described. This is the reason why, after one year, the same authors wrote the

paper: “Analytic Methods for Optimizing Realtime Crowdsourcing”.

This second paper analyzes, in a more formal manner - but again
descriptive - the Retainer Model looking mathematically for the optimal number of

workers to be employed in the virtual retainer pool.

36

This paper wants to show mathematically that is possible to recruit crowds
and obtain a response from them in few seconds (so, as I wrote before, in real

time!) as the previous paper established only by words.

The experiments and the studies of the previous paper did not optimize the
trade-off between costs and performance. Through the use of the Queueing Theory,
Bernstein, Brandt, Miller and Karger analyzed the relationship between the
Expected Waiting Time (the time that a requester has to wait when he commits a
task to the crowd) and the Total Cost that the requester must sustain (maintaining a

pool of n workers) in the Retainer Model for realtime crowdsourcing.

No-one had ever studied before the relationship that exists between the
pool size in the number of workers (and so the Total Cost) and the time of reply of

this pool of workers (and so if and how long a requester has to wait for an answer).

The paper analyzes, in the first part, “a simple algorithm that allows
requesters to minimize their cost”30. This “algorithm” seems not easy to use because
it carries out its assignment only graphically and so it does not give a precise

result, being also time consuming.

In the second part of the paper, the authors described some improvements
to the Retainer Model, to reduce the Expected Waiting Time - these are: the
Retainer Subscriptions, Combining Retainer Pools and the Precruitment. With these

improvements, the median response is of only 500 milliseconds (half a second).

The first part of the paper is the most interesting part for the purposes of
this thesis. The description and the application of the Queueing Theory in the
Retainer Model, in order to optimize the trade-off between the Expected Waiting

Time and the Total Cost of the retainer pool.

The Retainer Model pays workers (put together in a common virtual pool) a
small wage to respond on demand: the workers accept the task ahead and they are

paid to keep the computer on.

30 Page 1 of the paper "Analytic Methods for Optimizing Realtime Crowdsourcing” (Bernstein & al., 2012)

37

The mathematical model wants to predict how long a task must wait, or
rather, how many workers should be employed to minimize this waiting time

(while avoiding unnecessary costs).

How does this model work? Upon the arrival of a task a worker leaves the
pool, where it was plugged in, and works on the task. At this point, the system

looks for another crowdworker to replace the one who is now busy with the task.

The goal is to create a pool large enough to cope with the number of
incoming tasks. So, increasing the number of crowdworkers in the pool minimizes
the probability that the retainer pool becomes empty, avoiding the case where zero
workers are available on new incoming task (and so avoiding the case of a possible

non realtime answer).
How to evaluate the arrival of the tasks and the time to process them?

An answer may be provided by the Queueing Theory. The Queueing Theory
aims to develop models for the study of the waiting phenomena that may occur in
the presence of a request for a service - the so-called queues?!. It is common to
find results obtained by the Queueing Theory, for example, in flexible
manufacturing systems, processing systems, transport systems or communication

systems/data transmission.

Customers who arrive and cannot find a worker free on arrival are arranged
in an orderly manner - the queue. They are served according to certain service
disciplines. The queue is formed by the customers waiting to be served and it is
usually assumed that each customer leaves the queue immediately after his service
is completed. The number of workers is known and constant and it is set at the
project level. Usually they have identical characteristics, they can always work in

parallel and they can never remain inactive in the presence of customers in queue.

*! Web site of University of Trieste — Engineering Department [ftp://docenti.ing.units.it/arc_stud/
Pesenti/Nettuno/CodeDispense.pdf]

38

From a dynamic point of view, the queue is basically made of two stochastic

processes: the arrival process of the customers and the service process.

The arrival process, which describes the manner in which customers arrive,
in general, is a stochastic process. It is defined in terms of the distribution of the
intertemporal arrival rate, that is, the interval of time between the arrival of two
subsequent customers. To obtain models capable of being analyzed it is usually
assumed that the arrival process of the service is stationary, or that its statistical
properties do not vary over time.

The service process describes the manner in which each worker provides the
service, in particular, it defines the duration of this action and it is usually a
stochastic process. It is defined in terms of the distribution of the different

workers’ service times.

The service process is fuelled by the arrival process of the customers.
Consequently, the arrival process conditions the general service process. A client
can only be served if he has already arrived. Moreover, when it is not explicitly
stated to the contrary, the arrival process is considered independent of the service
process.

All the elements that define a queue are highlighted in the notation
A/B/c/K/m /Z called the Kendall’s notation3?, where the letters indicate
respectively:

* A: the distribution of the intertemporal times of arrival (if arrivals

occur according to a Poisson process, than we will find M);

* B: the distribution of times of service (if service times have an

exponential distribution, than we will find M);

* ¢:the number of workers;

* K: the maximum size of the system in number of clients (default:

infinite value);

* m:the size of the population (default: infinite value);

32 Web site of Andrew Ferrier, IT consultant
[http://www.andrewferrier.com/oldpages/queueing_theory/Andy/kendall.html]

39

* Z: the discipline of service (it specifies which will be the next client
served among those waiting at the moment as soon as a worker is

free; the default is the FIFO33 discipline).

For a queue system with m workers in parallel, the Load Coefficient p, is

defined as:

Elr,]

Pe =E|ta |m

Equation 3: Load Coefficient, O, with the two inter-arrival times

Where [ta] represents the inter-arrival time between the customers and [ts]

represents the service time - both random variables. Defining the average

= il

Equation 4: average frequency of arrivals, A

frequency of arrivals A as:

and the maximum frequency of the service u as:

1= el

Equation 5: maximum frequency of the service, u

we obtain p,:
A
w-m

Pe=

Equation 6: load coefficient, O , with A and u

** The service disciplines usually considered are: FIFO (first-in first-out), service in order of arrival; LIFO
(last-in first-out), service in the reverse order of arrival; SIRO service in random order; class-based
service of priority (like, for example, in the First Aid).

40

For systems in which the customers can never be refused, like in our case,
the stability condition is that the Load Coefficient must be positive and less than
one, that is:

0<p, <1

Equation 7: stability condition for O,

When intertemporal times are exponential, the number of events N (t) that

occur in a given time ¢ is a Poisson process:

P{N({)=n},=e?" @-1)

n!

Equation 8: probability mass function of the Poisson distribution

The Poisson process N(t) has the expected value E{N(t)}= A-t, where A

expresses the average number of events per unit of time, that is the average

frequency.

Birth-death processes are stochastic processes representing the number of
elements N(¢) of a population that may increase, due to a birth, or decrease, due to
a death, of a unit per time. Formally a birth-death process assumes that, in any
generic instant 7, there can only be a single event (birth or death), and also that,

given a population of size N(t)= n, the time interval until the next birth is an
exponential random variable with parameter A, while the time interval until the
next death is an exponential with parameter u, .

In this context, the parameters A, and u,, respectively, can be interpreted

as the average rate of birth and death of individuals in a population. The birth-
death process allows studying the Poisson’s queues. In all cases, the arrival of a
client can be considered as a birth and the completion of a service (thus the
abandonment of a client from the system) as a death.

In the Retainer Model the tasks arrive at the Poisson rate A and the

retainers workers arrive at the rate u, after they are called. This u is thought by

41

the authors as the time it takes a worker to process a task. The system then takes

u to re-fill a space left blank. In this model, the authors assume that A and u are

known by the requester and that they do not change over time (or, if they change,

this happens slowly).

Thus, the trade-off is between the probability that an incoming task should
rest (the Expected Waiting Time) and the Total Cost of having a pool of » workers.

So, to optimize this process and solve this trade-off minimizing the losses,
it is necessary to find the unlucky probability that all the crowdworkers are
working on the tasks and an incoming task should rest and wait (the so-called

Probability of an Empty Pool): this is what should not happen in our realtime case.

Knowing this probability, we have to describe the Total Cost of having a

pool of n workers, who cost even when they are on stand-by.

If on the one hand we want the probability of having an Empty Pool to be the
as low as possible (by increasing the number of workers), on the other hand we do
not want the number of workers in the pool to become too large because it could

cost too much. This trade-off will be studied in the next chapters.

42

Chapter 4:
The EWT versus Total Cost: the trade-off in the Retainer
Model

As anticipated above, in this chapter, [will describe the two components of
the Retainers Model’s trade-off expressed formally, but again descriptive, in the
paper “Analytic Methods for Optimizing Real time Crowdsourcing” (Bernstein & al.,
2012).

4.1: The Expected Waiting Time: description of the first part of
this trade-off

The probability of an Empty Pool (so the fact that a request is not satisfied in

real time) is given by the Erlang’s B formula.

In 1917, Agner Krarup Erlang3# found a formula to answer to this problem:
how to calculate the probability of a busy signal when a person in a village phoned
another person.

He studied the behaviour of the inhabitants of a hypothetical village who
used phones to call each other within the confinements of the village, as well as to
reach people outside of it. Erlang wanted to calculate how many twisted pairs
directed outside might be needed (for the inhabitants) to avoid congestion

problems as much as possible.

3 Agner Krarup Erlang was a pioneer in the studies of telephone traffic. He was born in 1878 in Denmark
and he worked for twenty years, until his death in 1929, in the Copenhagen Telephone Company.
In 1909 he published his first important work, "The theory of probabilities and telephone conversations"
earning prestigious awards worldwide and the use of its mathematical models at the British General
Post Office. Ten years after his death, in 1940, the Erlang became, in his memory, the unit of
measurement of telephone traffic more known in the world of telecommunications.

43

For first, he supposed that N was the number of telephone twisted pairs
directed towards the outside village. For second, that there was an average m of
calls done per minute according to the stochastic model of the Poisson process
(this was a supposition because he could not know when and for how long the
inhabitants had called the outside world).

His ambitious result was to establish the amount of callers who would find
the lines busy when trying to call outside the village: he found a formula that

answers to his question, which is:

x=0 X!

Equation 9: Erlang’s original formula of 1917

This equation, nowadays known as Erlang’s B function is the formula Erlang
wrote in 1917. In this formula B is representing the percentage of blocked calls,

N the number of telephone channels available and m the estimate volume of

traffic offered.

So it is possible to calculate]\7, the number of telephone channels to be

made available, knowing the volume of traffic in a particular period of time, m and

A

the percentage of blocked calls that we are willing to accept, B.

The sizing of the resources of telecommunications systems, for example the
number of lines or radio links, is made using the Erlang’s B function: the complex
mathematics of telephone networks today is still based on these studies. “Its
formula and subsequently his researches are a very important contribution to the

telephony and in particular the theories of telephone queuing” (Carbone)3>.

%> Web site of the paper [http://www.cirocarbone.it/Mylobs/TrafficTheory.pdf]

44

The authors, using the concepts of the Queueing Theory and the Erlang’s B

function, define the traffic intensity, p, as the percentage of system resources that

are used to respond to new tasks incoming:

Equation 10: definition of traffic intensity, o

They, as said above on page 40, define A as the arrival rate of the tasks and

u as the arrival rate of the crowdworkers after they are requested by the system

and we can think this u is the processing time for the tasks.

In M /M /c/c system p <n is a necessary condition for the system (as I
showed in Equation 7: stability condition for p_): this condition means, by

replacing using Equation 10, that the rate of recruitment is higher than the rate of

arrival of the task:
p<ne—<n=A<u-n

Equation 11: necessary condition in terms of O

Only with this hypothesis the system is able to grant an answer to the
incoming tasks. After the shock, given by the exit of a worker from the pool, the
system restores the number only in the case the formula is respected. If, instead,

p > nthen the system will fail to find new workers fast enough to fill the pool.

The probability of an Empty Pool, G(n), is given by the Erlang’s B formula,

rewriting the Equation 9 with p as the traffic intensity:

45

G(n)=%
>

Equation 12: Erlang’s B formula applied to the Retainer Model

The probability of an Empty Pool G(n) expresses the probability that the

virtual pool containing the crowdworkers waiting for the tasks will be empty (so
probability equal 1) or a percentage that can happen within certain values of »

and p.

1
If we multiply this probability G(n) per —, representing the waiting time
u

when the pool is empty, we obtain the Expected Waiting Time (EWT):

1 1 p%
EWT =—G(n)=— —21

u M"p/
S

Equation 13: Expected Waiting Time formula

The Expected Waiting Time (EWT) is the very first relation between our
variables: n (the number of crowdworkers), A (the arrival rate of the tasks), p

(the traffic intensity, ratio between A and u).

Below is the chart of the EWT calculated with u=2and p =0.5.

46

EWT

18%
16%
14%
12%
10% \
8% \ —o—EWT

0,
6% \
7 \\
2%

0% \\‘o——o‘o,o oO—0o—0

Figure 4: EWT with u=2and p =0.5

From the graph above we can see that the probability that a requester has

to face is the 17%, with this value of A and u, when in the virtual pool of the

system there is only a crowdworker. This probability falls down to 4% when there

are two crowdworkers in the pool. We can also see that the lim EWT = 0.

n—>+0

The EWT is one of the most important relations of the Retainer Model.
And its component given by the probability of an Empty Pool, G(n), is the first part

that has to be better analyzed.

4.2: The Total Cost function C
this trade-off

: description of the second part of

tot

The second part of the trade off of the Retainer Model is the cost of having a
pool with n crowdworkers in it and, for the authors, it is represented by two main

parts.

The first of these parts is the number of employed workers. As we know, we

have to pay all the workers in the pool who are waiting for an incoming task, even

47

those who not engaged in a specific moment. This number is »-n,,, (with n,,,

representing the number of workers active in that specific moment).

We can define E (z) as the expected number of busy workers, obtainable from the

formula of the probability G(n), as:

E()= pl1-G(n)]

Equation 14: Expected number of busy workers formula

So while the portion of workers who are not waiting does not represent a
leak, workers on hold (which still must be paid) represent a cost. The number of

this portion of inactive crowdworkers who are still waiting for a task is:

n—E(i)=> n—p[l—G(n)}

Equation 15: number of crowdworkers,
in the pool, waiting for a task

If the retainer salary is s (the salary to be paid because a crowdworker
previously agree to keep the screen open and waiting for a task, thus staying in this

pool), we have to pay, per unit of time:

s{n - p[l - G(n)]}

Equation 16: retainer salary per unit of time formula

The function of Total Cost is also composed by a second part. This second
part links the number of workers to a kind of penalty, given by the fact that some
tasks cannot be served in real time. This gives a monetary value to the incapacity of
the system to serve the requester/s in real time. Because we want to respond in
real time, the inability of the system to do so represents a cost, a penalty; this can
occur either because of an underestimation of the incoming number of tasks, or

because there are not enough inactive crowdworkers in the pool.

48

So we need to minimize this penalty, this inability, which the authors called

the Expected Task Cost (ETC), C,,: the cost for a missed task, which result is

task *

zero if the system is able to serve all the tasks in real time.

The Total Cost, C,,, putting together the two parts, is then:

Cor = Can G}t st = pl1-G@)];

Equation 17: Total Cost of the Retainer Model equation, C

tot

The problem is to find the optimal value of n (the number of workers that

have to be hired in the pool), n’, with these parameters:

1. p, the traffic intensity, calculated using A and u ;
2. G(n), the probability of an Empty Pool;

3. s,C,,, theretainer salary and the ETC.

According to the authors, there are two ways to find this optimum #":

an easy way and a difficult (but more truthful) way.

The easy one. The first approach (found by the authors) in order to find ",
is to start by establishing a maximum accepted probability that an incoming task
can wait p_. not being served in real time. In this case the cost of having »
crowdworkers is not minimized, but we are looking for compromise. We are fixing
a maximum accepted probability and we are calculating, with this, the number of

. *
optimal workers, n .

We want that the probability of an Empty Pool to be less than this maximum

accepted probability, G(n)< Poaxo thinking about p . as a bound.

The authors graphically find »" looking at the below Figure 5:

49

35%

30% \\
25%

=8—G(n) probability
of waiting with
ro=0,5
20% B
== 5% probability
level
15%
10%
5% B i L i i L L i i]
0% T k% ——0———& *—0
1 2 3 4 5 6 7 8 9 10

Figure 5: G(n) with p = 0.5 -vs.- p_=5%, finding n" =3

We can divide Figure 5 in two parts: the part before the intersection (called

A) and the part after the intersection (called B). We can see that if p . =5% then

n" =3,because G(1)and G(2) are bigger then p,_ = 5%.

Thus, calculating o having A and u, we can find #» for every given
probability p_. . But we are not minimizing the cost, we are arbitrarily fixing a

probability without caring whether this amount of probability is good or not.

We cannot know if the p__ we have fixed is minimizing the entire cost or not, we
do not know if p, . is giving us the best value in the number of workers for given
p and we are not thinking about the retainer salary s, or about the Expected Task

Cost (ETC) C,,, either.

50

So, to overcome this inefficiency, the second and more difficult way is to
think about the entire cost as in Equation 17 and to figure out how it is possible to

find »", from that equation.

The authors don’t say anything about the existence of a minimum, neither
they calculate this prophetic number of »" . They draw the graph of the curve of
Total Cost, with different value of A and u (so changing p), looking at the
minimum point in the graph, intersecting this minimum point in the ordinate axis

with the abscissa axis they find .

We can see this “algorithm” in the figure below:

40,0000000
35,0000000
\ 21,00
30,0000000 \
25,0000000
—@— Total Cost

20,0000000 withro=0.5

15,0000000

10,0000000
5,0000000
0,0000000 \ r r : | : : ;
1 2 3 4 s 6 7 8 9 10
Figure 6: C,, curve with p =0.5

51

In this figure we have plotted the shape of the curve of Total Cost, using

Equation 17, with these values of our variables: p=0.5,s =1, C,, =100.

task

With p = 0.5, the probability of an Empty Pool G(n) and C,,, becomes:

tot?
o]
;0.5%

Equation 18: G(n) with p =0.5

0.5" 0.5"
;0.54 ;0.54

Equation 19: C,, with p=0.5,s =1, C_, =100

tot task

Given Equation 19, it is easy to find a table that lists values of C,, for the

tot

different value of ». This is shown in the table below:

Table 1: values of C 1 With fixed values of our variables, finding n =4

Ctask 100

S 1
1Y 0.5

C

tot
p>n
34.0000000

9.2307692
3.7721519
3.6587678
4.5158743

gl S| W [\ | o S

52

6 5.5013228
7 6.5000945
8 7.5000059
9 8.5000003
10 9.5000000

In this table, representing the different value of C,, with p=0.5, for n

going from 1 to 10, we can read that the optimal number of crowdworkers in the

pool s four, n" = 4, because with n = 4 we have the minimum value of C,,.

The authors follow this process using different values of the variables p

and C,, and they show the graphs of these curves.

tas

An important observation follows. As you can see [used the same value of
p and s for the two ways that the authors used in their paper: the number of
workers that come out from the two computations are different: in the first we
found »" =3 and in the second we have n" =4. The reason is that the two ways
are too different and they solve the problem using two different perspectives.
The best one between the two is, of course, the second one because it minimizes

the function of Total Cost, without fixing any arbitrary value of G(x).

So, to conclude, the minimization process proposed by the authors consists

only of a graphic approach: they use a chart in order to find the minimum.

As 1 wrote above, nothing written by the authors confirms the existence of
this minimum (a minimum in a chart is not a mathematical proof) and nothing has
been done to find this point in a computational, more efficient and less time-
consuming way differing from this “chart process”. And these will be the topic of

this thesis in the next chapter.

53

Chapter 5:
Analytical analysis of the trade-off in the Retainer Model

and the optimized number of workers

The term “analysis” derives from the Old Greek term “avaAvw” (“analyo”)
that means “decompose, break into different parts”. And that is what [will try to do
in this chapter, as I said above, in order to analyze the different parts of the

Retainer Model on which the trade-off has been defined.
The parts that I will study are:

a. the probability of an Empty Pool G(n);
b.the function of Total Cost C,,.

In this analysis I will use the derivatives of the two components of the trade
off I am studying. As we know, the necessary and sufficient conditions, that permits
to a function to be differentiable in a specific point, are that the two limits, left and

right, of the first derivative for x tending to x, are finite and that these two limits
coincide with the evaluation of the first derivative at the point x,. Necessary, but
not sufficient, condition for differentiability in a specific point x, is that the

function is continuous at the point x,.

In this thesis I will apply the derivatives for functions that admit only
positive and integer number, using the derivatives to discover the minimum
(integer) number of workers in the retainer pool that minimize the Total Cost
function. The use of the derivatives will not be used to find this number, but only

for the analysis and demonstration of the existence of this minimum.

54

5.1: The probability of an Empty Pool G()

In order to study analytically the probability of an Empty Pool, G(n),

we recall the definition of G(n), which is given by the Equation 12 (the Erlang’s B

A
formula) inserting the definition of the traffic intensity in it (that is: p =—).
u

So, G(n) becomes:

L) /|G

Gln)= 7! 2 il

A
Equation 20: G(n) with p = —
7

We know that p <n is a necessary condition for the system, because

otherwise the system is not able to refill the pool with new crowdworkers

(as I wrote in Equation 11).

The domain and the limits of G(n)

In order to study this function, the domain of G(n) is the first aspect to

analyze. A fraction like G(n) exists if and only if the denominator is different from

zero. In G(n) the denominator of Equation 12, that is 2’0—‘, is not only different
l!

i=

from zero, but always greater than zero.

This because n is always greater than zero - because this number

represents the crowdworkers in the virtual pool - and p >0 - because A and u

are always greater than zero.

55

Second aspects to analyze are the limits of G(n) as n goes to zero or to

infinity.

The limit of the probability of an Empty Pool G(n) is one for the number of

workers that decrease until zero:

PV
hmG(n) lim—Z1
n—0 n—0 pl 4

i!

Equation 21: limit of G(n) as n goes to zero

0
1
This because the numerator becomes %=I and the limit of the

denominator of G(n) as n goes to zero goes to 1, being equal to the numerator.

So, we have, as we suspected, the 100% probability of missing a request

when there are not any crowdworkers.

The limit of the probability of an Empty Pool, G(n), for the number of

workers that goes to infinity is zero:

lim G(n = lim ——— /
n—>+o0 n—>+o0 2p/

Equation 22: limit of G(n) as n goes to infinity

The proof of this is that the limit of the numerator of G(n) as n goes to

infinity is: lim p% =0 and the limit of the denominator of G(n) as n goes to
n!

n—+0©

56

n—+w

infinity is: lim 2 p% = e”. So the ratio between 0 and e’ is not an indeterminate
form, but the result is still zero.

Having a pool with a large number of crowdworkers reduces the probability

of an Empty Pool to zero if the number of crowdworkers goes to infinity.

This is why we want to find the optimal value of n: because this value is
closely linked to the values of the probability of missing a request (as they are

directly proportional) and we want to minimize it, driving down the cost.

The first order derivative of G(n) with respect to »

In order to evaluate the first order condition to optimize G(n), the paper

“Computing Erlang-b function derivatives in the number of servers” (Jorge Sa
Esteves, 1995)36 by Sa Esteves, Craveirinha and Cardoso uses a different way to

write the Erlang’s B function.

Referring to the same notation of this paper, G(n) can be written as:

Gln)= 7 1

i

n

p/ O -7z (1 d
Z i P {e (+Z)12

Equation 23: G(n) with the notation of Sa Esteves, 1995.

In this notation the formula is written using the integral operator instead

the summation operator.

This notation allows us to describe the first order derivative of the

probability of an Empty Pool, with respect to »n, which is:

%% Web site of the paper [http://www.tandfonline.com/doi/abs/10.1080/15326349508807347?journal
Code=Istm19#.UhN1Dj9A0_g]

57

[+ 2) Infl+ =)

G, ()=

p[fpz -(1+Z)vdzr

Equation 24: first order derivative of G(n) with respect to n

The first order derivative of G(n) with respect to the number of workers

hired in the virtual pool is negative because it is the ratio of two positive quantities
with the minus operator in front. So, G(n) is a strictly decreasing function of »,

from1to 0, forall p.

The second order derivative of G(n) with respect to »

The second order derivative of the probability of an Empty Pool with
respect to n is computed in the paper “On a bicriterion server allocation problem

in a multidimensional Erlang loss system” (Jorge Sa Esteves, 2013)37.

Referring to the same notation in it - which still uses the integral operator

as in Equation 23 - I can rewrite the second order derivative of G(n) with respect

to n, G (n), like:

G, (1)=-[2:Gla} G'n) p+ e -1+ =) “Infl+ =Yz +

~G)p- e -+ =) inl+ =)

Equation 25: second order derivative of G(n) with respect to »

7 Web site of the paper [http://www.sciencedirect.com/science/article/pii/S0377042713001209]

58

Jagers and Van Doorn in their paper “On the continued Erlang loss function”

(A.A Jagers, 1986)38 described the convexity of the Erlang’s B formula (with

respectto n) for n and p ER* xN;.

For the purpose of this thesis, because the values of »n are positive integers,
[can use the paper of Messerli, “Proof of a Convexity Property of the Erlang B
function”3 (Messerli, 1972). In this work the author proved that the second

derivative of G(n) with respect to n, integer, is always positive. So, I can conclude

that:

G' (n)>0 VY p>0

Equation 26: G (n)> 0 forall » and p positive

nn

The fact that the second derivative of the function with respect to » is
positive is important because we can now study the behaviour of the function0.
The “second derivative test” proves if a critical point (points where the first
derivative is equal to zero) is a maximum or a minimum. This test states:
“suppose that ¢ is a critical point at which f'(¢)=0, that f'(c) exists in a
neighbourhood of ¢, and that f"(c) exists. Then f has a relative maximum value

at ¢ if f"'(¢) < 0and a relative minimum value at ¢ if f"'(¢)>0."4

We are in the presence of a minimum point because the sign of the second
order derivative is positive and this minimum point is where the first order

derivative is equal to zero.

Because the curve is strictly decreasing, the minimum point is at the

boundary.

% Web site of the paper [http://www.sciencedirect.com/science/article/pii/0167637786900994]

*° Web site of the paper [http://onlinelibrary.wiley.com/doi/10.1002/j.1538-7305.1972.tb01956.x
/abstract]

0 Economics from the Toronto University, Math Tutorial [http://www.economics.utoronto.ca/osborne/
MathTutorial/LONF.HTM]

* Web site of the Mathematics Harvey Mudd College, paper: “Calculus: Second Derivative”
[http://www.math.hmc.edu/ calculus/tutorials/secondderiv/]

59

The graphic representation of G(n)

We can draw the curves of G(n), for different values of p.

Figure below shows the chart of these curves:

25%

20% —e—G(n) with

rho=0,1

= G(n) with
15% rho=0,5
G (n) with
rho=1
10%
—@—G(n) with
rho=2

G(n) with
rho=3

5%

0%

P BB BB S SR S S S S S S a3 sz sz sz sz o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 7: graphs of the values of G(n) for different values of o

In the figure above we can see in the x-axis the number of workers in the
retainer pool (#») and in the y-axis the probability of an empty pool, G(n)
This probability we can see decreases as n increases. The limit as » goes to

infinity is zero and as p increases the curve is shifted to the right.

5.2: The function of Total Cost C,,

In order to study analytically a function like the function of the Total Cost,

C,, I will analyze the following steps:

a) the domain of the function C,, and the limits of it;

tot

60

b) the first order derivative for the calculation of the maximum or the

minimum of the function;

c) the second order derivative for the study of the concavity of the

function;

d) the graphic representation of the function.

I can rewrite the formula of Total Cost C,,, as Equation 17 states, extracting

G(n) from the parenthesis and it becomes:

C,y = ConGlo)t st -l = G b= G0 (Co +5-p) 5+ (-)

Equation 27: C,, formula showing the behaviour of G(n)

The thesis wants to determine not only the reasons of the existence of a
minimum point, but also to identify a possible way to find this optimum number of

workers in the pool, n".

As we can easily see in the formula of the Total Cost above, »n is present in two
parts: it is part of the function G(n) (the probability of having an Empty Pool) and it

is inside the parenthesis of the second addend.

The domain and the limits of the function of Total Cost, C

tot

As we are referring to costs, penalties and number of physical workers, our
domain has to be in the positive part of the x-axis and y-axis.

As 1 demonstrated on page 56, O<G(n)<1, then C_, >0, s>0 and O<p<n.

tas

For all these reasons and because » >0, then C, . > 0.

fot

Which are the limits of C,, as n goes to zero or to infinity?

61

The limit of C,, as n goes to zero is:

tot

i C,, = lim(Gr) (o +5-p)+s- (-)=
i Gr) (Co +5-)+ liys- (1)=

=(Crask +S'p)—S'p=
e

task

Equation 28: limit of C, , as n goes to zero

fot
As I showed before (on page 56), the limit of the probability of an Empty
Pool for the number of workers that decrease until zero is: ling G(n)=1, then the

limit of Total Cost as n goes to zero is a positive value whichis C,, .

The limit of C,, as n goes to infinity is:

lim C,,

n—+w

lim (G(1)- (Co +570)+ 5+ (2= p))=
lim G(n)'(ctask +S'p)+ lim S'(}’Z—p): 0400 =

= 400

Equation 29: limit of C,, as n goes to infinity

I showed before (on page 56), the limit of the probability of an Empty Pool

for the number of workers that goes to infinity is: lim G()= 0, then the limit of

n—+0

Total Cost as n goes to infinity is plus infinity.

We can also see that when n increases then the first part (the one
representing the inability to serve in real time, with the probability given by the

Erlang’s B function) goes to zero. This means that, as we computed before, the

62

more the crowdworkers are the less problems I have in serving in real time,
because I always have a lot of workers ready in the retainer pool. But this
represents a cost for the requester, and this is easily shown by the second part of
the limit: as » goes to infinity the second part (representing the cost given by the

salary) increases.

This is the dichotomy of the formula of the Total Cost, and shows the reason

of the importance of this optimization.

The first order derivative of the function of Total Cost, C,, with respect to »

tot

When we want to find a minimum or a maximum of a function we have to
set the first order derivative equal zero. In these points the slope of the curve

representing the function is zero and they are called stationary points*2.

We will use the formula of the first derivative of G(r), that I wrote in the

previous section in Equation 24.

Thus, the first order derivative of C,, is:

L ON 5o (-9} G0} Cos sl
on on

Equation 30: first order derivative of C,_, with respect to », general formula

tot

Then, using the notation with the integrals showed in Equation 24, it

becomes:

*2 Definition given by Wolfram Math World [http://mathworld.wolfram.com/StationaryPoint.html]

63

tfe'pz (M+z) In(+z)M

C, =G'(n).(ctask+s.p)+s=<_ . >.((jtask-i_s'p)-‘_s

ntot o 2
p'[fe_pz '(1+Z)1dZ]
0

Equation 31: first order derivative of C,, with respect to 7, integral formula of G(n)

tot

In order to characterize an interior minimum point, the First Order

Condition requires that f'(x)= 0 and the Second order Condition requires that

!
ntot

7"(x)>0.So in order to respect the FOC, we set C! =0 that s:

N

Cla =02 G} Co 575 =02 Gll0)= (s
task

ntot

fe'pz-(l+zy-ln(l+z)dz
. _%

> ? =_(Crask+s.p)
gt

=

fe"“z (+z)dz

0

fe_pz-(l+z)"1n(l+zyz
() _ S P
|:+°° :|2 (Cmsk +S.p)

fe"’z (1+z)dz

0

:Cl =0

tot * ntot

Equation 32: First Order Condition of C

These are the computations to find the stationary point of the Total Cost

function C, ,, mandatory for the optimal number of crowdworkers that minimize

tot?
the function of Total Cost. In order to say that this stationary point is a minimum, I

have to assess that the second order derivative is positive.

64

The second order derivative of the function of Total Cost, C,, withrespectto »

In order to prove that this stationary point is a minimum, I have to

demonstrate that the second order derivative of C,, with respect to » is positive,

tot

because in this case the concavity is upward43.

The second order derivative of C,, is:

C" _ a(G (n)'(CtaSk +S.p)+s)= Grl;n(n)(task +S.p)

nntot on

Equation 33: second order derivative of C, = with respect to 7, general formula

tot

With some manipulations, using the computations of the second order
derivative of G(z) made in Equation 25: second order derivative of G(n) with

respect to n, it becomes:

- 2-G(n)-G;(n)-p~fe‘pz (M+z) In(+z)z|+
Cr,llnmt =3 ’ ’ (Ctask +5 p)

~-G(ny -p-jje’pz (+z) '[ln(l +z):fdz

Equation 34: second order derivative of C,, with respect to 7, integral formula of G(n)

tot

As I wrote before, (C,ask +s-p) is always positive because a summation of

two positive quantities. Also G/, (n) is always positive (see Equation 26: G (n)> 0

nn

forall n and p positive).

n
nntot

We can formally conclude that C,, >0, always!

So I can now state that: C,, is a strictly convex function, so it has a

tot

minimum which is when C! = 0. This happens when:

ntot

* This is part of the “Concavity theorem” in “Microeconomic Analysis” (Varian, 1992)

65

fe_pz Q+z) InQ+z)=
0 s p

? =(Ctask+s.p)

[fe-f’z 1+ Z)Wdz}

Equation 35: C'_ =0 equation for the finding of n'

!
ntot

The graphic representation of the Total Cost function C,,

The graphic representation of C,,, with different values of p is easy to do

tot ?

calculating in a table the different values of C,, for a fixed p, with » going from 0

tot

to a limit number.

Equation 19: C,, with p =0.5 and Table 1: values of C,, with fixed values of

tot tot

our variables are the show of this process, that can be repeated for all the values of

p . I chose three values of p: p=0.5, p=1 and p =2.5.1 chose these values in
order to have a demonstrative value of p: the first less than 1, one equal to 1 and

one greater than 1. The chart is:

Avd
70
60 \\

50,50
0 | & \47,85
40 «=fll=C(total) w. rho=0,5

2942 == C(total) w. rho=1

30 1 A =i C(total) w. rho=2,5
20 16,87

4,31 505 (552
1 2 3 4 5 6 7 8 9 10 11 12

T T 1

10 | \ 9,65 6,39 -—MOO
4,55 6,01 5 7,00 5 8,00 % 9,00 g5y 950
L 5,82 659 7,52 %
I T

Figure 8: graph of different C, , with different values of p

tot?

66

We can see that all the three lines descend in a first region of the graph but
after a minimum point they increase (the minimum points are in bold).

This fits perfectly with the previous statements!

For p =0.5 the stationary point is n =4 (this is perfectly equal to the
demonstrative case of the authors as in Table 1); for p =1 the stationary point is

n" =5;for p =2.5 the stationary pointis n = 7.

The question is: how to find the optimum number of workers, n", such that

C! ~=0,in an easier, faster and more accurate way that differs from doing a chart

ntot

every time?

There could be several methods for solving Equation 35: Newton’s
method*4, Fibonacci’'s Method*> or could be fascinating to build an efficient

automatic algorithm.

5.3: The automatic algorithm

As we are talking about an efficient use of people, machines, computers,
it could be a good point to have an algorithm able to show in few milliseconds the
right answer in the number of workers. Of course this number, n, depends on

some parameters that, in this model, are exogenous.

* Newton’s method from the Massachusetts Institute of Technology [http://www2.myoops.org/course_
material/mit/NR/rdonlyres/Sloan-School-of-Management/15-084JSpring2004/CCAD5994-3D8E-49C9-
83BE-EE4B0A6721C8/0/lec3_newton_mthd.pdf]

** Fibonacci Search from the National Institute of Standards and Technology [http://xlinux.nist.gov/
dads/HTML/fibonaccianSearch.html]

67

A list of algorithms built in order to optimize some problems is presented in
the book of Professor Kelley, “Iterative methods for optimization” (Kelley, 1987)46

in which he describes different algorithms for different functions.

Some of those have the same characteristics of the Total Cost function:
the function is twice continuously differentiable and the minimum point is where

the first order derivative is equal zero and the second derivative positive.

The algorithms described by Professor Kelley are written in MATLAB code*”
that is a “high-level language and interactive environment for numerical
computation, visualization, and programming. Using MATLAB, you can analyze

data, develop algorithms, and create models and applications.”48.

In order to obtain the optimal number of workers, »n°, the algorithm,
written in MATLAB code, has to find the minimum value of Equation 17: Total Cost

of the Retainer Model equation, C,,, for given values of p, C,, and s. We also

know that this minimum exists, because I proved it before in 5.2: The function

of Total C, -

Cost

The way to find a cyclical process in order to build the algorithm

The algorithm has to calculate, using a cyclical approach, the amount of C,,

that the requester has to suffer when hiring one person, then it has to calculate the

amount of C,, suffered when hiring two people, then it has to calculate the

tot
amount of C,, when three people are hired and so on until an established limit of

workers.

* Web site of the book provides by Computational and Applied Mathematics of the Rice University,
Houston, Texas [http://www.caam.rice.edu/~zhang/caam554/KelleyBooks/fr18_book.pdf]

* Web site with all the MATLAB code presented by Kelley in its book
[http://www.siam.org/books/kelley/fr18/matlabcode.php]

*8 Web site of MathWorks, the developer of MATLAB
[http://www.mathworks.it/it/help/matlab/learn_matlab/product-description.html]

68

The program has to stop when the amount of C,, that the requester has to

tot
suffer hiring n people is bigger than the one the requester has to suffer hiring n -1
people. So n -1 is the optimum number of workers, the value that minimize the

Total Cost function.

Once the requester has put the values of p, C,,, the algorithm has to start
the process: calculating the value of G(n) starting from 1 to # and put this value

inside the formula of C,, every time to see whether the previous result (with # -1

tot

people) was slower or not.

In order to write this algorithm to calculate the optimal value of workers to

be paid in the pool, it is necessary to link the sequential values of G(n)

How can we link two consecutive values of G(n)? [s it possible to write

G(n) using G(n - 1)? The answer and its proof follow.

First I define I(n) the inverse of G(n):

1
n

I(n)=m

Equation 36: / (n), the inverse of G(n)

We know that G(n) is the probability of having an Empty Pool and its

formula is the Erlang’s B formula (see Equation 12: Erlang’s B formula applied to
the Retainer Model). I can write these equations (Equation 12: Erlang’s B formula

applied to the Retainer Model and Equation 36: 1(n) the inverse of G(n)) rewriting

7

the numerator and the denominator in a different way obtaining:

69

Equation 37: [(n) formal manner definition

In order to be able to write a cyclical process for the algorithm, the point is

to find a formula that combines G(z) and G(n -1).

Using the same formula that describes G(r), I can write the formula for

G(n - 1) and the inverse of this equation, I(n - 1), that are:

» EIRIANCY
G-1)=—F = 1(-1) ! 2 4

(n— 1)!.2 p% B G(n-1) - o

Equation 38: G2 — 1) and /(1 - 1) formal definition

I now have the two values that I want to join, / (n) and / (n - 1) (it is exactly

the same of linking G(n) and G(n -1)).

I(n) can be written as:

n i n-l n
nk p/ n!-(p% + /O|)
1(n)= 2 ~- 2 —

o o

Equation 39: first passage finding the linking formula between G(n) and G(n - 1)

70

I used one of the so called “general manipulations*®” of the summation
operator and I separated the last term of the summation from the other n-1

previous values in order to obtain:

AR AN
; i! ; il

Equation 40: summation operator property used in the proof

Having divided the summation operator we can proceed in finding a link

between I(n) and I(n - 1). We can multiply »! for the two addends and we can

divide the formula into two parts, knowing that » >0 and p” >0, and we obtain:

n=1 n n—- i n n— i
Pt P p . m!-p— n! p .
. i! n! 2 i! 7! 2 il
I(n)=—= =t — = +1
P Y Y

’ P

Equation 41: second passage finding the linking formula between G(n) and G(n - 1)

I can now simplify the first addend, using the property of the “Consecutive

neighbour’s identities”>® of the factorial which says that n!=n-(n—1)! and the

“Product of powers property”>! which states that x” x x* = x""" for all x and m, u

integers (like our case), to obtain:

n-1 nzl
n'Zp% n-(n—l)l-zp%
= +1= = +1

](n)= n n-1
P PP

Equation 42: third passage finding the linking formula between G(n) and G(n - 1)

* The term used in Wikipedia [http://en.wikipedia.org/wiki/Summation#General_manipulations].
r r—1
| used 2 f(n)= E f(n+1) manipulation.
n=s n=s-1
>0 Property of the Consecutive neighbors
[http://functions.wolfram.com/GammaBetaErf/Factorial/17/01/01/]
>! product of poker property [http://hotmath.com/hotmath_help/topics/properties-of-exponents.html]

71

As I showed in Equation 38: G(n - 1) and](n - l)formal definition:

1o =1)-— (n_l)!% e

=G(n—1)= o

Equation 43 = Equation 38: G(— 1) and /(n - 1) formal definition

As it easy to see, we can find this ratio in the equation above of I(n)
(Equation 42) and I am able to show how is possible to join I(n) and I(n - 1), that

is:

n-1
n-(n—l)!‘gp/
](n)= i’=_1 r +1=Ln_1)+1
p-p

0

Equation 44: proof of the linking formula between I(n) and I(n - l)

Equation 44 is the equation with which we can join I(n) and I(n - 1) and so,

starting from this, I can also prove how to join G(z) and G(n -1).

Having defined I(n) as the inverse of G(n), I can rewrite the Equation 44,
using G(n) instead of I(z), which is the formula that links the sequence of G(r)
and it is:

__p_ _Gl-1)p
G(n)— +p_n+G(n—1)-p

G(n—l)

Equation 45: proof of the linking formula between G(n) and G(n - 1)

72

In order to see if these computations are correct, I made some tables

(presented in the Appendix of the thesis) that show the values of G(n) using the
Erlang’s B formula (Equation 12) and the values of G(n) using Equation 44 and

Equation 45.

As we can see, the values of G(n) calculated with the two different
approaches are equal. So I can proceed with the algorithm using I(n) as recursive
factor:

_n-[(n—1)+ < Gln)= G(n—l)-p
I(n)— o ! G() n+G(n—l)'p

Equation 46: / (n) and G(n) as recursive factors for the algorithm

The explanation of the algorithm

The structure of the MATLAB code of the algorithm>2 is reported in the
appendix. What it is important is to understand what the algorithm produces and

how. We ask the algorithm to produce the result of the minimum Total Cost

function C,,, with its relative optimized number of workers #".

tot ?

The idea is that the user inserts the value of p, C,,, s (fixing them in the

algorithm) in the first line and leaves the algorithm to calculate the starting value

of I(1). This value, depending on the value of p, is equal to:

1(1)=”—(0)+1=%+1

Equation 47: [(n) formula with »n =1

> | want to thank professor Jorge Sa Esteves for his priceless help in the building of the algorithm.
He wrote me that 20 years ago Dr. Jagerman helped him sending some material and | am grateful of his
contribution.

73

The algorithm, having calculated / (1), can easily determine the value of
G(l) (its reciprocal) and, starting from this value obtained with p, the algorithm

can establish, using C,, and s , the value for the Total Cost formula, C,, (which is

Equation 17). This is the first value with which the algorithm starts its comparison

between the following amount of Total Cost.

In fact, the algorithm has to start a recursive and cyclical process.

Starting from » equal 2, it has to compute the value for C,, and compare it whit

the previous value of C,,. When it finds that this value for » = 7 is bigger than the

tot *
value obtained with 7 -1, it has to stop the process because it has found the

minimum C,, and so, it can show that »" is equal to 7 1.

In the appendix under the structure of the algorithm we can find how the

MATLAB code of this cyclical process of the algorithm works.

The last line of the algorithm shows the two values of my search: the value

of n" and the value of C,, minimum calculated using »" in the Equation 17, that is:

Cotray = CmskG(n*)+ S{7* - pli - G(n*)]}

Equation 48: last line of the algorithm showing C,,

using n" calculated automatically

Examples of the results done by the algorithm

I considered three applications setting the values of the variables p, C,;, s

tas,
and comparing the results given by the algorithm with the result obtained with the
author’s method.

Example 1. As first example, I set p=0.5, C,, =100 and s =1 and, as we

can see in Figure 10 in the appendix, the algorithm finds »" = 4, and this value is

74

equal to the value of n° we can check in Table 4: values of C,, with s =1

C,, =100 and 0.1= P =1. This value is also equal to the one found in Figure 6:

Cor cyrye With P =03 and Table 1: values of C,, with fixed values of our variables,

using the same method of the authors. If we see in Figure 8: graph of different C

tot
J

with different values of p we can check that this value is correct.

Example 2. As second example, I set p =1.0, C,, =100 and s =1 and, as we

can see in Figure 11 in the appendix, the algorithm finds that »" =5 and that is
equal to the n°~ we can check in Table 4. Also this value is equal to the minimum

point I found in Figure 8: graph of different C

tot
7’

with different values of p

Example 3. As third and last example, setting p =2.5, C,, =100 and s =1

task
we can see in Figure 12 that the algorithm runs perfectly because it finds that
n" =7 and this value is equal to the n° we can check in Table 6. This value is, also,

equal to the minimum point I found in Figure 8: graph of different C,, with

different values of p.

We can conclude that the algorithm is a useful tool in order to obtain this
optimal number of workers without losing a lot of time in drafting a chart every

time we need to calculate the minimum point.

After having described the process to obtain the minimum of the Total Cost

function I want to focus on the behaviour of p.

75

5.4: Behaviour of p in »": the mixed derivative in the Stationary

Point

In the appendix I attached the tables for the different values of p, given

C_, =100 and s=1. I computed those tables using the approach used, for

task
example, in Equation 19 and used by the authors to draw the charts in order to

find the minimum.

[built the tables in this way: in the first column the different values of »

(from O up to 23) and for each n, fixing the value of C,, =100 and s =1;

I calculated the value of C,,, substituting the value of p with a numerical value

tot?
from 0.1 to 10 (with an increment of 0.1) in order to build 100 different columns

for 100 different values of C,,, using the formula:

tot ?

ﬁV
n,!

,
Ctot = kaG(l’ll.)+S§’li —p[l—G(nl)]}=100 n . +1 n, _/3 1_—nl'

> 3

Equation 49: formula for the computation of the tables in appendix

We can see, as the traffic intensity p, increases the minimum number of

. * .
workers that the system requires, » , increases too.

How to prove the behaviour of #»° when p changes? I know that, for the
First order Condition, when C, =0 Ican find » .Ialso know that »~ depends on

and s. IfI define C'

p,C .o, = 1 can compute the derivative of F* with respect

task
to p.The answer will be the behaviour of n™ as p increases, and we saw, from the
tables in the appendix, that the values of »° have to increase.

This means that I have to find that F f: >0

76

In order to demonstrate that Ff; > 0, [have to show that:

Equation 50: first order derivative of /' = C, withrespectto p

In order to compute the first derivative of F (=C

ntot

) with respect to p,
[use the “Implicit function theorem”. This theorem affirms that “we can figure out

dy

—— quite easily [...] this derivative is:
2%

G(y
Ay __ /x nss

dx g
ay

Equation 51: Implicit Function Theorem

So, applying this theorem, we can compute the first derivative of ¥ (=C,,)

with respect to p following Equation 50, obtaining:

oF
, on’ op
F =" -_"F
"oop OF

on

Equation 52: application of the Implicit Function Theorem

for the first order derivative of C| = F with respectto p

ntot

>> Web site of theFall University of North Carolina at Chapel Hill, Math for Economic theory 2001,
[http://www.unc.edu/~swlt/fall2.pdf]

77

In order to obtain the result that I expected (Ff; > 0) I need to say that the
numerator and the denominator have opposite signs so the total ratio is negative

and with the negative sign in front of it, it becomes positive.

The numerator of the ratio, knowing that C' =G'(n)-(C,, +s-p)+s, is:

ntot

aCV’Itot _ a(G’(n) (Ctask +s5 p)+ S)
ap - op

Equation 53: general form of the numerator of Equation 52

In order to find the sign of the numerator I can divide it in two parts and

analyze the relative signs:

(G () (Cup +5-p)+s)_0(G0) (Cuy +5-p)) 35 _

ap ap ap
_0G' () Cu), 8G)5 p)
ap ap

=C,. G (n)+ G;’p(n)-s-p+G;(n)-s =

task 0

=G (1) (Cp +5p)+ G (n) 5

Equation 54: final equation of the numerator of Equation 52

The sign of the second addend - G, (n)'S - is negative, it was checked before

in the analysis of G(n) on page 58, as Equation 24 affirms.

The first addend, G” (1) (C,, +s-p), has to be studied: 1 know that the

0

parenthesis (C k+s-p) is positive because it is a summation of positive

tas

quantities.

[have to study the sign of G;;) (n) and say if it is positive or negative.

78

The paper “Second order Conditions on the Overflow Traffic from the Erlang-
B System” (J. S. Esteves, 2009)°* answers to this problem.
In this paper it is proved that:

h 2 “
with A(a,x)= a-B(a,x)v B(a,x) = ——=—

2

Equation 55: Theorem found in the paper “Second order Conditions
on the Overflow Traffic from the Erlang-B System”

So, using this theorem, I can say that G, (n) is negative.

The numerator of the Equation 52 is negative. This because it is the

summation of two negative quantities: G, (n) (C,ask +s-p)and G (n)s:

[G;L (n) (Coye +5-0)+ G, (n)S]< 0= %) % <0

Equation 56: proof of the negativity of the numerator of Equation 52

I have to analyze the denominator of the Equation 52. It is the well studied

with respect to n (Equation 26: G' (n)> 0 for all n

nn

second order derivative of C,,

and p positive) and, as I said above, it is positive.

So, having calculated the sign of the numerator and the sign of the
denominator, I can find the sign of the entire Equation 52. As we wanted, the sign

is positive.

>* Web site for the paper [http://link.springer.com/article/10.1007%2Fs10958-009-9605-x]

79

The mathematical proof of the fact that p increases as »n" increases is this:

!

as states above the denominator is positive (% > O) and the numerator is
n

!
ntot

negative (
op

<O), but having the minus in front it becomes positive.
So, the entire ratio is positive!

oF _oF G,

ntot

F,=an =_ap= ap= a’p >0
" Cp OF 0F T iC,
on on on

Equation 57: proof of the positivity of the first

order derivative of C| = F withrespectto p

ntot

We can formally conclude that as the traffic intensity p increases the

minimum number of workers that the system requires, n", increases too.

80

Chapter 6:

Conclusions

In this last chapter, | want to summarize the main results and the most

important passages of this thesis.

In the first chapter, we saw what crowdsourcing is and how important it is
becoming. This is because, nowadays, the world is becoming more linked,

interrelated and without temporal or spatial limits and boundaries.

As we can see, in everyday life, relations are becoming more woven and
faster. I think that this speed is a gain and we should not be afraid of a possible loss
of the real relationships. This is because relations cannot be true or real if the mere

speed scratches them.

Crowdsourcing is important because it increases collaboration among

networks, establishing new limits breaking the common boundaries.

Outsourcing to unknown workers some parts of a project or same tasks has
been a brilliant idea, from which idea the future of interrelation could be built.
Crowdsourcing, combining crowds of crowdworkers, guarantees the resolution of
tasks obtained from a lot of different perspectives. Adding small portions
combined in a unique work is the core part of this theme and represents the

beauty and the peculiarity of crowdsourcing.

Crowdsourcing represents the new frontier in the relationship between the
protagonists of the supply chain because inventions will be generated, more and

more, from the bottom.

81

Pierre Lévy said: “No one knows everything, everyone knows something, all
knowledge resides in humanity” and, in my opinion, it is possible to exploit this
collective intelligence by linking and valorizing these new frontiers as

crowdsourcing is.

An application that will always be very important in the next future is the
realtime crowdsourcing. In this fast environment where we live avoiding time
consuming processes has become the most frequent hobby for everyone:
reasoning in these terms, it possible to apply the logic of the real time in the use of
crowdsourcing. What we want is a kind of crowdsourcing that gives us a response

in a few seconds.

As I wrote in chapter two, this application is not well studied because it is
recent and only prototyped. Papers and experiments show the advantages of this
theme. As described above, with the application of the realtime crowdsourcing we
can, for example, overcome disabilities or build new fast virtual pools for multi

decisions agencies.

Given the importance of this, I decided to study in depth and analyze a
mathematical model called the Retainer Model. This model is the first (and the only
one as far as I am aware off) that tries to develop a series of equations to explain
crowdsourcing in real time. The model explains how to obtain answers for
incoming tasks from unknown crowdworkers in real time. It grants this building a
virtual pool of workers who are always ready to answer a task and who are paid to
maintain their browser window open while lying in wait. This method is very
different from the one utilised in actual crowdsourcing websites where priority of
tasks is granted trough payment (paying the website to maintain the task in the

first position of the list of all the tasks).

In the Retainer Model when a task that has to be solved arrives, a

crowdworker exits from the retainer pool and an another worker is searched and

82

hired. The arrival of the tasks and also the crowdworkers refilling process can be

considered a Poisson process.

So, using the Queueing Theory, the Retainer Model explains how is possible
to calculate the probability of being able to answer to a task in real time with a
certain amount of crowdworkers. The model, through the Erlang’s B function,
determines this probability by using the number of workers (and its re-filling time
rate) and the incoming rate of the tasks. Logically, having an high number of

crowdworkers reduces this probability to zero.

But, because the crowdworkers in the virtual pool cost even when inactive
we have to minimize the number of idle workers. The Retainer Model builds the
Total Cost function which consists in the cost of having hired » workers and the

cost of missing a request in real time, which is thought as a penalty.

[did a deep and detailed analysis of the two parts of this trade-off:
the probability of an Empty Pool, that main part of the Expected Waiting Time
formula - which gives the expected time that a requester has to wait with a certain

amount of crowdworkers - and the Total Cost formula of the model.

[found the reasons of the minimization and of the existence of a minimum
point. These answers give us the certainty to say why and how is possible to
minimize the Total Cost function. Because the Second Order derivative of the
function of Total Cost is positive, this allows us to say that the minimum point
exists and that is possible to find it by putting the First Order derivative of the

function of Total Cost equal zero.

This value is extremely hard (I'm out of my depth here) to find analytically,
so while the authors of the model used a graphic approach, I used a new algorithm
to find it. The graphic approach is not precise and it is very time consuming so,
with a recursive approach, this minimum point that could be used to achieve a

response with no waiting time it is easy to find. The algorithm is based on a

83

recursive approach which uses the value of G(z-1) to find G(z). Doing so the

algorithm finds the number of workers which grants the smallest value of C,,.

After this new algorithm and its explanation, I found the reasons why the
optimal number of crowdworkers, »° adds up, increasing the traffic intensity.
This could be logically understood: as the percentage of the resources of the
system answering the incoming tasks increases, the number of crowdworkers to
be hired in the pool has to increase, too. But words are words and in math we need

proof to give certainty!

Next steps and future works could be the analysis of the realtime
crowdsourcing applying these studies and this model to a real website application

and with models using real data sets built for this purpose.

With this real application it could be important to understand a part of the
Total Cost function which is, in my opinion, still mysterious: the “cost for a missed

task, C, ,". What could matter would be to study and to understand its correct

task

amount or its plausible range.

Another possible future work is the minimization of a new Total Cost
function containing all the » workers and their costs instead of calculating the loss
in this

function as the authors did. We can rewrite the Total Cost function, C,,,

way.
Cfot NEW = Ctask + p[l - G(}’Z)] r+s-n

Equation 58: new Total Cost function for possible future works

In this formula I added the variable r to represent the amount of money
paid by the requester to those crowdworkers who complete the tasks given.

In this new formula I calculated the entire cost suffered to hire all the » workers

84

who stay in the retainer pool and the number of active workers who answer the
incoming tasks. This is different from the classical formula of Total Cost used in the
retainer model (which calculates the amount of nonworking crowdworkers only)

and it could be useful for further studies.

How to modify the relation between the Retainer Model it and the Queueing
Theory could be a next potential study. It could be fascinating to use other

formulas, different from the Erlang’s B.

All this analysis has been for me an incredible work experience and a great
possibility to demonstrate my abilities in optimization. | had the chance to connect
the studies in different fields and to apply them in a new theme such as

realtime crowdsourcing.

85

Acknowledgements/Ringraziamenti

First of all thanks to Professor Paola Ferretti, for her trust and for giving me
the chance to work on this thesis, for having followed carefully and patiently all the
phases of this work and for letting me to find, independently, the most suited way

to my abilities.

Thanks to Professors Andrea Ellero and Jorge Sa Esteves for their immense
generosity and for helping me to enrich this work with many precious ideas,

contributions and suggestions.

Thanks to all my professors and teachers from the beginning to now
through all these 21 years of education, for the important contribution in my life,

as a student, but, more importantly, as a person.

Thanks to my Father and my Mother, for their endless lessons in everyday

life and for the efforts they made so that I could get here today.

Thanks to my brother Pietro, because he deserves to be mentioned for the

beautiful person he is.

Thanks to Chiara for always believing in me, for giving me patient and
consistent support every day, for the determination, the nice stubbornness and the
loving effort that distinguishes her in the challenges we faced and those that we

will face. Together.

87

Thanks to my classmates and my friends, for making the route less arduous
and less steep, through the affections and the warmth of friendship.
A special thanks to the working group of the Presidio di Libera San Donad, an
association founded by Don Ciotti and supported throughout Italy by hundreds of
committed greenhorns. To my nine fellows of the Presidio, Chiara, Ilaria, Ilaria,
Elsa, Claudia, Sindi, Silvia, Niccolo and Alberto, wish you the strength to be able to
change this Country.

Thanks to all those who, one way or another, have stood by my side so that I

could be here today and have made me the person I am.

Thanks to myself, for having always believed in the possibilities of the
world and never given up, in spite of everything and not without difficulty:

because, as A.E. Roosvelt, said,

“the future belongs to those who believe in the beauty of their dreams".

88

Appendix:

These first two tables show that the values of G(n) (obtained by the two

method in the algorithm structure:

Table 2: values of G(n) using Erlang’s B formula

0,5

methods presented on 73) find exactly the same values. So, we can use the second

numerator

Denominator

GQﬂ=nmnman/
denominator

1.00000000000000000000

1.00000000000000000000

1.00000000000000000000

0.50000000000000000000

1.50000000000000000000

0.33333333333333300000

0.12500000000000000000

1.62500000000000000000

0.07692307692307690000

0.02083333333333330000

1.64583333333333000000

0.01265822784810130000

0.00260416666666667000

1.64843750000000000000

0.00157977883096367000

0.00026041666666666700

1.64869791666667000000

0.00015795293002685200

0.00002170138888888890

1.64871961805556000000

0.00001316257091335080

0.00000155009920634921

1.64872116815476000000

0.00000094018275272347

0.00000009688120039683

1.64872126503596000000

0.00000005876141859231

0.00000000538228891093

1.64872127041825000000

0.00000000326452324447

0.00000000026911444555

1.64872127068737000000

0.00000000016322616220

0.00000000001223247480

1.64872127069960000000

0.00000000000741937101

0.00000000000050968645

1.64872127070011000000

0.00000000000030914046

0.00000000000001960332

1.64872127070013000000

0.00000000000001189002

0.00000000000000070012

1.64872127070013000000

0.00000000000000042464

0.00000000000000002334

1.64872127070013000000

0.00000000000000001415

0.00000000000000000073

1.64872127070013000000

0.00000000000000000044

0.00000000000000000002

1.64872127070013000000

0.00000000000000000001

0.00000000000000000000

1.64872127070013000000

0.00000000000000000000

0.00000000000000000000

1.64872127070013000000

0.00000000000000000000

[NCJ RN U\ U\ UG UG U JURY) Uy Uy U
olo|lo|u|o|us|w(N|m|o|C|R|N|O|UTE W N |- o

0.00000000000000000000

1.64872127070013000000

0.00000000000000000000

89

Table 3: values of G(n) using the recursive approach G(n)= %)
n

o 0,5
I(n)=L"—1)+1 G(n)=L

n 1Y 100

0 1.0 1.00000000000000000000
1 3.0 0.33333333333333300000
2 13.0 0.07692307692307690000
3 79.0 0.01265822784810130000
4 633.0 0.00157977883096367000
5 6,331.0 0.00015795293002685200
6 75,973.0 0.00001316257091335080
7 1,063,623.0 0.00000094018275272347
8 17,017,969.0 0.00000005876141859231
9 306,323,443.0 0.00000000326452324447
10 6,126,468,861.0 0.00000000016322616220
11 134,782,314,943.0 0.00000000000741937101
12 3,234,775,558,633.0 0.00000000000030914046
13 84,104,164,524,459.0 0.00000000000001189002
14 2,354,916,606,684,850.0 0.00000000000000042464
15 70,647,498,200,545,600.0 0.00000000000000001415
16 2,260,719,942,417,460,000.0 0.00000000000000000044
17 76,864,478,042,193,600,000.0 0.00000000000000000001
18 2,767,121,209,518,970,000,000.0 0.00000000000000000000
19 105,150,605,961,721,000,000,000.0 0.00000000000000000000
20 4,206,024,238,468,830,000,000,000.0 0.00000000000000000000

Structure of the MATLAB CODE for the algorithm presented on page 67:

pP= x.x, Ctask= x, s= x; % Note p is instead of rho,

nstar is instead of n*

I(1)=1/p+l; % Note G(0)=1, I(0)=1 and I(1)=I(0)/p+1;

G(1)=1/1(1);
Ctot(1l)= Ctask*G(1l)+s*[1-p*(1-G(1))];
for n=2:1000

I(n)=I(n-1)*n/p+l; %Recursive calculation;
G(n)=1/I(n);
Ctot (n)= Ctask*G(n)+s* (n-p*(1-G(n))) ;
if Ctot(n)>Ctot(n-1) % If Ctot increases then stop;
nstar=n-1; % The minimizer is mf=n-1;
Ctotmin=Ctot (n-1) % The minimum value of Ctot;
break % Break the cycle and return;
end
end
disp(nstar, Ctotmin)

Figure 9: MATLAB code of the algorithm for the calculation of n'

90

The recursive and cyclical process, represented in the MATLAB code from
line six up to line fourteen, that the algorithm performs, after having fixed

the starting value of G(l) and C,, with n=1is:

tot

« line six: find the value of /(1) using the value of I(z-1) (that for

n=21is I(l) calculated in the first line of the code;

* line seven: compute the value of G(n) using the value of I(n)

calculated in the previous line;

* line eight: calculate the amount of C,, using G(n) found in line

seven,

* line nine: start the cycle “if”: if the value calculated in line eight is

bigger than the value of C,, computed with n -1, then break the

tot

cycle and the final results are n' =n-1 and the value of C,,

minimum is the amount of C,, using n-1 (in the Equation 17:

tot

Total Cost of the Retainer Model equation, C,,);

* instead, if the two sequential values of C,, with » and n+1, are

tot

decreasing, repeat the cycle using the next value of ».

As stated on pages 67 and following, here the screen-shots of the examples
obtained running the algorithm with certain values of the parameters with the
MATLAB code presented above. With this algorithm I found the same values
(better safe than sorry) shown in the tables and found with the graphical approach
used by the authors. These are:

Example 1. Setting p=0.5, C_, =100 and s=1, we can see that the

task
algorithm runs perfectly comparing the final results with Table 4 below in the

appendix:

91

FreeMat v4.0 Command Window

U L‘/ _{). lj ;@ ﬂ LW lE » | /Applications

--»> p=0.5, Ctask=122, s=1; ¥ Note p is instead of rho, nstar is instead of n*
I(1)=1/p+1; % Note G(@)=1, I(@)=1 and I(1)=I(?)/p+1;
G(1)=1/1(1);
Ctot(1)= Ctask*G(1)+«s*[1-p*(1-G(1))];
for n=2:30
I(n)=I(n-1)*n/p+1; ¥Recursive calculaticn;
G(n)=1/1I(n);
Ctot(n)= Ctask*G(n)+«s*(n-p*(1-G(n)));
if Ctot(n)>Ctot(n-1) ¥ If Ctot increases then stop;
nstar=n-1; % The minimizer is mf=n-1;
Ctotmin=Ctot(n-1) ¥ The minimum value of Ctot;
break ¥ Break the cicle and return;
end
end
disp(nstar, Ctotmin)
p_
2.5022

Ctask =

122

--» disp(nstar, Ctotmin)
Ctotmin =

3.6588

--»> disp(nstar, Ctotmin)
4

3.6588

Figure 10: automatic results by the algorithm with p = 0.5, C,, =100 and 5 =1

Example 2. Setting set p=1.0, C,_, =100 and s =1 we can see that the

algorithm runs perfectly comparing the final results with Table 4 below:

--> disp(nstar, Ctotmin)
5

4.3098

Figure 11: automatic results by the algorithm with p =1.0, C,, =100 and 5 =1

92

Example 3. Setting p=25, C_, =100 and s=1 we can see that the

task

algorithm runs perfectly comparing the final results with Table 6 in the appendix:

--» disp(nstar, Ctotmin)
7

5.5233

Figure 12: automatic results by the algorithm with p =2.5, C, , =100 and s =1

task

The tables showing the different values of C,,, computed fixing s =1 and

tot ?

C,. =100 and varying the value of p, can be found in this last part. This has been

task

done in order to have, always ready, the amount of C,, without losing time every

tot

time for calculate it.

How to read them: in the first column the different values of » (from 0 up to

23) are present and for each n, fixing the value of C,_, =100 and s=1,

task

I calculated the value of C,,, substituting the value of p with a numerical value

tot?
from 0.1 to 10 (with an increment of 0.1). This calculations has been made in order

to build 100 different columns for 100 different values of C,,, using Equation 49:

tot ?

formula for the computation of the tables in appendix presented on page 76.

93

Below Table 4 shows the values of C

tot

with s =1, C

Table 4: values of C,, with s =1, C

task

=100 and 0.1= p <1:

=100 and0.1= p <1

C. 100 100 100 100 100 100 100 100 100 100
s 1 1 1 1 1 1 1 1 1 1
P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n Cf()f Cf()f Cf()f Cf()f Cf()f Cf()f Cf()f Cf()f Cf()f Cf()f
0 p>n | P>n | p>n | p>np>n|p>n | p>n [p>n | p>n|p>n
1 10.000 | 17.500 | 23.846 | 29.286 | 34.000 | 38.125 | 41.765 | 45.000 | 47.895 | P > 7
2 2.353 | 3.443 | 5056 | 7.027 | 9.231 | 11.573 | 13.985 | 16.415 | 18.829 | 21.200
3 2915 | 2.909 | 3.034 | 3.318 | 3.772 | 4394 | 5175 | 6.100 | 7.152 | 8313
4 3900 | 3.805 | 3.725 | 3.672 | 3.659 | 3.698 | 3.801 | 3.974 | 4.224 | 4.554
5 4900 | 4.800 | 4.702 | 4.606 | 4516 | 4436 | 4370 | 4.324 | 4.302 | 4.310
6 5900 | 5.800 | 5700 | 5.600 | 5501 | 5404 | 5308 | 5216 | 5130 | 5.052
7 6900 | 6800 | 6.700 | 6.600 | 6.500 | 6.400 | 6301 | 6.202 | 6.104 | 6.007
8 7.900 | 7.800 | 7.700 | 7.600 | 7.500 | 7.400 | 7.300 | 7.200 | 7.100 | 7.001
9 8.900 | 8.800 | 8700 | 8.600 | 8500 | 8400 | 8300 | 8.200 | 8.100 | 8.000
10 9.900 | 9.800 | 9.700 | 9.600 | 9.500 | 9.400 | 9.300 | 9.200 | 9.100 | 9.000
11 10.900 | 10.800 | 10.700 | 10.600 | 10.500 | 10.400 | 10.300 | 10.200 | 10.100 | 10.000
12 11.900 | 11.800 | 11.700 | 11.600 | 11.500 | 11.400 | 11.300 | 11.200 | 11.100 | 11.000
13 12.900 | 12.800 | 12.700 | 12.600 | 12.500 | 12.400 | 12.300 | 12.200 | 12.100 | 12.000
14 13.900 | 13.800 | 13.700 | 13.600 | 13.500 | 13.400 | 13.300 | 13.200 | 13.100 | 13.000
15 14.900 | 14.800 | 14.700 | 14.600 | 14.500 | 14.400 | 14.300 | 14.200 | 14.100 | 14.000
16 15.900 | 15.800 | 15.700 | 15.600 | 15.500 | 15.400 | 15.300 | 15.200 | 15.100 | 15.000
17 16.900 | 16.800 | 16.700 | 16.600 | 16.500 | 16.400 | 16.300 | 16.200 | 16.100 | 16.000
18 17.900 | 17.800 | 17.700 | 17.600 | 17.500 | 17.400 | 17.300 | 17.200 | 17.100 | 17.000
19 18.900 | 18.800 | 18.700 | 18.600 | 18.500 | 18.400 | 18.300 | 18.200 | 18.100 | 18.000
20 19.900 | 19.800 | 19.700 | 19.600 | 19.500 | 19.400 | 19.300 | 19.200 | 19.100 | 19.000
21 20.900 | 20.800 | 20.700 | 20.600 | 20.500 | 20.400 | 20.300 | 20.200 | 20.100 | 20.000
22 21.900 | 21.800 | 21.700 | 21.600 | 21.500 | 21.400 | 21.300 | 21.200 | 21.100 | 21.000
23 22.900 | 22.800 | 22.700 | 22.600 | 22.500 | 22.400 | 22.300 | 22.200 | 22.100 | 22.000
C 2.353 | 2.909 | 3.034 | 3.318 | 3.659 | 3.698 | 3.801 | 3.974 | 4.224 | 4.310

minimum

94

Below table 5 shows the values of C,, with s =1. C,,

Table 5: values of C,, with s =1, C

tot

task

=100 and1.1= p =2:

=100 and1.1< p <2

Cout 100 100 100 100 100 100 100 100 100 100
s 1 1 1 1 1 1 1 1 1 1
P 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
n Cfaf Cfaf Cfaf Cfaf Cfaf Cfaf Cfaf Cfaf Cfaf Cfaf
0 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>n
1 p>n | p>n | p>n | p>n|p>n| p>n | p>n|p>n|p>n| p>n
2 23.512 | 25.753 | 27.917 | 30.000 | 32.000 | 33.918 | 35.754 | 37.511 | 39.192 | p >n
3 9.563 | 10.885 | 12.264 | 13.685 | 15.134 | 16.601 | 18.076 | 19.551 | 21.019 | 22.474
4 4964 | 5454 | 6.021 | 6.660 | 7368 | 8.137 | 8.963 | 9.838 | 10.758 | 11.714
5 4352 | 4433 | 4.556 | 4.724 | 4940 | 5203 | 5516 | 5.878 | 6.287 | 6.743
6 4983 | 4.926 | 4.885 | 4.862 | 4.859 | 4.879 | 4.924 | 4.997 | 5.099 | 5.233
7 5913 | 5822 | 5.734 | 5652 | 5577 | 5509 | 5451 | 5405 | 5371 | 5.351
8 6902 | 6803 | 6706 | 6.609 | 6514 | 6.422 | 6332 | 6.246 | 6.164 | 6.088
9 7900 | 7.800 | 7.701 | 7.601 | 7.502 | 7.404 | 7.306 | 7.209 | 7.114 | 7.019
10 8.900 | 8.800 | 8700 | 8.600 | 8500 | 8.401 | 8301 | 8.202 | 8.103 | 8.004
11 9.900 | 9.800 | 9.700 | 9.600 | 9.500 | 9.400 | 9.300 | 9.200 | 9.100 | 9.001
12 10.900 | 10.800 | 10.700 | 10.600 | 10.500 | 10.400 | 10.300 | 10.200 | 10.100 | 10.000
13 11.900 | 11.800 | 11.700 | 11.600 | 11.500 | 11.400 | 11.300 | 11.200 | 11.100 | 11.000
14 12.900 | 12.800 | 12.700 | 12.600 | 12.500 | 12.400 | 12.300 | 12.200 | 12.100 | 12.000
15 13.900 | 13.800 | 13.700 | 13.600 | 13.500 | 13.400 | 13.300 | 13.200 | 13.100 | 13.000
16 14.900 | 14.800 | 14.700 | 14.600 | 14.500 | 14.400 | 14.300 | 14.200 | 14.100 | 14.000
17 15.900 | 15.800 | 15.700 | 15.600 | 15.500 | 15.400 | 15.300 | 15.200 | 15.100 | 15.000
18 16.900 | 16.800 | 16.700 | 16.600 | 16.500 | 16.400 | 16.300 | 16.200 | 16.100 | 16.000
19 17.900 | 17.800 | 17.700 | 17.600 | 17.500 | 17.400 | 17.300 | 17.200 | 17.100 | 17.000
20 18.900 | 18.800 | 18.700 | 18.600 | 18.500 | 18.400 | 18.300 | 18.200 | 18.100 | 18.000
21 19.900 | 19.800 | 19.700 | 19.600 | 19.500 | 19.400 | 19.300 | 19.200 | 19.100 | 19.000
22 20.900 | 20.800 | 20.700 | 20.600 | 20.500 | 20.400 | 20.300 | 20.200 | 20.100 | 20.000
23 21.900 | 21.800 | 21.700 | 21.600 | 21.500 | 21.400 | 21.300 | 21.200 | 21.100 | 21.000
C 4352 | 4.433 | 4.556 | 4.724 | 4.859 | 4.879 | 4.924 | 4.997 | 5.099 | 5.233
minimum

95

Below table 6 shows the values of C, with s =1. C

Table 6: values of C,, with s =1, C

tot

task

task

=100 and 2.1= p =3:

=100 and2.1< p <3

C sk 100 100 100 100 100 100 100 100 100 100

N 1 1 1 1 1 1 1 1 1 1
p 2.1 2.2 2.3 24 2.5 2.6 2.7 2.8 2.9 3
n Cror Cror Cror Cror Cror Cror Cror Cror Cror Cror
0 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
1 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
2 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
3 23.911 | 25.327 | 26.719 | 28.085 | 29.422 | 30.730 | 32.007 | 33.254 | 34.470 | P> 1
4 12.703 | 13.717 | 14.752 | 15.803 | 16.866 | 17.937 | 19.011 | 20.087 | 21.160 | 22.229
5 7.244 7.788 8.371 8.992 9.647 | 10.334 | 11.049 | 11.790 | 12.553 | 13.336
6 5.398 5.597 5.829 6.095 6.394 6.727 7.092 7.489 7916 8.372
7 5.347 | 5.362 | 5.395 | 5.448 | 5.523 5.621 | 5.742 5.887 6.057 6.252
8 6.017 5.954 5.899 5.854 5.819 5.795 5.784 5.787 | 5.805 | 5.838
9 6.927 6.838 6.751 6.668 6.588 6.514 6.445 6.382 6.327 6.278
10 7.906 7.808 7.712 7.616 7.522 7.430 7.339 7.251 7.166 7.083
11 8.901 8.802 8.702 8.604 8.505 8.407 8.310 8.213 8.117 8.023
12 9.900 9.800 9.700 9.601 9.501 9.402 9.302 9.203 9.104 9.006
13 10.900 | 10.800 | 10.700 | 10.600 | 10.500 | 10.400 | 10.300 | 10.201 | 10.101 | 10.001
14 11.900 | 11.800 | 11.700 | 11.600 | 11.500 | 11.400 | 11.300 | 11.200 | 11.100 | 11.000
15 12.900 | 12.800 | 12.700 | 12.600 | 12.500 | 12.400 | 12.300 | 12.200 | 12.100 | 12.000
16 13.900 | 13.800 | 13.700 | 13.600 | 13.500 | 13.400 | 13.300 | 13.200 | 13.100 | 13.000
17 14900 | 14.800 | 14.700 | 14.600 | 14.500 | 14.400 | 14.300 | 14.200 | 14.100 | 14.000
18 15.900 | 15.800 | 15.700 | 15.600 | 15.500 | 15.400 | 15.300 | 15.200 | 15.100 | 15.000
19 16.900 | 16.800 | 16.700 | 16.600 | 16.500 | 16.400 | 16.300 | 16.200 | 16.100 | 16.000
20 17.900 | 17.800 | 17.700 | 17.600 | 17.500 | 17.400 | 17.300 | 17.200 | 17.100 | 17.000
21 18.900 | 18.800 | 18.700 | 18.600 | 18.500 | 18.400 | 18.300 | 18.200 | 18.100 | 18.000
22 19.900 | 19.800 | 19.700 | 19.600 | 19.500 | 19.400 | 19.300 | 19.200 | 19.100 | 19.000
23 20.900 | 20.800 | 20.700 | 20.600 | 20.500 | 20.400 | 20.300 | 20.200 | 20.100 | 20.000
Cror

minimum | 5.347 | 5.362 | 5.395 | 5.448 | 5.523 5.621 | 5.742 | 5.787 | 5.805 | 5.838

96

Below table 7 shows the values of C, with s =1. C

Table 7: values of C,, with s =1, C

tot

task

task

=100 and3.1= p =4:

=100 and3.1= p <4

Clask 100 100 100 100 100 100 100 100 100 100
s 1 1 1 1 1 1 1 1 1 1
P 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
n er er er er er er er er er er
0 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
1 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
2 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
3 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
4 23.291 | 24.345 | 25388 | 26.419 | 27.438 | 28.443 | 29.433 | 30.408 | 31.368 | P >N
5 14.135 | 14.949 | 15.774 | 16.609 | 17.451 | 18.298 | 19.148 | 20.000 | 20.852 | 21.703
6 8.856 | 9.366 | 9.901 | 10.459 | 11.037 | 11.635 | 12.250 | 12.881 | 13.527 | 14.185
7 6.472 | 6.717 | 6.987 | 7.281 | 7.599 | 7.941 | 8.306 | 8.692 | 9.099 | 9.526
8 5.887 | 5.954 | 6.038 | 6.141 | 6.263 | 6.404 | 6.565 | 6.745 | 6.944 | 7.164
9 6.239 | 6.209 | 6.188 | 6.179 | 6.181 | 6.195 | 6.223 | 6.263 | 6.318 | 6.387
10 7.005 | 6.931 | 6.861 | 6.796 | 6.738 | 6.686 | 6.640 | 6.603 | 6.573 | 6.552
11 7930 | 7.838 | 7.748 | 7.661 | 7.576 | 7.493 | 7.414 | 7.339 | 7.267 | 7.200
12 8908 | 8810 | 8.713 | 8.617 | 8522 | 8.428 | 8335 | 8244 | 8154 | 8.067
13 9.902 | 9.802 | 9.703 | 9.604 | 9.506 | 9.408 | 9.310 | 9.213 | 9.116 | 9.021
14 10.900 | 10.801 | 10.701 | 10.601 | 10.501 | 10.402 | 10.303 | 10.203 | 10.105 | 10.006
15 11.900 | 11.800 | 11.700 | 11.600 | 11.500 | 11.400 | 11.301 | 11.201 | 11.101 | 11.002
16 12.900 | 12.800 | 12.700 | 12.600 | 12.500 | 12.400 | 12.300 | 12.200 | 12.100 | 12.000
17 13.900 | 13.800 | 13.700 | 13.600 | 13.500 | 13.400 | 13.300 | 13.200 | 13.100 | 13.000
18 14.900 | 14.800 | 14.700 | 14.600 | 14.500 | 14.400 | 14.300 | 14.200 | 14.100 | 14.000
19 15.900 | 15.800 | 15.700 | 15.600 | 15.500 | 15.400 | 15.300 | 15.200 | 15.100 | 15.000
20 16.900 | 16.800 | 16.700 | 16.600 | 16.500 | 16.400 | 16.300 | 16.200 | 16.100 | 16.000
21 17.900 | 17.800 | 17.700 | 17.600 | 17.500 | 17.400 | 17.300 | 17.200 | 17.100 | 17.000
22 18.900 | 18.800 | 18.700 | 18.600 | 18.500 | 18.400 | 18.300 | 18.200 | 18.100 | 18.000
23 19.900 | 19.800 | 19.700 | 19.600 | 19.500 | 19.400 | 19.300 | 19.200 | 19.100 | 19.000

er

minimum | 5.887 | 5.954 | 6.038 | 6.141 | 6.181 | 6.195 | 6.223 | 6.263 | 6.318 | 6.387

97

Below table 8 shows the values of C, with s =1. C

Table 8: values of C,, with s =1, C

tot

task

task

=100 and4.1< p <5:

=100 and4.1< p <5

Ctask 100 100 100 100 100 100 100 100 100 100
N 1 1 1 1 1 1 1 1 1 1

p 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
n Cmr Cmr Cmr Cmr Cmr Cmr Cmr Cmr Cmr Cmr
0 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
1 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
2 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
3 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
4 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
5 22.551 | 23.395 | 24.235 | 25.069 | 25.896 | 26.716 | 27.528 | 28.331 | 29.126 | P > 1
6 14.854 | 15.532 | 16.219 | 16912 | 17.610 | 18.313 | 19.019 | 19.727 | 20.435 | 21.144
7 9.972 | 10436 | 10916 | 11.412 | 11.923 | 12.447 | 12.983 | 13.530 | 14.088 | 14.654
8 7.402 7.660 7.937 8.232 8.544 8.875 9.221 9.584 9.962 | 10.355
9 6.471 6.571 6.686 6.816 6.963 7.125 7.304 7.498 7.708 7.933
10 6.540 6.538 | 6.547 | 6.566 | 6.597 | 6.639 | 6.693 | 6.759 | 6.838 6.930
11 7.138 7.081 7.030 6.985 6.947 6.915 6.892 6.876 6.869 6.870
12 7.981 7.898 7.818 7.741 7.667 7.597 7.531 7.470 7.413 7.361
13 8.926 8.832 8.739 8.648 8.558 8.470 8.384 8.299 8.218 8.139
14 9.908 9.810 9.712 9.615 9.519 9.423 9.328 9.234 9.141 9.050
15 10.902 | 10.803 | 10.703 | 10.604 | 10.506 | 10.407 | 10.309 | 10.211 | 10.113 | 10.017
16 11901 | 11.801 | 11.701 | 11.601 | 11.502 | 11.402 | 11.303 | 11.203 | 11.104 | 11.005
17 12.900 | 12.800 | 12.700 | 12.600 | 12.500 | 12.401 | 12.301 | 12.201 | 12.101 | 12.002
18 13.900 | 13.800 | 13.700 | 13.600 | 13.500 | 13.400 | 13.300 | 13.200 | 13.100 | 13.000
19 14900 | 14.800 | 14.700 | 14.600 | 14.500 | 14.400 | 14.300 | 14.200 | 14.100 | 14.000
20 15.900 | 15.800 | 15.700 | 15.600 | 15.500 | 15.400 | 15.300 | 15.200 | 15.100 | 15.000
21 16.900 | 16.800 | 16.700 | 16.600 | 16.500 | 16.400 | 16.300 | 16.200 | 16.100 | 16.000
22 17.900 | 17.800 | 17.700 | 17.600 | 17.500 | 17.400 | 17.300 | 17.200 | 17.100 | 17.000
23 18.900 | 18.800 | 18.700 | 18.600 | 18.500 | 18.400 | 18.300 | 18.200 | 18.100 | 18.000

er

minimum | 6.471 | 6.538 | 6.547 | 6.566 | 6.597 | 6.639 | 6.693 | 6.759 | 6.838 | 6.870

98

Below table 9 shows the values of C, with s =1. C

Table 9: values of C,, with s =1, C

tot

task

task

=100 and 5.1=< p <6:

=100 and5.1= p <6

Clask 100 100 100 100 100 100 100 100 100 100
s 1 1 1 1 1 1 1 1 1 1
P 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
n er er er er er er er er er er
0 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
1 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
2 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
3 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
4 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
5 p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>}’l p>l’l
6 21.852 | 22.558 | 23.263 | 23.964 | 24.662 | 25.356 | 26.045 | 26.729 | 27.408 | P >N
7 15.229 | 15.811 | 16.399 | 16.992 | 17.589 | 18.190 | 18.794 | 19.400 | 20.008 | 20.616
8 10.762 | 11.181 | 11.614 | 12.057 | 12.512 | 12.976 | 13.450 | 13.932 | 14.422 | 14.919
9 8.174 | 8429 | 8.700 | 8984 | 9.283 | 9.595 | 9.919 | 10.256 | 10.605 | 10.965
10 7.035 | 7.153 | 7.285 | 7.430 | 7.587 | 7.759 | 7.943 | 8140 | 8.350 | 8.573
11 6.881 | 6901 | 6.931 | 6971 | 7.021 | 7.083 | 7.155 | 7.238 | 7.332 | 7.437
12 7315 | 7.275 | 7.241 | 7.213 | 7.193 | 7179 | 7174 | 7.176 | 7.186 | 7.205
13 8.063 | 7.990 | 7.920 | 7.854 | 7.792 | 7.735 | 7.682 | 7.634 | 7.591 | 7.553
14 8959 | 8870 | 8.783 | 8.698 | 8.615 | 8.534 | 8455 | 8379 | 8306 | 8237
15 9.920 | 9.824 | 9.729 | 9.635 | 9.542 | 9.450 | 9.359 | 9.269 | 9.181 | 9.095
16 10.906 | 10.808 | 10.710 | 10.612 | 10.514 | 10.417 | 10.321 | 10.225 | 10.130 | 10.035
17 11.902 | 11.802 | 11.703 | 11.604 | 11.505 | 11.406 | 11.307 | 11.209 | 11.110 | 11.013
18 12.901 | 12.801 | 12.701 | 12.601 | 12.501 | 12.402 | 12.302 | 12.203 | 12.103 | 12.004
19 13.900 | 13.800 | 13.700 | 13.600 | 13.500 | 13.401 | 13.301 | 13.201 | 13.101 | 13.001
20 14.900 | 14.800 | 14.700 | 14.600 | 14.500 | 14.400 | 14.300 | 14.200 | 14.100 | 14.000
21 15.900 | 15.800 | 15.700 | 15.600 | 15.500 | 15.400 | 15.300 | 15.200 | 15.100 | 15.000
22 16.900 | 16.800 | 16.700 | 16.600 | 16.500 | 16.400 | 16.300 | 16.200 | 16.100 | 16.000
23 17.900 | 17.800 | 17.700 | 17.600 | 17.500 | 17.400 | 17.300 | 17.200 | 17.100 | 17.000
er

minimum | 6.881 | 6.901 | 6.931 | 6.971 | 7.021 | 7.083 | 7.155 | 7.176 | 7.186 | 7.205

99

Below table 8 shows the values of C, with s =1. C

Table 10: values of C,, with s =1, C

tot

task

task

=100 and 6.1= p <7:

=100 and6.1< p <7

Clask 100 100 100 100 100 100 100 100 100 100
s 1 1 1 1 1 1 1 1 1 1
P 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7
n er er er er er er er er er er
0 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
1 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
2 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
3 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
4 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
5 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
6 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
7 21.224 | 21.832 | 22.440 | 23.045 | 23.649 | 24.251 | 24.850 | 25.447 | 26.040 | P >N
8 15.422 | 15.931 | 16.445 | 16.964 | 17.486 | 18.011 | 18.539 | 19.069 | 19.601 | 20.134
9 11.336 | 11.717 | 12.108 | 12.508 | 12.916 | 13.332 | 13.756 | 14.186 | 14.623 | 15.065
10 8.808 | 9.055 | 9.314 | 9.584 | 9.866 | 10.158 | 10.460 | 10.773 | 11.094 | 11.425
11 7554 | 7.682 | 7.821 | 7971 | 8133 | 8306 | 8490 | 8685 | 8.890 | 9.106
12 7.232 | 7.268 | 7.314 | 7.368 | 7.432 | 7.506 | 7.589 | 7.682 | 7.785 | 7.898
13 7521 | 7.496 | 7.476 | 7.463 | 7.457 | 7.459 | 7.467 | 7.483 | 7.506 | 7.538
14 8.170 | 8107 | 8.048 | 7.993 | 7.943 | 7.897 | 7.856 | 7.819 | 7.789 | 7.763
15 9.010 | 8927 | 8846 | 8.768 | 8691 | 8.618 | 8548 | 8.480 | 8416 | 8355
16 9.942 | 9.849 | 9.757 | 9.667 | 9.578 | 9.490 | 9.404 | 9.319 | 9.236 | 9.155
17 10.915 | 10.818 | 10.721 | 10.625 | 10.530 | 10.435 | 10.341 | 10.248 | 10.155 | 10.064
18 11.905 | 11.806 | 11.707 | 11.609 | 11.511 | 11.413 | 11.315 | 11.218 | 11.121 | 11.025
19 12.902 | 12.802 | 12.702 | 12.603 | 12.504 | 12.404 | 12.305 | 12.206 | 12.108 | 12.009
20 13.900 | 13.801 | 13.701 | 13.601 | 13.501 | 13.401 | 13.302 | 13.202 | 13.103 | 13.003
21 14.900 | 14.800 | 14.700 | 14.600 | 14.500 | 14.400 | 14.301 | 14.201 | 14.101 | 14.001
22 15.900 | 15.800 | 15.700 | 15.600 | 15.500 | 15.400 | 15.300 | 15.200 | 15.100 | 15.000
23 16.900 | 16.800 | 16.700 | 16.600 | 16.500 | 16.400 | 16.300 | 16.200 | 16.100 | 16.000

er

minimum | 7.232 | 7.268 | 7.314 | 7.368 | 7.432 | 7.459 | 7.467 | 7.483 | 7.506 | 7.538

100

Below table 11 shows the values of C

Table 11: values of C,, with s =1, C

tot

with s =1, C

task

task

=100 and 7.1= p <8:

=100 and7.1= p <8

C sk 100 100 100 100 100 100 100 100 100 100
S 1 1 1 1 1 1 1 1 1 1

p 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8
n Cf()f Cf()f Cf()f Cf()f Cf()f Cf()f Cf()f Cf()f Cf()f Cf()f
0 p>n | p>n | p>n | p>n|p>n| p>n | p>n|p>n|p>n| p>n
1 p>n | p>n | p>n | p>n|p>n| p>n | p>n|p>n|p>n| p>n
2 p>n | p>n | p>n|p>n|p>n|p>n | p>n|p>n|p>n| p>n
3 p>n | p>n | p>n | p>n|p>n| p>n | p>n|p>n|p>n| p>n
4 p>n | p>n | p>n|p>n|p>n| p>n | p>n|p>n|p>n| p>n
5 p>n | p>n | p>n | p>n|p>n| p>n | p>n|p>n|p>n| p>n
6 p>n | p>n | p>n|p>n|p>n| p>n|p>n|p>n|p>n| p>n
7 p>n | p>n | p>n|p>n|p>n| p>n | p>n|p>n|p>n| p>n
8 20.668 | 21.202 | 21.735 | 22.269 | 22.801 | 23.333 | 23.863 | 24.391 | 24.918 | P > 1
9 15.512 | 15965 | 16.421 | 16.882 | 17.345 | 17.812 | 18.281 | 18.752 | 19.225 | 19.699
10 11.765 | 12.113 | 12.468 | 12.831 | 13.201 | 13.577 | 13.960 | 14.348 | 14.741 | 15.139
11 9.332 9.568 9.813 | 10.068 | 10.332 | 10.605 | 10.887 | 11.177 | 11.474 | 11.779
12 8.020 8.152 8.294 8.446 8.607 8.778 8.958 9.147 9.345 9.552
13 7.577 | 7.625 | 7.681 7.745 7.818 7.900 7.990 8.089 8.196 8.312
14 7.744 7.730 7.723 7.722 7.728 7.740 7.759 7.786 7.819 7.860
15 8.298 8.245 8.196 8.151 8.110 8.075 8.044 8.018 7.998 7.983
16 9.076 9.000 8.926 8.854 8.785 8.720 8.657 8.597 8.542 8.489
17 9.974 9.885 9.797 9.711 9.626 9.543 9.461 9.382 9.305 9.230
18 10.929 | 10.834 | 10.739 | 10.645 | 10.552 | 10.460 | 10.369 | 10.279 | 10.190 | 10.102
19 11911 | 11.813 | 11.715 | 11.618 | 11.521 | 11.424 | 11.328 | 11.232 | 11.137 | 11.043
20 12904 | 12.805 | 12.706 | 12.607 | 12.508 | 12.409 | 12.311 | 12.213 | 12.115 | 12.017
21 13.901 | 13.802 | 13.702 | 13.602 | 13.503 | 13.403 | 13.304 | 13.205 | 13.106 | 13.007
22 14900 | 14.801 | 14.701 | 14.601 | 14.501 | 14.401 | 14.301 | 14.202 | 14.102 | 14.002
23 15.900 | 15.800 | 15.700 | 15.600 | 15.500 | 15.400 | 15.300 | 15.201 | 15.101 | 15.001

Ct()f

minimum | 7.577 7.625 7.681 7.722 7.728 7.740 7.759 7.786 7.819 7.860

101

Below table 12 shows the values of C

Table 12: values of C,, with s =1, C

tot

with s =1, C

task

task

=100 and8.1= p =9:

=100 and8.1< p <9

C sk 100 100 100 100 100 100 100 100 100 100
s 1 1 1 1 1 1 1 1 1 1
P 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9
n er er er er er er er er er er
0 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
1 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
2 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
3 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
4 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
5 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
6 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
7 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
8 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
9 20.174 | 20.650 | 21.127 | 21.603 | 22.079 | 22.555 | 23.030 | 23.504 | 23.977 | P> 1
10 15.542 | 15949 | 16.359 | 16.773 | 17.190 | 17.609 | 18.031 | 18.455 | 18.881 | 19.308
11 12.091 | 12.410 | 12.736 | 13.068 | 13.405 | 13.749 | 14.097 | 14.450 | 14.808 | 15.169
12 9.767 | 9.991 | 10.223 | 10464 | 10.711 | 10.966 | 11.229 | 11.498 | 11.774 | 12.056
13 8436 | 8569 | 8711 | 8861 | 9.019 | 9.185 | 9359 | 9.541 | 9.731 | 9.929
14 7.908 | 7.964 | 8.027 | 8.097 | 8176 | 8262 | 8356 | 8457 | 8566 | 8.683
15 7.974 | 7970 | 7.972 | 7.981 | 7.995 | 8.016 | 8.044 | 8.078 | 8.118 | 8.166
16 8441 | 8396 | 8356 | 8320 | 8289 | 8262 | 8240 | 8223 | 8211 | 8205
17 9.157 | 9.087 | 9.019 | 8955 | 8893 | 8834 | 8779 | 8727 | 8.679 | 8.634
18 10.016 | 9.931 | 9.847 | 9.765 | 9.685 | 9.607 | 9.531 | 9.457 | 9.385 | 9.316
19 10.949 | 10.856 | 10.764 | 10.673 | 10.583 | 10.494 | 10.406 | 10.319 | 10.234 | 10.150
20 11.920 | 11.823 | 11.727 | 11.631 | 11.535 | 11.440 | 11.346 | 11.252 | 11.159 | 11.067
21 12.908 | 12.809 | 12.711 | 12.612 | 12,514 | 12.416 | 12.319 | 12.222 | 12.125 | 12.029
22 13.903 | 13.803 | 13.704 | 13.605 | 13.506 | 13.406 | 13.308 | 13.209 | 13.110 | 13.012
23 14.901 | 14.801 | 14.701 | 14.602 | 14.502 | 14.402 | 14.303 | 14.203 | 14.104 | 14.005
er

minimum | 7.908 | 7.964 | 7.972 | 7.981 | 7.995 | 8.016 | 8.044 | 8.078 | 8.118 | 8.166

102

Below table 13 shows the values of C

Table 13: values of C,, with s =1, C

tot

with s =1, C

task

task

=100 and9.1= p <10:

=100 and9.1= p <10

Clask 100 100 100 100 100 100 100 100 100 100
s 1 1 1 1 1 1 1 1 1 1
P 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10
n er er er er er er er er er er
0 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
1 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
2 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
3 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
4 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
5 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
6 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
7 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
8 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
9 p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n | p>n
10 19.736 | 20.165 | 20.595 | 21.026 | 21.456 | 21.886 | 22.317 | 22.746 | 23.176 | P >N
11 15.535 | 15.905 | 16.277 | 16.653 | 17.031 | 17.412 | 17.795 | 18.180 | 18.567 | 18.956
12 12.345 | 12.639 | 12.939 | 13.244 | 13.554 | 13.869 | 14.189 | 14.512 | 14.840 | 15.171
13 10.134 | 10.346 | 10.565 | 10.791 | 11.023 | 11.262 | 11.507 | 11.758 | 12.015 | 12.277
14 8.807 | 8938 | 9.078 | 9.224 | 9.378 | 9.538 | 9.706 | 9.881 | 10.062 | 10.250
15 8.220 | 8281 | 8348 | 8423 | 8504 | 8593 | 8688 | 8790 | 8899 | 9.015
16 8.204 | 8.208 | 8.218 | 8.234 | 8.255 | 8.283 | 8.316 | 8.356 | 8.401 | 8.453
17 8.593 | 8557 | 8524 | 8496 | 8472 | 8453 | 8438 | 8429 | 8424 | 8.424
18 9.249 | 9.185 | 9.124 | 9.066 | 9.011 | 8959 | 8910 | 8865 | 8.823 | 8786
19 10.067 | 9.986 | 9.907 | 9.830 | 9.755 | 9.682 | 9.611 | 9.542 | 9.476 | 9.412
20 10.976 | 10.886 | 10.796 | 10.708 | 10.621 | 10.535 | 10.450 | 10.367 | 10.286 | 10.206
21 11.933 | 11.837 | 11.743 | 11.648 | 11.555 | 11.462 | 11.369 | 11.278 | 11.187 | 11.098
22 12,914 | 12.816 | 12.718 | 12.621 | 12.524 | 12.427 | 12.331 | 12.235 | 12.139 | 12.044
23 13.905 | 13.806 | 13.707 | 13.608 | 13.510 | 13.411 | 13.313 | 13.215 | 13.117 | 13.019
er

minimum | 8.204 | 8.208 | 8218 | 8.234 | 8.255 | 8.283 | 8.316 | 8.356 | 8.401 | 8.424

103

Bibliography

Adelman, D. "A Simple Algebraic Approximation to the Erlang Loss System."
University of Chicago, 2007.

Agnetis, A. "Appunti sui problemi di matching."

Baiocco, A. "Crowdsourcing, quando € "la folla" a generare valore per
I'impresa.”

Bauer, U. "Assignment Problem with Constraints." Technische Universitat
Munchen - Fakultat fur Informatik.

Bernstein M., Karger D., Miller R., Brandt]. "Analytic Methods for Optimizing
Realtime Crowdsourcing." CI: Collective Intelligence 2012. 2012.

—. "Crowds in two seconds: enabling realtime crowd-powered interfaces."
UIST: ACM Symposium on User Interface Software and Technology 2011. 2011.

Bigham].P., Jayant C., Ji H., Little G., Miller A, Miller R.C.,, Miller R,
Tatarowicz A., White B., White S., Yeh T. "VizZWiz: Nearly Real-time Answers to
Visual Questions." Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST 2010). 2010.

Carbone, C. "Teoria del traffico telefonico.”

Carpaneto G., Toth P. "PRIMAL-DUAL ALGORITHMS FOR THE
ASSIGNMENT." University of Bologna.

Daren, Brabham. "Crowdsourcing as a Model for Problem Solving: An
Introduction and Cases." Convergence: The International Journal of Research into
New Media Technologies, 2008.

Esteves]. S., Craveirinha J. "On a bicriterion server allocation problem in a
multidimensional Erlang loss system." Journal of Computational and Applied
Mathematics, 2013.

Esteves]. S., Craveirinha], Cardoso D. M. "Computing erlang-b function
derivatives in the number of servers." Communications in Statistics. Stochastic
Models, 1995.

104

—. "Second order Conditions on the Overflow Traffic from the Erlang-B
System." Journal of Mathematical Sciences, 2009, 6 ed.

Esteves,]. S. "Efficient Algorithms for Higher-Order Derivatives of the
Continued Erlang Delay Function." University of Aveiro.

—. "Equidade e Efici"encia na Optimizac™ao de Sistemas Multidimensionais
de Erlang-B." Universidade de Aveiro - Departamento de Matematica, 2006.

—. "Numerical Computation of High Order Derivatives of Erlang B and C
Functions."

Gross D., Harris C.M. Fundamentals of Queueing Theory. John Wiley & Sons,
1985.

Howe, Jeff. Crowdsourcing. Why the power of the crowd is driving the future
of business. Three Rivers Press, 2008.

Iversen, V. B. "TELETRAFFIC ENGINEERING and NETWORK PLANNING."
Technical University of Denmark, 2010.

Jagerman, D. L. "MATHCALC." 1987.
—. "Methods in traffic calculations." 1984.

—. "An Inversion Technique for the Laplace Transform." The Bell System
Technical Journal, 1982.

Jagers A.A., Van Doorn E.A. "On the continued Erlang loss function."
Operations Research Letters, 1986, 1 ed.

Kelley, C. T. Iterative Methods for Optimization (Frontiers in Applied
Mathematics). Society for Industrial Mathematics, 1987.

Kubasik, J. "ON SOME NUMERICAL METHODS FOR THE COMPUTATION OF
ERLANG AND ENGSET FUNCTIONS." Elsevier Science Publishers B. V., 1985.

Limpaecher A. Feltman N. Treuille A, Cohen M. "Real-time drawing
assistance through crowdsourcing." ACM Transactions on Graphics (TOG) -
SIGGRAPH 2013 Conference Proceedings, 2013.

Luna, Riccardo. "Prefazione." In Crowdsourcing. Il valore partecipativo come
risorsa per il futuro del business, by Jeff Howe. Luca Losella editore, 2010.

Marchi, S. De. "Codici Matlab/Octave." Universita di Padova - Dipartimento
di Matematica, 2011.

105

Masi, M. "Metodi Numerici perl’'Ottimizzazione - Algoritmi e
implementazioni." 2006.

"Matlab: esempi ed esercizi." Universita degli studi di Pavia- Dipartimento
di Ingegneria.

Messerli, E. J. "Proof of a convexity property of the Erlang B formula." Bell
System Technical Journal, 1972, 4 ed.

Minka, T. P. "Beyond Newton’s method." 2000.
Scaglia, M. "Esercizi sul calcolo di integrali indefiniti e definiti."

Sharma, A. "Crowdsourcing Critical Success Factor Model: Strategies to
harness the collective intelligence of the crowd ."

Srdjan, V. "Erlang B and Engset formula calculation." 2010.

Stankovic, John A. "Misconceptions About Real-Time Computing: A Serious
Problem for Next-Generation Systems." Journal Computer, 1988: 10-19.

Toth, E. "COMPUTATION OF SECOND DERIVATIVES OF ERLANG'S B AND
WILKINSON'S FORMULAE AND ITS APPLICATION ON PLANNING OF JUNCTION
NETWORKS." Elsevier Science Publishers B. V., 1985.

Varian. Microeconomic Analysis (Third ed.) W.W. Norton and Company,
1992.

Venturin, M. "Metodi di Line-search."”

Whitla, P. "Crowdsourcing and Its Application in Marketing Activities."
Contemporary Management Research, 2009.

Whitt, W. "[EOR 6707: Advanced topics in Queueing theory: Focus on
customer contact centers." 2002.

Wikipedia. "Crowdsourcing." Wikipedia. 2013.
http://en.wikipedia.org/wiki/Crowdsourcing (accessed 09 09, 2013).

Zeng, G. "Two Common Properties of the Erlang-B Function, Erlang-C
Function and Engset Blocking Function."

106

